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Abstract

Rational computational design is crucial to the pursuit of novel drugs and therapeutic agents. Meso-scale
cyclic peptides, which consist of 7-40 amino acid residues, are of particular interest due to their
conformational rigidity, binding specificity, degradation resistance, and potential cell permeability.
Because there are few natural cyclic peptides, de novo design involving non-canonical amino acids is a
potentially useful goal. Here, we develop an efficient pipeline (CyclicChamp) for cyclic peptide design.
After converting the cyclic constraint into an error function, we employ a variant of simulated annealing
to search for low-energy peptide backbones while maintaining peptide closure. Compared to the previous
random sampling approach, which was capable of sampling conformations of cyclic peptides of up to 14
residues, our method both greatly accelerates the computation speed for sampling conformations of small
macrocycles (ca. 7 residues), and addresses the high-dimensionality challenge that large macrocycle
designs often encounter. As a result, CyclicChamp makes conformational sampling tractable for 15- to
24-residue cyclic peptides, thus permitting the design of macrocycles in this size range.
Microsecond-length molecular dynamics simulations on the resulting 15, 20, and 24 amino acid cyclic
designs identify designs with kinetic stability. To test their thermodynamic stability, we perform
additional replica exchange molecular dynamics simulations and generate free energy surfaces. Three
15-residue designs, one 20-residue and one 24-residue design emerge as promising candidates.

Author summary

Cyclic peptides are circular chains of amino acid residues that are promising candidates for new
therapeutic drugs. Current FDA approved cyclic peptide-based drugs are mostly derived from natural
sources. However, recent work has enabled the computational design of new cyclic peptide drugs.
Current de novo computational design methods can handle sizes of 7 to 13 residues without
conformational constraints. As size increases, the exponentially growing conformational space makes
conformational sampling intractable. The literature’s prevalent approach of random sampling finds poor
configurations, with the result that the success rate of finding a stable design is very low. Here, we
develop an efficient search algorithm by combining tailored optimization algorithms with established
energy models. Our heuristic design pipeline, CyclicChamp, produces stable cyclic peptide designs of 7,
15, 20, and 24 amino acids as validated by algorithmically-independent molecular dynamics simulations.
This pipeline not only expands the structural variety for future drug development, but also paves the
way for potential cyclic peptide-based enzyme design.

Introduction 1

Cyclic peptides are chains of fewer than 40 amino acid residues forming one or more closed loops. One 2

common class of cyclic peptides consists of a single loop, with the N- and C-termini connected by an 3
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amide bond. In general, mid-sized cyclic peptides stand out for their superior binding affinity and 4

selectivity compared to small molecules [1, 2]. Their still modest size reduces the likelihood of provoking 5

an immune response and enhances the ability to traverse cellular barriers compared to large protein 6

therapeutics [3]. Further, their characteristic cyclization imposes conformational constraints, leading to 7

structures that are more rigid compared to their linear counterparts [4]. This rigidity reduces the 8

entropic cost associated with ordering a disordered molecule on binding to its intended target, enhancing 9

target affinity [5]; it also prevents adoption of alternative conformations in which the peptide may bind 10

to off-target proteins, thus enhancing specificity [6]. In addition, the connection of the N- and C-termini 11

makes cyclic peptides more resistant to protease degradation than linear peptides. The incorporation of 12

non-canonical or D-amino acids can further reduce immunogenicity and enhance degradation 13

resistance [3]. 14

Thanks to these benefits, cyclic peptide-based therapeutics have garnered significant interest over the 15

past two decades. Currently, over 40 such drugs are used for various applications, including as 16

antibacterial (daptomycin), antifungal (caspofungin), and immunosuppressant (cyclosporine A) agents. 17

Notably, more than 80% of these drugs originate from natural sources or are their derivatives, and very 18

few contain non-canonical or D-amino acids [7]. To expand the diversity of such drugs, it is of great 19

benefit to design cyclic peptides de novo. 20

The current state-of-the-art protein computational design approaches are (i) machine learning (ML) 21

driven methods, such as those that employ deep neural networks like AlphaFold, RoseTTAFold, 22

RFdiffusion, and ProteinMPNN [8–12], and (ii) physics-based methods, such as those implemented in 23

the Rosetta, Osprey, and Schrödinger software packages [13–15]. Recently, diffusion-based ML methods 24

have achieved progress on cyclic peptide prediction and design. By encoding the cyclic backbone 25

constraint into their amino acid relative position matrix, AfCycDesign uses the underlying AlphaFold 26

model to predict and design cyclic peptides of 7-13 residues without cross-links; the authors of this 27

method have reported experimental validation of one design for each of these sizes (in preprint [16]). 28

HighFold further modifies the cyclic position matrix to predict macrocycles with disulfide bonds, and 29

published predictions for existing PDB structures of 12-39 residues obtain RMSDs of 0.4-4.5 Å [17]. 30

RFpeptides employs the RFdiffusion model to generate cyclic backbones, and then uses the 31

ProteinMPNN model to design sequences, providing the additional functionality of designing protein 32

binders; however, this model does not currently support disulphides or other cross-links. The RFpeptides 33

developers report binders of lengths 13-16 residues that have been validated experimentally, with KD 34

values varying from 6 nM to 10 µM (in preprint [18]). 35

A major limitation of such ML-based approaches is that the neural network and diffusion model 36

training dataset consisted only of canonical L-amino acids. This renders them incapable of predicting and 37

designing cyclic peptides composed of mixed L- and D-amino acids, or of integrating non-canonical amino 38

acids. Given the paucity of training data for heterochiral or non-canonical peptides, no existing pure ML 39

approach is likely to prove effective at designing mixed-chirality or non-canonical cyclic peptides de 40

novo [19]. Because D-amino acids are the mirror images of L-amino acids, an L-amino acid accesses only 41

one half of the conformational space. This means that when designing an n-residue peptide, ML-based 42

methods are constrained to 1/2n of the potential conformational space compared to physics-based mixed 43

chirality design. The utility of ML tools for ranking designs to prioritize experiments is also finite: while 44

tools like AlphaFold provide confidence scores for their predictions and designs, this score can be 45

influenced both by the quality of the design and its resemblance to the model’s training data. 46

Further, ML models generally lack the ability to comprehensively sample the peptide’s energy 47

landscape, while physics-based approaches can. When designing a stable peptide, it is more important 48

that the native state has a large energy gap from the other energy minima, rather than having just low 49

energy. Hence, it is vital to have the entire energy landscape for selecting best designs for experiments. 50

Physics-based approaches, which could be better generalized to new chemical building-blocks and new 51

backbone geometries never seen before, are therefore more attractive for heterochiral and non-canonical 52

design. In Rosetta, cyclic backbone conformations are typically sampled using a generalized kinematic 53

closure algorithm (GenKIC) [20,21]. For an n-residue backbone, torsion angles of n− 3 residues are 54

sampled randomly, biased by the conformational preferences of the residues, and torsion angles of the 55
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remaining 3 residues are solved algebraically to ensure cyclicity. The sampled cyclic backbones are 56

relaxed using energy models that take into account atom pair interactions and torsion angle 57

preferences [22]. Next, Rosetta employs a Monte Carlo simulated annealing algorithm to design an 58

optimal sequence for the relaxed backbones, considering both L- and D-amino acids [23,24]. 59

This approach has been proven effective in achieving comprehensive sampling of macrocycles ranging 60

from 7 to 10 residues [13]. However, as the peptide size grows, the size of the conformational search 61

space expands exponentially, greatly reducing the likelihood of identifying a stable backbone design 62

through random sampling. Past strategies for dealing with larger peptides have included adding disulfide 63

cross-links to further limit the accessible conformational space (used previously for cyclic peptides of 64

11-26 residues [13,21]), limiting conformational searches to symmetric conformations (permitting 65

conformational sampling up to 24 residues [25]), or combining chemical cross-links with symmetric 66

sampling and secondary structure biases (which allowed design of a cyclic 60-mer [26]). In each case, 67

sampling of larger structures has been achieved by reducing the generality of the method, and by 68

imposing more prior expectations of the features present in structures of interest. 69

In this work, we aimed to overcome the current size limit of general cyclic peptide design, reaching a 70

size of 24 residues with mixed chirality. No additional cross-links or expectations about symmetry or 71

secondary structure needed to be imposed. Our design pipeline, CyclicChamp, consists of (i) sampling 72

“good” cyclic backbones, (ii) optimizing amino acid sequences to align with the backbones, and (iii) 73

validating folded structures of the sequences. Specifically, we focused on steps (i) and (iii), and we 74

followed Rosetta’s physics-based approach for our design pursuits. Note that the two approaches by 75

Rosetta and AlphaFold are not mutually exclusive [27], and CyclicChamp could be used for backbone 76

conformational sampling in conjunction with any physics- or ML-based method that can carry out 77

sequence design. 78

We have designed cyclic peptides of 7, 15, 20, and 24 residues. For 7 residues, our CyclicChamp 79

yielded high-quality stable designs similar to those designed and experimentally validated by 80

Hosseinzadeh et al. [13]. For 15-24 residues, we validated designs through the use of microsecond 81

molecular dynamics (MD) simulations, an algorithmically independent validation approach. These MD 82

simulations generated stable trajectories that indicated promising designs, which were further tested by 83

replica exchange molecular dynamics (REMD) simulations. Three 15-residue, one 20-residue, and one 84

24-residue designs exhibited thermodynamic stability in REMD simulations, marking them as candidates 85

for future experimental exploration. 86

As an extra test for our step (iii) of validating folded structures, we have performed structure 87

predictions for 20 PDB structures of 7-24 residues without cross-links, and achieved an average of 1.2 Å 88

RMSD. Importantly, our method is a general one that has permitted us to design large peptide folds that 89

are not dependent on disulfide bonds or other chemical cross-links, predefined symmetry, or 90

human-imposed secondary structure. 91

Materials and methods 92

The overall CyclicChamp design workflow is as follows (Fig 1a): 93

1. We generate a pool of n-residue polyglycine chains, whose initial torsion angles are sampled from a 94

permissive, flattened glycine Ramachandran distribution (which permits conformations accessible 95

to both L- and D-amino acids to be sampled). 96

2. For each chain, a variant of simulated annealing is performed to search for low-energy 97

configurations that satisfy the cyclic and hydrogen bond (H-bond) constraints. 98

3. We select representative low-energy configurations for relaxation and sequence design using 99

Rosetta’s FastRelax [28] and FastDesign [21,29], respectively. 100

4. Low-energy sequences are tested for stability by generating energy landscapes. 101
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Fig 1. CyclicChamp workflow and peptide backbone annotations. (A) There are four steps in CyclicChamp for
designing stable cyclic peptides. (B) Ideal backbone bond lengths and bond angles are assumed in CyclicChamp. For
backbone closure, we consider local coordinate systems at each atom i. There are three steps transforming from
coordinate system i to i+ 1.
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In the following subsections, we first derive an error function Ecyc for the cyclic backbone constraint 102

(Cyclic error function), and provide relevant energy functions for later backbone sampling (Backbone 103

energy functions). Second, we describe our layered simulated annealing algorithm for low-energy cyclic 104

backbone sampling (Efficient backbone sampling). Finally, we show the two stability analysis methods 105

developed for cyclic peptides of different sizes (Stability analysis for small macrocycles and Stability 106

analysis for large macrocycles). 107

Cyclic error function 108

When tackling the backbone closure problem, we consider only the N, Cα, and C′ atoms in each residue. 109

A peptide backbone structure is determined by its bond lengths, bond angles, and torsion angles. Bond 110

lengths are the most rigid [30], and are often treated as fixed values as shown in Fig 1b: bond N-Cα with 111

length dN = 1.458 Å, bond Cα-C
′ with length dCα

= 1.524 Å, and bond C′-N with length dC′ = 1.329 Å. 112

Bond angles and the ω torsion angle can vary to a limited extent (±5%) [30]. The ideal values are 113

θN = 121.7◦ for the bond angle at atom N, θCα = 111.2◦ at atom Cα, θC′ = 116.2◦ at atom C′, and 114

ω = 180◦. To simplify computations, we set all these bond lengths and angles to their ideal values. 115

The variables are then torsion angles ϕ and ψ. To close the backbone, Go et al. showed that the 116

torsion angles need to satisfy six independent relations [31]. Following this approach, for an n-residue 117

peptide, we define 3n local coordinate systems corresponding to the 3n backbone atoms. In coordinate 118

system i, the origin is set to the position of atom i; the x-axis extends towards atom i+ 1; the y-axis is 119

perpendicular to the x-axis and the first quadrant of the xy plane contains atom i+ 2; the z-axis is 120

orthogonal to x- and y-axis using the right-hand rule (Fig 1b). The bond length from atom i to i+ 1 is 121

denoted as di. The bond angle formed by atoms i− 1, i, and i+ 1 is denoted as θi. The torsion angle 122

between atoms i− 1, i, i+ 1, and i+ 2 is denoted as φi. 123
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To go from coordinate system i to i+ 1, we need an origin translation pi of length di from atom i to 124

i+ 1, a counterclockwise xy plane rotation by π − θi+1, and a counterclockwise yz plane rotation by 125

torsion angle φi+1 (Fig 1b). A point with coordinate ri+1 in system i+ 1 has coordinate ri in system i, 126

following 127

ri = Tθi+1
Rφi+1

ri+1 + pi, (1)

where 128

Tθi+1
=

cos(π − θi+1) −sin(π − θi+1) 0
sin(π − θi+1) cos(π − θi+1) 0

0 0 1

 ,
129

Rφi+1
=

1 0 0
0 cos(φi+1) −sin(φi+1)
0 sin(φi+1) cos(φi+1)

 ,pi =
di0
0

 .
Because atom 1 is the same as atom 3n+ 1 in an n-residue cyclic backbone, backbone closure is then 130

equivalent to having the coordinate systems corresponding to atom 1 and atom 3n+ 1 be identical, i.e., 131

same origins and x, y directional vectors (rotations preserve dot products, so z is also the same). For 132

later matrix expression, we choose system 1 to be at atom Cα of residue n (Fig 1b), with origin being 0, 133

x directional vector e1 = [1, 0, 0]T , and y directional vector e2 = [0, 1, 0]T . 134

The origin of system 3n+ 1 has coordinate r3n+1 = 0 in system 3n+ 1 and r1 in system 1. To 135

satisfy backbone closure, we require 136

r1 = M1M2· · ·Mn−2Mn−1q +M1M2· · ·Mn−2q + · · ·+M1M2q +M1q + q = 0, (2)

where Mi = TθC′RωTθNRϕiTθCα
Rψi , and 137

q = TθC′RωTθN

dN0
0

+ TθC′

dC′

0
0

+

dCα

0
0

 .
For the x and y directional vectors in system 3n+ 1, we require their vector forms in system 1 equal to 138

e1 and e2, respectively, i.e., 139

M1M2· · ·Mn−2Mn−1Mne1 = e1, M1M2· · ·Mn−2Mn−1Mne2 = e2. (3)

See the detailed derivation in S1 Appendix. 140

Combining requirements Eq (2) and Eq (3), and using squared error, we write the cyclic constraint 141

into a single equation, 142

Ecyc =||q +M1q +M1M2q +M1M2M3q + · · ·+M1M2M3· · ·Mn−1q||22
+||M1M2M3· · ·Mn−1Mne1 − e1||22
+||M1M2M3· · ·Mn−1Mne2 − e2||22.

(4)

We call this the cyclic error function, and finding a cyclic peptide backbone solution is equivalent to 143

finding a zero for Eq (4). Note that all the bond lengths, bond angles, and torsion angle ω are fixed to 144

ideal values, so Mi(ϕi, ψi) are matrices of variables ϕi and ψi, and vector q can be calculated explicitly 145

for ideal bond angle and bond length values as q = [3.5620, 1.3322, 0]T . 146

Backbone energy functions 147

Our backbone sampling algorithm is independent of the energy model, so can work with any energy 148

functions that are fast to evaluate. Here, we choose Rosetta’s Ref2015 energy model [22]. For the 149

backbone atoms, we evaluate the Ramachandran, repulsive (Van der Waals), attractive (London 150

dispersion), electrostatic, solvation, and H-bond energy terms. When analyzing backbone atom pair 151
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interactions, we consider only atom pairs separated by at least 4 covalent bonds, as is the case in the 152

Ref2015 energy function [22]. See detailed descriptions in S2 Appendix and S1 Fig. 153

Each amino acid has a Ramachandran map that shows the energetically allowed regions in ψ-ϕ space. 154

Glycine has the largest Ramachandran area, proline has the smallest, and the other amino acids have 155

similar areas but different energetically favorable regions. As L- and D-amino acids are mirror images, 156

their accessible Ramachandran regions are mirror-symmetrical. For backbone sampling, we use the 157

permissive, symmetrized glycine Ramachandran map to allow all possible amino acids for later sequence 158

design (S2 Fig, regions within the blue boundary). This map is based on the statistical distribution of 159

glycine conformations observed in Protein Data Bank (PDB) structures but made symmetric as 160

previously described [13,21]. 161

Efficient backbone sampling 162

Initial torsion angles selection 163

We partition the glycine Ramachandran map into six torsion bins, marking bin centers (S2 Fig). For 164

each residue, its initial angles ϕ and ψ are chosen randomly from one of the six centers. For an n residue 165

peptide, there are 6n initial point combinations (or initial configurations). Considering equivalence 166

classes induced by cyclic permutations (e.g., “1232456” is equivalent to “2324561”), the number of 167

unique combinations is reduced to 1
n

∑n
i=1 6

gcd(i,n), where gcd(i, n) is the greatest common divisor of i 168

and n; this is approximately 6n/n for large n [25, 32]. For 7 residues, this yields 39,996 initial point 169

combinations. As the macrocycle size increases, the number of combinations increases exponentially. 170

Hence, for large macrocycles with 15, 20, or 24 residues, we randomly select 100,000 initial point 171

combinations. 172

Layered simulated annealing 173

With the initial angles assigned, we search the Ramachandran space to find low-energy configurations 174

satisfying the cyclic and H-bond constraints. To save computational cost, we devised a simulated 175

annealing (SA) variant with multiple layers of acceptance criteria. At time step t, a random move within 176

a disk of radius kt in the Ramachandran space is generated for each residue (S2 Fig). If a move enters a 177

prohibited high-energy region of Ramachandran space (white area in S2 Fig), it is rejected for that 178

residue. The subsequent new configuration needs to pass four layers of energy tests to be accepted: 179

sequentially, Ramachandran energy, repulsive energy, cyclic error, and H-bond energy. For 7-residue 180

peptides, a final energy test is added to calculate miscellaneous (attractive, electrostatics, and solvation) 181

energies. 182

At each test layer l, we use the Metropolis criterion, i.e., the new configuration passes if it has an 183

energy Enew,l lower than the current energy El, or below a threshold Ethr,l. If neither holds, the new 184

configuration has a probability of e(El−Enew,l)/Tt,l to pass the test, where Tt,l is the temperature at time 185

step t and test l. Once a new configuration passes all tests, it is accepted and becomes the current 186

configuration. Note that this approach is not intended to produce thermodynamic distributions of states 187

as pure Metropolis-Hastings Monte Carlo trajectories do; instead, the goal is to rapidly discover 188

low-energy states with the least computational expense needed, by evaluating cheaper energy terms first 189

to reject moves. 190

Configurations that have low repulsive energy, low cyclic error, and strong H-bonds are recorded as 191

good backbone candidates. Details for choosing the energy thresholds, good backbone criteria, and other 192

simulated annealing parameters are provided in S3 Appendix. In particular, within the thousands of 193

possible simulated annealing parameter combinations, we use combinatorial design [33] to select and test 194

51 combinations for 7- and 15-residue tests, and 400 combinations for 20- and 24-residue tests (details in 195

S4 Appendix). 196

Once we find the optimal simulated annealing parameter combination (S1 Table), for each initial 197

configuration, we run the layered simulated annealing algorithm. If a single run of simulated annealing 198

does not produce any good backbone candidates, we repeat again, for a maximum of three repeats. Two 199
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example runs that successfully produced good 15-residue backbone candidates are uploaded to GitHub 200

for illustration. 201

Backbone clustering and sequence design 202

There can be vast numbers of backbone candidates, and many are similar to each other. To select 203

lowest-energy representatives, we clustered the candidates based on the torsion bins in a manner similar 204

to that previously described [13]. Briefly, we assigned a torsion bin number to each residue in a backbone 205

candidate (S2 Fig), to produce a torsion bin string. For example, a string “1351246” means that the first 206

residue in the backbone falls in torsion bin 1 of the glycine Ramachandran space, the second residue in 207

torsion bin 3, the third residue in torsion bin 5, and so on. 208

We considered torsion bin strings as equivalent if they can be cyclically permuted, such as “1351246” 209

and “3512461”. To uniquely identify the equivalence class, we looked for the cyclic permutation that 210

moves the smallest bin value to position 1. If multiple residues share the same smallest value, we chose 211

the permutation that gives smaller value at position 2, and so on. In this way, we clustered the backbone 212

candidates into equivalence classes of torsion bin strings. Within each class, we selected the candidate 213

with the lowest energy as the representative. 214

We computed energies based on Rosetta Ref2015 ’s weights [22], 215

Etotal = 0.45 ∗ Erama + Erep + Ehbond + Eother.

These backbone representatives were then sent for full-energy relaxation using Rosetta’s FastRelax, 216

following past protocols [5, 13, 25] (scripts in S5 Appendix and uploaded to GitHub). Relaxed backbones 217

with low energies were selected for further sequence design using Rosetta’s FastDesign, permitting the 20 218

canonical amino acids (except cysteine and glycine) with both their L and D forms [13] (S6 Appendix). 219

For 20- and 24-residue designs, to avoid instability caused by buried unsatisfied polar atoms, additional 220

restrictions of amino acid types were applied [25] (S7 Appendix). 221

Stability analysis for small macrocycles 222

Designed sequences having low energies underwent final stability analysis. To assess the stability of a 223

designed sequence, we sampled alternative conformations for this sequence. The energies of these 224

alternative conformations, together with their root-mean-square-deviations (RMSDs) from the designed 225

structure, form the energy landscape. To calculate RMSD, we used the Kabsch algorithm [34] to align 226

backbone heavy atoms (N, Cα, C
′, and O) of an alternative conformation with those of the designed 227

structure. 228

If the lowest-energy conformations all have small RMSDs from the designed structure, then the 229

sequence has a high chance to fold into the designed structure, and we consider the design stable. In 230

order to provide a quantitative measure of stability, we employ the PNear value introduced in 2016 [21]: 231

PNear =

∑N
i=1 e

−RMSD2
i

λ2 e
− Ei

kBT∑N
j=1 e

−
Ej

kBT

, (5)

where kBT = 0.62 kcal/mol (equivalent to 37 ◦C), λ = 0.5 Å for small macrocycles (7 residues), λ = 1.5 232

Å for medium macrocycles (15 residues), and λ = 2.0 Å for large macrocycles (20 and 24 residues). It 233

has been experimentally shown that PNear > 0.9 is indicative of stability, and correlates well with 234

experimental success in binder design [5, 6, 13]. 235

For macrocycles having 7 residues, our backbone simulated annealing algorithm considered all 236

combinations of initial angle torsion bins, so backbone sampling was comprehensive. Hence, we can 237

expect that all low-energy conformations exist within the sampled backbones. By threading designed 238

sequences on these backbones and using Ramachandran map at each residue as a series of filters to weed 239

out incompatible conformations, we were able to approximate the energy landscape containing all 240

alternative low-energy conformations. Given that the backbones are cyclic, it was necsesary to examine 241
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all n permutations of the residues for each backbone conformation. Compatible backbones were then 242

subjected to FastRelax, following the same protocol (S5 Appendix), but this time with the designed 243

sequence instead of poly-glycine. We refer to this energy landscape sampling process as 244

Ramachandran-stability filtering. 245

Stability analysis for large macrocycles 246

For macrocycles of 15-24 residues, the Ramachandran-stability filtering method failed to find a sufficient 247

number of alternative backbone conformations due to the exponentially larger search space (see S8 248

Appendix). Simply adapting the layered simulated annealing algorithm for designed sequences was not 249

enough. We aimed to explore energy landscapes filled with local minima, spanning both low and high 250

RMSD regions (0-6 Å). Simulated annealing might sometimes jump across certain minima without 251

sufficient exploration, or conversely, become trapped in some minima without investigation of others. To 252

overcome this problem, we employed a genetic algorithm. This approach allowed us to broadly explore 253

the landscape in the initial stages, and through successive generations, to probe and settle into the 254

low-energy minima, thus achieving a balanced exploration of both global and local features of the energy 255

landscapes. 256

The initial population of the genetic algorithm comprised alternative structures of the designed 257

sequence, whose backbones were sampled by two separate layered simulated annealing trajectories, one 258

targeting low energy and, when a designed backbone was available, the other targeting low RMSD. The 259

low energy simulated annealing protocol was as described in S3 Appendix, while the low RMSD 260

simulated annealing had only the cyclic error test and a RMSD test (see S8 Appendix). In the RMSD 261

test, we used the Kabsch algorithm [34] to measure the backbone-heavy-atom RMSD between the new 262

configuration and the designed structure, and used the Metropolis criterion to accept new configurations. 263

The sampled backbones were then subject to FastRelax, with the designed sequence specified so that 264

the corresponding side-chains were added and optimized by FastRelax (S5 Appendix). We sorted the 265

relaxed structures in ascending order of their energies and initiated energy-based clustering (see S8 266

Appendix). The 2 ∗NGA lowest-energy cluster centers formed the initial genetic algorithm population. 267

In the genetic algorithm, each generation underwent crossover, mutation, and selection. Crossover 268

involved checking whether a pair of parents could exchange residues within a designated region. 269

Mutation involved random perturbation of torsion angles within a given region. See details in S8 270

Appendix and S4 Fig. After collecting the crossover and mutation children, we ran FastRelax to add 271

side-chains and obtain full energies. Due to distortions of bond angles and lengths caused by crossover 272

and mutation at breakpoints, we used Cartesian relaxation to restore near-ideal bond geometry (scripts 273

provided in S9 Appendix). Then, we clustered the relaxed structures and selected the lowest-energy NGA 274

cluster centers to form the next generation. 275

During each generation, of all the cluster centers, we recorded those having energies < 0 for the 276

eventual energy landscape. We conducted 50 such generations with NGA = 500 for 15 residue 277

macrocycles, NGA = 750− 5 · i for generation i of 20 residues, and NGA = 1000− 10 · i for generation i 278

of 24 residues. The reduced population size in later generations was for efficiency: a broad exploration of 279

the energy landscape is beneficial for early stages, while in later stages the genetic algorithm focuses on 280

exploring the minima, which doesn’t require a large population. We refer to this energy landscape 281

sampling algorithm as ClusterGen. 282

Structure predictions for macrocycles in the Protein Data Bank 283

We modified our ClusterGen approach slightly to predict structures for existing macrocycles found in the 284

PDB. We removed the initial simulated annealing sampling for low RMSD, which requires the designed 285

structure as reference, so that our prediction was unbiased and the only input information was the amino 286

acid sequence. 287

For large-sized PDB predictions, i.e., PDB 6uf8 (12-mer), 2ns4 (14-mer), 6dzb (16-mer), and 6uf9 288

(24-mer), we increased the initial points for simulated annealing to 0.2, 0.3, 0.5, and 1 million, 289
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respectively, and increased the genetic algorithm population NGA to 1500, 2500, 5000, and 5000, 290

respectively. This is to compensate for the removal of biased low RMSD sampling. 291

From each generated energy landscape, we clustered the 50 lowest-energy structures using a 1.5 Å 292

RMSD cutoff. The five lowest-energy cluster centers were selected as the predictions. If the PDB 293

structure is from NMR experiments and has multiple models, we selected the model that produces the 294

highest PNear score for energy landscape plot. 295

Molecular dynamics simulations for top designs 296

We next sought a means of validating designs that was independent of Rosetta or the conformational 297

sampling methods developed here. Since currently-available ML methods for predicting macrocycle 298

structures are incompatible with heterochiral peptides [19], we turned to molecular dynamics (MD) 299

simulations. For 15-24 residue designs that had high PNear scores, we performed 1-µs MD simulations to 300

validate kinetic stability. We used the OpenMM v8.1.0.beta [35] toolkit with the amber14/protein.ff14SB 301

force field for peptide and the amber14/tip3p force field for water. The water box had periodic boundary 302

conditions and 1 nm padding distances from the peptide. The ionic strength was set to be 0.15 molar 303

with Na+ and Cl-. Full details are in S10 Appendix. 304

We also ran replica exchange molecular dynamics (REMD) simulations [36] for top designs that 305

showed stable MD trajectories, using OpenMMTools v0.23.1 [37] (details in S10 Appendix). After an 306

initial 100 ns simulation, we plotted the radius of gyration (Rg) distributions for uncorrelated 307

configurations extracted by OpenMMTools MultiStateSamplerAnalyzer [37] from two different time 308

intervals 50-70 ns and 80-100 ns. If the distributions did not overlap well, we extended the REMD for an 309

additional 50 ns. 310

To compute the average RMSD of a simulation, we extracted uncorrelated configurations sampled at 311

300 K, and calculated their Cα-atom RMSDs from the initial design using MDTraj v1.9.8 [38]. Free 312

energy surfaces (FES) were derived using RMSD and Rg as collective variables. We gathered RMSD and 313

Rg data from 300 K uncorrelated configurations, and computed the probability densities P (RMSD,Rg) 314

using the histogram2d function in the Python package numpy [39], with 50 bins along each dimension. 315

The free energy was calculated as −RT ln (P (RMSD,Rg)), where R is the gas constant and T is the 316

temperature (300 K). Note that when calculating the probability densities, we used the standard unit 317

nanometer for RMSD and Rg, yet for visualization consistency, we plot the FES in Å. 318

We used the Flatiron Rusty cluster GPU nodes for the MD simulations. Each node was equipped 319

with four NVIDIA 40 GB A100 Tensor Core GPUs (Ampere), 1024 GB system memory, and 64 CPU 320

cores. We ran each MD or REMD simulation on one A100 GPU. Typical MD runs took about 40 hours 321

to complete, while typical 100 ns REMD runs took about 5-9 days to complete. 322

Results 323

Our cyclic peptide design pipeline CyclicChamp consists of several key steps: initial backbone torsion 324

angle selection, backbone sampling through layered simulated annealing, backbone clustering using 325

torsion bin strings, backbone relaxation with FastRelax, sequence design via FastDesign, and stability 326

analysis by generating energy landscapes (see Fig 1). In Fig 2, we show the CPU-hours required in each 327

step, as benchmarked on New York University’s Greene High Performance Computing Cluster. A more 328

detailed ClusterGen computation time breakdown is presented in S5 Fig, and the number of candidates 329

generated in each step is listed in S6 Fig. 330

The computation time for backbone sampling exhibited linear-like growth as the size of the backbone 331

increases (Fig 2a). The time growth from 7 to 15 residues primarily resulted from a rise in the number of 332

initial backbone configurations, escalating from 39,996 to 100,000. Beyond 15 residues, we fixed the 333

number of initial configurations, so that the time growth was largely due to the O(N2) complexity 334

involved in calculating atom pairwise energies (see S2 Appendix). However, the sampling of 24-residue 335

backbones yeilded only about one-fourth the number of backbone clusters compared to those from 15 336
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Fig 2. CyclicChamp computation time and design comparisons with Rosetta. (A) The computation time
required by CyclicChamp backbone sampling and stability validation (ClusterGen) exhibits linear-like growth with
increasing backbone size. FastDesign was faster for 20 and 24 residues than for 15 because there were fewer backbones on
which we did sequence design. (B) Total design time divided by the number of stable designs validated by the filtering
method for 7 residues, ClusterGen for 15 residues, and reshaped ClusterGen for 20 and 24 residues. (C) When allocating
equivalent computation time for backbone sampling, CyclicChamp generated 5 to 28 times as many cyclic backbones with
sufficient H-bonds as Rosetta’s simple cycpep predict, which led to 2 to 11 times as many stable designs as Rosetta’s
after stability validation.

(c)

(a) (b)

and 20 residues, indicating a substantial increase in the difficulty of finding good backbone candidates 337

(S6 Fig). 338

We conducted PNear stability analyses on low-energy designs using our Ramachandran-stability 339

filtering method for 7 residues and our Clustering genetic algorithm (ClusterGen) for 15-24 residues. To 340

obtain more stable 20- and 24-residue cyclic peptide structures, we also looked at alternative low-energy 341

structures sampled by ClusterGen and reshaped the energy landscapes accordingly (see details in the 342

section titled Large macrocycle 20 residue designs). Our filtering method took about 1.3 CPU-hours per 343

stability test. The computation time of ClusterGen grew linearly as the macrocycle size increased, 344

primarily due to the progressively larger populations adopted (see Stability analysis for large 345

macrocycles). Rosetta’s simple cycpep predict was also used as a stability test, but it failed to 346

adequately explore the exponentially larger conformational space as the size went up to 20 and 24. 347

The average computation time required for obtaining a stable design with PNear > 0.9 is plotted in 348
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Fig 2b. The reason that CyclicChamp took longer to find a stable 15-residue design than to find a 20- or 349

24-residue one was the more strict criteria for stability analysis, where we considered only the designed 350

conformations, not including alternative low-energy conformations sampled by ClusterGen. 351

Additionally, we compared CyclicChamp’s design results with Rosetta by running their design 352

pipeline protocol described in [13]. Notably, our CyclicChamp operated more efficiently, especially for 7- 353

and 20-residue designs, requiring only one-fourth and one-eighth the time of Rosetta’s to find a stable 354

design, respectively (Fig 2b). 355

The key reason for CyclicChamp’s high efficiency lies in its backbone sampling (Fig 2c), which leads 356

to significant improvements. Using the same number of CPU-hours for backbone sampling, CyclicChamp 357

found five to twenty-eight times as many cyclic backbones with sufficient H-bonds as Rosetta. After 358

clustering, the lowest-energy half of the cluster centers were advanced to sequence design. 359

CyclicChamp achieved approximately twice the number of designs for 7 and 15 residues compared to 360

Rosetta, and approximately six times for 20 and 24 residues. After stability validation, CyclicChamp 361

managed to produce two to eleven times the number of stable designs (PNear > 0.9) as compared to 362

Rosetta, illustrating its superior capability in finding high-quality cyclic peptide backbone conformations 363

that are more likely to result in stable designs. 364

In the following sections, we provide stability analysis results for our 7-24 residue macrocycle designs, 365

as well as the molecular dynamics simulation validations and the PDB structure predictions. Note that 366

all of our designs have mixed chirality (S7 Fig). Because the sequence space accessible to heterochiral 367

designs is exponentially larger than that accessible to homochiral, one would expect a far greater 368

probability of the most stable “designable” backbone configurations lying in the larger heterochiral 369

configuration space. 370

Small macrocycle 7 residue designs 371

For the top 513 designs with computed Ref2015 energies below −8 kcal/mol, we compared PNear 372

values produced using Rosetta’s simple cycpep predict application and with our Ramachandran-stability 373

filtering method (Fig 3a). The Pearson correlation coefficient stood at r = 0.822, and 94% of the values 374

exhibited deviations less than 0.4. There were 38 designs having PNear > 0.9 by the Rosetta’s method, 375

77 designs having PNear > 0.9 by the Ramachandran-stability filtering method, and of these 32 had 376

PNear > 0.9 by both methods. 377

We also analyzed the relationship between PNear values and energies (Fig 3b). We divided the 513 378

designs into four evenly spaced energy bins from -16 to -8 kcal/mol. Within each energy bin, we 379

calculated the relative frequency of PNear values in three ranges: low (PNear < 0.7), medium 380

(0.7 ≤ PNear < 0.9), and high (0.9 ≤ PNear). For both methods, we found that the second-lowest energy 381

bin possessed the largest relative probability of high PNear values, suggesting that the the 382

conformational energy of the designed state should not necessarily be as low as possible in order to 383

achieve a design with a large energy gap between the designed state and all alternative states. This may 384

be attributed to favourable but non-specific interactions stabilizing both the designed state and 385

alternative states for the designs in the lowest-energy bin. We noticed that one high PNear design in the 386

first energy bin dropped from 0.956 to 0.769 when switching from the Rosetta’s method to the filtering 387

method (Fig 3c, design 144). It appears that in this case the filtering method was able to sample the 388

low-energy region more comprehensively than Rosetta could, identifying alternative low-energy 389

structures around 0.5 Å and 1.5 Å RMSD from the design whose populations reduce the fractional 390

occupancy very close to the designed state, lowering PNear. 391

Additionally, we examined designs in which the PNear values of the two methods differed by more 392

than 0.4. In most cases, the two methods yielded energy landscapes with similar shapes but different 393

distributions (Fig 3c, design 8710). Nevertheless, there were instances in which the 394

Ramachandran-stability filtering method alone proved capable of sampling the low-RMSD region (design 395

9167). While we have never seen a case in which Rosetta samples low-RMSD regions that the 396

Ramachandran-stability filtering method misses, there is no way to check this exhaustively. 397

Operationally, we suggest using both methods. 398
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Fig 3. Stability analysis of 7-residue designs. (A) Correlation plot between PNear values calculated by Rosetta
simple cycpep predict and by our filtering method. (B) PNear value distributions within different energy bins (kcal/mol).
Design counts are labeled on top of the bars. (C) Energy landscape comparisons for three cases that have noticeable
differences in PNear values calculated by the two methods. Left, more extensive sampling of wells further from the
designed state by the filtering method results in a lower computed PNear value. Middle: more extensive sampling close to
the designed state by the filtering method identifies a deeper minimum, raising the PNear value. Right: more extensive
sampling by the filtering method allows exploration in a low-RMSD region missed entirely by Rosetta, identifying energy
wells and raising the PNear value. (D) Top 7-residue designs (PNear > 0.9) demonstrating smaller backbone
root-mean-square radii with H-bond intersections. Representative designs having 0, 1, 2, 3, 5, and 6 H-bond intersections
are drawn, along with their H-bond networks where L- and D-amino acids are specified and arrows point from amide
proton to carbonyl oxygen. The designed sequences are written in one-letter codes, with uppercase for L-amino acids, and
lowercase for D-amino acids.

(a)

(c) Design 9167Design 8710Design 144

(b)

(d) Energy=−11.5 kcal/mol
Radius=3.811 Å

Design 3860

D1

D2

L3

D4 D5

L6

D7

L1

D2

L3

D4 L5

D6

D7

Energy=−14.1 kcal/mol
Radius=3.480 Å

Design 5191

Energy=−10.7 kcal/mol
Radius=3.538 Å

Design 9191

L1

L2

D3

L4 D5

D6

L7

Energy=−10.3 kcal/mol
Radius=3.385 Å

Design 7437

L1

L2

D3

L4 L5

D6

D7

Energy=−8.7 kcal/mol
Radius=3.617 Å

Design 3836

Energy=−9.5 kcal/mol
Radius=3.429 Å

Design 9974

D1

L2

L3

D4 D5

L6

L7

L1

L2

D3

L4 D5

L6

L7

skPnpEv PpPkEdh PEnKnTE

PNnEpkS ePKvnEN VNnEEpk

Overall, the Ramachandran-stability filtering method holds a distinct advantage over Rosetta’s 399

random sampling approach in scrutinizing both the low-RMSD region and all low-energy regions, and 400

unearthing alternative low-energy structures. This is likely due to its strategy of selecting sample 401
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Fig 4. Comparison with Rosetta experimentally validated 7-residue designs [13]. (A,B) From our 513 designs,
we find designs (colored in orange) for which the backbones align best with the Rosetta designs (light blue). The residues
having different side-chains are marked in red. (C) Design 475 has an alternate low-energy structure (purple), leading to
a low PNear value. The amino acid sequences are written in one-letter codes, with uppercase for L-amino acids, and
lowercase for D-amino acids.
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backbones from the candidate pool created by layered simulated annealing, characterized by their low 402

repulsive energies and robust H-bonds. By randomly sampling the torsion angles from their 403

Ramachandran spaces except for three residues, which are solved algebraically to ensure cyclicity 404

through generalized kinematic closure (GenKIC) [20] Rosetta’s simple cycpep predict can sometimes fail 405

to find the low-RMSD region, especially as the dimensionality increases. 406

For the 32 designs that have PNear > 0.9 by both methods, we observed an interesting correlation 407

between the structural compactness and the H-bond patterns. We measured the structural compactness 408

by calculating the root-mean-square distance of the backbone atoms from the backbone center of mass. 409

When drawing the H-bond networks, we noticed that some designs have intersecting backbone H-bonds, 410

and such designs tend to have smaller backbone radii (Fig 3d). The H-bond intersection counts varied 411

from 0 to 6, and we show one representative design for each count. Design 7437 had the smallest radius 412

and adopted a semi-ball shape due to its six intersecting H-bonds. Note that the compactness was not 413

simply a product of more H-bonds. For example, despite all having three H-bonds, design 5191 with one 414

H-bond intersection presented a radius of 3.480 Å, while design 3860 with no intersection exhibited a 415

radius of 3.811 Å. All the 32 design structures are uploaded to GitHub, and their amino acid sequences 416

are listed in S2 Table. 417

Finally, we compared our designs with the previously-published comprehensive design results from 418

Rosetta [13] to see whether similar structures have been found. For 7 residues, that study reported 12 419

Rosetta-produced designs with PNear > 0.9, of which three were experimentally validated (Design 7.1-3 420

in Fig 4). We aligned the backbones of our 513 designs with these 12 Rosetta designs. For each pair, we 421

tried all seven cyclic permutations to find the best alignment. Our closest backbones have 0.114-0.639 Å 422

RMSDs from the Rosetta design backbones, suggesting that our layered simulated annealing algorithm 423

can find similar backbone conformations that can be stabilized with a suitable choice of sequence. Most 424

of these simulated annealing designs had a sequence match of 2-3 residues with their corresponding 425

Rosetta designs. This follows the observation in the 2017 Rosetta study that usually fewer than three 426

residues (often prolines) are critical for maintaining the fold [13]. Additionally, all sequences retained the 427

same pattern of chirality (L or D-amino acids) as the Rosetta designs, with one exception that exhibited 428

a low PNear < 0.3 according to both Rosetta and the Ramachandran-stability filtering method. This was 429
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in stark contrast to most other designs with PNear > 0.7, aligning with the notion that altering chirality 430

is more disruptive than replacing an amino acid with another of the same chirality [13]. 431

For the three experimentally validated Rosetta designs (7.1-7.3), we found closely matched simulated 432

annealing designs with ∼0.2 Å backbone RMSDs (designs 2787, 1058, and 475 in Fig 4). At least one 433

proline residue was preserved in each pair. Designs 2787 and 1058 maintained stable folds with 434

PNear > 0.9, while design 475 had only PNear ∼ 0.4. We plotted the energy landscapes for design 475, 435

and found an alternative low-energy structure in the 0.5 Å RMSD region (Fig 4c). The main deviations 436

between design 475 and its alternative structure were at residues 1 and 7, consistent with the observed 437

turn flip around residue 7 in the NMR structural ensemble of Rosetta design 7.3 [13]. 438

Medium macrocycle 15 residue designs 439

Past Rosetta studies have used disulfide cross-links to design cyclic peptides of 11-14 residues [13], 440

and structural symmetry to design larger sizes [25, 26]. Our methods were able to design general stable, 441

computationally-validated 15-residue cyclic peptides. For PNear stability analysis, we used both 442

Rosetta’s simple cycpep predict and our ClusterGen. In the energy landscapes, the use of Cartesian 443

coordinate relaxation leads to an energy reduction of approximately 15 kcal/mol compared to designs 444

using torsion angle relaxation (Fig 5b,d). Because of the high computational cost of validation (100,000 445

samples for simple cycpep predict, and 50 generations of a population of 500 for ClusterGen), we 446

validated only the top 75 designs having the lowest energies. 447

A correlation plot in Fig 5a compares the PNear values computed by ClusterGen and Rosetta. The 448

PNear values from ClusterGen were evenly distributed across all ranges, and there were nine designs with 449

PNear > 0.9. Meanwhile, 64% of Rosetta’s PNear values fell below 0.1, and only three designs achieved 450

PNear > 0.9. These three designs also exhibited high PNear values according to ClusterGen, and their 451

energy landscapes’ low-RMSD regions were better explored by ClusterGen, as seen in Fig 5b. In 452

instances where significant differences existed between the two methods’ PNear values, Rosetta tended to 453

underestimate PNear due to failure to extensively sample low-RMSD regions (Fig 5c). In contrast, 454

ClusterGen consistently sampled the low-RMSD region, and distinguished peptides by generating energy 455

landscapes of various shapes, such as the dual-minimum landscape observed in Design 108020, the broad 456

energy minimum in Design 120510, and the sharp funnel shape in Design 2599. When we plotted 457

ClusterGen’s PNear values against the structure compactness measured by backbone radii of designed 458

states (Fig 5a), we found that designs with small radii, particularly those under 5.5 Å, tended to exhibit 459

high PNear values. 460

Interesting backbone structural motifs appeared in the top designs (PNear > 0.9 by either Rosetta or 461

ClusterGen, structures uploaded to GitHub and sequences listed in S2 Table). Designs 169032, 2599, and 462

16897 shared a recurring structural motif in which the backbone bends (Fig 5d). At the bending 463

locations, we saw i, i+ 3 H-bonds, with the CO group in residue i binding to the NH group in residue 464

i+ 3. Such i, i+ 3 H-bonds can cause backbone turns, as observed in the 2017 Rosetta study [13]. In 465

these three designs, the i, i+ 3 turns were paired with extra long-range H-bonds. The CO group of 466

residue i+ 1 or the NH group of residue i+ 2 bound to the opposite backbone side, leading to a 467

simultaneous bend on both sides. Despite the fact that all three designs have intersecting H-bonds, the 468

H-bonds in design 16897 are closely intertwined, while the H-bonds in design 169032 can be distinctly 469

separated into two parts. Consequently, the backbone root-mean-square radius varies from 4.905 to 6.239 470

Å. 471

Another three designs contained ordered consecutive H-bonds (Fig 5e). In design 17434, residues 13 472

and 14 bound to residue 9, and residues 11 and 12 bound to residue 8. These H-bonds held the twisted 473

backbone tightly to form a short α-helix. In design 3114, three consecutive i, i+ 3/i+ 4 turns among 474

residues 15 and 1-5 shaped another short α-helix. When the i, i+ 3 turn paired with i, i+ 2 H-bonds, 475

there resulted a semi-circular segment as seen in residues 1-7 of design 136805. These H-bond 476

arrangements may prove valuable as building blocks for future design endeavors. 477
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Fig 5. Stability analysis of 15-residue designs. (A) Correlation plot between PNear values calculated by Rosetta
simple cycpep predict and by our ClusterGen (left). The PNear values of our ClusterGen are also plotted against the
backbone root-mean-square radii (right). (B) Energy landscape comparison for one case in which both methods obtain
high PNear values. (C) Energy landscape comparisons for three cases in which the two methods calculate significantly
different PNear values. (D) Top designs with bending backbones. The backbone atoms, prolines (in color purple), and
hydrophobic amino acids (ALA, ILE, LEU, VAL, MET, PHE in color orange) are shown. The backbone turn segments
are enlarged. (E) Top designs with short alpha helices and consecutive i, i+ 2/i+ 3 H-bonds. The designed sequences are
written in one-letter codes, with uppercase for L-amino acids, and lowercase for D-amino acids.
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Large macrocycle 20 residue designs 478

We first validated 22 low-energy designs using both Rosetta and ClusterGen to compare the performance 479

of the two algorithms. The PNear value correlation plot is shown in Fig 6a. Notably, all of Rosetta’s 480
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Fig 6. Stability analysis of 20-residue designs. (A) Correlation plot between PNear values calculated by Rosetta
and our ClusterGen (left). The ClusterGen’s PNear values are plotted against the backbone root-mean-square radii
(right). (B) Example energy landscape comparison. By selecting the lowest-energy structures (marked by a purple cross)
as the native states, the ClusterGen landscapes were reshaped. (C) Six top designs with minor conformation changes
between their initial target states and the lowest-energy structures. (D) Six low-energy structures (colored in green) that
show major backbone conformation changes from their designed structures (red). These involve formation of a short helix
or a compact bending. The amino acid sequences are written in one-letter codes, with uppercase for L-amino acids, and
lowercase for D-amino acids.

Design 25226(b)

x

(a)

Design 1665
Pnear=0.370, Radius=6.440 Å
LowEnergy P=0.907, R=5.807 Å

aDDAPdasADKtmppKderT

Design 25226 
Pnear=0.059, Radius=6.916 Å
LowEnergy P=0.958, R=5.887 Å

kHkPSkDLKeaqPYssnDAK

Design 45902 
Pnear=0.641, Radius=6.894 Å
LowEnergy P=0.966, R=6.438 Å

kHkPTkDFKeaqPYssnDAK

Design 74102 
Pnear=0.152, Radius=7.589 Å
LowEnergy P=0.967, R=6.454 Å

akhpNEnTSEAqeprNePAd

Design 107505 
Pnear=0.226, Radius=6.888 Å
LowEnergy P=0.901, R=6.262 Å

kpNyNpklSePntnEpErta

LowEnergy 12800 
Pnear=0.976, Radius=6.260 Å

pPrfnNqIPnSkpdlqDLSe

LowEnergy 15036
Pnear=0.962, Radius=5.870 Å

YPeasSKddaeDPkarklQs

LowEnergy 27893
Pnear=0.969, Radius=7.732 Å

qSpSDQSPKkNdePLsdeyn

LowEnergy 68384
Pnear=0.942, Radius=5.935 Å

SEnAKdlePiapnYptpKaP

LowEnergy 80837
Pnear=0.980, Radius=6.257 Å

PppAANESsTdetaNnNnKe

Design 35869
Pnear=0.897, Radius=6.196 Å

PDANeDMaAsIKeEeNsrpe

(c) (d) Design 83218
Pnear=0.035, Radius=7.185 Å
LowEnergy P=0.924, R=6.125 Å

DRnkPkdpvYePpnanksYN

PNear values fell below 0.2, while ClusterGen’s PNear values spanned evenly from 0.001 to 0.822. This 481

was caused by Rosetta’s failure to sample the low-RMSD regions, as can be seen in the round-shaped 482

energy landscapes in Fig 6b. We then validated 47 more low-energy designs using only ClusterGen. By 483
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plotting the ClusterGen’s PNear values against backbone root-mean-square radius, we again saw that 484

designs with high PNear values tended to have small radii (Fig 6a). The highest PNear value obtained 485

was 0.897 with a radius of 6.196 Å. 486

As our primary goal was to find stable cyclic peptide structures, rather than to design fixed backbone 487

conformations, we also looked at alternative low-energy structures in the energy landscapes of our 488

designs. We reshaped these landscapes by selecting the lowest energy structure sampled as the native 489

state for each designed sequence, and recomputed the backbone RMSD values of all samples from this 490

new native state (Fig 6b). We then calculated the PNear values for these reshaped energy landscapes. 491

Note that ClusterGen is not biased towards the initial designed structure, because in each generation, we 492

choose the lowest energy samples to form the next generation. As long as the original energy landscape 493

is thoroughly explored, the reshaped landscape will reflect the stability of the new native state. This 494

reshaping yielded 22 low-energy structures with PNear > 0.9. From these, we selected the 11 with 495

energies below −65 kcal/mol, as well as the top design 35869 that has an original PNear = 0.897 before 496

reshaping; these are presented in Fig 6c,d. The 22 high PNear structures and the design 35869 are 497

uploaded to GitHub, and their amino acid sequences are listed in S2 Table. 498

Design 35869 had a hydrophobic core (residues 7-11) that formed four backbone H-bonds with the 499

surrounding residues, imparting rigidity. Among the selected low-energy structures, five exhibited local 500

conformational deviations from their initially-designed configurations, so we depict only their low-energy 501

conformations in Fig 6c. Notably, structure 80837 demonstrated a quasi-cyclic (C2) symmetry within its 502

backbone, an intriguing feature considering the sequence’s inherent asymmetry. This structure formed 503

three i, i+ 3 backbone turns across residues 11-16 and 3-5, with an H-bond between residues 4 and 14 504

consolidating a hydrophobic core. Structure 68384 had the most backbone turns, five i, i+ 3 H-bonds 505

highlighted in Fig 6c, resulting in a twisted structure with a small backbone radius. In structure 15036, a 506

310-helix was present in residues 13-16, accompanied by two i, i+ 3 turns. 507

The remaining six low-energy structures displayed considerable conformational shifts from their 508

originally designed configurations, as illustrated in Fig 6d. In structure 45902, a half-turn helix emerged, 509

enhancing the stability of the loose backbone end. Structure 83218 underwent a transformation that 510

introduced a complete helical turn, significantly decreasing the backbone radius from 7.185 Å to 6.125 Å, 511

with a corresponding PNear value increase from 0.035 to 0.924. The other four structures formed dense 512

H-bonding that lead to compactness. Specifically, the consecutive H-bonds between residues 3-7 and 513

19-20 in structure 1665 pulled the backbone segments closer. In structure 74102, an H-bond network 514

among residues 1 to 3 facilitated a 90-degree turn, effectively altering the backbone from a flat to a more 515

globular shape. Structures 107505 and 25226 each introduced a single long-range H-bond between 516

residues 8 and 14, and residues 7 and 16, respectively, drawing the loose backbone ends together. 517

These top structures all had nicely packed hydrophobic cores made of 1-5 residues (S8 Fig). The 518

number of proline residues varied from 2 to 5, and they were scattered around the peptide surfaces to 519

enhance structural rigidity. Low-energy structure 68384 had the highest count of both hydrophobic and 520

proline residues, harboring five of each. 521

Large macrocycle 24 residue designs 522

We validated the top 11 designs using both Rosetta and our ClusterGen. Rosetta’s failure to 523

thoroughly explore the energy landscapes resulted in near-zero PNear values (Fig 7a). We then validated 524

71 more designs using ClusterGen, and the highest PNear value obtained is 0.896 from design 31759, 525

with a backbone radius of 7.408 Å. Designs 19384 and 21698 also have high PNear values of 0.790 and 526

0.786. To expand our search for stable structures, we reshaped the energy landscapes by selecting the 527

lowest-energy samples as the native states and recomputing RMSDs (e.g., Fig 7b). There were 14 528

low-energy structures achieving PNear > 0.9, of which 10 had energies below −75 kcal/mol, including the 529

one for design 31759. We show these 10 structures, as well as the low-energy structures 19384 and 21698 530

in Fig 7c,d. The 14 high PNear structures and the low-energy 19384 and 21698 are uploaded to GitHub, 531

and their sequences are listed in S2 Table. 532

Similar to the 20-residue designs, half of these 24-residue designs had only local conformational 533

changes in their low-energy structures (Fig 7c). Structure 21698 showed a diverse array of secondary 534
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Fig 7. Stability analysis of 24-residue designs. (A) Correlation plot between PNear values calculated by Rosetta
and ClusterGen (left). The ClusterGen’s PNear values are plotted against the backbone root-mean-square radii (right).
(B) Example energy landscape comparison. By selecting the lowest energy structures (marked by a purple cross) as the
native states, the ClusterGen landscapes were reshaped. (C) Six top designs with minor conformation changes in their
low energy structures. (D) Six low energy structures (colored in green) that show major backbone conformation changes
from their designed structures (red). The amino acid sequences are written in one-letter codes, with uppercase for
L-amino acids, and lowercase for D-amino acids.
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x
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LowEnergy P=0.902, R=7.180 Å
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structures: a 310-helix in residues 21-23; an isolated β-bridge between residues 4 and 8 with an 535

intermediate backbone turn across residues 5-7; and another β-bridge between residues 15 and 19, 536

enclosing a central backbone turn. The two backbone turn regions were parallel, connected by two 537
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H-bonds, forming a layered configuration. Structure 19384 featured two 310-helices in residues 3-5 and 538

9-11. In structure 15225, a β-ladder linked residues 6-7 and 13-15, and consecutive backbone turns 539

formed in residues 20-23. Structure 37605 stood out by forming the highest number of backbone 540

H-bonds (17 in total). Moreover, it had a β-ladder between residues 12-14 and 17-19, combined with an 541

isolated β-bridge between residues 4 and 13. Also, a 310-helix formed in residues 21-23. 542

For designs undergoing major conformational shifts from their designed configurations to their 543

low-energy configurations, there were notable decreases in their backbone radii (Fig 7d). The largest 544

radius reductions, approximately 1.5 Å, occured in structures 18496 and 20199. These two low-energy 545

structures adopted shapes resembling a “palm” with three “fingers”. The left two “fingers” are held close 546

to each other by an inter-“finger” H-bond between residues 2 and 8 in structure 18496, and residues 2 547

and 7 in structure 20199. Other designs exhibited more modest decreases in their backbone radii, less 548

than 1 Å. In structures 759, 10052, and 32190, the formation of long-range H-bonds played a crucial role 549

in bridging distant segments, enhancing the structural coherence and stability. Structure 16647 had a 550

310-helix forming in the less structured region of residues 2-4. 551

The top 24-residue structures had a greater proportion of hydrophobic amino acids than the 552

20-residue ones, featuring between 3 to 8 hydrophobic residues (S9 Fig): in this size range, folds with 553

true hydrophobic cores like those of natural proteins begin to emerge. The number of proline residues 554

remained at the same level of 2-5. 555

Molecular Dynamics results for top designs 556

We conducted 1-µs molecular dynamics (MD) simulations on the top designs of 15 residues (Fig 5), 20 557

residues (Fig 6), and 24 residues (Fig 7), with a timestep of 2 fs. The backbone Cα-atom RMSD was 558

measured every 10 ps, comparing the trajectory frame to the initial designed structure. Among the 30 559

trajectories analyzed, 9 exhibited relatively low RMSDs, indicating kinetic stability. These 9 RMSD 560

trajectories are displayed in Fig 8a and S10 Fig, and the rest are shown in S11 Fig. 561

The 15-residue design 169032 displayed the most stable trajectory, maintaining an RMSD below 2 Å 562

for the majority of the simulation. Its highest RMSD was 3.51 Å, yet it retained a globally similar shape 563

to the original design. Trajectory 17434 has its RMSD rise to ∼3 Å after 400 ns, adopting an enlongated 564

conformation. Trajectory 136805 showed oscillating RMSD values between 0.27 and 5.24 Å, with 565

frequent shifts to a slender conformation marked by a bent backbone. 566

For 20 residues, RMSDs generally fluctuated around the 2-4 Å level. Trajectory 27893 had the 567

smallest fluctuation, and constantly shifted between an open and a compact shape. Trajectory 68384 568

started to fluctuate after 400 ns. Its low-RMSD states preserved structures closely resembling the 569

original designs, while high-RMSD states had more expanded conformations. 570

For 24 residues, RMSDs stayed around 4 Å. Trajectory 21698 showed large RMSD oscillations within 571

the first 200 ns. Trajectory 19384, similarly, underwent early RMSD fluctuations but levelled off at 572

approximately 4 Å for the rest of the simulation. Trajectory 20199 had small oscillations for most of the 573

time except a spike in RMSD at ∼900 ns. 574

Overall, designs 169032 and 27893 exhibited the most kinetically stable trajectories, showing minor 575

RMSD fluctuations. The remaining designs experienced larger RMSD variations, yet they frequently 576

reverted to the designed structures. To explore the energy landscapes and assess the thermodynamic 577

stability of these designs, we proceeded with replica exchange molecular dynamics (REMD) simulations. 578

Replica Exchange Molecular Dynamics results for stable trajectories 579

In addition to the nine designs with stable MD trajectories (Fig 8a), we conducted replica exchange 580

molecular dynamics (REMD) simulations on three PDB crystal structures (8-residue PDB 6ucx, 581

10-resdiue PDB 6uf7, and 12-residue PDB 6uf8) from a prior study [25] as our positive control group. As 582

negative controls, we selected one structure from each size of 8, 10, 12, 15, 20, and 24 residues, randomly 583

permuted its amino acid sequences, and refined its side-chains using Rosetta’s FastRelax Cartesian 584

relaxation protocol (S9 Appendix). These control groups provided a basis for evaluating our designs’ 585

REMD outcomes. 586
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Fig 8. Molecular dynamics simulation results of top designs. (A) Backbone Cα-atom RMSDs are calculated
between the MD trajectory frames and our designed structures. Snapshots are shown for selected time points (designed
structures in red, trajectory frames in blue). (B) REMD free energy surfaces. From the lowest free energy basins (marked
by green boundaries), representative structures (colored in blue) are extracted from the histogram bins and aligned
against our designed structures (red), with the population percentages in the minima labeled aside. The designed
sequences are listed on the side.
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We verified the convergence of the REMD simulations by examining physical properties like 587

temperature and radius of gyration. Details and associated plots are provided in S10 Appendix and S12 588

Fig-S15 Fig. Subsequently, we calculated the average RMSDs of Cα-atoms for uncorrelated 589

configurations sampled at 300 K against the original designs, as documented in Table 1. 590

Both our positive and negative control groups showed noticeable increases in the average RMSDs as 591

the size grew. For smaller macrocycles (around 15 residues), an RMSD around 2 Å indicates a very 592

strong candidate, around 3 Å is good, 4 Å is weak, and greater than 5 Å is poor, with a greater 593

allowance for larger sizes. Consequently, our 15-residue Design 169032, with an RMSD of just 2.21 Å, 594

stood out as a highly promising candidate. Similarly, the other two 15-residue designs 17434 and 136805, 595

plus the 20-residue LowEnergy 68384, and the 24-residue LowEnergy 20199, each with an average RMSD 596

of approximately 3 Å, were also favorable. The remaining high-RMSD designs are considered to have 597

failed the REMD validation (Table 1). 598

The free energy surfaces (FES) for these five low-RMSD candidates are shown in Fig 8b. As expected, 599

Design 169032 had energy minima in low-RMSD regions. Its lowest energy minimum Emin was located 600

at 2.04 Å RMSD. An 18.08% population of the 300 K configurations fell in this energy basin (energy 601

minimum bin and adjacent bins with free energies ≤ 0.9 ∗ Emin). The second lowest energy basin, at an 602

RMSD of 0.71 Å, accounted for 7.22% of the population. We aligned representative structures from these 603

energy basins (one per bin) with the designed structure, and noted minor deviations in the two proline 604

backbone ends (residues 4 and 11). 605

Design 17434 had more scattered energy basins, one below 2 Å with 10.42% population, and the 606

structures maintained the global conformation of the design. The other basin located at almost 4 Å with 607

5.87% population, and had more elongated conformations, as was seen in its MD trajectory. 608

Design 136805 exhibited a “heart-like” configuration, with the backbone curling in the middle. Its 609

free energy surface featured a deep concentrated energy basin at 2.49 Å RMSD, accounting for 8.18% of 610

the population. Structures from this energy basin aligned well with our design, showing deviations 611

mainly in the curl region of the backbone (residues 14 and 15). Nearby, the second-lowest energy 612

minimum was found at 2.71 Å RMSD, presenting a broader basin that encompassed 13.13% of the 613

population. Structures from this basin were more variable, with main differences in the right half of the 614

“heart” (residues 1-6). 615

Table 1. Computational validation of top designs using REMD simulations. For each simulation, the average
RMSD is computed for backbone Cα atoms using uncorrelated configurations sampled at temperature state 300 K. As a
negative control, average RMSDs are also computed for randomly permuted sequences of each size. By comparing the free
energy surfaces of the designed structures with those starting from alternative conformations, the validation results are
categorized into computationally validated (the design state is reached in REMD simulations from different starting states),
computationally suggestive (the design state is preserved in REMD simulations if started in the design state), and failed (the
design state is not preserved in REMD simulations).

n Design name
Average Random

Computational validation
RMSD (Å) RMSD (Å)

8 PDB 6ucx 0.48 2.23 Computationally suggestive
10 PDB 6uf7 1.31 2.92 Computationally suggestive
12 PDB 6uf8 2.77 3.01 Computationally suggestive
15 Design 169032 2.21 4.49 Computationally validated
15 Design 17434 2.92 Computationally suggestive
15 Design 136805 3.24 Computationally validated
20 LowEnergy 68384 3.14 5.17 Computationally validated
20 LowEnergy 27893 4.10 Failed
20 LowEnergy 1665 4.12 Failed
24 LowEnergy 20199 3.28 Computationally suggestive
24 LowEnergy 21698 4.04 6.64 Failed
24 LowEnergy 19384 5.10 Failed
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LowEnergy 68384 displayed a “star-like” conformation with five arms, and its free energy surface 616

exhibited a diagonal distribution. The two energy minima were situated in the lower left region, 617

featuring compact structures akin to the original design. The structural deviations mainly occurred in 618

two arms (residues 11-13 and residues 19-20+1-4). 619

LowEnergy 20199 had a single deep energy minimum at RMSD 2.5 Å, occupying 22.02% of the 620

population. The structures aligned closely with the design, making this design also promising. 621

For other designs with high average RMSDs, their free energy surfaces generally showed minima in 622

regions of high RMSD, as depicted in S16 Fig and S17 Fig. Regarding the randomly-permuted sequences 623

included as negative controls, there were notable changes in the FES compared to the designed 624

sequences. In particular, the randomly-permuted version of the 8-residue 6ucx displayed multiple energy 625

minima in its FES, while the FES of the unperturbed sequence showed a single minimum. The 626

randomly-permuted 24-residue 21698 had its energy basins located at much higher RMSD regions, 627

indicating that the original designed backbone was incompatible for the randomized sequence. This 628

suggests the importance of sequence design in maintaining a thermodynamically stable fold. 629

To further validate that our REMD simulations thoroughly sampled the energy landscapes, we 630

repeated the same protocol for all nine designs and the three PDB control structures, starting from 631

“wrong” backbone conformations. Specifically, from the PNear landscapes generated by our ClusterGen, 632

we picked alternative backbones with low energies but high RMSDs for the designed sequences. If the 633

FES from these “wrong” starting points resemble the original FES, i.e., sampling similar energy minima 634

distributions, it would suggest that our sampling is sufficient and not biased by the starting 635

conformation. A design that has low average RMSD and convergent new FES is said to be 636

computationally validated (Table 1). 637

The comparative results are displayed in S16 Fig and S17 Fig. Notably, for Design 169032, the new 638

FES was almost identical to the original one, further confirming its strong stability and supporting 639

near-exhaustive sampling. Among the other four top candidates, the 15-residue Design 136805 and the 640

20-residue LowEnergy 68384 also show a similar new FES compared with the original. Hence, we list 641

these three designs as computationally validated in Table 1. 642

Interestingly, for the experimentally solved structures 8-mer 6ucx, 10-mer 6uf7, and 12-mer 6uf8, the 643

new FES from the alternative starting structures did not converge well to the original ones, unable to 644

reach the native states. This suggests that designs with non-convergent FES are not necessarily unstable 645

but rather in an ambiguous state where the computational validation could not draw a definitive 646

conclusion. A possible reason might be deep kinetic traps that hinder exploration of the conformation 647

space. We see such non-convergent cases in our 15-residue Design 17434 and 24-residue 20199. We label 648

them as computationally suggestive (Table 1). 649

Structure predictions for existing macrocycles found in the Protein Data 650

Bank 651

Finally, we assessed whether ClusterGen could effectively navigate the rugged energy landscapes and 652

identify the lowest energy minima. For 20 existing macrocycles of 7-24 residues without cross-links, 653

whose experimentally-determined structures were previously deposited in the PDB, we applied 654

ClusterGen to generate energy landscapes, using only the amino acid sequences as input (S18 Fig). From 655

each landscape, we then selected the five lowest-energy cluster centers as our structural predictions. The 656

best predictions are displayed in Fig 9, and the remaining in S19 Fig. 657

For seven PDB-deposited structures of lengths 7-10 residues taken from Hosseinzadeh et al.’s 2017 658

Rosetta design paper [13] (labeled in blue in Fig 9), our lowest-energy predictions achieved RMSDs of 659

between 0.277 and 1.083 Å to the experimentally-determined structure. Ten additional PDB-deposited 660

structures of lengths 8-24 were from Mulligan et al.’s Rosetta symmetric design paper [25] (labeled in 661

black in Fig 9). Unlike the original study, which imposed an assumption of internal symmetry during 662

Rosetta structure prediction steps to make PNear landscape generation tractable, we considered all 663

possible conformations without any assumptions, which drastically increased the conformational space 664

and hence the sampling difficulty. Nevertheless, our method still yielded good predictions, having seven 665
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Fig 9. Structure predictions for macrocycles previously deposited in the PDB. The best predictions (green)
from the low-energy cluster centers are aligned to the PDB structures (orange), with RMSDs shown. PDB structures
from the 2017 [13] and 2020 [25] Rosetta design papers are labeled in blue and black, respectively, and all others in pink.
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out of ten predicted structures within 1.5 Å RMSD. Even for the 24-mer 6uf9, our prediction maintained 666

1.559 Å RMSD from the crystal structure, and although many of the higher-energy samples returned were 667

asymmetric, the S4 internal symmetry was nicely preserved in the lowest-energy sample. The sole outlier, 668

the 10-mer 6ufu, had an RMSD of 2.331 Å due to the inherent instability of the designed structure, 669

which was confirmed by the presence of two distinct forms in X-ray crystallography experiments. 670

Besides the Rosetta designed structures, we found three other PDB-deposited macrocycles satisfying 671

our length and no cross-link requirement: 6awm, a 7-mer orbitide (a class of macrocyclic peptides made 672

by plants); 2ns4, a 14-mer peptidomimetic inhibitor featuring short beta sheets and a long loop; and 673

6dzb, a 16-mer beta sheet structure mimicking an RNA recognition motif. Predictions for these 674

structures were less accurate compared to similarly sized structures. Upon close examination, we found 675

all three were derived from NMR experiments and exhibit a high degree of conformational heterogeneity, 676

compared to other NMR structures for Rosetta designs. Conformational heterogeneity in NMR 677

structures can be due both to flexibility of the peptide itself, or due to limited NMR structural 678

constraints leading to high uncertainty. The observed heterogeneity is particularly evident in the loop 679

regions of 2ns4 and 6dzb, which might be disorganized and floppy. When aligning only the structured 680

beta sheet regions (residues 5-12) in 6dzb, our prediction achieved a significantly lower RMSD of 0.480 Å. 681

Note that as most PDB experimental structures used here contain D-amino acids, and two of the 682

remaining three structures (2ns4 and 6dzb) are in the training dataset for Machine Learning-based 683

methods [17], we could not conduct a meaningful prediction comparison with ML methods. 684

Discussion 685

In this work, we have introduced a pipeline, called CyclicChamp, for cyclic peptide design (Fig 1). 686

Many past works have used a single-shot generalized kinematic closure (GenKIC) algorithm to sample 687

closed macrocycle conformations [5, 6, 13,21,25,26,40,41]. Unfortunately, the GenKIC technique limits 688

the size of macrocycle for which the conformation space may be extensively explored, either for design or 689

for validation. 690

By contrast, CyclicChamp performs an iterative search of cyclic backbones with favorable features 691

like strong H-bonds and no steric clashes. Because this produces more viable backbone conformations in 692

less time, CyclicChamp is able to design small macrocycles at lower computational cost, and for the first 693

time, access sizes as large as 24 residues without relying on symmetry or chemical cross-links to limit the 694

accessible conformational space. The basic insight is to transform the cyclic backbone constraint into an 695

error function to allow the use of optimization methods like simulated annealing and genetic algorithms. 696

The optimal simulated annealing parameters were selected from well-spaced random samples of possible 697

parameter value combinations, obtained using combinatorial design [33]. While we have assumed ideal 698

bond angles, bond lengths, and ω torsion angles to simplify the evaluation of the cyclic error function 699

(Fig 1), generalizations that allow these degrees of freedom to deviate slightly from ideal values during 700

the backbone simulated annealing time steps are possible. 701

Using these algorithmic ideas, we have generated macrocycles of four sizes. For 7-residue designs, we 702

conducted a comprehensive search of Ramachandran spaces by considering all possible torsion bin center 703

combinations for initial backbone torsion angles. Because the number of torsion bin combinations grows 704

exponentially, for larger designs of 15-24 residues, we randomly selected 100,000 initial combinations. 705

Large pools of backbone candidates with distinct torsion bin strings were generated for 15 and 20 706

residues (Fig 2). 707

The sparse clusters found in the 7-residue design were due to the limited torsion bin strings. For 24 708

residues, while the accessible conformational space exponentially expands with the number of backbone 709

degrees of freedom, only a tiny portion of the conformation space represents backbones with favorable 710

features (e.g. hydrogen bonds) that could be stabilized by suitable choice of sequence. As a result, our 711

backbone simulated annealing algorithm reached its limit. Because the search space grows exponentially, 712

and because solving even simpler discrete version of such problem is NP -complete [42], there is no known 713

efficient means of sampling conformations across all sizes, though better heuristic methods like ours can 714

increase the maximum size of peptide that can tractably be sampled and designed. Future studies might 715
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experiment with alternative energy models or consider less stringent requirements for cyclic error and 716

repulsive energy when selecting backbone candidates to try to push this limit higher. 717

After the relaxation and design steps were applied on the clustered backbones, we conducted stability 718

tests on the designs having the lowest energies. For 7-residue designs, both Rosetta’s random sampling 719

method and our Ramachandran-stability filtering method were employed to generate energy landscapes. 720

A positive correlation was found to exist between the PNear values computed by the two methods. We 721

observed instances in which the filtering method explored the low-RMSD regions in the energy 722

landscapes more thoroughly than the random sampling method. 723

We noted that the optimal energy range for high PNear values did not always correspond to the 724

lowest energy levels (Fig 3). Rosetta’s sequence design considers only the desired conformation that one 725

is stabilizing, in order to make the problem tractable; however, the true problem that one wishes to solve 726

is that of maximizing the energy gap between the desired conformation and all alternative conformations. 727

The lack of correlation between the best PNear values and the lowest single-state energies could be that 728

Rosetta has artificial ways of lowering the energy of the designed state, such as adding hydrophobic 729

groups, which tend to stabilize all structures universally instead of uniquely stabilizing the designed 730

structure and maximizing the energy gap between this and alternative states. 731

The Ramachandran-stability filtering approach can extend to design cyclic peptides with constrained 732

but not fully specified sequences. For instance, to design a stable 7-residue cyclic peptide with alanine 733

residues as the first and fifth amino acids, from the backbone candidate pool sampled by layered 734

simulated annealing, we can identify backbones whose first and fifth residues’ torsion angles fall in the 735

Ramachandran space accessible to alanine. This approach allows us to reuse existing pools of backbone 736

candidates. 737

Starting from 15 residues, Rosetta’s method tended to struggle with exploring the low-RMSD regions, 738

and often generated similar round-shaped energy landscapes (Fig 5). To resolve this issue, our 739

ClusterGen algorithm begins with two simulated annealing runs targeting low energy and low RMSD, 740

effectively broadening the RMSD spectrum of the landscape. The subsequent genetic algorithm identifies 741

energy minima through iterations of crossover, mutation, and selection. ClusterGen has successfully 742

differentiated designs of various energy landscape shapes (Fig 5). 743

In the top 15-residue designs, we observed short alpha helices as depicted in Fig 5. Recurring 744

backbone bendings were induced by i, i+ 3 H-bonds, which led to more twisted shapes compared to the 745

simple circular backbones seen in 7-residue designs. In the top 20- and 24-residue designs, we saw more 746

diverse secondary structures such as 310-helices, β-bridges, and β-ladders (Fig 6, Fig 7). Although 747

complete α-helices or β-sheets are not fully formed, fragments of these structures start appearing, aiding 748

in the stabilization of these mid-sized peptides. Long-range H-bonds also play a crucial role in stabilizing 749

the 20 and 24 residue macrocycles. 750

Additionally, for 15-24 residues, we see an enrichment of high PNear values in compact structures 751

(Fig 5, Fig 6, Fig 7). This suggests that simply sorting the designs in ascending order of energies may 752

not be the most effective strategy to identify top designs for stability validation. A more nuanced 753

approach could be to select designs that feature secondary structures or long-range H-bonds and have 754

backbone radii below a specific threshold, and then to sort them by energy. 755

We have found close backbone matches in our 7-residue designs to the three previously-published, 756

experimentally-solved Rosetta designs (Fig 4). For 15, 20, and 24 residues, we conducted MD and 757

REMD simulations to evaluate the kinetic and thermodynamic stability of our top designs (Fig 8). 758

Specifically, the 15-residue Design 169032 demonstrated exceptional stability, with free energy minima 759

around the 2 Å RMSD region, and the representative structures closely aligning with the design. Two 760

other 15-residue designs 17434 and 136805, plus a 20-residue LowEnergy 68384 and a 24-residue 761

LowEnergy 20199 also managed to preserve their overall shapes throughout the simulation, despite some 762

local conformational movements. Further REMD validations starting from alternative conformations 763

confirmed that Design 169032, 136805, and 68384 had sufficient sampling of FES, as similar low energy 764

basins were found, and we thus considered them as computationally validated designs. 765

Our ClusterGen’s accurate structural predictions of experimentally determined macrocycles (Fig 9), 766

especially for the symmetric 24-mer, demonstrate ClusterGen’s ability to overcome the high 767
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dimensionality challenge in energy landscape sampling, leading to the successful identification of 768

low-energy native states. This suggests that PNear stability analysis using CluterGen is an effective 769

method for validating designs. Moreover, we provide a new tool for handling general large-sized 770

macrocycle structure prediction, compared to ML-based methods which could only predict sequences 771

with canonical L-amino acids, and Rosetta’s simple cycpep predict which fails to reach low-energy 772

native states beyond 15 residues unless structural constraints are assumed. 773

To the best of our knowledge, this work represents the first instance of general, unconstrained design 774

of 15-, 20-, and 24-residue mixed chirality macrocycles, without relying on limitation of degrees of 775

freedom through the use of symmetry, disulfides, or other cross-links. The capability to design such large 776

sizes not only enhances the structural diversity of cyclic peptides for future drug search, but also allows 777

larger interaction surfaces for drug binding. Moreover, this opens a door to the design of cyclic-peptide 778

enzymes, which require larger sizes to form active site pockets and may incorporate exotic chemical 779

groups with active-site residues for catalysis. 780
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