

1 **Cryptic recombination and transposition drive structural variation to shape genomic**
2 **plasticity and life history traits in a host generalist fungal plant pathogen**

3

4 Mark C Derbyshire^{1,*}, Toby E Newman¹, Yuphin Khentry¹, Pippa J Michael¹, Sarita Jane
5 Bennett¹, Ashmita Rijal Lamichhane¹, Carolyn Graham-Taylor¹, Subhash Chander², Claudia
6 Camplone³, Simone Vicini³, Laura Esquivel-Garcia⁴, Cathy Coutu⁵, Dwayne Hegedus⁵, John
7 Clarkson⁶, Kurt Lindbeck⁷, Lars G Kamphuis¹

8

9 ¹Centre for Crop and Disease Management, Curtin University, Perth, Western Australia,
10 Australia

11 ²Oilseeds Section, Department of Genetics and Plant Breeding, CCS Haryana Agricultural
12 University, Hisar-125004, India

13 ³Department of Agricultural, Food and Environmental Sciences, University of Perugia,
14 Perugia, Italy.

15 ⁴Plant Science, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada.

16 ⁵Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan, Canada.

17 ⁶Warwick Crop Centre, School of Life Sciences, University of Warwick, Warwick, UK.

18 ⁷New South Wales Department of Primary Industries, Wagga Wagga, New South Wales,
19 Australia

20

21 *Author for correspondence: mark.derbyshire@curtin.edu.au

22

23

24

25

26

27 **Abstract**

28 **Background:** An understanding of plant pathogen evolution is important for sustainable
29 management of crop diseases. Plant pathogen populations must maintain adequate
30 heritable phenotypic variability to survive. Polymorphisms ≥ 50 bp, known as structural
31 variants (SVs), could contribute strongly to this variability by disrupting gene activities. SV
32 acquisition is largely driven by mobile genetic elements called transposons, though a less
33 appreciated source of SVs is erroneous meiotic double-strand break repair. The relative
34 impacts of transposons and recombination on SV diversity and the overall contribution of
35 SVs to phenotypic variability is elusive, especially in host generalists.

36 **Results:** We use 25 high quality genomes to create a graphical pan-genome of the globally
37 distributed host-generalist crop pathogen *Sclerotinia sclerotiorum*. Outcrossing and
38 recombination rates in this self-fertile species have been debated. Using bisulfite
39 sequencing, and short read data from 190 strains, we show that *S. sclerotiorum* has many
40 hallmarks of eukaryotic meiosis, including recombination hot and cold spots, centromeric
41 and genic recombination suppression, and rapid linkage disequilibrium decay. Using a new
42 statistic that captures average pairwise structural variation, we show that recombination and
43 transposons make distinct contributions to SV diversity. Furthermore, despite only 5 % of
44 genes being dispensable, SVs often had a stronger impact than other variants across 14 life
45 history traits measured in 103 distinct strains.

46 **Conclusion:** Transposons and recombination make distinct contributions to SV diversity in
47 *S. sclerotiorum*. Despite limited gene content diversity, SVs may strongly impact phenotypic
48 variability. This sheds light on the genomic forces shaping adaptive flexibility in host
49 generalists.

50

51 **Keywords**

52 Recombination, structural variant, genome graph, plant pathogen, fungus

53 **Background**

54 An understanding of the evolutionary processes underpinning plant pathogen adaptation is
55 crucial for developing better disease management strategies, such as resistant cultivars,
56 prediction of epidemics and monitoring of fungicide resistance [1–3]. Population genetic
57 approaches can be used to understand the evolutionary characteristics of plant pathogens
58 [4,5], although their application has been limited in the past to variants that can be
59 confidently genotyped using short reads. However, with the now widespread use of long
60 read sequencing, more plant pathogen pan-genomes of increasing quality are becoming
61 available for evolutionary studies [6–12].

62 Aside from simple genotypic variants, such as single nucleotide polymorphisms (SNPs) and
63 small insertions/deletions (InDels), complete genomes assembled using long reads can be
64 used to identify structural variants (SVs), which are generally defined as polymorphisms of
65 more than or equal to 50 bp [13]. These can be confidently genotyped using long reads
66 assemblies and incorporated into a data structure known as a pan-genome graph [14,15].
67 Based on this underlying representation of genomic variation, SVs can be genotyped in a
68 broader set of individuals using short reads [16,17]. This approach also improves the
69 accuracy of non-SV calls by improving short read placement and reducing reference bias
70 [18].

71 In many species, this and similar techniques have revealed that previously invisible SVs are
72 strongly linked with phenotypic variability. For instance, the tomato graph pan-genome
73 showed that SVs are a major component of ‘missing heritability’ [19], explaining much of the
74 phenotypic variance not captured by simpler variants called against a single reference.
75 Furthermore, in the important fungal wheat pathogen *Zymoseptoria tritici*, SVs have been
76 shown to make a substantial contribution to important life history traits, such as tolerance of
77 fungicides [20]

78 Two key processes underpinning evolutionary adaptation are mutation, including *de novo*
79 acquisition of SVs, and meiotic recombination. The traditional view is that mutation creates
80 new alleles and meiotic recombination shuffles alleles to create new haplotypes [21].
81 Shuffling of alleles into novel haplotypes allows beneficial alleles to spread without the
82 burden of linked deleterious alleles. Without meiotic exchange, populations are likely to
83 gradually accumulate deleterious mutations that cannot be lost without also losing beneficial
84 mutations, a process known as Muller's ratchet [22–24].

85 Though evolutionary theory often ascribes distinct roles to mutation and meiotic
86 recombination in creating and shuffling alleles, respectively, the two processes may not be
87 completely orthogonal. Meiosis itself may be powerfully mutagenic, as it requires the
88 induction of numerous double-strand DNA breaks. Through erroneous repair of these
89 breaks, meiosis has been linked with exceptionally high *de novo* mutation rates [12,20,21].
90 All types of mutations can occur through faulty repair of double-strand breaks, although
91 meiosis-induced double strand breaks may be particularly prone to creating new SVs [21].
92 In humans, for example, double-strand breaks induced by meiosis lead to a 400 to 1,000-
93 fold increase in the rate of SV acquisition, and many SVs induced in recombination hotspots
94 are pathogenic, highlighting the impact of meiotic mutagenesis on phenotype and human
95 disease [12, 25]. Recently, a machine learning approach showed that multiple genomic
96 features, including local recombination rate, were highly predictive of SVs induced in haploid
97 offspring of crosses of *Z. tritici* [20]. In the plant pathogen *Fusarium graminearum*, local
98 recombination rate was also shown to be associated with SVs across four high quality
99 genomes [12].

100 In addition to meiosis, transposition is a highly potent instigator of structural variation in
101 genomes. This occurs when active mobile elements called transposons duplicate or relocate
102 themselves in the genome [26]. In addition, the repetitive nature of transposons can create
103 SVs through pairing of distant genomic copies during DNA damage repair via the

104 homologous recombination pathway [26]. Though transposons can be destabilising to
105 genomes, occasionally they create beneficial mutations, which are an important source of
106 adaptive evolution [27].

107 In plant pathogens, transposition is widely appreciated as one of the main driving forces of
108 genomic plasticity. Though meiotic exchange has been linked with *de novo* acquisition of
109 SVs in plant pathogenic fungi, the link between meiotic exchange and genome stability has
110 not been widely explored in plant pathogen populations, and little is known about how
111 meiosis and transposition interact to shape SV diversity. Despite several long reads
112 pathogen pan-genomes, the overall contribution of SVs to variability in life history traits is
113 also poorly understood.

114 To date, much of the research on the evolution of plant pathogen genomes has also been
115 conducted on host specialists, which are under acute selective pressure to maintain
116 virulence on a single species. In contrast, the fungus *Sclerotinia sclerotiorum* infects
117 hundreds of plant species in at least 74 documented families [28]. Though its genome may
118 harbour some polymorphic regions [29,30], in contrast to many host specialists, its predicted
119 effectors are largely conserved [30] and several are likely compatible with diverse hosts
120 [31,32]. This suggests that, like many niche-generalists, *S. sclerotiorum* has evolved an
121 energetically-optimised and multifunctional genome, which facilitates its colonisation of
122 diverse hosts [33–35].

123 Sporulation in *S. sclerotiorum* occurs through obligate sexual reproduction. However, since
124 it is self-fertile (homothallic), sexual reproduction can create genotypically uniform progeny,
125 allowing certain genotypes to persist for long periods of time as clones [36]. The extent to
126 which *S. sclerotiorum* outcrosses to generate new diversity has been debated, with some
127 suggesting homothallism promotes universal outcrossing [29,37–44] and others suggesting
128 that outcrossing is extremely rare [45–47]. Consequently, the overall contribution of meiotic
129 exchange to genome stability and evolution in this species is particularly poorly understood.

130 Here, we present a global graphical pan-genome of *S. sclerotiorum* and use 25 reference-
131 quality genomes and 190 short reads samples to investigate species-wide SV diversity. To
132 capture this diversity, we present a new statistic called 'SV π ', which describes the average
133 number of SVs between all pairs of individuals. Using population genetics techniques, we
134 establish *S. sclerotiorum* as an outcrossing species with many of the hallmarks of eukaryotic
135 meiotic recombination, such as rapid linkage disequilibrium decay, suppressed
136 recombination at centromeres, recombination hot and cold spots and enhanced
137 recombination outside of coding sequences. We find that both recombination rate and
138 transposable element content are independently positively correlated with total number of
139 SVs and SV π though not positively correlated with one another.

140 Overall, unlike that of most host specialists studied to date, we show that gene content in
141 the *S. sclerotiorum* genome is largely stable, despite numerous small, unstable, repeat-rich,
142 gene-sparse regions. SVs often had a stronger effect than other variants on 14 life history
143 traits assessed across 103 strains, and we find that a 48 bp InDel is significantly associated
144 with tolerance of the fungicide azoxystrobin. Overall, our data suggest that transposition and
145 meiotic recombination make distinct contributions to SV diversity in *S. sclerotiorum*, and that
146 SVs may be an important driver of phenotypic plasticity, despite the stability in gene content
147 of the species. These insights shed new light on the genomic processes underpinning the
148 evolution of host generalism in plant pathogens.

149

150 **Results and discussion**

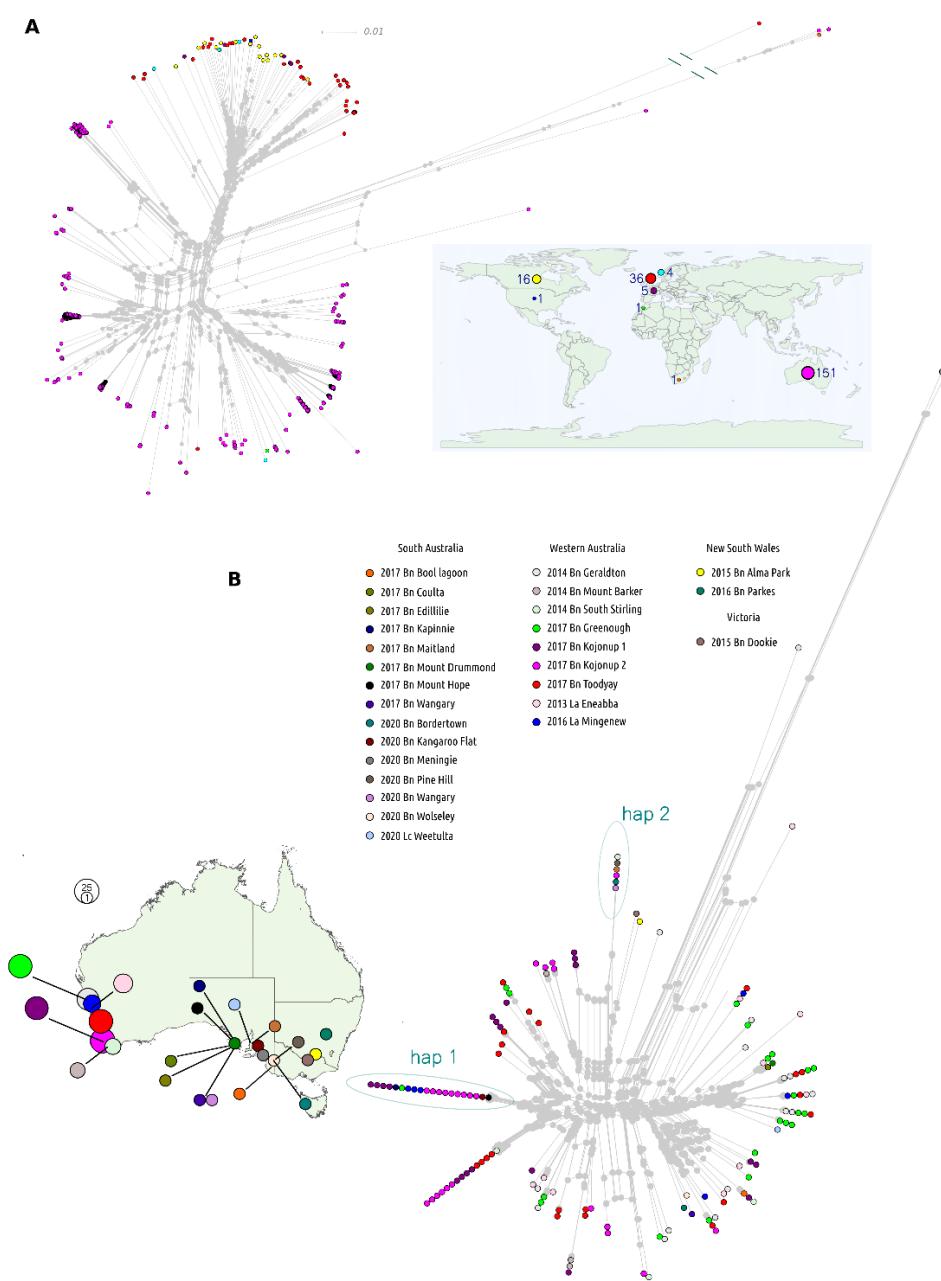
151 **Development of a *Sclerotinia sclerotiorum* graphical pan-genome**

152 To create a high-quality set of *S. sclerotiorum* genomes for SV analysis, we generated
153 Illumina-corrected Oxford Nanopore long reads assemblies of the genomes of 24 diverse
154 strains from Australia (10 strains), Europe (5 strains) and Canada (9 strains). Overall, 23 of
155 the strains had telomere-to-telomere assemblies for ≥ 10 of the 16 *S. sclerotiorum*

156 chromosomes, and seven had telomere-to-telomere assemblies for ≥ 14 chromosomes.
157 There were few gaps in assemblies on average, and 22 strains had gapless assemblies
158 for ≥ 10 chromosomes; three of these strains had gapless assemblies for all 16
159 chromosomes. All these assemblies are comparable to the reference *S. sclerotiorum*
160 genome [30], which has 14 telomere-to-telomere and 15 gapless chromosomes. BUSCO
161 scores ranged from 98.9 to 99.2, with a median of 99.05 (Supplementary Table 1), confirming
162 the completeness of these assemblies. These new assemblies are available in NCBI under
163 BioProject PRJNA1112094.

164 To explore structural variation in *S. sclerotiorum* we constructed a pan-genome graph from
165 the genomes of these 24 strains and the reference strain. In this graph, we identified 186,486
166 variants, including 154,892 SNPs, 5,877 multiple nucleotide polymorphisms (MNPs), 20,061
167 InDels and 5,556 SVs. There were 9,876 complex variants with more than one allele,
168 including 2,892 (52 %) of the SVs.

169 To capture more genotypic diversity, we aligned Illumina short reads to the pan-genome
170 graph from an additional 190 strains, 181 of which were sequenced in this study (available
171 in NCBI under BioProject PRJNA1120954) (Supplementary Table 2). Overall, the genotypes
172 of 3,741 of the SVs from the pan-genome graph were captured in this broader data set. This
173 data set is the first graphical pan-genome of the important host generalist pathogen *S.*
174 *sclerotiorum*. It includes 215 strains, with 152 from Australia, 17 from North America, 44 from
175 Europe, and one each from South Africa and Morocco.



176

177 **Figure 1. Genotypic clustering of *Sclerotinia sclerotiorum* strains from the global**
178 **population sample. A** A phylogenetic network with all strains in the dataset coloured
179 according to geographical origin. The map inset shows where strains were collected with
180 colours corresponding to those in the network. The sizes of circles on the map corresponds
181 with the number of strains from each global region. **B** A phylogenetic network for the
182 Australian strains. Circles are coloured according to geographical origin within Australia.
183 Where circles are stacked on top of each other, isolates are a $\geq 98\%$ genotypically identical

184 group of clones. The map to the left shows where isolates were collected within Australia,
185 with colours of circles corresponding to colours on the network. The sizes of circles represent
186 the numbers of strains from each collection site. Haplotypes 1 (hap 1) and 2 (hap 2) are
187 examples of frequently sampled and geographically widespread clones, with individuals
188 from Western Australia and South Australia.

189

190 ***Sclerotinia sclerotiorum* undergoes cryptic recombination whilst maintaining clonal**
191 **lineages across large temporal and spatial distances**

192 *S. sclerotiorum* produces ascospores through sexual reproduction. As it is homothallic,
193 ascospores may be genotypically identical, which leads to an effectively clonal mode of
194 propagation. Clonality is evident in the detection of temporally or spatially distant
195 genotypically nearly identical strains. We identified 120 clonal lineages (>= 98 % identical)
196 among the 215 strains (Supplementary Figure 1). Clonality was most prevalent among the
197 Australian strains, whereas European and North American strains were mostly genotypically
198 distinct (Figure 1). This was expected because most of the European and North American
199 strains were previously shown to be distinct lineages using markers [48,49], whereas 99 of
200 the Australian strains were collected from five sites (two of which were in the same locality)
201 in Western Australia with no prior genotyping [50,51].

202 Confirming the long-term maintenance of clonal propagation, we found several clones from
203 geographically distant regions, some of which were collected many years apart. For
204 example, strains CU11.18 and F19064 were found in Western Australia in 2013 and South
205 Australia in 2018, respectively. The most extreme example was the pair of clones S55 and
206 MB57, which were collected in the USA in 1987 and Manitoba in 2010, respectively.

207 In our previous study, we found that the global *S. sclerotiorum* population forms two distinct
208 sub-populations, between which there has been limited gene flow. SNP data from the 215
209 genomes confirmed this observation (Figure 1), showing that Australian/African and

210 European/North American strains formed mostly distinct sub-populations (referred to as
211 AuAf and EuNA herein). Although we expanded the Australian collection, our study only
212 contained the two African strains from our previous study [29], Sssaf from South Africa and
213 Ss44 from Morocco, so the global relationship between Australian and African strains is still
214 not fully resolved.

215 In the AuAf sub-population, we found evidence for three ancestral populations, and
216 numerous admixed individuals. In the EuNA population, we identified three further ancestral
217 populations with limited admixture (Figure 2 A). Two of the EuNA strains were admixed
218 individuals containing alleles from either the AuAf ancestral populations or both the EuNA
219 and AuAf ancestral populations. The widespread recent admixture among AuAf strains
220 supports outcrossing between lineages from distinct ancestral populations.

221 To further explore outcrossing in the global *S. sclerotiorum* population, we investigated the
222 rate of linkage disequilibrium decay in the 120 independent clonal lineages. We found that
223 across the whole population, linkage disequilibrium decayed to half its maximum value at
224 428 bp (Figure 2 B). Three tests of the association between recombination and physical
225 distance, neighbour similarity score [52], maximum X^2 [53], and pairwise homoplasy index
226 [54], also supported statistically significant recombination between non-adjacent alleles (P
227 = 0 for all tests and chromosomes, Supplementary Table 3).

228 The rate at which LD decays to half its maximum (LD_2) value is typically higher in
229 predominantly outcrossing and lower in predominantly clonal species [55,56]. Species that
230 rarely outcross often have LD_2 rates of more than 100 Kb, whereas highly outcrossing
231 species have rates on the order of a few hundred bp [56]. Though we have no direct
232 assessment of the rate of outcrossing in *S. sclerotiorum*, the very small LD_2 rate we
233 observed suggests that it may be relatively frequent.

234 Like other outcrossing species, recombination was not uniform across the genome. In four
235 non-structured subsamples comprising respectively 23, 13, 15 and 34 individuals (Figure 2

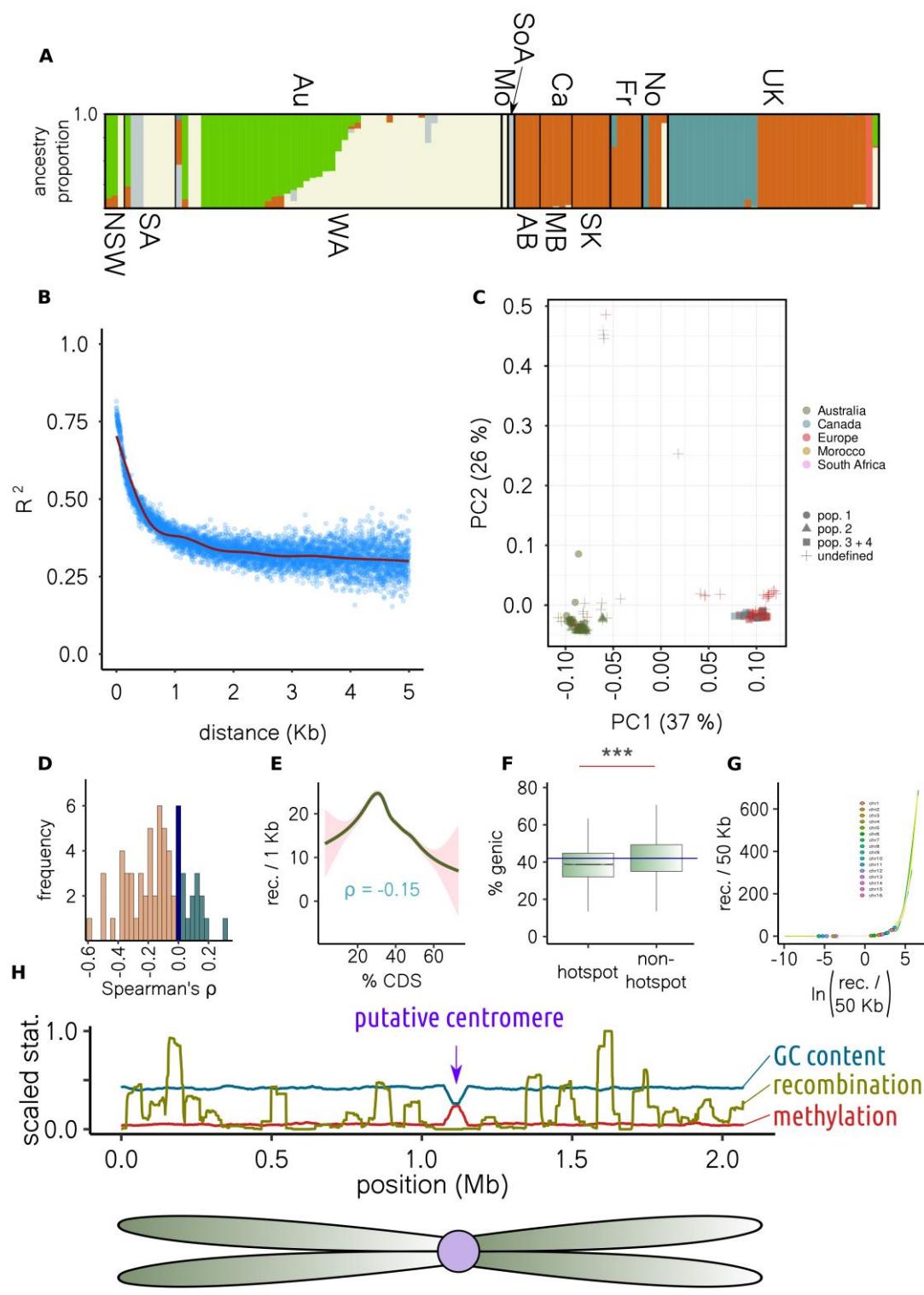
236 C), which we refer to as population-1, population-2, population-3 and population-4, we
237 identified 384 recombination hotspots (Supplementary Table 4). Like other outcrossing
238 species, we found that recombination rate was higher towards the ends of chromosomes
239 where chromatin is more likely to be relaxed (Figure 2 D). Furthermore, recombination rate
240 was negatively correlated with coding sequence density (Spearman's $\rho = -0.15$, $P = 0$, Figure
241 2 E, Supplementary Figure 2) and recombination hotspots had a lower gene density than
242 other regions ($P < 0.0001$, Figure 2 F). Though recombination rate was weakly negatively
243 correlated with coding sequence density, the relationship between the two variables was not
244 monotonic. Instead, there was an optimal gene density at which recombination rate peaked
245 before declining rapidly (Figure 2 E, Supplementary Figure 2).

246 Our data suggest that recombination rate is generally higher outside of genic regions but
247 low in the most gene-sparse parts of the genome. This is consistent with observations in
248 other outcrossing species [57] where meiotic recombination within genes is selected against
249 as it can lead to polymorphisms due to erroneous double strand break (DSB) repair, though
250 meiosis is repressed in the most gene-sparse regions, which also tend to be
251 heterochromatic.

252 Across most chromosomes and all four population samples, there were clear recombination
253 coldspots that coincided with a single prominent drop in GC content and a single prominent
254 spike in cytosine methylation based on bisulfite sequencing data generated in this study
255 (Figure 2 G-H, Supplementary File 1, Supplementary Table 5). Decreased GC content and
256 increased cytosine methylation are both hallmarks of eukaryotic centromeres [58,59],
257 around which meiotic recombination is typically suppressed [60]. The convergence of these
258 three observations, and previous predictions from optical mapping data [61], suggest that
259 these sites are the centromeres of the *S. sclerotiorum* chromosomes, and, as in other
260 outcrossing species, meiotic recombination is suppressed around them.

261 With the rapid decay of linkage disequilibrium, the presence of recombination hotspots, and
262 the conspicuous recombination-related features characteristic of eukaryotic meiosis, we
263 infer that *S. sclerotiorum* maintains genetic diversity across numerous populations through
264 sexual outcrossing. While clonal lineages may endure over extended periods via self-
265 fertilization, the ongoing process of sexual recombination among these lineages may be
266 important for creating genotypic diversity. Presently, meiotic exchange is cryptic, as
267 laboratory observations of sexual outcrossing are, to our knowledge, lacking.

268 Ecological theory suggests that loss of sexual reproduction initiates the gradual
269 accumulation of deleterious alleles inseparable from beneficial ones, a phenomenon known
270 as 'Muller's ratchet'. Consequently, strictly clonal populations are rare, with most facing a
271 trajectory toward extinction. Given the continuing pressure on *S. sclerotiorum* for survival
272 across numerous host species, coupled with its apparent lack of host preference, it is not
273 surprising that it exhibits many attributes indicative of sexual outcrossing. Drawing from our
274 findings and those of others [37,43,44], we suggest that homothallism in *S. sclerotiorum* not
275 only supports persistence of certain clonal lineages but also fosters universal sexual
276 compatibility.



277

278

279 **Figure 2. Population structure and evidence of recombination. A** Colours correspond
 280 to ancestral populations making up individuals. Country of origin (above) is Au = Australia,
 281 Mo = Morocco, SoA = South Africa, Ca = Canada, Fr = France, No = Norway, and UK = UK.
 282 Below, states within Australia and Canada are indicated, where NSW = New South Wales,

283 SA = South Australia, WA = Western Australia, AB = Alberta, MB = Manitoba, and SK =
284 Saskatchewan. **B** Linkage disequilibrium (y axis) decay with physical distance (x axis).
285 Points are averages for unique distance measurements, and the red line is a general
286 additive model fit. **C** The first two principal components of genotypic variance. Colours
287 indicate geographical origin and point shapes the four population sub-samples used for
288 recombination analysis. **D** Across chromosomes and population sub-samples, the
289 distribution of Spearman's correlations between chromosome end distance and
290 recombination rate. **E** Correlation between coding DNA sequence content (x axis) and
291 recombination rate (y axis) of 50 Kb sliding windows. The line is a general additive model fit.
292 **F** Boxplot showing percent gene content of 50 Kb windows containing and not containing
293 recombination hotspots (** = $P < 2e^{-16}$). Boxes and whiskers show interquartile range. **G**
294 Circles show where windows containing putative centromeres lie on a plot of recombination
295 rate (y axis) against log recombination rate (x axis). Putative centromeres are in regions of
296 low recombination, before the inflection point. **H** The y axis is scaled (division by maximum)
297 recombination rate, amount of methylation or GC content for sliding windows. The x axis
298 shows position (Mb) across chromosome 6 (all chromosomes and population samples are
299 in Supplementary File 1). All chromosomes had a dip in GC coincident with a spike in
300 methylation, almost always coincident with a recombination cold spot.

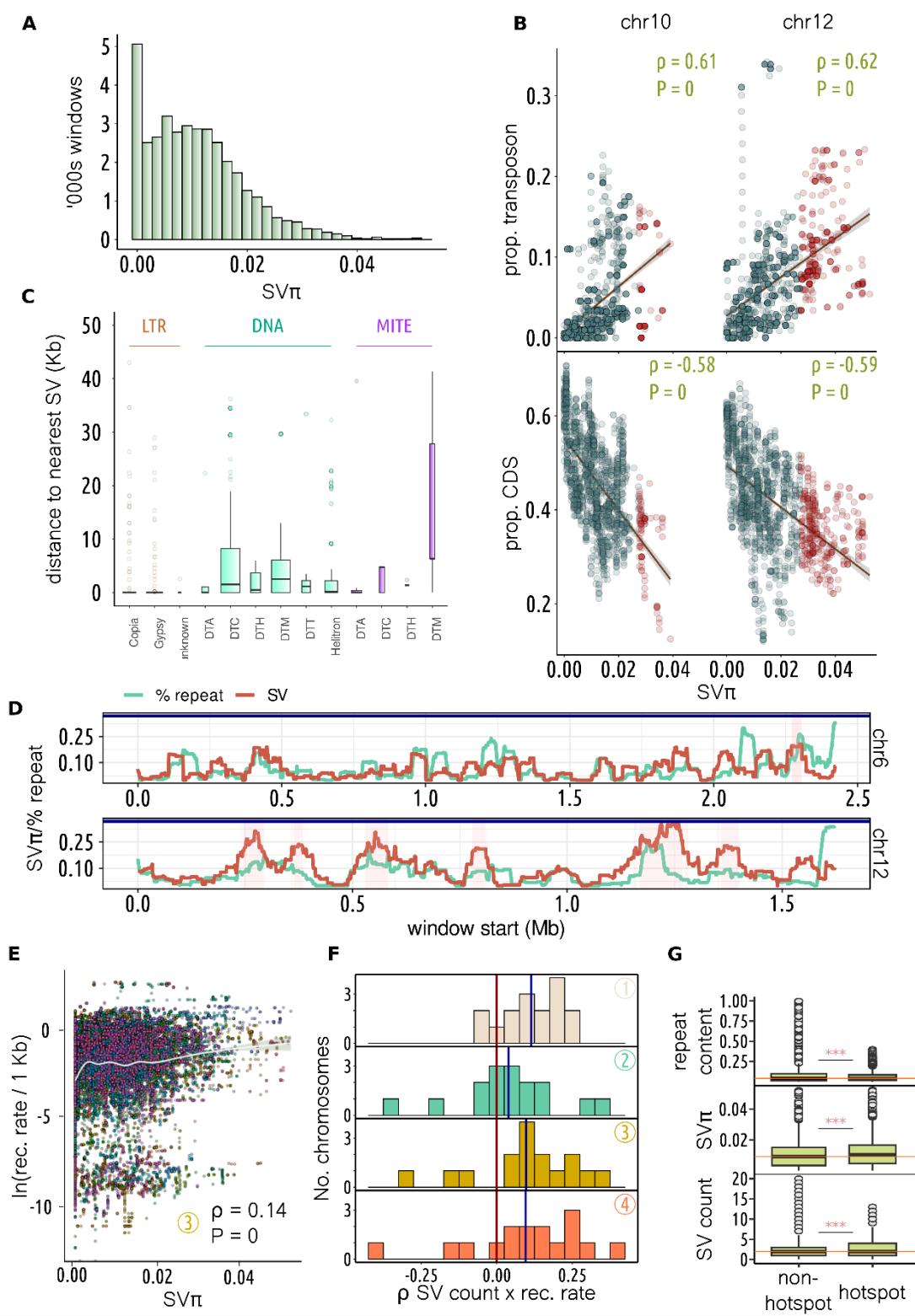
301

302 **The *Sclerotinia sclerotiorum* pan-genome graph suggests transposable elements
303 create hotspots of structural diversity**

304 To capture diversity of structural variation across the genome, we developed a statistic called
305 'SV π '. Akin to nucleotide [62] and synteny diversity [63], this statistic captures the average
306 number of SVs per Kb between all pairs of individuals. We found that SV π was positively
307 skewed when calculated for 50 Kb sliding windows across the genome (Figure 3 A). This
308 suggests that the *S. sclerotiorum* genome is mostly stable, with a few regions of excessive

309 structural variation. We defined SV hotspots as sliding windows with a SV π value above the
310 95th percentile across the genome. Interestingly, more hotspots were detected on some
311 chromosomes than others. For example, chromosome 12 contained six hotspots and had
312 an average SV π of 0.016, whereas, despite being larger, chromosome 6 contained only one
313 hotspot and had an average SV π of 0.009 (Figure 3 D, Supplementary Figure 3).
314 Transposable element and gene content were positively (Spearman's ρ = 0.28, P = 0) and
315 negatively (Spearman's ρ = -0.33, P = 0) correlated with SV π , respectively. The correlation
316 between transposon/gene content and SV π varied between chromosomes, with the highest
317 correlations observed on chromosomes 10 and 12 (Spearman's ρ = 0.61 and 0.62,
318 Spearman's ρ = -0.58 and -0.59, respectively (P = 0)) (Figure 3 B; Supplementary Table 8).
319 The association between SVs and transposable elements was further supported by the
320 observation that transposable elements were significantly closer than randomised loci to the
321 nearest SV across all genomes (P = 0). Transposable elements in the long terminal repeat
322 (LTR) family were significantly (P < 0.0001) closer to the nearest SV than those in eight out
323 of 10 other families (Figure 3 C, Supplementary Table 6), suggesting they may strongly
324 contribute to genome instability in *S. sclerotiorum*.
325 LTRs are a type of retrotransposon, which are transposons characterised by a copy and
326 paste proliferation mechanism that involves transcription into RNA, reverse transcription into
327 DNA and re-insertion into the genome [64]. Retrotransposons are unique to eukaryotes [65],
328 and their replicative ability has made them often the dominant transposon class in eukaryote
329 genomes [66]. Several studies have linked retrotransposons with virulence evolution in plant
330 pathogens [67,68], including the host generalist species *Botrytis cinerea*, where they have
331 been shown to encode small RNA effectors [69]. Our observations that retrotransposons are
332 most strongly linked of all transposon classes to SVs suggests that they are the most active
333 mobile elements in *S. sclerotiorum*. Their ongoing contribution to structural variation may be
334 important for genomic plasticity in this species.

335 Stable, gene-dense and repeat-poor, and unstable, gene-sparse and repeat-rich genomic
336 regions are common across eukaryote genomes [70]. The accumulation of transposons and
337 SVs in gene-sparse regions is likely a result of relaxed selective pressure and accumulation
338 of largely selectively neutral alleles. These regions can be important for adaptive evolution
339 because they harbour extensive diversity in gene content and gene sequences [71]. When
340 the environment changes, previously selectively neutral mutations may confer an
341 advantage, leading to ongoing maintenance of these regions, and the transposons within
342 them, in populations [72]. Our data show that, like those of most eukaryotes, the *S.*
343 *sclerotiorum* genome is also partitioned into stable and unstable regions, and unstable
344 regions are likely most strongly shaped by LTR retrotransposons. Overall, transposon
345 content in the 25 *S. sclerotiorum* genomes was relatively low at 5.51 to 6.91 %
346 (Supplementary Table 7). Despite this, transposable elements are responsible for creating
347 considerable diversity in SVs across the *S. sclerotiorum* genome.



348

349 **Figure 3. Analysis of structural variation across the *Sclerotinia sclerotiorum* pan-**
 350 **genome. A** Distribution (y axis) of SVπ (x axis) for 50 Kb sliding windows. **B** For
 351 chromosomes 10 and 12, correlation between SVπ (x axis) and proportion transposon (top
 352 y axis) or coding DNA sequence (bottom y axis). Spearman's ρ and P value depicted top-

353 right. Blue lines show linear regression of y onto x and the shaded area 95 % confidence
354 interval. Red points are SV π hotspot (> 95th percentile) windows. **C** The y axis shows
355 distance to nearest structural variant (SV) for transposon families. Transposon classification
356 is indicated at the top and family on the x axis. Boxes and whiskers show interquartile range.
357 LTR retrotransposons were generally closer than other transposons to SVs (Kruskall-Wallis
358 test shown in Supplementary Table 6). **D** The y axis is SV π or percent repeat for 50 Kb
359 windows (scaled for visualisation). The x axis shows window start (Mb), and plots show
360 chromosomes 6 and 12, the latter having the highest average SV π and the most hotspots
361 (shaded in pink). **E** Correlation between log recombination rate per Kb (y axis) and SV π (x
362 axis) across 50 Kb sliding windows. Chromosomes are plotted in different colours and data
363 shown are for population-3. Spearman's ρ was 0.14-0.15 for all populations ($P = 0$) but varied
364 between chromosomes. **F** Distribution across chromosomes (y axis) of Spearman's ρ for
365 number of SVs and recombination rate in 50 Kb sliding windows. Though correlation
366 strength varied between chromosomes, correlations were generally positive. **G** The y axis
367 shows repeat content (top), SV π (middle) and number of SVs (bottom) for windows that did
368 not (left) and did (right) contain recombination hotspots. Boxes and whiskers show
369 interquartile range; differences were significant according to a t-test (** = $P < 2.2e^{-16}$).
370

371 **Recombination and transposable elements make distinct contributions to structural
372 variation**

373 Several studies have shown that besides transposition, structural variation can be caused
374 by recombination. However, little is known about the overall impact of recombination on
375 structural variation in natural populations. In *S. sclerotiorum*, we found an overall correlation
376 between SV π and recombination rate for all four population samples we used for
377 recombination rate estimation (Figure 3 E, Spearman's $\rho = 0.14-0.15$, $P = 0$). Though this is
378 suggestive of a link between SV diversity and recombination, it does not necessarily imply

379 that recombination creates SVs, as this relationship could also be caused by increased
380 haplotype diversity in regions with a high recombination rate. Therefore, to determine
381 whether genomic regions with a high recombination rate may be more prone to development
382 of SVs, we assessed the correlation between recombination rate and the overall number of
383 SVs called against the reference genome. Though the strength of correlation between these
384 parameters varied considerably between chromosomes and populations, we found that, on
385 average, there was a weak to moderate correlation between total number of SVs and
386 estimated recombination rate (Figure 3 F, mean Spearman's $\rho = 0.09$). For 12, 8, 13, and
387 12 out of 16 chromosomes, for the four respective populations, there was a significant
388 positive correlation between recombination rate and total number of SVs ($P < 0.05$,
389 Supplementary Table 8). In contrast, only 1-3 chromosomes displayed a significant negative
390 correlation between recombination rate and number of SVs.

391 Despite the correlations between recombination rate and both SV π and total SVs across
392 chromosomes and populations, there were far fewer instances of a positive correlation
393 between recombination rate and transposon content, and the overall average of all
394 Spearman's ρ s was close to zero at -0.0018 (Supplementary Table 8). Furthermore,
395 recombination hotspots had a slightly but significantly lower average repeat content than
396 other parts of the genome (5.71 % vs 6.97 %, $P < 2.2e-16$), despite having elevated SV π
397 (average of 0.012 vs 0.010, $P < 2.2e-16$) and more SVs (2.65 vs 2.40, $P < 2.2e-16$) (Figure
398 3 G). This suggests that meiotic recombination and transposition make orthogonal
399 contributions to structural variation. In agreement, we found that the number of SVs was
400 better described in a regression model by both average recombination rate and transposon
401 content than transposon content alone, though transposon content was the dominant
402 predictor in the model (likelihood ratio test $P < 2.2e-16$, transposon $F = 74.86$, recombination
403 rate $F = 13.08$).

404 Our analyses document an interesting link between estimated recombination rate and the
405 rate of structural variation in the *S. sclerotiorum* genome. This is not surprising given the
406 mutagenic properties of meiosis. Given the relatively low level of transposable element
407 content in the *S. sclerotiorum* genome, recombination through meiotic exchange could be
408 an additional important source of structural variation. Our regression model suggests that
409 recombination rate is far outweighed by transposon density as a predictor of genome
410 stability. However, since recombination rate was typically higher in regions of intermediate
411 gene density, recombination may have a greater chance of inducing SVs that impact gene
412 function.

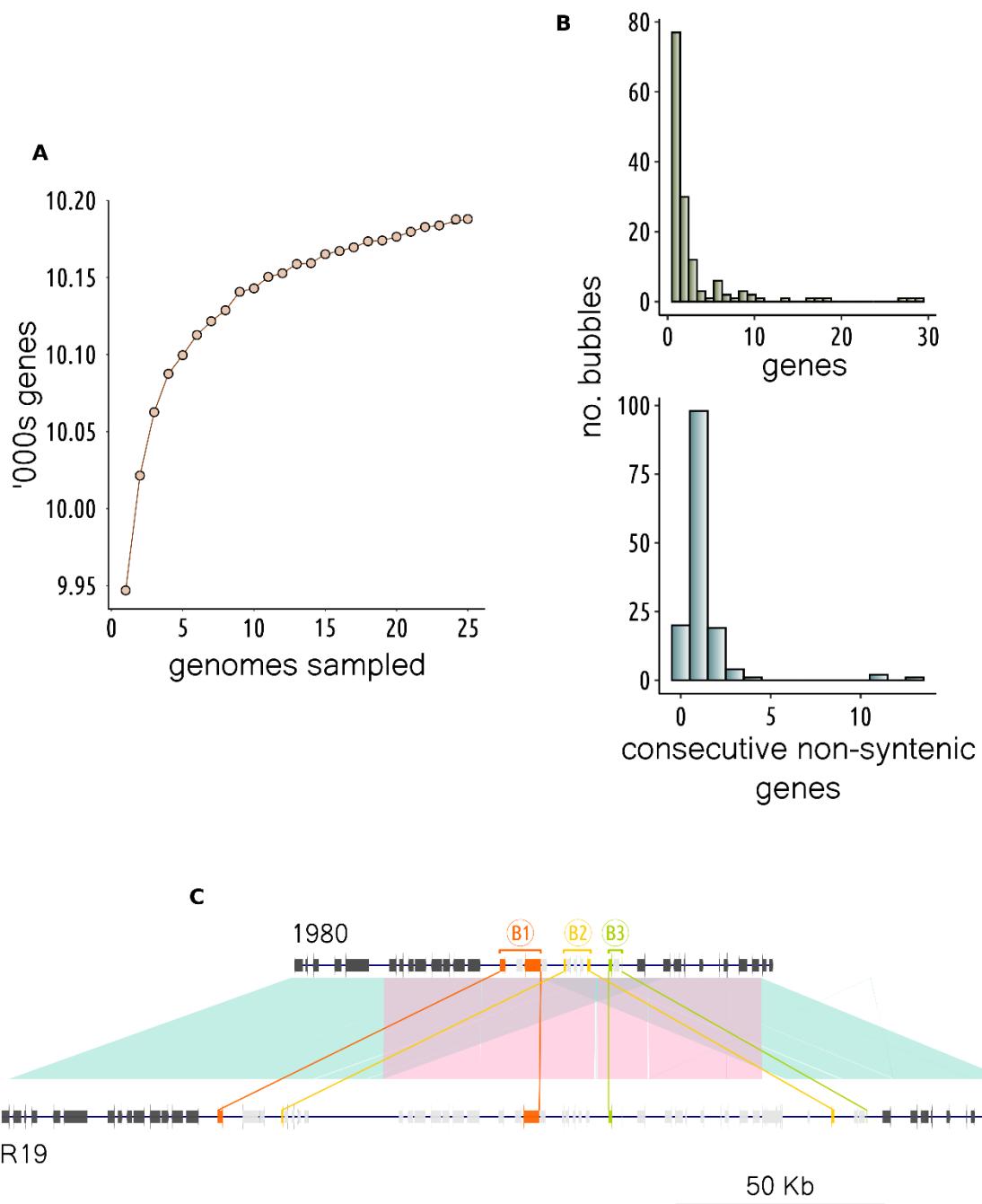
413 ***Sclerotinia sclerotiorum* has a closed pan-genome with relatively few non-syntenic
414 blocks of genes**

415 The gene-space within a pan-genome lies on a spectrum from high variability in certain
416 species to remarkable stability in others. Species harbouring a limited number of
417 dispensable genes are characterised by closed pan-genomes, while those with diverse gene
418 content are classified as having open pan-genomes [73]. To assess the openness of the *S.*
419 *sclerotiorum* pan-genome, we sampled from two to all 25 strains in our dataset and plotted
420 number of strains against number of novel genes. We found that the number of additional
421 genes brought by adding a new strain plateaued quickly at 5-10 strains, indicating that most
422 dispensable genes in the population are present in multiple strains (Figure 4 A).

423 Across all strains, we identified 10,188 unique genes, of which 553 (5.43 %) were
424 dispensable. Few informative Gene Ontology terms were over-represented among these
425 genes, although we noted an over-representation of the term 'GO:0031177' ($P = 0.012$),
426 which is ascribed to genes containing a phosphopantetheine binding site. Since one of the
427 main functions of this site is in secondary metabolite biosynthesis by non-ribosomal peptide
428 synthases (NRPSs) and polyketide synthases (PKSs), it is not surprising that we also found
429 an over-representation of genes in secondary metabolite biosynthesis clusters among

430 dispensable genes (odds ratio = 2.28, P = 1.44e-11). We found no significant over-
431 representation of secreted proteins, regardless of size (odds ratio = 0.73, P = 0.18 for >= 300 amino acids; odds ratio = 1.38, P = 0.19 for <= 300 amino acids).
432
433 Based on a graphical representation of gene synteny, we identified 615 runs of one or more
434 genes that were non-syntenic between strains (Figure 4 B). In keeping with graph
435 terminology, we refer to these as 'gene bubbles'. The number of genes in gene bubbles
436 ranged from 1 to 34, with most gene bubbles containing only a single gene (Figure 4 B).
437 Consecutive runs of missing genes within bubbles ranged from 0 (i.e. the bubble was an
438 inversion) to 13 (median = 1) (Figure 4 B). The largest three consecutive runs of missing
439 genes within bubbles were identified on chromosome 12, which was the chromosome with
440 the highest SV π . Closer inspection of these runs identified a complex region partially
441 duplicated in the strain R19, which was sampled in 2007 from buttercup in Warwickshire in
442 the UK (Figure 4 C). Many of the genes in this region were likely transposon genes, as they
443 were annotated with Pfam domains such as RNase H (PF00075), reverse transcriptase
444 (PF00078), and endonuclease (PF14529) (Supplementary Table 9). However, there were
445 also glycosyl hydrolases (PF00722), ubiquitins (PF00240) and a major facilitator superfamily
446 transporter (PF07690). The fact that this region was the same in all strains apart from R19
447 could mean it is deleterious. Alternatively, it could be a relatively new polymorphism whose
448 evolutionary fate has not yet been determined. So far, the polymorphism does not appear to
449 be detrimental to infection on brassicas, since R19 is more aggressive than several other
450 diverse isolates from the UK [74].
451
452 The closed *S. sclerotiorum* pan-genome contrasts the pan-genomes of host specialist fungal
453 pathogens. For instance, in a population sample of 19 global isolates of *Z. tritici*,
454 approximately 40 % of genes were dispensable [8], and in 26 strains of the wheat pathogen
Pyrenophora tritici-repentis 43 % [75].

455 To our knowledge, little is known about what shapes pangenome openness in eukaryotes.
456 However, ecological theory suggests that selective pressure from the host is stronger on
457 host specialists than generalists [33]. To our knowledge, there are no *S. sclerotiorum* strains
458 unable to reproduce on a single host species or genotype. It is unlikely, therefore, that a
459 single virulence gene, such as an effector, would ever confer a strong host-driven selective
460 advantage in this species. Therefore, maintenance of a repertoire of dispensable virulence
461 proteins to ensure adaptability to a constantly changing host environment seems unlikely.
462 Instead, the closed pan-genome of *S. sclerotiorum* aligns with previous research suggesting
463 that it, and other host generalists, have evolved toward energetic optimisation of core
464 virulence genes that function on multiple host species [31,34].



465

466 **Figure 4 Gene content variability in the *Sclerotinia sclerotiorum* pan-genome. A** The
467 relationship between total number of unique genes (y axis) and number of genomes
468 sampled (x axis). **B** Number of gene bubbles (y axis) and number of genes they contained
469 (top) or number of consecutive missing genes they contained (bottom). **C** A region in the
470 1980 reference genome that had a partial duplication in the isolate R19 and no other
471 isolates. This region contained the largest three gene bubbles, indicated here with B1

472 (orange), B2 (yellow) and B3 (green). Start and end genes for each called bubble are
473 indicated in their respective colours and non-syntenic genes within bubbles are in light grey.
474 Neighbouring genes are in dark grey. The shaded area connects homologous regions and
475 the pink region is duplicated in R19.

476

477 **Structural variation may have a strong impact on adaptive flexibility of life history
478 traits**

479 Adaptive flexibility and fitness of a population are underpinned by genotypic variation that
480 impacts life history traits. As a global host generalist agricultural pest, *S. sclerotiorum* is
481 exposed to diverse environments and must be adaptable to a range of temperatures and
482 stressors, such as host metabolites. To assess global phenotypic diversity in *S. sclerotiorum*,
483 we measured 14 life history traits across 103 genotypically distinct strains, including relative
484 growth on the Brassicaceae defence compounds brassinin and camalexin, the Fabaceae
485 defence compound medicarpin, the reactive oxygen species H₂O₂ (ROS), and the two
486 fungicides azoxystrobin and tebuconazole; growth and relative growth at 15, 20 and 25 °C;
487 and fecundity-related traits including number, and average and total weight of sclerotia.

488 We found significant differences between isolates from different geographical origins for
489 eight of these traits. Both European and Australian strains grew faster at 15 °C than
490 Canadian strains (Figure 5 A) (P = 0.014 and 0.007, respectively). At 20 °C, European strains
491 grew significantly faster than Australian but not Canadian strains (P = 0.003 and 0.52,
492 respectively), though Canadian strains grew at a similar rate to Australian strains (P = 0.40).
493 At 25 °C, European strains grew faster than both Canadian and Australian strains (P = 0.035
494 and 0.00072, respectively). Relative growth (growth divided by growth at 20 °C, generally
495 considered the middle of the optimum range [76,77]) at 15 °C was significantly lower for both
496 European and Canadian strains compared with Australian strains (P = 0.035 and 0.049,

497 respectively), though relative growth at 25 °C was not significantly different between strains
498 from different global regions.

499 Differences in growth rate at different temperatures between these populations could be a
500 result of adaptation to prevailing temperatures during the growing season for major host
501 crops, a phenomenon that has been previously observed at a local level in Australia
502 [50,51,78]. However, it is difficult to completely align our observations with the likely
503 reproductive cycle of *S. sclerotiorum* in these three global cropping regions, as different host
504 crops are likely to be available at different times of year. For example, the major host species
505 *Brassica napus* usually flowers in spring in the UK, where temperatures are often lower than
506 when *B. napus* flowers in Western Australia in July. On the other hand, some hosts, such as
507 lettuce, may be also present later in the season in the UK. A weaker adaptation to lower
508 temperatures is possible for Canadian strains, which would likely infect *B. napus* when it is
509 flowering during the hotter summer months.

510 Among host antimicrobial metabolites, we found a significant increase in growth in European
511 strains compared with Canadian on camalexin ($P = 0.015$) and a significant decrease on
512 ROS (0.0015) compared with Australian strains. Growth on ROS was lower for both
513 European and Canadian compared with Australian strains, though the range in growth of
514 Canadian strains meant the difference between Australian and Canadian strains was not
515 significant ($P = 0.12$). Similarly, European strains had a significantly lower growth rate on
516 azoxystrobin compared with Australian strains ($P = 0.035$), and Canadian strains were in the
517 middle ($P = 0.69$ and 0.64 compared with Australian and European strains, respectively).
518 Interestingly, Canadian strains produced a greater total sclerotia weight compared with
519 strains from Australia and Europe ($P = 0.034$ and 0.036, respectively). This seemed to be
520 due to a slight increase in the mean of both sclerotia number and weight. The size of
521 sclerotia has been previously linked with the rate of germination [79] and number of
522 apothecia per sclerotium [80], suggesting it is an important component of fecundity.

523 Phenotypic variation in this trait may have important implications for pathogen proliferation
524 and epidemic potential of different populations.

525 The traits we measured had complex genetic synergisms and antagonisms with one
526 another, for instance brassinin and camalexin tolerance were positively correlated
527 (Pearson's $\rho = 0.43$) and shared positive genetic covariance (0.93) (Figure 5 B,
528 Supplementary Table 10). The same was true of camalexin and medicarpin tolerance
529 (Pearson's $\rho = 0.48$, genetic covariance = 0.65). Other traits were negatively correlated and
530 had negative genetic covariance, for instance growth at 20 °C and azoxystrobin tolerance
531 (Pearson's $\rho = -0.33$, genetic covariance = -0.97), and total sclerotia weight and relative
532 growth at 15 °C (Pearson's $\rho = -0.39$, genetic covariance = -0.63). This suggests that
533 complex trade-offs and synergisms between life history traits may influence fitness [5].

534 Several studies have shown that SVs have a major role in creating phenotypic diversity, and
535 graph pan-genomes in which SVs can be reliably called have shown that they can be a
536 major component of missing heritability [19,81]. To test the relative impact of SVs on life
537 history traits, we conducted a genome-wide association study (GWAS). For all traits,
538 quantile-quantile plots suggested that the model we used adequately controlled P value
539 inflation due to population structure (Supplementary Figure 4).

540 We found that the average absolute effect size of SVs was higher than that of non-SVs
541 across 11 of the 14 traits, significantly higher for eight ($P < 0.05$), and lower for 2 of the 14
542 traits, tebuconazole and ROS tolerance. Notably absolute effect size was on average 0.015
543 and 0.020 points higher for relative growth on azoxystrobin and total sclerotia weight,
544 respectively ($P < 0.0001$, Figure 5 C, Supplementary Table 11). On average, SVs had a
545 lower average minor allele frequency than other variants (0.18 vs 0.21), which could lead to
546 an increase in the variance of effect size estimates. Therefore, we took 500 random samples
547 of non-SVs of equivalent size and minor allele frequency distribution to SVs and assessed
548 how many times their average absolute effect size was more than or equal to that of the

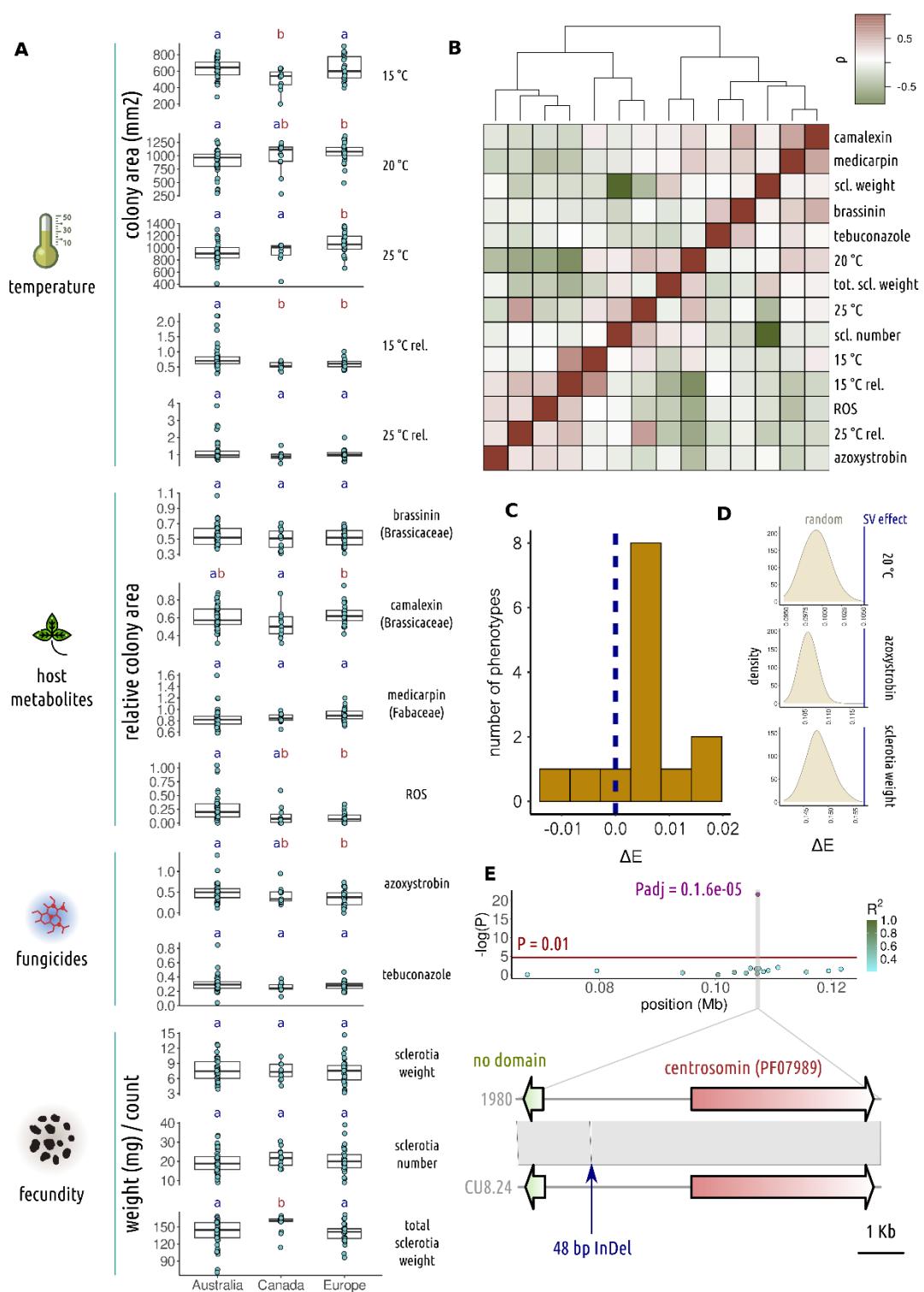
549 SVs. Based on this test, azoxystrobin tolerance, growth rate at 25 °C and average sclerotia
550 weight, were impacted more strongly by SVs than other variants in 100 % of random
551 samples ($P = 0$), as well as having significant increases for the first test ($P < 0.005$) (Figure
552 5 C, Supplementary Table 11). Three other traits, medicarpin tolerance, growth at 25 °C and
553 total sclerotia weight were more strongly impacted compared with more than 90 % of random
554 samples ($P < 0.1$), as well as showing a significant increase according to the first test ($P <$
555 0.005). According to the randomisation test, ROS and tebuconazole tolerance were also
556 significantly more weakly impacted on average by SVs than other variants ($P = 1$ – all
557 randomisations had a higher mean absolute effect size). We infer from this analysis that SVs
558 could have a larger impact on many of these traits than other variants, though genetic
559 architecture with respect to SVs likely varies considerably between traits.

560 As an alternative to assessing the absolute effect size, we performed regressions on
561 different genomic relationship matrices, which either included or did not include all variants
562 in linkage disequilibrium with SVs. Using cross-validation, we found that for medicarpin and
563 ROS tolerance, growth at 15 °C and 20 °C, and sclerotia number, models that included
564 variants in LD with SVs had a better predictive ability than models that did not (Pearson's p
565 = 0.25 vs 0.23, 0.38 vs 0.37, 0.03 vs 0.02, 0.34 vs 0.29 and 0.14 vs -0.14, respectively
566 (Supplementary Table 12)). Given absolute effect size for ROS tolerance was lower on
567 average among SVs, it is possible that although individual SVs have a relatively weak impact
568 on this trait, as a collective they explain a relatively larger proportion of additive heritability.
569 For the other traits, the improvement in predictive ability was in accordance with the increase
570 in absolute effect size according to at least one of the analyses mentioned previously.
571 Overall, we identified 15 variants with a significant (Benjamini-Hochberg adjusted $P < 0.05$)
572 impact on phenotype across six traits. 13 of these variants were intergenic SNPs or InDels,
573 one was a synonymous SNP and the other was a disruptive in-frame InDel. The genes
574 associated with these variants had diverse functions, which may be speculatively associated

575 with each of the traits (Supplementary Table 13). Though none of these variants were SVs
576 or in linkage disequilibrium with neighbouring SVs, one of them was a 48 bp InDel, close to
577 the 50 bp cutoff we used for designating variants as 'structural'. This variant, at position
578 107,298 on chromosome 12, was a deletion that significantly increased relative growth on
579 azoxystrobin ($P = 1.6e^{-5}$) (Figure 5 E). There were two genes either side of this variant on
580 opposite strands, one encoding a 78 amino acid protein with no known domains and the
581 other a 1,516 amino acid protein containing a centrosomin domain (PF07989). The variant
582 was, respectively, 1,177 and 2,571 bases away from the transcription start sites of the
583 shorter and longer genes. The amino acid sequences of both proteins were well-conserved
584 in fungi, with 80-100 % similarity to homologues from species in the Helotiales, suggesting
585 they are genuine genes (Supplementary Table 13). With the current data, it is not possible
586 to determine which, if either, of these genes' functions is linked with growth rate on
587 azoxystrobin. However, in fungi, centrosomins are localised to spindle pole bodies, which
588 are structures analogous to animal centrosomes, the main sites of coordination of
589 microtubule activity during mitosis [82]. It is conceivable that the relative rate of cell division
590 on a particular stressor could be impacted by mutations affecting genes encoding the cell
591 division machinery.

592 Our analyses are in accordance with several studies showing that SVs may have an
593 outsized impact on phenotype [19,83,84]. In our analyses, which used a GWAS approach,
594 we were restricted to common (minor allele frequency > 0.05), biallelic SVs. Therefore, we
595 likely favoured less deleterious SVs, since deleterious SVs with the strongest phenotypic
596 impacts are usually rare in populations [84,85]. Despite this, we observed an overall stronger
597 impact of SVs than other types of variants on many life history traits. This was also despite
598 the observation that SV diversity tended to cluster in polymorphic, repeat-rich genome
599 regions, which can often be sites of selective neutrality. Since the *S. sclerotiorum* genome
600 is relatively gene-dense, containing few repeat-rich regions, this could suggest that the

601 amount of selectively neutral structural variation it contains is relatively low. Alternatively, the
 602 variation across many of the traits we assessed could be selectively neutral or perhaps
 603 deleterious. In this case, the stronger link between SVs and phenotype is indicative of SVs
 604 underlying a particularly large amount of adaptive potential.



605

606 **Figure 5 Life history traits assessed across a subset of *Sclerotinia sclerotiorum***
607 **strains.** **A** Boxplots of measurements for life history traits (indicated to the right of the plot)
608 in four categories (to the left). The distribution is plot for strains from the three major
609 geographical regions, Australia, Canada and Europe. Points are the individual data points
610 and box and whisker plots show interquartile range. The letters a and b above plots indicate
611 significant differences between groups. **B** The top panel is a heatmap (rows are in the same
612 order as columns), showing Pearson's ρ between measurements for the 14 life history traits.
613 Colouring goes from green (negative correlation) to red (positive). The dendrogram shows
614 hierarchical clustering of the traits. **C** The distribution (y axis) across the 14 traits of mean
615 effect size of non-SVs subtracted from mean effect size of SVs (ΔE), where effect sizes are
616 absolute. **D** The y axis shows the density of measurements of absolute effect size for 500
617 random samples with an identical minor allele frequency distribution to that of SVs. The blue
618 line shows the observed absolute effect size for SVs. For these three traits, the P value of
619 this test was 0. **E** A region surrounding a quantitative trait locus (QTL) for relative rate of
620 growth on azoxystrobin (top), with $-\log(P)$ on the y axis and position in Mb on the x. The
621 colours of points represent linkage disequilibrium of variants at the different positions with
622 the QTL (the purple point with associated P value). The red line is a P value of 0.01. Below
623 this region, the two genes neighbouring the 48 bp InDel underlying the QTL are illustrated.
624 These included a small gene with no known domains and a larger centrosomin-encoding
625 gene.

626

627 **Conclusion**

628 Collectively, our results portray *S. sclerotiorum* as both a clonal and sexually outcrossing
629 pathogen with limited diversity in gene content. Despite this limited diversity, *S. sclerotiorum*
630 isolates vary considerably in life history traits. SVs may make a particularly strong
631 contribution to this variability for some traits, and are likely generated through two distinct

632 mechanisms, meiotic recombination and transposition, the latter being the dominant
633 mechanism.

634 The limited genic diversity of *S. sclerotiorum* contrasts the highly variable open pan-
635 genomes of many host specialist species. Such stable gene content aligns with the
636 hypothesis that *S. sclerotiorum*, a niche generalist, is a ‘jack of all trades’, with a core,
637 multifunctional infective arsenal enabling fitness on hundreds of host species.

638 At this stage, the relative importance of meiosis and transposition in the generation of
639 adaptively advantageous SVs is unknown. Given the likely general evolution of *S.*
640 *sclerotiorum* towards a stable, repeat-poor genome, and the stronger contribution of SVs to
641 variability in life history traits, it is possible that meiosis, through its tendency to create SVs,
642 may have a significant role in adaptation beyond its well-recognised role in recombination
643 of alleles into new haplotypes.

644 Overall, our data shed considerable light on the evolutionary processes at play in an
645 important host generalist plant pathogen of agricultural significance.

646

647 **Methods**

648 **Assessment of life history traits**

649 A sclerotium of each isolate was cut in half, placed on a potato dextrose agar (PDA) plate,
650 and incubated at 20 °C for 4 to 5 days. Hyphae from the leading edge of the mycelium were
651 cut with a 3-mm cork-borer, placed onto fresh PDA plates and incubated at 20 °C for 2 days
652 to source actively growing mycelium. Actively growing mycelia were subcultured with a 3-
653 mm cork-borer onto appropriate PDA plates for trait assessments.

654 To measure the effect of temperature on mycelium growth, mycelia were subcultured onto
655 PDA and grown at 15 °C, 20 °C and 25 °C for 1 day. To measure the effect of host
656 metabolites on mycelium growth, mycelia were subcultured onto PDA supplemented with 50
657 µM brassinin (Sigma-Aldrich), 20 µM camalexin (Sigma-Aldrich), 20 µg/mL medicarpin

658 (TargetMol), or 200 µg/mL hydrogen peroxide H₂O₂ (Westlab) and grown at 20 °C for 1 day.
659 Brassinin, camalexin and medicarpin were all dissolved in DMSO prior to PDA
660 supplementation. To measure the effect of fungicides on mycelium growth, mycelia were
661 subcultured onto PDA supplemented with 0.2 µg/mL azoxystrobin and 50 µM
662 salicylhydroxamic acid (SHAM), or 0.16 µg/mL tebuconazole and grown at 20 °C for 1 day.
663 Azoxystrobin and tebuconazole were dissolved in ethanol and SHAM was dissolved in water
664 prior to PDA supplementation. All *S. sclerotiorum* strains were also grown on PDA
665 supplemented with the equivalent concentration of DMSO, ethanol, or ethanol and SHAM
666 as used for the aforementioned compounds. Though tebuconazole was dissolved in ethanol,
667 ethanol control plates were not available for the experiment, so growth on tebuconazole was
668 normalised to growth on DMSO. We did this because neither DMSO nor ethanol strongly
669 impacted growth, whereas growth rates were often variable between experiments. For
670 mycelium growth measurements on PDA, photographs were taken of each inoculated PDA
671 plate. The colony area was measured using Image J software. Colony area relative to growth
672 at 20 °C on PDA (plus appropriate solvent or SHAM) was calculated for each isolate.
673 To measure the effect of temperature on sclerotia formation, mycelia were subcultured onto
674 PDA and grown at 20 °C for 1 month. Mature sclerotia were then air-dried for 3 days. The
675 number and weight of sclerotia per plate were recorded.

676 **DNA extraction and sequencing**

677 To extract high molecular weight DNA, sclerotia were cut with a sterile scalpel and placed
678 with the cut side touching the surface of the medium on potato dextrose agar (PDA) plates.
679 After three to four days at room temperature in darkness, strains were sub-cultured onto
680 fresh PDA plates from agar plugs using a sterile cork borer and forceps. After two further
681 days at room temperature in darkness, strains were sub-cultured again by placing four plugs
682 for each strain into 100 ml of potato dextrose broth (PDB) in 250 ml conical flasks. These
683 liquid cultures were incubated at room temperature with ambient light conditions in the

684 laboratory with shaking at 150 rotations per minute (RPM) for three days and used to
685 generate protoplasts.

686 Protoplasts were generated by removing fungal cultures that had grown around plugs and
687 placing two plugs each in 250 ml conical flasks with 40 ml enzymatic digestion solution
688 containing 0.8 M mannitol, 200 mM citric acid/tri-sodium citrate buffer and 1.5 % w/v lysing
689 enzymes from *Trichoderma harzianum* (L1412, Sigma, now discontinued). Digestions were
690 incubated for three hours at 30 °C with shaking at 80 RPM. All protoplasts from each conical
691 flask were then filtered through a 100 µm cell strainer (CLS431752, Merck) into one 50 ml
692 falcon tube and pelleted using a swinging bucket rotor centrifuge at 1,000-2,000 x g for 2-3
693 minutes at 4 °C. Protoplast pellets were re-suspended in 200 µl Tris-EDTA (pH 8.0).

694 The resuspended protoplasts were then used as input for the MagAttract high molecular
695 weight DNA extraction kit (67563, Qiagen), which was used with the manufacturer's protocol
696 for blood cells with the following modifications: 80 µl proteinase K was used instead of 20
697 µl, 20 µl of RNase A was used instead of 4 µl, 600 µl of buffer AL was used instead of 150
698 µl, 25 µl of MagAttract Suspension G was used instead of 15 µl, 600 µl of buffer MB was
699 used instead of 280 µl; before adding MagAttract Suspension G, samples were also filtered
700 through miracloth to remove debris. High molecular weight DNA was then sequenced on an
701 Oxford Nanopore MinION using an SQK-LSK109 library prep kit multiplexed with the native
702 barcoding expansion pack EXP-NBD104 on a R9.4.1 version flowcell.

703 To extract DNA for Illumina sequencing, the same procedure was used for initial culturing of
704 *S. sclerotiorum* strains. Cultures from PDB were then snap frozen in liquid nitrogen and
705 freeze-dried overnight. Portions of approximately 1 g of freeze-dried samples were then cut
706 with a sterile scalpel and placed using forceps into 2 ml screw-capped Eppendorf tubes with
707 a single ball bearing. To each tube, 700 µl lysis buffer (50 mM Tris-HCL, 50 mM EDTA, 3 %
708 sodium dodecyl sulfate, 1 % 2-mercaptoethanol) was added, and samples were ground in
709 a MiniG model 1600 at 15000 RPM for 2 minutes. Samples were then centrifuged at 17000

710 RPM for one minute, and ball bearings were removed. To each tube, 100 μ l RNase A was
711 added and tubes were then incubated for 1 hour at 65 °C. To each tube, 700 μ l
712 chloroform:phenol (50:50) was added and tubes were vortexed. Tubes were then
713 centrifuged at maximum speed for 5 minutes before removal of the aqueous phase. Then,
714 700 μ l of chloroform:isamyl alcohol was added, the tubes vortexed and centrifuged again at
715 full speed for 5 minutes. The aqueous phase was again removed and DNA was then
716 precipitated using 6 M sodium acetate. Paired end Illumina sequencing was conducted at
717 Genomics WA on a NovaSeq 6000 flowcell at 2 x 150 cycles to yield 1.2 Gb per sample. For
718 genomic DNA methylation analysis, *S. sclerotiorum* 1980 (ATCC 18683) was propagated on
719 minimal salts – glucose (1% w/v) (MS–Glu) agar. The inoculum for all experiments was
720 prepared by grinding 2 g of sclerotia in 200 mL of MS–Glu in a Waring blender for 4 min.
721 The volume was increased to 500 mL in a 1 L baffled flask and the culture incubated at 20 °C
722 with shaking (60 r/min) for 3 days. 1 g of mycelia (wet mass) was spread over a 5-cm-
723 diameter area of *B. napus* leaf surface and incubated in a humidified chamber. Leaves from
724 45-day-old plants were used. 3 biological replicates (3 different flasks of culture inoculated
725 onto different leaves) were collected. The mycelial mat was collected from the lesion using
726 forceps at 48 hours post-inoculation, plant material was removed, and the samples frozen
727 immediately in liquid nitrogen. Samples were ground in liquid nitrogen using a mortar and
728 pestle, then genomic DNA was extracted from a 100 mg sample using the DNeasy Plant
729 Mini kit (Qiagen). Genome Quebec performed whole genome bisulfite sequencing using the
730 NEB Next kit, then sequenced 2x250 bp on an illumina NovaSeq6000.

731 **Trimming and demultiplexing reads**

732 FAST5 files from the Oxford Nanopore were basecalled using Dorado version 0.3.2 and de-
733 multiplexed using Guppy version 6.5.7. Illumina whole genome sequencing reads were
734 trimmed using cutadapt version 2.8 [86] with appropriate adaptor sequences. Bisulfite

735 sequencing reads were assessed for quality and low quality bases and adapters were
736 trimmed using CLC genomics workbench 20.0.2.

737 **Analysis of bisulfite sequencing data**

738 Methylation analysis was performed using the CLC genomics workbench 20.0.2. Reads
739 were mapped to the *S. sclerotiorum* genome (GCF_000146945.2) using “Map Bisulfite
740 reads” (directional mapping and default mapping options). Methylated residues were
741 identified using “Call Methylation Levels” with default settings with the following exceptions:
742 exhaustive context-independent calls, minimum read depth of 10 reads. The data presented
743 in the results section is a count of methylated bases per 50 Kb sliding window.

744 **Genome assembly**

745 Genomes were assembled from Nanopore reads using Flye version 2.8.1-b1676 [87] and
746 polished using Illumina reads, either from [29] or generated in this study, with one round of
747 Polypolish version 0.5.0 [88], followed by one round of Pilon version 1.24 [89]. Before
748 subsequent analyses, mitochondrial contigs were removed from assemblies using the
749 following procedure. Within Geneious Prime version 21.2.2, the Minimap2 version 2.24 [90]
750 plug-in was used to align a published *S. sclerotiorum* mitochondrial genome (NCBI
751 accession KX351425) to each of the polished genomes. Contigs that aligned to this
752 accession with more than 95 % identity were separated from nuclear contigs, which we focus
753 on in this study.

754 Polished nuclear chromosomes for each genome were scaffolded to the *S. sclerotiorum*
755 reference genome [30] using the command ‘scaffold’, with the flags ‘-u -w -o’, from RagTag
756 version 2.1.0 [91]. We then used the following process to finalise the scaffolded assemblies.
757 First, Nanopore reads for each assembly were self-corrected using Canu version 2.2 [92].
758 Within Geneious Prime version 21.2.2, corrected reads were then aligned to their respective
759 assemblies using the Minimap2 version 2.24 plug-in and used to manually add telomeres
760 and subtelomeric sequences to the ends of chromosomes where they could be recovered

761 from reads. Gaps between scaffolded contigs were also removed if there was extensive read
762 support for joining the contigs.

763 Commands from Mummerplot version 3.1 [93] were then used to check for misassemblies.

764 First, 'nucmer' was used to align each assembly individually to the *S. sclerotiorum* reference
765 genome with the option '--mum'. The 'delta-filter' command was then used, with the options
766 '-1 -i 95 -l 10000 -u 100' to filter the output of nucmer. The filtered output was then passed
767 to the command 'show-coords' to produce coordinates of scaffold mappings to the *S.*
768 *sclerotiorum* reference genome. The command 'awk 'NR > 5 {strand="+"; if(\$2 <
769 \$1){strand="-"};print \$12"\t"\$1"\t"\$2"\t"\$13"\t"\t"strand}'' was then used to convert these
770 coordinates into browser extensible data (BED) format. In Geneious, the BED file containing
771 alignments to 1980 and mappings of self-corrected reads were used to judge whether
772 chromosome segments had been artificially joined by the assembler. For instance, if one
773 chromosome was unusually large and contained two different segments mapped to different
774 1980 chromosomes, it was split in two if (i) very few reads supported the join and (ii) reads
775 showed evidence of extensive soft clipping either side of the join. Where chromosomes were
776 split, genomes were scaffolded a second time using RagTag and gaps between joined
777 chromosome segments were removed if aligned reads supported the join. The majority of
778 chromosomes had zero gaps after the first round of scaffolding and only two in each of three
779 strains were broken and re-scaffolded based on the latter procedure.

780 **Genome annotation**

781 For comparative purposes, all genomes, including the reference genome, were annotated
782 with the same procedure. First, repetitive sequences were annotated using EDTA version
783 2.2 [94] with the flag '--anno 1'. Then, Braker3 [95] was used to annotate genes with both
784 RNA sequencing and amino acid sequences as evidence with the additional flags '--fungus',
785 '--prot_seq=Fungi.fa', '--august_args="--species=botrytis_cinerea''. The RNA sequencing
786 data used for annotation were derived from 32 samples from the sequence read archive

787 (SRA) detailed in Supplementary Table 14. Reads from these samples that were derived
788 from infected plant tissue were first filtered by alignment to their respective host genomes
789 (Supplementary Table 14) with Hisat2 version 2.1.0 [96] and keeping unmapped reads with
790 ‘--un-conc’ for paired end reads or ‘--un’ for single end reads. Filtered reads, and reads not
791 from plants, were then aligned to each of the *S. sclerotiorum* genomes with Hisat2,
792 converted to bam format with samtools version 1.10 [97] ‘view’ and used as input for
793 Braker3. Amino acid sequences from Braker3 annotations were combined into a non-
794 redundant set of genes for all isolates using cd-hit version 4.8.1 [98], and non-redundant
795 proteins were annotated with InterProScan version 5.54-87.0 [99]. Secondary metabolite
796 clusters in this set of proteins were identified using antiSMASH version 7.0 [100], and
797 secreted proteins were identified with SignalP version 6.0 [101].

798 **Pan-genome graph construction and variant calling**

799 Using the 24 Nanopore assemblies and the *S. sclerotiorum* reference genome (GenBank
800 reference GCA_001857865.1), a pan-genome graph genome was constructed with cactus
801 2.5.2 [102]. Illumina reads from [29] and those generated in the current study were mapped
802 to the pan-genome GBZ formatted graph using the ‘giraffe’ command of vg version 1.52.0
803 [18]. The resulting GAM formatted files, one for each set of Illumina reads, were filtered
804 using the vg command ‘filter’, with the flags ‘--min-primary 0.90 --frac-score --substitutions -
805 -min-end-matches 1 --min-mapq 15 --defray-ends 999’. Filtered GAM files were then passed
806 to the vg command ‘pack’ to create pack formatted read support files for each variant, with
807 the flag ‘--min-mapq 5’. The ‘call’ command from vg was used to call variants from the pan-
808 genome graph using the Illumina reads with the flags ‘--ploidy 1 --genotype-snarl’ and
809 create a variant call format (VCF) file. The VCF files for all samples were combined into a
810 single file by first converting them to gzip format with ‘bgzip’, then merging them with the
811 bcftools version 1.10.1 [103] command ‘merge’, with the option ‘--all’. We then filtered this
812 VCF with vcftools version 0.1.16 with the options ‘--minQ 30’ and ‘--minDP 5’. To do this, we

813 had to first set all variants to 'PASS' because bcftools merge adds a filter to the whole variant
814 if only a single sample is filtered in one of the inputs. We did this using a simple Awk script.
815 After calling variants present in the pan-genome graph, additional variants present in
816 Illumina reads but not in the 25 genomes that made up this graph were called using the
817 following procedure. First, filtered GAM files were converted to binary alignment map (BAM)
818 files using the vg command 'surject' and sorted using the samtools command 'sort'. Then,
819 the command 'mpileup' from bcftools was used with the flags '--max-depth 1000 --output-
820 type u' and the BAM files as input. The output of 'mpileup' was piped to the bcftools
821 command 'call', which was run with the flags '--output-type v --multiallelic-caller --ploidy 1' to
822 create a VCF file. We then filtered this VCF using vcftools with the options '--minQ 30', '--
823 minGQ 30' and '--minDP 5'.
824 Finally, we used vcftools to remove variants called by vg from the VCF created using bcftools
825 with the options '--min-alleles 2', '--mac 1' and '--exclude-positions', and concatenated the
826 resulting VCF with the one produced using vg with the bcftools command 'concat' with the
827 option '--allow-overlaps'. We further filtered the final VCF with a Python script
828 (Supplementary File 2) to remove variants with a missing call rate of ≥ 0.2 .

829 **Population structure characterisation**

830 To identify clones, a VCF containing variants called against the graph pan-genome was used
831 with plink version 1.9 [104] to generate an identical by state relationship matrix, with the
832 flags '--snps-only', '--biallelic-only', '--double-id', '--geno 0.2', '--mind 0.2' and '--make-rel
833 square 1-ibs'. Then, the matrix was used to construct a distance matrix and dendrogram
834 using hierarchical clustering. Clones were identified based on a relatedness of 98 % identical
835 by state with the R base function 'cutree'.
836 Population structure was analysed using ADMIXTURE version 1.3 [105]. As for the identical
837 by state relationship matrix, we considered only biallelic SNPs. These were first filtered using
838 plink with the flag '--indep-pairwise 50 10 0.1', and admixture was run for 1 to 10 ancestral

839 populations with cross-validation. A scree plot was used to determine the most appropriate
840 number of populations to use based on cross-validation error. Principal component analysis
841 was also performed with plink using the flag '--pca 4'.

842 **Assessment of structural variant diversity**

843 To assess the diversity of SVs across the genome, we developed a novel statistic that we
844 refer to as SV_{π} , which is calculated as follows. First, we calculate SV_n , which is the sum of
845 the number of SVs between all pairs of individuals, excluding self-comparisons.

846

$$SV_n = \sum_{i=1}^{n-1} \sum_{j=i+1}^n SV_{ij}$$

847 Where SV_{ij} is the number of variants that are ≥ 50 bp in at least one individual for individuals
848 i and j in the set of n individuals in the sample. SV_n is then normalised in the following way
849 to obtain SV_{π} :

850

$$SV_{\pi} = \frac{SV_n}{\frac{k}{n^2}}$$

851 This divides SV_n by the number of possible pairs of individuals and the length of the sequence
852 under consideration, k . Since k varies between individuals depending on the SV alleles they
853 contain, it is calculated in the following way:

854

$$\frac{1}{n} \sum_{i=1}^n k_i$$

855 That is, k is the average value of all k_i sequence lengths, in Kb, in the set of n individuals.
856 The statistic is trivial for regions containing only biallelic SVs but more computationally
857 challenging for regions with multi-allelic variants.

858 The statistic SV_{π} is an estimate of the average number of SVs that are present per Kb
859 between all pairs of individuals in the sample. It is an approximation of the genome stability
860 in a region and may be better at identifying unstable genomic regions than considering
861 simpler statistics such as proportion of rearranged sites or number of SVs relative to a single

862 reference. The reason we developed this statistic was because we aimed to better capture
863 the potential evolutionary rate of a region. For example, if considering the fraction of non-
864 syntenic bases, a single large variant would create a high value, even if it is the only variant
865 present. On the contrary, many diverse, small SVs would possibly cause a deflated estimate
866 of the SV diversity of the region if their total length was a small proportion of the region's
867 overall length. Though we do not present a detailed exposition of the method here, we
868 present it as an intuitive and hopefully useful complementary technique for investigating
869 structural diversity in pan-genomes. Our software for its calculation across sliding windows,
870 svstats, is freely available on GitHub (<https://github.com/markcharder/svstats>). We used the
871 program in this study to calculate SVpi in 50 Kb sliding windows across the genome with an
872 increment of 1 Kb.

873 **Analysis of linkage disequilibrium and recombination**

874 To assess linkage disequilibrium decay with physical distance, linkage disequilibrium was
875 first calculated for all pairs of variants between variants with the plink flags ‘--ld-window-r2
876 0’, ‘–ld-window-kb 300’ and ‘--r2 dprime’. R^2 was averaged for each physical distance and
877 the distance at which average R^2 reached half its maximum value was recorded. The
878 program **phipack** (obtained from
879 <https://www.maths.otago.ac.nz/~dbryant/software/PhiPack.tar.gz>) was used to conduct
880 three tests of the association between distance and linkage disequilibrium, the pairwise
881 homoplasy index, maximum X^2 , and nearest neighbour score tests.

882 To assess recombination rate, we selected four genotypically fairly uniform populations that
883 had no obvious population structure. Recombination rate was calculated for these
884 populations using **ldhat** version 2.2 [57] and recombination hotspots were identified with
885 **ldhot** version 8.30 [106]. To run **ldhat** and **ldhot**, plink was first used to convert the pan-
886 genome VCF file to plink PED and MAP files with the flags ‘--recode’, and ‘--biallelic-only’
887 and ‘--snps-only’ to keep only biallelic SNPs. These were used as input for the command

888 ‘plink2Idhat’ from our program ‘svstats’ (<https://github.com/markcharder/svstats>) to convert
889 to Idhat or Idhot format. A finite sites version of Watterson’s theta was calculated using the
890 command ‘watfsites’ from svstats to provide a parameter for generating Idhat lookup tables.
891 The Idhat program ‘complete’ was then used, with flags ‘-rhomax 100’ and ‘-n_pts 101’, and
892 the appropriate number of ‘-n’ individuals, to create look-up tables for calculating variable
893 recombination rates across chromosomes. The Idhat interval program was then used, with
894 the appropriate look-up table, to calculate variable recombination rates with the flags ‘-exact’
895 ‘-its 10000000’ and ‘-samp 3500’. Reversible jump Monte Carlo Markov Chains were run
896 starting with block penalties ranging from 5 to 50 (with an increment of 5) and chains were
897 assessed for convergence. Posterior distributions of rates and bounds from the chains were
898 estimated using the Idhat command ‘stat’, with the flag ‘-burn 35’. Using the output of Idhat
899 interval, Idhot was run using the appropriate look-up table with the additional flag ‘--nsim
900 1000’.

901 **Assessment of correlation between population-wide statistics and genomic features**

902 The command ‘makewindows’ from Bedtools version 2.27.1 [107] was used to create sliding
903 windows of 50,000 bp, with an increment of 1,000 bp, across the *S. sclerotiorum* genome.
904 To calculate gene and repeat density, the bedtools command ‘coverage’ was used with
905 Braker3 and EDTA annotations, respectively, and the sliding windows. To calculate GC
906 content for windows, the command ‘nuc’ was used. Methylation rates from bisulfite
907 sequencing data were converted to BED format using a custom script in R, and bedtools
908 ‘intersect’ with the flag ‘-c’ was used to calculate the number of methylated sites per sliding
909 window. A BED file was also created from the Idhat output, using a simple Awk script, and
910 used to calculate recombination rate for sites in sliding windows. The rate was summed
911 across sliding windows for comparison. Comparison between recombination rate and other
912 statistics of interest was conducted in R using Spearman’s rank correlation.

913 The bedtools command ‘closest’ was used to determine the distance between transposon
914 annotations from EDTA and the nearest structural variant in all genomes. A Kruskall-Wallis
915 test in R was then used to determine whether any transposon classes were significantly
916 closer than other classes to the nearest SV.

917 **Genome-wide association and trait correlation analyses**

918 Before conducting GWAS and whole genome regression analyses, phenotype data were
919 normalised with the R package bestNormalize version 3.5. Two GWASs were run. One
920 (GWAS1) used variants that were filtered so that they were in approximate linkage
921 equilibrium using plink version 1.9 with the flag ‘--indep-pairwise 50kb 50 0.8’, whereas the
922 other (GWAS2) did not. Both GWASs were conducted using GAPIT [108] with the BLINK
923 model. This model has been shown to adequately correct for population structure whilst
924 maintaining statistical power, and there were no non-genetic confounding factors between
925 populations as phenotypic data were collected in the same environment. We therefore
926 included no further population structure correction with, for example, principal components
927 or a kinship matrix. GWAS1 was used to identify significant marker trait associations as it
928 had fewer correlated markers than GWAS2 and therefore more statistical power. GWAS2
929 was used for the comparison of average absolute effects from structural and non-structural
930 variants.

931 To determine whether SVs had a larger impact on traits than other variants, we conducted
932 three tests. Firstly, we simply used standard t tests to compare the mean distributions of
933 absolute effect sizes of non-SVs and SVs. Since SVs had a lower minor allele frequency on
934 average than non-SVs, and this could affect variance of the test statistic, we developed a
935 randomisation test. This test sampled non-SVs 500 times, each time creating a random set
936 of non-SVs matching in number the total count of SVs. This random set was sampled so
937 that proportions of variants with all possible minor allele frequencies (rounded to three
938 significant digits) matched the minor allele frequency proportions in the SV set. The average

939 absolute effect size from GWAS2 was recorded for each of these 500 samples and the
940 number of times this effect size was larger than or equal to that of the mean absolute effect
941 size of the SVs was treated as the empirical P value.

942 In our third test, we partitioned variants into those that were in linkage disequilibrium with
943 structural variants and those that were not. We did this by first creating a file recording R^2
944 for all pairs of neighbouring variants within 2 Kb with the plink flags '--r2' and '--ld-window-
945 kb'. From this file, we created a list of variants that had an r^2 of ≥ 0.5 with at least one SV.
946 This list, combined with the list of SVs themselves, was used to create two VCF files, one
947 containing SVs and variants in approximate linkage disequilibrium with them and the other
948 containing variants that were not SVs and were not in linkage disequilibrium with any SVs.
949 The two VCFs were filtered so that variants were not in strong linkage disequilibrium with
950 the plink command '--indep-pairwise 50kb 50 0.8'. Genomic relationship matrices [109] were
951 created for each of these sets of variants and for the whole set of variants used in GWAS1
952 with the plink flag '--make-rel square'.

953 To assess genetic correlations between traits and determine whether adding SVs improved
954 predictive ability, we fit univariate and multivariate linear mixed models with the R package
955 sommer version 4.3.4 [110]. In these models, random effects for individuals were estimated
956 with assumed variance and covariance described by the genomic relationship matrix
957 proposed by Yang et al. (2011) [109]. To assess trait genetic correlations, the genomic
958 relationship matrix was estimated using all biallelic variants of minor allele frequency \geq
959 0.05. To assess improvement of prediction accuracy when including SVs, we fit models with
960 one random effect with variance structured by a relationship matrix estimated with only non-
961 SVs, and models with two random effects, one structured by a non-SV and the other
962 structured by an SV-only relationship matrix. For each trait, we performed 'leave-one-out'
963 cross validation. For each recording of each phenotype for each strain, the recording was
964 masked and the two models fit with this recording missing. The predicted BLUP value based

965 on the rest of the strains was recorded for this version of the model and Pearson's correlation
966 coefficient between model predictions and phenotypes was recorded.

967

968 **Declarations**

969 **Ethics approval and consent to participate**

970 Not applicable

971 **Consent for publication**

972 Not applicable

973 **Availability of data and materials**

974 The datasets generated and/or analysed during the current study are available in NCBI,
975 under BioProjects PRJNA1112094 and PRJNA1120954, in the supplementary material, or
976 available upon reasonable request from the corresponding author.

977 **Competing interests**

978 The authors declare they have no competing interests.

979 **Funding**

980 MCD, YK, TN, PM, SJB, ARL, CG-T and LGK are funded by a co-investment between the
981 Grains Research and Development Corporation of Australia and Curtin University (project
982 code CUR00023). C-GT is also supported by a research training program (RTP) scholarship
983 from the Australian Government. SC acknowledges financial support from the Institutional
984 Development Plan (IDP) under National Agricultural Higher Educational Project (NAHEP) of
985 the Indian Council of Agricultural Research (ICAR) and World Bank.

986 **Authors' contributions**

987 MCD collected data, designed and executed experiments, oversaw research, conducted all
988 main analyses and wrote the first manuscript draft. YK designed and executed experiments
989 and edited the manuscript. TN designed and executed experiments and edited the
990 manuscript. PM collected data, oversaw research, and edited the manuscript. SJB oversaw

991 research and edited the manuscript. ARL collected data. CG-T collected data. SC designed
992 and executed experiments and edited the manuscript. LB collected data and provided
993 feedback on the manuscript. C Camplone executed experiments. SV executed experiments.
994 DH designed and oversaw experiments and edited the manuscript. C Coutou designed and
995 executed experiments and edited the manuscript. LGK initiated the project, oversaw
996 research and edited the manuscript. All authors read and approved the final manuscript.
997

998 **Acknowledgements**

999 This work was supported by resources provided by the Pawsey Supercomputing Research
1000 Centre's Setonix Supercomputer (<https://doi.org/10.48569/18sb-8s43>) and Nimbus
1001 research cloud (<https://doi.org/10.48569/v0j3-qd51>), with funding from the Australian
1002 Government and the Government of Western Australia.

1003

1004 **References**

- 1005 1. Zhan J, Thrall PH, Papaïx J, Xie L, Burdon JJ. Playing on a Pathogen's Weakness:
1006 Using Evolution to Guide Sustainable Plant Disease Control Strategies. *Annu Rev
1007 Phytopathol.* 2015;53:19-43.
- 1008 2. Burdon JJ, Thrall PH. Pathogen evolution across the agro-ecological interface:
1009 implications for disease management. *Evol Appl.* 2008;1:57-65.
- 1010 3. Le May C, Montarry J, Morris CE, Frenkel O, Ravigné V. Editorial: Plant Pathogen Life-
1011 History Traits and Adaptation to Environmental Constraints. *Front Plant Sci.*
1012 2020;10:510672.
- 1013 4. Atwell S, Corwin JA, Soltis N, Zhang W, Copeland D, Feusier J, et al. Resequencing
1014 and association mapping of the generalist pathogen *Botrytis cinerea*. *bioRxiv*.
1015 2018;489799.

1016 5. Dutta A, Hartmann FE, Francisco CS, McDonald BA, Croll D. Mapping the adaptive
1017 landscape of a major agricultural pathogen reveals evolutionary constraints across
1018 heterogeneous environments. ISME J. 2021;15:1402-19.

1019 6. Wyka S, Mondo S, Liu M, Nalam V, Broders K. A large accessory genome and high
1020 recombination rates may influence global distribution and broad host range of the fungal
1021 plant pathogen *Claviceps purpurea*. PLoS One. 2022;17.

1022 7. Chen H, King R, Smith D, Bayon C, Ashfield T, Torriani S, et al. Combined pangenomics
1023 and transcriptomics reveals core and redundant virulence processes in a rapidly evolving
1024 fungal plant pathogen. BMC Biol. 2023;21:24.

1025 8. Badet T, Oggenfuss U, Abraham L, McDonald BA, Croll D. A 19-isolate reference-quality
1026 global pangenome for the fungal wheat pathogen *Zymoseptoria tritici*. BMC Biol.
1027 2020;18:12.

1028 9. Gourlie R, McDonald M, Hafez M, Ortega-Polo R, Low KE, Abbott DW, et al. The
1029 pangenome of the wheat pathogen *Pyrenophora tritici-repentis* reveals novel transposons
1030 associated with necrotrophic effectors ToxA and ToxB. BMC Biol. 2022;20:239.

1031 10. Guo L, Dong Q, Wang B, Guo M, Ye K. Structural variants contribute to pangenome
1032 evolution of a plant pathogenic fungus. bioRxiv. 2021;2021.04.14.439764.

1033 11. Plissonneau C, Hartmann FE, Croll D. Pangenome analyses of the wheat pathogen
1034 *Zymoseptoria tritici* reveal the structural basis of a highly plastic eukaryotic genome.
1035 2018;16:5.

1036 12. Dhakal U, Kim H-S, Toomajian C. The Landscape and Predicted Roles of Structural
1037 Variants in *Fusarium graminearum* Genomes. G3 (Bethesda). 2024;14: jkae065.

1038 13. Mahmoud M, Gobet N, Cruz-Dávalos DI, Mounier N, Dessimoz C, Sedlazeck F.J.
1039 Structural variant calling: The long and the short of it. Genome Biol. 2019;20:1-14.

1040 14. Hickey G, Monlong J, Ebler J, Novak AM, Eizenga JM, Gao Y, et al. Pangenome graph
1041 construction from genome alignments with Minigraph-Cactus. *Nat Biotechnol.*
1042 2023;42:663-73.

1043 15. Eizenga JM, Novak AM, Sibbesen JA, Heumos S, Ghaffaari A, Hickey G, et al.
1044 *Pangenome Graphs*. *Annu Rev Genomics Hum Genet.* 2020;21:139-62.

1045 16. Hickey G, Heller D, Monlong J, Sibbesen JA, Sirén J, Eizenga J, et al. Genotyping
1046 structural variants in pangenome graphs using the vg toolkit. *Genome Biol.* 2020;21:35.

1047 17. Sirén J, Monlong J, Chang X, Novak AM, Eizenga JM, Markello C, et al. Pangenomics
1048 enables genotyping of known structural variants in 5202 diverse genomes. *Science*.
1049 2021;374: abg8871.

1050 18. Garrison E, Sirén J, Novak AM, Hickey G, Eizenga JM, Dawson ET, et al. Variation
1051 graph toolkit improves read mapping by representing genetic variation in the reference.
1052 *Nat Biotechnol.* 2018;36:875-79.

1053 19. Zhou Y, Zhang Z, Bao Z, Li H, Lyu Y, Zan Y, et al. Graph pangenome captures missing
1054 heritability and empowers tomato breeding. *Nature*. 2022;606:527-34.

1055 20. Badet T, Fouché S, Hartmann FE, Zala M, Croll D. Machine-learning predicts genomic
1056 determinants of meiosis-driven structural variation in a eukaryotic pathogen. *Nat Commun.*
1057 2021;12:3551.

1058 21. Arbel-Eden A, Simchen G. Elevated Mutagenicity in Meiosis and Its Mechanism.
1059 *BioEssays*. 2019;41:1800235.

1060 22. Sakamoto T, Innan H. Muller's ratchet of the Y chromosome with gene conversion.
1061 *Genetics*. 2022;220: iyab204.

1062 23. Gordo I, Charlesworth B. The degeneration of asexual haploid populations and the
1063 speed of Muller's ratchet. *Genetics*. 2000;154:1379-87.

1064 24. Ruan Y, Wang H, Zhang L, Wen H, Wu C-I. Sex, fitness decline and recombination –
1065 Muller's ratchet vs. Ohta's ratchet. *bioRxiv*. 2020;2020.08.06.240713.

1066 25. Hinch R, Donnelly P, Hinch AG. Meiotic DNA breaks drive multifaceted mutagenesis in
1067 the human germ line. *Science* (1979). 2023;382: eadh2531.

1068 26. Bourque G, Burns KH, Gehring M, Gorbunova V, Seluanov A, Hammell M, et al. Ten
1069 things you should know about transposable elements. *Genome Biology*. 2018;19:1-12.

1070 27. Oggeneffuss U, Croll D. Recent transposable element bursts are associated with the
1071 proximity to genes in a fungal plant pathogen. *PLoS Pathog*. 2023;19:e1011130.

1072 28. Derbyshire MC, Newman TE, Khentry Y, Owolabi Taiwo A. The evolutionary and
1073 molecular features of the broad-host-range plant pathogen *Sclerotinia sclerotiorum*. *Mol*
1074 *Plant Pathol*. 2022;23:1075-90.

1075 29. Derbyshire MC, Denton-Giles M, Hane JK, Chang S, Mousavi-Derazmahalleh M,
1076 Raffaele S, et al. A whole genome scan of SNP data suggests a lack of abundant hard
1077 selective sweeps in the genome of the broad host range plant pathogenic fungus
1078 *Sclerotinia sclerotiorum*. *PLoS One*. 2019;14:e0214201.

1079 30. Derbyshire M, Denton-Giles M, Hegedus D, Seifbarghi S, Rollins J, Kan J Van, et al.
1080 The Complete Genome Sequence of the Phytopathogenic Fungus *Sclerotinia sclerotiorum*
1081 Reveals Insights into the Genome Architecture of Broad Host Range Pathogens. *Genome*
1082 *Biol Evol*. 2017;9:593.

1083 31. Lyu X, Shen C, Fu Y, Xie J, Jiang D, Li G, et al. A Small Secreted Virulence-Related
1084 Protein Is Essential for the Necrotrophic Interactions of *Sclerotinia sclerotiorum* with Its
1085 Host Plants. *PLoS Pathog*. 2016;12:e1005435.

1086 32. Newman TE, Kim H, Khentry Y, Sohn KH, Derbyshire MC, Kamphuis LG. The broad
1087 host range pathogen *Sclerotinia sclerotiorum* produces multiple effector proteins that
1088 induce host cell death intracellularly. *Mol Plant Pathol*. 2023;24:866-81.

1089 33. Newman TE, Derbyshire MC. The Evolutionary and Molecular Features of Broad Host-
1090 Range Necrotrophy in Plant Pathogenic Fungi. *Front Plant Sci*. 2020;11:591733.

1091 34. Badet T, Peyraud R, Mbengue M, Navaud O, Derbyshire M, Oliver RP, et al. Codon
1092 optimization underpins generalist parasitism in fungi. *Elife*. 2017;6: e22472.

1093 35. Derbyshire MC, Raffaele S. Till death do us pair: Co-evolution of plant–necrotroph
1094 interactions. *Curr Opin Plant Biol*. 2023;76:102457.

1095 36. Bolton MD, Thomma BPHJ, Nelson BD. *Sclerotinia sclerotiorum* (Lib.) de Bary: biology
1096 and molecular traits of a cosmopolitan pathogen. *Mol Plant Pathol*. 2006;7:1-16.

1097 37. Attanayake RN, Tennekoon V, Johnson DA, Porter LD, del Río-Mendoza L, Jiang D, et
1098 al. Inferring outcrossing in the homothallic fungus *Sclerotinia sclerotiorum* using linkage
1099 disequilibrium decay. *Heredity*. 2014;113:353-63.

1100 38. Atallah ZK, Larget B, Chen X, Johnson DA. High Genetic Diversity, Phenotypic
1101 Uniformity, and Evidence of Outcrossing in *Sclerotinia sclerotiorum* in the Columbia Basin
1102 of Washington State. *Phytopathol*. 2004;94:737-42.

1103 39. Gomes EV, Breseguello L, Augusto M, Nasser LCB, Petrofeza S. Microsatellite
1104 Markers Reveal Genetic Variation within *Sclerotinia sclerotiorum* Populations in Irrigated
1105 Dry Bean Crops in Brazil. *Journal of Phytopathology*. 2011;159:94-9.

1106 40. Sexton AC, Whitten AR, Howlett BJ. Population structure of *Sclerotinia sclerotiorum* in
1107 an Australian canola field at flowering and stem-infection stages of the disease cycle.
1108 *Genome*. 2006;49:1408-15.

1109 41. Mert-Türk F, Ipek M, Mermer D, Nicholson P. Microsatellite and Morphological Markers
1110 Reveal Genetic Variation within a Population of *Sclerotinia sclerotiorum* from Oilseed Rape
1111 in the Çanakkale Province of Turkey. *Journal of Phytopathology*. 2007;155:182-7.

1112 42. Hemmati R, Javan-Nikkhah M, Linde CC. Population genetic structure of *Sclerotinia*
1113 *sclerotiorum* on canola in Iran. *Eur J Plant Pathol*. 2009;125:617-28.

1114 43. Attanayake RN, Carter PA, Jiang D, Del Río-Mendoza L, Chen W. *Sclerotinia*
1115 *sclerotiorum* Populations Infecting Canola from China and the United States Are
1116 Genetically and Phenotypically Distinct. *Phytopathol*. 2013;103:750-61.

1117 44. Attanayake RN, Porter L, Johnson DA, Chen W. Genetic and phenotypic diversity and
1118 random association of DNA markers of isolates of the fungal plant pathogen *Sclerotinia*
1119 *sclerotiorum* from soil on a fine geographic scale. *Soil Biol Biochem*. 2012;55:28-36.

1120 45. Kohn LM. The clonal dynamic in wild and agricultural plant-pathogen populations.
1121 *Canad J Bot*. 2011;73: 1231-40.

1122 46. Anderson JB, Kohn LM. Clonality in soilborne, plant-pathogenic fungi. *Annu Rev*
1123 *Phytopathol*. 1995;33:369-91.

1124 47. Hambleton S, Walker C, Kohn LM. Clonal lineages of *Sclerotinia sclerotiorum*
1125 previously known from other crops predominate in 1999-2000 samples from Ontario and
1126 Quebec soybean. *Canad J of Plant Pathol*. 2002;24:309-15.

1127 48. Buchwaldt L, Garg H, Puri KD, Durkin J, Adam J, Harrington M, et al. Sources of
1128 genomic diversity in the self-fertile plant pathogen, *Sclerotinia sclerotiorum*, and
1129 consequences for resistance breeding. *PLoS One*. 2022;17:e0262891.

1130 49. Clarkson JP, Warmington RJ, Walley PG, Denton-Giles M, Barbetti MJ, Brodal G, et al.
1131 Population Structure of *Sclerotinia subarctica* and *Sclerotinia sclerotiorum* in England,
1132 Scotland and Norway. *Front Microbiol*. 2017;8:490.

1133 50. Michael PJ, Lui KY, Thomson LL, Stefanova K, Bennett SJ. Carpogenic germinability of
1134 diverse *Sclerotinia sclerotiorum* populations within the southwestern Australian grain belt.
1135 *Plant Dis*. 2020;104:2891-7.

1136 51. Michael PJ, Lui KY, Thomson LL, Lamichhane AR, Bennett SJ. Impact of
1137 preconditioning temperature and duration period on carpogenic germination of diverse
1138 *Sclerotinia sclerotiorum* populations in Southwestern Australia. *Plant Dis*. 2021;105:1798-
1139 805.

1140 52. Jakobsen IB, Easteal S. A program for calculating and displaying compatibility matrices
1141 as an aid in determining reticulate evolution in molecular sequences. *Comput Appl Biosci*.
1142 1996;12:291-5.

1143 53. Smith JM. Analyzing the mosaic structure of genes. *J Mol Evol*. 1992;34:126-9.

1144 54. Bruen TC, Philippe H, Bryant D. A simple and robust statistical test for detecting the
1145 presence of recombination. *Genetics*. 2006;172:2665-81.

1146 55. Fayyaz A, Robinson G, Chang PL, Bekele D, Yimer S, Carrasquilla-Garcia N, et al.

1147 Hiding in plain sight: Genome-wide recombination and a dynamic accessory genome drive
1148 diversity in *Fusarium oxysporum* f.sp. *ciceris*. *Proc Natl Acad Sci U S A*.

1149 2023;120:e2220570120.

1150 56. Nieuwenhuis BPS, James TY. The frequency of sex in fungi. *Philosophical
1151 Transactions of the Royal Society B: Biological Sciences*. 2016;371:20150540.

1152 57. McVean GAT, Myers SR, Hunt S, Deloukas P, Bentley DR, Donnelly P. The Fine-Scale
1153 Structure of Recombination Rate Variation in the Human Genome. *Science* (1979).

1154 2004;304:581-4.

1155 58. Scelfo A, Fachinetti D. Keeping the Centromere under Control: A Promising Role for
1156 DNA Methylation. *Cells*. 2019;8: 912.

1157 59. Talbert PB, Henikoff S. What makes a centromere? *Exp Cell Res*. 2020;389:111895.

1158 60. Carneiro M, Ferrand N, Nachman MW. Recombination and Speciation: Loci Near
1159 Centromeres Are More Differentiated Than Loci Near Telomeres Between Subspecies of
1160 the European Rabbit (*Oryctolagus cuniculus*). *Genetics*. 2009;181:593:593-606.

1161 61. Amselem J, Cuomo CA, van Kan JAL, Viaud M, Benito EP, Couloux A, et al. Genomic
1162 Analysis of the Necrotrophic Fungal Pathogens *Sclerotinia sclerotiorum* and *Botrytis
1163 cinerea*. *PLoS Genet*. 2011;7:e1002230.

1164 62. Nei M, Li WH. Mathematical model for studying genetic variation in terms of restriction
1165 endonucleases. *Proc Natl Acad Sci U S A*. 1979;76:5269-73.

1166 63. Jiao WB, Schneeberger K. Chromosome-level assemblies of multiple *Arabidopsis*
1167 genomes reveal hotspots of rearrangements with altered evolutionary dynamics. *Nature
1168 Communications*. 2020;11:1-10.

1169 64. Havecker ER, Gao X, Voytas DF. The diversity of LTR retrotransposons. *Genome Biol.*
1170 2004;5:1-6.

1171 65. Eickbush TH. Retrotransposons. *Encyclopedia of Genetics*. 2001;1699-701.

1172 66. Boeke JD. The Unusual Phylogenetic Distribution of Retrotransposons: A Hypothesis.
1173 *Genome Res.* 2003;13:1975-83.

1174 67. Fouché S, Oggenfuss U, Chanclud E, Croll D. A devil's bargain with transposable
1175 elements in plant pathogens. *Trends in Genetics*. 2022;38:222-30.

1176 68. Amselem J, Vigouroux M, Oberhaensli S, Brown JKM, Bindschedler L V., Skamnioti P,
1177 et al. Evolution of the EKA family of powdery mildew avirulence-effector genes from the
1178 ORF 1 of a LINE retrotransposon. *BMC Genomics*. 2015;16:917.

1179 69. Porquier A, Tisserant C, Salinas F, Glassl C, Wange L, Enard W, et al.
1180 Retrotransposons as pathogenicity factors of the plant pathogenic fungus *Botrytis cinerea*.
1181 *Genome Biol.* 2021;22:1-19.

1182 70. Torres DE, Oggenfuss U, Croll D, Seidl MF. Genome evolution in fungal plant
1183 pathogens: looking beyond the two-speed genome model. *Fungal Biol Rev*. 2020;34:136-
1184 43.

1185 71. Croll D, McDonald BA. The Accessory Genome as a Cradle for Adaptive Evolution in
1186 Pathogens. *PLoS Pathog.* 2012;8:e1002608.

1187 72. Charlesworth B. The Maintenance of Transposable Elements in Natural Populations.
1188 *Basic Life Sci.* 1988;47:189-212.

1189 73. Golicz AA, Bayer PE, Bhalla PL, Batley J, Edwards D. Pangenomics Comes of Age:
1190 From Bacteria to Plant and Animal Applications. *Trends in Genetics*. 2020;36:132-45.

1191 74. Taylor A, Coventry E, Jones JE, Clarkson JP. Resistance to a highly aggressive isolate
1192 of *Sclerotinia sclerotiorum* in a *Brassica napus* diversity set. *Plant Pathol.* 2015;64:932-40.

1193 75. Moolhuijzen PM, See PT, Shi G, Powell HR, Cockram J, Jørgensen LN, et al. A global
1194 pangenome for the wheat fungal pathogen *Pyrenophora tritici-repentis* and prediction of
1195 effector protein structural homology. *Microb Genom*. 2022;8:000872.

1196 76. Clarkson JP, Fawcett L, Anthony SG, Young C. A Model for *Sclerotinia sclerotiorum*
1197 Infection and Disease Development in Lettuce, Based on the Effects of Temperature,
1198 Relative Humidity and Ascospore Density. *PLoS One*. 2014;9:e94049.

1199 77. Shahoveisi F, del Río Mendoza LE. Effect of Wetness Duration and Incubation
1200 Temperature on Development of Ascosporic Infections by *Sclerotinia sclerotiorum*. *Plant*
1201 *Dis*. 2020;104:1817-23.

1202 78. Uloth MB, You MP, Cawthray G, Barbetti MJ. Temperature adaptation in isolates of
1203 *Sclerotinia sclerotiorum* affects their ability to infect *Brassica carinata*. *Plant Pathol*.
1204 2015;64:1140-8.

1205 79. Hao JJ, Subbarao K V., Duniway JM. Germination of *Sclerotinia minor* and *S.*
1206 *sclerotiorum* Sclerotia Under Various Soil Moisture and Temperature Combinations.
1207 *Phytopathol*. 2007;93:443-50.

1208 80. Taylor A, Coventry E, Handy C, West JS, Young CS, Clarkson JP. Inoculum potential of
1209 *Sclerotinia sclerotiorum* sclerotia depends on isolate and host plant. *Plant Pathol*.
1210 2018;67:1286-95.

1211 81. Edwards D, Batley J. Graph pangenomes find missing heritability. *Nature Genetics*
1212 2022 54:7. 2022;54:919-20.

1213 82. Jaspersen SL. Anatomy of the fungal microtubule organizing center, the spindle pole
1214 body. *Curr Opin Struct Biol*. 2021;66:22.

1215 83. Zong W, Wang J, Zhao R, Niu N, Su Y, Hu Z, et al. Associations of genome-wide
1216 structural variations with phenotypic differences in cross-bred Eurasian pigs. *J Anim Sci*
1217 *Biotechnol*. 2023;14:1-20.

1218 84. Hämälä T, Wafula EK, Guiltinan MJ, Ralph PE, dePamphilis CW, Tiffin P. Genomic
1219 structural variants constrain and facilitate adaptation in natural populations of *Theobroma*
1220 *cacao*, the chocolate tree. Proc Natl Acad Sci U S A. 2021;118:e2102914118.

1221 85. Chakraborty M, Emerson JJ, Macdonald SJ, Long AD. Structural variants exhibit
1222 widespread allelic heterogeneity and shape variation in complex traits. Nature
1223 Communications 2019;10:1.

1224 86. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing
1225 reads. EMBnet J. 2011;17:10-2.

1226 87. Kolmogorov M, Yuan J, Lin Y, Pevzner PA. Assembly of long, error-prone reads using
1227 repeat graphs. Nat Biotechnol. 2019;37:540-6.

1228 88. Wick RR, Holt KE. Polypolish: Short-read polishing of long-read bacterial genome
1229 assemblies. PLoS Comput Biol. 2022;18: e1009802.

1230 89. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, et al. Pilon: An
1231 Integrated Tool for Comprehensive Microbial Variant Detection and Genome Assembly
1232 Improvement. PLoS One. 2014;9:e112963.

1233 90. Li H. Minimap and miniasm: fast mapping and de novo assembly for noisy long
1234 sequences. Bioinformatics. 2016;32:2103-10.

1235 91. Alonge M, Lebeigle L, Kirsche M, Jenike K, Ou S, Aganezov S, et al. Automated
1236 assembly scaffolding using RagTag elevates a new tomato system for high-throughput
1237 genome editing. Genome Biol. 2022;23:1-19.

1238 92. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. Canu: scalable
1239 and accurate long-read assembly via adaptive k-mer weighting and repeat separation.
1240 Genome Res. 2017;27:722-36.

1241 93. Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, et al. Versatile
1242 and open software for comparing large genomes. Genome Biol. 2004;5:R12.

1243 94. Ou S, Su W, Liao Y, Chougule K, Agda JRA, Hellinga AJ, et al. Benchmarking
1244 transposable element annotation methods for creation of a streamlined, comprehensive
1245 pipeline. *Genome Biol.* 2019;20:1-18.

1246 95. Gabriel L, Brúna T, Hoff KJ, Ebel M, Lomsadze A, Borodovsky M, et al. BRAKER3:
1247 Fully automated genome annotation using RNA-seq and protein evidence with GeneMark-
1248 ETP, AUGUSTUS and TSEBRA. *bioRxiv*. 2023;2023.06.10.544449

1249 96. Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory
1250 requirements. *Nat Methods*. 2015;12:357-60.

1251 97. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence
1252 Alignment/Map format and SAMtools. *Bioinformatics*. 2009;25:2078-79.

1253 98. Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation
1254 sequencing data. *Bioinformatics*. 2012;28:3150-52.

1255 99. Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N, Apweiler R, et al.
1256 InterProScan: protein domains identifier. *Nucleic Acids Res.* 2005;33:W116-20.

1257 100. Blin K, Shaw S, Augustijn HE, Reitz ZL, Biermann F, Alanjary M, et al. antiSMASH
1258 7.0: new and improved predictions for detection, regulation, chemical structures and
1259 visualisation. *Nucleic Acids Res.* 2023;51:W46-50.

1260 101. Teufel F, Almagro Armenteros JJ, Johansen AR, Gíslason MH, Pihl SI, Tsirigos KD, et
1261 al. SignalP 6.0 predicts all five types of signal peptides using protein language models.
1262 *Nature Biotechnology*. 2022;40:1023-5.

1263 102. Armstrong J, Hickey G, Diekhans M, Fiddes IT, Novak AM, Deran A, et al.
1264 Progressive Cactus is a multiple-genome aligner for the thousand-genome era. *Nature*.
1265 2020;587:246-51.

1266 103. Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, et al. Twelve years
1267 of SAMtools and BCFtools. *Gigascience*. 2021;10:1-4.

1268 104. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. PLINK:
1269 A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. Am J
1270 Hum Genet. 2007;81:559-75.
1271 105. Alexander DH, Lange K. Enhancements to the ADMIXTURE algorithm for individual
1272 ancestry estimation. BMC Bioinformatics. 2011;12:1-6.
1273 106. Auton A, McVean G. Recombination rate estimation in the presence of hotspots.
1274 Genome Res. 2007;17:1219-27.
1275 107. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic
1276 features. Bioinformatics. 2010;26:841-2.
1277 108. Wang J, Zhang Z. GAPIT Version 3: Boosting Power and Accuracy for Genomic
1278 Association and Prediction. Genomics Proteomics Bioinformatics. 2021;19:629-40.
1279 109. Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: A Tool for Genome-wide Complex
1280 Trait Analysis. Am J Hum Genet. 2011;88:76-82.
1281 110. Covarrubias-Pazaran G. Genome-Assisted Prediction of Quantitative Traits Using the
1282 R Package sommer. PLoS One. 2016;11:e0156744.

1283

1284 **Figures, tables and additional files**

1285 **Figure legends**

1286 **Figure 1. Genotypic clustering of *Sclerotinia sclerotiorum* strains from the global**
1287 **population sample. A** A phylogenetic network with all strains in the dataset coloured
1288 according to geographical origin. The map inset shows where strains were collected with
1289 colours corresponding to those in the network. The sizes of circles on the map corresponds
1290 with the number of strains from each global region. **B** A phylogenetic network for the
1291 Australian strains. Circles are coloured according to geographical origin within Australia.
1292 Where circles are stacked on top of each other, isolates are a $\geq 98\%$ genotypically identical
1293 group of clones. The map to the left shows where isolates were collected within Australia,

1294 with colours of circles corresponding to colours on the network. The sizes of circles represent
1295 the numbers of strains from each collection site. Haplotypes 1 (hap 1) and 2 (hap 2) are
1296 examples of frequently-sampled and geographically-widespread clones, with individuals
1297 from Western Australia and South Australia.

1298 **Figure 2. Population structure and evidence of recombination.** **A** Colours correspond
1299 to ancestral populations making up individuals. Country of origin (above) is Au = Australia,
1300 Mo = Morocco, SoA = South Africa, Ca = Canada, Fr = France, No = Norway, and UK = UK.
1301 Below, states within Australia and Canada are indicated, where NSW = New South Wales,
1302 SA = South Australia, WA = Western Australia, AB = Alberta, MB = Manitoba, and SK =
1303 Saskatchewan. **B** Linkage disequilibrium (y axis) decay with physical distance (x axis).
1304 Points are averages for unique distance measurements, and the red line is a general
1305 additive model fit. **C** The first two principal components of genotypic variance. Colours
1306 indicate geographical origin and point shapes the four population sub-samples used for
1307 recombination analysis. **D** Across chromosomes and population sub-samples, the
1308 distribution of Spearman's correlations between chromosome end distance and
1309 recombination rate. **E** Correlation between coding DNA sequence content (x axis) and
1310 recombination rate (y axis) of 50 Kb sliding windows. The line is a a general additive model
1311 fit. **F** Boxplot showing percent gene content of 50 Kb windows containing and not containing
1312 recombination hotspots (** = $P < 2e^{-16}$). Boxes and whiskers show interquartile range. **G**
1313 Circles show where windows containing putative centromeres lie on a plot of recombination
1314 rate (y axis) against log recombination rate (x axis). Putative centromeres are in regions of
1315 low recombination, before the inflection point. **H** The y axis is scaled (division by maximum)
1316 recombination rate, amount of methylation or GC content for sliding windows. The x axis
1317 shows position (Mb) across chromosome 6 (all chromosomes and population samples are
1318 in Supplementary File 1). All chromosomes had a dip in GC coincident with a spike in
1319 methylation, almost always coincident with a recombination cold spot.

1320 **Figure 3. Analysis of structural variation across the *Sclerotinia sclerotiorum* pan-
1321 genome. A** Distribution (y axis) of SVπ (x axis) for 50 Kb sliding windows. **B** For
1322 chromosomes 10 and 12, correlation between SVπ (x axis) and proportion transposon (top
1323 y axis) or coding DNA sequence (bottom y axis). Spearman's ρ and P value depicted top-
1324 right. Blue lines show linear regression of y onto x and the shaded area 95 % confidence
1325 interval. Red points are SVπ hotspot (> 95th percentile) windows. **C** The y axis shows
1326 distance to nearest structural variant (SV) for transposon families. Transposon classification
1327 is indicated at the top and family on the x axis. Boxes and whiskers show interquartile range.
1328 LTR retrotransposons were generally closer than other transposons to SVs (Kruskall-Wallis
1329 test show in Supplementary Table 6). **D** The y axis is SVπ or percent repeat for 50 Kb
1330 windows (scaled for visualisation). The x axis shows window start (Mb), and plots show
1331 chromosomes 6 and 12, the latter having the highest average SVπ and the most hotspots
1332 (shaded in pink). **E** Correlation between log recombination rate per Kb (y axis) and SVπ (x
1333 axis) across 50 Kb sliding windows. Chromosomes are plotted in different colours and data
1334 shown are for population-3. Spearman's ρ was 0.14-0.15 for all populations (P = 0) but varied
1335 between chromosomes. **F** Distribution across chromosomes (y axis) of Spearman's ρ for
1336 number of SVs and recombination rate in 50 Kb sliding windows. Though correlation
1337 strength varied between chromosomes, correlations were generally positive. **G** The y axis
1338 shows repeat content (top), SVπ (middle) and number of SVs (bottom) for windows that did
1339 not (left) and did (right) contain recombination hotspots. Boxes and whiskers show
1340 interquartile range; differences were significant according to a t-test (** = P < 2.2e⁻¹⁶).

1341 **Figure 4 Gene content variability in the *Sclerotinia sclerotiorum* pan-genome. A** The
1342 relationship between total number of unique genes (y axis) and number of genomes
1343 sampled (x axis). **B** Number of gene bubbles (y axis) and number of genes they contained
1344 (top) or number of consecutive missing genes they contained (bottom). **C** A region in the
1345 1980 reference genome that had a complex rearrangement in the isolate R19 and no other

1346 isolates. This region contained the largest three gene bubbles, indicated here with B1
1347 (orange), B2 (yellow) and B3 (green). Start and end genes for each called bubble are
1348 indicated in their respective colours and non-syntenic genes within bubbles are in light grey.
1349 Neighbouring genes are in dark grey. The shaded area connects homologous regions and
1350 the pink region is duplicated in R19.

1351 **Figure 5 Life history traits assessed across a subset of *Sclerotinia sclerotiorum***
1352 **strains.** **A** Boxplots of measurements for life history traits (indicated to the right of the plot)
1353 in four categories (to the left). The distribution is plot for strains from the three major
1354 geographical regions, Australia, Canada and Europe. Points are the individual data points
1355 and box and whisker plots show interquartile range. The letters a and b above plots indicate
1356 significant differences between groups. **B** The top panel is a heatmap (rows are in the same
1357 order as columns), showing Pearson's ρ between measurements for the 14 life history traits.
1358 Colouring goes from green (negative correlation) to red (positive). The dendrogram shows
1359 hierarchical clustering of the traits. **C** The distribution (y axis) across the 14 traits of mean
1360 effect size of non-SVs subtracted from mean effect size of SVs (ΔE), where effect sizes are
1361 absolute. **D** The y axis shows the density of measurements of absolute effect size for 500
1362 random samples with an identical minor allele frequency distribution to that of SVs. The blue
1363 line shows the observed absolute effect size for SVs. For these three traits, the P value of
1364 this test was 0. **E** A region surrounding a quantitative trait locus (QTL) for relative rate of
1365 growth on azoxystrobin (top), with $-\log(P)$ on the y axis and position in Mb on the x. The
1366 colours of points represents linkage disequilibrium of variants at the different positions with
1367 the QTL (the purple point with associated P value). The red line is a P value of 0.01. Below
1368 this region, the two genes neighbouring the 48 bp InDel underlying the QTL are illustrated.
1369 These included a small gene with no known domains and a larger centrosomin-encoding
1370 gene.

1371

1372 **Supplementary Material**

1373 **Supplementary Figures**

1374 **Supplementary Figure 1. A dendrogram showing the percentage of alleles identical**
1375 **by state between strains in the collection.** The green vertical line shows the cutoff used
1376 to identify groups of individuals representing a single clone (blue).

1377 **Supplementary Figure 2. The relationship between recombination rate (y axis) and**
1378 **coding sequence density (x axis) of 50 Kb sliding windows.** The line is a general additive
1379 model and the shading represents 95 % confidence intervals.

1380 **Supplementary Figure 3. SVπ and repeat content in 50 Kb windows across the**
1381 **genome.** The same as Figure 3 D but shown for all chromosomes.

1382 **Supplementary Figure 4. Q-Q plots for GWASs conducted for all traits.** The y axis
1383 shows observed P values and the x axis shows the expected P values given a normal
1384 distribution. All plots show that most points are on (adequate correction) or below (over-
1385 correction in some cases) the line, and P values are not inflated.

1386 **Supplementary Tables**

1387 **Supplementary Table 1. A** BUSCO scores for all strains used to construct the pan-genome
1388 graph. **B.** Gaps and telomeres in each chromosome of each assembly. In the TELOMERES
1389 column, L stands for 'left' and R stands for 'right', referring to the two (arbitrary) ends of the
1390 chromosome in the assembly FASTA.

1391 **Supplementary Table 2.** Strains, excluding the reference strain, 1980, used to create the
1392 *Sclerotinia sclerotiorum* pan-genome and call structural variants. Strains with Nanopore and
1393 Illumina data were used to create the pan-genome graph whereas strains with only Illumina
1394 data (previous or current study) were used for mapping and variant calling against the graph.

1395 **Supplementary Table 3.** Results of phipack tests for recombination across the 120
1396 independent *Sclerotinia sclerotiorum* lineages. These include the Neighbour Similarity Score
1397 (NSS), the Maximum Chi^2 (MAX_CHI2), and the Pairwise Homoplasy Index (PHI) tests. All

1398 tests were significant, with a P value of zero, indicating increasing levels of recombination
1399 between alleles with distance.

1400 **Supplementary Table 4.** Recombination hotspots identified relative to the *Sclerotinia*
1401 *sclerotiorum* reference genome. Four non-structured population subsamples were used to
1402 identify hotspots.

1403 **Supplementary Table 5.** Cytosine methylation data from alignment of bisulfite sequencing
1404 reads to the 1980 genome. The first column is the NCBI chromosome accession. The
1405 columns for these tables are described in the CLC genomic workbench manual here:
1406 https://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=Call_Methylation_Levels.html. Each spreadsheet represents one of the
1408 samples, for example, 0 HPI R1 is 0 hours post-inoculation replicate 1.

1409 **Supplementary Table 6.** Results of a Kruskal-Wallis test to determine whether LTR
1410 transposons were significantly closer to structural variants across all genomes than other
1411 transposons. Transposon classifications are taken from EDTA.

1412 **Supplementary Table 7.** Transposable element content of the 24 *Sclerotinia sclerotiorum*
1413 genomes based on EDTA annotations.

1414 **Supplementary Table 8.** Spearman's correlation between estimated recombination rate
1415 and SV π , SV count and transposon content of 50,000 bp sliding windows. Rows coloured
1416 in green are significant positive correlations, those in red are significant negative correlations
1417 and those not coloured are not significant. Overall, the majority of chromosomes and
1418 populations showed a correlation between recombination rate and both SV π and SV count
1419 but not transposon content.

1420 **Supplementary Table 9.** Functional terms associated with genes in the largest gene
1421 bubble. Results are from an InterProScan analysis. The Gene IDs are based on a cd-hit
1422 grouping of Braker3 annotations across all genomes.

1423 **Supplementary Table 10.** Genetic and actual correlations between life history traits. Where
1424 genetic correlations are above 1, below -1 or 'NA', the model was likely poorly or over-fit.

1425 **Supplementary Table 11.** Tests for overall impact of SVs on phenotype. Grey cells are for
1426 test statistics that were not significant. Green cells are for test statistics that indicate in
1427 increase in SV impact on phenotype. Red cells are for test statistics that indicate a decrease
1428 in SV impact on phenotype.

1429 **Supplementary Table 12.** Linear mixed models testing improvement in predictive ability
1430 (Pearson's ρ) from models with no SVs in the genomic relationship to matrix to models with
1431 two terms, one for SVs and the other for non-SVs, or to models with only SVs. Improvements
1432 in predictive ability were variable but some traits showed a relatively large improvement.

1433 **Supplementary Table 13 A.** Results of a GWAS for 14 life history traits. **B** BLASTp hits for
1434 gene downstream of 48 bp InDel azoxystrobin QTL, which encodes a centrosomin. **C**
1435 BLASTp hits for gene upstream of 48 bp InDel azoxystrobin QTL, which encodes a protein
1436 with no known functional domains.

1437 **Supplementary table 14 A.** RNA sequencing data used for Braker3 annotation of genomes.
1438 **B** The host genomes used for filtering RNA sequencing reads used in Braker3 annotation.

1439