

1 Copy number variation contributes to parallel 2 local adaptation in an invasive plant

3 Jonathan Wilson¹, Vanessa C. Bieker², Lotte van Boheemen¹, Tim Connallon¹, Michael D.
4 Martin², Paul Battlay^{1,3}, Kathryn A. Hodgins^{1,3}

5 ¹School of Biological Sciences, Monash University, Melbourne, Victoria, Australia

6 ²Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology
7 (NTNU), Trondheim, Norway

8 ³These authors contributed equally: Paul Battlay, Kathryn A. Hodgins

9 Authors declare no competing interest.

10

11 Abstract

12 Adaptation is a critical determinant of the diversification, persistence, and geographic range
13 limits of species. Yet the genetic basis of adaptation is often unknown and potentially
14 underpinned by a wide range of mutational types – from single nucleotide changes to large-scale
15 alterations of chromosome structure. Copy number variation (CNV) is thought to be an important
16 source of adaptive genetic variation, as indicated by decades of candidate gene studies that point
17 to CNVs underlying rapid adaptation to strong selective pressures. Nevertheless, population-
18 genomic studies of CNVs face unique logistical challenges not encountered by other forms of
19 genetic variation. Consequently, few studies have systematically investigated the contributions of
20 CNVs to adaptation at a genome-wide scale. We present a genome-wide analysis of CNV
21 contributing to the adaptation of an invasive weed, *Ambrosia artemisiifolia* – the first such study
22 in an invasive pest. CNVs show clear signatures of parallel local adaptation between North
23 American (native) and European (invaded) ranges, implying widespread reuse of CNVs during
24 adaptation to shared heterogeneous patterns of selection. We used a local principal component
25 analysis to genotype CNV regions in whole-genome sequences of samples collected over the last
26 two centuries. We identified 16 large CNV regions of up to 11.85 megabases in length, six of
27 which show signals of rapid evolutionary change, with pronounced frequency shifts between
28 historic and modern populations. Our results provide compelling genome-wide evidence that

29 copy number variation underlies rapid adaptation over contemporary timescales of natural
30 populations.

31

32 **Significance Statement**

33 Using a population-genomic approach, we identified copy number variants – stretches of DNA
34 that can be either present, absent, or in multiple copies – displaying parallel signatures of local
35 adaptation across the native and introduced ranges of the invasive weed *Ambrosia artemisiifolia*.

36 We further identified 16 large copy number variants, some associated with ecologically
37 important traits including sex allocation and height, that show strong signatures of selection over
38 space, along with dramatic temporal changes over the past several decades. These results
39 highlight the importance of an often-overlooked form of genomic variation in both local
40 adaptation and rapid adaptation of invasive species.

41 **Introduction**

42 Understanding how populations adapt and persist in the face of rapid environmental change is
43 one of the most pressing challenges of our time. Fundamental to this goal is determining the
44 genetic basis of adaptive evolution. But despite considerable empirical and theoretical work in
45 this area, many questions remain unresolved. For example, does adaptation typically rely on new
46 and beneficial mutations or on standing genetic variation? Does adaptation generally result in the
47 removal or maintenance of genetic variation affecting fitness? Do mutations contributing to
48 adaptation have uniformly small phenotypic effects, or are large-effect mutations important as
49 well? Do populations exposed to similar environments evolve using the same or different genetic
50 variants?

51

52 The evolution of quantitative traits was traditionally thought to almost exclusively depend on
53 evolutionary changes at many polymorphic loci with individually small phenotypic effects (1, 2).
54 However, comparatively recent theoretical and empirical studies demonstrate that large-effect
55 variants can also play important roles in adaptation (3–5). Large-effect mutations are particularly
56 likely to contribute to the initial stages of a population’s evolutionary response to a sudden shift
57 in the environment (6), and to facilitate stable adaptive genetic differentiation among populations
58 connected by migration. Such large-effect variants promote local adaptation by resisting the
59 swamping effects of gene flow (7), including cases in which the alleles carry substantial
60 pleiotropic costs (8).

61

62 Genomic structural variants, which include inversions, translocations, duplications and deletions,
63 are predicted to have both large phenotypic effects and strong potential to contribute to
64 adaptation (9, 10). Chromosomal inversions have a long history of evolutionary study, initially
65 facilitated by classical cytogenetics (e.g., polytene chromosome studies [(11, 12)]), and more
66 recently through advances in genome sequencing and analysis, which have produced compelling
67 new evidence that inversions often underpin adaptation to environmental change (13–15). These
68 findings have reinvigorated interest in the role of inversions in adaptation, yet other types of
69 structural variation have not garnered the same level of attention.

70

71 Several case studies show that copy number variants (CNVs) – structural changes that include
72 gene duplications, deletions and variation in transposable element abundance – have facilitated
73 adaptation in well-characterized systems such as *Drosophila melanogaster* (16), *Anopheles*
74 *gambiae* (17), and *Arabidopsis thaliana* (18). Prominent examples include the repeated
75 contribution of CNVs to pesticide resistance (19–22), evident in the parallel evolution of CNVs
76 in the agricultural weed *Amaranthus tuberculatus* as a response to glyphosate exposure (23), and
77 amplification of cytochrome P450 family genes in Antarctic killifish and fall armyworm
78 populations exposed to toxins (24, 25). These studies demonstrate the immense adaptive
79 potential of CNVs, yet most are candidate-driven analyses that cannot resolve the broader
80 contributions of CNVs to adaptation. Few studies have systematically characterized the genome-
81 wide contributions of CNVs to adaptive divergence across a range of environmental conditions
82 and stresses (13, 26, 27).

83

84 Invasive species have several unique features that make them powerful systems for studying
85 adaptation in nature and uncovering its genetic basis. First, because recently introduced
86 populations are likely to be initially maladapted to local conditions in the new range, there is
87 strong scope for rapid adaptive evolution that is observable within decades (28, 29). Second,
88 some plant invasions have extensive documentation in geo-referenced herbarium collections that
89 can be phenotyped and sequenced to identify and track evolutionary changes over time – an
90 approach rarely possible in natural populations (15, 30, 31). Third, invasive species typically
91 occupy climatically diverse native and invasive ranges, promoting adaptive evolution to local
92 environmental conditions (28, 29, 32). In particular, those with broad ranges further enable tests
93 of the predictability of evolution, since local adaptation across native and invasive ranges may
94 stem from parallel or unique genetic solutions to similar environmental challenges (15, 32, 33).
95 Moreover, they are well suited for evaluating contributions of CNVs, which have been predicted
96 to be important in invasive species adaptation (34, 35). Yet to our knowledge, this hypothesis has
97 never been tested at a genome-wide scale.

98

99 Over the last 200 years, the North American native plant *Ambrosia artemisiifolia* (common
100 ragweed) has become a widespread pest on all continents except Antarctica (36). This wind-
101 pollinated, outcrossing species produces highly allergenic pollen that accounts for ~50% of hay-

102 fever cases in Europe (37). It is also an agricultural pest (38), with glyphosate resistance – a
103 phenotype associated with CNVs in other species (19) – reported in some *A. artemisiifolia*
104 populations (39). Furthermore, climate change is predicted to exacerbate this weed’s impacts,
105 with increased pollen production due to an elongated flowering season (40), as well as reducing
106 the future geographic overlap with key biocontrol agents (41). Previous studies show that *A.*
107 *artemisiifolia* has established strong signals of local adaptation to climate across its native range,
108 and in introduced ranges in Europe, Asia, and Australia, with rapid local adaptation following
109 each introduction (15, 33, 41–45). We have previously demonstrated a significant contribution of
110 both SNPs and large-effect structural variants – in the form of chromosomal inversions – to
111 climate adaptation in Europe and North America (15). This raises the question of whether other
112 types of genome structural variants (i.e., CNVs) have similarly contributed to adaptive
113 divergence following *A. artemisiifolia*’s range expansion.

114

115 In this study, we leveraged a large temporally and spatially resolved dataset to investigate the
116 genome-wide contributions of CNVs to local adaptation in *A. artemisiifolia*. Over 600 whole-
117 genome sequences from individuals collected across the native North American range and the
118 introduced European range, including herbarium samples dating back to 1830, provided a unique
119 opportunity to detect signals of adaptation over space and time. We first investigated whether
120 putative CNVs display signatures of divergent selection in both Europe and North America. By
121 comparing the selection signatures of putative CNVs in each range, we then assessed the degree
122 to which these shared variants evolve in parallel between them. Second, using a subset of 121
123 phenotyped individuals, we tested for associations between putative CNVs and ecologically
124 important traits, such as flowering time and size. The typically low-coverage and error-prone
125 nature of herbarium sequences renders many existing CNV detection methods unsuitable for
126 these data. As such, we developed a novel approach that combines read-depth and local principal
127 component analysis (PCA) methods to genotype large CNV regions in both modern and low-
128 coverage historic samples, enabling us to identify CNVs, estimate temporal changes in their
129 frequencies, and thus directly track CNV evolution in these populations.

130

131 **Results**

132 **CNV identification**

133 To identify CNVs, we calculated read-depth in non-overlapping 10 kbp windows (normalized by
134 the average coverage of each individual sample) across 311 modern re-sequenced genomes
135 spanning both the North American and European ranges of *A. artemisiifolia*. We defined a
136 window as a CNV if at least 5% of samples had average standardized read-depths either greater,
137 or less, than two standard deviations from the window mean across samples. Out of the total
138 105,175 genomic windows, this resulted in 17,855 candidate CNVs retained for subsequent
139 analyses.

140

141 **CNV selection analysis**

142 Local adaptation to spatially heterogeneous environments is expected to leave a signal of
143 extreme allele frequency differentiation among populations (46). As our measures of read-depth
144 for identifying candidate CNV windows were continuous, we used a QST-FST outlier test to
145 identify windows with population differentiation in excess of neutral expectations. We first
146 calculated an FST distribution of neutral SNPs (Figure 1B, D) using the method described by
147 Weir & Cockerham (47). Under neutrality, FST and QST values should have similar distributions,
148 whereas an enrichment of QST values within the upper tail of this null FST distribution provides
149 evidence for local adaptation, with QST outliers representing local adaptation candidates (48).

150

151 In North America, 1,382 CNV windows exhibited QST values at or above the top 1% threshold of
152 neutral FST values: a 7.7-fold enrichment relative to the neutral expectation that 1% of QST
153 windows will fall within this tail ($p < 2.2e-16$; binomial test; Figure 1A, B). In Europe, 339 CNV
154 windows exhibited QST values exceeding the top 1% of the FST distribution: a 1.9-fold
155 enrichment (Figure 1C, D; $p < 2.2e-16$; binomial test). Using an equation adapted from the
156 McDonald-Kreitman test (49), this excess of outliers is consistent with a true positive rate of
157 87% for the North American CNV candidate windows, and 47% true positives for European
158 outlier windows (see methods). Of the CNV windows displaying differentiation, 111 were
159 outliers in both ranges (32% of European outliers; $p=1.17e-40$, hypergeometric test; Figure 2A),
160 a highly significant excess indicative of parallelism in the same CNVs subject to divergent
161 selection in both ranges. In contrast, there was no overlap between the top 1% of neutral SNP

162 FST values for the two ranges, suggesting that neutral processes cannot explain the parallelism
163 observed in CNVs.

164

165 Variation in recombination rate across the genome may interfere with the identification of
166 signatures of selection (50). To account for potential effects of local recombination rate on
167 patterns of CNV differentiation, we separated QST windows into three recombination rate bins
168 based on the genetic map described in Prapas et al. (51): low (<0.5 cM/Mbp), medium (0.5-2
169 cM/Mbp) and high (>2 cM/Mbp). When QST-FST analyses were repeated within each
170 recombination rate bin separately, 98.9% and 98.3% of the original QST outliers remained
171 significant in North America and Europe, respectively. This demonstrates the minimal impact of
172 recombination rate on the divergent patterns of read depth within CNV windows in this dataset
173 (Supplementary Figure 2). We also investigated the possibility that non-independence between
174 10 kbp windows drives the observed patterns of divergence and repeatability. To do so, we
175 merged windows with correlated variation in read depth ($R^2 > 0.6$) within 1 Mbp of one another.
176 After merging windows, the number of candidate CNVs was reduced from 17,855 to 11,877,
177 with the largest window measuring 11.85 Mbp on chromosome 4. We then repeated the QST-FST
178 analysis on these merged windows. QST values remained elevated relative to neutral FST
179 distributions in both North America and Europe (6-fold and 1.3-fold respectively), with 41
180 outlier windows shared between ranges: far more than expected by chance (hypergeometric test
181 $p=2.736e-16$).

182

183 To identify candidate CNVs associated with climate, we estimated correlations between each
184 candidate CNV window and the six bioclimatic variables (Supplementary Figure 5; 6) that were
185 selected after filtering highly correlated variables from the original 19 WorldClim variables (52).
186 Of the 1,382 significant QST windows in North America, 315 (22.7%) were associated with at
187 least one of the six climate variables, whereas only 12 of 339 significant windows in Europe
188 (3%) correlated with climate variables (Supplementary Figures 5; 6), suggesting the primary
189 selective forces driving differentiation of CNVs in Europe are likely not climate-related.

190

191 To determine the putative biological functions of the adaptation candidates, we used gene
192 ontology (GO) enrichment analyses of annotated genes residing within the outlier QST windows.

193 Candidate CNVs in North America are enriched for biotic and abiotic stress response genes, with
194 significant GO terms including “systemic acquired resistance,” “response to oomycetes”, and
195 “response to freezing” (Supplementary Figure 3A; Supplementary Table 1). In Europe,
196 significant GO enrichments include the hormonal stress response pathways “response to abscisic
197 acid” and “response to jasmonic acid” (Supplementary Figure 3B; Supplementary Table 2).
198 Overlapping QST candidates between the ranges exhibited GO term-enrichment for the defense
199 response terms “defense response to virus” and “response to abscisic acid” (Figure 2B;
200 Supplementary Table 3).

201

202 **CNV-trait associations**

203 We tested for relationships between genome-wide CNVs and 29 ecologically important traits
204 phenotyped in 121 of our samples, each reared in a common garden experiment (phenotype data
205 were previously reported in van Boheemen, Atwater & Hodgins [(43)]). Eighteen traits
206 (Supplementary Table 5) were significantly associated (using a Bonferroni-corrected 0.05
207 threshold) with normalized read-depth in at least one of the 17,855 candidate CNV windows
208 (Supplementary Figure 4). Of these trait-associated windows, 17 and 4 overlapped with QST
209 outlier windows in North America and Europe, respectively. With a more relaxed significance
210 threshold of FDR = 0.05 using the Benjamini-Hochberg method, these overlaps were increased
211 to 76 in North America and 10 in Europe. Of particular interest, two nearby windows on
212 chromosome 14 (h1s14:17180001-17190000, h1s14:18470001-18480000) were associated with
213 flowering onset, dichogamy, and sex allocation (defined as female reproductive biomass/male
214 reproductive biomass; Supplementary Figure 4). These traits display strong latitudinal clines in
215 *A. artemisiifolia*, with overall earlier flowering, much earlier male flowering compared to female
216 flowering, and female-biased sex allocation occurring at high absolute latitudes (43). These two
217 windows flank an annotated gene, AGL-104, that is linked to pollen production in *Arabidopsis*
218 (53). Moreover, one of these windows (h1s14:18470001-18480000) is a QST outlier in North
219 America and Europe, suggestive of parallel divergent selection.

220

221 **Large CNV region identification (CNVr)**

222 The continuous measures of read-depth in 10 kbp windows, while reliable in modern samples,
223 were inaccurate when using low-coverage historic data. Since we had previously obtained

224 accurate measures of genotypes for large inversions in these historic samples (15), we
225 implemented a similar approach to identify large CNV regions (CNVr) in order to perform
226 temporal comparisons between the historic and contemporary samples. Furthermore, we would
227 expect many CNVs to be larger than 10 kbp. We therefore used the same linkage disequilibrium-
228 based approach as stated above to identify and merge adjacent windows which appeared to be
229 components of a larger CNV. To corroborate the presence of large segregating CNVs within our
230 dataset, we performed a local PCA of genotype likelihoods in 100 kbp windows across the
231 genome. We determined potential segregating structural variants as regions with at least three
232 adjacent windows that were outliers for distortions in local population structure relative to the
233 rest of that chromosome. This resulted in a minimal size cutoff of 300 kbp for CNVrs. As such,
234 we defined CNV regions as those in which merged read-depth windows (greater than 300 kbp)
235 overlapped with at least three adjacent windows exhibiting variation in local population
236 structure. This approach identified 52 candidate CNVrs.

237

238 We then genotyped individuals for CNVrs in our population-genomic data, including low-
239 coverage historic samples. To do this, we used a combination of normalized read depth across
240 the genomic location of each candidate CNVr alongside a PCA calculated within that same
241 region to cluster samples into genotypes differing in both read-depth and PC1 (Figure 3). With
242 this approach, we were able to identify distinct clusters corresponding to genotypes in both
243 modern and historic samples for 16 out of 52 CNVrs. These 16 CNVrs, which ranged in size
244 from 0.3 - 11.85 Mbp, accounted for 8.1% of the 17,885 10 kbp windows identified in the
245 contemporary samples, including 22.6% of outlier Qst windows in North America and 7.2% of
246 outlier Qst windows in Europe. Fifteen of these CNVrs exist as heterozygotes within the diploid
247 reference genome, with haplotype 1 containing presence variants, meaning they can be
248 corroborated with alignments between each haplotype of the diploid assembly (Supplementary
249 Figure 9). The high heterozygosity of CNVrs in the reference was likely due to our genotyping
250 method favoring loci with absence alleles that are common in our samples, yet the presence
251 alleles needed to be found in the reference haplotype in order for the CNV to be identified. This
252 is consistent with the low frequencies (mean = 0.196; range: 0.027 –0.479) of all CNVr presence
253 variants (Supplementary Table 6). GO analysis of annotated genes indicates that the 16 CNVrs
254 were enriched for several biological processes, including “methylglyoxal catabolism”,

255 “peroxisome fission”, “pollen tube adhesion”, and “glyphosate metabolism” (Supplementary
256 Table 4).

257

258 The largest CNVr that we identified was cnv-chr4a, which we estimated to be 11.85 Mbp in
259 length. Closer inspection of this region within the diploid reference reveals that large regions on
260 haplotype 1 are absent on haplotype 2, but are interspersed by three smaller inversions (Figure 3;
261 Supplementary Figure 8; 9). Analysis of coverage depth across chromosome 4 of three closely
262 related Ambrosia species sequences mapped to the *A. artemisiifolia* reference revealed the
263 absence haplotype as the likely ancestral state (Supplementary Figure 10). The derived insertion
264 variant contains an excess of transposable elements (TEs) relative to the remainder of
265 chromosome 4 (87.21% versus 70.48%). TE family Ty1/Copia accounts for 32.45% of the TEs
266 within cnv-chr4a, compared to just 14.87% throughout the rest of this chromosome. Repetitive
267 elements display greater density towards the beginning of this region (Supplementary Figure 11),
268 where gene density is very low. The region toward the end of the cnv-chr4a, which exhibits
269 greater gene density, shows strong synteny with chromosome 2 and aligns with inversions
270 present in the reference alignment (Supplementary Figure 8; 11). Most of chromosome 4
271 displays synteny with chromosome 2, suggesting they are homoeologous chromosomes. The
272 largest gap in syntenic blocks corresponds to the gene-depleted and TY1/Copia-enriched region
273 of cnv-chr4a (Supplementary Figure 11). It is therefore likely that this complex structural variant
274 consists of a series of inversions which have subsequently been separated by a large TE
275 expansion. Recombination is likely strongly suppressed within this structural variant, as the
276 coverage windows exhibit strong linkage disequilibrium across the region. Candidate CNV
277 windows within cnv-chr4a are QST outliers (Figure 1A; C) and associated with the bioclimatic
278 variable mean diurnal range (Supplementary Figure 5), consistent with the CNVr contributing to
279 local adaptation.

280

281 Another noteworthy CNVr, cnv-chr8a, contains an ortholog of the *Arabidopsis thaliana* EPSPS
282 locus. This CNVr lies within a large inversion, hb-chr8, previously described in Battlay et al.
283 (15). While the frequency of cnv-chr8a is not strongly correlated with the frequency of this
284 inversion ($R^2=0.006$), cnv-chr8a presence alleles occur exclusively on the common, and
285 presumably ancestral, orientation of the inverted region.

286

287 **Spatio-temporal CNVr modeling**

288 We used whole genome sequences derived from >284 historical herbarium samples (dating back
289 to 1830) and generalized linear models (GLMs) to uncover how the 16 CNVr alleles may have
290 changed in frequency over both space and time. These GLMs predicted genotype as a function of
291 range (native or introduced), latitude and year of collection, and each model was reduced to
292 remove any non-significant interactions between these variables. To correct for population
293 structure, we also included the first principal component of genetic variation (calculated from
294 10,000 neutral SNPs) as a covariate in each model. Twelve of the 16 CNVrs displayed at least
295 one significant predictor variable (time, range, latitude or interactions). Nine CNVrs exhibited
296 significant associations with latitude (cnv-chr4a, cnv-chr4b, cnv-chr5a, cnv-chr9a, cnv-chr14a,
297 cnv-chr17b, cnv-chr17c and cnv-chr18a) (Supplementary Table 7; Supplementary Figure 12).
298 Models of three CNVrs (cnv-chr10a, cnv-chr14a and cnv-chr17a) contained significant three-
299 way interactions (Figure 4; Supplementary Table 7; 8; Supplementary Figure 12). Of note, both
300 cnv-chr14a and cnv-chr17a displayed clinal patterns in North America regardless of year,
301 whereas this same latitudinal pattern was present only in modern European samples — strong
302 evidence of clinal reformation following an initial period of maladaptation in the introduced
303 range (Figure 4; Supplementary Table 7; 8). The large cnv-chr4a insertion displays latitudinal
304 clines in modern populations across both ranges, with the insertion at higher frequencies at lower
305 latitudes. In the native range, this appears to be driven by increasing frequencies over time in
306 more central and southern populations of North America (Supplementary Table 8).
307 Correspondingly, this CNV overlaps with a previous SNP-based result consistent with a selective
308 sweep in the St. Louis population (15).

309

310 To further analyze the potential adaptive significance of these CNVrs, we assessed associations
311 between each variant and the same 29 phenotypes analyzed above (43). The cnv-chr10a variant
312 displayed Bonferroni-significant associations with total biomass, root weight and total number of
313 male inflorescences, whilst cnv-chr14a was significantly associated with sex allocation
314 (Supplementary Table 9).

315

316

317 **Discussion**

318 CNVs are increasingly recognized as important in local adaptation (13, 24, 26, 27, 54). However,
319 previous empirical evidence is predominantly limited to examples of pesticide resistance (18, 25)
320 and candidate gene studies (55, 56). Genome-wide analyses of CNVs at the population scale are
321 rare beyond model organisms (54). While many methods exist for identifying CNVs from
322 resequenced genomes (57, 58), these often rely on long reads, or short reads with higher
323 coverage than available for many population genomic datasets, including our historic specimens.
324 We therefore combined local read-depth, linkage disequilibrium, and deviations in population
325 structure along the chromosome, to identify CNVs in modest-coverage samples collected over
326 the past 190 years.

327

328 We implemented a genome-wide discovery approach to identify CNVs and examined their
329 potential contributions to local adaptation across the native and an invaded range of *A.*
330 *artemisiifolia*. CNV windows were enriched for signatures of local adaptation, which occurred
331 disproportionately in parallel between native and invasive ranges. As this signal was not
332 replicated in putatively neutral SNP loci, this implies CNV-driven local adaptation across Europe
333 takes place via standing variation inherited from North America. Furthermore, large CNV
334 regions identified in modern and historical samples, such as cnv-chr14a and cnv-chr17a (Figure
335 4), show evidence of rapid local adaptation across the short timescale (ca. 150 years) of *A.*
336 *artemisiifolia*'s invasion in Europe.

337

338 *Ambrosia artemisiifolia* CNV windows exhibited extensive signals of local adaptation, including
339 elevated geographic divergence in fold coverage, relative to neutral expectations, in both North
340 America and Europe (Figure 1). These windows contain an over-representation of genes
341 involved in abiotic and biotic stress responses in North America (Supplementary Figure 3A,
342 Supplementary Table 4) and pathogen defense in Europe (Supplementary Figure 3B,
343 Supplementary Table 3) – consistent with SNP-based FST outlier windows in Europe being
344 enriched for defense related functions (30). The overall weaker patterns of CNV differentiation
345 in Europe relative to North America are also consistent with previous SNP-based analyses
346 showing fewer differentiated outlier SNP windows in Europe (15). Some CNVs were associated
347 with traits important to local adaptation, including a CNV on chromosome 16 associated with

348 mature plant height (Supplementary Figure 4), which also overlaps an annotated NB-ARC
349 domain. NB-ARC domains, occurring in most plant resistance (R) genes, are involved in
350 nucleotide binding and recognition (59), and duplications of such genes underlie the evolution of
351 resistance to pathogens (60, 61). CNVs also appear to influence phenological traits. For example,
352 the CNV windows on chromosome 14 are associated with flowering time (Supplementary Figure
353 4). Overall, our data point to important roles of CNVs in the local adaptation of *A. artemisiifolia*,
354 which aligns with evidence from other species that structural variants widely contribute to
355 adaptation (62–64).

356

357 One third of adaptive CNV windows in Europe were also candidates for local adaptation across
358 North America. Previous work in *A. artemisiifolia* has revealed similar patterns of repeatability,
359 or parallelism, with respect to SNPs (15, 33), inversions (15), and genes affecting locally adapted
360 traits like flowering time and sex allocation (43). Invasive species are expected to evolve in
361 parallel when responding to analogous selection pressures, as observed in our system and in
362 others, such as *Drosophila suzukii* and European starling (65, 66). Such parallelism is promoted
363 when standing genetic variation involved in local adaptation in the native range is recruited as a
364 source of adaptive variation within the invasive range (67, 68). Multiple introductions from
365 several genetically diverse source populations from North America to Europe presumably
366 facilitated repeatability by ensuring that most of the important standing variants successfully
367 made the journey to the new range (30, 33). That all CNVrs were present in historical European
368 populations indicates that they were introduced into Europe during the early stages of invasion
369 (Supplementary Table 6).

370

371 The 16 large CNV regions that we detected using a combination of read-depth, linkage
372 disequilibrium and local population structure analyses (Figure 3A, Figure 3B) contained 22.6%
373 of Qst outlier windows from North America and 7.2% of the outlier windows from Europe. Yet
374 these CNVrs comprised only 0.23% of the genome, demonstrating their disproportionate
375 contribution to these signals of local adaptation. Remarkably, 15 of the CNVrs co-localize with
376 segregating presence/absence variants in the highly heterozygous diploid reference, supporting
377 our detection method. Closer analysis of the largest CNVr (cnv-chr4a) within the reference
378 reveals that our detection method may lack sensitivity in fully revealing structural complexity

379 within CNVrs (Figure 3). Multiple abutting inversions and CNVs within this region appear to
380 segregate together as a single, complex structural variant. Nevertheless, the regions we identified
381 demonstrate the general adaptive potential of structural variants, in which CNVs are predominant
382 features. Since our method of detection for CNVrs was biased towards identifying large CNVrs
383 with presence variants on haplotype 1 of the reference, and our genotyping method was biased
384 towards identifying loci with common absence alleles, our results represent a lower bound on the
385 prevalence and adaptive significance of CNVrs in *A. artemisiifolia*. Investigations using
386 pangenomics (69) to elucidate a more complete picture of the contribution of CNVs to adaptation
387 are therefore warranted.

388

389 Our study goes beyond the traditional population-genomic approach of detecting signals of local
390 adaptation using contemporary samples alone. Our use of historical sequence data also allowed
391 us to track temporal change in CNV frequencies across nearly two centuries – a period that spans
392 the establishment and spread of *A. artemisiifolia* within Europe (36, 70), and significant
393 environmental upheaval in both ranges, owing to industrialization, agriculture, and climate
394 change (71). CNVs are rarely genotyped in historic genomes because sequence quality is poor
395 (72). However, by focussing only on large CNVs identified using modern data we were able to
396 confidently assign genotypes in historic samples. This use of modern data to validate historic
397 sequence variant calls is common in temporal genomic studies (30, 73). Eight CNVrs display
398 clear frequency shifts over time, consistent with rapid adaptation over its recent evolutionary
399 history. For example, while cnv-chr14a and cnv-chr17a both exhibit a consistent latitudinal cline
400 in historical and modern North American populations, these clines are only evident in modern
401 European populations (Figure 4A; Supplementary Table 7; 8), which is consistent with the rapid
402 cline reformation in Europe following an initial period of post-introduction maladaptation. The
403 cnv-chr14a CNVr is associated with sex allocation (Supplementary Table 9), and candidate CNV
404 windows within the region exhibit associations with flowering time, sex allocation and
405 dichogamy (Supplementary Figure 4), traits which show parallel clines in Europe and North
406 America (43). Furthermore, cnv-chr14a lies within 20 kbp of the AGL-104 gene, which is
407 involved in pollen development in *Arabidopsis* (53). Flowering time is a complex trait that is
408 affected by diverse forms of genomic variation (74) – our results indicate that SNPs, inversions

409 (15), and CNVs each play important roles in the rapid adaptation of this important trait in *A.*
410 *artemisiifolia* populations.

411
412 Many well-characterized CNVs in other species are associated with the evolution of pesticide
413 resistance (19, 20, 25). We identified a CNVr (cnv-chr8a) potentially involved in herbicide
414 resistance. An ortholog of the *Arabidopsis thaliana* EPSPS locus, the molecular target of
415 glyphosate herbicides, lies within the cnv-chr8a region. CNVs confer resistance to glyphosate in
416 numerous other weed species, where the increased gene expression caused by EPSPS gene
417 amplification ameliorates the herbicide's toxic effects (19, 55). Glyphosate resistance has been
418 documented in some *A. artemisiifolia* populations (39), and while we do not know which
419 populations in our study might be glyphosate resistant, this CNVr is a strong candidate for future
420 study.

421
422 Previous population-genomic analyses of *A. artemisiifolia* provide strong evidence that SNPs
423 and putative chromosomal inversions contribute to local adaptation; here we provide evidence of
424 a similar role for CNVs. Although CNVs are known to have large effects on traits (17), we
425 cannot be sure that the variants we have identified are the direct targets of selection – they may
426 instead be in linkage disequilibrium with other variants that are the actual targets. Assessing
427 relationships between CNVs and nearby SNPs is fraught, because CNVs disrupt SNP calling
428 (75). Two CNVrs overlap inversions identified in Battlay et al. (15), but are not in strong LD
429 with the inversion genotypes ($R^2 = 0.006-0.01$). However, smaller CNVs may exhibit stronger
430 associations with other SVs as part of coadapted gene complexes (76) or neutral hitchhikers.
431 Large insertion-deletion variants result in may hemizygous regions of reduced recombination
432 which may collect and bind together multiple variants (77). Functional assays such as RNA-seq
433 experiments are required to understand the mechanistic effect of these CNVs on traits and fitness
434 (78). Further efforts to determine the functional effects of CNVs, alongside greater sample sizes,
435 would also help uncover the likely epistatic interactions between CNVs and other adaptive
436 variants. The potential existence and nature of these interactions are pertinent questions in
437 evolutionary biology lacking empirical investigations on genome-wide scales (79). Future work
438 should also consider the role of other forms of genomic variation, for example transposable
439 element abundance and genome size which have been linked with local adaptation and

440 aggressive range expansion (74), alongside investigating the roles of CNVs in biotic interactions,
441 such as pathogen response.

442

443 Our study highlights the importance of copy number variation in the evolution of a widely
444 distributed and rapidly adapting invasive weed. While CNVs have previously been implicated in
445 adaptation in response to specific selection pressures in other species (23, 24), our genome-wide
446 discovery approach was able to identify candidate genomic regions that are more broadly
447 representative of the contribution of CNVs to local adaptation. We have linked several of these
448 candidates with traits ranging from flowering time to pathogen resistance. Along with previous
449 studies showing that SNPs and chromosomal inversions underlie local adaptation during *A.*
450 *artemissifolia*'s expansion across vast environmental gradients, these new findings make it clear
451 that CNVs account for a significant and previously unrecognized component of this plant's past
452 success and are consequential for its invasive capacity wherever it may be introduced in the
453 future.

454

455 **Methods**

456 **Samples and alignments**

457 Analyses were conducted on 613 whole-genome *Ambrosia artemisiifolia* sequences described in
458 Bieker et al. (30) and a chromosome-level, phased, diploid *Ambrosia artemisiifolia* genome
459 assembly (15). Alignments and SNP calls against the primary haplotype of the diploid reference
460 (haplotype 1) were generated by Battlay et al. (15), using the Paleomix v1.2.13.4 (80) pipeline
461 and GATK UnifiedGenotyper v3.7 (81). Modern and historic samples were sequenced from
462 across the species' native North American (155 modern and 92 historic samples) and introduced
463 European (156 modern and 192 historic samples) ranges. Modern samples were collected
464 between 2014 and 2018 and sequenced to a mean coverage of 2.9x. Historic samples were
465 sequenced from herbarium samples collected between 1830 and 1973 with a median collection
466 date of 1905 (Supplementary Figure 1), and sequenced to a mean coverage of 1.4x. Present-day
467 population samples, whose geographic coordinates were recorded during sampling, included
468 between n = 1 to n = 10 individuals, however populations where n = 1 were removed from
469 analyses requiring population level information. Historic individuals were grouped into
470 populations according to their proximity (15, 30). Cases where only one sample was obtained

471 from a geographic location were excluded from analyses in which population information was a
472 requirement. Additionally, we aligned sequences of three other *Ambrosia* species (30) to the
473 primary haplotype of the diploid reference using the Paleomix pipeline, as described in Battlay et
474 al. (15).

475

476 **Depth of coverage analysis**

477 In order to identify copy number variation within our resequenced common ragweed individuals,
478 we analyzed depth of coverage in non-overlapping 10 kbp windows using Samtools v1.9 depth
479 (82) on alignment bam files. In the initial analyses of modern samples we only used reads with
480 mapping quality > 30 (-Q 30). Subsequent read-depth analyses of historic samples used reads
481 with mapping quality > 5 (-Q 5) in order to accommodate their poorer mapping quality. Each
482 window was then normalized by dividing window depth by the genome-wide coverage for the
483 sample. To apply a population frequency-based filter to this dataset, we kept only windows
484 which had at least 5% of samples greater than or less than 2 standard deviations from the
485 population mean. This filtering procedure resulted in 17,855 of 105,175 windows (5.8%) being
486 classified as copy number variants (CNVs).

487

488 **Qst-Fst analysis**

489 Genomic loci that have responded to spatially heterogeneous selection are expected to show
490 elevated differentiation among populations, relative to neutrally evolving loci. SNPs associated
491 with local adaptation can be detected as outliers of genome-wide scans of Fst or similar statistics
492 (47, 83, 84). However, unlike SNP data, candidate CNVs have been identified by depth of
493 coverage represented on a continuous scale. As such, coverage can be viewed as a phenotypic
494 measurement that is analogous to measurements of continuous traits. Tests for trait responses to
495 divergent selection are often inferred using a Qst-Fst analysis (85, 86). Theory predicts that Qst
496 values for neutrally evolving traits should follow the same distribution as Fst for neutrally
497 evolving loci (48). We used coverage data to measure Qst values for each window (analyses
498 were conducted separately for the European and North American ranges), adapting the
499 relationship between Qst and population variation from Whitlock (48):

500
$$Q_{ST} = \frac{VA,among}{VA,among + 2VA,within} \quad (1)$$

501 where VA,among represents the among-population variation in coverage for a given window,
502 and VA,within represents within-population coverage variation.

503

504 We performed linear mixed models, using the lme4 package in R (87) on populations from each
505 range to extract variance components attributed to within- and among-population variation for
506 each coverage window. Unlike other analyses performed in this study, we used unnormalised
507 coverage for each window in the model, and accounted for variation in individual sample depth
508 by including individual median coverage as a covariate in the model, and population was
509 included as a random effect. The variance among populations (VA,among) was extracted as the
510 variance component attributed to the population, and within-population variance (VA,within)
511 corresponded to the model's residual variance component.

512

513 To identify QST values with divergence in excess of neutral expectations, the distribution of QST
514 values in each range was compared to the distribution of neutral FST values from the same
515 populations. FST distributions were calculated in VCFtools (88) using 10,000 putatively neutral
516 and independently segregating LD-pruned SNPs, randomly sampled from outside both genic
517 regions and known structural variants (15). Outliers were classified as windows with QST values
518 greater than 99% of neutral FST values. Under neutrality, 1% of QST values are expected to fall
519 above this 99% threshold, and we therefore tested whether there was a significant excess of
520 windows above this null expectation. To identify the rate of true positives, we used the following
521 calculation

522

523
$$\frac{m}{M} = 1 - \frac{n * 0.01}{M} \quad (2)$$

524

525

526 where n represents the total number of windows analysed, M represents the total number of
527 outliers, m represents the number of true positives, and therefore $M - m$ represents the number of
528 false positives. Analyses were performed using modern data from North America and European

529 ranges separately. We used a hypergeometric test to identify significant overlaps in both QST and
530 FST loci between both ranges.

531

532 **Environmental-CNV Associations**

533 Correlations between genetic variation and environment provide further evidence for local
534 adaptation on the genomic level. CNV-environment associations were identified by measuring
535 Spearman's correlation coefficients (Rho) between normalized coverage of each 10 kbp window
536 and climate variables. Climatic variables were extracted from WorldClim (52) for each of the
537 geographic coordinates of our sample of individuals. We excluded highly correlated variables
538 ($R^2 > 0.7$) from the analysis, resulting in six variables: BIO1: annual mean temperature, BIO2:
539 mean diurnal range, BIO8: mean temperature of wettest quarter, BIO9: mean temperature of
540 driest quarter, BIO12: annual precipitation, and BIO15: precipitation seasonality. Outliers were
541 identified as the top 1% of the empirical p-value of the Rho distribution. Coverage windows that
542 were in the 1% tails of the CNV-environment distribution and outliers in our QST analysis were
543 considered CNV-climate adaptation candidates.

544

545 **Identifying large CNV regions**

546 Since larger CNVs will affect coverage in multiple adjacent windows, we used a linkage
547 disequilibrium-based approach to merge nearby windows. We merged windows within 1 Mbp
548 (and all windows within this region) that had sample depths that were correlated at $R^2 > 0.6$. By
549 generating heatmaps of LD between CNV windows, we visualized the presence of correlated
550 read-depth, indicative of larger CNVs (Supplementary Figure 7). This resulted in 11,877
551 windows ranging in size from 10 kbp to 11.85 Mbp.

552

553 Local principal component analysis has previously been used to detect population-genomic
554 signatures of chromosomal inversions (15, 62, 89). Here we employed this method to identify
555 distortions in local relatedness due to CNVs using two modifications. Due to low-coverage and
556 bias in historic samples, we performed these steps initially on modern samples only, including
557 historic samples for genotyping later (see below). Firstly, we calculated local covariance
558 matrices for each window using ANGSD (90) and PCAngsd (91). Secondly, we did not include a
559 filter for missing data in our ANGSD command, which meant that missingness would cause

560 distortion in the local PCAs. The analysis was performed in non-overlapping windows of 100
561 kbp, and multidimensional scaling axes 1-4 (calculated from local PCAs across each
562 chromosome) were examined for blocks of outliers indicative of large structural variants. While
563 individual MDS outlier windows are not necessarily due to structural variations, SVs are the
564 most likely cause of signals that are consistent across adjacent windows. Therefore, we retained
565 candidates that included at least three adjacent windows that were outliers, so that the lower limit
566 of CNVr size was 300 kbp. As such, we identified candidate CNVr as those where MDS
567 candidates overlapped the merged read-depth-based CNV windows which were also greater than
568 300 kbp in length. These 52 candidate CNVrs corresponded to 68% of the merged CNV
569 windows greater than 300 kbp in length.

570

571 **CNV region genotyping**

572 We attempted to genotype modern and historical samples, separately, for each of the 52
573 candidate CNVr. To do so, we performed another local PCA across the length of each candidate
574 CNVr using PCAngsd (91). We then compared PC1 of the candidate CNVr against the average
575 normalized read-depth across that CNVr to identify whether individuals clustered by read-depth
576 and PC1. To genotype these samples according to these clusters, we used k-means clustering
577 from the ClusterR package in R (92), followed by manual annotation of genotypes. Samples
578 appeared to either cluster into groups of two or three genotypes. CNVr candidates displaying two
579 clear genotypes were likely to have one rare homozygote, or the heterozygote and one
580 homozygote class were indistinguishable. As such, we assigned k-values of either 2 or 3
581 depending on whether visual inspection indicated the presence of two or three segregating
582 genotypes. To test for association between CNVrs overlapping or neighboring chromosomal
583 inversions, we used the cor function in R (R team) to calculate correlations between CNVr and
584 the genotypes of overlapping inversions that were previously identified by Battlay et al. (15). To
585 visualize CNVrs that were heterozygous between haplotypes of the diploid reference genome,
586 we aligned both reference haplotypes using minimap2 v2.1.8 (-k19 -w19 -m200) (93) and
587 generated dotplots of the alignments. To call segregating SVs in the diploid reference, we
588 aligned both haplotypes using nucmer (-- maxmatch -c 100 -b 500 -l 50) within the mummer
589 v3.23 software package (94). We then used SyRI (95) to identify and plotsr (-s 300000) (96) to
590 visualize structural variants greater than 300 kbp in length. This method of identifying large

591 segregating CNVs is constrained in that it can only identify CNVrs that contain a presence
592 variant on haplotype 1 of the reference. Since haplotype 1 is larger than haplotype 2, it is more
593 likely to contain more presence variants. Secondly, to create a strong signature of divergence
594 within the local PCA, a large number of individuals must contain the absence variant, meaning
595 that presence variants will also be rare. Furthermore, closer inspection of segregating CNVrs
596 within the reference indicated that some CNVrs may consist of complex SVs, containing
597 inversions and translocations, which our identification method using WGS failed to identify.

598

599 Since cnv-chr4a was surprisingly large and segregating in our diploid reference, we conducted
600 further analyses to understand its genomic makeup. Firstly, we analyzed TE content within this
601 region. We identified TEs using EDTA (97) and used RepeatMasker v4.1.1 (98) to obtain a
602 summary of various TE families within this region relative to the rest of chromosome 4. We then
603 performed a synteny analysis to determine if the small number of genes in that region were
604 collinear with other genomic regions and were therefore an ancestral arrangement, or if they
605 were novel combinations of genes. We used McScanX v97e74f4 (99) to determine syntenic gene
606 groups resulting from a self-alignment of protein sequences on haplotype 1 using blastp (-evalu
607 1e-10) in BLAST v2.7.1 [(100)]. We calculated read-depth on chromosome 4 for three aligned
608 Ambrosia outgroup species (30). Calculating the mean read-depth exclusively within the cnv-
609 chr4a region allowed us to ascertain the likely ancestral state of this structural variant.

610

611 **Temporal CNV changes**

612 To analyze shifts in CNV frequency over both time and space, we used generalized linear models
613 with the `glm` function in R (101) to predict presence/absence counts in populations from range
614 (Europe or North America), sample year and sample latitude, including significant interactions
615 between the three variables. PC1, which was calculated from a covariance matrix of 10,000
616 SNPs randomly sampled from outside of genes and putative inversions identified by Battlay et
617 al. (15), was included in each model to control for population structure. Model significance was
618 tested with the `anova` function using a type-3 test (`car` v3.1-2 package [(102)]). The models were
619 reduced in a stepwise fashion, removing non-significant interactions until all remaining
620 interactions (if any) were significant ($p < 0.05$). The `emtrends` function (`emmeans` v1.10.2

621 package [(103)] was used to test directionality and obtain confidence intervals within interacting
622 predictors.

623

624 **CNV-trait associations**

625 To investigate associations between copy number variants and traits, we measured associations
626 between 29 traits (in 121 samples for which trait data were available [(43)]) and the coverage
627 windows described above. For each window, we fit linear models, using lm in R (101), between
628 each sample's normalized window depth and each trait value. To account for population
629 structure, the first principal component of neutral covariance was added to the model. As
630 previously, this was obtained by calculating a covariance matrix on 10,000 putatively neutral
631 sites that were outside gene and inversion regions using PCangsd. A PCA was performed on this
632 covariance matrix using prcomp in R (101). We assessed significance using a Bonferroni-
633 corrected significance threshold: 0.05 divided by the number of windows tested (17,855). We
634 performed CNVr-trait associations using EMMAX (v.beta-7Mar2010 [(104)]) to identify
635 associations between the CNV regions, using a covariance matrix consisting of the same 10,000
636 putatively neutral SNPs in previous analyses in this study to correct for population structure.

637

638 **Gene Ontology analyses**

639 Gene ontology enrichment analyses were performed using the R package topGO (105), using GO
640 terms from *A. thaliana* TAIR 10 BLAST results. Fisher's exact test, using a significance
641 threshold of $p < 0.05$, was used to identify GO terms enriched within candidate gene lists relative
642 to QST outliers, as well as genes within CNVr.

643

644 **Acknowledgements**

645 We thank Stephen Wright for his advice in the early stages of this project, and we thank Keyne
646 Monro for her advice and expertise in developing the QST-FST analysis. We also thank Claire
647 Mérot, an anonymous reviewer, and the editor for their thoughtful comments which greatly
648 improved the manuscript.

649

650 **Data Accessibility**

651 Sequences used in reference genome assembly and annotation are available from NCBI under
652 BioProject ID PRJNA819156. The phased diploid genome assembly is available from NCBI
653 under BioProject IDs PRJNA929657 and PRJNA929658. The haplotype 1 gene annotation GFF
654 file is available from Figshare [<https://doi.org/10.6084/m9.figshare.19672710.v1>]. Individual
655 sample resequencing data are available from ENA under BioProject IDs PRJEB48563,
656 PRJNA339123 and PRJEB34825.

657 **Code availability**

658 All code for analyses performed in this work is available from Github
659 [https://github.com/jonrobwil/ragweed_cnv]

660 **References**

- 661 1. R. A. Fisher, XV.—The Correlation between Relatives on the Supposition of Mendelian
662 Inheritance. *Earth Environ. Sci. Trans. R. Soc. Edinb.* **52**, 399–433 (1919).
- 663 2. J. K. Pritchard, J. K. Pickrell, G. Coop, The Genetics of Human Adaptation: Hard Sweeps,
664 Soft Sweeps, and Polygenic Adaptation. *Curr. Biol.* **20**, R208–R215 (2010).
- 665 3. A. E. Van't Hof, *et al.*, The industrial melanism mutation in British peppered moths is a
666 transposable element. *Nature* **534**, 102–105 (2016).
- 667 4. A. J. Jensen, *et al.*, Large-effect loci mediate rapid adaptation of salmon body size after
668 river regulation. *Proc. Natl. Acad. Sci.* **119**, e2207634119 (2022).
- 669 5. T. Connallon, K. A. Hodgins, Allen Orr and the genetics of adaptation. *Evolution* **75**,
670 2624–2640 (2021).
- 671 6. H. A. Orr, The Population Genetics of Adaptation: The Distribution of Factors Fixed
672 During Adaptive Evolution. *Evolution* **52**, 935–949 (1998).
- 673 7. S. Yeaman, M. C. Whitlock, The genetic architecture of adaptation under migration-
674 selection balance. *Evol. Int. J. Org. Evol.* **65**, 1897–1911 (2011).
- 675 8. P. Battlay, S. Yeaman, K. A. Hodgins, Impacts of pleiotropy and migration on repeated
676 genetic adaptation. [Preprint] (2023). Available at:
677 <https://www.biorxiv.org/content/10.1101/2021.09.13.459985v5> [Accessed 2 June 2024].
- 678 9. M. Wellenreuther, L. Bernatchez, Eco-Evolutionary Genomics of Chromosomal
679 Inversions. *Trends Ecol. Evol.* **33**, 427–440 (2018).
- 680 10. M. Chakraborty, J. J. Emerson, S. J. Macdonald, A. D. Long, Structural variants exhibit
681 widespread allelic heterogeneity and shape variation in complex traits. *Nat. Commun.* **10**,
682 4872 (2019).
- 683 11. A. H. Sturtevant, A Case of Rearrangement of Genes in *Drosophila*. *Proc. Natl. Acad. Sci.*
684 U. S. A.
- 685 12. T. Dobzhansky, *Genetics of the Evolutionary Process* (Columbia University Press, 1970).
- 686 13. H. Cayuela, *et al.*, Thermal adaptation rather than demographic history drives genetic
687 structure inferred by copy number variants in a marine fish. *Mol. Ecol.* **30**, 1624–1641
688 (2021).
- 689 14. C. K. Tepolt, E. D. Grosholz, C. E. de Rivera, G. M. Ruiz, Balanced polymorphism fuels
690 rapid selection in an invasive crab despite high gene flow and low genetic diversity. *Mol.*
691 *Ecol.* **31**, 55–69 (2022).

692 15. P. Battlay, *et al.*, Large haploblocks underlie rapid adaptation in the invasive weed
693 *Ambrosia artemisiifolia*. *Nat. Commun.* **14**, 1717 (2023).

694 16. M. M. Magwire, F. Bayer, C. L. Webster, C. Cao, F. M. Jiggins, Successive Increases in
695 the Resistance of *Drosophila* to Viral Infection through a Transposon Insertion Followed
696 by a Duplication. *PLOS Genet.* **7**, e1002337 (2011).

697 17. E. R. Lucas, *et al.*, Whole-genome sequencing reveals high complexity of copy number
698 variation at insecticide resistance loci in malaria mosquitoes. *Genome Res.* **29**, 1250–
699 1261 (2019).

700 18. S. DeBolt, Copy number variation shapes genome diversity in *Arabidopsis* over
701 immediate family generational scales. *Genome Biol. Evol.* **2**, 441–453 (2010).

702 19. T. A. Gaines, *et al.*, Gene amplification confers glyphosate resistance in *Amaranthus*
703 *palmeri*. *Proc. Natl. Acad. Sci.* **107**, 1029–1034 (2010).

704 20. P. J. Daborn, *et al.*, A single p450 allele associated with insecticide resistance in
705 *Drosophila*. *Science* **297**, 2253–2256 (2002).

706 21. R. H. Ffrench-Constant, The molecular genetics of insecticide resistance. *Genetics* **194**,
707 807–815 (2013).

708 22. C. Zhang, *et al.*, Investigating the mechanisms of glyphosate resistance in goosegrass
709 (*Eleusine indica*) population from South China. *J. Integr. Agric.* **14**, 909–918 (2015).

710 23. J. M. Kreiner, *et al.*, Multiple modes of convergent adaptation in the spread of glyphosate-
711 resistant *Amaranthus tuberculatus*. *Proc. Natl. Acad. Sci.* **116**, 21076–21084 (2019).

712 24. N. M. Reid, *et al.*, The genomic landscape of rapid repeated evolutionary adaptation to
713 toxic pollution in wild fish. *Science* **354**, 1305–1308 (2016).

714 25. S. Gimenez, *et al.*, Adaptation by copy number variation increases insecticide resistance
715 in the fall armyworm. *Commun. Biol.* **3**, 664 (2020).

716 26. J. Prunier, *et al.*, Gene copy number variations involved in balsam poplar (*Populus*
717 *balsamifera* L.) adaptive variations. *Mol. Ecol.* **28**, 1476–1490 (2019).

718 27. Y. Dorant, *et al.*, Copy number variants outperform SNPs to reveal genotype–temperature
719 association in a marine species. *Mol. Ecol.* **29**, 4765–4782 (2020).

720 28. K. A. Hodgins, D. G. Bock, L. H. Rieseberg, “Trait Evolution in Invasive Species” in
721 *Annual Plant Reviews Online*, (John Wiley & Sons, Ltd, 2018), pp. 459–496.

722 29. R. I. Colautti, S. C. H. Barrett, Rapid Adaptation to Climate Facilitates Range Expansion
723 of an Invasive Plant. *Science* **342**, 364–366 (2013).

724 30. V. C. Bieker, *et al.*, Uncovering the genomic basis of an extraordinary plant invasion. *Sci.*
725 *Adv.* **8**, eab05115 (2022).

726 31. A. McGaughan, *et al.*, Genomic Tools in Biological Invasions: Current State and Future
727 Frontiers. *Genome Biol. Evol.* **16**, evad230 (2024).

728 32. D. L. Stern, The genetic causes of convergent evolution. *Nat. Rev. Genet.* **14**, 751–764
729 (2013).

730 33. L. A. van Boheemen, K. A. Hodgins, Rapid repeatable phenotypic and genomic
731 adaptation following multiple introductions. *Mol. Ecol.* **29**, 4102–4117 (2020).

732 34. K. M. Dlugosch, S. R. Anderson, J. Braasch, F. A. Cang, H. D. Gillette, The devil is in the
733 details: genetic variation in introduced populations and its contributions to invasion. *Mol.*
734 *Ecol.* **24**, 2095–2111 (2015).

735 35. A. Estoup, *et al.*, Is There a Genetic Paradox of Biological Invasion? *Annu. Rev. Ecol.*
736 *Evol. Syst.* **47**, 51–72 (2016).

737 36. F. Essl, *et al.*, Biological Flora of the British Isles: *Ambrosia artemisiifolia*. *J. Ecol.* **103**,
738 1069–1098 (2015).

739 37. U. Schaffner, *et al.*, Biological weed control to relieve millions from *Ambrosia* allergies in
740 Europe. *Nat. Commun.* **11**, 1745 (2020).

741 38. M. J. Cowbrough, R. B. Brown, F. J. Tardif, Impact of common ragweed (*Ambrosia*
742 *artemisiifolia*) aggregation on economic thresholds in soybean. *Weed Sci.* **51**, 947–954

743 (2003).

744 39. C. E. Brewer, L. R. Oliver, Confirmation and Resistance Mechanisms in Glyphosate-
745 Resistant Common Ragweed (*Ambrosia artemisiifolia*) in Arkansas. *Weed Sci.* **57**, 567–
746 573 (2009).

747 40. L. Hamaoui-Laguel, *et al.*, Effects of climate change and seed dispersal on airborne
748 ragweed pollen loads in Europe. *Nat. Clim. Change* **5**, 766–771 (2015).

749 41. Y. Sun, G. K. Roderick, Rapid evolution of invasive traits facilitates the invasion of
750 common ragweed, *Ambrosia artemisiifolia*. *J. Ecol.* **107**, 2673–2687 (2019).

751 42. L. A. van Boheemen, *et al.*, Multiple introductions, admixture and bridgehead invasion
752 characterize the introduction history of *Ambrosia artemisiifolia* in Europe and Australia.
753 *Mol. Ecol.* **26**, 5421–5434 (2017).

754 43. L. A. van Boheemen, D. Z. Atwater, K. A. Hodgins, Rapid and repeated local adaptation
755 to climate in an invasive plant. *New Phytol.* **222**, 614–627 (2019).

756 44. A. J. Gorton, D. A. Moeller, P. Tiffin, Little plant, big city: a test of adaptation to urban
757 environments in common ragweed (*Ambrosia artemisiifolia*). *Proc. R. Soc. B Biol. Sci.*
758 **285**, 20180968 (2018).

759 45. B. V. McGahey, J. R. Stinchcombe, Introduced populations of ragweed show as much
760 evolutionary potential as native populations. *Evol. Appl.* **14**, 1436–1449 (2021).

761 46. R. C. Lewontin, J. Krakauer, DISTRIBUTION OF GENE FREQUENCY AS A TEST OF
762 THE THEORY OF THE SELECTIVE NEUTRALITY OF POLYMORPHISMS. *Genetics* **74**,
763 175–195 (1973).

764 47. B. S. Weir, C. C. Cockerham, Estimating F-Statistics for the Analysis of Population
765 Structure. *Evolution* **38**, 1358–1370 (1984).

766 48. M. C. Whitlock, Evolutionary inference from QST. *Mol. Ecol.* **17**, 1885–1896 (2008).

767 49. J. H. McDonald, M. Kreitman, Adaptive protein evolution at the *Adh* locus in *Drosophila*.
768 *Nature* **351**, 652–654 (1991).

769 50. T. R. Booker, S. Yeaman, M. C. Whitlock, Variation in recombination rate affects
770 detection of outliers in genome scans under neutrality. *Mol. Ecol.* **29**, 4274–4279 (2020).

771 51. D. Prapas, *et al.*, Quantitative trait loci mapping reveals an oligogenic architecture of a
772 rapidly adapting trait during the European invasion of common ragweed. *Evol. Appl.* **15**,
773 1249–1263 (2022).

774 52. S. E. Fick, R. J. Hijmans, WorldClim 2: new 1-km spatial resolution climate surfaces for
775 global land areas. *Int. J. Climatol.* **37**, 4302–4315 (2017).

776 53. B. J. Adamczyk, D. E. Fernandez, MIKC* MADS Domain Heterodimers Are Required for
777 Pollen Maturation and Tube Growth in *Arabidopsis*. *Plant Physiol.* **149**, 1713–1723
778 (2009).

779 54. D. R. Schrider, M. W. Hahn, D. J. Begun, Parallel Evolution of Copy-Number Variation
780 across Continents in *Drosophila melanogaster*. *Mol. Biol. Evol.* **33**, 1308–1316 (2016).

781 55. E. L. Patterson, D. J. Pettinga, K. Ravet, P. Neve, T. A. Gaines, Glyphosate Resistance
782 and EPSPS Gene Duplication: Convergent Evolution in Multiple Plant Species. *J. Hered.*
783 **109**, 117–125 (2018).

784 56. R. T. Good, *et al.*, The Molecular Evolution of Cytochrome P450 Genes within and
785 between *Drosophila* Species. *Genome Biol. Evol.* **6**, 1118–1134 (2014).

786 57. A. Abyzov, A. E. Urban, M. Snyder, M. Gerstein, CNVnator: An approach to discover,
787 genotype, and characterize typical and atypical CNVs from family and population genome
788 sequencing. *Genome Res.* **21**, 974–984 (2011).

789 58. S. Zarate, *et al.*, Parliament2: Accurate structural variant calling at scale. *GigaScience* **9**,
790 giaa145 (2020).

791 59. G. van Ooijen, *et al.*, Structure-function analysis of the NB-ARC domain of plant disease
792 resistance proteins. *J. Exp. Bot.* **59**, 1383–1397 (2008).

793 60. A. Źmieńko, A. Samelak, P. Kozłowski, M. Figlerowicz, Copy number polymorphism in

794 plant genomes. *Theor. Appl. Genet.* **127**, 1–18 (2014).

795 61. A. Dolatabadian, D. A. Patel, D. Edwards, J. Batley, Copy number variation and disease
796 resistance in plants. *Theor. Appl. Genet.* **130**, 2479–2490 (2017).

797 62. M. Todesco, *et al.*, Massive haplotypes underlie ecotypic differentiation in sunflowers.
798 *Nature* **584**, 602–607 (2020).

799 63. C. Mérot, *et al.*, Genome assembly, structural variants, and genetic differentiation
800 between lake whitefish young species pairs (*Coregonus* sp.) with long and short reads.
801 *Mol. Ecol.* **32**, 1458–1477 (2023).

802 64. T. Hämälä, *et al.*, Genomic structural variants constrain and facilitate adaptation in natural
803 populations of *Theobroma cacao*, the chocolate tree. *Proc. Natl. Acad. Sci.* **118**,
804 e2102914118 (2021).

805 65. J. B. Koch, *et al.*, Population genomic and phenotype diversity of invasive *Drosophila*
806 *suzukii* in Hawai'i. *Biol. Invasions* **22**, 1753–1770 (2020).

807 66. N. R. Hofmeister, S. J. Werner, I. J. Lovette, Environmental correlates of genetic variation
808 in the invasive European starling in North America. *Mol. Ecol.* **30**, 1251–1263 (2021).

809 67. T. Lin, P. G. L. Klinkhamer, K. Vrieling, Parallel evolution in an invasive plant: effect of
810 herbivores on competitive ability and regrowth of *Jacobaea vulgaris*. *Ecol. Lett.* **18**, 668–
811 676 (2015).

812 68. K. C. Stuart, W. B. Sherwin, R. J. Edwards, L. A. Rollins, Evolutionary genomics: Insights
813 from the invasive European starlings. *Front. Genet.* **13** (2023).

814 69. J. Ebler, *et al.*, Pangenome-based genome inference allows efficient and accurate
815 genotyping across a wide spectrum of variant classes. *Nat. Genet.* **54**, 518–525 (2022).

816 70. B. Chauvel, F. Dessaint, C. Cardinal-Legrand, F. Bretagnolle, The historical spread of
817 *Ambrosia artemisiifolia* L. in France from herbarium records. *J. Biogeogr.* **33**, 665–673
818 (2006).

819 71. M. J. Case, K. A. Stinson, Climate change impacts on the distribution of the allergenic
820 plant, common ragweed (*Ambrosia artemisiifolia*) in the eastern United States. *PLOS*
821 *ONE* **13**, e0205677 (2018).

822 72. A. S. Kim, *et al.*, Temporal collections to study invasion biology. *Mol. Ecol.* **32**, 6729–6742
823 (2023).

824 73. J. M. Alves, *et al.*, Parallel adaptation of rabbit populations to myxoma virus. *Science* **363**,
825 1319–1326 (2019).

826 74. J. M. Kreiner, S. Hnatovska, J. R. Stinchcombe, S. I. Wright, Quantifying the role of
827 genome size and repeat content in adaptive variation and the architecture of flowering
828 time in *Amaranthus tuberculatus*. *PLOS Genet.* **19**, e1010865 (2023).

829 75. B. E. Stranger, *et al.*, Relative Impact of Nucleotide and Copy Number Variation on Gene
830 Expression Phenotypes. *Science* **315**, 848–853 (2007).

831 76. M. Kirkpatrick, B. Barrett, Chromosome inversions, adaptive cassettes and the evolution
832 of species' ranges. *Mol. Ecol.* **24**, 2046–2055 (2015).

833 77. G. Potente, *et al.*, Comparative Genomics Elucidates the Origin of a Supergene
834 Controlling Floral Heteromorphism. *Mol. Biol. Evol.* **39**, msac035 (2022).

835 78. P. Battlay, *et al.*, Structural variants underlie parallel adaptation following global invasion.
836 [Preprint] (2024). Available at:
837 <https://www.biorxiv.org/content/10.1101/2024.07.09.602765v1> [Accessed 12 December
838 2024].

839 79. M. Wellenreuther, C. Mérot, E. Berdan, L. Bernatchez, Going beyond SNPs: The role of
840 structural genomic variants in adaptive evolution and species diversification. *Mol. Ecol.*
841 **28**, 1203–1209 (2019).

842 80. M. Schubert, *et al.*, Characterization of ancient and modern genomes by SNP detection
843 and phylogenomic and metagenomic analysis using PALEOMIX. *Nat. Protoc.* **9**, 1056–
844 1082 (2014).

845 81. M. A. DePristo, *et al.*, A framework for variation discovery and genotyping using next-
846 generation DNA sequencing data. *Nat. Genet.* **43**, 491–498 (2011).

847 82. P. Danecek, *et al.*, Twelve years of SAMtools and BCFtools. *GigaScience* **10**, giab008
848 (2021).

849 83. G. Coop, D. Witonsky, A. Di Rienzo, J. K. Pritchard, Using Environmental Correlations to
850 Identify Loci Underlying Local Adaptation. *Genetics* **185**, 1411–1423 (2010).

851 84. M. Gautier, Genome-Wide Scan for Adaptive Divergence and Association with
852 Population-Specific Covariates. *Genetics* **201**, 1555–1579 (2015).

853 85. K. Spitze, Population structure in *Daphnia obtusa*: quantitative genetic and allozymic
854 variation. *Genetics* **135**, 367–374 (1993).

855 86. T. Prout, J. S. Barker, F statistics in *Drosophila buzzatii*: selection, population size and
856 inbreeding. *Genetics* **134**, 369–375 (1993).

857 87. D. Bates, M. Mächler, B. Bolker, S. Walker, Fitting Linear Mixed-Effects Models Using
858 lme4. *J. Stat. Softw.* **67**, 1–48 (2015).

859 88. P. Danecek, *et al.*, The variant call format and VCFtools. *Bioinformatics* **27**, 2156–2158
860 (2011).

861 89. H. Li, P. Ralph, Local PCA Shows How the Effect of Population Structure Differs Along
862 the Genome. *Genetics* **211**, 289–304 (2019).

863 90. T. S. Korneliussen, A. Albrechtsen, R. Nielsen, ANGSD: Analysis of Next Generation
864 Sequencing Data. *BMC Bioinformatics* **15**, 356 (2014).

865 91. J. Meisner, A. Albrechtsen, Inferring Population Structure and Admixture Proportions in
866 Low-Depth NGS Data. *Genetics* **210**, 719–731 (2018).

867 92. L. Mouselimis, *et al.*, ClusterR: Gaussian Mixture Models, K-Means, Mini-Batch-Kmeans,
868 K-Medoids and Affinity Propagation Clustering. (2023). Deposited 4 December 2023.

869 93. H. Li, Minimap2: pairwise alignment for nucleotide sequences. *Bioinformatics* **34**, 3094–
870 3100 (2018).

871 94. S. Kurtz, *et al.*, Versatile and open software for comparing large genomes. *Genome Biol.*
872 **5**, R12 (2004).

873 95. M. Goel, H. Sun, W.-B. Jiao, K. Schneeberger, SyRI: finding genomic rearrangements
874 and local sequence differences from whole-genome assemblies. *Genome Biol.* **20**, 277
875 (2019).

876 96. M. Goel, K. Schneeberger, plotsr: visualizing structural similarities and rearrangements
877 between multiple genomes. *Bioinformatics* **38**, 2922–2926 (2022).

878 97. S. Ou, *et al.*, Benchmarking transposable element annotation methods for creation of a
879 streamlined, comprehensive pipeline. *Genome Biol.* **20**, 275 (2019).

880 98. Smit, AFA, Hubley, R & Green, P., RepeatMasker Open-4.0. 2013-2015
881 <<http://www.repeatmasker.org>>.

882 99. Y. Wang, *et al.*, MCScanX: a toolkit for detection and evolutionary analysis of gene
883 synteny and collinearity. *Nucleic Acids Res.* **40**, e49 (2012).

884 100. C. Camacho, *et al.*, BLAST+: architecture and applications. *BMC Bioinformatics* **10**, 421
885 (2009).

886 101. R Foundation for Statistical Computing, Vienna, Austria., R: A language and environment
887 for statistical computing. (2024). Deposited 2024.

888 102. J. Fox, S. Weisberg, *An R Companion to Applied Regression*, Third (Sage, 2019).

889 103. R. V. Lenth, *et al.*, emmeans: Estimated Marginal Means, aka Least-Squares Means.
890 (2024). Deposited 23 January 2024.

891 104. H. M. Kang, *et al.*, Variance component model to account for sample structure in
892 genome-wide association studies. *Nat. Genet.* **42**, 348–354 (2010).

893 105. A. Alexa, J. Rahnenführer, Gene set enrichment analysis with topGO.

894

895

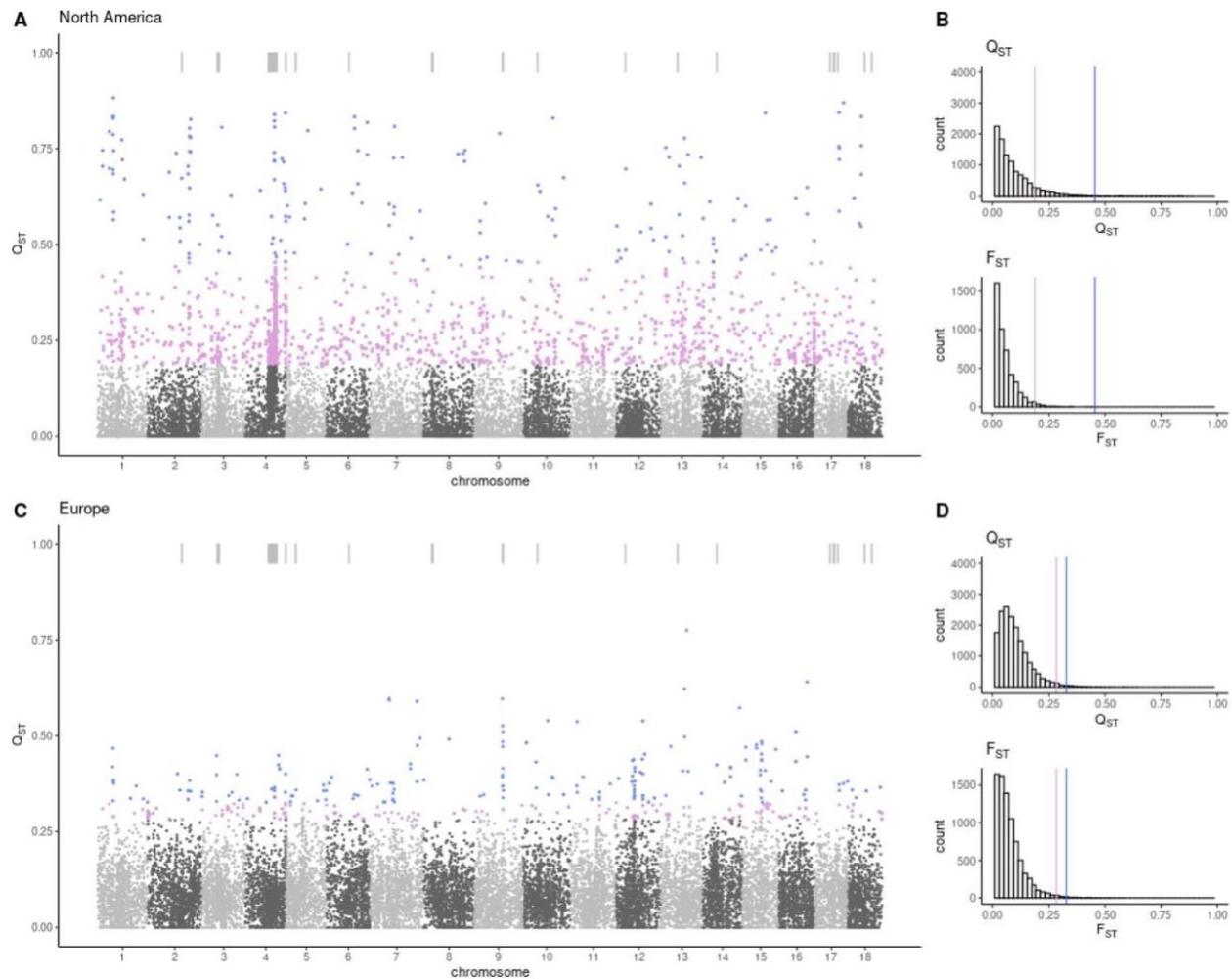


Figure 1. CNV QST values indicate regions of selection in the *A. artemisiifolia* genome. A. QST values of filtered coverage windows in European populations. Pink windows indicate those above 1% FST threshold shown in B, blue windows indicate top 1% of QST values. C. QST values of filtered coverage windows in North American populations. Pink windows indicate those above 1% FST threshold shown in D, blue windows indicate top 1% of QST values. Bars above manhattan plots indicate merged windows > 300 kbp.

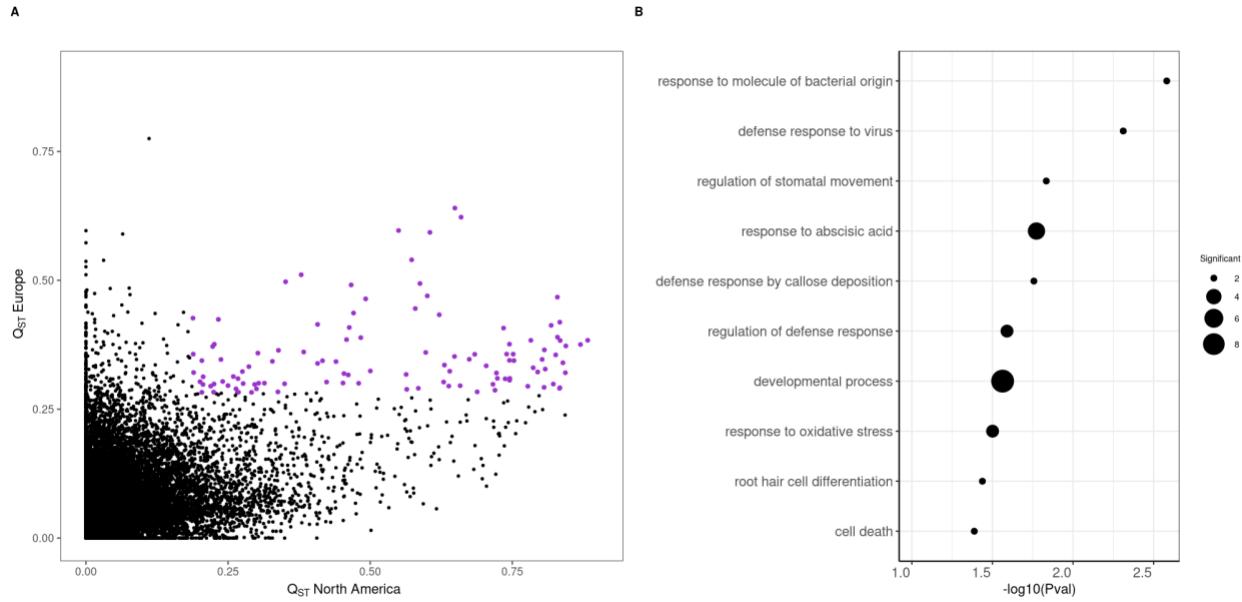


Figure 2. Overlapping QST outliers in both ranges and their potential biological functions.

A. Distribution of QST values of all 10 kbp coverage windows in both North America and Europe. Overlapping windows exceeding the neutral FST threshold of 1% in each respective range are colored in pink. B. Gene ontology enrichment plot of genes within overlapping outlier QST windows, with biological pathways only retained if represented by 2 or more genes (pink in A).

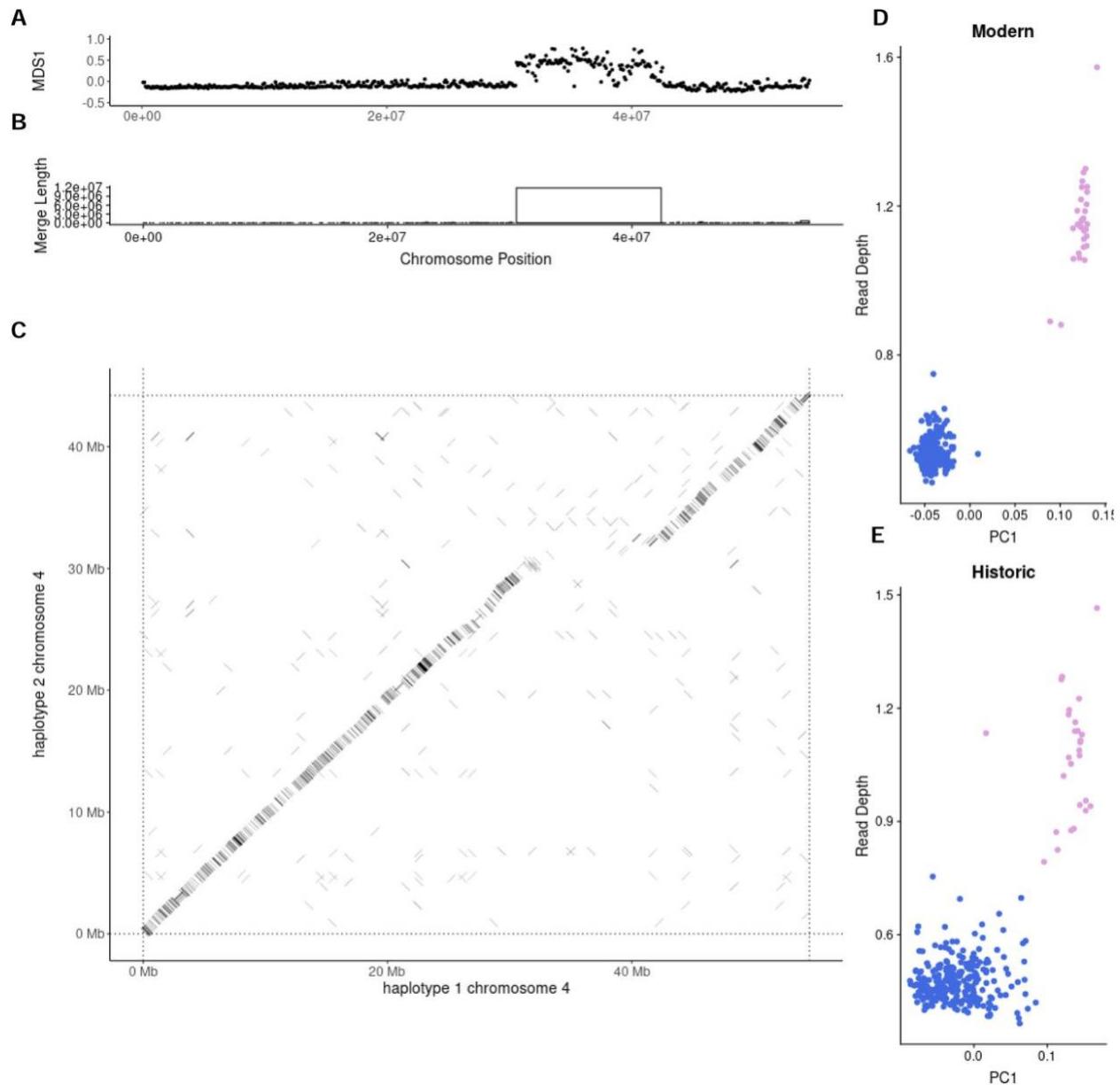


Figure 3. CNVr genotyping of cnv-chr4a. A. MDS coordinates from local PCA in 100kb windows across chromosome 4. Values diverging from zero indicate local structure compared with the rest of the chromosome. B. Distribution of merged window sizes along chromosome 4, with boxes indicating window size on the Y axis and chromosomal position on the X axis. C. Alignment of chromosome 4 Hap1 and Hap2 of the diploid reference genome. A clear gap is present corresponding to local PCA and merged window locations. D, E. Regional PC1 against regional read-depth corresponding to merged window identified in B. Clustering computed using k-means and manual annotation. D. represents modern samples and E. represents historic samples.

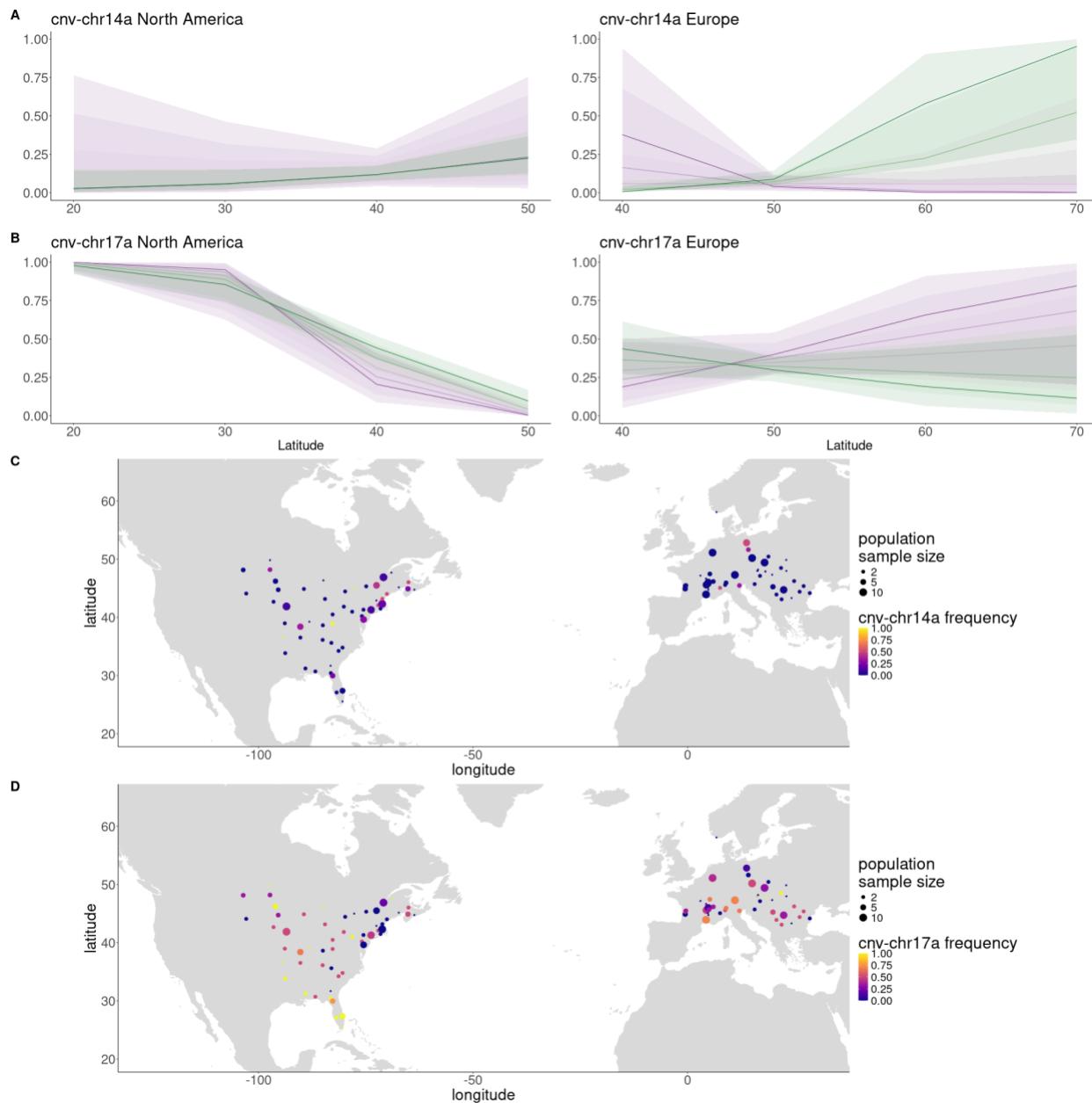


Figure 4. Spatio-temporal CNV frequency shifts. A, B. Logistic regression models for A) cnv-chr14a and B) cnv-chr17a with error bands representing 95% CI of least-squares regressions of CNV frequency. Time binned into five categories, ranging from historic (purple) to modern (green). Model information found in Supplementary Table 6. C, D. Frequency of C) cnv-chr14a and D) cnv-chr17a in modern *A. artemisiifolia* populations.