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Summary 

The human brain must support both stable and flexible neural dynamics in order to 

adapt to changing contexts that are inherently non-linear. The thalamus has been 

linked to the coordination of these opposing dynamical regimens in the cerebral 

cortex, however existing methodological approaches have not integrated sufficient 

neurobiological details with a sensitive measure of neural dynamics that permits 

sensitivity to time-series non-linearities. Inspired by the field of fluid dynamics, we 

use a novel approach to show that spontaneous fMRI data exhibits non-trivial 

fluctuations in predictability over time, akin to a river that has sections of smooth 

and predictable (laminar) versus rough and unpredictable (non-laminar) fluid flow. 

We use a combination of pharmacological fMRI, macaque electrophysiology and a 

large-scale biophysical model of the thalamocortical system to provide robust 

evidence that the thalamus provides versatile control over globally linear dynamics 

in the cerebral cortex that characterize conscious states. 
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Introduction 

The human brain supports a wide-ranging behavioural repertoire, with dynamic, 

context-dependant recruitment of specialized neuronal assemblies emerging from 

coordinated interactions amongst tens of billions of cells. The computational 

capacities that support these behaviours are in large part related to this cellular 

complexity, however, this high-dimensional neural activity is of minimal adaptive 

benefit unless the neural activity that unfolds over time is both stable and yet 

flexible. In other words, neural dynamics must be reliable for repeated precise 

execution, but also rapidly adaptable to changing contingencies. How the intricate 

organization of the brain supports these opposing capacities remains to be 

understood. 

 

The thalamus is a highly-conserved subcortical structure that has been argued to 

play a central role in shaping and constraining the flexible neural dynamics that 

characterise the conscious, awake brain1–3. At the microscale, there is evidence that 

specific cell types in the thalamus act to relay information from sensory systems4,5, 

coordinate motor actions6, and also to integrate and distribute information from 

subcortical structures7–9 to decentralized corticothalamic networks. At the 

macroscale, recent work has shown that diffusely-projecting subtypes of 

thalamocortical nuclei promote variability of dynamics across the cerebral cortex7,8,10 

through the instantiation of quasi-critical brain state regimes11 which support shifts 

in cognition12 and consciousness13–16. These emerging perspectives place the thalamus 

in a unique topological position within the brain, wherein it is able to both drive the 

cerebral cortex with targeted inputs, but also to modulate on-going cortical 

dynamics through diffuse projections7. Despite this privileged position, to date there 

are few direct empirical links between the thalamocortical system and precise 

dynamic trade-offs characteristic of adaptive systems1. 
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A primary reason for this lack of direct evidence is that few existing neuroimaging 

analysis techniques are capable of providing a time-resolved estimate of the stability 

(or flexibility) of brain state dynamics that is sensitive to the inherently non-linear 

waxing and waning nature of our waking lives17. Most of the current statistical 

approaches have either been designed to capture distributional moments of neural 

time-series or have heavily relied on assumptions of stationarity1819–25. While some 

approaches have softened assumptions of stationarity – e.g., by carving data into 

shorter windows that are swept over time26,27 – these techniques are typically model-

based, which makes the detection of non-linear shifts in brain states inherently 

difficult. Other approaches have used inventive means for tracking functional 

neuroimaging data at a fine temporal resolution28–30, however the direct 

interpretation of these measures with respect to stability and flexibility (which 

naturally require longer epochs of data to quantify) is non-trivial. 

 

Fortunately, there are existing methods from the field of fluid dynamics that are 

well-suited to this class of problems, however they require a subtle change in 

perspective. By way of analogy, if we consider brain dynamics as a flowing river, we 

need to move from tracking the topography of the river – which is admittedly still 

highly informative – to characterising the flow of water at different sections of the 

river: one section might be calm and largely laminar, whereas another might be full 

of turbulent swirling eddies and so non-laminar (Fig. 1a). Importantly, these local 

dynamics provide fundamentally different constraints over the local environment, 

permitting smooth (stable) or disturbed (flexible) flow of local objects, respectively. 

This dynamics-focussed perspective has led to key insights in fields such as fluid 

mechanics, mechanical engineering, economics, and sociology31–33, and here we 

advocate for its application to problems in neuroscience. 

 

There are several significant historical parallels between the fields of neuroscience 

and fluid dynamics in the development of measurement techniques that further 
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motivate advances in data-driven modelling approaches. Both disciplines study 

complex systems that are high-dimensional, non-linear, and inherently multi-scale, 

both in space and time, yet both also exhibit dominant spatiotemporal patterns of 

activity that are meaningful for scientific understanding and engineering31,34,35. 

Importantly, experimental measurements in each field have followed a similar 

technological trajectory: recordings were first single point (hot-wire anemometry 

and sharp electrodes), followed by simple arrays (many hot-wires and electrode 

arrays), and more recently spatial and temporal fields resolved by imaging (laser-

based particle image velocimetry PIV36–38 and magnetic-resonance-based functional 

brain imaging39). Accordingly, mathematical modelling techniques in fluids have 

evolved from quantifying statistics to extracting spatiotemporal dynamics40,41. We 

note that—with a delay of several decades—a similar progression is now occurring 

in neuroscience42. For this reason, there is a tremendous opportunity to leverage 

modern dynamical systems modelling techniques to gain insights into neural 

computation. 

 

In this paper, we repurpose an approach from fluid dynamics for application to 

functional neuroimaging data. Specifically, we develop a measure of timeseries 

stability – akin to fluid laminarity – by tracking the capacity of a simple linear 

dynamic model to accurately predict successive time-points. We show that neural 

recordings transition through periods of increased linear predictability that 

irregularly fluctuate through periods of decreased linearity over time (Fig. 1b). The 

spatial and temporal structure of these linear dynamics reveals coherence maps and 

intrinsic timescales that are not captured by null models that either scramble 

temporal order or recreate timeseries based on the covariance and Fourier power 

spectrum of the original data. We then reveal how pharmacological manipulation of 

arousal, via propofol-induced anesthesia, results in heightened linearity in human 

neuroimaging data (Fig. 1c). Next, we demonstrate how targeted and diffuse 

thalamocortical subtypes can both promote or diminish linearity, respectively. We 
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underscore the importance of thalamocortical interactions in a detailed biophysical 

model which further predicts matrix thalamic stimulation re-instantiates deviations 

from linear dynamics concomitant with conscious arousal, which we then confirm 

by applying our approach to multielectrode cortical recordings from an anesthetized 

macaque that was awoken by electrical stimulation of the diffuse thalamic 

projections within the central lateral thalamus14,15. In this way, we reveal the crucial 

role of the thalamus in shaping and constraining global linear activity patterns 

distributed across the cerebral cortex, supporting an essential feature of stable, and 

yet adaptive and flexible cognition. 

 

 

Figure 1 – Linear dynamics in large-scale brain recordings. a) Depiction of laminar and non-laminar 

river flows forming an analogous axis for large-scale brain dynamics – this analogy provides a useful 

means for appreciating the approach used in our experiment. b) Top: Schematic showing how a 

global linear model can be compared to ground-truth timeseries as a time-varying measure of 

linearity – here, a low-dimensional representation of changes in the BOLD signal across the cerebral 

cortex is used to predict changes to the state of the brain in the next time point (black lines to dotted 

circles); the actual brain state (closed circles) is recorded, and the distance between these two states in 

state space is quantified as the “Error” of the model – linear dynamics are associated with consistently 

low Error values, whereas non-linear dynamics have variable Error values. Bottom: A Horizon plot 

showing the time-varying linear forecast performance in 7T resting-state human BOLD43 from an 

example subject – note the large fluctuations in Linear Model Error (MSE), particularly at longer 

delays (Forecast Horizon,�). c) 7T human resting-state linear prediction performance (N=59; black), 3T 

human resting-state linear prediction performance (N=14; green), 3T human resting-state under 

propofol anesthesia linear prediction performance (N=14; dark blue). 
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Results 

Linear dynamics in large-scale cortical recordings 

To quantify the time-varying stability of brain state dynamics, we applied a simple 

linear model estimation technique (Fig. 1b; Supp. Fig. 1) to a high spatiotemporal 

resolution human 7T fMRI dataset captured during the resting state. First, a global 

linear propagator tracking moment-to-moment shifts in a recording is generated for 

each subject’s timeseries by utilizing the singular-value-decomposition (See Supp. 

Fig. 1a). Then, for every timepoint in the recording, the linear propagator is used to 

forecast state dynamics at a set of future timepoints (�; 1-10 TR) – note that we 

explicitly chose to fit a global propagator (i.e., we did not redefine the propagator in 

a sliding-window fashion). The linear dynamics predicted by the global propagator 

are then compared to the ground-truth dynamics via the mean-squared-error, 

providing a time-resolved read-out of how effective (or not) the linear model was at 

predicting the upcoming brain state. We denote this term as the Forecast Horizon of 

the linear model prediction (Fig. 1b) and the resultant graph as a Horizon plot. 

 

We reasoned that, if the resting brain were stable (i.e., linear) throughout the 

recording, then we should observe relatively strong, consistent predictability 

throughout the entire recording session. In stark contrast, the Horizon plot in Fig. 1b 

shows that neural dynamics cycle through periods of increased and decreased 

linearity over the course of a recording session. This observation is at direct odds 

with the typical assumption of stationarity that is applied in standard neuroimaging 

analyses21. The results are observed for every individual in the dataset (N = 59; Supp. 

Fig. 2), robust across validation datasets (which had different temporal resolutions; 

see Supp. Fig 2) and do not correlate with frame-wise displacement (r = 0.01 +- 0.03 

across 10�). Crucially, these results extend previous findings of strong linear 
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dynamics in human neuroimaging44–46 and large-scale electrophysiological 

recordings46,47, by showing substantial yet irregular deviations from linear 

predictability in conscious states that is pervasive across subjects. 

 

Adaptive timescales and dynamic brain modes 

Intrinsic timescales of the brain have been of interest since the discovery of 

oscillatory dynamics in the first human EEG recordings48. Human neuroimaging 

studies have revealed a hierarchy of temporal and spatial autocorrelation scales 

across the cortex49 and that these capture a large number of existing topological 

metrics22. Linear flow analysis enriches this approach by quantifying intrinsic modal 

timescales that drive linear dynamics in neural activity – and which may be 

recruited in an adaptive and time-varying manner reflecting changing cognitive 

demands. To do this, we leveraged another method commonly used in the field of 

fluid dynamics – Dynamic Mode Decomposition (DMD) – that is designed to efficiently 

characterize the dynamics of time-varying processes through eigendecomposition of 

the linear propagator matrix31,34,35,50, reformulating the linear dynamics as a function 

of spatiotemporal modes 32,35,50. Each mode contains four key characteristic 

properties: the spatial eigenvector defines a spatial pattern of coherent activity, and a 

corresponding spatial pattern of delays relative to each of these coherence patterns – 

called a dephasing map. In addition, each mode has a corresponding eigenvalue 

defining its oscillatory frequency, and an exponential gain parameter – which 

determines whether a mode will grow or decay in time (i.e., captures its temporal 

stability) – representing two key dimensions of the system’s timescales. 

 

By applying DMD to each subject’s fMRI recording, we formulate a subject-specific 

set of spatiotemporal modes capturing on-going linear dynamics. In order to gain 

insight into how these dynamic modes relate across all subjects, we leverage a two-

pronged clustering approach to aggregate modes across timescales, and then spatial 

coherence, respectively. First, we consider timescales by utilizing k-means clustering 
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of the eigenspectrum collated across all subject recordings. A peak in adjusted 

mutual information between clustering repetitions was then used to select k = 5 

clusters (1000 repetitions; see Supp. Fig. 4), resulting in 5 distinct timescale 

groupings – the corresponding average of the coherence maps within these clusters 

(Supp. Fig. 4). Timescale cluster 1 shows somatomotor and visual activation 

antiphase with frontal, parietal and temporal cortices across a broad range of 

frequencies – spanning much of the time resolution of BOLD recordings. These 

modes are also weakly damped – i.e., have a strong gain relative to the other 

temporal clusters. Timescale cluster 2 shows visual, premotor, and dorsal lateral 

prefrontal antiphase with other cortices at slower frequencies (< 0.03 Hz; Fig. 4 g-h 

middle) and with a stronger damping rate, i.e., weaker gain, than cluster 1. And 

timescale cluster 3 shows strongly damped temporal cortex activity at frequencies < 

0.02 Hz. 

 

Next, we considered the spatial patterns of coherence, defined by each mode, 

aggregated across subjects and recording sessions to define consistent modal 

groupings50. Again, we leveraged k-means clustering (adjusted mutual information 

peaked between clustering repetitions for k = 5; See Supp. Fig. 4): Figure 2m shows 3 

cluster centroids and their defining coherence patterns – i.e., the spatial patterns of 

the linear modes across all subjects fall within distinct classes. These classes show a 

significant overlap with resting-state networks used broadly in the literature51 – 

including the default mode, and somatomotor and visual networks. We further find 

that the damping rates and frequencies of the modes within each class have 

comparable probability distributions – demonstrating these spatial classes did not 

demonstrate unique linear timescales at this granularity in resting-state. 

 

Empirical fluctuations are distinct from surrogate models 

To further investigate the fluctuations in linear dynamics observed in resting state 

fMRI data, we contrast these against two surrogate timeseries that conserve distinct 
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features of the empirical fMRI data. The first, referred to as the spectral surrogate, 

consists of white-noise timeseries imbued with a covariance and Fourier frequency 

spectrum matching those of the empirical data (i.e., a stationary surrogate21; see 

Supp. Fig. 1d). Crucially, this surrogate shares the empirical correlative structures 

between brain regions which forms the basis of many approaches in the 

neuroimaging literature18. In addition, this surrogate includes timescale information 

captured by the Fourier spectrum, which is predictive of future dynamics, since the 

sinusoidal modes comprising this time averaged measure oscillate across time. The 

second surrogate, referred to as the shuffled surrogate, is simply the initial empirical 

fMRI data uniformly scrambled in time – i.e., the regional activations relative to 

other regions at a given moment are conserved, matching empirical regional 

correlations, but when they occur with respect to any other activations in time is 

scrambled. Since the empirical data and both surrogates have the same correlation 

structure, they also share the same principal components (i.e., covariance defining 

regional activation patterns). Despite these similarities, Fig. 2b & 2c show that the 

temporal expression of these patterns no longer matches that seen in the empirical 

data (Fig. 2a). 
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Figure 2 – Spatiotemporal modes of global linearity. a) Example subject time-series of first 3 

principal components. b) Example subject correlation matrix (left) and linear propagator matrix 

(right) capturing linear dynamics. c) Timescale properties of dynamic modes defined by the linear 

propagator of 7T resting-state data (N=59). Colour bar shows the total power within each mode across 

the entirety of the recording. Orange dots correspond to the example subject’s dynamic modes in j). 

Random Spectral Surrogate is generated from a white-noise timeseries with a covariance and Fourier 

power spectrum matching the empirical data in a-b). d) Principal component time-series for the 

random spectral surrogate. e-left) Random spectral surrogate correlation matrix, (e-right) linear 

propagator matrix, and (f) dynamic mode timescales. Shuffled Surrogate is generated by uniformly 

randomizing each timepoint of the regional timeseries – i.e., only randomizing time and not space. g) 

Principal component time-series for the shuffled surrogate. h) Left: shuffled surrogate correlation 

matrix; Right: linear propagator matrix, and (i) dynamics mode timescales. j) Example subject 

dynamic modes capturing the most (j-i), median (j-ii), and least (j-iii) amount of globally-linear 

dynamics and (k) these modes’ corresponding temporal dynamics. l) Average linear errors as a 

function of future time points across all (N=59) subjects (green), and all corresponding Random 

Spectral (pink), and Shuffled (blue) surrogates (p < 0.001; line = mean across subjects; shaded error bar 

= variance across subjects). m) k-means spatial coherence clusters of the dynamic modes across all 

subjects (N=59) - showing 3 clusters (m-left) of k=5 – see Supp 3 for all clusters. (m-right) Cluster 

power within each of the 7 resting-state networks51. 
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Again, leveraging Dynamic Mode Decomposition, we find the empirical fMRI data are 

clearly distinct from the surrogates in two key ways: firstly, the fMRI data consist of 

slowly fluctuating, sustained, spatiotemporal dynamic modes (Fig. 2c), as compared 

to the surrogates. Due to its matched oscillatory spectrum, the spectral surrogate 

contains a similar distribution of modal frequencies (0-0.14Hz) to the empirical data 

(Fig. 2f). However, these oscillations are strongly damped, as the spectral surrogate 

mostly excludes moment-to-moment information predictive of future states with 

only the time-averaged Fourier modes contributing to continuity of its temporal 

trajectories. In contrast, the shuffled surrogate displays a much wider range of high 

frequency (0-0.8Hz) strongly damped modes than both the empirical data and the 

spectral surrogate (Fig. 2i). This is due to the shuffled surrogate’s time-point 

scrambling favouring fast and short-lived shifts in moment-to-moment activity. 

 

Secondly, the empirical fMRI data contains significantly more linear dynamics than 

either surrogate (Fig. 2l). That is to say, the empirical fMRI data contain information 

in their moment-to-moment dynamics that is predictive of future globally-linear 

trajectories. Since both surrogates share the same covariance as the empirical data, 

and the spectral surrogate additionally includes Fourier spectral structure, we find 

these time-averaged features are not sufficient to capture the observed linear 

dynamics seen in the neural recordings. This finding was consistent at the subject 

level for all subjects (N=59; Supp. Fig. 2) and cross-validated in a 3T resting-state 

imaging dataset (N=14; Supp. Fig. 252). To ensure that this effect was not caused by 

fixed patterns enduring within the timeseries, we calculated the time-averaged 

mean-squared-displacement (MSD) for successive lags – comparable to temporal 

autocorrelation of the entire brain state – and found the linear errors are significantly 

smaller than those expected from general variability within the signal (Supp. Fig 3). 

In short, we have presented a simple technique for clearly demonstrating that, 

despite substantial fluctuations between linear and non-linear flow, resting state 
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fMRI data remains distinctly more globally-linear than either the spectral or shuffled 

surrogate. 

 

How does this perspective of linear dynamics extend traditional investigations into 

the resting brain? Further insight can be gathered by exploiting the dynamic modes 

corresponding to the propagator used to predict the linear (or non-linear) temporal 

epochs (Fig. 2l). Figure 2j shows an example of three dynamic modes from a single 

subject’s recording: the dynamic mode with the largest average amplitude across the 

time series (Fig.2j-i), median (Fig.2j-ii), and the smallest (Fig. 2j-iii). The spatial 

coherence maps for these modes are shown in Fig. 2j and have corresponding 

temporal dynamics defined by a complex exponential (Fig. 2k). These modes can be 

collated across all subjects via clustering approaches (See Methods) and show spatial 

coherence groupings that recapitulate common resting-state networks51 (Fig. 2m; 

Supp. Fig. 4), consistent with previous findings53, and temporal groupings defining 

cross-regional dynamics at distinct frequencies and temporal stabilities – i.e., 

damping rates (Supp. Fig. 4). 

 

Together these results clearly demonstrate that fMRI data contains predictable linear 

dynamics that are not observed in stationary surrogates – that is, the dynamics of 

human fMRI contains information in its moment-to-moment fluctuations that is 

predictive of its future dynamics. Despite this predictability, resting-state 

neuroimaging data also irregularly cycles through periods of predictable and 

unpredictable flow (Fig. 1b). 

 

Thalamic axis of cortical linearity 

Armed with this simple yet effective approach, we were now able to test our original 

hypothesis: namely, that axes of anatomical variation in the thalamus facilitate shifts 

between stable and flexible dynamical modes in the brain. The thalamus itself is 

comprised of a rich diversity of cell types which have unique projection profiles to 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 25, 2025. ; https://doi.org/10.1101/2024.07.02.601788doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.02.601788
http://creativecommons.org/licenses/by-nc-nd/4.0/


 14

both the cerebral cortex and other subcortical structures54–56. Although there is no 

single schema that effectively captures the diversity of thalamocortical 

interactions9,57–60, recent empirical studies in rodents have demonstrated the utility of 

considering a non-binary continuous spectrum of thalamic cells that differ in terms 

of the topography and targets of their axonal arbours61. At one end of this continuum 

sit the calbindin-rich matrix nuclei, which have thalamocortical projections spanning 

multiple cortical areas, typically targeting superficial layers of agranular association 

cortices (Fig. 3a). This organization contrasts with the parvalbumin-rich core nuclei, 

which typically target granular layers of the cerebral cortex, providing feed-forward 

input to cortical pyramidal neurons8,9 (Fig. 3a-b). 

 

Although there is evidence of individual thalamic cells that contain axonal features 

of both core and matrix types (even in the same axon54), there are good reasons to 

consider a spectrum that extends between the two extreme phenotypes3,8. For one, 

simplifying assumptions at the microscale are required in order to conduct tractable 

work at the macroscale of neuroimaging1,8,11,13. Secondly, there is now robust 

evidence that core and matrix cell types also differ in their functionality3: recent 

empirical and theoretical work has shown that electrical stimulation of the central 

lateral thalamus – which itself is abundant with matrix nuclei – but not the ventral 

lateral thalamus (which is a predominantly core-rich nucleus) can drive recovery of 

consciousness in propofol-anesthetized macaque monkeys by leveraging the non-

specific diffuse projection profiles of these matrix cells11,13–16. From these empirical 

vantage points, we thus ask: what type of cortical dynamics are facilitated by the 

thalamus, and how do these dynamics relate to the expression of core and matrix 

thalamic cell subtypes (Fig. 3)? 
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Figure 3 – Thalamic axis of cortical linearity. a) Schematic of characteristic projection profiles of core 

and matrix thalamocortical projection profiles (adapted from 54). b) Core-Matrix thalamocortical 

expression gradient (adapted from 8). c) Population average cortical map showing regions of 

dominant linear dynamics 10 time-points into the future. d) Thalamic timeseries for each subject are 

projected along the core-matrix gradient and epochs showing one standard deviation above the mean 

(high matrix) and below the mean (high core) are collated. e) The difference of the mean-squared-

error of the linear model following high matrix compared to high core thalamic activity. These mean-

squared errors can be reformulated into corresponding energies62 (logarithm of inverse state 

probability) following high core (f) and high matrix (g) thalamic activity. h) The subtraction of the 

core energy landscape from the matrix energy landscape. Negative values indicate strong linearity 

following core activity as compared to matrix activity. 

 

To answer this question, we applied a multitiered approach. First, we utilized the 

difference between the ground-truth data and the predicted linear dynamics – 

calculated for each region, each timepoint and each subject. We then sum these 

errors across regions to create a forecast horizon � � 10 (ensuring sufficient time for 

autocorrelation to decay) across all time points and all subjects. This defines a 
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cortical map revealing a spatial pattern of dominant globally-linear dynamics (Fig. 

3c). Figure 3c shows that predictable linear flow was predominant in sensory 

cortices, and that these dynamics were strongly negatively correlated with the core-

matrix expression gradient8 (r = -0.56; p < 10-10; Supp. Fig. 6a). That is, cortical brain 

regions with strong core thalamocortical projections also showed strong linear 

dynamics. However, both of these spatial maps also covary with the first principal 

component of the imaging data, which itself captures a significant proportion of the 

empirical timeseries’ overall covariance, thus making strong inferences about the 

thalamic involvement difficult.  

 

To test our hypothesis more precisely, we next asked whether the thalamus was 

temporally related to fluctuations in the predictability of cortical dynamics. 

Specifically, a time-resolved measure of matrix thalamus (relative to core thalamus) 

was generated by projecting each subject’s thalamic BOLD timeseries onto a core-

matrix expression gradient approximated from Allen Human Brain genetic 

expression data that corresponds to both extreme thalamic cell phenotypes (see 

methods; Fig. 3d)8. In this data, a positive weighting corresponds to high matrix 

activity relative to core regions of the thalamus (and vice versa). Next, for each 

subject, we identified peaks in this matrix-core timeseries that were one standard 

deviation above or below the mean (for high matrix and high core activity, 

respectively). Temporally averaging the prediction errors across all subjects and 

subtracting high core epochs from high matrix epochs clearly shows that increased 

linearity of cortical dynamics following peaks in core thalamic activity (Fig. 2e) – i.e., 

core thalamic activity precedes stable linear flow in the cortex. 

 

To investigate these temporal fluctuations further, we leveraged a recent technique 

motivated by approaches in statistical thermodynamics that quantifies the likelihood 

of moment-to-moment state changes in a given timeseries by representing 

fluctuations as thermodynamic energy62. The likelihood for changes in linear flow 
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(MSE) in the data is generated at each proceeding timepoint (forecast horizon, �) and 

produces a corresponding energy landscape for the two thalamic conditions (Fig. 2f-

g; see Methods for details). This approach strengthens our previous findings, in that 

strong core thalamic activity (relative to matrix thalamic activity) is followed by 

increased predictable dynamics (negative drop seen in Fig 2h) in the cerebral cortex 

(with a maximum ~3 seconds post-peak).  

 

These results are in keeping with the targeted feed-forward projections from the core 

thalamus acting as a feed-forward propagator cortical activity, and the more 

diffusely-projecting axons from matrix thalamic nuclei acting more akin to a 

modulator of ongoing cortical activity14–16,63. Furthermore, previous work8 has shown 

that this anatomical axis also covaries with temporal variability of corticocortical 

connectivity, as captured by dynamic correlations in fMRI8. That is, cortical regions 

receiving more projections from the matrix thalamus showed a greater flexibility in 

their coordination with other cortical regions. Together, these findings demonstrate 

that the thalamus can provide both the stabilization of on-going cortical dynamics 

necessary for robust behaviours, but crucially, also mediate the flexibility of these 

cortical dynamics, which is essential for adaptive cognition. However, to strengthen 

the evidence for the thalamic control over cortical linearity, we require approaches 

that causally influence brain states. 

 

Anesthesia promotes linear flow in the cerebral cortex 

We first sought to determine whether alteration of conscious brain states impacted 

the linear predictability of cortical dynamics. Given the highly susceptible, flexible 

and context-dependent nature of consciousness64–66, the critical importance of the 

thalamus in controlling dynamic brain states1,14,67 (Fig. 3), and armed with a 

technique for quantifying this impact (Figs. 1 & 2), we reasoned that awake state 

should be associated with irregular deviations from linear flow, which would then 

be diminished during anesthesia. To test this hypothesis, we extended our approach 
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to an existing human neuroimaging resting-state fMRI dataset of 14 healthy 

volunteers (4 women; mean age 24 years, SD = 552) who underwent propofol-induced 

anesthesia. As predicted, we found that anesthesia strikingly disrupted deviations 

from linear predictability compared to the awake state, with the linear forecasts 

performing significantly better across all subjects following propofol administration 

(blue line in Fig. 4d). This population-level observation can be better understood 

when viewing the Horizon plot of a specific subject recording, where the wake 

dynamics show periods of increased linear flow (Fig. 4b), which are equivalent to 

those observed for the same subject under propofol anesthesia (Fig. 4c). In contrast, 

the waking data is punctuated by periods of sharp deviation from linear flow that 

are not observed during propofol anesthesia (Fig. 4b). This observation thus 

provides confirmatory evidence for our hypothesis linking deviations from linear 

predictability to the conscious, waking state. 

 

      

Figure 4 – Linear flow across arousal. a). Schematic of fMRI timeseries. b-c) a Horizon plot of an 

example single subject resting-state human BOLD showing time-varying linear error during wake (b) 

and during propofol anesthesia (c). d) Population average linear error of BOLD resting-state data 

during wake (black) and propofol (dark blue) conditions averaged over each recording – shaded 

regions show standard-error-of-mean (note: this is a group-level summary of the data in Figure 1c). e) 

Schematic of large-scale biophysical neural mass model fit to human resting-state BOLD data13. As 
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previous13, propofol is modelled as a prolongation of inhibitory-postsynaptic-potentials. f) Horizon 

plot showing time-varying linear error of the corticothalamic model timeseries - transformed using a 

haemodynamic response function to provide representative BOLD timeseries - fit to wake condition. 

g) Time-varying linear error of the corticothalamic model timeseries under the propofol condition. h) 

Average linear error of corticothalamic model during wake (black) and propofol (dark blue) 

conditions.  

 

To further interrogate this empirical observation, we leveraged a state-of-the-art, 

large-scale biophysical neural mass model capable of describing consciousness 

modulation under propofol anesthesia, and its recovery following stimulation of the 

matrix thalamus13. This corticothalamic model includes realistic population-level 

neuroanatomy, non-linear neural responses, interpopulation connections, long-range 

white-matter connectivity, and dendritic, synaptic, cell-body, and axonal 

dynamics11,13,68–73. The biophysical constraints incorporated in this model allow 

putative physiological mechanisms to be explored which provide insights beyond 

those obtained via purely data-driven approach. 

 

Applying our same approach to the wake and propofol conditions of this model’s 

timeseries – transformed using a haemodynamic response function to provide 

representative BOLD timeseries – we replicated our empirical observations: namely, 

relative to the propofol condition, the wake condition is comprised of epochs of 

linearly-predictable dynamics that were punctuated by sharp unpredictable 

deviations (Fig. 4f-g). These empirical and theoretical modelling results demonstrate 

that consciousness is concomitant with fluctuations in linear flow across the cerebral 

cortex, which are diminished by propofol anesthesia, however the question remains 

as to whether the thalamus itself plays a causal role in controlling these dynamics. 

 

Causal thalamic drive of cortical non-linear flow across conscious states 

A decisive feature of biophysical models is that they can be used to create 

predictions that can be directly tested in empirical datasets across a range of imaging 
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modalities and across species. We leveraged this feature to causally test the role of 

the thalamus in shaping the linearity of cortical dynamics. Specifically, we used an 

existing dataset comprising multi-electrode recordings from the frontal eye-fields 

and lateral interparietal cortical areas in a macaque monkey (Fig. 5b)13,14. Following 

propofol-mediated anesthesia, targeted 50Hz electrical stimulation of the matrix-rich 

central lateral thalamus drove the recovery of conscious arousal13,14. Despite the fact 

that the data was collected in a different species and through a different 

measurement modality that has a much faster temporal resolution than fMRI, we 

were able to use the generative nature of the biophysical model to create a testable 

prediction that mirrored the fMRI findings; Namely, that matrix stimulation should 

drive a recovery of the linearly unpredictable flow lost under propofol anesthesia 

(Fig. 5a) by flattening local attractors11. Importantly, this mechanism can be exploited 

while maintaining overall stability and facilitates long range interactions between 

specific brain areas11,13. 
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Figure 5 – Causal thalamic influence on cortical linear dynamics. a) Using the corticothalamic 

biophysical model, we simulated matrix thalamic stimulation by applying a square-wave input to 

matrix-rich thalamic regions and then applied our linear flow analysis to the cortical 

electrophysiological time series during wake (black), following simulated propofol administration 

(blue) and following matrix stimulation (red) – matrix stimulation recovered non-linear cortical 

dynamics. b) experimental setup, in which a macaque monkey had 50Hz electrical stimulation 

applied to the matrix-rich central lateral thalamus while local field potentials were recorded from the 

frontal eye fields and lateral interparietal cortex. c) examination of the empirical recordings from 

macaque cortex recovered the predicted relationships: namely, central lateral thalamic stimulation 

recovered cortical non-linearity that matched the awake brain but was lost during propofol 

anesthesia. d) these effects are analogous to the global cortical state being enslaved to a deep attractor 

during propofol anesthesia (purple and blue) whose depth was diminished by matrix thalamic 

stimulation (red), allowing less linear cortical state dynamics. e) energy landscapes62 (i.e., the 

logarithm of inverse state probability) during pre-stim (purple), stimulation (red) and post-

stimulation (blue) of the central lateral thalamus.  
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Using multi-electrode recordings from the macaque cortex, we confirmed that 

propofol had the predicted impact on cortical electrophysiology: namely, the 

induction of propofol increased linear predictability in the anesthetized monkeys, 

relative to wake (Fig. 5c), albeit on a shorter time-scale than the one observed in the 

fMRI data (though see Fig. S7). Next, we calculated this same linear predictability 

before (pre), during, and after (post) electrical stimulation of the central thalamus 

(which was effective in recovering the monkey’s conscious state; Fig. 5d). As 

predicted by our biophysical model, we observed substantial propofol-mediated 

linearity in the pre-stimulation window, a significant decrease in linear dynamics 

during stimulation (comparable to that seen in the wake condition), and a 

subsequent return to relatively predictable, linear dynamics following stimulus 

cessation (Fig. 5d). In addition, while the empirical stimulation recovered 

proportionally larger amounts of linear errors than the biophysical model (contrast 

the amplitude of the red lines in Fig. 5a and 5c), we anticipate that this difference is 

related to the simplified nature of the model, relative the nuanced neurobiological 

complexity of the brain. Irrespective of these details, our crucial prediction was 

confirmed: namely, that matrix thalamic stimulation reinvigorated deviations from 

linear cortical dynamics lost during propofol anesthesia. 

 

As a final analysis, we again utilized the likelihood of changes in linear dynamics 

across each stimulation condition to formulate a statistical energy landscape (akin to 

the results observed in Fig. 3f-h). Analogous to an attractor landscape, this approach 

highlights the stability of on-going predictable cortical linear flow in the pre- and 

post-stimulation conditions, which is then destabilized by matrix thalamic 

stimulation (Fig. 5d). Our findings demonstrate that the matrix thalamus drives 

linearly unpredictable cortical flow by destabilizing local attractors across different 

states of arousal and provides a key feature of flexible dynamics indicative of 

versatile and adaptive cognition.  
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Discussion 

Here we showed that the thalamus controls the manner in which cortical dynamics 

fluctuate between laminar and non-laminar flow across states of consciousness. 

Using multimodal empirical neural recordings, a sensitive method from fluid 

dynamics and a biophysical model of the thalamocortical system, we demonstrated 

how a key principle of cellular organization within the thalamus controls these on-

going linear dynamics, and specifically how the diffusely-projecting matrix thalamus 

destabilizes linear cortical flow. This approach reveals a candidate neuroanatomical 

mechanism for facilitating the adaptive cognitive benefits of the waking brain: 

namely, by facilitating brain dynamics that can support the formation of both stable 

and unstable brain states, which in turn can support reconfiguration as contingencies 

change across different behavioural contexts. 

Previous work has shown how electrical stimulation of the thalamus can modulate 

conscious arousal14,15 and implicated the matrix thalamus as driving quasi-critical 

brain state formation11,13, thereby facilitating the recovery of conscious awareness 

from anesthesia. Our present findings enrich these insights and demonstrate how 

the matrix (diffuse)-core (targeted) cortical projections play a key role in shifting the 

cortex between laminar and non-laminar dynamics. Our results also represent a key 

capacity inherent to biophysical models, which is the ability to create mechanistic 

simulations that allow translations between different imaging modalities and 

recordings from different species. We anticipate that the addition of further 

anatomical constraints will only enrich the capacity for these models to provide 

additional testable predictions, though care must be taken to match the emergent 

dynamics of these models with the idiosyncratic spatiotemporal constraints imposed 

by standard cognitive contexts in which higher-order brain functions are 

interrogated. 
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Human neuroimaging studies have revealed a hierarchy of temporal and spatial 

autocorrelation scales across the cortex49 and that these two features capture a large 

number of existing topological metrics22. Our present findings expand these insights 

by quantifying intrinsic dynamic modal timescales that drive linear flow in neural 

activity across imaging modalities. The resulting spatiotemporal dynamic modes are 

defined by a complex (i.e., imaginary) eigenvector and corresponding 

eigenvalue32,35,50. Each mode contains four key characteristic measures: the spatial 

eigenvector defines a spatial pattern of coherent activity, and a corresponding spatial 

pattern of delays relative to each of these coherence patterns – called a dephasing 

map. In addition, each mode has a corresponding eigenvalue defining its oscillatory 

frequency, and an exponential gain parameter – which determines whether a mode 

will grow or decay in time (i.e., captures its temporal stability). The investigation of 

these features provides rich information regarding the types of dynamic modes that 

characterize the system. Our results also confirm the long-held notion that BOLD 

dynamics are predominantly constituted by slow and sustained patterns of activity 

(hence the popularity of the standard resting state network analyses74,75), but extend 

our ability to characterize and explore the spatial and temporal properties of the 

modes shaping these dynamics. We also demonstrate that the same anatomical 

mechanism underpins similar observations in both BOLD and electrophysiological 

data, which thus paves the way forward for future mechanistic work. Furthermore, 

our comparison of empirical imaging data to surrogates conserving covariance and 

Fourier spectra shows these features are not sufficient to explain the observed linear 

dynamics. An important open question that we were unable to interrogate in these 

data is whether non-neural sources of noise, such as physiological activity or task 

contexts, alters the observed relationship between thalamic activity and cortical 

dynamics, however this line of questioning is left for future, targeted experimental 

approaches. 
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It is worth noting that in this implementation, a linear model is generated for each 

subject over the complete length of that recording. As with calculation of covariance 

and Fourier power spectrum, this may also be performed at a finer temporal 

granularity via windowing approaches – this will favour faster timescale effects over 

slower ones, and thus should depend on the investigators question of interest. Here, 

the imaging data has been collected during the resting-state, but recordings with 

specific epochs of interest, such as during a task paradigm, would be served better 

by a piece-wise approach defining the linear dynamics instantiated by the brain 

within each epoch, particularly given the time-scale constraints imposed by the vast 

majority of task-based neuroimaging analysis protocols. Furthermore, our approach 

allows for the quantification of linear dynamics within a given timeseries, however, 

it does not make explicit claims about the nature of the residual dynamics. This is 

because these residuals may be multifaceted. Indeed, it may be that deviations from 

linearity are driven by non-linearities (in the mathematical sense) within the 

dynamical system becoming significant, due to the presence of extrinsic or intrinsic 

drive (i.e., visual/auditory/olfactory stimuli in the brain), or through the instantiation 

of a different transient linear system on a shorter timescale relative to the epoch of 

time initially considered. These are both exciting opportunities to be explored in 

future work. 

 

In conclusion, we have demonstrated fluctuations in globally linear cortical 

dynamics in multimodal neuroimaging and electrophysiological data across human 

and non-human primates differentiates conscious arousal states and are controlled 

by the organization of the thalamus. In this way, we argue that this key feature of the 

brain’s neurobiological architecture helps to shape the robust, yet flexible, adaptive 

neural dynamics required for effective cognitive function that define our waking 

lives. 
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Methods 

 

Human neuroimaging data 

Sixty healthy adult participants (28 females; 18–33 years; right-handed) were 

recruited and the research was approved by The University of Queensland Human 

Research Ethics Committee. These data were originally described in 43. 1050 (~10 

minutes) whole-brain 7T resting state fMRI echo planar images were acquired using 

a multiband sequence (acceleration factor = 5; 2 mm3 voxels; 586 ms TR; 23 ms TE; 

400 flip angle; 208 mm FOV; 55 slices). Structural images were also collected to assist 

functional data pre-processing (MP2RAGE sequence – 0.75 mm3 voxels 4,300 ms TR; 

3.44 ms TE; 256 slices). 

 

DICOM images were first converted to NIfTI format and realigned. T1 images were 

reoriented, skull-stripped (FSL BET), and co-registered to the NIfTI functional 

images using statistical parametric mapping functions. Segmentation and the 

DARTEL algorithm were used to improve the estimation of non-neural signal in 

subject space and the spatial normalization. From each grey-matter voxel, the 

following signals were regressed: linear trends, signals from the six head-motion 

parameters (three translation, three rotation) and their temporal derivatives, white 

matter, and CSF (estimated from single-subject masks of white matter and CSF). The 

aCompCor method (Behzadi et al., 2007) was used to regress out residual signal 

unrelated to neural activity (i.e., five principal components derived from noise 

regions- of-interest in which the time series data were unlikely to be modulated by 

neural activity). Participants with head displacement > 3 mm in > 5% of volumes in 

any one scan were excluded (n = 5). A temporal band pass (0.001 < f < 0.125 Hz) was 

applied to the data. Following pre-processing, the mean time series was extracted 

from 400 pre-defined cortical parcels using the Schaefer atlas (Schaefer et al., 2018). 
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For the anesthesia BOLD fMRI dataset, we utilized data derived from previously 

published research works52,76 that have been openly shared on the OpenNeuro data 

repository (doi:10.18112/openneuro.ds003171.v2.0.0). The dataset comprises 17 

healthy individuals (Age: 24± 5, M/F: 13/4), all of whom were right-handed, native 

English speakers, and had no recorded history of neurological disorders. The 

original study obtained ethical approval from both the Health Sciences Research 

Ethics Board and Psychology Research Ethics Board of Western University (REB 

#104,755) and adhered to the principles outlined in the revised declaration of 

Helsinki (2000). We analyzed two conditions, awake (fully alert and communicative) 

and deep sedation, which was achieved with an initial target effect-site 

concentration of 0.6 µg/ml and oxygen titrated to maintain SpO2 above 96%, with 

increments of 0.3 µg/ml with repeated assessments of responsiveness until deep 

sedation (Ramsey level 5).  

Imaging was performed on a 3T Siemens Tim Trio system with a 32-channel head 

coil. Subjects resting state fMRI scans using BOLD EPI sequence (33 slices, voxel size: 

3mm3 isotropic, inter-slice gap of 25%, TR = 2000 ms, TE = 30 ms, matrix size = 64×64, 

FA = 75°). Resting-state scans had 256 volumes. Anatomical scans were also obtained 

using a T1-weighted 3D Magnetization Prepared - Rapid Gradient Echo (MPRAGE) 

sequence (voxel size: 1mm3 isotropic, TR = 2.3, TE = 4.25 ms, matrix size = 240 × 256 × 

192, FA = 9°). 

Preprocessing was completed using fMRIPrep standard pipeline which involves the 

basic preprocessing steps (co-registration, normalization, unwarping, noise 

component extraction, segmentation, skull stripping, etc.). The extracted time series 

were denoised specifying motion and physiological signals from white matter and 

CSF, with high-pass and low-pass band filters set at 0.01 and 0.1, respectively. The 

global signal was removed by standardizing each time point39. 
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Thalamic timeseries representing the ‘core’ and ‘matrix’ populations were estimated 

by estimating the dot-product between the voxel-wise time-series of thalamic BOLD 

signal and a standardized map of the relative mRNA expression levels for PVALB 

(‘core’) and CALB1 (‘matrix’) provided by the Allen Human Brain Atlas8,9,77. 

Variogram modelling was applied prior to our obtaining the gene maps to correct 

for potential subject-level differences78. Note that there are other calcium binding 

proteins with non-trivial expression in the thalamus61,79, however these patterns were 

not considered here, as they have not been directly linked to the same core-matrix 

gradient in the thalamus9. Note that we do not advocate for a strict dichotomy 

between core and matrix neurons in this work, but rather that these two projection 

types represent anatomical extremes at either end of an approximately continuous 

spectrum54,56. See Muller et al 20208 for more details. 

 

Macaque electrophysiological dataset 

We compared modelling data to electrophysiology data from our previous study14. 

This dataset consists of simultaneous local field potential (LFP) recordings from the 

frontal eye field (FEF), lateral intraparietal area (LIP) and central lateral thalamus 

(CL) in the right hemisphere of two macaques (Macaca mulatta, 4.3-5.5 years old, 

7.63-10.30 kg body weight). We lowpass filtered LFPs to 250 Hz, then linearly 

detrended and extracted artifacts. Bipolar derivations of the LFPs were then 

calculated to minimize any possible effects of a common reference and volume 

conduction. Recordings were performed during general anesthesia – either 

isoflurane (0.8%–1.5% on 1 L/min O2 flow; 9 sessions) or propofol (0.17-0.33 

mg/kg/min i.v.; 9 sessions) – or wakefulness, using 16- or 24-contact linear micro-

electrode arrays (LMEAs; MicroProbes). The electrode contacts had a diameter of 

12.5�	, and 200�	 spacing between contacts. 

 

We performed deep brain stimulation via simultaneous stimulation of 16 contacts of 

the LMEAs in the central thalamus. We applied 400 ms bi-phasic pulses of 200 mA, 
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at 50 Hz stimulation frequency, for a total of 60 s stimulation duration for any given 

stimulation event. To localize LMEAs, we averaged two 3D T1-weighted structural 

images of the MRI-compatible electrodes in situ (inversion-recovery prepared 

gradient echo sequence with: FOV = 128		�; matrix = 256 x 256; no. of slices = 166; 

0.5 mm isotropic; TR = 9.68 ms; TE = 4.192 ms; flip angle = 12°; inversion time (TI) = 

450 ms) and cross-validated the electrode location with electrode depth 

measurements during recordings/stimulation. We used an arousal index (0-10) based 

on eye openings, body movements and vital signs, as well as EEG and EMG, to 

measured stimulation-induced changes in the level of consciousness. We defined 

effective stimulations, increasing the level of consciousness, as having an arousal 

index of ≥3, which all experimenters could differentiate from ineffective stimulations 

having an arousal index of 0-2. See 14,80–82 for more details. The University of 

Wisconsin – Madison Institutional Animal Care and Use Committee approved all 

procedures, which conformed to the National Institutes of Health Guide for the Care 

and Use of Laboratory Animals. Due to hardware constraints, the LFP time-series 

were down-sampled from 1kHz to 100Hz for linear model estimation – although we 

note that results in Fig. 5c and subsequent conclusions are not timescale sensitive as 

shown in Supp. Fig. 7. 

 

Linear Forecast Analysis (LFA) 

Here we outline LFA as applied to all datasets within this manuscript. First, each 

timeseries � � �
� 
� 
� … 
�� with n observations of p variables is partitioned into a 

pre � and post � timeseries – where: 

 

� � �
� 
� 
� … 
���� 
� � �
� 
� 
� … 
�� 

 

with � lacking the final time point of � and � lacking the initial time point. Note we 

have dropped the function-of-time notation for simplicity. Singular value 
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decomposition is then applied, � � � � � � �	, and a rank reduction of the data is 

made that captures 95% of the explained variance. Although not explicitly necessary 

for timeseries with significantly more timepoints than variables, some of the data 

used here violate this condition and thus the results are standardized around this 

threshold – see Supp. Fig. 4 showing truncation effects on eigenspectrum. A linear 

propagator matrix � can be estimated from the data where � � �� as follows: 

 

� � �� � ��
 � ������� 

By stepping through each timepoint of � projected into the SVD sub-space, the linear 

propagator can be used to forecast the proceeding time points. Mean-squared-error 

is used to compare between the predicted timeseries and the ground-truth 

timeseries: 

 

����,� �  � ���� ! �"��� �#� 

 

where � is the ground-truth data and �" is the forecasted timeseries using the linear 

model, and $ is the number of SVD modes. 

 

Dynamic mode decomposition 

The eigen decomposition of the linear propagator � gives the dynamic modes of the 

system, �% � &' where % is the matrix of eigenvectors, and ' is the diagonal 

matrix of eigenvalues (�. The DMD approximation of the data can then be written as 

the simple dynamic model: 

�)*+, � - exp*1t, 3� 
 

where 1 � �����% with 1 � log *',/Δt and t is time35. 
� is the initialization state 

and can be solved for each timepoint using the pseudoinverse. 

 

Surrogate models 
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The spectral surrogate utilized here is adapted from 21 and generates a white noise 

timeseries with the same dimensions as the empirical data. The Fourier transform is 

then applied to both the surrogate and empirical timeseries, and these are multiplied 

together in this spectral domain. Following the inverse Fourier transform, the 

resulting timeseries is projected through the eigenvectors of the empirical covariance 

matrix to give a null model time series with matched covariance and Fourier power 

spectrum. 

 

The shuffled surrogate is generated by performing a uniform scrambling of the 

empirical time-series indices. This ensures regional co-activations at each time point 

are conserved, but their temporal position relative to activations in scramble – i.e., 

the same covariance matrix but scrambled moment-to-moment changes. 

 

Linear mode clusters 

k-means clustering is used to define clusters of linear mode timescales and spatial 

coherence independently. In both cases, a sweep of cluster sizes k=2-20 with 100 

repetitions for each is performed. A peak in adjusted mutual information (calculated 

using BCT http://www.brain-connectivity-toolbox.net/) between each repetition’s 

clusters for the same cluster size is used to select a cluster size of k=5. Having 

selected this cluster size a final run of 1000 repetitions is used to find the optimal 

clustering. Timescale clustering is performed on the eigenvalues of all subjects 

(N=59) linear modes, i.e., the 2-dimensional complex numbers defining damping 

rates and oscillation frequencies. Spatial clustering is performed on the coherence 

maps defines by each linear mode across all subjects (N=59), i.e., the real component 

of the complex eigenvectors of the linear propagator.  

 

Energy landscapes 
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Following methodology from previous work62, we formulate an energy landscape by 

calculating the probability of observing a given linear model error (MSE) across the 

entire timeseries using a Gaussian kernel density estimation, 

 

9*���, +, �  1
4< = > ?����,�4 @

�

���

 

 

where >*A, �  �

�√�
B�����. As is typical in statistical mechanics the energy of a given 

state, ��, and its probability are related by 9*C, �  �
�

B����  where D is the 

normalization function and E is the scaling factor equivalent to temperature in 

thermodynamics62. In our analysis ∑ 9�� � 1 G D � 1 by construction and we can set 

E � 1 for the observed data. Thus, the energy of each MSD at a given time-lag +, � is 

then equal to the natural logarithm of the inverse probability, 9*���, +, of its 

occurrence, 

 

� � ln ? 1
9*���, +,@ 

 

Corticothalamic model 

The corticothalamic model consists of 400 coupled neural masses. We outline this 

architecture by first detailing the corticothalamic neural mass as follows. The 

corticothalamic neural mass model used in this work contains four distinct 

populations: an excitatory pyramidal cell, e, and an inhibitory interneuron, i, 

population in the cortex; and two excitatory nuclei, matrix, sm; core, sc, and inhibitory 

thalamic reticular nuclei, r, population in the thalamus (Fig. 1c). The dynamical 

processes that occur within and between populations in a neural field model are 

defined as follows: 
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For each population, the mean soma potential results from incoming postsynaptic 

potentials (PSPs): 

 I�*+, �  = I��*+,
�

 (1) 

where I��*+, is the result of a postsynaptic potential of type J onto a neuron of type 

K and K, J L MB, N, O, PQ . The postsynaptic potential response in the dendrite is given 

by 

 R��I��*+, �  S��T��*+ ! ���, (2) 

where the influence of incoming spikes to population K from population J is 

weighted by a connection strength parameter S�� �  <��P�� , with the mean number 

of connections between the two populations <��  and P��  is the mean strength of 

response in neuron K to a single spike from neuron J. ��� is the average axonal delay 

for the transmission of signals, and T�� is the mean axonal pulse rate from J to K. 

 

The operator R�� describes the time evolution of I��  in response to synaptic input, 

 R�� �  1
UV

W�

W+� X  ?1
U X  1

V@ W
W+ X 1 

(3) 

where V and U are the overall rise and decay response rates to the synaptodendritic 

and soma dynamics. 

 

The mean firing rate of a neural population Y�*+, can be approximately related to its 

mean membrane potential, I�*+,, by 

 Y�*+, �  ���I�*+,� 
�  Y�

�ax

1 X exp�!MI�*+, !  Z�Q/C[� 
(4) 
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which define a sigmoidal mapping function ��  with a maximal firing rate Y�
�ax, a 

mean firing threshold Z� , and a standard deviation of this threshold C�\/√3. 

 

The mean axonal pulse rate is related to the mean firing rate by, 

 R�*+,T�*+, �  Y�*+, (5) 

 R�*+, �  1
_��

`�

`+� X 2
_�

`
`+ X 1 

(6) 

Here, _� �  a�/O� represents the damping rate, where a�  is the propagation velocity 

in axons, and O� is the characteristic axonal length for the population. 

 

A network of 400 corticothalamic neural masses were simulated using the neural 

field simulation software, NFTsim83. The parameters for each neural mass were 

identically set to “eyes-closed” estimates given in Table 168,69,71,83,84, which results in 

simulated activity with a 1/f spectrum and a peak in the alpha frequency band (8-13 

Hz) in the absence of network coupling. These are example parameters 

representative of the “eyes-closed” state following Bayesian model fits to human EEG 

power spectra69. Many preceding studies68,69,71,72,84–86 have shown the linear transfer 

function, which drives the linear spectral content of the corticothalamic model, is 

derived and shown to be low-dimensional, i.e., only a few loop gains in the system 

are needed to capture the key features of the power spectra. In this particular 

context, the eyes-closed state of human EEG has a 1/f slope and a spectral peak in the 

8-13Hz alpha frequency band, and this is explained by a weakly damped 

thalamocortical loop gain (ese). For the present study we have selected characteristic 

parameters for this power spectrum (Table 7 from 69). Note that this spectrum 

describes modulations of firing rate around a fixed point, which are static for the 

network. These spike rate modulations in neurons drive changes in the extracellular 

electric field which are then measured via EEG and LFP recordings87. In this way, we 
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are able to compare our model outputs to empirical data through the power spectral 

density function. 

 

Each simulation was run for a total of 64s with 7.5s of initial transients removed 

using an integration timestep of Δ+ � 2���s. This minimizes contributions from the 

model’s initial state and ensures the integration algorithm has stabilized before we 

begin analysing simulation outputs. Longer simulations produced qualitatively 

identical results, as did shorter simulations, however, many of the analysis measures 

presented in this paper perform better with more data – i.e., correlation and 

coherence are noisier with less data. Thus, a balance between metric accuracy, 

resource allotment, and tractability for dataset manipulations was chosen. All 

outputs were down-sampled to 200Hz for tractability. All remaining data were used 

for subsequent analysis. 

 

Structural Connectivity 

The structural connectivity used to define the model network consists of a 

combination of distance dependence and long-range connectivity estimated from 

white-matter fibre densities measurement88. The distance dependence was generated 

via an exponentially decreasing function. First, the geodesic distance between all 

nodes, which correspond to parcels from89 with MNI coordinates, are calculated 

along the fsaverage cortical surface mesh90 using the Fast-Marching algorithm 

(Gabriel Peyre 

(2022)ToolboxFastMarching:https://www.mathworks.com/matlabcentral/fileexchang

e/6110-toolbox-fast-marching). The geodesic distances are then scaled as an 

exponentially decreasing function of distance, 

  

b�� � B� !�� 
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where W��  is the geodesic distance in MNI space along the surface mesh and ( is the 

decay rate. A 200x200 connection matrix is defined in this way for each hemisphere. 

We further assume that interhemispheric connectivity is symmetric and one-to-one, 

and thus the full 400x400 distance dependence network is composed as 

 

� �  cb��
"# b��

$#

b��
"# b��

$#d 

 

where b��
"# and b��

$# are the left and right interhemispheric connectivities, 

respectively.  

 

The complete network connectivity is then formulated via the summation of the 

distance dependence matrix and the empirically estimated white-matter connectivity 

(both normalized by their respective maximum values). Since the strength of these 

connections is not known empirically, we follow other approaches and sweep values 

of a global scaling of this hybrid connection matrix, as well as the proportion of 

distance dependence-to-white-matter connectivity and distance decay rate 

parameter. Functional connectivity of these parameter sweeps is then compared to 

empirical resting-state BOLD data 91 to define optimal values (see Supp. Fig. 2) 

 

Model balancing 

In order to maintain stability in the model, excitatory inputs to a given node, 

coupled via the structural network connections, must be balanced with a 

corresponding inhibition. To do this, we first compute the total excitatory connection 

strength to each corticothalamic node. 

 

We then leverage an assumption from previous neural field models, namely that 

excitatory and inhibitory synapses in the cortex can be assumed proportional to the 

number of neurons 86,92. This random connectivity approximation results in S%% �
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 S�%, and S%� �  S��  which implies I% �  I�  and Y% �  Y�. Inhibitory population 

variables can then be expressed in terms of excitatory quantities. Whilst we do not 

make this assumption in the present model, we can leverage it to refine an inhibition 

scaling that balances the excitatory inputs from our specific structural network. 

 

In the reduced corticothalamic neural mass, the fixed-point attractors, or steady 

states are found by setting all time derivatives in the above equations to zero. The 

steady-state values T%
&'(

 of T% are then given by solutions of 

 ���eT%
&'f ! *S%% X  S%�,T%

&'(  

�  S%)� gS)%T%
&'( X  S)*� hS*%T%

&'( X +�	
+
	

g���eT%
&'f ! *S%% X  S%�,T%

&'(i j X
 S)�T�

&'(i, 

 

(7) 

where T�
&'(

 is the steady state component of the input stimulus 92,93. Roots of Eq. (7) 

are found using the fzero() function from MATLAB. 

 

Following similar approaches94, we leverage Eqn. 7 by setting S%%  equal to each 

corticothalamic neural masses network coupling defined by the structural 

connectivity. We then set the cortical firing rate to be 3Hz, in-line with empirical 

observations, and numerically solve for cortical inhibition S%�. This results in each 

neural mass having a 3Hz steady-state cortical firing rate across the network, despite 

having heterogeneous network connectivity.  

 

Note that the diffuse matrix inputs to each corticothalamic neural mass are excluded 

from this balancing as they are purely excitatory and only target the excitatory 

cortical population. Thus, the overall effect of matrix inputs is to distort each local 

attractor, increasing their firing rates when they are coupling to the network11. In 

addition, matrix nuclei are known to project to the reticular thalamic nucleus in 
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rodents 9,95–97, albeit weakly98, but have been excluded from the current model for 

simplicity.  

 

Modelling Propofol 

The effect of propofol is modelled as an up-regulation of GABA-a receptors which 

prolongs inhibitory postsynaptic response potentials. This is implemented as an 

increase to the synaptodendritic functions (Eqn. 3) decay rate parameter, U, for all 

inhibitory connections in the corticothalamic neural mass. In addition, consistent 

with previous approaches99, we maintain a constant peak amplitude of the IPSP 

functions following the rescaling. The solution to Eqn. 3 for a delta function input 

corresponds to, 

I � ,-

&-�,(
kB�,� !  B�-�l    (8) 

 

which has a peak amplitude at +peak �  12- ,3

&-�,(
 . The rescaling of U �  U' mn  defines a 

new peak potential at +peak which is renormalized to its pre-propofol value. We 

leverage the change in coherent alpha-band activity (8-13Hz) observed in 14 between 

LIP and FEF to optimize propofols effect in the model, which results in m � 1.127. 

 

 

Parameter Description Value Unit 

�� Cortical damping rate 116 s-1 

Qmax Maximum firing rate 340 s-1 

� Firing threshold 12.9 mV 

�� Threshold spread 3.8 mV 

�� Input noise amplitude spectral 

density 

1 � 10�4  s-1 

� Decay rate of cell-body potential 83 s-1 
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� Rise rate of cell-body potential 769 s-1 

    

 Intra-node coupling strengths   

���  1.5 mV s 

���  -3 mV s 

����
  0.57 mV s 

���  3.4 mV s 

����
  -1.5 mV s 

����
  3.6 mV s 

���  0.17 mV s 

����
  0.05 mV s 

    

	���,��� 
 	���,��� Corticothalamic loop delay 85 ms 

    

 

Table 1 – Corticothalamic neural mass parameters. Adapted from 
69

. 
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Supplementary Materials 

 

Supp. Figure 1 – Linear Forecasting and Spectral Surrogate. a) Formulation of Linear Propagator via 

the singular-value decomposition. b) Dynamic mode decomposition – eigenmode decomposition of 

linear propagator matrix resulting in oscillatory spatiotemporal modes. c) Forecast Horizon Analysis 

using the current state and the linear propagator matrix to predict future time points. Mean-squared-

error is used to compare forecast dynamics to ground-truth empirical timeseries. d) Example spectral 

surrogate for a single subject showing matched covariance and Fourier power spectrum. 
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Supp. Figure 2 – LFA cross-validation. First Row: 7T human resting-state BOLD data43 (N=59). a) 

Linear Error for each forecast horizon of the empirical data. b) Spectral surrogate for each subject. c) 

Variance of linear error (MSE) and a function of forecast horizon. Second Row: 3T human resting-

state BOLD data52 (N=14) d) Linear Error for each forecast horizon of the empirical data. e) Spectral 

surrogate for each subject. f) Variance of linear error (MSE) and a function of forecast horizon. 

 

Supp. Figure 3 – Linear Model Performance. Left axis: Linear error as a function of forecast horizon 

for the subject average 7T resting-state human imaging data(blue), spectral surrogate(black). Right 

axis: Mean-squared displacement of the subject average 7T resting-state human imaging data 

showing general variability within the recordings. 
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Supp. Figure 4 – K-means optimization and Dynamic mode clusters. a) Coherence map clustering: 

Adjusted mutual information for 100 k-means repetitions for each cluster size k. b) Eigenmode 

clustering: Adjusted mutual information for 100 k-means repetitions for each cluster size k. c) 

Coherence cluster centroids d) Coherence cluster dot-product with resting-state networks e) Average 

coherence maps of eigenvalue clusters f) Timescale cluster probability distribution for damping rates. 

g) Timescale cluster probability distribution for oscillatory frequencies. 

 

 

      

 

Supp. Figure 5 – Linearity, dynamics modes and explained variance. Dynamic mode timescales and 

linearity for the a) full data (7T resting-state N = 59) and b) covariance and Fourier spectrum matched 

surrogates, as a function of the included variance explained. 
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Supp. Figure 6 – Linear cortical dynamics. a) Corticothalamic Core-Matrix correlation to linear 

cortical dynamics. b) Spatial loading of linear cortical dynamics to a low-dimensional gradient from 

100. 

 

 

 

Supp. Figure 7 – Monkey down-sampling effects. Linearity shifts of macaque multielectrode 

electrophysiological data pre, during, and post thalamic stimulation for a) 100Hz, b) 50Hz, and c) 

20Hz sampling. 

 

Adaptive timescales and dynamic brain modes 

Intrinsic timescales of the brain have been of interest since the discovery of 

oscillatory dynamics in the first human EEG recordings48. Human neuroimaging 

studies have revealed a hierarchy of temporal and spatial autocorrelation scales 

across the cortex49 and that these capture a large number of existing topological 

metrics22. Linear flow analysis enriches this approach by quantifying intrinsic modal 
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timescales that drive linear flow in neural activity. The resulting dynamic modes are 

defined by a complex (i.e., imaginary) eigenvector and corresponding 

eigenvalue32,35,50. Each mode contains four key characteristic properties: the spatial 

eigenvector defines a spatial pattern of coherent activity, and a corresponding spatial 

pattern of delays relative to each of these coherence patterns – called a dephasing 

map. In addition, each mode has a corresponding eigenvalue defining its oscillatory 

frequency, and an exponential gain parameter – which determines whether a mode 

will grow or decay in time (i.e., captures its temporal stability). The investigation of 

these features provides rich information regarding the types of dynamic modes that 

characterize the system. 

 

In order to gain insight into how these dynamic modes relate across individual 

subject recordings, we leverage a two-pronged clustering approach to aggregate 

modes across timescales, and spatial coherence, respectively. First, we consider 

timescales by utilizing k-means clustering of the eigenspectrum collated across all 

subject recordings. A peak in adjusted mutual information between clustering 

repetitions was then used to select k = 5 clusters (1000 repetitions; see Supp. Fig. 4), 

resulting in 5 distinct timescale groupings – the corresponding average of the 

coherence maps within these clusters (Supp. Fig. 4). Timescale cluster 1 shows 

somatomotor and visual activation antiphase with frontal, parietal and temporal 

cortices across a broad range of frequencies – spanning much of the time resolution 

of BOLD recordings. These modes are also weakly damped – i.e., have a strong gain 

relative to the other temporal clusters. Timescale cluster 2 shows visual, premotor, 

and dorsal lateral prefrontal antiphase with other cortices at slower frequencies (< 

0.03 Hz; Fig. g-h middle) and with a stronger damping rate, i.e., weaker gain, than 

cluster 1. And timescale cluster 3 shows strongly damped temporal cortex activity at 

frequencies < 0.02 Hz. 
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Next, we considered the spatial patterns of coherence, defined by each mode, 

aggregated across subjects and recording sessions to define consistent modal 

groupings50. Again, we leveraged k-means clustering (adjusted mutual information 

peaked between clustering repetitions for k = 5; See Supp. Fig. 3): Figure 2i shows 3 

cluster centroids and their defining coherence patterns – i.e., the spatial patterns of 

the linear modes across all subjects fall within distinct classes. These classes show a 

significant overlap with resting-state networks used broadly in the literature51 – 

including the default mode, and somatomotor and visual networks. We further find 

that the damping rates and frequencies of the modes within each class have 

comparable probability distributions – demonstrating these spatial classes did not 

demonstrate unique linear timescales at this granularity in resting-state. 
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