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Abstract

Rational computational design is crucial to the pursuit of novel drugs and therapeutic agents. Meso-scale
cyclic peptides, which consist of 7-40 amino acid residues, are of particular interest due to their
conformational rigidity, binding specificity, degradation resistance, and potential cell permeability.
Because there are few natural cyclic peptides, de novo design involving non-canonical amino acids is a
potentially useful goal. Here, we develop an efficient pipeline (CyclicChamp) for cyclic peptide design.
After converting the cyclic constraint into an error function, we employ a variant of simulated annealing
to search for low-energy peptide backbones while maintaining peptide closure. Compared to the previous
random sampling approach, which was capable of sampling conformations of cyclic peptides of up to 14
residues, our method both greatly accelerates the computation speed for sampling conformations of small
macrocycles (ca. 7 residues), and addresses the high-dimensionality challenge that large macrocycle
designs often encounter. As a result, CyclicChamp makes conformational sampling tractable for 15- to
24-residue cyclic peptides, thus permitting the design of macrocycles in this size range.
Microsecond-length molecular dynamics simulations on the resulting 15, 20, and 24 amino acid cyclic
designs identify designs with kinetic stability. To test their thermodynamic stability, we perform
additional replica exchange molecular dynamics simulations and generate free energy surfaces. Three
15-residue designs, one 20-residue and one 24-residue design emerge as promising candidates.

Author summary

Cyclic peptides are circular chains of amino acid residues that are promising candidates for new
therapeutic drugs. Current FDA approved cyclic peptide-based drugs are mostly derived from natural
sources. However, recent work has enabled the computational design of new cyclic peptide drugs.
Current de novo computational design methods can handle sizes of 7 to 13 residues without
conformational constraints. As size increases, the exponentially growing conformational space makes
conformational sampling intractable. The literature’s prevalent approach of random sampling finds poor
configurations, with the result that the success rate of finding a stable design is very low. Here, we
develop an efficient search algorithm by combining tailored optimization algorithms with established
energy models. Our heuristic design pipeline, CyclicChamp, produces stable cyclic peptide designs of 7,
15, 20, and 24 amino acids as validated by algorithmically-independent molecular dynamics simulations.
This pipeline not only expands the structural variety for future drug development, but also paves the
way for potential cyclic peptide-based enzyme design.

Introduction

Cyclic peptides are chains of fewer than 40 amino acid residues forming one or more closed loops. One
common class of cyclic peptides consists of a single loop, with the N- and C-termini connected by an
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amide bond. In general, mid-sized cyclic peptides stand out for their superior binding affinity and 4
selectivity compared to small molecules [1,2]. Their still modest size reduces the likelihood of provoking s
an immune response and enhances the ability to traverse cellular barriers compared to large protein 6
therapeutics [3]. Further, their characteristic cyclization imposes conformational constraints, leading to 7
structures that are more rigid compared to their linear counterparts [4]. This rigidity reduces the 8

entropic cost associated with ordering a disordered molecule on binding to its intended target, enhancing o
target affinity [5]; it also prevents adoption of alternative conformations in which the peptide may bind 1
to off-target proteins, thus enhancing specificity [6]. In addition, the connection of the N- and C-termini 1
makes cyclic peptides more resistant to protease degradation than linear peptides. The incorporation of 1w

non-canonical or D-amino acids can further reduce immunogenicity and enhance degradation 13
resistance [3]. 1

Thanks to these benefits, cyclic peptide-based therapeutics have garnered significant interest over the s
past two decades. Currently, over 40 such drugs are used for various applications, including as 16
antibacterial (daptomycin), antifungal (caspofungin), and immunosuppressant (cyclosporine A) agents. v
Notably, more than 80% of these drugs originate from natural sources or are their derivatives, and very 1
few contain non-canonical or D-amino acids [7]. To expand the diversity of such drugs, it is of great 19
benefit to design cyclic peptides de nowvo. 2

The current state-of-the-art protein computational design approaches are (i) machine learning (ML) =
driven methods, such as those that employ deep neural networks like AlphaFold, RoseTTAFold, 2

RFdiffusion, and ProteinMPNN [8-12], and (ii) physics-based methods, such as those implemented in 2
the Rosetta, Osprey, and Schrédinger software packages [13—-15]. Recently, diffusion-based ML methods 2

have achieved progress on cyclic peptide prediction and design. By encoding the cyclic backbone 2
constraint into their amino acid relative position matrix, AfCycDesign uses the underlying AlphaFold 2%
model to predict and design cyclic peptides of 7-13 residues without cross-links; the authors of this 27
method have reported experimental validation of one design for each of these sizes (in preprint [16]). 28
HighFold further modifies the cyclic position matrix to predict macrocycles with disulfide bonds, and 2
published predictions for existing PDB structures of 12-39 residues obtain RMSDs of 0.4-4.5 A [17]. 30
RFpeptides employs the RFdiffusion model to generate cyclic backbones, and then uses the 31
ProteinMPNN model to design sequences, providing the additional functionality of designing protein »
binders; however, this model does not currently support disulphides or other cross-links. The RFpeptides s
developers report binders of lengths 13-16 residues that have been validated experimentally, with Kp 3
values varying from 6 nM to 10 uM (in preprint [18]). 35

A major limitation of such ML-based approaches is that the neural network and diffusion model 3

training dataset consisted only of canonical L-amino acids. This renders them incapable of predicting and s
designing cyclic peptides composed of mixed L- and D-amino acids, or of integrating non-canonical amino s
acids. Given the paucity of training data for heterochiral or non-canonical peptides, no existing pure ML 3
approach is likely to prove effective at designing mixed-chirality or non-canonical cyclic peptides de 40
novo [19]. Because D-amino acids are the mirror images of L-amino acids, an L-amino acid accesses only — «
one half of the conformational space. This means that when designing an n-residue peptide, ML-based
methods are constrained to 1/2™ of the potential conformational space compared to physics-based mixed
chirality design. The utility of ML tools for ranking designs to prioritize experiments is also finite: while 4

tools like AlphaFold provide confidence scores for their predictions and designs, this score can be a5
influenced both by the quality of the design and its resemblance to the model’s training data. 4
Further, ML models generally lack the ability to comprehensively sample the peptide’s energy a

landscape, while physics-based approaches can. When designing a stable peptide, it is more important a8
that the native state has a large energy gap from the other energy minima, rather than having just low
energy. Hence, it is vital to have the entire energy landscape for selecting best designs for experiments. s

Physics-based approaches, which could be better generalized to new chemical building-blocks and new s
backbone geometries never seen before, are therefore more attractive for heterochiral and non-canonical s
design. In Rosetta, cyclic backbone conformations are typically sampled using a generalized kinematic 53
closure algorithm (GenKIC) [20,21]. For an n-residue backbone, torsion angles of n — 3 residues are 54
sampled randomly, biased by the conformational preferences of the residues, and torsion angles of the 55
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remaining 3 residues are solved algebraically to ensure cyclicity. The sampled cyclic backbones are
relaxed using energy models that take into account atom pair interactions and torsion angle
preferences [22]. Next, Rosetta employs a Monte Carlo simulated annealing algorithm to design an
optimal sequence for the relaxed backbones, considering both L- and D-amino acids [23,24].

This approach has been proven effective in achieving comprehensive sampling of macrocycles ranging
from 7 to 10 residues [13]. However, as the peptide size grows, the size of the conformational search
space expands exponentially, greatly reducing the likelihood of identifying a stable backbone design
through random sampling. Past strategies for dealing with larger peptides have included adding disulfide
cross-links to further limit the accessible conformational space (used previously for cyclic peptides of
11-26 residues [13,21]), limiting conformational searches to symmetric conformations (permitting
conformational sampling up to 24 residues [25]), or combining chemical cross-links with symmetric
sampling and secondary structure biases (which allowed design of a cyclic 60-mer [26]). In each case,
sampling of larger structures has been achieved by reducing the generality of the method, and by
imposing more prior expectations of the features present in structures of interest.

In this work, we aimed to overcome the current size limit of general cyclic peptide design, reaching a
size of 24 residues with mixed chirality. No additional cross-links or expectations about symmetry or
secondary structure needed to be imposed. Our design pipeline, CyclicChamp, consists of (i) sampling
“good” cyclic backbones, (ii) optimizing amino acid sequences to align with the backbones, and (iii)
validating folded structures of the sequences. Specifically, we focused on steps (i) and (iii), and we
followed Rosetta’s physics-based approach for our design pursuits. Note that the two approaches by
Rosetta and AlphaFold are not mutually exclusive [27], and CyclicChamp could be used for backbone
conformational sampling in conjunction with any physics- or ML-based method that can carry out
sequence design.

We have designed cyclic peptides of 7, 15, 20, and 24 residues. For 7 residues, our CyclicChamp
yielded high-quality stable designs similar to those designed and experimentally validated by
Hosseinzadeh et al. [13]. For 15-24 residues, we validated designs through the use of microsecond
molecular dynamics (MD) simulations, an algorithmically independent validation approach. These MD
simulations generated stable trajectories that indicated promising designs, which were further tested by
replica exchange molecular dynamics (REMD) simulations. Three 15-residue, one 20-residue, and one
24-residue designs exhibited thermodynamic stability in REMD simulations, marking them as candidates
for future experimental exploration.

As an extra test for our step (iii) of validating folded structures, we have performed structure
predictions for 20 PDB structures of 7-24 residues without cross-links, and achieved an average of 1.2 A
RMSD. Importantly, our method is a general one that has permitted us to design large peptide folds that
are not dependent on disulfide bonds or other chemical cross-links, predefined symmetry, or
human-imposed secondary structure.

Materials and methods

The overall CyclicChamp design workflow is as follows (Fig 1a):

1. We generate a pool of n-residue polyglycine chains, whose initial torsion angles are sampled from a
permissive, flattened glycine Ramachandran distribution (which permits conformations accessible
to both L- and D-amino acids to be sampled).

2. For each chain, a variant of simulated annealing is performed to search for low-energy
configurations that satisfy the cyclic and hydrogen bond (H-bond) constraints.

3. We select representative low-energy configurations for relaxation and sequence design using
Rosetta’s FastRelax [28] and FastDesign [21, 29], respectively.

4. Low-energy sequences are tested for stability by generating energy landscapes.
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designing stable cyclic peptides. (B) Ideal backbone bond lengths and bond angles are assumed in CyclicChamp. For
backbone closure, we consider local coordinate systems at each atom i. There are three steps transforming from
coordinate system i to ¢ + 1.

(a)

(b) Coordinate system i to i+1 1. Origin translation
. * . . f
N atom i atom i
C* o.= 116.2"’5 ce '
Ao 7~524 N
N 8,= 121.7°
6..=111.2° ¢
N c
atom i+2
atom i
atom i+1

yirt

X"
Xi+1

In the following subsections, we first derive an error function E.,. for the cyclic backbone constraint
(Cyclic error function), and provide relevant energy functions for later backbone sampling (Backbone
energy functions). Second, we describe our layered simulated annealing algorithm for low-energy cyclic
backbone sampling (Efficient backbone sampling). Finally, we show the two stability analysis methods
developed for cyclic peptides of different sizes (Stability analysis for small macrocycles and Stability

analysis for large macrocycles).

Cyclic error function

When tackling the backbone closure problem, we consider only the N, C,, and C’ atoms in each residue.

A peptide backbone structure is determined by its bond lengths, bond angles, and torsion angles. Bond

lengths are the most rigid [30], and are often treated as fixed values as shown in Fig 1b: bond N-C,,

length dy = 1.458 A, bond C,-C’ with length do, = 1.524 A, and bond C’-N with length der = 1.329 A.

Bond angles and the w torsion angle can vary to a limited extent (£5%) [30]. The ideal values are

with

On = 121.7° for the bond angle at atom N, 0o = 111.2° at atom C,, ¢ = 116.2° at atom C’, and
w = 180°. To simplify computations, we set all these bond lengths and angles to their ideal values.
The variables are then torsion angles ¢ and 1. To close the backbone, Go et al. showed that the
torsion angles need to satisfy six independent relations [31]. Following this approach, for an n-residue
peptide, we define 3n local coordinate systems corresponding to the 3n backbone atoms. In coordinate
system ¢, the origin is set to the position of atom 7; the z-axis extends towards atom ¢ + 1; the y-axis is
perpendicular to the z-axis and the first quadrant of the zy plane contains atom i + 2; the z-axis is
orthogonal to x- and y-axis using the right-hand rule (Fig 1b). The bond length from atom i to i + 1 is
denoted as d;. The bond angle formed by atoms ¢ — 1, ¢, and ¢ + 1 is denoted as #;. The torsion angle

between atoms ¢ — 1, ¢, i + 1, and ¢ + 2 is denoted as ;.
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To go from coordinate system 7 to i + 1, we need an origin translation p; of length d; from atom i to 12

i+ 1, a counterclockwise xy plane rotation by = — 6,1, and a counterclockwise yz plane rotation by 125
torsion angle ¢;11 (Fig 1b). A point with coordinate 7;41 in system ¢ + 1 has coordinate r; in system i, 1
fOHOWiIlg 127
ri =To, Ry, Tig1 + Pis (1)
where 128
cos(m —0;41) —sin(mr —6;41) O
To,\, = sin(m —0;41) cos(m—06;41) Of,
0 0 1
129
1 0 0 d;
Ry, = |0 cos(piy1) —sin(pit1)|,pi= |0
0 sin(pit1)  cos(pit1) 0

Because atom 1 is the same as atom 3n + 1 in an n-residue cyclic backbone, backbone closure is then 13
equivalent to having the coordinate systems corresponding to atom 1 and atom 3n + 1 be identical, i.e., 1
same origins and x, y directional vectors (rotations preserve dot products, so z is also the same). For 132
later matrix expression, we choose system 1 to be at atom C,, of residue n (Fig 1b), with origin being 0, 1

x directional vector e; = [1,0,0]7, and y directional vector ez = [0, 1,0]7. 134
The origin of system 3n + 1 has coordinate r3,4+1 = 0 in system 3n + 1 and 77 in system 1. To 135
satisfy backbone closure, we require 136
r1=MiMz---My oMy 19+ MiMz---My_2q+ -+ MiM2q+ Miqg+q=0, (2)
where Mz = Tgc, RuTgN ng,iTgca R.l/,i, and 137
dn der de,
q=To,,R.To, | 0 | +Tp_, | O | +]| O
0 0 0
For the  and y directional vectors in system 3n + 1, we require their vector forms in system 1 equal to 1
e and eq, respectively, i.e., 139
MM+ My, oM, _1M,e; =e;, MiMz---My, M, 1Mp,es = e>. (3)
See the detailed derivation in S1 Appendix. 140
Combining requirements Eq (2) and Eq (3), and using squared error, we write the cyclic constraint  1a
into a single equation, 142

Eeye =||lq + M1g + My Maq + M1 MaMgq + - - + My Mz Ms- - -My,_14||3
+|[MyMyMs- - -M,,_1Mpe; — e1][3 (4)
+HM1M2M3' . 'Mn_anez — 62”%.
We call this the cyclic error function, and finding a cyclic peptide backbone solution is equivalent to 143

finding a zero for Eq (4). Note that all the bond lengths, bond angles, and torsion angle w are fixed to 14
ideal values, so M;(¢;,1;) are matrices of variables ¢; and v;, and vector g can be calculated explicitly s

for ideal bond angle and bond length values as q = [3.5620, 1.3322,0]7". 146
Backbone energy functions 147
Our backbone sampling algorithm is independent of the energy model, so can work with any energy 148
functions that are fast to evaluate. Here, we choose Rosetta’s Ref2015 energy model [22]. For the 149
backbone atoms, we evaluate the Ramachandran, repulsive (Van der Waals), attractive (London 150
dispersion), electrostatic, solvation, and H-bond energy terms. When analyzing backbone atom pair 151
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interactions, we consider only atom pairs separated by at least 4 covalent bonds, as is the case in the
Ref2015 energy function [22]. See detailed descriptions in S2 Appendix and S1 Fig.

Fach amino acid has a Ramachandran map that shows the energetically allowed regions in 1-¢ space.

Glycine has the largest Ramachandran area, proline has the smallest, and the other amino acids have
similar areas but different energetically favorable regions. As L- and D-amino acids are mirror images,
their accessible Ramachandran regions are mirror-symmetrical. For backbone sampling, we use the
permissive, symmetrized glycine Ramachandran map to allow all possible amino acids for later sequence
design (S2 Fig, regions within the blue boundary). This map is based on the statistical distribution of
glycine conformations observed in Protein Data Bank (PDB) structures but made symmetric as
previously described [13,21].

Efficient backbone sampling
Initial torsion angles selection

We partition the glycine Ramachandran map into six torsion bins, marking bin centers (S2 Fig). For
each residue, its initial angles ¢ and 1 are chosen randomly from one of the six centers. For an n residue
peptide, there are 6™ initial point combinations (or initial configurations). Considering equivalence
classes induced by cyclic permutations (e.g., “1232456” is equivalent to “2324561”), the number of
unique combinations is reduced to %2?21 69¢401) where ged(i,n) is the greatest common divisor of i
and n; this is approximately 6™ /n for large n [25,32]. For 7 residues, this yields 39,996 initial point
combinations. As the macrocycle size increases, the number of combinations increases exponentially.
Hence, for large macrocycles with 15, 20, or 24 residues, we randomly select 100,000 initial point
combinations.

Layered simulated annealing

With the initial angles assigned, we search the Ramachandran space to find low-energy configurations
satisfying the cyclic and H-bond constraints. To save computational cost, we devised a simulated
annealing (SA) variant with multiple layers of acceptance criteria. At time step ¢, a random move within
a disk of radius k; in the Ramachandran space is generated for each residue (S2 Fig). If a move enters a
prohibited high-energy region of Ramachandran space (white area in S2 Fig), it is rejected for that
residue. The subsequent new configuration needs to pass four layers of energy tests to be accepted:
sequentially, Ramachandran energy, repulsive energy, cyclic error, and H-bond energy. For 7-residue
peptides, a final energy test is added to calculate miscellaneous (attractive, electrostatics, and solvation)
energies.

At each test layer [, we use the Metropolis criterion, i.e., the new configuration passes if it has an
energy Fpe,, lower than the current energy Ej, or below a threshold Eyp,;. If neither holds, the new
configuration has a probability of e(F1=Fnew.)/Tet to pass the test, where T;, is the temperature at time
step t and test [. Once a new configuration passes all tests, it is accepted and becomes the current
configuration. Note that this approach is not intended to produce thermodynamic distributions of states
as pure Metropolis-Hastings Monte Carlo trajectories do; instead, the goal is to rapidly discover
low-energy states with the least computational expense needed, by evaluating cheaper energy terms first
to reject moves.

Configurations that have low repulsive energy, low cyclic error, and strong H-bonds are recorded as
good backbone candidates. Details for choosing the energy thresholds, good backbone criteria, and other
simulated annealing parameters are provided in S3 Appendix. In particular, within the thousands of
possible simulated annealing parameter combinations, we use combinatorial design [33] to select and test
51 combinations for 7- and 15-residue tests, and 400 combinations for 20- and 24-residue tests (details in
S4 Appendix).

Once we find the optimal simulated annealing parameter combination (S1 Table), for each initial
configuration, we run the layered simulated annealing algorithm. If a single run of simulated annealing
does not produce any good backbone candidates, we repeat again, for a maximum of three repeats. Two
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example runs that successfully produced good 15-residue backbone candidates are uploaded to GitHub
for illustration.

Backbone clustering and sequence design

There can be vast numbers of backbone candidates, and many are similar to each other. To select
lowest-energy representatives, we clustered the candidates based on the torsion bins in a manner similar
to that previously described [13]. Briefly, we assigned a torsion bin number to each residue in a backbone
candidate (S2 Fig), to produce a torsion bin string. For example, a string “1351246” means that the first
residue in the backbone falls in torsion bin 1 of the glycine Ramachandran space, the second residue in
torsion bin 3, the third residue in torsion bin 5, and so on.

We considered torsion bin strings as equivalent if they can be cyclically permuted, such as “1351246”
and “3512461”. To uniquely identify the equivalence class, we looked for the cyclic permutation that
moves the smallest bin value to position 1. If multiple residues share the same smallest value, we chose
the permutation that gives smaller value at position 2, and so on. In this way, we clustered the backbone
candidates into equivalence classes of torsion bin strings. Within each class, we selected the candidate
with the lowest energy as the representative.

We computed energies based on Rosetta Ref2015’s weights [22],

Etotal = 0.45 * Erama + Erep + Ehbond + Eother~

These backbone representatives were then sent for full-energy relaxation using Rosetta’s FastRelax,
following past protocols [5,13,25] (scripts in S5 Appendix and uploaded to GitHub). Relaxed backbones
with low energies were selected for further sequence design using Rosetta’s FastDesign, permitting the 20
canonical amino acids (except cysteine and glycine) with both their L and D forms [13] (S6 Appendix).
For 20- and 24-residue designs, to avoid instability caused by buried unsatisfied polar atoms, additional
restrictions of amino acid types were applied [25] (S7 Appendix).

Stability analysis for small macrocycles

Designed sequences having low energies underwent final stability analysis. To assess the stability of a
designed sequence, we sampled alternative conformations for this sequence. The energies of these
alternative conformations, together with their root-mean-square-deviations (RMSDs) from the designed
structure, form the energy landscape. To calculate RMSD, we used the Kabsch algorithm [34] to align
backbone heavy atoms (N, C,, C’, and O) of an alternative conformation with those of the designed
structure.

If the lowest-energy conformations all have small RMSDs from the designed structure, then the
sequence has a high chance to fold into the designed structure, and we consider the design stable. In
order to provide a quantitative measure of stability, we employ the Pneq, value introduced in 2016 [21]:

N _ RMSD? B
Y eT T xz e kBT
Prear = Zl_l E ’ (5)

e

where kT = 0.62 kcal/mol (equivalent to 37 °C), A = 0.5 A for small macrocycles (7 residues), A = 1.5
A for medium macrocycles (15 residues), and A = 2.0 A for large macrocycles (20 and 24 residues). It
has been experimentally shown that Pyeqr > 0.9 is indicative of stability, and correlates well with
experimental success in binder design [5,6,13].

For macrocycles having 7 residues, our backbone simulated annealing algorithm considered all
combinations of initial angle torsion bins, so backbone sampling was comprehensive. Hence, we can
expect that all low-energy conformations exist within the sampled backbones. By threading designed
sequences on these backbones and using Ramachandran map at each residue as a series of filters to weed
out incompatible conformations, we were able to approximate the energy landscape containing all
alternative low-energy conformations. Given that the backbones are cyclic, it was necsesary to examine
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all n permutations of the residues for each backbone conformation. Compatible backbones were then
subjected to FastRelax, following the same protocol (S5 Appendix), but this time with the designed
sequence instead of poly-glycine. We refer to this energy landscape sampling process as
Ramachandran-stability filtering.

Stability analysis for large macrocycles

For macrocycles of 15-24 residues, the Ramachandran-stability filtering method failed to find a sufficient
number of alternative backbone conformations due to the exponentially larger search space (see S8
Appendix). Simply adapting the layered simulated annealing algorithm for designed sequences was not
enough. We aimed to explore energy landscapes filled with local minima, spanning both low and high
RMSD regions (0-6 A). Simulated annealing might sometimes jump across certain minima without
sufficient exploration, or conversely, become trapped in some minima without investigation of others. To
overcome this problem, we employed a genetic algorithm. This approach allowed us to broadly explore
the landscape in the initial stages, and through successive generations, to probe and settle into the
low-energy minima, thus achieving a balanced exploration of both global and local features of the energy
landscapes.

The initial population of the genetic algorithm comprised alternative structures of the designed
sequence, whose backbones were sampled by two separate layered simulated annealing trajectories, one
targeting low energy and, when a designed backbone was available, the other targeting low RMSD. The
low energy simulated annealing protocol was as described in S3 Appendix, while the low RMSD
simulated annealing had only the cyclic error test and a RMSD test (see S8 Appendix). In the RMSD
test, we used the Kabsch algorithm [34] to measure the backbone-heavy-atom RMSD between the new

configuration and the designed structure, and used the Metropolis criterion to accept new configurations.

The sampled backbones were then subject to FastRelax, with the designed sequence specified so that
the corresponding side-chains were added and optimized by FastRelax (S5 Appendix). We sorted the
relaxed structures in ascending order of their energies and initiated energy-based clustering (see S8
Appendix). The 2 x Nga lowest-energy cluster centers formed the initial genetic algorithm population.

In the genetic algorithm, each generation underwent crossover, mutation, and selection. Crossover
involved checking whether a pair of parents could exchange residues within a designated region.
Mutation involved random perturbation of torsion angles within a given region. See details in S8
Appendix and S4 Fig. After collecting the crossover and mutation children, we ran FastRelax to add
side-chains and obtain full energies. Due to distortions of bond angles and lengths caused by crossover
and mutation at breakpoints, we used Cartesian relaxation to restore near-ideal bond geometry (scripts
provided in S9 Appendix). Then, we clustered the relaxed structures and selected the lowest-energy Nga
cluster centers to form the next generation.

During each generation, of all the cluster centers, we recorded those having energies < 0 for the
eventual energy landscape. We conducted 50 such generations with Nga = 500 for 15 residue
macrocycles, Nga = 750 — 5 - ¢ for generation ¢ of 20 residues, and Nga = 1000 — 10 - ¢ for generation ¢
of 24 residues. The reduced population size in later generations was for efficiency: a broad exploration of
the energy landscape is beneficial for early stages, while in later stages the genetic algorithm focuses on
exploring the minima, which doesn’t require a large population. We refer to this energy landscape
sampling algorithm as ClusterGen.

Structure predictions for macrocycles in the Protein Data Bank

We modified our ClusterGen approach slightly to predict structures for existing macrocycles found in the
PDB. We removed the initial simulated annealing sampling for low RMSD, which requires the designed
structure as reference, so that our prediction was unbiased and the only input information was the amino
acid sequence.

For large-sized PDB predictions, i.e., PDB 6uf8 (12-mer), 2ns4 (14-mer), 6dzb (16-mer), and 6uf9
(24-mer), we increased the initial points for simulated annealing to 0.2, 0.3, 0.5, and 1 million,
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respectively, and increased the genetic algorithm population Ng4 to 1500, 2500, 5000, and 5000,
respectively. This is to compensate for the removal of biased low RMSD sampling.

From each generated energy landscape, we clustered the 50 lowest-energy structures using a 1.5 A
RMSD cutoff. The five lowest-energy cluster centers were selected as the predictions. If the PDB
structure is from NMR experiments and has multiple models, we selected the model that produces the
highest Ppyeqr score for energy landscape plot.

Molecular dynamics simulations for top designs

We next sought a means of validating designs that was independent of Rosetta or the conformational
sampling methods developed here. Since currently-available ML methods for predicting macrocycle
structures are incompatible with heterochiral peptides [19], we turned to molecular dynamics (MD)
simulations. For 15-24 residue designs that had high Py, scores, we performed 1-pus MD simulations to
validate kinetic stability. We used the OpenMM v8.1.0.beta [35] toolkit with the amber14/protein.ff14SB
force field for peptide and the amber14/tip3p force field for water. The water box had periodic boundary
conditions and 1 nm padding distances from the peptide. The ionic strength was set to be 0.15 molar
with Nat and Cl". Full details are in S10 Appendix.

We also ran replica exchange molecular dynamics (REMD) simulations [36] for top designs that
showed stable MD trajectories, using OpenMMTools v0.23.1 [37] (details in S10 Appendix). After an
initial 100 ns simulation, we plotted the radius of gyration (R,) distributions for uncorrelated
configurations extracted by OpenMM Tools MultiStateSamplerAnalyzer [37] from two different time
intervals 50-70 ns and 80-100 ns. If the distributions did not overlap well, we extended the REMD for an
additional 50 ns.

To compute the average RMSD of a simulation, we extracted uncorrelated configurations sampled at
300 K, and calculated their C,-atom RMSDs from the initial design using MDTraj v1.9.8 [38]. Free
energy surfaces (FES) were derived using RMSD and R, as collective variables. We gathered RMSD and
R, data from 300 K uncorrelated configurations, and computed the probability densities P(RMSD, R,)
using the histogram2d function in the Python package numpy [39], with 50 bins along each dimension.
The free energy was calculated as —RT'In (P(RMSD, R,)), where R is the gas constant and T is the
temperature (300 K). Note that when calculating the probability densities, we used the standard unit
nanometer for RMSD and Ry, yet for visualization consistency, we plot the FES in A.

We used the Flatiron Rusty cluster GPU nodes for the MD simulations. Each node was equipped
with four NVIDIA 40 GB A100 Tensor Core GPUs (Ampere), 1024 GB system memory, and 64 CPU
cores. We ran each MD or REMD simulation on one A100 GPU. Typical MD runs took about 40 hours
to complete, while typical 100 ns REMD runs took about 5-9 days to complete.

Results

Our cyclic peptide design pipeline CyclicChamp consists of several key steps: initial backbone torsion
angle selection, backbone sampling through layered simulated annealing, backbone clustering using
torsion bin strings, backbone relaxation with FastRelax, sequence design via FastDesign, and stability
analysis by generating energy landscapes (see Fig 1). In Fig 2, we show the CPU-hours required in each
step, as benchmarked on New York University’s Greene High Performance Computing Cluster. A more
detailed ClusterGen computation time breakdown is presented in S5 Fig, and the number of candidates
generated in each step is listed in S6 Fig.

The computation time for backbone sampling exhibited linear-like growth as the size of the backbone
increases (Fig 2a). The time growth from 7 to 15 residues primarily resulted from a rise in the number of
initial backbone configurations, escalating from 39,996 to 100,000. Beyond 15 residues, we fixed the
number of initial configurations, so that the time growth was largely due to the O(N?) complexity
involved in calculating atom pairwise energies (see S2 Appendix). However, the sampling of 24-residue
backbones yeilded only about one-fourth the number of backbone clusters compared to those from 15
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Fig 2. CyclicChamp computation time and design comparisons with Rosetta. (A) The computation time
required by CyclicChamp backbone sampling and stability validation (ClusterGen) exhibits linear-like growth with
increasing backbone size. FastDesign was faster for 20 and 24 residues than for 15 because there were fewer backbones on
which we did sequence design. (B) Total design time divided by the number of stable designs validated by the filtering
method for 7 residues, ClusterGen for 15 residues, and reshaped ClusterGen for 20 and 24 residues. (C) When allocating
equivalent computation time for backbone sampling, CyclicChamp generated 5 to 28 times as many cyclic backbones with
sufficient H-bonds as Rosetta’s simple_cycpep_predict, which led to 2 to 11 times as many stable designs as Rosetta’s
after stability validation.

(a) (b)

(c)

and 20 residues, indicating a substantial increase in the difficulty of finding good backbone candidates
(S6 Fig).

We conducted Ppeqr stability analyses on low-energy designs using our Ramachandran-stability
filtering method for 7 residues and our Clustering genetic algorithm (ClusterGen) for 15-24 residues. To
obtain more stable 20- and 24-residue cyclic peptide structures, we also looked at alternative low-energy
structures sampled by ClusterGen and reshaped the energy landscapes accordingly (see details in the
section titled Large macrocycle 20 residue designs). Our filtering method took about 1.3 CPU-hours per
stability test. The computation time of ClusterGen grew linearly as the macrocycle size increased,
primarily due to the progressively larger populations adopted (see Stability analysis for large
macrocycles). Rosetta’s simple_cycpep_predict was also used as a stability test, but it failed to
adequately explore the exponentially larger conformational space as the size went up to 20 and 24.

The average computation time required for obtaining a stable design with Ppeq, > 0.9 is plotted in
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Fig 2b. The reason that CyclicChamp took longer to find a stable 15-residue design than to find a 20- or
24-residue one was the more strict criteria for stability analysis, where we considered only the designed
conformations, not including alternative low-energy conformations sampled by ClusterGen.

Additionally, we compared CyclicChamp’s design results with Rosetta by running their design
pipeline protocol described in [13]. Notably, our CyclicChamp operated more efficiently, especially for 7-
and 20-residue designs, requiring only one-fourth and one-eighth the time of Rosetta’s to find a stable
design, respectively (Fig 2b).

The key reason for CyclicChamp’s high efficiency lies in its backbone sampling (Fig 2c), which leads
to significant improvements. Using the same number of CPU-hours for backbone sampling, CyclicChamp
found five to twenty-eight times as many cyclic backbones with sufficient H-bonds as Rosetta. After
clustering, the lowest-energy half of the cluster centers were advanced to sequence design.

CyclicChamp achieved approximately twice the number of designs for 7 and 15 residues compared to
Rosetta, and approximately six times for 20 and 24 residues. After stability validation, CyclicChamp
managed to produce two to eleven times the number of stable designs (Ppyeqr > 0.9) as compared to
Rosetta, illustrating its superior capability in finding high-quality cyclic peptide backbone conformations
that are more likely to result in stable designs.

In the following sections, we provide stability analysis results for our 7-24 residue macrocycle designs,
as well as the molecular dynamics simulation validations and the PDB structure predictions. Note that
all of our designs have mixed chirality (S7 Fig). Because the sequence space accessible to heterochiral
designs is exponentially larger than that accessible to homochiral, one would expect a far greater
probability of the most stable “designable” backbone configurations lying in the larger heterochiral
configuration space.

Small macrocycle 7 residue designs

For the top 513 designs with computed Ref2015 energies below —8 kcal/mol, we compared Pyeqr
values produced using Rosetta’s simple_cycpep_predict application and with our Ramachandran-stability
filtering method (Fig 3a). The Pearson correlation coefficient stood at r = 0.822, and 94% of the values
exhibited deviations less than 0.4. There were 38 designs having Pyeqr > 0.9 by the Rosetta’s method,
77 designs having Pyeqr > 0.9 by the Ramachandran-stability filtering method, and of these 32 had
Pnear > 0.9 by both methods.

We also analyzed the relationship between Pycq, values and energies (Fig 3b). We divided the 513
designs into four evenly spaced energy bins from -16 to -8 kcal/mol. Within each energy bin, we
calculated the relative frequency of Pyeq, values in three ranges: low (Pyeqr < 0.7), medium
(0.7 < Pnear < 0.9), and high (0.9 < Pyeqr). For both methods, we found that the second-lowest energy
bin possessed the largest relative probability of high Py, values, suggesting that the the
conformational energy of the designed state should not necessarily be as low as possible in order to
achieve a design with a large energy gap between the designed state and all alternative states. This may
be attributed to favourable but non-specific interactions stabilizing both the designed state and
alternative states for the designs in the lowest-energy bin. We noticed that one high Ppq, design in the
first energy bin dropped from 0.956 to 0.769 when switching from the Rosetta’s method to the filtering
method (Fig 3c, design 144). It appears that in this case the filtering method was able to sample the
low-energy region more comprehensively than Rosetta could, identifying alternative low-energy
structures around 0.5 A and 1.5 A RMSD from the design whose populations reduce the fractional
occupancy very close to the designed state, lowering Pycqq--

Additionally, we examined designs in which the Pyeq, values of the two methods differed by more
than 0.4. In most cases, the two methods yielded energy landscapes with similar shapes but different
distributions (Fig 3c, design 8710). Nevertheless, there were instances in which the
Ramachandran-stability filtering method alone proved capable of sampling the low-RMSD region (design
9167). While we have never seen a case in which Rosetta samples low-RMSD regions that the
Ramachandran-stability filtering method misses, there is no way to check this exhaustively.
Operationally, we suggest using both methods.
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Fig 3. Stability analysis of 7-residue designs. (A) Correlation plot between Py, values calculated by Rosetta
simple_cycpep_predict and by our filtering method. (B) Pneqr value distributions within different energy bins (kcal/mol).
Design counts are labeled on top of the bars. (C) Energy landscape comparisons for three cases that have noticeable
differences in Py, values calculated by the two methods. Left, more extensive sampling of wells further from the
designed state by the filtering method results in a lower computed Ppeq, value. Middle: more extensive sampling close to
the designed state by the filtering method identifies a deeper minimum, raising the Py¢qr value. Right: more extensive
sampling by the filtering method allows exploration in a low-RMSD region missed entirely by Rosetta, identifying energy
wells and raising the Pyeqr value. (D) Top 7-residue designs (Ppyeqr > 0.9) demonstrating smaller backbone
root-mean-square radii with H-bond intersections. Representative designs having 0, 1, 2, 3, 5, and 6 H-bond intersections
are drawn, along with their H-bond networks where L- and D-amino acids are specified and arrows point from amide
proton to carbonyl oxygen. The designed sequences are written in one-letter codes, with uppercase for L-amino acids, and
lowercase for D-amino acids.
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Overall, the Ramachandran-stability filtering method holds a distinct advantage over Rosetta’s
random sampling approach in scrutinizing both the low-RMSD region and all low-energy regions, and
unearthing alternative low-energy structures. This is likely due to its strategy of selecting sample
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Fig 4. Comparison with Rosetta experimentally validated 7-residue designs [13]. (A,B) From our 513 designs,
we find designs (colored in orange) for which the backbones align best with the Rosetta designs (light blue). The residues
having different side-chains are marked in red. (C) Design 475 has an alternate low-energy structure (purple), leading to
a low Ppeqr value. The amino acid sequences are written in one-letter codes, with uppercase for L-amino acids, and
lowercase for D-amino acids.

(a) rRmsD=0.190 A

(c) rmsD=0.230 A

Design 7.1 Design 2787 (b) rRmsD=0.229 A Design 7.2 Design 1058
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Design 7.3 Design 475 Energy Landscape of Design 475 Alternative Structure of Design 475
X

QDPpKtd DIPpVtk

backbones from the candidate pool created by layered simulated annealing, characterized by their low
repulsive energies and robust H-bonds. By randomly sampling the torsion angles from their
Ramachandran spaces except for three residues, which are solved algebraically to ensure cyclicity
through generalized kinematic closure (GenKIC) [20] Rosetta’s simple_cycpep_predict can sometimes fail
to find the low-RMSD region, especially as the dimensionality increases.

For the 32 designs that have Pycq, > 0.9 by both methods, we observed an interesting correlation
between the structural compactness and the H-bond patterns. We measured the structural compactness
by calculating the root-mean-square distance of the backbone atoms from the backbone center of mass.
When drawing the H-bond networks, we noticed that some designs have intersecting backbone H-bonds,
and such designs tend to have smaller backbone radii (Fig 3d). The H-bond intersection counts varied
from 0 to 6, and we show one representative design for each count. Design 7437 had the smallest radius
and adopted a semi-ball shape due to its six intersecting H-bonds. Note that the compactness was not
simply a product of more H-bonds. For example, despite all having three H-bonds, design 5191 with one
H-bond intersection presented a radius of 3.480 A, while design 3860 with no intersection exhibited a
radius of 3.811 A. All the 32 design structures are uploaded to GitHub, and their amino acid sequences
are listed in S2 Table.

Finally, we compared our designs with the previously-published comprehensive design results from
Rosetta [13] to see whether similar structures have been found. For 7 residues, that study reported 12
Rosetta-produced designs with Preqr > 0.9, of which three were experimentally validated (Design 7.1-3
in Fig 4). We aligned the backbones of our 513 designs with these 12 Rosetta designs. For each pair, we
tried all seven cyclic permutations to find the best alignment. Our closest backbones have 0.114-0.639 A
RMSDs from the Rosetta design backbones, suggesting that our layered simulated annealing algorithm
can find similar backbone conformations that can be stabilized with a suitable choice of sequence. Most
of these simulated annealing designs had a sequence match of 2-3 residues with their corresponding
Rosetta designs. This follows the observation in the 2017 Rosetta study that usually fewer than three
residues (often prolines) are critical for maintaining the fold [13]. Additionally, all sequences retained the
same pattern of chirality (L or D-amino acids) as the Rosetta designs, with one exception that exhibited
a low Ppyeqr < 0.3 according to both Rosetta and the Ramachandran-stability filtering method. This was
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in stark contrast to most other designs with Pyeq,r > 0.7, aligning with the notion that altering chirality
is more disruptive than replacing an amino acid with another of the same chirality [13].

For the three experimentally validated Rosetta designs (7.1-7.3), we found closely matched simulated
annealing designs with ~0.2 A backbone RMSDs (designs 2787, 1058, and 475 in Fig 4). At least one
proline residue was preserved in each pair. Designs 2787 and 1058 maintained stable folds with
Pnear > 0.9, while design 475 had only Pyeqr ~ 0.4. We plotted the energy landscapes for design 475,
and found an alternative low-energy structure in the 0.5 A RMSD region (Fig 4c). The main deviations
between design 475 and its alternative structure were at residues 1 and 7, consistent with the observed
turn flip around residue 7 in the NMR structural ensemble of Rosetta design 7.3 [13].

Medium macrocycle 15 residue designs

Past Rosetta studies have used disulfide cross-links to design cyclic peptides of 11-14 residues [13],
and structural symmetry to design larger sizes [25,26]. Our methods were able to design general stable,
computationally-validated 15-residue cyclic peptides. For Pyeq, stability analysis, we used both
Rosetta’s simple_cycpep_predict and our ClusterGen. In the energy landscapes, the use of Cartesian
coordinate relaxation leads to an energy reduction of approximately 15 kcal/mol compared to designs
using torsion angle relaxation (Fig 5b,d). Because of the high computational cost of validation (100,000
samples for simple_cycpep_predict, and 50 generations of a population of 500 for ClusterGen), we
validated only the top 75 designs having the lowest energies.

A correlation plot in Fig 5a compares the Ppyeq- values computed by ClusterGen and Rosetta. The
Pnear values from ClusterGen were evenly distributed across all ranges, and there were nine designs with
Ppnear > 0.9. Meanwhile, 64% of Rosetta’s Pyeq, values fell below 0.1, and only three designs achieved
Pnear > 0.9. These three designs also exhibited high Ppyeq,- values according to ClusterGen, and their
energy landscapes’ low-RMSD regions were better explored by ClusterGen, as seen in Fig 5b. In
instances where significant differences existed between the two methods’ Py, values, Rosetta tended to
underestimate Pyeq,r due to failure to extensively sample low-RMSD regions (Fig 5¢). In contrast,
ClusterGen consistently sampled the low-RMSD region, and distinguished peptides by generating energy
landscapes of various shapes, such as the dual-minimum landscape observed in Design 108020, the broad
energy minimum in Design 120510, and the sharp funnel shape in Design 2599. When we plotted
ClusterGen’s Pyeqr values against the structure compactness measured by backbone radii of designed
states (Fig 5a), we found that designs with small radii, particularly those under 5.5 A, tended to exhibit
high Ppeqr values.

Interesting backbone structural motifs appeared in the top designs (Pyeqr > 0.9 by either Rosetta or
ClusterGen, structures uploaded to GitHub and sequences listed in S2 Table). Designs 169032, 2599, and
16897 shared a recurring structural motif in which the backbone bends (Fig 5d). At the bending
locations, we saw 4,7 + 3 H-bonds, with the CO group in residue 4 binding to the NH group in residue
i+ 3. Such 4,7+ 3 H-bonds can cause backbone turns, as observed in the 2017 Rosetta study [13]. In
these three designs, the 7,7 + 3 turns were paired with extra long-range H-bonds. The CO group of
residue 7 + 1 or the NH group of residue ¢ + 2 bound to the opposite backbone side, leading to a
simultaneous bend on both sides. Despite the fact that all three designs have intersecting H-bonds, the
H-bonds in design 16897 are closely intertwined, while the H-bonds in design 169032 can be distinctly
sAeparated into two parts. Consequently, the backbone root-mean-square radius varies from 4.905 to 6.239

Another three designs contained ordered consecutive H-bonds (Fig 5e). In design 17434, residues 13
and 14 bound to residue 9, and residues 11 and 12 bound to residue 8. These H-bonds held the twisted
backbone tightly to form a short a-helix. In design 3114, three consecutive 7,7 4+ 3/i + 4 turns among
residues 15 and 1-5 shaped another short a-helix. When the 4,7 + 3 turn paired with 4,7 + 2 H-bonds,
there resulted a semi-circular segment as seen in residues 1-7 of design 136805. These H-bond
arrangements may prove valuable as building blocks for future design endeavors.
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Fig 5. Stability analysis of 15-residue designs. (A) Correlation plot between Py, values calculated by Rosetta
simple_cycpep_predict and by our ClusterGen (left). The Pp.q, values of our ClusterGen are also plotted against the
backbone root-mean-square radii (right). (B) Energy landscape comparison for one case in which both methods obtain
high Ppqr values. (C) Energy landscape comparisons for three cases in which the two methods calculate significantly
different Ppeq, values. (D) Top designs with bending backbones. The backbone atoms, prolines (in color purple), and
hydrophobic amino acids (ALA, ILE, LEU, VAL, MET, PHE in color orange) are shown. The backbone turn segments
are enlarged. (E) Top designs with short alpha helices and consecutive 4,7 + 2/i + 3 H-bonds. The designed sequences are
written in one-letter codes, with uppercase for L-amino acids, and lowercase for D-amino acids.
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Energy=-34.4 kcal/mol
Radius=5.599 A

Energy=-36.8 kcal/mol
Radius=4.905 A

Energy=-35.1 kcal/mol
Radius=5.302 A

Large macrocycle 20 residue designs

Energy=-36.9 kcal/mol
Radius=5.465 A

Energy=-34.9 kcal/mol
Radius=5.214 A

We first validated 22 low-energy designs using both Rosetta and ClusterGen to compare the performance
of the two algorithms. The Ppq, value correlation plot is shown in Fig 6a. Notably, all of Rosetta’s
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Fig 6. Stability analysis of 20-residue designs. (A) Correlation plot between Ppy.q, values calculated by Rosetta
and our ClusterGen (left). The ClusterGen’s Pyeq, values are plotted against the backbone root-mean-square radii
(right). (B) Example energy landscape comparison. By selecting the lowest-energy structures (marked by a purple cross)
as the native states, the ClusterGen landscapes were reshaped. (C) Six top designs with minor conformation changes
between their initial target states and the lowest-energy structures. (D) Six low-energy structures (colored in green) that
show major backbone conformation changes from their designed structures (red). These involve formation of a short helix
or a compact bending. The amino acid sequences are written in one-letter codes, with uppercase for L-amino acids, and
lowercase for D-amino acids.
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LowEnergy 68384
Pnear=0.942, Radius=5.935 A

SEnAKdlePiapnYptpKaP

Backbone Radius (4)

LowEnergy 27893
Pnear=0.969, Radius=7.732 A

qSpSDQSPKkNdePLsdeyn

LowEnergy 15036
Pnear=0.962, Radius=5.870 A

YPeasSKddaeDPkarklQs

LowEnergy 12800
Pnear=0.976, Radius=6.260 A

pPrfnNqgIPnSkpdigDLSe

Design 25226

Design 45902
Pnear=0.641, Radius=6.894 A
LowEnergy P=0.966, R=6.438 A

kHkPTkDFKeaqPYssnDAK

Design 1665
Pnear=0.370, Radius=6.440 A
LowEnergy P=0.907, R=5.807 A

aDDAPdasADKtmppKderT

Design 107505
Pnear=0.226, Radius=6.888 A
LowEnergy P=0.901, R=6.262 A

kpNyNpkiISePntnEpErta

Design 83218
Pnear=0.035, Radius=7.185 A
LowEnergy P=0.924, R=6.125 A

DRnkPkdpvYePpnanksYN

Design 74102
Pnear=0.152, Radius=7.589 A
LowEnergy P=0.967, R=6.454 A

akhpNEnTSEAqeprNePAd

Design 25226
Pnear=0.059, Radius=6.916 A
LowEnergy P=0.958, R=5.887 A

kHkPSkDLKeaqPYssnDAK

Pnear values fell below 0.2, while ClusterGen’s Pyeq, values spanned evenly from 0.001 to 0.822. This
was caused by Rosetta’s failure to sample the low-RMSD regions, as can be seen in the round-shaped
energy landscapes in Fig 6b. We then validated 47 more low-energy designs using only ClusterGen. By
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plotting the ClusterGen’s Ppeq, values against backbone root-mean-square radius, we again saw that 484
designs with high Py, values tended to have small radii (Fig 6a). The highest Pneqr value obtained s
was 0.897 with a radius of 6.196 A. 86

As our primary goal was to find stable cyclic peptide structures, rather than to design fixed backbone s
conformations, we also looked at alternative low-energy structures in the energy landscapes of our 488

designs. We reshaped these landscapes by selecting the lowest energy structure sampled as the native 489
state for each designed sequence, and recomputed the backbone RMSD values of all samples from this 0
new native state (Fig 6b). We then calculated the Pyeq, values for these reshaped energy landscapes. s
Note that ClusterGen is not biased towards the initial designed structure, because in each generation, we 4
choose the lowest energy samples to form the next generation. As long as the original energy landscape s
is thoroughly explored, the reshaped landscape will reflect the stability of the new native state. This 404

reshaping yielded 22 low-energy structures with Pneqr > 0.9. From these, we selected the 11 with 495
energies below —65 kcal/mol, as well as the top design 35869 that has an original Ppqr = 0.897 before s
reshaping; these are presented in Fig 6¢,d. The 22 high Ppq, structures and the design 35869 are a07
uploaded to GitHub, and their amino acid sequences are listed in S2 Table. 498

Design 35869 had a hydrophobic core (residues 7-11) that formed four backbone H-bonds with the 499
surrounding residues, imparting rigidity. Among the selected low-energy structures, five exhibited local  sow
conformational deviations from their initially-designed configurations, so we depict only their low-energy so
conformations in Fig 6¢. Notably, structure 80837 demonstrated a quasi-cyclic (C2) symmetry within its  se
backbone, an intriguing feature considering the sequence’s inherent asymmetry. This structure formed  sos
three ,7 + 3 backbone turns across residues 11-16 and 3-5, with an H-bond between residues 4 and 14 5o
consolidating a hydrophobic core. Structure 68384 had the most backbone turns, five 7,7 + 3 H-bonds 505
highlighted in Fig 6c¢, resulting in a twisted structure with a small backbone radius. In structure 15036, a  sos

310-helix was present in residues 13-16, accompanied by two 7,7 + 3 turns. 507

The remaining six low-energy structures displayed considerable conformational shifts from their 508
originally designed configurations, as illustrated in Fig 6d. In structure 45902, a half-turn helix emerged, sow
enhancing the stability of the loose backbone end. Structure 83218 underwent a transformation that 510

introduced a complete helical turn, significantly decreasing the backbone radius from 7.185 A to 6.125 A, su
with a corresponding Ppeq value increase from 0.035 to 0.924. The other four structures formed dense s
H-bonding that lead to compactness. Specifically, the consecutive H-bonds between residues 3-7 and 513
19-20 in structure 1665 pulled the backbone segments closer. In structure 74102, an H-bond network 514
among residues 1 to 3 facilitated a 90-degree turn, effectively altering the backbone from a flat to a more s
globular shape. Structures 107505 and 25226 each introduced a single long-range H-bond between 516
residues 8 and 14, and residues 7 and 16, respectively, drawing the loose backbone ends together. 517

These top structures all had nicely packed hydrophobic cores made of 1-5 residues (S8 Fig). The 518
number of proline residues varied from 2 to 5, and they were scattered around the peptide surfaces to 519
enhance structural rigidity. Low-energy structure 68384 had the highest count of both hydrophobic and  s»

proline residues, harboring five of each. 521
Large macrocycle 24 residue designs 522

We validated the top 11 designs using both Rosetta and our ClusterGen. Rosetta’s failure to 523
thoroughly explore the energy landscapes resulted in near-zero Pyeq, values (Fig 7a). We then validated s
71 more designs using ClusterGen, and the highest Ppyq, value obtained is 0.896 from design 31759, 525

with a backbone radius of 7.408 A. Designs 19384 and 21698 also have high Py, values of 0.790 and 526
0.786. To expand our search for stable structures, we reshaped the energy landscapes by selecting the 527
lowest-energy samples as the native states and recomputing RMSDs (e.g., Fig 7b). There were 14 528
low-energy structures achieving Pyeqr > 0.9, of which 10 had energies below —75 kcal/mol, including the s
one for design 31759. We show these 10 structures, as well as the low-energy structures 19384 and 21698 s
in Fig 7c,d. The 14 high Ppncq, structures and the low-energy 19384 and 21698 are uploaded to GitHub, sx

and their sequences are listed in S2 Table. 532
Similar to the 20-residue designs, half of these 24-residue designs had only local conformational 533
changes in their low-energy structures (Fig 7c¢). Structure 21698 showed a diverse array of secondary 534
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Fig 7. Stability analysis of 24-residue designs. (A) Correlation plot between Py, values calculated by Rosetta
and ClusterGen (left). The ClusterGen’s Pyeqr values are plotted against the backbone root-mean-square radii (right).
(B) Example energy landscape comparison. By selecting the lowest energy structures (marked by a purple cross) as the
native states, the ClusterGen landscapes were reshaped. (C) Six top designs with minor conformation changes in their
low energy structures. (D) Six low energy structures (colored in green) that show major backbone conformation changes
from their designed structures (red). The amino acid sequences are written in one-letter codes, with uppercase for
L-amino acids, and lowercase for D-amino acids.
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(b)

Design 10052

Design 18496
Pnear=0.017, Radius=8.364 A
LowEnergy P=0.940, R=6.716 A

TNlaqARttdiykpPTrpSaDQEk

Design 759
Pnear=0.329, Radius=7.069 A
LowEnergy P=0.972, R=6.728 A

KddlkNitepLnPiYSNgaAknaE

Design 16647
Pnear=0.371, Radius=7.382 A
LowEnergy P=0.902, R=7.180 A
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Design 20199
Pnear=0.007, Radius=8.200 A
LowEnergy P=0.973, R=6.709 A

pReqtYedvTTSepEkPkaaTslk

Design 10052
Pnear=0.503, Radius=6.617 A
LowEnergy P=0.984, R=6.096 A

SeAptaaApPiELstDATNaNdkn

Design 32190
Pnear=0.072, Radius=7.677 A
LowEnergy P=0.915, R=6.756 A

PDKdaPntepheyepkPnAyeeAk

structures: a 319-helix in residues 21-23; an isolated S-bridge between residues 4 and 8 with an
intermediate backbone turn across residues 5-7; and another S-bridge between residues 15 and 19,
enclosing a central backbone turn. The two backbone turn regions were parallel, connected by two
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H-bonds, forming a layered configuration. Structure 19384 featured two 31¢p-helices in residues 3-5 and
9-11. In structure 15225, a -ladder linked residues 6-7 and 13-15, and consecutive backbone turns
formed in residues 20-23. Structure 37605 stood out by forming the highest number of backbone
H-bonds (17 in total). Moreover, it had a S-ladder between residues 12-14 and 17-19, combined with an
isolated S-bridge between residues 4 and 13. Also, a 31g-helix formed in residues 21-23.

For designs undergoing major conformational shifts from their designed configurations to their
low-energy configurations, there were notable decreases in their backbone radii (Fig 7d). The largest
radius reductions, approximately 1.5 A, occured in structures 18496 and 20199. These two low-energy
structures adopted shapes resembling a “palm” with three “fingers”. The left two “fingers” are held close
to each other by an inter-“finger” H-bond between residues 2 and 8 in structure 18496, and residues 2
and 7 in structure 20199. Other designs exhibited more modest decreases in their backbone radii, less
than 1 A. In structures 759, 10052, and 32190, the formation of long-range H-bonds played a crucial role
in bridging distant segments, enhancing the structural coherence and stability. Structure 16647 had a
310-helix forming in the less structured region of residues 2-4.

The top 24-residue structures had a greater proportion of hydrophobic amino acids than the
20-residue ones, featuring between 3 to 8 hydrophobic residues (S9 Fig): in this size range, folds with
true hydrophobic cores like those of natural proteins begin to emerge. The number of proline residues
remained at the same level of 2-5.

Molecular Dynamics results for top designs

We conducted 1-ps molecular dynamics (MD) simulations on the top designs of 15 residues (Fig 5), 20
residues (Fig 6), and 24 residues (Fig 7), with a timestep of 2 fs. The backbone C,-atom RMSD was
measured every 10 ps, comparing the trajectory frame to the initial designed structure. Among the 30
trajectories analyzed, 9 exhibited relatively low RMSDs, indicating kinetic stability. These 9 RMSD
trajectories are displayed in Fig 8a and S10 Fig, and the rest are shown in S11 Fig.

The 15-residue design 169032 displayed the most stable trajectory, maintaining an RMSD below 2 A
for the majority of the simulation. Its highest RMSD was 3.51 A, yet it retained a globally similar shape
to the original design. Trajectory 17434 has its RMSD rise to ~3 A after 400 ns, adopting an enlongated
conformation. Trajectory 136805 showed oscillating RMSD values between 0.27 and 5.24 A, with
frequent shifts to a slender conformation marked by a bent backbone.

For 20 residues, RMSDs generally fluctuated around the 2-4 A level. Trajectory 27893 had the
smallest fluctuation, and constantly shifted between an open and a compact shape. Trajectory 68384
started to fluctuate after 400 ns. Its low-RMSD states preserved structures closely resembling the
original designs, while high-RMSD states had more expanded conformations.

For 24 residues, RMSDs stayed around 4 A. Trajectory 21698 showed large RMSD oscillations within
the first 200 ns. Trajectory 19384, similarly, underwent early RMSD fluctuations but levelled off at
approximately 4 A for the rest of the simulation. Trajectory 20199 had small oscillations for most of the
time except a spike in RMSD at ~900 ns.

Overall, designs 169032 and 27893 exhibited the most kinetically stable trajectories, showing minor
RMSD fluctuations. The remaining designs experienced larger RMSD variations, yet they frequently
reverted to the designed structures. To explore the energy landscapes and assess the thermodynamic

stability of these designs, we proceeded with replica exchange molecular dynamics (REMD) simulations.

Replica Exchange Molecular Dynamics results for stable trajectories

In addition to the nine designs with stable MD trajectories (Fig 8a), we conducted replica exchange
molecular dynamics (REMD) simulations on three PDB crystal structures (8-residue PDB 6ucx,
10-resdiue PDB 6uf7, and 12-residue PDB 6uf8) from a prior study [25] as our positive control group. As
negative controls, we selected one structure from each size of 8, 10, 12, 15, 20, and 24 residues, randomly
permuted its amino acid sequences, and refined its side-chains using Rosetta’s FastRelax Cartesian
relaxation protocol (S9 Appendix). These control groups provided a basis for evaluating our designs’
REMD outcomes.
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Fig 8. Molecular dynamics simulation results of top designs. (A) Backbone C,-atom RMSDs are calculated
between the MD trajectory frames and our designed structures. Snapshots are shown for selected time points (designed
structures in red, trajectory frames in blue). (B) REMD free energy surfaces. From the lowest free energy basins (marked
by green boundaries), representative structures (colored in blue) are extracted from the histogram bins and aligned
against our designed structures (red), with the population percentages in the minima labeled aside. The designed
sequences are listed on the side.
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We verified the convergence of the REMD simulations by examining physical properties like
temperature and radius of gyration. Details and associated plots are provided in S10 Appendix and S12
Fig-S15 Fig. Subsequently, we calculated the average RMSDs of C,-atoms for uncorrelated
configurations sampled at 300 K against the original designs, as documented in Table 1.

Both our positive and negative control groups showed noticeable increases in the average RMSDs as
the size grew. For smaller macrocycles (around 15 residues), an RMSD around 2 A indicates a very
strong candidate, around 3 A is good, 4 A is weak, and greater than 5 A is poor, with a greater
allowance for larger sizes. Consequently, our 15-residue Design 169032, with an RMSD of just 2.21 A,
stood out as a highly promising candidate. Similarly, the other two 15-residue designs 17434 and 136805,
plus the 20-residue LowEnergy 68384, and the 24-residue LowEnergy 20199, each with an average RMSD
of approximately 3 A, were also favorable. The remaining high-RMSD designs are considered to have
failed the REMD validation (Table 1).

The free energy surfaces (FES) for these five low-RMSD candidates are shown in Fig 8b. As expected,
Design 169032 had energy minima in low-RMSD regions. Its lowest energy minimum FE,,;, was located
at 2.04 A RMSD. An 18.08% population of the 300 K configurations fell in this energy basin (energy
minimum bin and adjacent bins with free energies < 0.9 % E,,,;,,). The second lowest energy basin, at an
RMSD of 0.71 A, accounted for 7.22% of the population. We aligned representative structures from these
energy basins (one per bin) with the designed structure, and noted minor deviations in the two proline
backbone ends (residues 4 and 11).

Design 17434 had more scattered energy basins, one below 2 A with 10.42% population, and the
structures maintained the global conformation of the design. The other basin located at almost 4 A with
5.87% population, and had more elongated conformations, as was seen in its MD trajectory.

Design 136805 exhibited a “heart-like” configuration, with the backbone curling in the middle. Its
free energy surface featured a deep concentrated energy basin at 2.49 A RMSD, accounting for 8.18% of
the population. Structures from this energy basin aligned well with our design, showing deviations
mainly in the curl region of the backbone (residues 14 and 15). Nearby, the second-lowest energy
minimum was found at 2.71 A RMSD, presenting a broader basin that encompassed 13.13% of the
population. Structures from this basin were more variable, with main differences in the right half of the
“heart” (residues 1-6).

Table 1. Computational validation of top designs using REMD simulations. For each simulation, the average
RMSD is computed for backbone C,, atoms using uncorrelated configurations sampled at temperature state 300 K. As a
negative control, average RMSDs are also computed for randomly permuted sequences of each size. By comparing the free
energy surfaces of the designed structures with those starting from alternative conformations, the validation results are
categorized into computationally validated (the design state is reached in REMD simulations from different starting states),
computationally suggestive (the design state is preserved in REMD simulations if started in the design state), and failed (the
design state is not preserved in REMD simulations).

n Design name Rllt/;/Se]r)a%eA) Rfli/?g]?)o(rfl&) Computational validation
8 PDB 6ucx 0.48 2.23 Computationally suggestive
10 PDB 6uf7 1.31 2.92 Computationally suggestive
12 PDB 6uf8 2.77 3.01 Computationally suggestive
15 Design 169032 2.21 4.49 Computationally validated
15 Design 17434 2.92 Computationally suggestive
15 Design 136805 3.24 Computationally validated
20 LowEnergy 68384 3.14 5.17 Computationally validated
20 LowEnergy 27893 4.10 Failed

20 LowEnergy 1665 4.12 Failed

24 LowEnergy 20199 3.28 Computationally suggestive
24 LowEnergy 21698 4.04 6.64 Failed

24 LowEnergy 19384 5.10 Failed
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LowEnergy 68384 displayed a “star-like” conformation with five arms, and its free energy surface 616
exhibited a diagonal distribution. The two energy minima were situated in the lower left region, 617
featuring compact structures akin to the original design. The structural deviations mainly occurred in s
two arms (residues 11-13 and residues 19-20+1-4). 619

LowEnergy 20199 had a single deep energy minimum at RMSD 2.5 A, occupying 22.02% of the 620
population. The structures aligned closely with the design, making this design also promising. 621

For other designs with high average RMSDs, their free energy surfaces generally showed minima in e
regions of high RMSD, as depicted in S16 Fig and S17 Fig. Regarding the randomly-permuted sequences e

included as negative controls, there were notable changes in the FES compared to the designed 624
sequences. In particular, the randomly-permuted version of the 8-residue 6ucx displayed multiple energy o
minima in its FES, while the FES of the unperturbed sequence showed a single minimum. The 626
randomly-permuted 24-residue 21698 had its energy basins located at much higher RMSD regions, 627
indicating that the original designed backbone was incompatible for the randomized sequence. This 628
suggests the importance of sequence design in maintaining a thermodynamically stable fold. 629

To further validate that our REMD simulations thoroughly sampled the energy landscapes, we 630
repeated the same protocol for all nine designs and the three PDB control structures, starting from 631

“wrong” backbone conformations. Specifically, from the Py, landscapes generated by our ClusterGen, 3
we picked alternative backbones with low energies but high RMSDs for the designed sequences. If the 633
FES from these “wrong” starting points resemble the original FES, i.e., sampling similar energy minima s

distributions, it would suggest that our sampling is sufficient and not biased by the starting 635
conformation. A design that has low average RMSD and convergent new FES is said to be 636
computationally validated (Table 1). 637

The comparative results are displayed in S16 Fig and S17 Fig. Notably, for Design 169032, the new 3
FES was almost identical to the original one, further confirming its strong stability and supporting 639
near-exhaustive sampling. Among the other four top candidates, the 15-residue Design 136805 and the e«
20-residue LowEnergy 68384 also show a similar new FES compared with the original. Hence, we list 641
these three designs as computationally validated in Table 1. 642

Interestingly, for the experimentally solved structures 8-mer 6ucx, 10-mer 6uf7, and 12-mer 6uf8, the o3
new FES from the alternative starting structures did not converge well to the original ones, unable to 644
reach the native states. This suggests that designs with non-convergent FES are not necessarily unstable s
but rather in an ambiguous state where the computational validation could not draw a definitive 646
conclusion. A possible reason might be deep kinetic traps that hinder exploration of the conformation e
space. We see such non-convergent cases in our 15-residue Design 17434 and 24-residue 20199. We label e

them as computationally suggestive (Table 1). 649
Structure predictions for existing macrocycles found in the Protein Data 650
Bank 651
Finally, we assessed whether ClusterGen could effectively navigate the rugged energy landscapes and 652
identify the lowest energy minima. For 20 existing macrocycles of 7-24 residues without cross-links, 653
whose experimentally-determined structures were previously deposited in the PDB, we applied 654

ClusterGen to generate energy landscapes, using only the amino acid sequences as input (S18 Fig). From s
each landscape, we then selected the five lowest-energy cluster centers as our structural predictions. The s
best predictions are displayed in Fig 9, and the remaining in S19 Fig. 657

For seven PDB-deposited structures of lengths 7-10 residues taken from Hosseinzadeh et al.’s 2017 658
Rosetta design paper [13] (labeled in blue in Fig 9), our lowest-energy predictions achieved RMSDs of 650
between 0.277 and 1.083 A to the experimentally-determined structure. Ten additional PDB-deposited e
structures of lengths 8-24 were from Mulligan et al.’s Rosetta symmetric design paper [25] (labeled in 661
black in Fig 9). Unlike the original study, which imposed an assumption of internal symmetry during 662
Rosetta structure prediction steps to make Py, landscape generation tractable, we considered all 663
possible conformations without any assumptions, which drastically increased the conformational space s
and hence the sampling difficulty. Nevertheless, our method still yielded good predictions, having seven s
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Fig 9. Structure predictions for macrocycles previously deposited in the PDB. The best predictions (green)
from the low-energy cluster centers are aligned to the PDB structures (orange), with RMSDs shown. PDB structures
from the 2017 [13] and 2020 [25] Rosetta design papers are labeled in blue and black, respectively, and all others in pink.
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out of ten predicted structures within 1.5 A RMSD. Even for the 24-mer 6uf9, our prediction maintained s
1.559 A RMSD from the crystal structure, and although many of the higher-energy samples returned were o7
asymmetric, the S4 internal symmetry was nicely preserved in the lowest-energy sample. The sole outlier, oss
the 10-mer 6ufu, had an RMSD of 2.331 A due to the inherent instability of the designed structure, 669
which was confirmed by the presence of two distinct forms in X-ray crystallography experiments. 670

Besides the Rosetta designed structures, we found three other PDB-deposited macrocycles satisfying  on
our length and no cross-link requirement: 6awm, a 7-mer orbitide (a class of macrocyclic peptides made o
by plants); 2ns4, a 14-mer peptidomimetic inhibitor featuring short beta sheets and a long loop; and 673
6dzb, a 16-mer beta sheet structure mimicking an RNA recognition motif. Predictions for these 674
structures were less accurate compared to similarly sized structures. Upon close examination, we found s
all three were derived from NMR, experiments and exhibit a high degree of conformational heterogeneity, e
compared to other NMR structures for Rosetta designs. Conformational heterogeneity in NMR 677
structures can be due both to flexibility of the peptide itself, or due to limited NMR structural 678
constraints leading to high uncertainty. The observed heterogeneity is particularly evident in the loop
regions of 2ns4 and 6dzb, which might be disorganized and floppy. When aligning only the structured o
beta sheet regions (residues 5-12) in 6dzb, our prediction achieved a significantly lower RMSD of 0.480 A

Note that as most PDB experimental structures used here contain D-amino acids, and two of the 682
remaining three structures (2ns4 and 6dzb) are in the training dataset for Machine Learning-based 683
methods [17], we could not conduct a meaningful prediction comparison with ML methods. 684
Discussion oss

In this work, we have introduced a pipeline, called CyclicChamp, for cyclic peptide design (Fig 1). 686
Many past works have used a single-shot generalized kinematic closure (GenKIC) algorithm to sample  es
closed macrocycle conformations [5,6,13,21,25,26,40,41]. Unfortunately, the GenKIC technique limits s
the size of macrocycle for which the conformation space may be extensively explored, either for design or s
for validation. 690

By contrast, CyclicChamp performs an iterative search of cyclic backbones with favorable features  6n
like strong H-bonds and no steric clashes. Because this produces more viable backbone conformations in e
less time, CyclicChamp is able to design small macrocycles at lower computational cost, and for the first o
time, access sizes as large as 24 residues without relying on symmetry or chemical cross-links to limit the o
accessible conformational space. The basic insight is to transform the cyclic backbone constraint into an s
error function to allow the use of optimization methods like simulated annealing and genetic algorithms. s
The optimal simulated annealing parameters were selected from well-spaced random samples of possible o
parameter value combinations, obtained using combinatorial design [33]. While we have assumed ideal o0
bond angles, bond lengths, and w torsion angles to simplify the evaluation of the cyclic error function 699
(Fig 1), generalizations that allow these degrees of freedom to deviate slightly from ideal values during 70
the backbone simulated annealing time steps are possible. 701

Using these algorithmic ideas, we have generated macrocycles of four sizes. For 7-residue designs, we 70
conducted a comprehensive search of Ramachandran spaces by considering all possible torsion bin center 70
combinations for initial backbone torsion angles. Because the number of torsion bin combinations grows 7o

exponentially, for larger designs of 15-24 residues, we randomly selected 100,000 initial combinations. 705
Large pools of backbone candidates with distinct torsion bin strings were generated for 15 and 20 706
residues (Fig 2). 707

The sparse clusters found in the 7-residue design were due to the limited torsion bin strings. For 24 s
residues, while the accessible conformational space exponentially expands with the number of backbone 70
degrees of freedom, only a tiny portion of the conformation space represents backbones with favorable 70
features (e.g. hydrogen bonds) that could be stabilized by suitable choice of sequence. As a result, our m
backbone simulated annealing algorithm reached its limit. Because the search space grows exponentially,
and because solving even simpler discrete version of such problem is NP-complete [42], there is no known 73
efficient means of sampling conformations across all sizes, though better heuristic methods like ours can 74
increase the maximum size of peptide that can tractably be sampled and designed. Future studies might s
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experiment with alternative energy models or consider less stringent requirements for cyclic error and 716
repulsive energy when selecting backbone candidates to try to push this limit higher. 77

After the relaxation and design steps were applied on the clustered backbones, we conducted stability s
tests on the designs having the lowest energies. For 7-residue designs, both Rosetta’s random sampling 79
method and our Ramachandran-stability filtering method were employed to generate energy landscapes. o
A positive correlation was found to exist between the Py, values computed by the two methods. We — m

observed instances in which the filtering method explored the low-RMSD regions in the energy 722
landscapes more thoroughly than the random sampling method. 723
We noted that the optimal energy range for high Py, values did not always correspond to the 724

lowest energy levels (Fig 3). Rosetta’s sequence design considers only the desired conformation that one s
is stabilizing, in order to make the problem tractable; however, the true problem that one wishes to solve 7
is that of maximizing the energy gap between the desired conformation and all alternative conformations. 7
The lack of correlation between the best Pyeqr values and the lowest single-state energies could be that 7

Rosetta has artificial ways of lowering the energy of the designed state, such as adding hydrophobic 729
groups, which tend to stabilize all structures universally instead of uniquely stabilizing the designed 730
structure and maximizing the energy gap between this and alternative states. 731

The Ramachandran-stability filtering approach can extend to design cyclic peptides with constrained 73
but not fully specified sequences. For instance, to design a stable 7-residue cyclic peptide with alanine 7
residues as the first and fifth amino acids, from the backbone candidate pool sampled by layered 734
simulated annealing, we can identify backbones whose first and fifth residues’ torsion angles fall in the s
Ramachandran space accessible to alanine. This approach allows us to reuse existing pools of backbone 7

candidates. 737

Starting from 15 residues, Rosetta’s method tended to struggle with exploring the low-RMSD regions, 73
and often generated similar round-shaped energy landscapes (Fig 5). To resolve this issue, our 739
ClusterGen algorithm begins with two simulated annealing runs targeting low energy and low RMSD, 7o
effectively broadening the RMSD spectrum of the landscape. The subsequent genetic algorithm identifies 7a1
energy minima through iterations of crossover, mutation, and selection. ClusterGen has successfully 742
differentiated designs of various energy landscape shapes (Fig 5). 743

In the top 15-residue designs, we observed short alpha helices as depicted in Fig 5. Recurring 744

backbone bendings were induced by i, ¢ 4+ 3 H-bonds, which led to more twisted shapes compared to the s
simple circular backbones seen in 7-residue designs. In the top 20- and 24-residue designs, we saw more s
diverse secondary structures such as 31p-helices, S-bridges, and f-ladders (Fig 6, Fig 7). Although 747
complete a-helices or B-sheets are not fully formed, fragments of these structures start appearing, aiding s
in the stabilization of these mid-sized peptides. Long-range H-bonds also play a crucial role in stabilizing 7o

the 20 and 24 residue macrocycles. 750

Additionally, for 15-24 residues, we see an enrichment of high Py, values in compact structures 751
(Fig 5, Fig 6, Fig 7). This suggests that simply sorting the designs in ascending order of energies may 750
not be the most effective strategy to identify top designs for stability validation. A more nuanced 753
approach could be to select designs that feature secondary structures or long-range H-bonds and have 74
backbone radii below a specific threshold, and then to sort them by energy. 755

We have found close backbone matches in our 7-residue designs to the three previously-published, 756
experimentally-solved Rosetta designs (Fig 4). For 15, 20, and 24 residues, we conducted MD and 757
REMD simulations to evaluate the kinetic and thermodynamic stability of our top designs (Fig 8). 758

Specifically, the 15-residue Design 169032 demonstrated exceptional stability, with free energy minima  7so
around the 2 A RMSD region, and the representative structures closely aligning with the design. Two 0

other 15-residue designs 17434 and 136805, plus a 20-residue LowEnergy 68384 and a 24-residue 761
LowEnergy 20199 also managed to preserve their overall shapes throughout the simulation, despite some 7
local conformational movements. Further REMD validations starting from alternative conformations 763
confirmed that Design 169032, 136805, and 68384 had sufficient sampling of FES, as similar low energy .
basins were found, and we thus considered them as computationally validated designs. 765

Our ClusterGen’s accurate structural predictions of experimentally determined macrocycles (Fig 9), s
especially for the symmetric 24-mer, demonstrate ClusterGen’s ability to overcome the high 767
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low-energy native states. This suggests that Ppeq, stability analysis using CluterGen is an effective

method for validating designs. Moreover, we provide a new tool for handling general large-sized

macrocycle structure prediction, compared to ML-based methods which could only predict sequences
with canonical L-amino acids, and Rosetta’s simple_cycpep_predict which fails to reach low-energy

native states beyond 15 residues unless structural constraints are assumed.
To the best of our knowledge, this work represents the first instance of general, unconstrained design

of 15-, 20-, and 24-residue mixed chirality macrocycles, without relying on limitation of degrees of

freedom through the use of symmetry, disulfides, or other cross-links. The capability to design such large

sizes not only enhances the structural diversity of cyclic peptides for future drug search, but also allows

larger interaction surfaces for drug binding. Moreover, this opens a door to the design of cyclic-peptide

enzymes, which require larger sizes to form active site pockets and may incorporate exotic chemical
groups with active-site residues for catalysis.
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