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Abstract 27 

Background: An understanding of plant pathogen evolution is important for sustainable 28 

management of crop diseases. Plant pathogen populations must maintain adequate 29 

heritable phenotypic variability to survive. Polymorphisms >= 50 bp, known as structural 30 

variants (SVs), could contribute strongly to this variability by disrupting gene activities. SV 31 

acquisition is largely driven by mobile genetic elements called transposons, though a less 32 

appreciated source of SVs is erroneous meiotic double-strand break repair. The relative 33 

impacts of transposons and recombination on SV diversity and the overall contribution of 34 

SVs to phenotypic variability is elusive, especially in host generalists. 35 

Results: We use 25 high quality genomes to create a graphical pan-genome of the globally 36 

distributed host-generalist crop pathogen Sclerotinia sclerotiorum. Outcrossing and 37 

recombination rates in this self-fertile species have been debated. Using bisulfite 38 

sequencing, and short read data from 190 strains, we show that S. sclerotiorum has many 39 

hallmarks of eukaryotic meiosis, including recombination hot and cold spots, centromeric 40 

and genic recombination suppression, and rapid linkage disequilibrium decay. Using a new 41 

statistic that captures average pairwise structural variation, we show that recombination and 42 

transposons make distinct contributions to SV diversity. Furthermore, despite only 5 % of 43 

genes being dispensable, SVs often had a stronger impact than other variants across 14 life 44 

history traits measured in 103 distinct strains. 45 

Conclusion: Transposons and recombination make distinct contributions to SV diversity in 46 

S. sclerotiorum. Despite limited gene content diversity, SVs may strongly impact phenotypic 47 

variability. This sheds light on the genomic forces shaping adaptive flexibility in host 48 

generalists. 49 

 50 
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Background 53 

An understanding of the evolutionary processes underpinning plant pathogen adaptation is 54 

crucial for developing better disease management strategies, such as resistant cultivars, 55 

prediction of epidemics and monitoring of fungicide resistance [1–3]. Population genetic 56 

approaches can be used to understand the evolutionary characteristics of plant pathogens 57 

[4,5], although their application has been limited in the past to variants that can be 58 

confidently genotyped using short reads. However, with the now widespread use of long 59 

read sequencing, more plant pathogen pan-genomes of increasing quality are becoming 60 

available for evolutionary studies [6–12]. 61 

Aside from simple genotypic variants, such as single nucleotide polymorphisms (SNPs) and 62 

small insertions/deletions (InDels), complete genomes assembled using long reads can be 63 

used to identify structural variants (SVs), which are generally defined as polymorphisms of 64 

more than or equal to 50 bp [13]. These can be confidently genotyped using long reads 65 

assemblies and incorporated into a data structure known as a pan-genome graph [14,15]. 66 

Based on this underlying representation of genomic variation, SVs can be genotyped in a 67 

broader set of individuals using short reads [16,17]. This approach also improves the 68 

accuracy of non-SV calls by improving short read placement and reducing reference bias 69 

[18]. 70 

In many species, this and similar techniques have revealed that previously invisible SVs are 71 

strongly linked with phenotypic variability. For instance, the tomato graph pan-genome 72 

showed that SVs are a major component of ‘missing heritability’ [19], explaining much of the 73 

phenotypic variance not captured by simpler variants called against a single reference. 74 

Furthermore, in the important fungal wheat pathogen Zymoseptoria tritici, SVs have been 75 

shown to make a substantial contribution to important life history traits, such as tolerance of 76 

fungicides [20] 77 
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Two key processes underpinning evolutionary adaptation are mutation, including de novo 78 

acquisition of SVs, and meiotic recombination. The traditional view is that mutation creates 79 

new alleles and meiotic recombination shuffles alleles to create new haplotypes [21]. 80 

Shuffling of alleles into novel haplotypes allows beneficial alleles to spread without the 81 

burden of linked deleterious alleles. Without meiotic exchange, populations are likely to 82 

gradually accumulate deleterious mutations that cannot be lost without also losing beneficial 83 

mutations, a process known as Muller’s ratchet [22–24]. 84 

Though evolutionary theory often ascribes distinct roles to mutation and meiotic 85 

recombination in creating and shuffling alleles, respectively, the two processes may not be 86 

completely orthogonal. Meiosis itself may be powerfully mutagenic, as it requires the 87 

induction of numerous double-strand DNA breaks. Through erroneous repair of these 88 

breaks, meiosis has been linked with exceptionally high de novo mutation rates [12,20,21]. 89 

All types of mutations can occur through faulty repair of double-strand breaks, although 90 

meiosis-induced double strand breaks may be particularly prone to creating new SVs [21]. 91 

In humans, for example, double-strand breaks induced by meiosis lead to a 400 to 1,000-92 

fold increase in the rate of SV acquisition, and many SVs induced in recombination hotspots 93 

are pathogenic, highlighting the impact of meiotic mutagenesis on phenotype and human 94 

disease [12, 25]. Recently, a machine learning approach showed that multiple genomic 95 

features, including local recombination rate, were highly predictive of SVs induced in haploid 96 

offspring of crosses of Z. tritici [20]. In the plant pathogen Fusarium graminearum, local 97 

recombination rate was also shown to be associated with SVs across four high quality 98 

genomes [12]. 99 

In addition to meiosis, transposition is a highly potent instigator of structural variation in 100 

genomes. This occurs when active mobile elements called transposons duplicate or relocate 101 

themselves in the genome [26]. In addition, the repetitive nature of transposons can create 102 

SVs through pairing of distant genomic copies during DNA damage repair via the 103 
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homologous recombination pathway [26]. Though transposons can be destabilising to 104 

genomes, occasionally they create beneficial mutations, which are an important source of 105 

adaptive evolution [27].  106 

In plant pathogens, transposition is widely appreciated as one of the main driving forces of 107 

genomic plasticity. Though meiotic exchange has been linked with de novo acquisition of 108 

SVs in plant pathogenic fungi, the link between meiotic exchange and genome stability has 109 

not been widely explored in plant pathogen populations, and little is known about how 110 

meiosis and transposition interact to shape SV diversity. Despite several long reads 111 

pathogen pan-genomes, the overall contribution of SVs to variability in life history traits is 112 

also poorly understood. 113 

To date, much of the research on the evolution of plant pathogen genomes has also been 114 

conducted on host specialists, which are under acute selective pressure to maintain 115 

virulence on a single species. In contrast, the fungus Sclerotinia sclerotiorum infects 116 

hundreds of plant species in at least 74 documented families [28]. Though its genome may 117 

harbour some polymorphic regions [29,30], in contrast to many host specialists, its predicted 118 

effectors are largely conserved [30] and several are likely compatible with diverse hosts 119 

[31,32]. This suggests that, like many niche-generalists, S. sclerotiorum has evolved an 120 

energetically-optimised and multifunctional genome, which facilitates its colonisation of 121 

diverse hosts [33–35]. 122 

Sporulation in S. sclerotiorum occurs through obligate sexual reproduction. However, since 123 

it is self-fertile (homothallic), sexual reproduction can create genotypically uniform progeny, 124 

allowing certain genotypes to persist for long periods of time as clones [36]. The extent to 125 

which S. sclerotiorum outcrosses to generate new diversity has been debated, with some 126 

suggesting homothallism promotes universal outcrossing [29,37–44] and others suggesting 127 

that outcrossing is extremely rare [45–47]. Consequently, the overall contribution of meiotic 128 

exchange to genome stability and evolution in this species is particularly poorly understood. 129 
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Here, we present a global graphical pan-genome of S. sclerotiorum and use 25 reference-130 

quality genomes and 190 short reads samples to investigate species-wide SV diversity. To 131 

capture this diversity, we present a new statistic called ‘SVπ’, which describes the average 132 

number of SVs between all pairs of individuals. Using population genetics techniques, we 133 

establish S. sclerotiorum as an outcrossing species with many of the hallmarks of eukaryotic 134 

meiotic recombination, such as rapid linkage disequilibrium decay, suppressed 135 

recombination at centromeres, recombination hot and cold spots and enhanced 136 

recombination outside of coding sequences. We find that both recombination rate and 137 

transposable element content are independently positively correlated with total number of 138 

SVs and SVπ though not positively correlated with one another.  139 

Overall, unlike that of most host specialists studied to date, we show that gene content in 140 

the S. sclerotiorum genome is largely stable, despite numerous small, unstable, repeat-rich, 141 

gene-sparse regions. SVs often had a stronger effect than other variants on 14 life history 142 

traits assessed across 103 strains, and we find that a 48 bp InDel is significantly associated 143 

with tolerance of the fungicide azoxystrobin. Overall, our data suggest that transposition and 144 

meiotic recombination make distinct contributions to SV diversity in S. sclerotiorum, and that 145 

SVs may be an important driver of phenotypic plasticity, despite the stability in gene content 146 

of the species. These insights shed new light on the genomic processes underpinning the 147 

evolution of host generalism in plant pathogens. 148 

 149 

Results and discussion 150 

Development of a Sclerotinia sclerotiorum graphical pan-genome 151 

To create a high-quality set of S. sclerotiorum genomes for SV analysis, we generated 152 

Illumina-corrected Oxford Nanopore long reads assemblies of the genomes of 24 diverse 153 

strains from Australia (10 strains), Europe (5 strains) and Canada (9 strains). Overall, 23 of 154 

the strains had telomere-to-telomere assemblies for >= 10 of the 16 S. sclerotiorum 155 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 11, 2025. ; https://doi.org/10.1101/2024.07.02.600549doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.02.600549
http://creativecommons.org/licenses/by/4.0/


 

7 
 

chromosomes, and seven had telomere-to-telomere assemblies for >= 14 chromosomes. 156 

There were few gaps in assemblies on average, and 22 strains had gapless assemblies 157 

for >= 10 chromosomes; three of these strains had gapless assemblies for all 16 158 

chromosomes. All these assemblies are comparable to the reference S. sclerotiorum 159 

genome [30], which has 14 telomere-to-telomere and 15 gapless chromosomes. BUSCO 160 

scores ranged from 98.9 to 99.2, with a median of 99.05 (Supplementary Table 1), confirming 161 

the completeness of these assemblies. These new assemblies are available in NCBI under 162 

BioProject PRJNA1112094. 163 

To explore structural variation in S. sclerotiorum we constructed a pan-genome graph from 164 

the genomes of these 24 strains and the reference strain. In this graph, we identified 186,486 165 

variants, including 154,892 SNPs, 5,877 multiple nucleotide polymorphisms (MNPs), 20,061 166 

InDels and 5,556 SVs. There were 9,876 complex variants with more than one allele, 167 

including 2,892 (52 %) of the SVs. 168 

To capture more genotypic diversity, we aligned Illumina short reads to the pan-genome 169 

graph from an additional 190 strains, 181 of which were sequenced in this study (available 170 

in NCBI under BioProject PRJNA1120954) (Supplementary Table 2). Overall, the genotypes 171 

of 3,741 of the SVs from the pan-genome graph were captured in this broader data set. This 172 

data set is the first graphical pan-genome of the important host generalist pathogen S. 173 

sclerotiorum. It includes 215 strains, with 152 from Australia, 17 from North America, 44 from 174 

Europe, and one each from South Africa and Morocco. 175 
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 176 

Figure 1. Genotypic clustering of Sclerotinia sclerotiorum strains from the global 177 

population sample. A A phylogenetic network with all strains in the dataset coloured 178 

according to geographical origin. The map inset shows where strains were collected with 179 

colours corresponding to those in the network. The sizes of circles on the map corresponds 180 

with the number of strains from each global region. B A phylogenetic network for the 181 

Australian strains. Circles are coloured according to geographical origin within Australia. 182 

Where circles are stacked on top of each other, isolates are a >= 98 % genotypically identical 183 
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group of clones. The map to the left shows where isolates were collected within Australia, 184 

with colours of circles corresponding to colours on the network. The sizes of circles represent 185 

the numbers of strains from each collection site. Haplotypes 1 (hap 1) and 2 (hap 2) are 186 

examples of frequently sampled and geographically widespread clones, with individuals 187 

from Western Australia and South Australia. 188 

 189 

Sclerotinia sclerotiorum undergoes cryptic recombination whilst maintaining clonal 190 

lineages across large temporal and spatial distances 191 

S. sclerotiorum produces ascospores through sexual reproduction. As it is homothallic, 192 

ascospores may be genotypically identical, which leads to an effectively clonal mode of 193 

propagation. Clonality is evident in the detection of temporally or spatially distant 194 

genotypically nearly identical strains. We identified 120 clonal lineages (>= 98 % identical) 195 

among the 215 strains (Supplementary Figure 1). Clonality was most prevalent among the 196 

Australian strains, whereas European and North American strains were mostly genotypically 197 

distinct (Figure 1). This was expected because most of the European and North American 198 

strains were previously shown to be distinct lineages using markers [48,49], whereas 99 of 199 

the Australian strains were collected from five sites (two of which were in the same locality) 200 

in Western Australia with no prior genotyping [50,51].  201 

Confirming the long-term maintenance of clonal propagation, we found several clones from 202 

geographically distant regions, some of which were collected many years apart. For 203 

example, strains CU11.18 and F19064 were found in Western Australia in 2013 and South 204 

Australia in 2018, respectively. The most extreme example was the pair of clones S55 and 205 

MB57, which were collected in the USA in 1987 and Manitoba in 2010, respectively. 206 

In our previous study, we found that the global S. sclerotiorum population forms two distinct 207 

sub-populations, between which there has been limited gene flow. SNP data from the 215 208 

genomes confirmed this observation (Figure 1), showing that Australian/African and 209 
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European/North American strains formed mostly distinct sub-populations (referred to as 210 

AuAf and EuNA herein). Although we expanded the Australian collection, our study only 211 

contained the two African strains from our previous study [29], Sssaf from South Africa and 212 

Ss44 from Morocco, so the global relationship between Australian and African strains is still 213 

not fully resolved. 214 

In the AuAf sub-population, we found evidence for three ancestral populations, and 215 

numerous admixed individuals. In the EuNA population, we identified three further ancestral 216 

populations with limited admixture (Figure 2 A). Two of the EuNA strains were admixed 217 

individuals containing alleles from either the AuAf ancestral populations or both the EuNA 218 

and AuAf ancestral populations. The widespread recent admixture among AuAf strains 219 

supports outcrossing between lineages from distinct ancestral populations. 220 

To further explore outcrossing in the global S. sclerotiorum population, we investigated the 221 

rate of linkage disequilibrium decay in the 120 independent clonal lineages. We found that 222 

across the whole population, linkage disequilibrium decayed to half its maximum value at 223 

428 bp (Figure 2 B). Three tests of the association between recombination and physical 224 

distance, neighbour similarity score [52], maximum Χ2 [53], and pairwise homoplasy index 225 

[54], also supported statistically significant recombination between non-adjacent alleles (P 226 

= 0 for all tests and chromosomes, Supplementary Table 3). 227 

The rate at which LD decays to half its maximum (LD2) value is typically higher in 228 

predominantly outcrossing and lower in predominantly clonal species [55,56]. Species that 229 

rarely outcross often have LD2 rates of more than 100 Kb, whereas highly outcrossing 230 

species have rates on the order of a few hundred bp [56]. Though we have no direct 231 

assessment of the rate of outcrossing in S. sclerotiorum, the very small LD2 rate we 232 

observed suggests that it may be relatively frequent. 233 

Like other outcrossing species, recombination was not uniform across the genome. In four 234 

non-structured subsamples comprising respectively 23, 13, 15 and 34 individuals (Figure 2 235 
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C), which we refer to as population-1, population-2, population-3 and population-4, we 236 

identified 384 recombination hotspots (Supplementary Table 4). Like other outcrossing 237 

species, we found that recombination rate was higher towards the ends of chromosomes 238 

where chromatin is more likely to be relaxed (Figure 2 D). Furthermore, recombination rate 239 

was negatively correlated with coding sequence density (Spearman’s ρ = -0.15, P = 0, Figure 240 

2 E, Supplementary Figure 2) and recombination hotspots had a lower gene density than 241 

other regions (P < 0.0001, Figure 2 F). Though recombination rate was weakly negatively 242 

correlated with coding sequence density, the relationship between the two variables was not 243 

monotonic. Instead, there was an optimal gene density at which recombination rate peaked 244 

before declining rapidly (Figure 2 E, Supplementary Figure 2). 245 

Our data suggest that recombination rate is generally higher outside of genic regions but 246 

low in the most gene-sparse parts of the genome. This is consistent with observations in 247 

other outcrossing species [57] where meiotic recombination within genes is selected against 248 

as it can lead to polymorphisms due to erroneous double strand break (DSB) repair, though 249 

meiosis is repressed in the most gene-sparse regions, which also tend to be 250 

heterochromatic. 251 

Across most chromosomes and all four population samples, there were clear recombination 252 

coldspots that coincided with a single prominent drop in GC content and a single prominent 253 

spike in cytosine methylation based on bisulfite sequencing data generated in this study 254 

(Figure 2 G-H, Supplementary File 1, Supplementary Table 5). Decreased GC content and 255 

increased cytosine methylation are both hallmarks of eukaryotic centromeres [58,59], 256 

around which meiotic recombination is typically suppressed [60]. The convergence of these 257 

three observations, and previous predictions from optical mapping data [61], suggest that 258 

these sites are the centromeres of the S. sclerotiorum chromosomes, and, as in other 259 

outcrossing species, meiotic recombination is suppressed around them. 260 
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With the rapid decay of linkage disequilibrium, the presence of recombination hotspots, and 261 

the conspicuous recombination-related features characteristic of eukaryotic meiosis, we 262 

infer that S. sclerotiorum maintains genetic diversity across numerous populations through 263 

sexual outcrossing. While clonal lineages may endure over extended periods via self-264 

fertilization, the ongoing process of sexual recombination among these lineages may be 265 

important for creating genotypic diversity. Presently, meiotic exchange is cryptic, as 266 

laboratory observations of sexual outcrossing are, to our knowledge, lacking. 267 

Ecological theory suggests that loss of sexual reproduction initiates the gradual 268 

accumulation of deleterious alleles inseparable from beneficial ones, a phenomenon known 269 

as 'Muller's ratchet'. Consequently, strictly clonal populations are rare, with most facing a 270 

trajectory toward extinction. Given the continuing pressure on S. sclerotiorum for survival 271 

across numerous host species, coupled with its apparent lack of host preference, it is not 272 

surprising that it exhibits many attributes indicative of sexual outcrossing. Drawing from our 273 

findings and those of others [37,43,44], we suggest that homothallism in S. sclerotiorum not 274 

only supports persistence of certain clonal lineages but also fosters universal sexual 275 

compatibility. 276 
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 277 

 278 

Figure 2. Population structure and evidence of recombination. A Colours correspond 279 

to ancestral populations making up individuals. Country of origin (above) is Au = Australia, 280 

Mo = Morocco, SoA = South Africa, Ca = Canada, Fr = France, No = Norway, and UK = UK. 281 

Below, states within Australia and Canada are indicated, where NSW = New South Wales, 282 
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SA = South Australia, WA = Western Australia, AB = Alberta, MB = Manitoba, and SK = 283 

Saskatchewan. B Linkage disequilibrium (y axis) decay with physical distance (x axis). 284 

Points are averages for unique distance measurements, and the red line is a general 285 

additive model fit. C The first two principal components of genotypic variance. Colours 286 

indicate geographical origin and point shapes the four population sub-samples used for 287 

recombination analysis. D Across chromosomes and population sub-samples, the 288 

distribution of Spearman’s correlations between chromosome end distance and 289 

recombination rate. E Correlation between coding DNA sequence content (x axis) and 290 

recombination rate (y axis) of 50 Kb sliding windows. The line is a general additive model fit. 291 

F Boxplot showing percent gene content of 50 Kb windows containing and not containing 292 

recombination hotspots (*** = P < 2e-16). Boxes and whiskers show interquartile range. G 293 

Circles show where windows containing putative centromeres lie on a plot of recombination 294 

rate (y axis) against log recombination rate (x axis). Putative centromeres are in regions of 295 

low recombination, before the inflection point. H The y axis is scaled (division by maximum) 296 

recombination rate, amount of methylation or GC content for sliding windows. The x axis 297 

shows position (Mb) across chromosome 6 (all chromosomes and population samples are 298 

in Supplementary File 1). All chromosomes had a dip in GC coincident with a spike in 299 

methylation, almost always coincident with a recombination cold spot. 300 

 301 

The Sclerotinia sclerotiorum pan-genome graph suggests transposable elements 302 

create hotspots of structural diversity 303 

To capture diversity of structural variation across the genome, we developed a statistic called 304 

‘SVπ’. Akin to nucleotide [62] and synteny diversity [63], this statistic captures the average 305 

number of SVs per Kb between all pairs of individuals. We found that SVπ was positively 306 

skewed when calculated for 50 Kb sliding windows across the genome (Figure 3 A). This 307 

suggests that the S. sclerotiorum genome is mostly stable, with a few regions of excessive 308 
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structural variation. We defined SV hotspots as sliding windows with a SVπ value above the 309 

95th percentile across the genome. Interestingly, more hotspots were detected on some 310 

chromosomes than others. For example, chromosome 12 contained six hotspots and had 311 

an average SVπ of 0.016, whereas, despite being larger, chromosome 6 contained only one 312 

hotspot and had an average SVπ of 0.009 (Figure 3 D, Supplementary Figure 3). 313 

Transposable element and gene content were positively (Spearman’s ρ = 0.28, P = 0) and 314 

negatively (Spearman’s ρ = -0.33, P = 0) correlated with SVπ, respectively. The correlation 315 

between transposon/gene content and SVπ varied between chromosomes, with the highest 316 

correlations observed on chromosomes 10 and 12 (Spearman’s ρ = 0.61 and 0.62, 317 

Spearman’s ρ = -0.58 and -0.59, respectively (P = 0)) (Figure 3 B; Supplementary Table 8). 318 

The association between SVs and transposable elements was further supported by the 319 

observation that transposable elements were significantly closer than randomised loci to the 320 

nearest SV across all genomes (P = 0). Transposable elements in the long terminal repeat 321 

(LTR) family were significantly (P < 0.0001) closer to the nearest SV than those in eight out 322 

of 10 other families (Figure 3 C, Supplementary Table 6), suggesting they may strongly 323 

contribute to genome instability in S. sclerotiorum. 324 

LTRs are a type of retrotransposon, which are transposons characterised by a copy and 325 

paste proliferation mechanism that involves transcription into RNA, reverse transcription into 326 

DNA and re-insertion into the genome [64]. Retrotransposons are unique to eukaryotes [65], 327 

and their replicative ability has made them often the dominant transposon class in eukaryote 328 

genomes [66]. Several studies have linked retrotransposons with virulence evolution in plant 329 

pathogens [67,68], including the host generalist species Botrytis cinerea, where they have 330 

been shown to encode small RNA effectors [69]. Our observations that retrotransposons are 331 

most strongly linked of all transposon classes to SVs suggests that they are the most active 332 

mobile elements in S. sclerotiorum. Their ongoing contribution to structural variation may be 333 

important for genomic plasticity in this species. 334 
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Stable, gene-dense and repeat-poor, and unstable, gene-sparse and repeat-rich genomic 335 

regions are common across eukaryote genomes [70]. The accumulation of transposons and 336 

SVs in gene-sparse regions is likely a result of relaxed selective pressure and accumulation 337 

of largely selectively neutral alleles. These regions can be important for adaptive evolution 338 

because they harbour extensive diversity in gene content and gene sequences [71]. When 339 

the environment changes, previously selectively neutral mutations may confer an 340 

advantage, leading to ongoing maintenance of these regions, and the transposons within 341 

them, in populations [72]. Our data show that, like those of most eukaryotes, the S. 342 

sclerotiorum genome is also partitioned into stable and unstable regions, and unstable 343 

regions are likely most strongly shaped by LTR retrotransposons. Overall, transposon 344 

content in the 25 S. sclerotiorum genomes was relatively low at 5.51 to 6.91 % 345 

(Supplementary Table 7). Despite this, transposable elements are responsible for creating 346 

considerable diversity in SVs across the S. sclerotiorum genome. 347 
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 348 

Figure 3. Analysis of structural variation across the Sclerotinia sclerotiorum pan-349 

genome. A Distribution (y axis) of SVπ (x axis) for 50 Kb sliding windows. B For 350 

chromosomes 10 and 12, correlation between SVπ (x axis) and proportion transposon (top 351 

y axis) or coding DNA sequence (bottom y axis). Spearman’s ρ and P value depicted top-352 
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right. Blue lines show linear regression of y onto x and the shaded area 95 % confidence 353 

interval. Red points are SVπ hotspot (> 95th percentile) windows. C The y axis shows 354 

distance to nearest structural variant (SV) for transposon families. Transposon classification 355 

is indicated at the top and family on the x axis. Boxes and whiskers show interquartile range. 356 

LTR retrotransposons were generally closer than other transposons to SVs (Kruskall-Wallis 357 

test shown in Supplementary Table 6). D The y axis is SVπ or percent repeat for 50 Kb 358 

windows (scaled for visualisation). The x axis shows window start (Mb), and plots show 359 

chromosomes 6 and 12, the latter having the highest average SVπ and the most hotspots 360 

(shaded in pink). E Correlation between log recombination rate per Kb (y axis) and SVπ (x 361 

axis) across 50 Kb sliding windows. Chromosomes are plotted in different colours and data 362 

shown are for population-3. Spearman’s ρ was 0.14-0.15 for all populations (P = 0) but varied 363 

between chromosomes. F Distribution across chromosomes (y axis) of Spearman’s ρ for 364 

number of SVs and recombination rate in 50 Kb sliding windows. Though correlation 365 

strength varied between chromosomes, correlations were generally positive. G The y axis 366 

shows repeat content (top), SVπ (middle) and number of SVs (bottom) for windows that did 367 

not (left) and did (right) contain recombination hotspots. Boxes and whiskers show 368 

interquartile range; differences were significant according to a t-test (*** = P < 2.2e-16). 369 

 370 

Recombination and transposable elements make distinct contributions to structural 371 

variation 372 

Several studies have shown that besides transposition, structural variation can be caused 373 

by recombination. However, little is known about the overall impact of recombination on 374 

structural variation in natural populations. In S. sclerotiorum, we found an overall correlation 375 

between SVπ and recombination rate for all four population samples we used for 376 

recombination rate estimation (Figure 3 E, Spearman’s ρ = 0.14-0.15, P = 0). Though this is 377 

suggestive of a link between SV diversity and recombination, it does not necessarily imply 378 
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that recombination creates SVs, as this relationship could also be caused by increased 379 

haplotype diversity in regions with a high recombination rate. Therefore, to determine 380 

whether genomic regions with a high recombination rate may be more prone to development 381 

of SVs, we assessed the correlation between recombination rate and the overall number of 382 

SVs called against the reference genome. Though the strength of correlation between these 383 

parameters varied considerably between chromosomes and populations, we found that, on 384 

average, there was a weak to moderate correlation between total number of SVs and 385 

estimated recombination rate (Figure 3 F, mean Spearman’s ρ = 0.09). For 12, 8, 13, and 386 

12 out of 16 chromosomes, for the four respective populations, there was a significant 387 

positive correlation between recombination rate and total number of SVs (P < 0.05, 388 

Supplementary Table 8). In contrast, only 1-3 chromosomes displayed a significant negative 389 

correlation between recombination rate and number of SVs. 390 

Despite the correlations between recombination rate and both SVπ and total SVs across 391 

chromosomes and populations, there were far fewer instances of a positive correlation 392 

between recombination rate and transposon content, and the overall average of all 393 

Spearman’s ρs was close to zero at -0.0018 (Supplementary Table 8). Furthermore, 394 

recombination hotspots had a slightly but significantly lower average repeat content than 395 

other parts of the genome (5.71 % vs 6.97 %, P < 2.2e-16), despite having elevated SVπ 396 

(average of 0.012 vs 0.010, P < 2.2e-16) and more SVs (2.65 vs 2.40, P < 2.2e-16) (Figure 397 

3 G). This suggests that meiotic recombination and transposition make orthogonal 398 

contributions to structural variation. In agreement, we found that the number of SVs was 399 

better described in a regression model by both average recombination rate and transposon 400 

content than transposon content alone, though transposon content was the dominant 401 

predictor in the model (likelihood ratio test P < 2.2e-16, transposon F = 74.86, recombination 402 

rate F = 13.08). 403 
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Our analyses document an interesting link between estimated recombination rate and the 404 

rate of structural variation in the S. sclerotiorum genome. This is not surprising given the 405 

mutagenic properties of meiosis. Given the relatively low level of transposable element 406 

content in the S. sclerotiorum genome, recombination through meiotic exchange could be 407 

an additional important source of structural variation. Our regression model suggests that 408 

recombination rate is far outweighed by transposon density as a predictor of genome 409 

stability. However, since recombination rate was typically higher in regions of intermediate 410 

gene density, recombination may have a greater chance of inducing SVs that impact gene 411 

function.  412 

Sclerotinia sclerotiorum has a closed pan-genome with relatively few non-syntenic 413 

blocks of genes 414 

The gene-space within a pan-genome lies on a spectrum from high variability in certain 415 

species to remarkable stability in others. Species harbouring a limited number of 416 

dispensable genes are characterised by closed pan-genomes, while those with diverse gene 417 

content are classified as having open pan-genomes [73]. To assess the openness of the S. 418 

sclerotiorum pan-genome, we sampled from two to all 25 strains in our dataset and plotted 419 

number of strains against number of novel genes. We found that the number of additional 420 

genes brought by adding a new strain plateaued quickly at 5-10 strains, indicating that most 421 

dispensable genes in the population are present in multiple strains (Figure 4 A). 422 

Across all strains, we identified 10,188 unique genes, of which 553 (5.43 %) were 423 

dispensable. Few informative Gene Ontology terms were over-represented among these 424 

genes, although we noted an over-representation of the term ‘GO:0031177’ (P = 0.012), 425 

which is ascribed to genes containing a phosphopantetheine binding site. Since one of the 426 

main functions of this site is in secondary metabolite biosynthesis by non-ribosomal peptide 427 

synthases (NRPSs) and polyketide synthases (PKSs), it is not surprising that we also found 428 

an over-representation of genes in secondary metabolite biosynthesis clusters among 429 
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dispensable genes (odds ratio = 2.28, P = 1.44e-11). We found no significant over-430 

representation of secreted proteins, regardless of size (odds ratio = 0.73, P = 0.18 for >= 431 

300 amino acids; odds ratio = 1.38, P = 0.19 for <= 300 amino acids). 432 

Based on a graphical representation of gene synteny, we identified 615 runs of one or more 433 

genes that were non-syntenic between strains (Figure 4 B). In keeping with graph 434 

terminology, we refer to these as ‘gene bubbles’. The number of genes in gene bubbles 435 

ranged from 1 to 34, with most gene bubbles containing only a single gene (Figure 4 B). 436 

Consecutive runs of missing genes within bubbles ranged from 0 (i.e. the bubble was an 437 

inversion) to 13 (median = 1) (Figure 4 B). The largest three consecutive runs of missing 438 

genes within bubbles were identified on chromosome 12, which was the chromosome with 439 

the highest SVπ. Closer inspection of these runs identified a complex region partially 440 

duplicated in the strain R19, which was sampled in 2007 from buttercup in Warwickshire in 441 

the UK (Figure 4 C). Many of the genes in this region were likely transposon genes, as they 442 

were annotated with Pfam domains such as RNase H (PF00075), reverse transcriptase 443 

(PF00078), and endonuclease (PF14529) (Supplementary Table 9). However, there were 444 

also glycosyl hydrolases (PF00722), ubiquitins (PF00240) and a major facilitator superfamily 445 

transporter (PF07690). The fact that this region was the same in all strains apart from R19 446 

could mean it is deleterious. Alternatively, it could be a relatively new polymorphism whose 447 

evolutionary fate has not yet been determined. So far, the polymorphism does not appear to 448 

be detrimental to infection on brassicas, since R19 is more aggressive than several other 449 

diverse isolates from the UK [74]. 450 

The closed S. sclerotiorum pan-genome contrasts the pan-genomes of host specialist fungal 451 

pathogens. For instance, in a population sample of 19 global isolates of Z. tritici, 452 

approximately 40 % of genes were dispensable [8], and in 26 strains of the wheat pathogen 453 

Pyrenophora tritici-repentis 43 % [75]. 454 
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To our knowledge, little is known about what shapes pangenome openness in eukaryotes. 455 

However, ecological theory suggests that selective pressure from the host is stronger on 456 

host specialists than generalists [33]. To our knowledge, there are no S. sclerotiorum strains 457 

unable to reproduce on a single host species or genotype. It is unlikely, therefore, that a 458 

single virulence gene, such as an effector, would ever confer a strong host-driven selective 459 

advantage in this species. Therefore, maintenance of a repertoire of dispensable virulence 460 

proteins to ensure adaptability to a constantly changing host environment seems unlikely. 461 

Instead, the closed pan-genome of S. sclerotiorum aligns with previous research suggesting 462 

that it, and other host generalists, have evolved toward energetic optimisation of core 463 

virulence genes that function on multiple host species [31,34]. 464 
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 465 

Figure 4 Gene content variability in the Sclerotinia sclerotiorum pan-genome. A The 466 

relationship between total number of unique genes (y axis) and number of genomes 467 

sampled (x axis). B Number of gene bubbles (y axis) and number of genes they contained 468 

(top) or number of consecutive missing genes they contained (bottom). C A region in the 469 

1980 reference genome that had a partial duplication in the isolate R19 and no other 470 

isolates. This region contained the largest three gene bubbles, indicated here with B1 471 
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(orange), B2 (yellow) and B3 (green). Start and end genes for each called bubble are 472 

indicated in their respective colours and non-syntenic genes within bubbles are in light grey. 473 

Neighbouring genes are in dark grey. The shaded area connects homologous regions and 474 

the pink region is duplicated in R19. 475 

 476 

Structural variation may have a strong impact on adaptive flexibility of life history 477 

traits 478 

Adaptive flexibility and fitness of a population are underpinned by genotypic variation that 479 

impacts life history traits. As a global host generalist agricultural pest, S. sclerotiorum is 480 

exposed to diverse environments and must be adaptable to a range of temperatures and 481 

stressors, such as host metabolites. To assess global phenotypic diversity in S. sclerotiorum, 482 

we measured 14 life history traits across 103 genotypically distinct strains, including relative 483 

growth on the Brassicaceae defence compounds brassinin and camalexin, the Fabaceae 484 

defence compound medicarpin, the reactive oxygen species H2O2 (ROS), and the two 485 

fungicides azoxystrobin and tebuconazole; growth and relative growth at 15, 20 and 25 °C; 486 

and fecundity-related traits including number, and average and total weight of sclerotia. 487 

We found significant differences between isolates from different geographical origins for 488 

eight of these traits. Both European and Australian strains grew faster at 15 °C than 489 

Canadian strains (Figure 5 A) (P = 0.014 and 0.007, respectively). At 20 °C, European strains 490 

grew significantly faster than Australian but not Canadian strains (P = 0.003 and 0.52, 491 

respectively), though Canadian strains grew at a similar rate to Australian strains (P = 0.40). 492 

At 25 °C, European strains grew faster than both Canadian and Australian strains (P = 0.035 493 

and 0.00072, respectively). Relative growth (growth divided by growth at 20 °C, generally 494 

considered the middle of the optimum range [76,77]) at 15 °C was significantly lower for both 495 

European and Canadian strains compared with Australian strains (P = 0.035 and 0.049, 496 
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respectively), though relative growth at 25 °C was not significantly different between strains 497 

from different global regions. 498 

Differences in growth rate at different temperatures between these populations could be a 499 

result of adaptation to prevailing temperatures during the growing season for major host 500 

crops, a phenomenon that has been previously observed at a local level in Australia 501 

[50,51,78]. However, it is difficult to completely align our observations with the likely 502 

reproductive cycle of S. sclerotiorum in these three global cropping regions, as different host 503 

crops are likely to be available at different times of year. For example, the major host species 504 

Brassica napus usually flowers in spring in the UK, where temperatures are often lower than 505 

when B. napus flowers in Western Australia in July. On the other hand, some hosts, such as 506 

lettuce, may be also present later in the season in the UK. A weaker adaptation to lower 507 

temperatures is possible for Canadian strains, which would likely infect B. napus when it is 508 

flowering during the hotter summer months. 509 

Among host antimicrobial metabolites, we found a significant increase in growth in European 510 

strains compared with Canadian on camalexin (P = 0.015) and a significant decrease on 511 

ROS (0.0015) compared with Australian strains. Growth on ROS was lower for both 512 

European and Canadian compared with Australian strains, though the range in growth of 513 

Canadian strains meant the difference between Australian and Canadian strains was not 514 

significant (P = 0.12). Similarly, European strains had a significantly lower growth rate on 515 

azoxystrobin compared with Australian strains (P = 0.035), and Canadian strains were in the 516 

middle (P = 0.69 and 0.64 compared with Australian and European strains, respectively). 517 

Interestingly, Canadian strains produced a greater total sclerotia weight compared with 518 

strains from Australia and Europe (P = 0.034 and 0.036, respectively). This seemed to be 519 

due to a slight increase in the mean of both sclerotia number and weight. The size of 520 

sclerotia has been previously linked with the rate of germination [79] and number of 521 

apothecia per sclerotium [80], suggesting it is an important component of fecundity. 522 
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Phenotypic variation in this trait may have important implications for pathogen proliferation 523 

and epidemic potential of different populations. 524 

The traits we measured had complex genetic synergisms and antagonisms with one 525 

another, for instance brassinin and camalexin tolerance were positively correlated 526 

(Pearson’s ρ = 0.43) and shared positive genetic covariance (0.93) (Figure 5 B, 527 

Supplementary Table 10). The same was true of camalexin and medicarpin tolerance 528 

(Pearson’s ρ = 0.48, genetic covariance = 0.65). Other traits were negatively correlated and 529 

had negative genetic covariance, for instance growth at 20 °C and azoxystrobin tolerance 530 

(Pearson’s ρ = -0.33, genetic covariance = -0.97), and total sclerotia weight and relative 531 

growth at 15 °C (Pearson’s ρ = -0.39, genetic covariance = -0.63). This suggests that 532 

complex trade-offs and synergisms between life history traits may influence fitness [5]. 533 

Several studies have shown that SVs have a major role in creating phenotypic diversity, and 534 

graph pan-genomes in which SVs can be reliably called have shown that they can be a 535 

major component of missing heritability [19,81]. To test the relative impact of SVs on life 536 

history traits, we conducted a genome-wide association study (GWAS). For all traits, 537 

quantile-quantile plots suggested that the model we used adequately controlled P value 538 

inflation due to population structure (Supplementary Figure 4). 539 

We found that the average absolute effect size of SVs was higher than that of non-SVs 540 

across 11 of the 14 traits, significantly higher for eight (P < 0.05), and lower for 2 of the 14 541 

traits, tebuconazole and ROS tolerance. Notably absolute effect size was on average 0.015 542 

and 0.020 points higher for relative growth on azoxystrobin and total sclerotia weight, 543 

respectively (P < 0.0001, Figure 5 C, Supplementary Table 11). On average, SVs had a 544 

lower average minor allele frequency than other variants (0.18 vs 0.21), which could lead to 545 

an increase in the variance of effect size estimates. Therefore, we took 500 random samples 546 

of non-SVs of equivalent size and minor allele frequency distribution to SVs and assessed 547 

how many times their average absolute effect size was more than or equal to that of the 548 
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SVs. Based on this test, azoxystrobin tolerance, growth rate at 25 °C and average sclerotia 549 

weight, were impacted more strongly by SVs than other variants in 100 % of random 550 

samples (P = 0), as well as having significant increases for the first test (P < 0.005) (Figure 551 

5 C, Supplementary Table 11). Three other traits, medicarpin tolerance, growth at 25 °C and 552 

total sclerotia weight were more strongly impacted compared with more than 90 % of random 553 

samples (P < 0.1), as well as showing a significant increase according to the first test (P < 554 

0.005). According to the randomisation test, ROS and tebuconazole tolerance were also 555 

significantly more weakly impacted on average by SVs than other variants (P = 1 – all 556 

randomisations had a higher mean absolute effect size). We infer from this analysis that SVs 557 

could have a larger impact on many of these traits than other variants, though genetic 558 

architecture with respect to SVs likely varies considerably between traits. 559 

As an alternative to assessing the absolute effect size, we performed regressions on 560 

different genomic relationship matrices, which either included or did not include all variants 561 

in linkage disequilibrium with SVs. Using cross-validation, we found that for medicarpin and 562 

ROS tolerance, growth at 15 °C and 20 °C, and sclerotia number, models that included 563 

variants in LD with SVs had a better predictive ability than models that did not (Pearson’s ρ 564 

= 0.25 vs 0.23, 0.38 vs 0.37, 0.03 vs 0.02, 0.34 vs 0.29 and 0.14 vs -0.14, respectively 565 

(Supplementary Table 12)). Given absolute effect size for ROS tolerance was lower on 566 

average among SVs, it is possible that although individual SVs have a relatively weak impact 567 

on this trait, as a collective they explain a relatively larger proportion of additive heritability. 568 

For the other traits, the improvement in predictive ability was in accordance with the increase 569 

in absolute effect size according to at least one of the analyses mentioned previously. 570 

Overall, we identified 15 variants with a significant (Benjamini-Hochberg adjusted P < 0.05) 571 

impact on phenotype across six traits. 13 of these variants were intergenic SNPs or InDels, 572 

one was a synonymous SNP and the other was a disruptive in-frame InDel. The genes 573 

associated with these variants had diverse functions, which may be speculatively associated 574 
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with each of the traits (Supplementary Table 13). Though none of these variants were SVs 575 

or in linkage disequilibrium with neighbouring SVs, one of them was a 48 bp InDel, close to 576 

the 50 bp cutoff we used for designating variants as ‘structural’. This variant, at position 577 

107,298 on chromosome 12, was a deletion that significantly increased relative growth on 578 

azoxystrobin (P = 1.6e-5) (Figure 5 E). There were two genes either side of this variant on 579 

opposite strands, one encoding a 78 amino acid protein with no known domains and the 580 

other a 1,516 amino acid protein containing a centrosomin domain (PF07989). The variant 581 

was, respectively, 1,177 and 2,571 bases away from the transcription start sites of the 582 

shorter and longer genes. The amino acid sequences of both proteins were well-conserved 583 

in fungi, with 80-100 % similarity to homologues from species in the Helotiales, suggesting 584 

they are genuine genes (Supplementary Table 13). With the current data, it is not possible 585 

to determine which, if either, of these genes’ functions is linked with growth rate on 586 

azoxystrobin. However, in fungi, centrosomins are localised to spindle pole bodies, which 587 

are structures analogous to animal centrosomes, the main sites of coordination of 588 

microtubule activity during mitosis [82]. It is conceivable that the relative rate of cell division 589 

on a particular stressor could be impacted by mutations affecting genes encoding the cell 590 

division machinery. 591 

Our analyses are in accordance with several studies showing that SVs may have an 592 

outsized impact on phenotype [19,83,84]. In our analyses, which used a GWAS approach, 593 

we were restricted to common (minor allele frequency > 0.05), biallelic SVs. Therefore, we 594 

likely favoured less deleterious SVs, since deleterious SVs with the strongest phenotypic 595 

impacts are usually rare in populations [84,85]. Despite this, we observed an overall stronger 596 

impact of SVs than other types of variants on many life history traits. This was also despite 597 

the observation that SV diversity tended to cluster in polymorphic, repeat-rich genome 598 

regions, which can often be sites of selective neutrality. Since the S. sclerotiorum genome 599 

is relatively gene-dense, containing few repeat-rich regions, this could suggest that the 600 
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amount of selectively neutral structural variation it contains is relatively low. Alternatively, the 601 

variation across many of the traits we assessed could be selectively neutral or perhaps 602 

deleterious. In this case, the stronger link between SVs and phenotype is indicative of SVs 603 

underlying a particularly large amount of adaptive potential. 604 

 605 
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Figure 5 Life history traits assessed across a subset of Sclerotinia sclerotiorum 606 

strains. A Boxplots of measurements for life history traits (indicated to the right of the plot) 607 

in four categories (to the left). The distribution is plot for strains from the three major 608 

geographical regions, Australia, Canada and Europe. Points are the individual data points 609 

and box and whisker plots show interquartile range. The letters a and b above plots indicate 610 

significant differences between groups. B The top panel is a heatmap (rows are in the same 611 

order as columns), showing Pearson’s ρ between measurements for the 14 life history traits. 612 

Colouring goes from green (negative correlation) to red (positive). The dendrogram shows 613 

hierarchical clustering of the traits. C The distribution (y axis) across the 14 traits of mean 614 

effect size of non-SVs subtracted from mean effect size of SVs (E), where effect sizes are 615 

absolute. D The y axis shows the density of measurements of absolute effect size for 500 616 

random samples with an identical minor allele frequency distribution to that of SVs. The blue 617 

line shows the observed absolute effect size for SVs. For these three traits, the P value of 618 

this test was 0. E A region surrounding a quantitative trait locus (QTL) for relative rate of 619 

growth on azoxystrobin (top), with -log(P) on the y axis and position in Mb on the x. The 620 

colours of points represent linkage disequilibrium of variants at the different positions with 621 

the QTL (the purple point with associated P value). The red line is a P value of 0.01. Below 622 

this region, the two genes neighbouring the 48 bp InDel underlying the QTL are illustrated. 623 

These included a small gene with no known domains and a larger centrosomin-encoding 624 

gene. 625 

 626 

Conclusion 627 

Collectively, our results portray S. sclerotiorum as both a clonal and sexually outcrossing 628 

pathogen with limited diversity in gene content. Despite this limited diversity, S. sclerotiorum 629 

isolates vary considerably in life history traits. SVs may make a particularly strong 630 

contribution to this variability for some traits, and are likely generated through two distinct 631 
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mechanisms, meiotic recombination and transposition, the latter being the dominant 632 

mechanism.  633 

The limited genic diversity of S. sclerotiorum contrasts the highly variable open pan-634 

genomes of many host specialist species. Such stable gene content aligns with the 635 

hypothesis that S. sclerotiorum, a niche generalist, is a ‘jack of all trades’, with a core, 636 

multifunctional infective arsenal enabling fitness on hundreds of host species.   637 

At this stage, the relative importance of meiosis and transposition in the generation of 638 

adaptively advantageous SVs is unknown. Given the likely general evolution of S. 639 

sclerotiorum towards a stable, repeat-poor genome, and the stronger contribution of SVs to 640 

variability in life history traits, it is possible that meiosis, through its tendency to create SVs, 641 

may have a significant role in adaptation beyond its well-recognised role in recombination 642 

of alleles into new haplotypes. 643 

Overall, our data shed considerable light on the evolutionary processes at play in an 644 

important host generalist plant pathogen of agricultural significance. 645 

 646 

Methods 647 

Assessment of life history traits 648 

A sclerotium of each isolate was cut in half, placed on a potato dextrose agar (PDA) plate, 649 

and incubated at 20 °C for 4 to 5 days. Hyphae from the leading edge of the mycelium were 650 

cut with a 3-mm cork-borer, placed onto fresh PDA plates and incubated at 20 °C for 2 days 651 

to source actively growing mycelium. Actively growing mycelia were subcultured with a 3-652 

mm cork-borer onto appropriate PDA plates for trait assessments.  653 

To measure the effect of temperature on mycelium growth, mycelia were subcultured onto 654 

PDA and grown at 15 °C, 20 °C and 25 °C for 1 day. To measure the effect of host 655 

metabolites on mycelium growth, mycelia were subcultured onto PDA supplemented with 50 656 

µM brassinin (Sigma-Aldrich), 20 µM camalexin (Sigma-Aldrich), 20 µg/mL medicarpin 657 
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(TargetMol), or 200 µg/mL hydrogen peroxide H2O2 (Westlab) and grown at 20 °C for 1 day. 658 

Brassinin, camalexin and medicarpin were all dissolved in DMSO prior to PDA 659 

supplementation. To measure the effect of fungicides on mycelium growth, mycelia were 660 

subcultured onto PDA supplemented with 0.2 µg/mL azoxystrobin and 50 µM 661 

salicylhydroxamic acid (SHAM), or 0.16 µg/mL tebuconazole and grown at 20 °C for 1 day. 662 

Azoxystrobin and tebuconazole were dissolved in ethanol and SHAM was dissolved in water 663 

prior to PDA supplementation. All S. sclerotiorum strains were also grown on PDA 664 

supplemented with the equivalent concentration of DMSO, ethanol, or ethanol and SHAM 665 

as used for the aforementioned compounds. Though tebuconazole was dissolved in ethanol, 666 

ethanol control plates were not available for the experiment, so growth on tebuconazole was 667 

normalised to growth on DMSO. We did this because neither DMSO nor ethanol strongly 668 

impacted growth, whereas growth rates were often variable between experiments. For 669 

mycelium growth measurements on PDA, photographs were taken of each inoculated PDA 670 

plate. The colony area was measured using Image J software. Colony area relative to growth 671 

at 20 °C on PDA (plus appropriate solvent or SHAM) was calculated for each isolate.  672 

To measure the effect of temperature on sclerotia formation, mycelia were subcultured onto 673 

PDA and grown at 20 °C for 1 month. Mature sclerotia were then air-dried for 3 days. The 674 

number and weight of sclerotia per plate were recorded. 675 

DNA extraction and sequencing 676 

To extract high molecular weight DNA, sclerotia were cut with a sterile scalpel and placed 677 

with the cut side touching the surface of the medium on potato dextrose agar (PDA) plates. 678 

After three to four days at room temperature in darkness, strains were sub-cultured onto 679 

fresh PDA plates from agar plugs using a sterile cork borer and forceps. After two further 680 

days at room temperature in darkness, strains were sub-cultured again by placing four plugs 681 

for each strain into 100 ml of potato dextrose broth (PDB) in 250 ml conical flasks. These 682 

liquid cultures were incubated at room temperature with ambient light conditions in the 683 
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laboratory with shaking at 150 rotations per minute (RPM) for three days and used to 684 

generate protoplasts. 685 

Protoplasts were generated by removing fungal cultures that had grown around plugs and 686 

placing two plugs each in 250 ml conical flasks with 40 ml enzymatic digestion solution 687 

containing 0.8 M mannitol, 200 mM citric acid/tri-sodium citrate buffer and 1.5 % w/v lysing 688 

enzymes from Trichoderma harzianum (L1412, Sigma, now discontinued). Digestions were 689 

incubated for three hours at 30 °C with shaking at 80 RPM. All protoplasts from each conical 690 

flask were then filtered through a 100 µm cell strainer (CLS431752, Merck) into one 50 ml 691 

falcon tube and pelleted using a swinging bucket rotor centrifuge at 1,000-2,000 x g for 2-3 692 

minutes at 4 °C. Protoplast pellets were re-suspended in 200 µl Tris-EDTA (pH 8.0). 693 

The resuspended protoplasts were then used as input for the MagAttract high molecular 694 

weight DNA extraction kit (67563, Qiagen), which was used with the manufacturer’s protocol 695 

for blood cells with the following modifications: 80 µl proteinase K was used instead of 20 696 

µl, 20 µl of RNase A was used instead of 4 µl, 600 µl of buffer AL was used instead of 150 697 

µl, 25 µl of MagAttract Suspension G was used instead of 15 µl, 600 µl of buffer MB was 698 

used instead of 280 µl; before adding MagAttract Suspension G, samples were also filtered 699 

through miracloth to remove debris. High molecular weight DNA was then sequenced on an 700 

Oxford Nanopore MinION using an SQK-LSK109 library prep kit multiplexed with the native 701 

barcoding expansion pack EXP-NBD104 on a R9.4.1 version flowcell. 702 

To extract DNA for Illumina sequencing, the same procedure was used for initial culturing of 703 

S. sclerotiorum strains. Cultures from PDB were then snap frozen in liquid nitrogen and 704 

freeze-dried overnight. Portions of approximately 1 g of freeze-dried samples were then cut 705 

with a sterile scalpel and placed using forceps into 2 ml screw-capped Eppendorf tubes with 706 

a single ball bearing. To each tube, 700 µl lysis buffer (50 mM Tris-HCL, 50 mM EDTA, 3 % 707 

sodium dodecyl sulfate, 1 % 2-mercaptoethanol) was added, and samples were ground in 708 

a MiniG model 1600 at 15000 RPM for 2 minutes. Samples were then centrifuged at 17000 709 
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RPM for one minute, and ball bearings were removed. To each tube, 100 µl RNase A was 710 

added and tubes were then incubated for 1 hour at 65 °C. To each tube, 700 µl 711 

chloroform:phenol (50:50) was added and tubes were vortexted. Tubes were then 712 

centrifuged at maximum speed for 5 minutes before removal of the aqueous phase. Then, 713 

700 µl of chloroform:isamyl alcohol was added, the tubes vortexed and centrifuged again at 714 

full speed for 5 minutes. The aqueous phase was again removed and DNA was then 715 

precipitated using 6 M sodium acetate. Paired end Illumina sequencing was conducted at 716 

Genomics WA on a NovaSeq 6000 flowcell at 2 x 150 cycles to yield 1.2 Gb per sample. For 717 

genomic DNA methylation analysis, S. sclerotiorum 1980 (ATCC 18683) was propagated on 718 

minimal salts – glucose (1% w/v) (MS–Glu) agar. The inoculum for all experiments was 719 

prepared by grinding 2 g of sclerotia in 200 mL of MS–Glu in a Waring blender for 4 min. 720 

The volume was increased to 500 mL in a 1 L baffled flask and the culture incubated at 20 °C 721 

with shaking (60 r/min) for 3 days. 1 g of mycelia (wet mass) was spread over a 5-cm-722 

diameter area of B. napus leaf surface and incubated in a humidified chamber. Leaves from 723 

45-day-old plants were used. 3 biological replicates (3 different flasks of culture inoculated 724 

onto different leaves) were collected. The mycelial mat was collected from the lesion using 725 

forceps at 48 hours post-inoculation, plant material was removed, and the samples frozen 726 

immediately in liquid nitrogen.  Samples were ground in liquid nitrogen using a mortar and 727 

pestle, then genomic DNA was extracted from a 100 mg sample using the DNeasy Plant 728 

Mini kit (Qiagen).  Genome Quebec performed whole genome bisulfite sequencing using the 729 

NEB Next kit, then sequenced 2x250 bp on an illumina NovaSeq6000. 730 

Trimming and demultiplexing reads 731 

FAST5 files from the Oxford Nanopore were basecalled using Dorado version 0.3.2 and de-732 

multiplexed using Guppy version 6.5.7. Illumina whole genome sequencing reads were 733 

trimmed using cutadapt version 2.8 [86] with appropriate adaptor sequences. Bisulfite 734 
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sequencing reads were assessed for quality and low quality bases and adapters were 735 

trimmed using CLC genomics workbench 20.0.2. 736 

Analysis of bisulfite sequencing data 737 

Methylation analysis was performed using the CLC genomics workbench 20.0.2.  Reads 738 

were mapped to the S. sclerotiorum genome (GCF_000146945.2) using “Map Bisulfite 739 

reads” (directional mapping and default mapping options). Methylated residues were 740 

identified using “Call Methylation Levels” with default settings with the following exceptions: 741 

exhaustive context-independent calls, minimum read depth of 10 reads. The data presented 742 

in the results section is a count of methylated bases per 50 Kb sliding window. 743 

Genome assembly 744 

Genomes were assembled from Nanopore reads using Flye version 2.8.1-b1676 [87] and 745 

polished using Illumina reads, either from [29] or generated in this study, with one round of 746 

Polypolish version 0.5.0 [88], followed by one round of Pilon version 1.24 [89]. Before 747 

subsequent analyses, mitochondrial contigs were removed from assemblies using the 748 

following procedure. Within Geneious Prime version 21.2.2, the Minimap2 version 2.24 [90] 749 

plug-in was used to align a published S. sclerotiorum mitochondrial genome (NCBI 750 

accession KX351425) to each of the polished genomes. Contigs that aligned to this 751 

accession with more than 95 % identity were separated from nuclear contigs, which we focus 752 

on in this study. 753 

Polished nuclear chromosomes for each genome were scaffolded to the S. sclerotiorum 754 

reference genome [30] using the command ‘scaffold’, with the flags ‘-u -w -o’, from RagTag 755 

version 2.1.0 [91]. We then used the following process to finalise the scaffolded assemblies. 756 

First, Nanopore reads for each assembly were self-corrected using Canu version 2.2 [92]. 757 

Within Geneious Prime version 21.2.2, corrected reads were then aligned to their respective 758 

assemblies using the Minimap2 version 2.24 plug-in and used to manually add telomeres 759 

and subtelomeric sequences to the ends of chromosomes where they could be recovered 760 
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from reads. Gaps between scaffolded contigs were also removed if there was extensive read 761 

support for joining the contigs. 762 

Commands from Mummerplot version 3.1 [93] were then used to check for misassemblies. 763 

First, ‘nucmer’ was used to align each assembly individually to the S. sclerotiorum reference 764 

genome with the option ‘--mum’. The ‘delta-filter’ command was then used, with the options 765 

‘-1 -i 95 -l 10000 -u 100’ to filter the output of nucmer. The filtered output was then passed 766 

to the command ‘show-coords’ to produce coordinates of scaffold mappings to the S. 767 

sclerotiorum reference genome. The command ‘awk 'NR > 5 {strand="+"; if($2 < 768 

$1){strand="-"};print $12"\t"$1"\t"$2"\t"$13"\t.\t"strand}'’ was then used to convert these 769 

coordinates into browser extensible data (BED) format. In Geneious, the BED file containing 770 

alignments to 1980 and mappings of self-corrected reads were used to judge whether 771 

chromosome segments had been artificially joined by the assembler. For instance, if one 772 

chromosome was unusually large and contained two different segments mapped to different 773 

1980 chromosomes, it was split in two if (i) very few reads supported the join and (ii) reads 774 

showed evidence of extensive soft clipping either side of the join. Where chromosomes were 775 

split, genomes were scaffolded a second time using RagTag and gaps between joined 776 

chromosome segments were removed if aligned reads supported the join. The majority of 777 

chromosomes had zero gaps after the first round of scaffolding and only two in each of three 778 

strains were broken and re-scaffolded based on the latter procedure. 779 

Genome annotation 780 

For comparative purposes, all genomes, including the reference genome, were annotated 781 

with the same procedure. First, repetitive sequences were annotated using EDTA version 782 

2.2 [94] with the flag ‘--anno 1’. Then, Braker3 [95] was used to annotate genes with both 783 

RNA sequencing and amino acid sequences as evidence with the additional flags ‘--fungus’, 784 

‘--prot_seq=Fungi.fa’, ‘--august_args=”--species=botrytis_cinerea”’. The RNA sequencing 785 

data used for annotation were derived from 32 samples from the sequence read archive 786 
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(SRA) detailed in Supplementary Table 14. Reads from these samples that were derived 787 

from infected plant tissue were first filtered by alignment to their respective host genomes 788 

(Supplementary Table 14) with Hisat2 version 2.1.0 [96] and keeping unmapped reads with 789 

‘--un-conc’ for paired end reads or ‘--un’ for single end reads. Filtered reads, and reads not 790 

from plants, were then aligned to each of the S. sclerotiorum genomes with Hisat2, 791 

converted to bam format with samtools version 1.10 [97] ‘view’ and used as input for 792 

Braker3. Amino acid sequences from Braker3 annotations were combined into a non-793 

redundant set of genes for all isolates using cd-hit version 4.8.1 [98], and non-redundant 794 

proteins were annotated with InterProScan version 5.54-87.0 [99]. Secondary metabolite 795 

clusters in this set of proteins were identified using antiSMASH version 7.0 [100], and 796 

secreted proteins were identified with SignalP version 6.0 [101]. 797 

Pan-genome graph construction and variant calling 798 

Using the 24 Nanopore assemblies and the S. sclerotiorum reference genome (GenBank 799 

reference GCA_001857865.1), a pan-genome graph genome was constructed with cactus 800 

2.5.2 [102]. Illumina reads from [29] and those generated in the current study were mapped 801 

to the pan-genome GBZ formatted graph using the ‘giraffe’ command of vg version 1.52.0 802 

[18]. The resulting GAM formatted files, one for each set of Illumina reads, were filtered 803 

using the vg command ‘filter’, with the flags ‘--min-primary 0.90 --frac-score --substitutions -804 

-min-end-matches 1 --min-mapq 15 --defray-ends 999’. Filtered GAM files were then passed 805 

to the vg command ‘pack’ to create pack formatted read support files for each variant, with 806 

the flag ‘--min-mapq 5’. The ‘call’ command from vg was used to call variants from the pan-807 

genome graph using the Illumina reads with the flags ‘--ploidy 1 --genotype-snarls’ and 808 

create a variant call format (VCF) file. The VCF files for all samples were combined into a 809 

single file by first converting them to gzip format with ‘bgzip’, then merging them with the 810 

bcftools version 1.10.1 [103] command ‘merge’, with the option ‘--all’. We then filtered this 811 

VCF with vcftools version 0.1.16 with the options ‘--minQ 30’ and ‘--minDP 5’. To do this, we 812 
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had to first set all variants to ‘PASS’ because bcftools merge adds a filter to the whole variant 813 

if only a single sample is filtered in one of the inputs. We did this using a simple Awk script. 814 

After calling variants present in the pan-genome graph, additional variants present in 815 

Illumina reads but not in the 25 genomes that made up this graph were called using the 816 

following procedure. First, filtered GAM files were converted to binary alignment map (BAM) 817 

files using the vg command ‘surject’ and sorted using the samtools command ‘sort’. Then, 818 

the command ‘mpileup’ from bcftools was used with the flags ‘--max-depth 1000 --output-819 

type u’ and the BAM files as input. The output of ‘mpileup’ was piped to the bcftools 820 

command ‘call’, which was run with the flags ‘--output-type v --multiallelic-caller --ploidy 1’ to 821 

create a VCF file. We then filtered this VCF using vcftools with the options ‘--minQ 30’, ‘--822 

minGQ 30’ and ‘--minDP 5’. 823 

Finally, we used vcftools to remove variants called by vg from the VCF created using bcftools 824 

with the options ‘--min-alleles 2’, ‘--mac 1’ and ‘--exclude-positions’, and concatenated the 825 

resulting VCF with the one produced using vg with the bcftools command ‘concat’ with the 826 

option ‘--allow-overlaps’. We further filtered the final VCF with a Python script 827 

(Supplementary File 2) to remove variants with a missing call rate of >= 0.2. 828 

Population structure characterisation 829 

To identify clones, a VCF containing variants called against the graph pan-genome was used 830 

with plink version 1.9 [104] to generate an identical by state relationship matrix, with the 831 

flags ‘--snps-only’, ‘--biallelic-only’, ‘--double-id’, ‘--geno 0.2’, ‘--mind 0.2’ and ‘--make-rel 832 

square 1-ibs’. Then, the matrix was used to construct a distance matrix and dendrogram 833 

using hierarchical clustering. Clones were identified based on a relatedness of 98 % identical 834 

by state with the R base function ‘cutree’. 835 

Population structure was analysed using ADMIXTURE version 1.3 [105]. As for the identical 836 

by state relationship matrix, we considered only biallelic SNPs. These were first filtered using 837 

plink with the flag ‘--indep-pairwise 50 10 0.1’, and admixture was run for 1 to 10 ancestral 838 
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populations with cross-validation. A scree plot was used to determine the most appropriate 839 

number of populations to use based on cross-validation error. Principal component analysis 840 

was also performed with plink using the flag ‘--pca 4’. 841 

Assessment of structural variant diversity 842 

To assess the diversity of SVs across the genome, we developed a novel statistic that we 843 

refer to as 𝑆𝑉𝜋, which is calculated as follows. First, we calculate 𝑆𝑉𝑛, which is the sum of 844 

the number of SVs between all pairs of individuals, excluding self-comparisons. 845 

𝑆𝑉𝑛 =  ∑ ∑ 𝑆𝑉𝑖𝑗

𝑛

𝑗=𝑖+1

𝑛−1

𝑖=1

 846 

Where 𝑆𝑉𝑖𝑗 is the number of variants that are >= 50 bp in at least one individual for individuals 847 

𝑖 and 𝑗 in the set of 𝑛 individuals in the sample. 𝑆𝑉𝑛 is then normalised in the following way 848 

to obtain 𝑆𝑉𝜋: 849 

𝑆𝑉𝜋 =  
𝑆𝑉𝑛

𝑘
𝑛2

 850 

This divides 𝑆𝑉𝑛 by the number of possible pairs of individuals and the length of the sequence 851 

under consideration, 𝑘. Since 𝑘 varies between individuals depending on the SV alleles they 852 

contain, it is calculated in the following way: 853 

1

𝑛
∑ 𝑘𝑖

𝑛

𝑖=1

 854 

That is, 𝑘 is the average value of all 𝑘𝑖 sequence lengths, in Kb, in the set of 𝑛 individuals. 855 

The statistic is trivial for regions containing only biallelic SVs but more computationally 856 

challenging for regions with multi-allelic variants. 857 

The statistic 𝑆𝑉𝜋 is an estimate of the average number of SVs that are present per Kb 858 

between all pairs of individuals in the sample. It is an approximation of the genome stability 859 

in a region and may be better at identifying unstable genomic regions than considering 860 

simpler statistics such as proportion of rearranged sites or number of SVs relative to a single 861 
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reference. The reason we developed this statistic was because we aimed to better capture 862 

the potential evolutionary rate of a region. For example, if considering the fraction of non-863 

syntenic bases, a single large variant would create a high value, even if it is the only variant 864 

present. On the contrary, many diverse, small SVs would possibly cause a deflated estimate 865 

of the SV diversity of the region if their total length was a small proportion of the region’s 866 

overall length. Though we do not present a detailed exposition of the method here, we 867 

present it as an intuitive and hopefully useful complementary technique for investigating 868 

structural diversity in pan-genomes. Our software for its calculation across sliding windows, 869 

svstats, is freely available on GitHub (https://github.com/markcharder/svstats). We used the 870 

program in this study to calculate SVpi in 50 Kb sliding windows across the genome with an 871 

increment of 1 Kb. 872 

Analysis of linkage disequilibrium and recombination 873 

To assess linkage disequilibrium decay with physical distance, linkage disequilibrium was 874 

first calculated for all pairs of variants between variants with the plink flags ‘--ld-window-r2 875 

0’, ‘–ld-window-kb 300’ and ‘--r2 dprime’. R2 was averaged for each physical distance and 876 

the distance at which average R2 reached half its maximum value was recorded. The 877 

program phipack (obtained from  878 

https://www.maths.otago.ac.nz/~dbryant/software/PhiPack.tar.gz) was used to conduct 879 

three tests of the association between distance and linkage disequilibrium, the pairwise 880 

homoplasy index, maximum Χ2, and nearest neighbour score tests. 881 

To assess recombination rate, we selected four genotypically fairly uniform populations that 882 

had no obvious population structure. Recombination rate was calculated for these 883 

populations using ldhat version 2.2 [57] and recombination hotspots were identified with 884 

ldhot version 8.30 [106]. To run ldhat and ldhot, plink was first used to convert the pan-885 

genome VCF file to plink PED and MAP files with the flags ‘--recode’, and ‘--biallelic-only’ 886 

and ‘--snps-only’ to keep only biallelic SNPs. These were used as input for the command 887 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 11, 2025. ; https://doi.org/10.1101/2024.07.02.600549doi: bioRxiv preprint 

https://github.com/markcharder/svstats
https://www.maths.otago.ac.nz/~dbryant/software/PhiPack.tar.gz
https://doi.org/10.1101/2024.07.02.600549
http://creativecommons.org/licenses/by/4.0/


 

41 
 

‘plink2ldhat’ from our program ‘svstats’ (https://github.com/markcharder/svstats) to convert 888 

to ldhat or ldhot format. A finite sites version of Watterson’s theta was calculated using the 889 

command ‘watfsites’ from svstats to provide a parameter for generating ldhat lookup tables. 890 

The ldhat program ‘complete’ was then used, with flags ‘-rhomax 100’ and ‘-n_pts 101’, and 891 

the appropriate number of ‘-n’ individuals, to create look-up tables for calculating variable 892 

recombination rates across chromosomes. The ldhat interval program was then used, with 893 

the appropriate look-up table, to calculate variable recombination rates with the flags ‘-exact’ 894 

‘-its 10000000’ and ‘-samp 3500’. Reversible jump Monte Carlo Markov Chains were run 895 

starting with block penalties ranging from 5 to 50 (with an increment of 5) and chains were 896 

assessed for convergence. Posterior distributions of rates and bounds from the chains were 897 

estimated using the ldhat command ‘stat’, with the flag ‘-burn 35’. Using the output of ldhat 898 

interval, ldhot was run using the appropriate look-up table with the additional flag ‘--nsim 899 

1000’. 900 

Assessment of correlation between population-wide statistics and genomic features 901 

The command ‘makewindows’ from Bedtools version 2.27.1 [107] was used to create sliding 902 

windows of 50,000 bp, with an increment of 1,000 bp, across the S. sclerotiorum genome. 903 

To calculate gene and repeat density, the bedtools command ‘coverage’ was used with 904 

Braker3 and EDTA annotations, respectively, and the sliding windows. To calculate GC 905 

content for windows, the command ‘nuc’ was used. Methylation rates from bisulfite 906 

sequencing data were converted to BED format using a custom script in R, and bedtools 907 

‘intersect’ with the flag ‘-c’ was used to calculate the number of methylated sites per sliding 908 

window. A BED file was also created from the ldhat output, using a simple Awk script, and 909 

used to calculate recombination rate for sites in sliding windows. The rate was summed 910 

across sliding windows for comparison. Comparison between recombination rate and other 911 

statistics of interest was conducted in R using Spearman’s rank correlation.  912 
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The bedtools command ‘closest’ was used to determine the distance between transposon 913 

annotations from EDTA and the nearest structural variant in all genomes. A Kruskall-Wallis 914 

test in R was then used to determine whether any transposon classes were significantly 915 

closer than other classes to the nearest SV. 916 

Genome-wide association and trait correlation analyses 917 

Before conducting GWAS and whole genome regression analyses, phenotype data were 918 

normalised with the R package bestNormalize version 3.5. Two GWASs were run. One 919 

(GWAS1) used variants that were filtered so that they were in approximate linkage 920 

equilibrium using plink version 1.9 with the flag ‘--indep-pairwise 50kb 50 0.8’, whereas the 921 

other (GWAS2) did not. Both GWASs were conducted using GAPIT [108] with the BLINK 922 

model. This model has been shown to adequately correct for population structure whilst 923 

maintaining statistical power, and there were no non-genetic confounding factors between 924 

populations as phenotypic data were collected in the same environment. We therefore 925 

included no further population structure correction with, for example, principal components 926 

or a kinship matrix. GWAS1 was used to identify significant marker trait associations as it 927 

had fewer correlated markers than GWAS2 and therefore more statistical power. GWAS2 928 

was used for the comparison of average absolute effects from structural and non-structural 929 

variants. 930 

To determine whether SVs had a larger impact on traits than other variants, we conducted 931 

three tests. Firstly, we simply used standard t tests to compare the mean distributions of 932 

absolute effect sizes of non-SVs and SVs. Since SVs had a lower minor allele frequency on 933 

average than non-SVs, and this could affect variance of the test statistic, we developed a 934 

randomisation test. This test sampled non-SVs 500 times, each time creating a random set 935 

of non-SVs matching in number the total count of SVs. This random set was sampled so 936 

that proportions of variants with all possible minor allele frequencies (rounded to three 937 

significant digits) matched the minor allele frequency proportions in the SV set. The average 938 
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absolute effect size from GWAS2 was recorded for each of these 500 samples and the 939 

number of times this effect size was larger than or equal to that of the mean absolute effect 940 

size of the SVs was treated as the empirical P value. 941 

In our third test, we partitioned variants into those that were in linkage disequilibrium with 942 

structural variants and those that were not. We did this by first creating a file recording R2 943 

for all pairs of neighbouring variants within 2 Kb with the plink flags ‘--r2’ and ‘--ld-window-944 

kb’. From this file, we created a list of variants that had an r2 of >= 0.5 with at least one SV. 945 

This list, combined with the list of SVs themselves, was used to create two VCF files, one 946 

containing SVs and variants in approximate linkage disequilibrium with them and the other 947 

containing variants that were not SVs and were not in linkage disequilibrium with any SVs. 948 

The two VCFs were filtered so that variants were not in strong linkage disequilibrium with 949 

the plink command ‘--indep-pairwise 50kb 50 0.8’. Genomic relationship matrices [109] were 950 

created for each of these sets of variants and for the whole set of variants used in GWAS1 951 

with the plink flag ‘--make-rel square’. 952 

To assess genetic correlations between traits and determine whether adding SVs improved 953 

predictive ability, we fit univariate and multivariate linear mixed models with the R package 954 

sommer version 4.3.4 [110]. In these models, random effects for individuals were estimated 955 

with assumed variance and covariance described by the genomic relationship matrix 956 

proposed by Yang et al. (2011) [109]. To assess trait genetic correlations, the genomic 957 

relationship matrix was estimated using all biallelic variants of minor allele frequency >= 958 

0.05. To assess improvement of prediction accuracy when including SVs, we fit models with 959 

one random effect with variance structured by a relationship matrix estimated with only non-960 

SVs, and models with two random effects, one structured by a non-SV and the other 961 

structured by an SV-only relationship matrix. For each trait, we performed ‘leave-one-out’ 962 

cross validation. For each recording of each phenotype for each strain, the recording was 963 

masked and the two models fit with this recording missing. The predicted BLUP value based 964 
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on the rest of the strains was recorded for this version of the model and Pearson’s correlation 965 

coefficient between model predictions and phenotypes was recorded. 966 
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 1283 

Figures, tables and additional files 1284 

Figure legends 1285 

Figure 1. Genotypic clustering of Sclerotinia sclerotiorum strains from the global 1286 

population sample. A A phylogenetic network with all strains in the dataset coloured 1287 

according to geographical origin. The map inset shows where strains were collected with 1288 

colours corresponding to those in the network. The sizes of circles on the map corresponds 1289 

with the number of strains from each global region. B A phylogenetic network for the 1290 

Australian strains. Circles are coloured according to geographical origin within Australia. 1291 

Where circles are stacked on top of each other, isolates are a >= 98 % genotypically identical 1292 

group of clones. The map to the left shows where isolates were collected within Australia, 1293 
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with colours of circles corresponding to colours on the network. The sizes of circles represent 1294 

the numbers of strains from each collection site. Haplotypes 1 (hap 1) and 2 (hap 2) are 1295 

examples of frequently-sampled and geographically-widespread clones, with individuals 1296 

from Western Australia and South Australia. 1297 

Figure 2. Population structure and evidence of recombination. A Colours correspond 1298 

to ancestral populations making up individuals. Country of origin (above) is Au = Australia, 1299 

Mo = Morocco, SoA = South Africa, Ca = Canada, Fr = France, No = Norway, and UK = UK. 1300 

Below, states within Australia and Canada are indicated, where NSW = New South Wales, 1301 

SA = South Australia, WA = Western Australia, AB = Alberta, MB = Manitoba, and SK = 1302 

Saskatchewan. B Linkage disequilibrium (y axis) decay with physical distance (x axis). 1303 

Points are averages for unique distance measurements, and the red line is a general 1304 

additive model fit. C The first two principal components of genotypic variance. Colours 1305 

indicate geographical origin and point shapes the four population sub-samples used for 1306 

recombination analysis. D Across chromosomes and population sub-samples, the 1307 

distribution of Spearman’s correlations between chromosome end distance and 1308 

recombination rate. E Correlation between coding DNA sequence content (x axis) and 1309 

recombination rate (y axis) of 50 Kb sliding windows. The line is a a general additive model 1310 

fit. F Boxplot showing percent gene content of 50 Kb windows containing and not containing 1311 

recombination hotspots (*** = P < 2e-16). Boxes and whiskers show interquartile range. G 1312 

Circles show where windows containing putative centromeres lie on a plot of recombination 1313 

rate (y axis) against log recombination rate (x axis). Putative centromeres are in regions of 1314 

low recombination, before the inflection point. H The y axis is scaled (division by maximum) 1315 

recombination rate, amount of methylation or GC content for sliding windows. The x axis 1316 

shows position (Mb) across chromosome 6 (all chromosomes and population samples are 1317 

in Supplementary File 1). All chromosomes had a dip in GC coincident with a spike in 1318 

methylation, almost always coincident with a recombination cold spot. 1319 
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Figure 3. Analysis of structural variation across the Sclerotinia sclerotiorum pan-1320 

genome. A Distribution (y axis) of SVπ (x axis) for 50 Kb sliding windows. B For 1321 

chromosomes 10 and 12, correlation between SVπ (x axis) and proportion transposon (top 1322 

y axis) or coding DNA sequence (bottom y axis). Spearman’s ρ and P value depicted top-1323 

right. Blue lines show linear regression of y onto x and the shaded area 95 % confidence 1324 

interval. Red points are SVπ hotspot (> 95th percentile) windows. C The y axis shows 1325 

distance to nearest structural variant (SV) for transposon families. Transposon classification 1326 

is indicated at the top and family on the x axis. Boxes and whiskers show interquartile range. 1327 

LTR retrotransposons were generally closer than other transposons to SVs (Kruskall-Wallis 1328 

test show in Supplementary Table 6). D The y axis is SVπ or percent repeat for 50 Kb 1329 

windows (scaled for visualisation). The x axis shows window start (Mb), and plots show 1330 

chromosomes 6 and 12, the latter having the highest average SVπ and the most hotspots 1331 

(shaded in pink). E Correlation between log recombination rate per Kb (y axis) and SVπ (x 1332 

axis) across 50 Kb sliding windows. Chromosomes are plotted in different colours and data 1333 

shown are for population-3. Spearman’s ρ was 0.14-0.15 for all populations (P = 0) but varied 1334 

between chromosomes. F Distribution across chromosomes (y axis) of Spearman’s ρ for 1335 

number of SVs and recombination rate in 50 Kb sliding windows. Though correlation 1336 

strength varied between chromosomes, correlations were generally positive. G The y axis 1337 

shows repeat content (top), SVπ (middle) and number of SVs (bottom) for windows that did 1338 

not (left) and did (right) contain recombination hotspots. Boxes and whiskers show 1339 

interquartile range; differences were significant according to a t-test (*** = P < 2.2e-16). 1340 

Figure 4 Gene content variability in the Sclerotinia sclerotiorum pan-genome. A The 1341 

relationship between total number of unique genes (y axis) and number of genomes 1342 

sampled (x axis). B Number of gene bubbles (y axis) and number of genes they contained 1343 

(top) or number of consecutive missing genes they contained (bottom). C A region in the 1344 

1980 reference genome that had a complex rearrangement in the isolate R19 and no other 1345 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 11, 2025. ; https://doi.org/10.1101/2024.07.02.600549doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.02.600549
http://creativecommons.org/licenses/by/4.0/


 

59 
 

isolates. This region contained the largest three gene bubbles, indicated here with B1 1346 

(orange), B2 (yellow) and B3 (green). Start and end genes for each called bubble are 1347 

indicated in their respective colours and non-syntenic genes within bubbles are in light grey. 1348 

Neighbouring genes are in dark grey. The shaded area connects homologous regions and 1349 

the pink region is duplicated in R19. 1350 

Figure 5 Life history traits assessed across a subset of Sclerotinia sclerotiorum 1351 

strains. A Boxplots of measurements for life history traits (indicated to the right of the plot) 1352 

in four categories (to the left). The distribution is plot for strains from the three major 1353 

geographical regions, Australia, Canada and Europe. Points are the individual data points 1354 

and box and whisker plots show interquartile range. The letters a and b above plots indicate 1355 

significant differences between groups. B The top panel is a heatmap (rows are in the same 1356 

order as columns), showing Pearson’s ρ between measurements for the 14 life history traits. 1357 

Colouring goes from green (negative correlation) to red (positive). The dendrogram shows 1358 

hierarchical clustering of the traits. C The distribution (y axis) across the 14 traits of mean 1359 

effect size of non-SVs subtracted from mean effect size of SVs (E), where effect sizes are 1360 

absolute. D The y axis shows the density of measurements of absolute effect size for 500 1361 

random samples with an identical minor allele frequency distribution to that of SVs. The blue 1362 

line shows the observed absolute effect size for SVs. For these three traits, the P value of 1363 

this test was 0. E A region surrounding a quantitative trait locus (QTL) for relative rate of 1364 

growth on azoxystrobin (top), with -log(P) on the y axis and position in Mb on the x. The 1365 

colours of points represents linkage disequilibrium of variants at the different positions with 1366 

the QTL (the purple point with associated P value). The red line is a P value of 0.01. Below 1367 

this region, the two genes neighbouring the 48 bp InDel underlying the QTL are illustrated. 1368 

These included a small gene with no known domains and a larger centrosomin-encoding 1369 

gene. 1370 

 1371 
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Supplementary Material 1372 

Supplementary Figures 1373 

Supplementary Figure 1. A dendrogram showing the percentage of alleles identical 1374 

by state between strains in the collection. The green vertical line shows the cutoff used 1375 

to identify groups of individuals representing a single clone (blue). 1376 

Supplementary Figure 2. The relationship between recombination rate (y axis) and 1377 

coding sequence density (x axis) of 50 Kb sliding windows. The line is a general additive 1378 

model and the shading represents 95 % confidence intervals. 1379 

Supplementary Figure 3. SVπ and repeat content in 50 Kb windows across the 1380 

genome. The same as Figure 3 D but shown for all chromosomes. 1381 

Supplementary Figure 4. Q-Q plots for GWASs conducted for all traits. The y axis 1382 

shows observed P values and the x axis shows the expected P values given a normal 1383 

distribution. All plots show that most points are on (adequate correction) or below (over-1384 

correction in some cases) the line, and P values are not inflated. 1385 

Supplementary Tables 1386 

Supplementary Table 1. A BUSCO scores for all strains used to construct the pan-genome 1387 

graph. B. Gaps and telomeres in each chromosome of each assembly. In the TELOMERES 1388 

column, L stands for ‘left’ and R stands for ‘right’, referring to the two (arbitrary) ends of the 1389 

chromosome in the assembly FASTA. 1390 

Supplementary Table 2. Strains, excluding the reference strain, 1980, used to create the 1391 

Sclerotinia sclerotiorum pan-genome and call structural variants. Strains with Nanopore and 1392 

Illumina data were used to create the pan-genome graph whereas strains with only Illumina 1393 

data (previous or current study) were used for mapping and variant calling against the graph. 1394 

Supplementary Table 3. Results of phipack tests for recombination across the 120 1395 

independent Sclerotinia sclerotiorum lineages. These include the Neighbour Similarity Score 1396 

(NSS), the Maximum Chi^2 (MAX_CHI2), and the Pairwise Homoplasy Index (PHI) tests. All 1397 
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tests were significant, with a P value of zero, indicating increasing levels of recombination 1398 

between alleles with distance. 1399 

Supplementary Table 4. Recombination hotspots identified relative to the Sclerotinia 1400 

sclerotiorum reference genome. Four non-structured population subsamples were used to 1401 

identify hotspots. 1402 

Supplementary Table 5. Cytosine methylation data from alignment of bisulfite sequencing 1403 

reads to the 1980 genome. The first column is the NCBI chromosome accession. The 1404 

columns for these tables are described in the CLC genomic workbench manual here: 1405 

https://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.1406 

php?manual=Call_Methylation_Levels.html. Each spreadsheet represents one of the 1407 

samples, for example, 0 HPI R1 is 0 hours post-inoculation replicate 1. 1408 

Supplementary Table 6. Results of a Kruskal-Wallis test to determine whether LTR 1409 

transposons were significantly closer to structural variants across all genomes than other 1410 

transposons. Transposon classifications are taken from EDTA. 1411 

Supplementary Table 7. Transposable element content of the 24 Sclerotinia sclerotiorum 1412 

genomes based on EDTA annotations. 1413 

Supplementary Table 8. Spearman’s correlation between estimated recombination rate 1414 

and SVπ, SV count and transposon content of 50,000 bp sliding windows. Rows coloured 1415 

in green are significant positive correlations, those in red are significant negative correlations 1416 

and those not coloured are not significant. Overall, the majority of chromosomes and 1417 

populations showed a correlation between recombination rate and both SVπ and SV count 1418 

but not transposon content. 1419 

Supplementary Table 9. Functional terms associated with genes in the largest gene 1420 

bubble. Results are from an InterProScan analysis. The Gene IDs are based on a cd-hit 1421 

grouping of Braker3 annotations across all genomes. 1422 
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Supplementary Table 10. Genetic and actual correlations between life history traits. Where 1423 

genetic correlations are above 1, below -1 or ‘NA’, the model was likely poorly or over-fit. 1424 

Supplementary Table 11. Tests for overall impact of SVs on phenotype. Grey cells are for 1425 

test statistics that were not significant. Green cells are for test statistics that indicate in 1426 

increase in SV impact on phenotype. Red cells are for test statistics that indicate a decrease 1427 

in SV impact on phenotype. 1428 

Supplementary Table 12. Linear mixed models testing improvement in predictive ability 1429 

(Pearson’s ρ) from models with no SVs in the genomic relationship to matrix to models with 1430 

two terms, one for SVs and the other for non-SVs, or to models with only SVs. Improvements 1431 

in predictive ability were variable but some traits showed a relatively large improvement. 1432 

Supplementary Table 13 A. Results of a GWAS for 14 life history traits. B BLASTp hits for 1433 

gene downstream of 48 bp InDel azoxystrobin QTL, which encodes a centrosomin. C 1434 

BLASTp hits for gene upstream of 48 bp InDel azoxystrobin QTL, which encodes a protein 1435 

with no known functional domains. 1436 

Supplementary table 14 A. RNA sequencing data used for Braker3 annotation of genomes. 1437 

B The host genomes used for filtering RNA sequencing reads used in Braker3 annotation. 1438 

 1439 
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