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Abstract: Integrons are bacterial genetic elements that capture, stockpile and modulate the 36 
expression of genes encoded in integron cassettes. Mobile Integrons (MI) are borne on 37 
plasmids, acting as a vehicle for hundreds of antimicrobial resistance genes among key 38 
pathogens. These elements also carry gene cassettes of unknown function (gcus) whose role 39 
and adaptive value remains unexplored. Here we show that gcus encode phage resistance 40 
systems, many of which are novel. Bacteriophage resistance integron cassettes (BRiCs) can 41 
be combined and mixed with resistance cassettes to produce multiphage or drug/phage-42 
resistance. The fitness costs of BRiCs are variable, dependent on the genetic context, and can 43 
be modulated by changing the order of cassettes in the array. Hence, MIs act as highly mobile, 44 
low-cost defense islands.  45 

 46 
Summary Figure: Novel phage defense systems identified in Mobile Integrons. We confronted genes of unknown 47 
function from mobile integrons against a panel of phage. We characterized 13 Bacteriophage Resistance integron 48 
Cassettes (BRiCs) and confirmed their function in Klebsiella pneumoniae and Pseudomonas aeruginosa. Combined 49 
with other cassettes, BRiCs produce multi-phage/antibiotic resistance. Additionally, their cost can be reduced in an 50 
array.  51 
 52 
 53 
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Main Text:  60 
INTRODUCTION 61 

Antimicrobial resistance (AMR) is a major public health concern worldwide, and the 62 
emergence of multi-drug (MDR) resistant bacteria is making increasingly difficult to treat 63 
infections with antibiotics (1). Phage therapy -the use of viruses that infect and kill bacteria- is 64 
currently building momentum as an alternative to antibiotics (2–4). However, its efficacy can be 65 
limited too by the emergence of resistance (5, 6). In recent years, a plethora of new phage defense 66 
systems (PDSs) have been discovered (7), often co-localizing in defense islands (8–10). Some 67 
PDSs are encoded in mobile genetic elements (MGEs) such as integrative conjugative elements, 68 
transposons, or prophages (11). While their spread is a threat to phage therapy, PDSs can entail a 69 
fitness cost to their host limiting their dissemination (12).  70 

Integrons are genetic elements that play an important role in bacterial adaptation to 71 
changing environmental conditions (13–15). They capture and accumulate new genes embedded 72 
in integron cassettes (ICs), acting as genetic memories of adaptive functions (16). Integrons 73 
typically consist of a conserved platform encoding the integrase gene and the recombination site in 74 
the integron (attI) (17); and a variable region containing the cassettes. Cassettes are incorporated 75 
into the attI site through site-specific recombination reactions mediated by the integrase and are 76 
expressed from the dedicated Pc promoter encoded in the platform (18). The integrase can also 77 
reorder cassettes in the array to modulate their expression, modifying their distance to the Pc and 78 
the polar effects they are subjected to (19–21). The expression of the integrase is controlled by the 79 
SOS response, so that integrons provide to their hosts adaptation on demand (22, 23). MIs are a 80 
subset of integrons associated with plasmids and transposons, that facilitate their transfer between 81 
bacterial cells (24–26). They are currently commonplace among key Gram-negative pathogens (27) 82 
carrying almost 200 resistance genes against most antibiotic families (28–30). Although generally 83 
devoted to AMR, MIs also carry gene cassettes of unknown function (gcus), whose importance has 84 
commonly been overlooked. The working model of integrons suggests that cassettes must be 85 
adaptive at the time of integration (22). Given the importance of phage predation in the lifestyle of 86 
bacteria, we sought to explore if gcus encode phage defense systems. 87 

We have selected 129 non-redundant gcus from the INTEGRALL database (31), and cloned 88 
them as cassettes in a mobile integron (30). DefenseFinder (32) and PADLOC (33) predicted 89 
potential defense systems in 4 gcus in this collection. Screening the library against a panel of phage, 90 
we found 43 novel defense systems. We have characterized 13 systems further and confirmed that 91 
they are encoded in functional integron cassettes, which we have named Bacteriophage Resistance 92 
integron Cassettes (BRiCs). They are hence mobile and exchangeable between integron platforms 93 
that circulate among many species. We demonstrate that they also confer protection in K. 94 
pneumoniae and P. aeruginosa, major pathogens of the ESKAPEE group. As part of an integron, 95 
defense systems can be stockpiled in an array where their position allows to modulate their function 96 
and strongly diminish their cost. We also show that phenotypes encoded in BRiCs are additive, 97 
conferring multi-phage or phage/drug resistance if combined with other BRiCs or antimicrobial 98 
resistance cassettes (ARCs). We discovered a natural example of a three-BRiC array, confirming 99 
that multiphage resistance integrons are already present in clinical isolates. Altogether, our work 100 
shows the involvement of integrons in phage defense, acting mobile and low-cost defense islands. 101 
 102 
 103 
 104 
 105 
 106 
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RESULTS 107 
 108 

Integron gcus contain predicted phage defense systems. 109 
To obtain a broad set of gcus in MIs we screened the INTEGRALL database (date: 110 

November 2021) and elaborated a curated list of 129 gcus with < 95% nucleotide identity (Fig. 111 
S1). We synthesized and cloned them in pMBA, as cassettes in first position of a class 1 MI under 112 
the control of a strong Pc promoter (PcS) (30). The sequences of our selected collection were 113 
submitted in May 2022 to DefenseFinder and PADLOC (32, 33) predicting that 4 cassettes (gcu59, 114 
gcu128, gcu135 and gcuN) contained homologs of known defense mechanisms (Fig. 1A). 115 

Given their newly identified putative function as BRiCs, we propose to rename these gcus 116 
as brcs, while conserving their initial numbers or letters for simplicity. Brc59 (formerly Gcu59) 117 
was identified as a homolog of the AriAB abortive infection system (34). brc128 encodes two ORFs 118 
(brc128A and B) showing similarity to Lamassu Type 1 systems. AlphaFold predicts that Brc128A 119 
shares motifs with YfjL-like or AbpA proteins, involved in phage defense, while Brc128B contains 120 
a putative exonuclease domain. brc135 also contains two ORFs encoding proteins with roles in 121 
nucleotidyl-transfer and membrane translocation and showing structural similarity with a CBASS 122 
Type 1 system (35, 36). Last, brcN encodes an AbiV family protein (37), implicated in abortive 123 
infection defense.  124 
 125 

Functional screening reveals additional phage defense systems. 126 
To search for novel PDSs that might not be detected by algorithms, we confronted 127 

experimentally the whole gcu collection (established in DH5a) against phages T4 or T7 using a 128 
double-spot screening protocol and growth curve monitoring (Fig. 1A and S1). We successfully 129 
detected 7 new candidates (brc24, brc76, brc113, brc142, brc217, brc233 and brcWGS21) that 130 
enabled growth in the presence of phage, suggesting that PDSs might be abundant among gcus. To 131 
better address this, we subcloned the collection in strain E. coli IJ1862 (an F’ strain that can be 132 
infected by phages targeting the conjugative pilus (38)) and subjected it to plaque assays with 133 
phages MS2, F1, G4, T4, T7, P1, Φ80 and HK544. This screening revealed that 45 gcus in the 134 
collection conferred >5-fold protection against at least one phage (Fig 1B). Because some 135 
phenotypes -like cloudy plaques- are difficult to interpret and quantitate, we selected 13 systems 136 
with clear phenotypes in the double-spot assay for further characterization, 9 of which are novel. 137 
We conducted infection assays with all phages at varying multiplicities of infection (MOIs) and 138 
monitored the optical densities (OD600) of bacterial cultures over time (Fig. 1C). We used the area 139 
under the growth curve compared to an empty vector control to determine the protective effect of 140 
the cassette, as in (39) (see Materials and Methods). Our data confirmed that all BRiCs conferred 141 
resistance to at least one phage at one MOI (Fig. 1D and Fig. S2). Resistance profiles were diverse, 142 
with examples of broad-spectrum BRiCs, and others a narrower spectrum but very high resistance 143 
against a given phage. The resistance conferred by brcN is limited to low MOIs confirming in silico 144 
predictions of an abortive infection system. Overall, our results confirm that at least one third of 145 
gcus are indeed phage resistance genes. 146 

Structure modelling and domain predictions (Fig. 1E, 1F and S3) showed that most systems 147 
are novel and many do not contain recognizable domains or are of unknown function. Instead, 148 
about a third of BRiCs contained transmembrane helices, compatible with direct interference with 149 
phage infection (Fig. 1E and S3). Among the predicted domains found, some have been previously 150 
related to phage defense, like the Toll-Interleukin receptor in Brc236 (40), or the toxin antitoxin 151 
system (HigAB) in Brc182 (41); while others have roles easily related to phage resistance (mRNA 152 
splicing for Brc232 or DNA repair for Brc68) (Fig. S3). Among the selected BRiCs, Brc24 153 
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possesses a PIN12 RNA-binding domain (42) and potentially acts as a hexameric protein. Brc76 is 154 
a small protein of 76 amino acid with a LapA domain related to biofilm formation and forms dimers 155 
(43). Brc113 has a GNAT N-acetyltransferase domain (also found in BrcP (Fig. S3)). Brc142 is a 156 
putative dimeric restriction endonuclease. brc167 and its close homolog brc167.2 encode proteins 157 
with NUDIX hydrolase and nucleotidase activities with no evident multimeric structure. Brc217 158 
contains the domain of unknown function (DUF) 1566 and no identified multimeric structure. 159 
Brc233 is possibly a dimeric NADP(H) oxidoreductase; and last, BrcWGS21 has no identified 160 
domains but contains transmembrane helices and conforms an octamer potentially forming a pore 161 
in the membrane. To adhere to the custom in the field, these novel systems are also given the name 162 
of a deity of Celtiberian mythology (Fig. 1E). 163 
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Fig. 1. Identification and Characterization of Phage Defense Systems in Integron Cassettes. (A) Schematic 165 
workflow for detection of PDSs in gcus. A curated collection from INTEGRALL was cloned in pMBA vector. Systems 166 
were identified using PADLOC and DefenseFinder, (May 2022), double-spot assays, growth curves and plaque assays. 167 
(B) Profile against a panel of eight E. coli phages of gcus providing >5-fold defense against at least one phage. (C) 168 
Examples of growth curves used to build the heatmap in C: brc24 confers strong resistance to phage T7 at both high 169 
and low MOI while brcN shows resistance to phage T4 only at low MOI. Growth curves are represented as the mean 170 
of three independent replicates. The standard error of the mean is represented as a lighter color shade. (D) Heatmap 171 
showing the defense profiles at different MOIs. The degree of protection (resistance) is indicated by the color scale, 172 
with dark green representing high protection, light green representing low protection, and white no protection. (E) 173 
Genetic organization and predicted functions of selected gcus. (F) Tertiary and quaternary structures of novel phage 174 
defense systems, as predicted by AlphaFold3. 175 
 176 

BRiCs are bona fide integron cassettes. 177 
Finding defense systems in integron cassettes has important implications for the mobility 178 

of these elements. Identification of cassettes has not been straightforward until the development of 179 
IntegronFinder (44). INTEGRALL predates IntegronFinder. The genetic context, suggests that 180 
most BRiCs identified here are indeed located within class 1 or 2 MIs, often in pathogenic and 181 
multidrug resistant strains (like brc217, brc113, brc24 or brcN) (Fig. 2A). But other, like brc135 182 
and brc142, did not have an MI context. Hence we wanted to verify that PDSs are encoded in bona 183 
fide -functional- integron cassettes. Integron recombination is semiconservative, involving only the 184 
bottom strand of attC and attI sites (45, 46). This unique feature can be detected in a suicide 185 
conjugation assay as the difference between recombination rates when the plasmid transfers the 186 
bottom or the top strand of an attC site to the recipient strain (46). We measured this for all cassettes 187 
and observed a 100- to 10.000-fold lower recombination of top strands (Fig. 2B). brcWGS21 had 188 
extremely low recombination frequencies for the bottom strand, yet recombination of the top strand 189 
was only observed in 1 out of 6 replicate experiments, suggesting that it is probably an integron 190 
cassette, albeit with a very poor recombination site. Accordingly, the folded attC site of brcWGS21 191 
has the typical hairpin structure and extra-helical bases of these sites (Fig. S4) (46–48). Hence, our 192 
data confirms that BRiCs are bona fide integron cassettes. 193 

 194 
Defense cassettes are protective in other species. 195 
Given the mobility of integrons and cassettes among important pathogens, we sought to 196 

determine if BRiCs are active in different hosts. To this end, we evaluated their protective effect in 197 
K. pneumoniae and P. aeruginosa, two species of the ESKAPEE group of highly resistant and lethal 198 
pathogens where integrons are prevalent. We introduced all BRiCs into K. pneumoniae KP5, a 199 
MDR clinical isolate that contains three plasmids (Fig. S5) and subjected them to infection with 200 
phage F13, a Drexlerviridae member co-isolated with the strain. All BRiCs, except brcN, 201 
demonstrated resistance to F13 at low MOI, and most also conferred resistance at high MOI (except 202 
brc76, brc113, brc217, and brcWGS21) (Fig. 2C). To introduce BRiCs in P. aeruginosa PAO1 203 
strain, we changed the p15A origin of replication of pMBA for BBR1, and introduced a tetracycline 204 
resistance marker. After several assays, we could only transform brcN successfully, while other 205 
BRiCs produced no colonies at all or abnormal colony morphologies (Fig. 2D). This led us to 206 
hypothesize that some BRiCs might be toxic or extremely costly in this background. To avoid this, 207 
we changed the PcS promoter driving the expression of cassettes for a weaker version (PcW, 30-208 
fold less active than the PcS (49)). This allowed to introduce brc24, brc113, brc142 and brcWGS21 209 
in PAO1. We confronted these strains to a collection of 36 phages infecting PAO1 using a double 210 
spot screen. brcN, brc142 and brcWGS21 showed growth in presence of phages Vs1, Px4 and Px5. 211 
We confirmed their resistance phenotype monitoring growth curves (Fig. 2C). brc142 -that had a 212 
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clear phenotype against several phages both in E. coli and K. pneumoniae- confirmed its broad 213 
spectrum and host range, conferring resistance to Px5 at both MOI and to Px4 at low MOI ; 214 
contrarily, brcN and brcWGS21, that had only shown low resistance against a handful of phages in 215 
E. coli, conferred very high resistance against phage Px4 and Vs1 in P. aeruginosa. Altogether, our 216 
data proves that BRiCs are active in different host species. Although some have a narrow host 217 
range, others, like brc142 conferred resistance in the three species against most phages tested. 218 

 219 

Fig. 2. Genetic Context, Recombination Frequency, and Phage Protection Profiles of Identified BRiCs in other 220 
species. (A) Genetic context of BRiCs as found in databases, highlighting their association with integron integrases 221 
(intI1 or intI2, in blue shades). BRiCs are found in different host species. Each BRiC is annotated with its respective 222 
identifier (e.g., 59, 128A/B, 135A/B), along with known associated genes such as resistance genes (e.g., blaIMP, aacA4, 223 
catB6). (B) Recombination frequency of the attC sites of the identified BRiCs. The recombination frequency was 224 
measured for the bottom (green bars) and top (red bars) strands of the attC sites using a suicide conjugation assay. Bars 225 
represent the mean of at least 3 biological replicates. Error bars correspond to the standard error of the mean. (C) 226 
Heatmap showing the protection profiles of BRiCs against phage infection in different host species, including K. 227 
pneumoniae (KP5) and P. aeruginosa (PAO1) against a panel of cognate phages (F13, Vs1, Px4, Px5). (D) Images of 228 
transformant colonies of PAO1 showing abnormal morphologies. 229 
 230 

BRiCs protect against prophage activation. 231 
Conflicts between defense systems and MGEs can limit their spread through HGT. Mobile 232 

integrons can reach new hosts through conjugation, so we asked if BRiCs could interfere with the 233 
activation of existing prophages, protecting the host at the cell and/or the population level. To test 234 
this, we introduced all BRiCs in lysogens of E. coli 594 with either HK544 or Φ80 prophages in 235 
their genomes. We induced prophage activation with mitomycin and quantitated the phage titer 236 
after 6 hours. brc128, brc135 and brc142 showed mild to strong defense against the activation of 237 
HK544, with 20 to 1.000 fold decreases in titers. Brc59 completely abolished the production of 238 
HK544 virions, showing >107 fold protection (Fig. 3A). Resistance against Φ80 activation was 239 
generally very mild, with only brcN, brc167, and brc233 producing low but statistically significant 240 
resistance levels. Interestingly, there is not a clear correlation between defense against the free 241 
phage (Fig. 1B and 1D) and prophage activation. Certain systems, like brc135 and brc142 confer 242 
resistance against both forms of a phage HK544; while others, like brc128, brc167.2 and brc217 243 
only conferred resistance against one. These results show that mobile integrons containing BRiCs 244 
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can interfere with prophage activation, highlighting the potential protective effect at the community 245 
level, and the complex interplay between MGEs.  246 

 247 
brc128 does not have anti-plasmid activity. 248 
Brc128B shows strong structural similarities with DdmC (Fig. 3B), a Lamassu system with 249 

anti-plasmid activity in Vibrio cholerae (50). To explore if Brc128AB has anti-plasmid activity we 250 
measured the stability of pMBA (a p15A replicon) in the presence of brc128 and ddmABC. After 251 
ca. 20 generations in the absence of selective pressure, pMBA was present in >97% of cells 252 
expressing Brc128AB, while only in 19% of those expressing DdmABC (Fig. 3C). We extended 253 
this study to KP5 whose three natural plasmids are distinguishable for their resistance profile 254 
(tetracycline, ertapenem or cefotaxime) and again found no effect of brc128 in plasmid stability 255 
(Fig. S5). This shows that, despite their structural similarities, Brc128AB does not have the anti-256 
p15A plasmid activity of DdmABC and suggests it might not be an anti-plasmid system. 257 

 258 
Deva interferes with genome injection. 259 
Deva (brcWGS21) confers a 10-fold protection and a small plaque phenotype against T7. 260 

To provide insight on Deva’s mechanism of action we evolved T7 to evade its activity. After two 261 
rounds of infection, we retrieved phages producing large plaques and similar titers in the presence 262 
and absence of Deva (Fig. 3D). Population sequencing with long reads revealed mutations in the 263 
genes encoding gp0.7, gp12 and gp14 (Fig. 3E). gp0.7 is a kinase that phosphorylates the host RNA 264 
polymerase to produce a transcriptional shutoff. The mutation in gp0.7 is pervasive: it is present in 265 
all mutant combinations, and is the only one found alone, suggesting that it is the first one to appear 266 
and that it plays a primary role in evading Deva. gp12, and gp14 are structural genes encoding tail 267 
and internal virion protein B respectively. The latter is ejected into the cell during DNA injection. 268 
Hence, mutations in gp12 and gp14 suggest that Deva interferes specifically with genome injection. 269 
This is in accordance with its probable localization in the cell membrane (see transmembrane 270 
domain and quaternary structure prediction in Fig.1E and F).  271 

 272 
Functional analysis of Cosus 273 
Cosus (brc24) provides complete resistance against T7, with no detectable plaques in spot 274 

assays. To investigate it further, we tried to evolve phages to evade its activity, but were unable to 275 
retrieve plaques even when infecting with high phage titers (108 plaque forming units (pfus)). In 276 
the absence of plaques, we tested if T7 mutants that evolved to escape other anti-phage mechanisms 277 
could evade Cosus. We tested phages with K3Q and D131 substitutions in gp2.5 (ssDNA binding 278 
protein (SSB)) (Fig. 3E) allowing to avoid retron-mediated defense (51) but saw no crossed evasion 279 
between systems. We changed our approach to altering Cosus and generated 11 mutants in residues 280 
predicted to be important in the activity of its RNA-binding PIN12 domain(52). Mutations T12A, 281 
D14A and D96A led to a strong (>105-fold) decrease in resistance to only 100-fold protection, and 282 
a small plaque phenotype, supporting the correct identification of the PIN12 domain (Fig. 3F). 283 
Retron evaders did not show enhanced activity in any Brc mutant, suggesting that Cosus does not 284 
target T7 SSB. We then evolved T7 to evade Brc24D14A and obtained a 5-fold increase in pfu count 285 
and plaques with an intermediate size. The evolved phage could also evade BrcT12A, but not 286 
BrcD962A nor wild type Brc24. Genome sequencing revealed exclusively a non-synonymous 287 
mutation in the tail protein gp12 (Fig. 3E), pointing to interference with genome injection too. 288 
Taken together, our data hints at a potential dual activity of Cosus, that could explain the difficulties 289 
to evolve T7 evaders. 290 

 291 
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292 
Fig. 3. Prophage Induction, Structural Alignment, and Impact of brc128 on Plasmid Stability. (A) Prophage 293 
induction measured as the ratio of plaque-forming units per millilitre (pfu/ml) in the presence of pMBA containing 294 
BRiCs over the empty pMBA. ND: not detected (Limits of detection plotted). One sample t and Wilcoxon test; P 295 
values are shown when possible; ** < 0.01; *** < 0.001; ****<0.0001. (B) Structural alignment and superposition of 296 
Brc128A and Brc128B proteins with DdmA and DdmC. Alignment scores indicate the degree of structural similarity. 297 
(C) Plasmid stability assays in E. coli. Percentage of fluorescent cells is used to measure the stability of pMBA. Bars 298 
represent the mean of at least 3 biological replicates. Error bars correspond to the standard error of the mean. P values 299 
of unpaired t-tests are shown. (D) Plaque assays showing T7 evasion from Deva. Mutation distribution in the 300 
population. (E) Location of mutations in the genome of T7. (F) Resistance profile of PIN12 mutants of Cosus and 301 
defense-evading phages.   302 

 303 
BRiCs entail different fitness effects that vary across species. 304 
How defense systems affect the fitness of the host has important implications in their 305 

accumulation in genomes and their spread between species. Integrons are low-cost platforms that 306 
can modulate the expression of genes in the array by shuffling positions (20, 21, 53). To determine 307 
the cost of BRiCs, we performed competition assays in both E. coli and K. pneumoniae (Fig. 4). 308 
Our results showed a broad distribution of fitness effects among BRiCs, ranging from large costs 309 
(ca. 40%) to mildly positive (up to 3%) suggesting that acquisition of certain systems can be 310 
costless (Fig. 4A). It is of note that we have used a strong version of the Pc promoter, and that the 311 
cost of cassettes is probably lower in MIs with weaker Pcs. Comparison between species shows 312 
that fitness effects are not conserved between genetic backgrounds. For instance, brcWGS21 313 
entailed a small cost (ca. 7%) in E. coli but was very costly (ca. 30%) in K. pneumoniae (Fig. 4B). 314 
Only a few cassettes, like brcN showed very similar cost in both species. The lack of cost of BRiCs 315 
in certain genetic backgrounds, and the differences in fitness effects across backgrounds can be of 316 
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importance in the accumulation of cassettes and their preferential distribution of BRiCs among 317 
species.  318 

 319 
Integrons modulate the cost of BRiCs. 320 
In integrons, expression of cassettes depends on their proximity to the Pc and the polar 321 

effects that cassettes upstream can exert (21). Because the expression and fitness cost of a gene 322 
generally correlate, we hypothesize that integrons can modulate the cost of BRiCs. To test this, we 323 
measured the cost of brc24 in first and third position (as it is found in the databases (Fig. 2A)) 324 
downstream of cassettes with strong polar effects (aacA54 and aacA8) (21). Cost of brc24 325 
decreased from 11% in first position, to no significant cost in third (Fig. 4C). This was indeed due 326 
to the strong repression of its expression, since phage infection experiments showed pArray-brc24 327 
did not protect against T7 infection. Hence, costly BRiCs can be carried by mobile integrons at no 328 
cost to be later reshuffled into first position, providing phage resistance on demand (23). We also 329 
measured the polar effects exerted by BRiCs on downstream cassettes (Fig. 4D), showing that they 330 
too participate in the modulation of function and cost of downstream genes in the array (21). 331 

 332 
Fig. 4. Fitness Effects of BRiCs. Fitness effects of BRiCs in (A) E. coli and (B) K. pneumoniae. Red circles represent 333 
fitness values below 1 (cost), while green circles indicate fitness values above 1 (gain). Fitness effects vary in sign and 334 
magnitude and are not conserved among genetic backgrounds. (C) Modulation of fitness cost and function by integron 335 
position. The graph shows the fitness effect of brc24 in first position (competing pMBA vs pMBA-brc24) and third 336 
position (pArrayØ vs. pArray-brc24). The fitness cost imposed by the BRiC is reduced in third position behind cassettes 337 
with strong polar effects. The cost is related to the function of the BRiC since pArray-brc24 does not confer resistance 338 
to T7. (D) Polar effects of BRiCs. All cassettes except brc167 exert polar effects on downstream cassettes, limiting 339 
their expression. All assays have been performed at least three times. Error bars represent the standard error of the 340 
mean. 341 
 342 

Mobile Integrons can accumulate resistance to phages and antibiotics. 343 
Being recombination platforms capturing cassettes with adaptive value, integrons could 344 

potentially combine BRiCs and ARCs to provide multi-phage and drug resistance. To test this, we 345 
combined brc24 (T7R) with the blaOXA-10 β-lactamase and confirmed that it conferred high T7 and 346 
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carbenicillin resistance separately and simultaneously (Fig. 5A). We then built an array combining 347 
brc24 and brc167.2 (P1R) (Fig. 5B) and showed it conferred resistance against both phages, 348 
confirming the additivity of BRiC and ARC phenotypes. Because MIs are enriched in AMR genes, 349 
natural examples of arrays combining ARCs and BRiCs are abundant (see Fig. 2A for examples). 350 
gcus are less abundant, so we did not find co-occurrence of BRiCs within an array. Nevertheless, 351 
having found here a variety of two-gene BRiCs, the genetic environment of brc24 (preceded by 352 
two such cassettes) was re-evaluated. An update of DefenseFinder (June 2024) found homologs of 353 
sensor protein ThsB from the Thoeris system in the first ORF of both cassettes (gcu23 and gcu24), 354 
and a type II restriction modification system downstream the last cassette (Fig. 5C). gcu23 and 355 
gcu24 share 50% bp identity, and a remarkably conserved predicted structure of their two ORFs. 356 
While Brc22A and Brc23A are predicted homologs of Thoeris ThsB, Brc22B and Brc23B are 357 
shorter than ThsA (300 vs. 500 aminoacids), show a very low protein identity (ca. 13%) and a very 358 
different predicted fold, suggesting that these genes are not homologs. The predicted structure of 359 
these proteins is instead similar to Deva (brcWGS21) (Fig. 1F). Both gcu22 and gcu23 were present 360 
in our collection, but not selected in our screenings because gcu22 did not confer resistance to any 361 
phage, and gcu23 showed inconsistent results and was discarded. We found that the cassette in our 362 
stock strain was frequently interrupted by the insertion of IS1, which explained the inconsistency. 363 
We interpreted this as a sign of high fitness cost, so we cloned both cassettes under a weak Pc 364 
(PcW) and tested them against the panel of phages in E. coli and K. pneumoniae. gcu22 conferred 365 
low levels of resistance exclusively against phage F13 in K. pneumoniae, while gcu23 had a broader 366 
defense profile, including very high resistance levels against G4, MS2, F1 and T4) (Fig. 5D). We 367 
hence redefined both cassettes as BRiCs (brc22 and brc23) and, given the apparent hybrid genetic 368 
structure mentioned before, we consider this a novel system that we have called Tragantía (a deity 369 
with the upper body of a woman and the lower body of a snake). Finally, to show that this integron 370 
acts as a natural defense island we built an array containing brc23 and brc24 (the only ones with 371 
distinguishable phenotypes) and showed that it confers multi-phage resistance against T7 and T4 372 
(Fig. 5E). Hence MIs naturally act as mobile defense islands that already circulate among clinical 373 
isolates (54).  374 
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 375 
Fig. 5. Additivity of Phage and Antibiotic Resistance Phenotypes in Multi-Cassette Arrays. Growth curves 376 
(OD600) of E. coli strains containing (A) pMBA, brc24 and blaOXA-10 independently, and combined in an array in the 377 
absence of phage or antibiotic, and challenged with phage T7, carbenicillin, and a combination of both. The combined 378 
array confers resistance to phage and antibiotics simultaneously, and (B) pMBA, brc24 and brc167.2 independently, 379 
and combined in an array; either with no phage, or challenged with phage P1, phage T7, and a combination of both. 380 
(C) Genetic background of brc24. brc22 and brc23 contain homologs to TshB from Thoeris that confer resistance 381 
against phages from E. coli and K. pneumoniae (Kpn). brc23 and brc24 can confer multiphage resistance when in the 382 
same array. Growth curves are represented as the mean of three independent replicates. The standard error of the mean 383 
is represented as a lighter colour shade. 384 
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Defense systems in BRiCs are found outside integrons. 389 
Integron cassettes are exchanged between integrons cohabiting the same cell. MIs can scan 390 

sedentary chromosomal integrons (SCIs) and bring to clinical settings adaptive functions evolved 391 
elsewhere in the biosphere (55). This suggests that BRiCs are likely found in SCIs. In an article in 392 
this issue Darracq et al. provide evidence that the Superintegron in V. cholerae contains indeed a 393 
variety of BRiCs, that are different from the ones described here (56). We hence sought to 394 
investigate the potential origin and distribution of our defense systems. We have searched for 395 
homologs in databases and examined their genetic context (Fig. S6). Certain systems show a broad 396 
distribution among integrons, like brcN, that is found in MIs and SCIs of the Pseudomonadaceae 397 
family (Fig. 6A), consistent with its resistance phenotype in P. aeruginosa. Homologs of Brc24 398 
(Cosus) are found as BRiCs in integron arrays in Marinobacter salexigens (Fig. 6B). They are also 399 
found in genomes of Vibrio species, outside their SCIs but with a conserved attC site, suggesting 400 
that this could be a bona fide cassette integrated into an attG site in the chromosome (57). 401 
Interestingly, BrcN and Brc24 homologs were also found isolated without recognizable attC sites 402 
in the genomes of Kangiella japonica and Escherichia marmotae (Fig. 6C and Fig. S7). The 403 
Tragantía system in brc22 has homologs often found in the vicinity of other PDSs. We found one 404 
in the chromosome of Marinobacter sp. CuT6 (Fig. 6D). This isolate has a complete integron and 405 
CALIN (cassette array lacking an integrase), but the Tragantía homolog was encoded elsewhere, 406 
within a small defense island together with homologs of Thoeris and Gao (58). This system shows 407 
95% amino acid identity with Brc22A and B, but has a pseudo attC site in which extrahelical bases 408 
are located at both sides of the stem, and a mismatch is found in the conserved crossover point. 409 
This likely makes it non-recombinogenic (Fig. S8). While this does not seem to be a bona fide 410 
integron cassette (and it is not recognised by IntegronFinder), it is strikingly close (only a few 411 
mutations away) from a canonical one. Altogether, the high plasticity in the genetic context of these 412 
systems and their attC sites suggest a dynamic recruitment of PDSs from defense islands to 413 
integrons. 414 
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 415 
Fig. 6. Genetic context of BRiC homologs. Analysis of the genetic environments of AbiV (brcN) (A) and Cosus 416 
(brc24) (B) showing their distribution in mobile and sedentary chromosomal integrons of different species. Integron 417 
integrases and arrays are marked where recognised. Some homologs to BRiCs are also found outside integrons, and, 418 
despite a good sequence conservation in the coding region, they lack attC sites (C). A Tragantia system, homolog of 419 
brc22, is found within a small defense island in the chromosome of Marinibacter spp. and contains a pseudo attC site. 420 
This isolate contains an SCI and a CALIN (D). 421 
 422 
DISCUSSION 423 

In this work we show that mobile integrons act as highly-mobile, low-cost defense islands.  424 
We have successfully identified 47 new BRiCs experimentally, and have characterized in depth 15 425 
of them. BRiCs displayed different specificities conferring narrow to broad immunity in our assays.  426 

Our work is not free from limitations. First, while our screening successfully retrieved 45 427 
BRiCs in the gcu collection, it is likely that others went undetected given the variety of bacterial 428 
species in which gcus have been found. Indeed, it is probable that other PDSs would be discovered 429 
if we could test them in other bacterial species against their phages. This rationale could also apply 430 
to our plasmid stability assays, where testing more plasmids might reveal an anti-plasmid activity 431 
in Brc128. Nevertheless, despite the structural similarities, Brc128B and DdmC belong to different 432 
types of Lamassu systems and Brc128B does not contain the Walker B motif found in DdmC. 433 
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Hence, we cannot rule out intrinsic functional differences between both systems. In this sense, the 434 
lack of anti-plasmid activity in Brc128AB might have been selected for in conjugative plasmids 435 
navigating an environment with high antibiotic pressure. Additionally, detection algorithms are 436 
being constantly improved, so prediction of BRiCs in gcus will likely yield more hits at the time 437 
this work is published.  438 

This study reshapes our perception of integrons. The presence of PDSs and AMR genes, 439 
proposes that integrons are protection elements against a large breadth of environmental insults. 440 
Our data also highlights for the first time the crosstalk between integrons and genomes with a 441 
multitude of examples of BRiCs closely related homologs outside integrons. The study of BRiCs 442 
might help reveal the genesis of cassettes, a long-standing question in the field. Being part of an 443 
integron has a profound impact in the biology and ecology of PDSs and of bacterial defense 444 
strategies. Encoded in BRiCs, PDSs become extremely mobile genetic elements that can be 445 
combined to confer multi-phage or phage-drug resistance and shuffled to modulate their cost. An 446 
extreme case of cost modulation is the Superintegron of Vibrio cholerae a large structure carried at 447 
no measurable cost (59) that contains several BRiCs, as shown by Darracq et al. in a paper in this 448 
issue. Additionally, their findings highlight that SCIs are extensive repositories of BRiCs for MIs.  449 

Phage therapy is an old approach with renewed interest in the light of the AMR crisis (60, 450 
61). It allows for personalized treatments against multidrug resistant bacteria, with encouraging 451 
outcomes against multidrug resistant isolates. Mobile integrons have significantly contributed to 452 
the AMR crisis bringing to our hospitals a plethora of ARCs from the genomes of environmental 453 
bacteria. Being shed to the environment at extremely high quantities (1023 per day) (62), MIs 454 
connect the genomes of pathogenic and environmental bacteria (63). The rampant movement of 455 
MIs among clinically-relevant bacteria ensures a rapid dissemination of any novel adaptive 456 
function in our hospitals. We have shown that BRiCs can confer resistance in 3 of the 5 Gram 457 
negative species of the ESKAPEE group of highly resistant and dangerous pathogens: the kind of 458 
bacteria aimed by phage therapy assays. This strongly suggests that the spread of BRiCs among 459 
them will be quick if selective pressure with phages becomes commonplace. This has implications 460 
in what are today considered as exploitable trade-offs in phage therapy. For instance, it is known 461 
that many K. pneumoniae phages bind the bacterial capsule and that resistant clones can easily arise 462 
through capsule loss, albeit at the cost of becoming non-virulent (64). Also, in some cases becoming 463 
resistant to phage infection through mutations comes at the cost of losing antibiotic resistance (65, 464 
66). The acquisition of plasmids containing integrons with BRiCs can abrogate the exploitability 465 
of such trade-offs, rendering virulence and antibiotic resistance perfectly compatible with phage 466 
resistance. Altogether, our results highlight that the role of integrons in phage defense can be critical 467 
for the advent of phage therapy.  468 

The role of MIs in phage resistance showcases the interplay between MGEs. Many of the 469 
BRiCs described here confer resistance against phages that target the conjugative pilus of E. coli 470 
IJ1862. Hence, BRiCs can be beneficial for conjugative plasmids and foster HGT by alleviating 471 
the trade-off between acquiring adaptive plasmids and becoming susceptible to a large variety of 472 
phages. Nevertheless, the fact that we couldn’t introduce many systems in P. aeruginosa (even 473 
under a PcW) suggests that some BRiCs can also act as barriers to HGT.  474 

Altogether, we show that MIs can act as mobile and low-cost phage defense islands. Being 475 
able to exchange BRiCs between plasmids and to move across genetic backgrounds, MIs are likely 476 
important players in the complex interactions between mobile genetic elements. 477 
  478 
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