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Summary

The human brain must support both stable and flexible neural dynamics in order to
adapt to changing contexts that are inherently non-linear. The thalamus has been
linked to the coordination of these opposing dynamical regimens in the cerebral
cortex, however existing methodological approaches have not integrated sufficient
neurobiological details with a sensitive measure of neural dynamics that permits
sensitivity to time-series non-linearities. Inspired by the field of fluid dynamics, we
use a novel approach to show that spontaneous fMRI data exhibits non-trivial
fluctuations in predictability over time, akin to a river that has sections of smooth
and predictable (laminar) versus rough and unpredictable (non-laminar) fluid flow.
We use a combination of pharmacological fMRI, macaque electrophysiology and a
large-scale biophysical model of the thalamocortical system to provide robust
evidence that the thalamus provides versatile control over globally linear dynamics

in the cerebral cortex that characterize conscious states.
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Introduction

The human brain supports a wide-ranging behavioural repertoire, with dynamic,
context-dependant recruitment of specialized neuronal assemblies emerging from
coordinated interactions amongst tens of billions of cells. The computational
capacities that support these behaviours are in large part related to this cellular
complexity, however, this high-dimensional neural activity is of minimal adaptive
benefit unless the neural activity that unfolds over time is both stable and yet
flexible. In other words, neural dynamics must be reliable for repeated precise
execution, but also rapidly adaptable to changing contingencies. How the intricate
organization of the brain supports these opposing capacities remains to be

understood.

The thalamus is a highly-conserved subcortical structure that has been argued to
play a central role in shaping and constraining the flexible neural dynamics that
characterise the conscious, awake brain'2. At the microscale, there is evidence that
specific cell types in the thalamus act to relay information from sensory systems*?,
coordinate motor actions®, and also to integrate and distribute information from
subcortical structures”® to decentralized corticothalamic networks. At the
macroscale, recent work has shown that diffusely-projecting subtypes of
thalamocortical nuclei promote variability of dynamics across the cerebral cortex’#1°
through the instantiation of quasi-critical brain state regimes!! which support shifts
in cognition'? and consciousness'>'°. These emerging perspectives place the thalamus
in a unique topological position within the brain, wherein it is able to both drive the
cerebral cortex with targeted inputs, but also to modulate on-going cortical
dynamics through diffuse projections’. Despite this privileged position, to date there
are few direct empirical links between the thalamocortical system and precise

dynamic trade-offs characteristic of adaptive systems!.
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A primary reason for this lack of direct evidence is that few existing neuroimaging
analysis techniques are capable of providing a time-resolved estimate of the stability
(or flexibility) of brain state dynamics that is sensitive to the inherently non-linear
waxing and waning nature of our waking lives'”. Most of the current statistical
approaches have either been designed to capture distributional moments of neural
time-series or have heavily relied on assumptions of stationarity®-25. While some
approaches have softened assumptions of stationarity — e.g., by carving data into
shorter windows that are swept over time»? — these techniques are typically model-
based, which makes the detection of non-linear shifts in brain states inherently
difficult. Other approaches have used inventive means for tracking functional
neuroimaging data at a fine temporal resolution®®, however the direct
interpretation of these measures with respect to stability and flexibility (which

naturally require longer epochs of data to quantify) is non-trivial.

Fortunately, there are existing methods from the field of fluid dynamics that are
well-suited to this class of problems, however they require a subtle change in
perspective. By way of analogy, if we consider brain dynamics as a flowing river, we
need to move from tracking the topography of the river — which is admittedly still
highly informative — to characterising the flow of water at different sections of the
river: one section might be calm and largely laminar, whereas another might be full
of turbulent swirling eddies and so non-laminar (Fig. 1a). Importantly, these local
dynamics provide fundamentally different constraints over the local environment,
permitting smooth (stable) or disturbed (flexible) flow of local objects, respectively.
This dynamics-focussed perspective has led to key insights in fields such as fluid
mechanics, mechanical engineering, economics, and sociology®*, and here we

advocate for its application to problems in neuroscience.

There are several significant historical parallels between the fields of neuroscience

and fluid dynamics in the development of measurement techniques that further
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motivate advances in data-driven modelling approaches. Both disciplines study
complex systems that are high-dimensional, non-linear, and inherently multi-scale,
both in space and time, yet both also exhibit dominant spatiotemporal patterns of
activity that are meaningful for scientific understanding and engineering?®%.
Importantly, experimental measurements in each field have followed a similar
technological trajectory: recordings were first single point (hot-wire anemometry
and sharp electrodes), followed by simple arrays (many hot-wires and electrode
arrays), and more recently spatial and temporal fields resolved by imaging (laser-
based particle image velocimetry PIV** and magnetic-resonance-based functional
brain imaging®). Accordingly, mathematical modelling techniques in fluids have
evolved from quantifying statistics to extracting spatiotemporal dynamics®4. We
note that—with a delay of several decades—a similar progression is now occurring
in neuroscience®?. For this reason, there is a tremendous opportunity to leverage
modern dynamical systems modelling techniques to gain insights into neural

computation.

In this paper, we repurpose an approach from fluid dynamics for application to
functional neuroimaging data. Specifically, we develop a measure of timeseries
stability — akin to fluid laminarity — by tracking the capacity of a simple linear
dynamic model to accurately predict successive time-points. We show that neural
recordings transition through periods of increased linear predictability that
irregularly fluctuate through periods of decreased linearity over time (Fig. 1b). The
spatial and temporal structure of these linear dynamics reveals coherence maps and
intrinsic timescales that are not captured by null models that either scramble
temporal order or recreate timeseries based on the covariance and Fourier power
spectrum of the original data. We then reveal how pharmacological manipulation of
arousal, via propofol-induced anesthesia, results in heightened linearity in human
neuroimaging data (Fig. 1c). Next, we demonstrate how targeted and diffuse

thalamocortical subtypes can both promote or diminish linearity, respectively. We
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underscore the importance of thalamocortical interactions in a detailed biophysical
model which further predicts matrix thalamic stimulation re-instantiates deviations
from linear dynamics concomitant with conscious arousal, which we then confirm
by applying our approach to multielectrode cortical recordings from an anesthetized
macaque that was awoken by electrical stimulation of the diffuse thalamic
projections within the central lateral thalamus!*®. In this way, we reveal the crucial
role of the thalamus in shaping and constraining global linear activity patterns
distributed across the cerebral cortex, supporting an essential feature of stable, and

yet adaptive and flexible cognition.
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Figure 1 — Linear dynamics in large-scale brain recordings. a) Depiction of laminar and non-laminar
river flows forming an analogous axis for large-scale brain dynamics — this analogy provides a useful
means for appreciating the approach used in our experiment. b) Top: Schematic showing how a
global linear model can be compared to ground-truth timeseries as a time-varying measure of
linearity — here, a low-dimensional representation of changes in the BOLD signal across the cerebral
cortex is used to predict changes to the state of the brain in the next time point (black lines to dotted
circles); the actual brain state (closed circles) is recorded, and the distance between these two states in
state space is quantified as the “Error” of the model - linear dynamics are associated with consistently
low Error values, whereas non-linear dynamics have variable Error values. Bottom: A Horizon plot
showing the time-varying linear forecast performance in 7T resting-state human BOLD#® from an
example subject — note the large fluctuations in Linear Model Error (MSE), particularly at longer
delays (Forecast Horizon,7). ¢) 7T human resting-state linear prediction performance (N=59; black), 3T
human resting-state linear prediction performance (N=14; green), 3T human resting-state under

propofol anesthesia linear prediction performance (N=14; dark blue).
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Results

Linear dynamics in large-scale cortical recordings

To quantify the time-varying stability of brain state dynamics, we applied a simple
linear model estimation technique (Fig. 1b; Supp. Fig. 1) to a high spatiotemporal
resolution human 7T fMRI dataset captured during the resting state. First, a global
linear propagator tracking moment-to-moment shifts in a recording is generated for
each subject’s timeseries by utilizing the singular-value-decomposition (See Supp.
Fig. 1a). Then, for every timepoint in the recording, the linear propagator is used to
forecast state dynamics at a set of future timepoints (r; 1-10 TR) — note that we
explicitly chose to fit a global propagator (i.e., we did not redefine the propagator in
a sliding-window fashion). The linear dynamics predicted by the global propagator
are then compared to the ground-truth dynamics via the mean-squared-error,
providing a time-resolved read-out of how effective (or not) the linear model was at
predicting the upcoming brain state. We denote this term as the Forecast Horizon of

the linear model prediction (Fig. 1b) and the resultant graph as a Horizon plot.

We reasoned that, if the resting brain were stable (i.e.,, linear) throughout the
recording, then we should observe relatively strong, consistent predictability
throughout the entire recording session. In stark contrast, the Horizon plot in Fig. 1b
shows that neural dynamics cycle through periods of increased and decreased
linearity over the course of a recording session. This observation is at direct odds
with the typical assumption of stationarity that is applied in standard neuroimaging
analyses?'. The results are observed for every individual in the dataset (N = 59; Supp.
Fig. 2), robust across validation datasets (which had different temporal resolutions;
see Supp. Fig 2) and do not correlate with frame-wise displacement (r = 0.01 +- 0.03

across 10t). Crucially, these results extend previous findings of strong linear
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dynamics in human neuroimaging*# and large-scale electrophysiological
recordings®®¥, by showing substantial yet irregular deviations from linear

predictability in conscious states that is pervasive across subjects.

Adaptive timescales and dynamic brain modes

Intrinsic timescales of the brain have been of interest since the discovery of
oscillatory dynamics in the first human EEG recordings®. Human neuroimaging
studies have revealed a hierarchy of temporal and spatial autocorrelation scales
across the cortex? and that these capture a large number of existing topological
metrics?. Linear flow analysis enriches this approach by quantifying intrinsic modal
timescales that drive linear dynamics in neural activity — and which may be
recruited in an adaptive and time-varying manner reflecting changing cognitive
demands. To do this, we leveraged another method commonly used in the field of
fluid dynamics — Dynamic Mode Decomposition (DMD) — that is designed to efficiently
characterize the dynamics of time-varying processes through eigendecomposition of
the linear propagator matrix®*%%, reformulating the linear dynamics as a function
of spatiotemporal modes %%, Each mode contains four key characteristic
properties: the spatial eigenvector defines a spatial pattern of coherent activity, and a
corresponding spatial pattern of delays relative to each of these coherence patterns —
called a dephasing map. In addition, each mode has a corresponding eigenvalue
defining its oscillatory frequency, and an exponential gain parameter — which
determines whether a mode will grow or decay in time (i.e., captures its temporal

stability) — representing two key dimensions of the system’s timescales.

By applying DMD to each subject’'s fMRI recording, we formulate a subject-specific
set of spatiotemporal modes capturing on-going linear dynamics. In order to gain
insight into how these dynamic modes relate across all subjects, we leverage a two-
pronged clustering approach to aggregate modes across timescales, and then spatial

coherence, respectively. First, we consider timescales by utilizing k-means clustering
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of the eigenspectrum collated across all subject recordings. A peak in adjusted
mutual information between clustering repetitions was then used to select k = 5
clusters (1000 repetitions; see Supp. Fig. 4), resulting in 5 distinct timescale
groupings — the corresponding average of the coherence maps within these clusters
(Supp. Fig. 4). Timescale cluster 1 shows somatomotor and visual activation
antiphase with frontal, parietal and temporal cortices across a broad range of
frequencies — spanning much of the time resolution of BOLD recordings. These
modes are also weakly damped — ie., have a strong gain relative to the other
temporal clusters. Timescale cluster 2 shows visual, premotor, and dorsal lateral
prefrontal antiphase with other cortices at slower frequencies (< 0.03 Hz; Fig. 4 g-h
middle) and with a stronger damping rate, i.e., weaker gain, than cluster 1. And
timescale cluster 3 shows strongly damped temporal cortex activity at frequencies <

0.02 Hz.

Next, we considered the spatial patterns of coherence, defined by each mode,
aggregated across subjects and recording sessions to define consistent modal
groupings®. Again, we leveraged k-means clustering (adjusted mutual information
peaked between clustering repetitions for k = 5; See Supp. Fig. 4): Figure 2m shows 3
cluster centroids and their defining coherence patterns — i.e., the spatial patterns of
the linear modes across all subjects fall within distinct classes. These classes show a
significant overlap with resting-state networks used broadly in the literature® —
including the default mode, and somatomotor and visual networks. We further find
that the damping rates and frequencies of the modes within each class have
comparable probability distributions — demonstrating these spatial classes did not

demonstrate unique linear timescales at this granularity in resting-state.

Empirical fluctuations are distinct from surrogate models
To further investigate the fluctuations in linear dynamics observed in resting state

fMRI data, we contrast these against two surrogate timeseries that conserve distinct
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features of the empirical fMRI data. The first, referred to as the spectral surrogate,
consists of white-noise timeseries imbued with a covariance and Fourier frequency
spectrum matching those of the empirical data (i.e., a stationary surrogate?; see
Supp. Fig. 1d). Crucially, this surrogate shares the empirical correlative structures
between brain regions which forms the basis of many approaches in the
neuroimaging literature'®. In addition, this surrogate includes timescale information
captured by the Fourier spectrum, which is predictive of future dynamics, since the
sinusoidal modes comprising this time averaged measure oscillate across time. The
second surrogate, referred to as the shuffled surrogate, is simply the initial empirical
fMRI data uniformly scrambled in time — i.e., the regional activations relative to
other regions at a given moment are conserved, matching empirical regional
correlations, but when they occur with respect to any other activations in time is
scrambled. Since the empirical data and both surrogates have the same correlation
structure, they also share the same principal components (i.e., covariance defining
regional activation patterns). Despite these similarities, Fig. 2b & 2c show that the
temporal expression of these patterns no longer matches that seen in the empirical

data (Fig. 2a).
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Figure 2 — Spatiotemporal modes of global linearity. a) Example subject time-series of first 3
principal components. b) Example subject correlation matrix (left) and linear propagator matrix
(right) capturing linear dynamics. c) Timescale properties of dynamic modes defined by the linear
propagator of 7T resting-state data (IN=59). Colour bar shows the total power within each mode across
the entirety of the recording. Orange dots correspond to the example subject’s dynamic modes in j).
Random Spectral Surrogate is generated from a white-noise timeseries with a covariance and Fourier
power spectrum matching the empirical data in a-b). d) Principal component time-series for the
random spectral surrogate. e-left) Random spectral surrogate correlation matrix, (e-right) linear
propagator matrix, and (f) dynamic mode timescales. Shuffled Surrogate is generated by uniformly
randomizing each timepoint of the regional timeseries — i.e., only randomizing time and not space. g)
Principal component time-series for the shuffled surrogate. h) Left: shuffled surrogate correlation
matrix; Right: linear propagator matrix, and (i) dynamics mode timescales. j) Example subject
dynamic modes capturing the most (j-i), median (j-ii), and least (j-iii) amount of globally-linear
dynamics and (k) these modes” corresponding temporal dynamics. 1) Average linear errors as a
function of future time points across all (N=59) subjects (green), and all corresponding Random
Spectral (pink), and Shuffled (blue) surrogates (p < 0.001; line = mean across subjects; shaded error bar
= variance across subjects). m) k-means spatial coherence clusters of the dynamic modes across all
subjects (N=59) - showing 3 clusters (m-left) of k=5 — see Supp 3 for all clusters. (m-right) Cluster

power within each of the 7 resting-state networks>!.
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Again, leveraging Dynamic Mode Decomposition, we find the empirical fMRI data are
clearly distinct from the surrogates in two key ways: firstly, the fMRI data consist of
slowly fluctuating, sustained, spatiotemporal dynamic modes (Fig. 2c), as compared
to the surrogates. Due to its matched oscillatory spectrum, the spectral surrogate
contains a similar distribution of modal frequencies (0-0.14Hz) to the empirical data
(Fig. 2f). However, these oscillations are strongly damped, as the spectral surrogate
mostly excludes moment-to-moment information predictive of future states with
only the time-averaged Fourier modes contributing to continuity of its temporal
trajectories. In contrast, the shuffled surrogate displays a much wider range of high
frequency (0-0.8Hz) strongly damped modes than both the empirical data and the
spectral surrogate (Fig. 2i). This is due to the shuffled surrogate’s time-point

scrambling favouring fast and short-lived shifts in moment-to-moment activity.

Secondly, the empirical fMRI data contains significantly more linear dynamics than
either surrogate (Fig. 21). That is to say, the empirical fMRI data contain information
in their moment-to-moment dynamics that is predictive of future globally-linear
trajectories. Since both surrogates share the same covariance as the empirical data,
and the spectral surrogate additionally includes Fourier spectral structure, we find
these time-averaged features are not sufficient to capture the observed linear
dynamics seen in the neural recordings. This finding was consistent at the subject
level for all subjects (N=59; Supp. Fig. 2) and cross-validated in a 3T resting-state
imaging dataset (N=14; Supp. Fig. 252). To ensure that this effect was not caused by
fixed patterns enduring within the timeseries, we calculated the time-averaged
mean-squared-displacement (MSD) for successive lags — comparable to temporal
autocorrelation of the entire brain state — and found the linear errors are significantly
smaller than those expected from general variability within the signal (Supp. Fig 3).
In short, we have presented a simple technique for clearly demonstrating that,

despite substantial fluctuations between linear and non-linear flow, resting state

12
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fMRI data remains distinctly more globally-linear than either the spectral or shuffled

surrogate.

How does this perspective of linear dynamics extend traditional investigations into
the resting brain? Further insight can be gathered by exploiting the dynamic modes
corresponding to the propagator used to predict the linear (or non-linear) temporal
epochs (Fig. 21). Figure 2j shows an example of three dynamic modes from a single
subject’s recording: the dynamic mode with the largest average amplitude across the
time series (Fig.2j-i), median (Fig.2j-ii), and the smallest (Fig. 2j-iii). The spatial
coherence maps for these modes are shown in Fig. 2j and have corresponding
temporal dynamics defined by a complex exponential (Fig. 2k). These modes can be
collated across all subjects via clustering approaches (See Methods) and show spatial
coherence groupings that recapitulate common resting-state networks® (Fig. 2m;
Supp. Fig. 4), consistent with previous findings®, and temporal groupings defining
cross-regional dynamics at distinct frequencies and temporal stabilities — i.e,

damping rates (Supp. Fig. 4).

Together these results clearly demonstrate that fMRI data contains predictable linear
dynamics that are not observed in stationary surrogates — that is, the dynamics of
human fMRI contains information in its moment-to-moment fluctuations that is
predictive of its future dynamics. Despite this predictability, resting-state
neuroimaging data also irregularly cycles through periods of predictable and

unpredictable flow (Fig. 1b).

Thalamic axis of cortical linearity

Armed with this simple yet effective approach, we were now able to test our original
hypothesis: namely, that axes of anatomical variation in the thalamus facilitate shifts
between stable and flexible dynamical modes in the brain. The thalamus itself is

comprised of a rich diversity of cell types which have unique projection profiles to
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both the cerebral cortex and other subcortical structures®®. Although there is no
single schema that effectively captures the diversity of thalamocortical
interactions®’, recent empirical studies in rodents have demonstrated the utility of
considering a non-binary continuous spectrum of thalamic cells that differ in terms
of the topography and targets of their axonal arbours®!. At one end of this continuum
sit the calbindin-rich matrix nuclei, which have thalamocortical projections spanning
multiple cortical areas, typically targeting superficial layers of agranular association
cortices (Fig. 3a). This organization contrasts with the parvalbumin-rich core nuclei,
which typically target granular layers of the cerebral cortex, providing feed-forward

input to cortical pyramidal neurons®® (Fig. 3a-b).

Although there is evidence of individual thalamic cells that contain axonal features
of both core and matrix types (even in the same axon®), there are good reasons to
consider a spectrum that extends between the two extreme phenotypes®?. For one,
simplifying assumptions at the microscale are required in order to conduct tractable
work at the macroscale of neuroimaging'#''®. Secondly, there is now robust
evidence that core and matrix cell types also differ in their functionality® recent
empirical and theoretical work has shown that electrical stimulation of the central
lateral thalamus — which itself is abundant with matrix nuclei — but not the ventral
lateral thalamus (which is a predominantly core-rich nucleus) can drive recovery of
consciousness in propofol-anesthetized macaque monkeys by leveraging the non-
specific diffuse projection profiles of these matrix cells''>16. From these empirical
vantage points, we thus ask: what type of cortical dynamics are facilitated by the
thalamus, and how do these dynamics relate to the expression of core and matrix

thalamic cell subtypes (Fig. 3)?
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Figure 3 — Thalamic axis of cortical linearity. a) Schematic of characteristic projection profiles of core
and matrix thalamocortical projection profiles (adapted from 3¢). b) Core-Matrix thalamocortical
expression gradient (adapted from 8). c¢) Population average cortical map showing regions of
dominant linear dynamics 10 time-points into the future. d) Thalamic timeseries for each subject are
projected along the core-matrix gradient and epochs showing one standard deviation above the mean
(high matrix) and below the mean (high core) are collated. e) The difference of the mean-squared-
error of the linear model following high matrix compared to high core thalamic activity. These mean-
squared errors can be reformulated into corresponding energiess? (logarithm of inverse state
probability) following high core (f) and high matrix (g) thalamic activity. h) The subtraction of the
core energy landscape from the matrix energy landscape. Negative values indicate strong linearity

following core activity as compared to matrix activity.

To answer this question, we applied a multitiered approach. First, we utilized the
difference between the ground-truth data and the predicted linear dynamics —
calculated for each region, each timepoint and each subject. We then sum these
errors across regions to create a forecast horizon t = 10 (ensuring sufficient time for

autocorrelation to decay) across all time points and all subjects. This defines a

15


https://doi.org/10.1101/2024.07.02.601788
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.07.02.601788; this version posted February 25, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

cortical map revealing a spatial pattern of dominant globally-linear dynamics (Fig.
3c). Figure 3c shows that predictable linear flow was predominant in sensory
cortices, and that these dynamics were strongly negatively correlated with the core-
matrix expression gradient® (r = -0.56; p < 10, Supp. Fig. 6a). That is, cortical brain
regions with strong core thalamocortical projections also showed strong linear
dynamics. However, both of these spatial maps also covary with the first principal
component of the imaging data, which itself captures a significant proportion of the
empirical timeseries’ overall covariance, thus making strong inferences about the

thalamic involvement difficult.

To test our hypothesis more precisely, we next asked whether the thalamus was
temporally related to fluctuations in the predictability of cortical dynamics.
Specifically, a time-resolved measure of matrix thalamus (relative to core thalamus)
was generated by projecting each subject’s thalamic BOLD timeseries onto a core-
matrix expression gradient approximated from Allen Human Brain genetic
expression data that corresponds to both extreme thalamic cell phenotypes (see
methods; Fig. 3d)%. In this data, a positive weighting corresponds to high matrix
activity relative to core regions of the thalamus (and vice versa). Next, for each
subject, we identified peaks in this matrix-core timeseries that were one standard
deviation above or below the mean (for high matrix and high core activity,
respectively). Temporally averaging the prediction errors across all subjects and
subtracting high core epochs from high matrix epochs clearly shows that increased
linearity of cortical dynamics following peaks in core thalamic activity (Fig. 2e) —i.e,,

core thalamic activity precedes stable linear flow in the cortex.

To investigate these temporal fluctuations further, we leveraged a recent technique
motivated by approaches in statistical thermodynamics that quantifies the likelihood
of moment-to-moment state changes in a given timeseries by representing

fluctuations as thermodynamic energy®. The likelihood for changes in linear flow
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(MSE) in the data is generated at each proceeding timepoint (forecast horizon, 7) and
produces a corresponding energy landscape for the two thalamic conditions (Fig. 2f-
g; see Methods for details). This approach strengthens our previous findings, in that
strong core thalamic activity (relative to matrix thalamic activity) is followed by
increased predictable dynamics (negative drop seen in Fig 2h) in the cerebral cortex

(with a maximum ~3 seconds post-peak).

These results are in keeping with the targeted feed-forward projections from the core
thalamus acting as a feed-forward propagator cortical activity, and the more
diffusely-projecting axons from matrix thalamic nuclei acting more akin to a
modulator of ongoing cortical activity#19¢%. Furthermore, previous work® has shown
that this anatomical axis also covaries with temporal variability of corticocortical
connectivity, as captured by dynamic correlations in fMRI®. That is, cortical regions
receiving more projections from the matrix thalamus showed a greater flexibility in
their coordination with other cortical regions. Together, these findings demonstrate
that the thalamus can provide both the stabilization of on-going cortical dynamics
necessary for robust behaviours, but crucially, also mediate the flexibility of these
cortical dynamics, which is essential for adaptive cognition. However, to strengthen
the evidence for the thalamic control over cortical linearity, we require approaches

that causally influence brain states.

Anesthesia promotes linear flow in the cerebral cortex

We first sought to determine whether alteration of conscious brain states impacted
the linear predictability of cortical dynamics. Given the highly susceptible, flexible
and context-dependent nature of consciousness®*, the critical importance of the
thalamus in controlling dynamic brain states''* (Fig. 3), and armed with a
technique for quantifying this impact (Figs. 1 & 2), we reasoned that awake state
should be associated with irregular deviations from linear flow, which would then

be diminished during anesthesia. To test this hypothesis, we extended our approach
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to an existing human neuroimaging resting-state fMRI dataset of 14 healthy
volunteers (4 women; mean age 24 years, SD = 5%2) who underwent propofol-induced
anesthesia. As predicted, we found that anesthesia strikingly disrupted deviations
from linear predictability compared to the awake state, with the linear forecasts
performing significantly better across all subjects following propofol administration
(blue line in Fig. 4d). This population-level observation can be better understood
when viewing the Horizon plot of a specific subject recording, where the wake
dynamics show periods of increased linear flow (Fig. 4b), which are equivalent to
those observed for the same subject under propofol anesthesia (Fig. 4c). In contrast,
the waking data is punctuated by periods of sharp deviation from linear flow that
are not observed during propofol anesthesia (Fig. 4b). This observation thus
provides confirmatory evidence for our hypothesis linking deviations from linear

predictability to the conscious, waking state.
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Figure 4 — Linear flow across arousal. a). Schematic of fMRI timeseries. b-c) a Horizon plot of an
example single subject resting-state human BOLD showing time-varying linear error during wake (b)
and during propofol anesthesia (c). d) Population average linear error of BOLD resting-state data
during wake (black) and propofol (dark blue) conditions averaged over each recording — shaded
regions show standard-error-of-mean (note: this is a group-level summary of the data in Figure 1c). e)

Schematic of large-scale biophysical neural mass model fit to human resting-state BOLD data’®. As
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previous'®, propofol is modelled as a prolongation of inhibitory-postsynaptic-potentials. f) Horizon
plot showing time-varying linear error of the corticothalamic model timeseries - transformed using a
haemodynamic response function to provide representative BOLD timeseries - fit to wake condition.
g) Time-varying linear error of the corticothalamic model timeseries under the propofol condition. h)
Average linear error of corticothalamic model during wake (black) and propofol (dark blue)

conditions.

To further interrogate this empirical observation, we leveraged a state-of-the-art,
large-scale biophysical neural mass model capable of describing consciousness
modulation under propofol anesthesia, and its recovery following stimulation of the
matrix thalamus™. This corticothalamic model includes realistic population-level
neuroanatomy, non-linear neural responses, interpopulation connections, long-range
white-matter connectivity, and dendritic, synaptic, cell-body, and axonal
dynamics!'*%7 The biophysical constraints incorporated in this model allow
putative physiological mechanisms to be explored which provide insights beyond

those obtained via purely data-driven approach.

Applying our same approach to the wake and propofol conditions of this model’s
timeseries — transformed using a haemodynamic response function to provide
representative BOLD timeseries — we replicated our empirical observations: namely,
relative to the propofol condition, the wake condition is comprised of epochs of
linearly-predictable dynamics that were punctuated by sharp unpredictable
deviations (Fig. 4f-g). These empirical and theoretical modelling results demonstrate
that consciousness is concomitant with fluctuations in linear flow across the cerebral
cortex, which are diminished by propofol anesthesia, however the question remains

as to whether the thalamus itself plays a causal role in controlling these dynamics.

Causal thalamic drive of cortical non-linear flow across conscious states
A decisive feature of biophysical models is that they can be used to create

predictions that can be directly tested in empirical datasets across a range of imaging
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modalities and across species. We leveraged this feature to causally test the role of
the thalamus in shaping the linearity of cortical dynamics. Specifically, we used an
existing dataset comprising multi-electrode recordings from the frontal eye-fields
and lateral interparietal cortical areas in a macaque monkey (Fig. 5b)'*14. Following
propofol-mediated anesthesia, targeted 50Hz electrical stimulation of the matrix-rich
central lateral thalamus drove the recovery of conscious arousal'®!4. Despite the fact
that the data was collected in a different species and through a different
measurement modality that has a much faster temporal resolution than fMRI, we
were able to use the generative nature of the biophysical model to create a testable
prediction that mirrored the fMRI findings; Namely, that matrix stimulation should
drive a recovery of the linearly unpredictable flow lost under propofol anesthesia
(Fig. 5a) by flattening local attractors''. Importantly, this mechanism can be exploited
while maintaining overall stability and facilitates long range interactions between

specific brain areas'"’.
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Figure 5 — Causal thalamic influence on cortical linear dynamics. a) Using the corticothalamic
biophysical model, we simulated matrix thalamic stimulation by applying a square-wave input to
matrix-rich thalamic regions and then applied our linear flow analysis to the cortical
electrophysiological time series during wake (black), following simulated propofol administration
(blue) and following matrix stimulation (red) — matrix stimulation recovered non-linear cortical
dynamics. b) experimental setup, in which a macaque monkey had 50Hz electrical stimulation
applied to the matrix-rich central lateral thalamus while local field potentials were recorded from the
frontal eye fields and lateral interparietal cortex. ¢) examination of the empirical recordings from
macaque cortex recovered the predicted relationships: namely, central lateral thalamic stimulation
recovered cortical non-linearity that matched the awake brain but was lost during propofol
anesthesia. d) these effects are analogous to the global cortical state being enslaved to a deep attractor
during propofol anesthesia (purple and blue) whose depth was diminished by matrix thalamic
stimulation (red), allowing less linear cortical state dynamics. e) energy landscapes®? (i.e., the
logarithm of inverse state probability) during pre-stim (purple), stimulation (red) and post-

stimulation (blue) of the central lateral thalamus.
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Using multi-electrode recordings from the macaque cortex, we confirmed that
propofol had the predicted impact on cortical electrophysiology: namely, the
induction of propofol increased linear predictability in the anesthetized monkeys,
relative to wake (Fig. 5c), albeit on a shorter time-scale than the one observed in the
fMRI data (though see Fig. S7). Next, we calculated this same linear predictability
before (pre), during, and after (post) electrical stimulation of the central thalamus
(which was effective in recovering the monkey’s conscious state; Fig. 5d). As
predicted by our biophysical model, we observed substantial propofol-mediated
linearity in the pre-stimulation window, a significant decrease in linear dynamics
during stimulation (comparable to that seen in the wake condition), and a
subsequent return to relatively predictable, linear dynamics following stimulus
cessation (Fig. 5d). In addition, while the empirical stimulation recovered
proportionally larger amounts of linear errors than the biophysical model (contrast
the amplitude of the red lines in Fig. 5a and 5c), we anticipate that this difference is
related to the simplified nature of the model, relative the nuanced neurobiological
complexity of the brain. Irrespective of these details, our crucial prediction was
confirmed: namely, that matrix thalamic stimulation reinvigorated deviations from

linear cortical dynamics lost during propofol anesthesia.

As a final analysis, we again utilized the likelihood of changes in linear dynamics
across each stimulation condition to formulate a statistical energy landscape (akin to
the results observed in Fig. 3f-h). Analogous to an attractor landscape, this approach
highlights the stability of on-going predictable cortical linear flow in the pre- and
post-stimulation conditions, which is then destabilized by matrix thalamic
stimulation (Fig. 5d). Our findings demonstrate that the matrix thalamus drives
linearly unpredictable cortical flow by destabilizing local attractors across different
states of arousal and provides a key feature of flexible dynamics indicative of

versatile and adaptive cognition.
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Discussion

Here we showed that the thalamus controls the manner in which cortical dynamics
fluctuate between laminar and non-laminar flow across states of consciousness.
Using multimodal empirical neural recordings, a sensitive method from fluid
dynamics and a biophysical model of the thalamocortical system, we demonstrated
how a key principle of cellular organization within the thalamus controls these on-
going linear dynamics, and specifically how the diffusely-projecting matrix thalamus
destabilizes linear cortical flow. This approach reveals a candidate neuroanatomical
mechanism for facilitating the adaptive cognitive benefits of the waking brain:
namely, by facilitating brain dynamics that can support the formation of both stable
and unstable brain states, which in turn can support reconfiguration as contingencies

change across different behavioural contexts.

Previous work has shown how electrical stimulation of the thalamus can modulate
conscious arousal'*' and implicated the matrix thalamus as driving quasi-critical
brain state formation!''?, thereby facilitating the recovery of conscious awareness
from anesthesia. Our present findings enrich these insights and demonstrate how
the matrix (diffuse)-core (targeted) cortical projections play a key role in shifting the
cortex between laminar and non-laminar dynamics. Our results also represent a key
capacity inherent to biophysical models, which is the ability to create mechanistic
simulations that allow translations between different imaging modalities and
recordings from different species. We anticipate that the addition of further
anatomical constraints will only enrich the capacity for these models to provide
additional testable predictions, though care must be taken to match the emergent
dynamics of these models with the idiosyncratic spatiotemporal constraints imposed
by standard cognitive contexts in which higher-order brain functions are

interrogated.
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Human neuroimaging studies have revealed a hierarchy of temporal and spatial
autocorrelation scales across the cortex® and that these two features capture a large
number of existing topological metrics?2. Our present findings expand these insights
by quantifying intrinsic dynamic modal timescales that drive linear flow in neural
activity across imaging modalities. The resulting spatiotemporal dynamic modes are
defined by a complex (i.e, imaginary) eigenvector and corresponding
eigenvalue®>®*. Each mode contains four key characteristic measures: the spatial
eigenvector defines a spatial pattern of coherent activity, and a corresponding spatial
pattern of delays relative to each of these coherence patterns — called a dephasing
map. In addition, each mode has a corresponding eigenvalue defining its oscillatory
frequency, and an exponential gain parameter — which determines whether a mode
will grow or decay in time (i.e., captures its temporal stability). The investigation of
these features provides rich information regarding the types of dynamic modes that
characterize the system. Our results also confirm the long-held notion that BOLD
dynamics are predominantly constituted by slow and sustained patterns of activity
(hence the popularity of the standard resting state network analyses’”), but extend
our ability to characterize and explore the spatial and temporal properties of the
modes shaping these dynamics. We also demonstrate that the same anatomical
mechanism underpins similar observations in both BOLD and electrophysiological
data, which thus paves the way forward for future mechanistic work. Furthermore,
our comparison of empirical imaging data to surrogates conserving covariance and
Fourier spectra shows these features are not sufficient to explain the observed linear
dynamics. An important open question that we were unable to interrogate in these
data is whether non-neural sources of noise, such as physiological activity or task
contexts, alters the observed relationship between thalamic activity and cortical
dynamics, however this line of questioning is left for future, targeted experimental

approaches.
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It is worth noting that in this implementation, a linear model is generated for each
subject over the complete length of that recording. As with calculation of covariance
and Fourier power spectrum, this may also be performed at a finer temporal
granularity via windowing approaches — this will favour faster timescale effects over
slower ones, and thus should depend on the investigators question of interest. Here,
the imaging data has been collected during the resting-state, but recordings with
specific epochs of interest, such as during a task paradigm, would be served better
by a piece-wise approach defining the linear dynamics instantiated by the brain
within each epoch, particularly given the time-scale constraints imposed by the vast
majority of task-based neuroimaging analysis protocols. Furthermore, our approach
allows for the quantification of linear dynamics within a given timeseries, however,
it does not make explicit claims about the nature of the residual dynamics. This is
because these residuals may be multifaceted. Indeed, it may be that deviations from
linearity are driven by non-linearities (in the mathematical sense) within the
dynamical system becoming significant, due to the presence of extrinsic or intrinsic
drive (i.e., visual/auditory/olfactory stimuli in the brain), or through the instantiation
of a different transient linear system on a shorter timescale relative to the epoch of
time initially considered. These are both exciting opportunities to be explored in

future work.

In conclusion, we have demonstrated fluctuations in globally linear cortical
dynamics in multimodal neuroimaging and electrophysiological data across human
and non-human primates differentiates conscious arousal states and are controlled
by the organization of the thalamus. In this way, we argue that this key feature of the
brain’s neurobiological architecture helps to shape the robust, yet flexible, adaptive
neural dynamics required for effective cognitive function that define our waking

lives.
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Methods

Human neuroimaging data

Sixty healthy adult participants (28 females; 18-33 years; right-handed) were
recruited and the research was approved by The University of Queensland Human
Research Ethics Committee. These data were originally described in #°. 1050 (~10
minutes) whole-brain 7T resting state fMRI echo planar images were acquired using
a multiband sequence (acceleration factor = 5; 2 mm?® voxels; 586 ms TR; 23 ms TE;
40° flip angle; 208 mm FOV; 55 slices). Structural images were also collected to assist
functional data pre-processing (MP2RAGE sequence — 0.75 mm? voxels 4,300 ms TR;
3.44 ms TE; 256 slices).

DICOM images were first converted to NIfTI format and realigned. T1 images were
reoriented, skull-stripped (FSL BET), and co-registered to the NIfTT functional
images using statistical parametric mapping functions. Segmentation and the
DARTEL algorithm were used to improve the estimation of non-neural signal in
subject space and the spatial normalization. From each grey-matter voxel, the
following signals were regressed: linear trends, signals from the six head-motion
parameters (three translation, three rotation) and their temporal derivatives, white
matter, and CSF (estimated from single-subject masks of white matter and CSF). The
aCompCor method (Behzadi et al., 2007) was used to regress out residual signal
unrelated to neural activity (i.e., five principal components derived from noise
regions- of-interest in which the time series data were unlikely to be modulated by
neural activity). Participants with head displacement >3 mm in > 5% of volumes in
any one scan were excluded (n = 5). A temporal band pass (0.001 < f < 0.125 Hz) was
applied to the data. Following pre-processing, the mean time series was extracted

from 400 pre-defined cortical parcels using the Schaefer atlas (Schaefer et al., 2018).
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For the anesthesia BOLD fMRI dataset, we utilized data derived from previously
published research works®27® that have been openly shared on the OpenNeuro data
repository (doi:10.18112/openneuro.ds003171.v2.0.0). The dataset comprises 17
healthy individuals (Age: 24+ 5, M/F: 13/4), all of whom were right-handed, native
English speakers, and had no recorded history of neurological disorders. The
original study obtained ethical approval from both the Health Sciences Research
Ethics Board and Psychology Research Ethics Board of Western University (REB
#104,755) and adhered to the principles outlined in the revised declaration of
Helsinki (2000). We analyzed two conditions, awake (fully alert and communicative)
and deep sedation, which was achieved with an initial target effect-site
concentration of 0.6 pg/ml and oxygen titrated to maintain SpO2 above 96%, with
increments of 0.3 ug/ml with repeated assessments of responsiveness until deep

sedation (Ramsey level 5).

Imaging was performed on a 3T Siemens Tim Trio system with a 32-channel head
coil. Subjects resting state fMRI scans using BOLD EPI sequence (33 slices, voxel size:
3mm? isotropic, inter-slice gap of 25%, TR = 2000 ms, TE = 30 ms, matrix size = 64x64,
FA =75°). Resting-state scans had 256 volumes. Anatomical scans were also obtained
using a T1-weighted 3D Magnetization Prepared - Rapid Gradient Echo (MPRAGE)
sequence (voxel size: Imm? isotropic, TR = 2.3, TE = 4.25 ms, matrix size = 240 x 256 x

192, FA = 9°).

Preprocessing was completed using fMRIPrep standard pipeline which involves the
basic preprocessing steps (co-registration, normalization, unwarping, noise
component extraction, segmentation, skull stripping, etc.). The extracted time series
were denoised specifying motion and physiological signals from white matter and
CSF, with high-pass and low-pass band filters set at 0.01 and 0.1, respectively. The

global signal was removed by standardizing each time point®.
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Thalamic timeseries representing the ‘core’ and ‘matrix” populations were estimated
by estimating the dot-product between the voxel-wise time-series of thalamic BOLD
signal and a standardized map of the relative mRNA expression levels for PVALB
(‘core’) and CALB1 (‘matrix’) provided by the Allen Human Brain Atlas®*7”.
Variogram modelling was applied prior to our obtaining the gene maps to correct
for potential subject-level differences’. Note that there are other calcium binding
proteins with non-trivial expression in the thalamus®”, however these patterns were
not considered here, as they have not been directly linked to the same core-matrix
gradient in the thalamus’. Note that we do not advocate for a strict dichotomy
between core and matrix neurons in this work, but rather that these two projection
types represent anatomical extremes at either end of an approximately continuous

spectrum®%. See Muller et al 20208 for more details.

Macaque electrophysiological dataset

We compared modelling data to electrophysiology data from our previous study'*.
This dataset consists of simultaneous local field potential (LFP) recordings from the
frontal eye field (FEF), lateral intraparietal area (LIP) and central lateral thalamus
(CL) in the right hemisphere of two macaques (Macaca mulatta, 4.3-5.5 years old,
7.63-10.30 kg body weight). We lowpass filtered LFPs to 250 Hz, then linearly
detrended and extracted artifacts. Bipolar derivations of the LFPs were then
calculated to minimize any possible effects of a common reference and volume
conduction. Recordings were performed during general anesthesia — either
isoflurane (0.8%-1.5% on 1 L/min O2 flow; 9 sessions) or propofol (0.17-0.33
mg/kg/min i.v.; 9 sessions) — or wakefulness, using 16- or 24-contact linear micro-
electrode arrays (LMEAs; MicroProbes). The electrode contacts had a diameter of

12.5um, and 200um spacing between contacts.

We performed deep brain stimulation via simultaneous stimulation of 16 contacts of

the LMEAs in the central thalamus. We applied 400 ms bi-phasic pulses of 200 mA,
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at 50 Hz stimulation frequency, for a total of 60 s stimulation duration for any given
stimulation event. To localize LMEAs, we averaged two 3D T1-weighted structural
images of the MRI-compatible electrodes in situ (inversion-recovery prepared
gradient echo sequence with: FOV = 128mm?; matrix = 256 x 256; no. of slices = 166;
0.5 mm isotropic; TR = 9.68 ms; TE = 4.192 ms; flip angle = 12°; inversion time (TI) =
450 ms) and cross-validated the electrode location with electrode depth
measurements during recordings/stimulation. We used an arousal index (0-10) based
on eye openings, body movements and vital signs, as well as EEG and EMG, to
measured stimulation-induced changes in the level of consciousness. We defined
effective stimulations, increasing the level of consciousness, as having an arousal
index of 23, which all experimenters could differentiate from ineffective stimulations
having an arousal index of 0-2. See #%2 for more details. The University of
Wisconsin — Madison Institutional Animal Care and Use Committee approved all
procedures, which conformed to the National Institutes of Health Guide for the Care
and Use of Laboratory Animals. Due to hardware constraints, the LFP time-series
were down-sampled from 1kHz to 100Hz for linear model estimation — although we
note that results in Fig. 5¢ and subsequent conclusions are not timescale sensitive as

shown in Supp. Fig. 7.

Linear Forecast Analysis (LFA)
Here we outline LFA as applied to all datasets within this manuscript. First, each
timeseries Z = [z, z, z5 ... z,| with n observations of p variables is partitioned into a

pre X and post Y timeseries — where:

X= [21 ZZ 23 "'ZTL—l]

Y=[z,2;2,..2,]

with X lacking the final time point of Z and Y lacking the initial time point. Note we

have dropped the function-of-time notation for simplicity. Singular value
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decomposition is then applied, X = U x S x VI, and a rank reduction of the data is
made that captures 95% of the explained variance. Although not explicitly necessary
for timeseries with significantly more timepoints than variables, some of the data
used here violate this condition and thus the results are standardized around this
threshold — see Supp. Fig. 4 showing truncation effects on eigenspectrum. A linear

propagator matrix A can be estimated from the data where Y = AX as follows:

A ~A=YX"2£yvly’
By stepping through each timepoint of Z projected into the SVD sub-space, the linear
propagator can be used to forecast the proceeding time points. Mean-squared-error
is used to compare between the predicted timeseries and the ground-truth

timeseries:

MSEt,-L- = <|Zt+r - Zt+‘L'|2)k

where Z is the ground-truth data and Z is the forecasted timeseries using the linear

model, and k is the number of SVD modes.

Dynamic mode decomposition

The eigen decomposition of the linear propagator A gives the dynamic modes of the
system, AW = WA where W is the matrix of eigenvectors, and A is the diagonal
matrix of eigenvalues 4;. The DMD approximation of the data can then be written as
the simple dynamic model:

Z(t) = @ exp(QY) z;

where Q 2 YVE-IW with @ = log (A)/At and t is time®. z; is the initialization state

and can be solved for each timepoint using the pseudoinverse.

Surrogate models
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The spectral surrogate utilized here is adapted from ?' and generates a white noise
timeseries with the same dimensions as the empirical data. The Fourier transform is
then applied to both the surrogate and empirical timeseries, and these are multiplied
together in this spectral domain. Following the inverse Fourier transform, the
resulting timeseries is projected through the eigenvectors of the empirical covariance
matrix to give a null model time series with matched covariance and Fourier power

spectrum.

The shuffled surrogate is generated by performing a uniform scrambling of the
empirical time-series indices. This ensures regional co-activations at each time point
are conserved, but their temporal position relative to activations in scramble — i.e,,

the same covariance matrix but scrambled moment-to-moment changes.

Linear mode clusters

k-means clustering is used to define clusters of linear mode timescales and spatial
coherence independently. In both cases, a sweep of cluster sizes k=2-20 with 100
repetitions for each is performed. A peak in adjusted mutual information (calculated

using BCT http://www.brain-connectivity-toolbox.net/) between each repetition’s

clusters for the same cluster size is used to select a cluster size of k=5. Having
selected this cluster size a final run of 1000 repetitions is used to find the optimal
clustering. Timescale clustering is performed on the eigenvalues of all subjects
(N=59) linear modes, i.e., the 2-dimensional complex numbers defining damping
rates and oscillation frequencies. Spatial clustering is performed on the coherence
maps defines by each linear mode across all subjects (N=59), i.e., the real component

of the complex eigenvectors of the linear propagator.

Energy landscapes
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Following methodology from previous work®, we formulate an energy landscape by
calculating the probability of observing a given linear model error (MSE) across the

entire timeseries using a Gaussian kernel density estimation,

P(MSE,t) = ! Zn:K(MSEt'i)
4N L 4

1
where K(u) = %e?uz. As is typical in statistical mechanics the energy of a given

Eg
state, E,, and its probability are related by P(o) = %6_7 where Z is the

normalization function and T is the scaling factor equivalent to temperature in
thermodynamics®. In our analysis },; P, =1 — Z = 1 by construction and we can set
T =1 for the observed data. Thus, the energy of each MSD at a given time-lag ¢, E is
then equal to the natural logarithm of the inverse probability, P(MSE,t) of its

occurrence,

E =In (ﬁ)

Corticothalamic model

The corticothalamic model consists of 400 coupled neural masses. We outline this
architecture by first detailing the corticothalamic neural mass as follows. The
corticothalamic neural mass model used in this work contains four distinct
populations: an excitatory pyramidal cell, ¢, and an inhibitory interneuron, i,
population in the cortex; and two excitatory nuclei, matrix, ss; core, s, and inhibitory
thalamic reticular nuclei, r, population in the thalamus (Fig. 1c). The dynamical
processes that occur within and between populations in a neural field model are

defined as follows:
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For each population, the mean soma potential results from incoming postsynaptic

potentials (PSPs):
=) Va(® M)
b

where V,;, (t) is the result of a postsynaptic potential of type b onto a neuron of type

a and a,b € {e,i,r,s}. The postsynaptic potential response in the dendrite is given

by

DabVab (t) = Vap ¢ab (t - Tab) (2)

where the influence of incoming spikes to population a from population b is
weighted by a connection strength parameter vy, = Ngj,S,,, with the mean number
of connections between the two populations N, and s,;, is the mean strength of
response in neuron a to a single spike from neuron b. 7, is the average axonal delay

for the transmission of signals, and ¢, is the mean axonal pulse rate from b to a.

The operator D, describes the time evolution of V,;, in response to synaptic input,

1 d? (1 ;)d @3)

Dy =——— —+1
ab aﬁdt2+ ac

where f and « are the overall rise and decay response rates to the synaptodendritic

and soma dynamics.

The mean firing rate of a neural population Q,(t) can be approximately related to its

mean membrane potential, V, (t), by

Qa(t) = SalV,(0)] (4)

max
a

T T+ exp[—{,(0) — 6,3/0]
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which define a sigmoidal mapping function S, with a maximal firing rate Q"% a

mean firing threshold 6,,, and a standard deviation of this threshold ¢'m/V3.

The mean axonal pulse rate is related to the mean firing rate by,

Da(t)¢a(t) = Qq(D) )
1 92 20
Da(t) = _ZW —a+ 1 (6)

Here, y, = v,/1, represents the damping rate, where v, is the propagation velocity

in axons, and 7, is the characteristic axonal length for the population.

A network of 400 corticothalamic neural masses were simulated using the neural
field simulation software, NETsim®. The parameters for each neural mass were
identically set to “eyes-closed” estimates given in Table 10867188 which results in
simulated activity with a 1/f spectrum and a peak in the alpha frequency band (8-13
Hz) in the absence of network coupling. These are example parameters
representative of the “eyes-closed” state following Bayesian model fits to human EEG
power spectra®. Many preceding studies®7.728+8 have shown the linear transfer
function, which drives the linear spectral content of the corticothalamic model, is
derived and shown to be low-dimensional, i.e., only a few loop gains in the system
are needed to capture the key features of the power spectra. In this particular
context, the eyes-closed state of human EEG has a 1/f slope and a spectral peak in the
8-13Hz alpha frequency band, and this is explained by a weakly damped
thalamocortical loop gain (ese). For the present study we have selected characteristic
parameters for this power spectrum (Table 7 from ¢). Note that this spectrum
describes modulations of firing rate around a fixed point, which are static for the
network. These spike rate modulations in neurons drive changes in the extracellular

electric field which are then measured via EEG and LFP recordings?. In this way, we
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are able to compare our model outputs to empirical data through the power spectral

density function.

Each simulation was run for a total of 64s with 7.5s of initial transients removed
using an integration timestep of At = 275, This minimizes contributions from the
model’s initial state and ensures the integration algorithm has stabilized before we
begin analysing simulation outputs. Longer simulations produced qualitatively
identical results, as did shorter simulations, however, many of the analysis measures
presented in this paper perform better with more data — ie. correlation and
coherence are noisier with less data. Thus, a balance between metric accuracy,
resource allotment, and tractability for dataset manipulations was chosen. All
outputs were down-sampled to 200Hz for tractability. All remaining data were used

for subsequent analysis.

Structural Connectivity

The structural connectivity used to define the model network consists of a
combination of distance dependence and long-range connectivity estimated from
white-matter fibre densities measurement®. The distance dependence was generated
via an exponentially decreasing function. First, the geodesic distance between all
nodes, which correspond to parcels from® with MNI coordinates, are calculated
along the fsaverage cortical surface mesh® using the Fast-Marching algorithm
(Gabriel Peyre

(2022)ToolboxFastMarching:https://www.mathworks.com/matlabcentral/fileexchang

e/6110-toolbox-fast-marching). The geodesic distances are then scaled as an

exponentially decreasing function of distance,

Gij = e_MU
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where d;; is the geodesic distance in MNI space along the surface mesh and 1 is the
decay rate. A 200x200 connection matrix is defined in this way for each hemisphere.
We further assume that interhemispheric connectivity is symmetric and one-to-one,

and thus the full 400x400 distance dependence network is composed as

GH' Gh
-6k GEt

where G/ and Gf are the left and right interhemispheric connectivities,

respectively.

The complete network connectivity is then formulated via the summation of the
distance dependence matrix and the empirically estimated white-matter connectivity
(both normalized by their respective maximum values). Since the strength of these
connections is not known empirically, we follow other approaches and sweep values
of a global scaling of this hybrid connection matrix, as well as the proportion of
distance dependence-to-white-matter connectivity and distance decay rate
parameter. Functional connectivity of these parameter sweeps is then compared to

empirical resting-state BOLD data °' to define optimal values (see Supp. Fig. 2)

Model balancing

In order to maintain stability in the model, excitatory inputs to a given node,
coupled via the structural network connections, must be balanced with a
corresponding inhibition. To do this, we first compute the total excitatory connection

strength to each corticothalamic node.

We then leverage an assumption from previous neural field models, namely that
excitatory and inhibitory synapses in the cortex can be assumed proportional to the

number of neurons %%, This random connectivity approximation results in Ve, =
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Vie, and v, = v; which implies V, = V; and Q, = Q;. Inhibitory population
variables can then be expressed in terms of excitatory quantities. Whilst we do not
make this assumption in the present model, we can leverage it to refine an inhibition

scaling that balances the excitatory inputs from our specific structural network.

In the reduced corticothalamic neural mass, the fixed-point attractors, or steady

states are found by setting all time derivatives in the above equations to zero. The

steady-state values ¢ * of ¢, are then given by solutions of

S_1< 6(0) - (Vee + Vei)¢§0)
= VoS {vseqbéo) + v, S vre(l)go) +:£{S_1( §°) = (Vee + vei)qbg))}] + @)

ven®i},

where qbr(lo) is the steady state component of the input stimulus ***. Roots of Eq. (7)

are found using the fzero() function from MATLAB.

Following similar approaches*, we leverage Eqn. 7 by setting v,, equal to each
corticothalamic neural masses network coupling defined by the structural
connectivity. We then set the cortical firing rate to be 3Hz, in-line with empirical
observations, and numerically solve for cortical inhibition v,;. This results in each
neural mass having a 3Hz steady-state cortical firing rate across the network, despite

having heterogeneous network connectivity.

Note that the diffuse matrix inputs to each corticothalamic neural mass are excluded
from this balancing as they are purely excitatory and only target the excitatory
cortical population. Thus, the overall effect of matrix inputs is to distort each local
attractor, increasing their firing rates when they are coupling to the network!. In

addition, matrix nuclei are known to project to the reticular thalamic nucleus in
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rodents °%>%, albeit weakly®®, but have been excluded from the current model for

simplicity.

Modelling Propofol

The effect of propofol is modelled as an up-regulation of GABA-a receptors which
prolongs inhibitory postsynaptic response potentials. This is implemented as an
increase to the synaptodendritic functions (Eqn. 3) decay rate parameter, «, for all
inhibitory connections in the corticothalamic neural mass. In addition, consistent
with previous approaches”, we maintain a constant peak amplitude of the IPSP
functions following the rescaling. The solution to Eqn. 3 for a delta function input

corresponds to,

_ _ap —at _ ,-ft
V= T [e~ot — e~Ft] (8)

lnﬁ/a

. _ @ :
G The rescaling of a = /p defines a

which has a peak amplitude at tpe,x =

new peak potential at t,., which is renormalized to its pre-propofol value. We
leverage the change in coherent alpha-band activity (8-13Hz) observed in * between

LIP and FEF to optimize propofols effect in the model, which results in p = 1.127.

Parameter Description Value Unit

Ve Cortical damping rate 116 st

Qax Maximum firing rate 340 st
7] Firing threshold 12.9 mV
g’ Threshold spread 3.8 mV
bn Input noise amplitude spectral 1 x 1073 s’

density

a Decay rate of cell-body potential 83 st
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g Rise rate of cell-body potential 769 st

Intra-node coupling strengths

Vee 15 mV s
Vei -3 mVs
Ves, 0.57 mV s
Ve 34 mV s
Vser -1.5 mV s
Vs.n 3.6 mV s
Ve 0.17 mV s
Vrs, 0.05 mV s
Tespesm T Tseesme | Corticothalamic loop delay 85 ms

Table 1 — Corticothalamic neural mass parameters. Adapted from %
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Supplementary Materials

a) Linear Model Fitting b) Dynamic Mode Decomposition
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Supp. Figure 1 — Linear Forecasting and Spectral Surrogate. a) Formulation of Linear Propagator via
the singular-value decomposition. b) Dynamic mode decomposition — eigenmode decomposition of
linear propagator matrix resulting in oscillatory spatiotemporal modes. c) Forecast Horizon Analysis
using the current state and the linear propagator matrix to predict future time points. Mean-squared-
error is used to compare forecast dynamics to ground-truth empirical timeseries. d) Example spectral

surrogate for a single subject showing matched covariance and Fourier power spectrum.
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Supp. Figure 2 — LFA cross-validation. First Row: 7T human resting-state BOLD data® (N=59). a)
Linear Error for each forecast horizon of the empirical data. b) Spectral surrogate for each subject. c)
Variance of linear error (MSE) and a function of forecast horizon. Second Row: 3T human resting-
state BOLD data® (N=14) d) Linear Error for each forecast horizon of the empirical data. e) Spectral

surrogate for each subject. f) Variance of linear error (MSE) and a function of forecast horizon.
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Supp. Figure 3 — Linear Model Performance. Left axis: Linear error as a function of forecast horizon
for the subject average 7T resting-state human imaging data(blue), spectral surrogate(black). Right
axis: Mean-squared displacement of the subject average 7T resting-state human imaging data

showing general variability within the recordings.
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a) Coherence k-means b) Timescale k-means
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Supp. Figure 4 — K-means optimization and Dynamic mode clusters. a) Coherence map clustering:
Adjusted mutual information for 100 k-means repetitions for each cluster size k. b) Eigenmode
clustering: Adjusted mutual information for 100 k-means repetitions for each cluster size k. c)
Coherence cluster centroids d) Coherence cluster dot-product with resting-state networks e) Average
coherence maps of eigenvalue clusters f) Timescale cluster probability distribution for damping rates.

g) Timescale cluster probability distribution for oscillatory frequencies.
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Supp. Figure 5 — Linearity, dynamics modes and explained variance. Dynamic mode timescales and
linearity for the a) full data (7T resting-state N = 59) and b) covariance and Fourier spectrum matched

surrogates, as a function of the included variance explained.
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Supp. Figure 6 — Linear cortical dynamics. a) Corticothalamic Core-Matrix correlation to linear
cortical dynamics. b) Spatial loading of linear cortical dynamics to a low-dimensional gradient from

100,
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Supp. Figure 7 — Monkey down-sampling effects. Linearity shifts of macaque multielectrode

electrophysiological data pre, during, and post thalamic stimulation for a) 100Hz, b) 50Hz, and c)

20Hz sampling.

Adaptive timescales and dynamic brain modes

Intrinsic timescales of the brain have been of interest since the discovery of
oscillatory dynamics in the first human EEG recordings®. Human neuroimaging
studies have revealed a hierarchy of temporal and spatial autocorrelation scales
across the cortex* and that these capture a large number of existing topological

metrics?. Linear flow analysis enriches this approach by quantifying intrinsic modal
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timescales that drive linear flow in neural activity. The resulting dynamic modes are
defined by a complex (i.e, imaginary) eigenvector and corresponding
eigenvalue®>*®®. Each mode contains four key characteristic properties: the spatial
eigenvector defines a spatial pattern of coherent activity, and a corresponding spatial
pattern of delays relative to each of these coherence patterns — called a dephasing
map. In addition, each mode has a corresponding eigenvalue defining its oscillatory
frequency, and an exponential gain parameter — which determines whether a mode
will grow or decay in time (i.e., captures its temporal stability). The investigation of
these features provides rich information regarding the types of dynamic modes that

characterize the system.

In order to gain insight into how these dynamic modes relate across individual
subject recordings, we leverage a two-pronged clustering approach to aggregate
modes across timescales, and spatial coherence, respectively. First, we consider
timescales by utilizing k-means clustering of the eigenspectrum collated across all
subject recordings. A peak in adjusted mutual information between clustering
repetitions was then used to select k = 5 clusters (1000 repetitions; see Supp. Fig. 4),
resulting in 5 distinct timescale groupings — the corresponding average of the
coherence maps within these clusters (Supp. Fig. 4). Timescale cluster 1 shows
somatomotor and visual activation antiphase with frontal, parietal and temporal
cortices across a broad range of frequencies — spanning much of the time resolution
of BOLD recordings. These modes are also weakly damped - i.e.,, have a strong gain
relative to the other temporal clusters. Timescale cluster 2 shows visual, premotor,
and dorsal lateral prefrontal antiphase with other cortices at slower frequencies (<
0.03 Hz; Fig. g-h middle) and with a stronger damping rate, i.e., weaker gain, than
cluster 1. And timescale cluster 3 shows strongly damped temporal cortex activity at

frequencies < 0.02 Hz.
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Next, we considered the spatial patterns of coherence, defined by each mode,
aggregated across subjects and recording sessions to define consistent modal
groupings®. Again, we leveraged k-means clustering (adjusted mutual information
peaked between clustering repetitions for k = 5; See Supp. Fig. 3): Figure 2i shows 3
cluster centroids and their defining coherence patterns — i.e., the spatial patterns of
the linear modes across all subjects fall within distinct classes. These classes show a
significant overlap with resting-state networks used broadly in the literature® —
including the default mode, and somatomotor and visual networks. We further find
that the damping rates and frequencies of the modes within each class have
comparable probability distributions — demonstrating these spatial classes did not

demonstrate unique linear timescales at this granularity in resting-state.
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