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Abstract 28 
Spatial RNA imaging has not been widely adopted because conventional fluorescence microscopy 29 
is limited to only a few channels, and the cyclic reactions needed to increase multiplexing in 30 
techniques such as sequential fluorescence in-situ hybridization (FISH) require sophisticated 31 
instrumentation. Here, we introduce ‘Profiling of RNA In-situ through Single-round iMaging’ (PRISM), 32 
a method that expands coding capacity through color intensity grading. Using a radius vector filtering 33 
strategy to ensure the distinguishability of codewords in color space, PRISM achieves up to 64-plex 34 
color-barcoded RNA imaging in a single imaging round with conventional microscopes. We validate 35 
PRISM’s versatility across various tissues by generating a 3D atlas of mouse embryonic 36 
development from E12.5 to E14.5, a quasi-3D tumor-normal transition landscape of human 37 
hepatocellular carcinoma (HCC), and a 3D cell atlas and subcellular RNA localization landscapes 38 
of mouse brain. Additionally, we show the critical role of cancer-associated fibroblasts (CAFs) in 39 
mediating immune infiltration and immune response heterogeneity within and between tumor 40 
microenvironments. 41 
  42 
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Main 1 
 2 
The spatial arrangement of RNA transcripts is essential for revealing biological interactions at 3 
cellular and sub-cellular levels, exposing the diverse heterogeneity and structural compositions 4 
across various tissues. As demand for spatially resolved methods within the scientific community 5 
continues to grow1–6, existing methods face significant challenges regarding accessibility due to 6 
complex instrumentation, high costs, and low throughput7,8, particularly with imaging-based 7 
approaches9. Standard fluorescent microscopes, for instance, are generally limited to resolving no 8 
more than five channels due to spectral overlap10,11. Consequently, increasing multiplexity typically 9 
requires multiple rounds of labeling-stripping reactions or the addition of fluorescence channels in 10 
existing FISH-based methods12–18 and in-situ sequencing approaches19–27. 11 
 12 
Although multiplexing potential can theoretically be increased exponentially, fluidics-dependent 13 
methods have limited widespread adoption because they rely on sophisticated, delicate equipment 14 
that combines fluidics, optics, and temperature regulation, which are typically costly and time-15 
intensive9. Ensuring precise registration of signal spots across reaction cycles is further complicated 16 
by sample deformation or displacement over extended experiment durations. Additionally, three-17 
dimensional RNA profiling presents unique challenges, such as slow reagent diffusion in thick 18 
tissues and the alignment of three-axis imaging in fluidics-dependent techniques.  19 
 20 
Researchers are increasingly turning to fluidics-free methodologies. To exceed traditional channel 21 
limitations and encode more molecular species, some additional microscopic imaging modalities, 22 
such as super-resolution28, fluorescence lifetime29, and coherent Raman scattering microscopy30, 23 
have been employed. Recently, pseudo-thermal-plex channels31 and binding-affinity labeling32 were 24 
used to expand multiplexity on traditional microscopes. While these efforts achieve higher coding 25 
capacities without fluidics, the improvement in multiplexing remains modest. Furthermore, the 26 
requirement for specialized microscopy setups and temperature control equipment restricts broader 27 
application in biological laboratories. 28 
 29 
Here we present PRISM (Profiling of RNA In-situ through Single-round iMaging), a high-multiplex 30 
FISH method that employs a multi-channel color barcoding on rolling circle products to distinguish 31 
dozens of RNA transcript species in a single imaging round. As a fluidics-free approach, PRISM 32 
addresses accessibility challenges by requiring only a standard fluorescence microscope, with the 33 
entire workflow from sample preparation to data acquisition completed within a day. We tested 34 
PRISM across various tissue samples, including mouse brains, mouse embryos and human 35 
hepatocellular carcinoma (HCC) samples. Using a 30-gene panel, we developed a 3D cell atlas of 36 
mouse embryos at developmental stages E12.5, 13.5, and 14.5, encompassing over 4.2 million cells 37 
categorized into 12 types, showcasing cellular compositions and organizations in different organs 38 
at various developmental phases. Additionally, using a 31-gene panel on 20 consecutive sections 39 
from an HBV-positive patient, we created a quasi-3D HCC tumor-normal transition landscape with 40 
1.2 million annotated cells across 32 cell types, uncovering heterogeneities in the tumor 41 
microenvironment and demonstrating how cancer-associated fibroblasts (CAFs) construct a 42 
physical barrier against immune infiltration. PRISM’s compatibility with intact 3D imaging was further 43 
validated using 100-µm-thick mouse brain slices, where a 30-gene panel effectively identified over 44 
20 cell types within the cortex, hippocampus, thalamus, and hypothalamus regions in a single 45 
staining round using conventional confocal microscopy. With a coding capacity reaching up to 64-46 
plex, PRISM has been validated across different tissue types and thickness. It stands as a robust 47 
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and accessible high-multiplex FISH method for in-situ imaging of RNA transcripts, relying solely on 1 
standard laboratory equipment. 2 
 3 
 4 
Results 5 
 6 
Coding principles of PRISM 7 
 8 
The PRISM workflow begins by coding the targeted gene transcripts using padlock probes, each 9 
containing multiple segments of specific sequences. The barcode of each probe is a combination of 10 
segments, with each segment corresponding to a fluorescence channel (color). Although the number 11 
of available channels is limited due to spectral indistinguishability among fluorophores, each channel 12 
can accommodate multiple unique segment sequences, each encoding specific intensity information 13 
(Fig. 1a). By using this spectral barcoding scheme, the coding capacity can greatly exceed the 14 
channel limit through the combination of segmental sequences.  15 
 16 
Each transcript-bound padlock probe is then clonally amplified in situ via rolling circle amplification 17 
(RCA), creating a large number of identical barcodes for each clone (Fig. 1b). An array of imaging 18 
probes is also prepared, each containing a pair of identical single-stranded oligos, one with and one 19 
without fluorescent labels (Fig. 1c, Supplementary Fig. 1). The ratio of labeled to unlabeled twin-20 
probes is carefully determined, and all probes are pooled together as a single staining mix. When 21 
this mix is applied to hybridize with the RCA amplicons in situ, each segment binds both labeled and 22 
unlabeled probes in the preset ratio, forming a spectral barcode for each clone through competitive 23 
hybridization. Quantitative assessment of fluorescence intensity across all channels in each clone 24 
then reveals its barcode (Fig. 1c,d).   25 
 26 
Theoretically, an array with m channels and n intensity-level segments can provide a coding capacity 27 
of nm−1. For example, with three spectral channels, each quantized into quarters (0, 1/4, 2/4, 3/4, 28 
4/4), it is possible to write codes with 3-digit quinary numbers, enabling encoding of up to 53 - 1 = 29 
124 genes. However, in practice, the number of usable barcodes is reduced due to variations in the 30 
sizes of amplified nanoball clones, which can cause certain codes indistinguishable in spectral color 31 
space (Fig. 1e). For instance, a small amplicon barcoded as (020) would be indistinguishable from 32 
a twice-sized amplicon barcoded as (010), as would (033) and (022).  33 
 34 
To better describe barcode discriminability under these conditions, each barcode is conceptualized 35 
as a ‘radius vector’ in color space. Indistinguishable clones share the same vector direction but differ 36 
in magnitude; therefore, only angularly distinct barcode vectors are considered legitimate (Fig. 1e, 37 
Extended Data Fig. 1, Supplementary Fig. 2). To ensure ample dispersion of barcode vectors, we 38 
constrained the coding space to the plane where the sum of intensities across three channels 39 
(Ch1+Ch2+Ch3) equals 4. This approach optimizes the angles between barcode vectors, 40 
minimizing crosstalk and maximizing the distinguishability of barcodes. As a result, with three 41 
quarterly quantized channels, we achieve 15 highly distinguishable barcodes.  42 
 43 
With a 3-channel setup that minimizes amplification bias, the coding capacity can be further 44 
expanded by adding a fourth channel. In our demonstration, we selected common fluorophores, 45 
Texas Red (TR, Ch1), Alexa Fluor 488 (AF488, Ch2), Cy5 (Ch3), and Cy3 (Ch4), due to their wide 46 
availability. To address interference from tissue autofluorescence, the intensity level of Ch4 (Cy3) is 47 
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limited to 2 or 3, effectively doubling or tripling the coding capacity to more than 30 (Supplementary 1 
Fig. 2). 2 
 3 
Using conventional equipment and a single round of staining, we conducted cell typing on a 10-µm-4 
thick mouse brain coronal section with a 30-gene panel33 (Fig. 1f-i). Fluorescent puncta were 5 
processed to determine the spectral code of each amplicon, revealing the barcode of each transcript 6 
in situ (Extended Data Fig. 2). The barcodes formed into 30 distinct clusters in color space, 7 
accurately reflecting the original design. Clusters were identified using manually adjustable 8 
Gaussian fitting for probability prediction, achieving over 80% spot-preserving efficiency (Fig. 1f, 9 
Extended Data Fig. 3). By mapping each barcode back to the sample, we reconstructed the 10 
submicron-resolution spatial distribution of all 30 genes (Extended Data Fig. 4). High overall 11 
accuracy was demonstrated with amplification fidelity exceeding 95% and a PRISM decoding 12 
accuracy of 95.7%, as validated by orthogonal methods (Supplementary Figs. 3-5, Extended Data 13 
Fig. 5). With a minimal false-targeting rate (Supplementary Fig. 6), the overall accuracy was further 14 
validated through benchmarking spatial expression patterns against RNAscope results and 15 
previously reported data27 (Supplementary Figs. 7-9). 16 
 17 
Cell segmentation and typing were completed by integrating 30 RNA spatial images with DAPI-18 
stained nuclei territories (Supplementary Fig. 10). In this brain section, we identified 71,435 cells, 19 
categorizing them into five major types: excitatory neurons (39,757, 55.6%), inhibitory neurons 20 
(13,134, 18.4%), and non-neuronal cells, including oligodendrocytes (8,244, 11.5%), astrocytes 21 
(7,062, 9.9%) and microglia (3,238, 4.5%). Further differentiating into subtypes revealed the 22 
architectural organizations of the mouse brain at single-cell resolution (Supplementary Fig. 11).  23 
 24 
 25 
Spatial profiling of mouse embryos enables intracellular interaction analysis 26 
 27 

We used PRISM with a specific panel of 30 marker genes to explore the intricate structural dynamics 28 
and cellular interactions within various tissues and organs during embryonic development34,35 (Fig. 29 
2a-d, Supplementary Figs. 12-14). Spatial expression patterns are well-correlated with previously 30 
reported atlas35, offering finer details of tissue morphological structures (Supplementary Figs. 15, 31 
16). A 10-µm whole-mount section of an E13.5 mouse embryo revealed 12 primary cell types, 32 
including the epidermis, bone, and gastrointestinal tract, distinguished by the most abundantly 33 
expressed genes (Fig. 2c,d). Notably, the nervous system, constituting 39.3% of the total cell count, 34 
can be further classified based on marker gene expression, revealing spatial organization within the 35 
embryonic brain at E13.5, spanning the forebrain (pallium, subpallium), midbrain, hindbrain, and 36 
spinal cord (Fig. 2e). Gene co-expression analyses were conducted to determine the co-localization 37 
of genes within the nervous system (Fig. 2f), with significant co-localization observed for Hoxb8, 38 
Robo2, and Stmn2 in the spinal cord region. Additionally, the co-presence of Gad2 and Dlx1 in the 39 
subpallium supported the hypothesis that DLX1 transcription factors directly influence Gad2 40 
expression, a crucial interaction for the development of GABAergic neurons in the forebrain and 41 
illustrated a key aspect of neuronal differentiation and specialization36. 42 
 43 
A coarse-grained spatial correlation analysis was performed to understand the relationship between 44 
various cell types across tissue locations (Fig. 2g, Supplementary Fig. 17). The co-occurrence of 45 
skeletal and cardiac muscle cells, as well as GI tract and smooth muscle cells, indicates their 46 
collaborative roles in specific developmental functions. Both Wnt5a+ and Tbx5+ cells play critical 47 
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roles in coordinating limb development. In our analysis, Wnt5a+ Limb mesenchymal cells are 1 
primarily distributed in the distal regions of the limb and the terminal mouth area but spatially 2 
proximal to epidermis cells. Additionally, Tbx5+ limb fibroblasts demonstrate a high spatial correlation 3 
with Wnt5a+ cells. They exhibit a greater abundance in the limb and are primarily distributed in the 4 
proximal regions, exemplifying their joint contribution to the formation and functioning of the limbs. 5 
 6 
The further refined analysis assessed direct intercellular interactions (Fig. 2h), revealing a complex 7 
network of developmental interactions between the nervous system and other organs at E13.5. 8 
Notably, pancreatic cells marked by Spp1 exhibited significant interactions with chondrocytes and 9 
osteoblasts. The presence of islands of Spp1+ cells within the skeletal structure suggests their 10 
possible involvement in the early formation of the intervertebral disc37 (Supplementary Fig. 18). The 11 
previously noted spatial correlation between Wnt5a+ and Tbx5+ cells was confirmed to be a direct 12 
interaction. Additionally, Nkx2-1+ cells, highly expressed in certain neural precursors38, were found 13 
predominantly in the subpallium and demonstrated extensive interactions with the nervous system, 14 
including the spinal cord. Notably, numerous Nkx2-1+ cell clusters, with their distinctive disk-like 15 
structure, are scattered across the alar plates of the spinal cord, suggesting a role in cell 16 
differentiation and migration within the spinal cord (Supplementary Fig. 18). Not surprisingly, 17 
interactions within the same cell type are considerable (Fig. 2i). Particularly, 94% of hepatocytes 18 
interact with each other in close proximity (Fig. 2j), indicating early multicellular structure formation 19 
within the hepatic lobe and the establishment of basic hepatic architecture by E13.5. 20 
 21 
 22 

Spatial-temporal atlases illustrate embryonic organ development  23 
 24 

Single-round 30-plex imaging has enabled rapid spatial profiling on a large scale. We created a 25 
sampled 3D cell atlas of an E13.5 mouse, utilizing 11 whole-mount sections spaced 280 µm apart, 26 
capturing a total of 2,331,513 annotated cells (Fig. 3a). This comprehensive experiment, from 27 
sample preparation to imaging, was completed within three days to generate an annotated cell atlas, 28 
allowing for the visualization of various early developmental structures.  29 
 30 

At the E13.5 stage, the nervous system showcases distinct structures such as the multi-layered 31 
composition of the eye (marked by Neurod1+, Pitx2+, Stmn2+), the spinal cord’s alar and basal plates 32 
(Hoxb8+, Stmn2+), and the olfactory epithelium (Neurod1+, Cldn7+). Notably, Pitx2 (cornea), Neurod1 33 
(outer layer), and Stmn2 (inner layer) of the optic cup exhibit a gradient of expression from outer to 34 
inner layers, contributing to eye development. Conversely, in the pallium, an inverse pattern of 35 
expression was observed, likely due to the invagination process during the optic cup formation39 36 
(Supplementary Fig. 19). The respiratory system at this stage, indicated by Nkx2-1 and Tbx5 37 
expression, reveals lung-lobe and mesenchymal cells’ distribution. The early motion system, 38 
including muscles, bones, and appendages, can be observed with cellular resolution from various 39 
angles, laying the groundwork for future movement and coordination. Skeletal development is 40 
marked by specific gene expressions that present the differentiation direction of cell types: Runx2 41 
for osteoblasts and Col11a1 for cartilage. The digestive system begins to differentiate into the gastric 42 
and intestinal primordia, with Cldn7 marking this early form. The circulatory system, particularly the 43 
heart, shows a clear chamber structure and atrium/ventricle differentiation (Myl7+, Tnnt2+), while the 44 
renal system’s fine structure is delineated by Robo2+ and Nkx2-1+ expressions. PRISM’s high 45 
resolution and accuracy effectively reveal mouse embryo’s intricate structures and cell types at 46 
E13.5. 47 
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 1 
Expanding the atlas to include E12.5 and E14.5 mouse embryos offers valuable insights into their 2 
developmental progression, creating a temporal-spatial atlas with 26 whole-mount sections, 3 
4,257,418 cells, and 107,655,795 transcripts from 30 RNAs at sub-micron resolution (Fig. 3b, 4 
Supplementary Fig. 20). The period from E12.5 to E13.5 witnessed significant transformations in 5 
various tissues (muscle, skeleton, and ganglia) and organs (such as vibrissa and tongue) (Fig. 3c). 6 
By E12.5, the pancreas was identifiable as a cluster of Spp1+ cells, which subsequently enlarged 7 
and underwent bifurcation by E14.5 (Supplementary Fig. 21). Also, a group of Wnt5a+ cells in the 8 
hindbrain has a significant migration behavior, suggesting morphogenic behavior of the dorsal 9 
hindbrain during development40. Lung development is characterized by volume reduction and 10 
increased branching and bifurcation within the lung structure (Nkx2-1+, Tbx5+), and a more 11 
developed trachea is observed (Nkx2-1+). At the same time, the GI tract shows rapid development 12 
(Cldn7+, Tagln+), highlighting the dynamic nature of embryonic growth and organ formation. 13 
 14 
 15 

PRISM exhibits complex histological profiling of liver tumor microenvironment 16 
 17 
We conducted a detailed analysis of a hepatitis B virus (HBV) positive hepatocellular carcinoma 18 
(HCC) sample (around 6 mm x 5 mm) using a 31-gene panel, comprising 30 selected markers 19 
associated with cell proliferation, liver tumor cells, cancer-associated fibroblasts (CAFs), endothelial 20 
cells, and immune cells, in addition to a probe targeting a 28-bp sequence encoding the HBV core 21 
protein41,42 (Fig. 4a, Supplementary Figs. 22-24). This comprehensive panel facilitated the spatial 22 
exploration of the tumor microenvironment at single-cell resolution. 23 
 24 
Our analysis identified 1,695,418 transcripts and assigned them to 60,329 cells, predominantly 25 
classified into 12 immune cell populations—including B cells, T cells, natural killer cells, mast cells, 26 
neutrophils, monocytes, and macrophages—and 5 non-immune cell types, such as CAFs, tumor 27 
cells, epithelial cells, endothelial cells, and normal liver cells (Fig. 4b, Supplementary Figs. 25, 26). 28 
This classification was achieved using Harmony embedding and unsupervised clustering analysis 29 
based on distinct PRISM gene marker profiles. The accuracy of cell identification by PRISM closely 30 
aligned with findings from prior single-cell RNA-sequencing studies41–43 (Fig. 4c), validating the 31 
effectiveness of this single-round imaging technique. 32 
 33 
By mapping single cells to their original spatial contexts, we found that the spatial distributions and 34 
positions of cells, as revealed by PRISM, well correlated with those derived from conventional fast-35 
diagnostic hematoxylin and eosin (H&E) and immunohistochemistry (IHC) staining methods (Fig. 36 
4b, Supplementary Fig. 27). Further analysis delineated dominant cell populations into subtypes 37 
based on their unique PRISM profiles (Fig. 4d, Supplementary Fig. 28). For instance, tumor cells 38 
were subdivided into three distinct clusters characterized by the high expression of AFP, GPC3, and 39 
MKI67, indicating intrinsic heterogeneity. Immune cells, such as monocytes, were further 40 
categorized into classical (CD14+CD16-), non-classical (CD14dimCD16+), and intermediate 41 
(CD14+CD16+) subtypes. Additionally, cytotoxic, exhausted and CXCL13+ tumor-reactive CD8 T 42 
cells were identified as unique subpopulations among CD8 T cells (Fig. 4e). To probe cellular 43 
crosstalk, Squidpy neighborhood enrichment analysis revealed that AFP-high tumor cells 44 
preferentially co-localized with specific cell clusters, such as plasmacytoid dendritic cells (pDCs), 45 
and CD4⁺CXCL13⁺ T cells (Supplementary Fig. 29), suggesting their potential spatial interaction. 46 
This nuanced classification and the investigation of spatial colocalization among individual cell types, 47 
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especially between different subtypes, enrich our understanding of the complex dynamics within the 1 
tumor microenvironment. 2 
 3 
Using the GASTON method44, we profiled spatial features across the tissue (Fig. 4f). Four distinct 4 
tumor regions and one normal region of interest (ROIs) were selected based on their GASTON-5 
defined altitudes. Tumor ROIs exhibited pronounced heterogeneity in cellular composition and 6 
spatial distribution that ROI1 was enriched for GPC3-high tumor cells, whereas ROI2 was dominated 7 
by AFP-high cells (Fig. 4g). Notably, the normal liver ROI (ROI5) exhibited elevated HBV core protein 8 
expression, suggesting early HBV activity preceding HCC development (Fig. 4h). The immune 9 
landscape also varied by regions, with greater immune cell infiltration observed in ROI5 (Fig. 4i). 10 
Exhausted T cells expressing PDCD1 and/or CTLA4 were more abundant in the HBV-positive ROI5 11 
than other ROIs. In contrast, CXCL13+ CD4+ and CD8+ T cells, previously characterized as tumor-12 
reactive T cells45, were preferentially enriched at the tumor periphery (ROI3 and ROI4), potentially 13 
reflecting distinct immune responses to HBV infection versus tumor antigens. This detailed 14 
investigation underscores the spatial heterogeneity of HCC, offering insights that could significantly 15 
enhance our understanding of tumor microenvironment.  16 
 17 
 18 

Quasi-3D atlas exhibits microscale stromal heterogeneity in liver tumor  19 
 20 
To comprehensive understand the tumor microenvironment in HBV-associated HCC, we extended 21 
our spatial analysis beyond traditional 2D projections to a quasi-3D reconstruction. By stacking 22 
PRISM data from 20 consecutive tissue sections using the same 31-gene panel, we generated a 23 
thick slab-like structure (Fig.5a). Single-cell transcriptomic analysis identified 1,218,279 cells across 24 
32 clusters via our 3D PRISM approach, demonstrating high concordance with 2D PRISM 25 
annotations (Supplementary Fig. 30).  26 
 27 
The 3D reconstruction unveiled architectural complexities obscured in 2D analyses. Tumor nests 28 
appearing isolated in 2D interconnected in 3D, highlighting the intricate spatial organization within 29 
the native tumor microenvironment (Supplementary Fig. 31). This spatial continuity also captured 30 
more realistic patterns of heterogeneity in cell distribution across the tissue (Supplementary Fig. 31). 31 
Immune cells were largely confined to non-tumor regions, with minimal infiltration into tumor cores 32 
(Supplementary Fig. 32). CAFs appeared to form physical barriers that impeded the entry of multiple 33 
types of immune cells (Fig. 5b, Supplementary Fig. 33), including CD8+ T cells and neutrophils, into 34 
the tumor core. Notably, NK cells were observed to traverse this CAF-defined boundary and 35 
accumulated at the tumor front, suggesting a distinct migratory behavior and potential antitumor 36 
roles (Fig. 5c). 37 
 38 
To further interrogate the finer spatial architecture of the tumor microenvironment, we applied 39 
STAGATE46 analysis to our PRISM spatial transcriptomic data. Using a 40-μm neighborhood 40 
threshold to segment the tissue into spatial domains, we identified ten discrete cellular modules (Fig. 41 
5d, e) with distinct cell compositions, including three tumor-enriched, one normal liver, one CAF, one 42 
epithelia, and three immune cell modules. 3D reconstruction revealed pronounced heterogeneity. 43 
Within tumor regions, distinct tumor-enriched modules interpenetrated in 3D space (Fig. 5f), 44 
reflecting complex clonal structures and invasion patterns. In non-tumor areas, we observed dense 45 
3D niches of neutrophils co-localized with EPCAM+ epithelial cells (Fig. 5g), consistent with previous 46 
reports that EPCAM⁺ epithelial progenitors recruit neutrophils to facilitate tissue repair and modulate 47 
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tumor invasion47,48.  1 
 2 
Notably, structures that appeared as isolated B-cell clusters in 2D projections coalesced into 3 
interconnected lymphoid networks in 3D (Fig. 5h, Supplementary Fig. 31d). These B-cell-dominated 4 
niches harbored CD4⁺ and CD8⁺ T cells, with plasma cells enriched along tumor-oriented axes, 5 
consistent with previously reported chemokine-guided lymphocyte recruitment patterns in tumor-6 
adjacent regions49. However, these aggregates lacked fully developed follicular dendritic cell 7 
networks or germinal center, resembling deviating tertiary lymphoid structures (TLSs) prevalent in 8 
anti-PD-1 non-responders50, implicating their roles in HCC progression. Taken together, these 3D 9 
spatial transcriptomic data provide a systematic and comprehensive view of the tumor’s internal 10 
architecture, with potential implications for understanding HBV-associated HCC. 11 
 12 
 13 

Large-scale 3D in-situ profiling unveils subcellular RNA distribution heterogeneities in intact 14 
thick tissues 15 
 16 
We expanded the application of PRISM to analyze the intact 3D cell composition of 100-µm thick 17 
mouse brain tissue, demonstrating its inherent compatibility with the processing and imaging of thick 18 
tissues (Fig. 6a). This approach preserves the three-dimensional structure with high precision and 19 
accuracy. By employing single-round imaging, we avoid repetitive macromolecule penetration within 20 
thick tissues and effectively circumvent the challenges of fluorescent spot alignment and registration 21 
across multiple imaging sessions, which are common issues in existing multiplex RNA imaging 22 
techniques.  23 
 24 
To improve optical transmission through thick tissues, we incorporated a post-amplification lipid-25 
removal step and used iohexol for refractive index matching to ensure a deep light penetration 26 
(Supplementary Fig. 34). PRISM decoding process used signal ratios rather than absolute 27 
intensities, offering greater tolerance to optical attenuation (Extended Data Fig. 6). Utilizing a 30-28 
gene panel, we profiled large-scale ROIs within the brain, including the cortex (1330 µm x 400 µm 29 
x 100 µm, 207,115 RNA transcripts), hypothalamus (770 µm x 770 µm x 100 µm, 214,671 RNAs), 30 
thalamus (585 µm x 775 µm x 100 µm, 156,368 RNAs), and hippocampus (1520 µm x 1150 µm x 31 
100 µm, 548,220 RNAs) (Fig. 6a). The detailed morphology and distribution of marker genes within 32 
these areas align with those observed in 2D experiments, indicating consistency across dimensions 33 
(Fig. 6b). 34 
 35 
Cell segmentation and classification within each ROI were performed using StarDist51,52 for 3D 36 
nucleus segmentation(Fig. 6c) (resulting in 4,792 cells in the cortex ROI, 9,838 cells in the 37 
hypothalamus ROI, 5,370 cells in the thalamus ROI, and 20,721 cells in the hippocampus ROI, 38 
respectively) and Harmony embedding coupled with Leiden cell clustering, respectively, allowing for 39 
the differentiation of glial cells and neurons into subtypes (Fig. 6d). These classifications show high 40 
correlation with single-cell transcriptome data, affirming the robustness of our approach 41 
(Supplementary Fig. 35). Furthermore, we projected the cells back to their original locations to 42 
construct a 3D neuron-architecture landscape (Fig. 6e). 43 
 44 
We then characterized the subcellular RNA distribution (Supplementary Fig. 36). RNA polarity within 45 
each cell type was quantified by averaging the distances from RNA centroids to the corresponding 46 
cell centroid for each gene (Fig. 6f). This analysis revealed notable heterogeneity in RNA polarity 47 
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among cells. For example, In-Sst and Ex-L6b cells exhibited minimal polarity with given genes, 1 
whereas Pmch+ cells in the hypothalamus displayed pronounced polarity, with most RNA gathering 2 
on one side of the cell body, indicative of unique cell orientations. These polarity patterns were 3 
consistent with previously reported in situ sequencing data26 (Supplementary Fig. 37a). Additionally, 4 
we assessed nuclear RNA enrichment across cell types and brain regions to examine subcellular 5 
transcript localization (Fig. 6g). Oligodendrocytes in the hippocampus and thalamus, and those 6 
particularly located within fiber tracts, demonstrated higher nuclear RNA enrichment compared to 7 
their cortical counterparts. This regional pattern was corroborated by RNAscope validation 8 
(Supplementary Fig. 37b-d). Together, these subcellular insights add another dimension to our 9 
understanding of cell type identity and state, further enriching the comprehensive profile provided 10 
by PRISM. 11 
 12 
 13 

Discussion 14 
 15 
PRISM leverages multi-channel color barcoding, a strategy that uses specific spectral combinations 16 
to enhance information density within a single round of fluorescent in situ hybridization staining and 17 
imaging, while facilitating size-independent barcoding of clonal RCA products. PRISM’s coding 18 
space can be expanded by increasing the levels of division without the need to lengthen barcode 19 
sequences. This scalability is achieved by setting more divisions and reallocating each quantity of 20 
level. Each level can also be fine-tuned by adjusting the mixing ratio of fluorescent probes to non-21 
fluorescent probes corresponding to each barcode segment in the padlock probes (Supplementary 22 
Fig. 38). This adjustability of the fluorophore proportion for each level and channel also allows for 23 
optimal differentiation in color space upon decoding, making PRISM adaptable to various optical 24 
imaging systems regardless of their specific configurations and performance characteristics. 25 
 26 
Furthermore, considering the inherent autofluorescence of many tissues, PRISM’s design 27 
accommodates quantization of each spectral channel to different levels to ensure distinguishability 28 
within a fluorescence-background environment (Supplementary Fig. 39). We demonstrated its 29 
effectiveness in diverse sample types—including mouse brain, mouse embryo, and human tumor 30 
sections—and the ability to detect viral genome fragments as short as 28 bp, highlighting PRISM’s 31 
broad applicability. 32 
 33 
With PRISM, encoding capacity is enhanced by creating higher intensity levels within respective 34 
channels, achieving an experimentally verified encoding capability of up to 64 genes in a single 35 
imaging round using four channels (Extended Data Fig. 7). Specifically, three spectral channels Ch1, 36 
Ch2, and Ch3, were quantized into fifths (0, 1/5, 2/5, 3/5, 4/5, 5/5), and the channel (Ch4) was 37 
divided into three levels: high (2), low (1), and none (0). This capacity allows for detailed spatial 38 
mapping, as demonstrated in an E14.5 stage mouse embryo, mouse brain and 100-µm thick tissue 39 
(Extended Data Fig. 8, Supplementary Figs. 40, 41). The decoding accuracy in a 64-plex PRISM 40 
experiment was evaluated to be 95.8% and 97.6% in mouse brain and embryo tissue, respectively 41 
(Extended Data Figs. 9, 10). With its ability to resolve dozens of identities in a single shot, PRISM 42 
offers a much higher information entropy of imaging than other multi-cycle methods, which are 43 
typically limited to only four identities. While cyclic strip-and-rehybridization methods or adding more 44 
optical channels could theoretically further increase multiplexity for PRISM, they would necessitate 45 
extensive instrumentation and image processing, compromising the ease of use. Challenges such 46 
as signal crowdedness, another common issue in amplification-based RNA in-situ detection 47 
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technologies, are acknowledged as multiplexity increases. This could be addressed through 1 
expansion microscopy or introducing pseudo-channels via light-activable/switchable fluorescent 2 
dyes or fluorescence resonance energy transfer (FRET). Moreover, although PRISM demonstrates 3 
high in situ specificity, its sensitivity (about 10%) is notably lower than that of smFISH53, primarily 4 
due to the use of RCA-based amplification. This limitation aligns with previous findings54 and likely 5 
arises from suboptimal binding efficiency of single probes55, and this constraint may be alleviated 6 
by increasing the number of probes per target gene. 7 
 8 
PRISM distinguishes itself through cost efficiency, simplicity, and rapid experimental turnaround. 9 
Using standardized reagents and conventional benchtop setups, it serves as a valuable tool for 10 
diverse applications, from molecular pathology to cell atlas construction, while minimizing reliance 11 
on specialized equipment and extensive resources. With an open-source design, PRISM aims to 12 
simplify high-multiplex RNA imaging, making it as accessible as standard immunostaining 13 
techniques. 14 
 15 
 16 
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 1 
Fig. 1 | Workflow and principle of PRISM encoding. a, PRISM barcoding on padlock probes. Barcode on padlock probe consists 2 
of four segments, with each segment corresponding to one spectral channel. Each segment can accommodate various sequences 3 
(denoted as A, B, C, … in Ch1), with each sequence represents a distinct intensity level. The barcode on padlock probe is a 4 
combination of different segment sequence (intensities) under each channel, e.g. C-K-P-S, signifies level 3 in Ch1, level 1 in Ch2, 5 
level 2 in Ch3 and level 5 in Ch4. Therefore, each barcode is spectroscopically unique, visualized as a color. b, Molecular events in 6 
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the PRISM workflow. Gene transcripts are targeted using a set of padlock probes with unique barcodes. Following ligation, each 1 
padlock probe undergoes rolling circle amplification (RCA) to produce hundreds of identical barcode sequences. These barcodes are 2 
then read out in-situ through fluorescent staining and imaging. c, Decoding through staining with pooled imaging probes. Each kind 3 
of imaging probe is designed with sequences identical to each segment sequence, with two types: fluorescent labeled and unlabeled. 4 
Two types are pre-mixed in ratios according to the designed intensity level for that segment sequence. During staining, competitive 5 
binding ensures that the desired fraction of fluorophore binds to the rolling circle product, thereby exhibiting the intended intensity. All 6 
imaging probes are pooled together for one-pot staining. d, Experimental workflow of PRISM. Major steps include padlock probe 7 
binding, signal amplification (probe ligation and rolling circle amplification), fluorescent staining, and imaging. 8 
The entire experiment can be completed within 24 hours using standard equipment. e, Radius vector filtering to ensure ample 9 
barcode discriminability. Barcode candidates result from combinations of intensity levels and spectral channels. Due to the amplicon 10 
size heterogeneity during isothermal RCA, the absolute signal intensity varies, causing the spot from a certain barcode to shift along 11 
its radial ray in the color space, leading to indistinguishability. To address this, all barcodes were represented as their radius vector, 12 
forming a unique set of barcode vectors. Barcode vectors with small neighbor angles are difficult to distinguish. To maximize the 13 
dispersion of vectors, the barcode set intersected by plane (Ch1 + Ch2 + Ch3 = K) was selected. By quantizing three channels into 14 
quarters and setting K to 4, 15 highly distinguishable barcodes can be generated. The addition of a fourth channel, Ch4, multiplies 15 
the coding capacity by Ch4 quantities. For example, with a 2-intensity-level, which is 0 (No) or 1 (Yes), the total available barcodes 16 
are 30 or 31 (including only Ch4 itself). f, Gene decoding in color space. The signals from four colors were converted into three-17 
dimensional coordinates, and each spot was plotted in a “color space”. 30 clusters located in different positions, each representing a 18 
unique barcode. Each barcode was identified by its specific location within the color space. g, Spots in the raw image corresponded 19 
to 30 different barcodes. Each spot consists of four channels, shown within the same dynamic range. Scale bar: 10 µm, zoom-in 20 
image; 1 mm, below. h, Decoded genes. Each gene was assigned a pseudo-color corresponding to its barcode. Scale bar: 10 µm. i, 21 
Spatial distribution of 30 decoded genes.  22 
 23 
 24 
 25 
 26 
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 1 
Fig. 2 | Spatial profiling of mouse E13.5 embryo by PRISM. a, A composite raw image of four channels of the mouse embryo 2 
E13.5 (sagittal section) by PRISM and the distribution of 30 clusters of spots in color space. Scale bar: 1mm. b, Cell segmentation. 3 
Cells were segmented through a DAPI image, and each identified gene spot was assigned to the nearest nucleus through Euclidean 4 
distance. Scale bar: 5 µm. c, Annotated cell type distribution of the mouse embryo. Cell type was determined by the most abundant 5 
gene within each cell. Zoom-in figs (i - iii) were colored based on gene abundance. Scale bar: 100 µm. d, Dot plot of each cell type. 6 
e, Heterogeneity in the nervous system can be revealed through gene expression patterns. The cells were colored based on the 7 
abundance of their respective gene expressions and grouped according to the organ’s location. Scale bar: 1 mm. f, Co-expression 8 
analysis revealed the developmental role of transcription factor DLX1 in forebrain GABAergic-neuron. Scale bar: 500 µm. g, Coarse-9 
grain spatial correlation analysis between general cell types. The spatial binning size is 200 x 200 µm2. h, Direct intercellular 10 
interaction between general cell types. The interaction degree was defined as the proportion of cells directly adjacent to another cell. 11 
The figure below shows the total cell number of each general cell type. i, Direct intercellular interaction between each cell type itself. 12 
j, Spatial distribution of liver cells. The zoom-in image shows numerous structures of hepatic lobes, each composed of several liver 13 
cells. Scale bar: 500 µm. 14 
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 1 
Fig. 3 | High-throughput spatial profiling of mouse embryos E12.5, E13.5, and E14.5. a, Developmental structures across 2 
different systems from a sampled-3D spatial atlas of the E13.5 embryo, constructed from 11 sagittal sections at an average interval 3 
of 280 µm. Fine structures from the nervous, respiratory, motion, digestive, cardiovascular, and genitourinary systems are collected 4 
from different sections. Cells within these structures are colored based on the abundance of their respective marker genes. Scale 5 
bar: 500 µm. b, Sampled-3D spatial atlas of E12.5 (4 sections), E13.5 (11 sections) and E14.5 (11 sections) embryo. c, Developmental 6 
progression at different stages is revealed by annotated cell distribution. DRG (Dorsal Root Ganglion); CG (Cervical ganglion); TVG 7 
(Trigeminal V ganglion); CTG (Cervico thoracic ganglion). Scale bar: 2.5 mm. 8 
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 1 
Fig. 4 | Spatial profiling of human hepatocellular carcinoma cancer microenvironment by PRISM. a, Workflow and signal 2 
results of HCC sample profiled by PRISM 31-gene panel, targeting 30 marker genes and one HBV core-protein-encoding RNA. Scale 3 
bar: 1 mm. b, Cell type classification in the HCC sample. Upper left: cell annotations derived via Harmony embedding and Leiden 4 
clustering. Bottom left: UMAP projection of all cells. Upper right: H&E staining of an adjacent tissue section. c, Pearson correlation 5 
between PRISM-based cell classifications and single-cell transcriptomic data. d, Dot plot displaying the expression of marker genes 6 
across each cell subtype. e, Spatial projection of cell subtypes across the tissue section. Scale bar: 1 mm. f, GASTON isodepth and 7 
cluster plot with annotated ROIs. Scale bar: 1 mm. g, Expression levels of AFP, GPC3, MKI67, and HBV core protein RNA across 5 8 
ROIs. h, Spatial gene expression levels of AFP, GPC3, MKI67, and HBV RNA content within 5 ROIs. Scale bar: 200 µm. i, Ro/e 9 
(ratios of observed cell numbers to random expectations) cell type enrichment analysis across the five ROIs. 10 
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 1 
Fig. 5 | Quasi-3D atlas reconstitution of HCC microenvironment through PRISM consecutive profiling. a, Reconstituted 3D 2 
cellular atlas from 20 consecutive tissue sections. Scale bar: 1 mm. b, CAF barrier effect on immune cell infiltration through cell 3 
density projections. The sample was rotated 27˚ to horizontally align its ‘long-axis’. All cells were projected onto this long axis, and 4 
distribution histograms for selected cell types were plotted. The red dashed line indicates the peak distribution of CAFs. c, 3D 5 
projection of various types of cells. Scale bar: 1 mm. d, 3D projection of spatial domains annotated by STAGATE. Scale bar: 1 mm. 6 
e, Ro/e (ratios of observed cell numbers to random expectations) cell type enrichment analysis for STAGATE-defined regions shown 7 
in panel d. f, Intra-tumor heterogeneity analysis. Spatial distributions of GPC3-high, AFP-high and proliferative tumor cell modules 8 
exhibit distinct aggregation patterns. Scale bar: 1 mm (overview); 100 µm (zoom-in). g, Spatial projection of cell types in the 9 
Epithelia/Neutrophil module. Scale bar: 1 mm (overview); 100 µm (zoom-in). h, Spatial projection of cell types in the B cell-enriched 10 
module. Scale bar: 1 mm (overview); 100 µm (zoom-in). 11 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 5, 2025. ; https://doi.org/10.1101/2024.06.29.601330doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.29.601330
http://creativecommons.org/licenses/by-nc/4.0/


 17 

 1 
Fig. 6 | Three-dimensional RNA in-situ staining in intact mouse brain tissue. a, Workflow of PRISM 3D staining and the result. 2 
A liquid removal step is added after rolling circle amplification. RI matching was performed after imaging probe staining to enhance 3 
optical transparency. Resulting images depict tissues from four brain regions (HPF: hippocampus formation, CTX: cortex, HY: 4 
hypothalamus, and TH: thalamus). The images are composited using four channels (488nm, 543nm, 594nm and 647nm). Scale bar: 5 
200 µm, upper left; 10µm, right. b, Gene calling in color space for four brain regions. The distribution of selected called genes in the 6 
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four regions is shown on the right side. Scale bar: 200 µm. c, Three-dimensional cell segmentation. Identified gene spots were 1 
assigned to nearest nucleus centroid through Euclidean distance. Scale bar: 15 µm. d, Cell classification by Harmony embedding 2 
and Leiden clustering. The color of cell type is unified in UMAP plot and dot plot. e, Projection of selected cell type in the four brain 3 
regions. Scale bar: 200 µm. f, Subcellular RNA polarity analysis across brain regions and cell types. The polarity analysis was based 4 
on the scaled distance of RNAs’ centroid and nucleus centroid within one cell. The top 20% was designated as high polarity, and the 5 
bottom 20% as low polarity. The values in heatmap were calculated through Ro/e analysis using the ratio of high to low polarity. 6 
Polarity values from 30 genes were averaged in each cell type. On the right: examples of cells with different RNA polarity level. Scale 7 
bar: 5 µm. g, Nuclear RNA enrichment analysis using each cell’s Ro/e, calculated from the nuclear RNA fraction, as the indicator. On 8 
the right: examples of cells with different levels of nuclear RNA enrichment. Scale bar: 5 µm. 9 
 10 
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 31 
 32 
 33 

Materials and Methods 34 
 35 

Cell culture 36 

HEK293T cells (ATCC) were cultured in Dulbecco’s Modified Eagle Medium (DMEM; Gibco, Cat. 37 
No. 11965092) supplemented with 10% fetal bovine serum (FBS; Gibco, Cat. No. 16000044) and 38 
maintained at 37°C in a humidified 5% CO₂ incubator. 39 
 40 

Mice  41 

Animals were housed at 22-24 °C in 40%-60% relative humidity under a 12-h light/12-h dark cycle. 42 
Animal handling and tissue harvesting methods were conducted in strict adherence to local animal 43 
welfare laws and approved by the Laboratory Animal Care and Use Committee at Peking University, 44 
ensuring alignment with recognized ethical standards for laboratory research. Wild-type C57BL/6J 45 
mice, aged over 8 weeks (sex information was not related to our study), were euthanized to collect 46 
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brain tissue, while embryos at 12.5-, 13.5-, and 14.5- days post-fertilization were also harvested. 1 
The mouse brains and embryos were embedded in Tissue-Tek O.C.T. Compound (Sakura), snap 2 
frozen, and stored at -80 °C. The frozen tissues were sectioned into 10-μm-thick sections using a 3 
CM1950 Cryostat (Leica) and affixed to a Superfrost Plus glass slide (Epredia). The mounted 4 
sections can be stored for one year at -80 °C.  5 
 6 
For 100-µm-thick tissue collection, C57BL/6J mice (> 8 weeks) were perfused with pre-chilled 4% 7 
(w/v) RNase-free paraformaldehyde (PFA, Shanghai Yuanye). Subsequent to the brain harvest, the 8 
samples were immersed in 4% PFA for overnight fixation at 4 °C. The brain was sectioned into 100-9 
µm slices using a VT1200 Vibratome (Leica). These slices were preserved in 70% ethanol at 4 °C 10 
and can be stored for more than 3 months. 11 
 12 

Human 13 

A human hepatocellular carcinoma sample was placed in RPMI 1640 medium after being obtained 14 
from the patient and then processed following the aforementioned protocol (O.C.T embedded, snap 15 
frozen and sectioned into 10-μm-thick sections). This study was approved by the Ethics Committee 16 
of Beijing Shijitan Hospital, Capital Medical University. The patient in this study provided written 17 
informed consent for sample collection and data analyses. 18 
 19 
 20 
Probe and barcode design. For each gene of interest, a 40-nucleotide (nt) sequence window was 21 
identified to serve as a binding target, with 2 binding targets designated for mouse brain and embryo 22 
samples and 3 for human hepatocellular carcinoma samples. The selection of these 40 nt 23 
sequences adhered to stringent criteria: a melting temperature (Tm) in the range of 65-75 °C, the 24 
absence of 5 consecutive guanine (G) bases, coverage of all transcript variants (if possible), no 25 
blast results matching other genes in the NCBI database and no significant DNA secondary structure 26 
(ΔG > -10). Each 40nt sequence was divided into two segments of 20nt each for the construction of 27 
a padlock probe.  28 
 29 
A “selective amplification” strategy was employed to mitigate signal crowdedness issues26. Briefly, 30 
padlock probes targeting highly expressed genes were doped with irreplicable ones at proper ratios 31 
during probe pooling. This approach can dilute the clonal populations by partially suppressing the 32 
amplification of abundant transcripts. During analysis in a gene-by-count expression matrix, the 33 
quantities of those transcripts can be recalibrated by multiplying respective dilution ratios. The 34 
dilution ratios we used for all samples were listed in Supplementary Table 1.  35 
 36 
Each gene was assigned by a specific barcode (Fig. 1a,b). The barcode consists of four segments 37 
(20nt for each), with segments specifically binding to fluorescent probes labeled with Texas Red 38 
(TR), Alexa Fluor 488 (AF488), Cy5, and Cy3, respectively. For 30- or 31-plex coding, each segment 39 
variation allowed for 0-4 intensity levels per channel except for Cy3, which was compromised to two 40 
levels due to autofluorescence background. Color Intensity grading is realized by mixing 41 
fluorophore-labeled probes with unlabeled probes in a specific ratio. Mixing ratio for all imaging 42 
probes was listed in Supplementary Table 2. The ratio for each probe pair can be finetuned based 43 
on actual optical setups. All padlock probes and imaging probes were ordered from Sangon Biotech 44 
(Shanghai).  45 
 46 
Sample treatment for thin tissue. For a 10-µm-thick frozen tissue sections, they were fixed in 4% 47 
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PFA with 0.1% Glutaric dialdehyde at room temperature for 15 min after taking out from -80 °C 1 
refrigerator, and then rinsed with PBST (0.05% Tween in 1X PBS). The sample was then 2 
permeabilized with 0.01% pepsin in 0.1M HCl at 37 °C for 2 min (10 min for mouse embryos), 3 
followed by PBST washing. After that, the samples were dehydrated in a series of ethanol washes 4 
(10 min in 80% ethanol followed by 2 min in pure ethanol) and rehydrated with three-time PBST 5 
washes. The samples were then blocked with oligo-dT (100 nM oligo-dT [Sequence: 6 
AAGCAGTGGTATCAACGCAGAGTACT30VN], 50 mM KCl, 20% formamide, 200 μg/mL BSA, 200 7 
μg/mL Yeast tRNA (AM7119, Invitrogen), and 1U/μL Ribolock RNase inhibitor (Thermo Scientific) in 8 
Ampligase buffer (Lucigen)) for 10 min at room temperature, thereby suppressing non-specific probe 9 
binding. The probes were hybridized to sample by incubating them in a hybridization mix (200 nM 10 
padlock probe for each, 50 mM KCl, 20% formamide, 200 μg/mL BSA, 200 μg/mL Yeast tRNA, and 11 
1U/μL Ribolock RNase inhibitor in Ampligase buffer) at 55 °C for 15 min and then 45 °C for 2 h. The 12 
samples were placed in a humidified chamber during incubation. After hybridization, the samples 13 
underwent three 10-min washes with washing buffer (10% formamide, 2X SSC buffer) to remove 14 
non-specifically bound probes, then rinsed twice with PBST. The samples were then incubated in a 15 
ligation mix (2.5 U/μL SplintR ligase (NEB), 200 μg/mL BSA, and 1U/μL Ribolock RNase inhibitor in 16 
SplintR buffer) at 37 °C for 2 h in the humidified chamber to ligate the nick on the padlock probe, 17 
and then the samples were rinsed twice with PBST. Then rolling circle amplification (RCA) was 18 
performed using 0.25 U/µl Phi29 polymerase in Phi29 polymerase buffer (Thermo Scientific) with 19 
250 μM dNTP (Thermo Scientific), 50 μM aminoallyl-dUTP (Thermo Scientific), 10% glycerol, 200 20 
μg/mL BSA, and 300 nM RCA primer at 30 °C overnight. Following RCA, the samples were rinsed 21 
twice with PBST, then fixed with 10 μg/μL BS(PEG)9 (Thermo Scientific) in PBST at room 22 
temperature for 15 min, and subsequently rinsed three times with PBST. Finally, the samples were 23 
washed three times (5 min per wash) with 65% formamide at room temperature, followed by two 24 
PBST rinses. 25 
 26 
Sample treatment for thick tissue. Tissue slices were rehydrated through three 20-min incubations 27 
in PBST after taking out from ethanol, then blocked with oligo-dT (the reagent was the same as 28 
mentioned above) for 30 min at room temperature. After that, the probes were hybridized to samples 29 
as mentioned above at 45 °C for 24 h with gentle shaking, followed by washing three times for 20 30 
min each in washing buffer, then three times in PBST, then overnight incubation at 37 °C in ligation 31 
mix as mentioned above with gentle shaking. After two PBST washes, RCA was performed at 30 °C 32 
for 12-24 h, followed by two gentle PBST washes and a 30-min fixation in BS(PEG)9 as mentioned 33 
above. After being washed three times with PBST and 65% formamide at room temperature, the 34 
samples were treated with Cubic L (TCI, T3740) for lipid removal at room temperature for 1 h, 35 
followed by three-time washes with PBST.  36 
 37 
Imaging probe staining. The samples were incubated with a mixture of 17 fluorescence-labeled 38 
probes (each paired with an unlabeled probe at a predetermined ratio, with a final concentration of 39 
120 nM per pair, 20% formamide, 2X SSC buffer) at 50 °C for 9 min, then 37 °C for 21 min. Following 40 
incubation, the samples were washed three times with washing buffer, stained with DAPI (5 μg/μL, 41 
Beyotime) solution at room temperature for 5 min, and washed twice with PBST. Finally, the samples 42 
were mounted for imaging with a cover slip.  43 
 44 
For staining 100-µm-thick samples, the imaging probe incubation was performed at 37 °C for 2 h, 45 
followed by three washes with washing buffer, a DAPI staining at room temperature for 30 min, and 46 
two PBST washes. The samples were then immersed in 0.9 M Iohexol (2X SSC buffer) for 1 h at 47 
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room temperature to adjust the refractive index. Finally, the sample was mounted for imaging with a 1 
cover slip and sealed with varnish to avoid evaporation. 2 
 3 
Imaging. Imaging can be performed using any proper instrument. Our experiment used both home-4 
built setups and conventional equipment in the core facilities. For our thin tissue imaging, the sample 5 
was placed on a home-built epifluorescence microscope, using MIM microscopic imaging framework 6 
(Applied Scientific Instrumentation: RAMM-Basic, RAMM-URKIT2, MIM4-OSM25, TN200-MMC, 7 
LLG3-E100, MS4, S551-2201B, C60-3WMS-Mx) equipped with an S551-2201B motorized stage 8 
(Applied Scientific Instrumentation), an ATF6.5 SYS 785 automated focusing module (Wise Device 9 
Inc.), a CFI S Plan Fluor ELWD (40X NA 0.60) objective lens (Nikon), an X-Cite Turbo LED light 10 
source (Excelitas Technologies), and an Orca Fusion BT scientific CMOS camera (Hamamatsu 11 
Photonics). To image a 10-µm thick tissue, we collected a z-stack of 9 planes at ~1 µm intervals for 12 
each tile. 4% overlap was preserved for image registration and stitching. Cy3 / Cy5 (532/647 nm) 13 
and AF488 / TxRed / DAPI (488/594/405 nm) channels were serially imaged. The sampling rate was 14 
0.1625 µm x 0.1625 µm per pixel. For a tissue section similar in size to a coronal section of a mouse 15 
brain (~1 cm x 0.6 cm), approximately 600 tiles were imaged, and it took around 90 min for imaging. 16 
The imaging can also be performed with a commercialized fluorescent microscope or a slide scanner 17 
with appropriate channels. Conventional confocal microscopes, such as LSM880 and LSM980 18 
(Zeiss), were used for thick tissue imaging. Fast DAPI scanning across the whole slice was 19 
performed to find regions of interest. 647 nm, 594 nm, 543 nm, 488 nm, and 405 nm were used for 20 
imaging. The sampling rate is 0.207 x 0.207 x 0.700 µm/voxel for a 100 µm-thick brain slice. The 21 
imaging software was Zen or Zen Blue for LSM880 and LSM980, respectively.  22 
 23 
Image processing. The thin tissue imaging processing was conducted as described in 24 
SPRINTseq26. Briefly, images from multiple planes were stacked along the z-axis through an all-in-25 
focus algorithm, followed by shade correction with CIDRE56 and inter-channel image registration 26 
(Fast Fourier Transform and Maximum Cross-Correlation). We resized the image from different 27 
channels to correct color aberration by re-sampling the image tile-by-tile in respective channel 28 
(github: PRISM_Code/Image_process/image_process_after_stack.py/resize_batch). The tiles were 29 
stitched using the Microscopy Image Stitching Tool57. For the alignment of 20 consecutive sections 30 
of HCC, we manually identified and marked 12 anchor points on each slide. The initial slide served 31 
as the template, and affine transformations were applied to the subsequent 19 slides, utilizing the 32 
established anchor points. This procedure facilitated the creation of a comprehensive, albeit artificial, 33 
three-dimensional representation of the HCC sample. For thick tissue, registration from each 34 
channel and stitching from each tile were performed in ImarisStitcher (Oxford Instruments). Given 35 
that dehydration, refractive index (RI) matching during sample preparation can cause a slight tissue 36 
shrinkage in the z-direction. Z-length was rescaled to 100 µm during image processing. 37 
 38 
Gene decoding. Signal spots were extracted from all four channels, using local maxima on tophat-39 
filtered images for thin tissue (Extended Data Fig. 2). 3D local maxima and Gaussian fitting 40 
(Airlocalize)58 were used for spot extraction for thick tissue. Spot signal coordinates across all 41 
channels were combined to get 4-dimensional (from Ch1 to Ch4) intensity information. Spectral 42 
crosstalk was corrected according to optical set up condition. In our imaging platform, we observed 43 
approximately 10% signal bleed-through from the Cy3 channel into AF488 channel. Thus, we 44 
subtracted corresponding proportion of the AF488 channel intensity from the Cy3 channel on a pixel-45 
by-pixel basis. Four intensity values were normalized through the mean values of respective 46 
channels. Spots with low sum-intensity values were filtered out.  47 
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 1 
In barcode design, Ch1, Ch2, and Ch3 sum into a fixed value (for a 30/31-barcode set, this sum is 2 
4), corresponding to 15 intersected barcodes (Fig. 1e). Correspondingly, all spots from real data 3 
made up 15 rays in color space (x=Ch1, y=Ch2, z=Ch3, Extended Data Fig. 2). Due to experimental 4 
noise, such as amplification variations and the fluorophores’ chemical environments, spots 5 
belonging to one ray may exhibit behavior indicative of a joint distribution. This joint distribution 6 
resembles a Poisson-like distribution along the direction of the ray and a Gaussian-like distribution 7 
in the direction perpendicular to the ray. For the ease of following analysis, we projected all spots 8 
onto the plane (x+y+z=4); this was accomplished by scaling the sum value of each spot to 1 (L1-9 
normalization). Therefore, the values in each spot were transformed to their respective proportions: 10 
Ch1/(Ch1+Ch2+Ch3), Ch2/(Ch1+Ch2+Ch3), Ch3/(Ch1+Ch2+Ch3). Thus, in color space, the 11 
Poisson-like distribution along the ray can be omitted, and spots on the plane can be seen as the 12 
results of 15 Gaussian distributions with different means and variances or 15 clusters. The channel 13 
Ch4 was also scaled to Ch4/(Ch1+Ch2+Ch3), set as a new z-axis for the projected 2-D plane. The 14 
new color space axes were defined as x = (Ch1-Ch2)/(Ch1+Ch2+Ch3), y = 2*Ch3/(Ch1+Ch2+Ch3)-15 
1, and z = Ch4/(Ch1+Ch2+Ch3). As a result, 15 clusters (determined by Ch1, Ch2, and Ch3) x Ch4 16 
(Yes or No) make up a new color space containing 30 clusters. Barcode 31 (Ch4 only) was not in 17 
this color space, but it could be easily extracted since it has a high-scaled Ch4 value.  18 
 19 
The position of each cluster in the color space corresponds to a specific barcode by design. 20 
Gaussian fitting was used to evaluate the degree of separation between clusters (Extended Data 21 
Fig. 3c). Since the barcode at endpoint “0” and “1” (e.g., ‘4000’, ‘0040’) was not a cluster but a spot 22 
in color space, we introduced a small variance to coordinates from all spots to make the endpoint 23 
cluster a pseudo-Gaussian distribution. This way, an equal assessment can be achieved between 24 
these endpoint clusters and other clusters. The initial gene calling step for all signal spots was based 25 
on thresholding their confidence level of belonging to a certain cluster. For a refined gene calling 26 
confirmation, three-dimensional boundaries were manually delimited for barcodes in color space. 27 
Direct gene calling (all spots within such delimited boundary were assigned to a specific barcode) 28 
or iterative Gaussian fitting within delimited boundary before thresholding confidence level could be 29 
performed to ensure decoding accuracy (Fig. 1f, Extended Data Fig. 3c). 30 
 31 
Experimental validation. Signal detection in the PRISM workflow consists of two key steps: (1) 32 
rolling circle nanoball (amplicon) generation through padlock probes targeting mRNA and 33 
amplification, and (2) PRISM color decoding on nanoballs. The overall detection accuracy is jointly 34 
determined by the performance of both steps, and we validated independently through smFISH 35 
experiment and nanoball decoding verification experiment. We also benchmarked overall 36 
performance by comparing PRISM 30-plex spatial expression pattern with RNAscope on adjacent 37 
tissue sections. Beyond accuracy, smFISH and RNAscope experiments were also used to 38 
characterize amplification sensitivity and overall sensitivity. Together, these experiments-smFISH, 39 
RNAscope, and strip-rehybridization-based nanoball decoding verification-comprehensively 40 
confirmed the fidelity and sensitivity of the PRISM detection workflow. 41 
 42 
1) smFISH (Stellaris RNA FISH). Three experiments (a-c) were performed in this manuscript, (a) 43 

and (b) were for amplification accuracy and (c) was for amplification sensitivity.  44 
 45 
a) smFISH and RCA simultaneous staining and imaging on the same sample (Supplementary 46 

Fig. 3). Since smFISH signal is susceptible to RNA degradation, smFISH probe 47 
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hybridization step was prioritized before RCA. However, it is reported that RCA can degrade 1 
smFISH fluorescence signals due to the 3’-5’ exonuclease activity of Phi29 polymerase59. 2 
Therefore, we adopted a two-stage smFISH probe, where the primary smFISH probe 3 
includes a single-stranded end to improve signal preservation during RCA60.  4 

 5 
Fresh cultured cells were rinsed with PBS twice and then fixed in 4% PFA for 15 min at 6 
room temperature, and then rinsed with PBS again. Then the cells were permeabilized for 7 
20 min at 4°C in PBSR (8 U/ml Ribolock RNase Inhibitor) with 0.1% Triton X-100. After 8 
three-time PBSR washes, the cells were further permeabilized in a graded ethanol series 9 
(30%-50%-70%-100%, 3 min for each step). After drying in 100% ethanol, the cells on glass 10 
slide are stored at -80°C refrigerator overnight. Then, cells were taken out from -80°C 11 
refrigerator and rehydrated with three-time PBSR washes. After incubating for 20 min at 12 
room temperature with prehybridization buffer A (30% formamide and 2X SSC buffer), the 13 
cells were stained overnight at 37°C with hybridization buffer consisting of 10% dextran 14 
sulfate, 30% formamide, 2X SSC, 1U/μL Ribolock RNase inhibitor, 200 μg/mL Yeast tRNA 15 
and 100 nM primary probe. After that, the cells were washed using prehybridization buffer 16 
A for 20 min at 37°C for three times, and then were post-fixed in 4% PFA for 15 min at room 17 
temperature, with three-time PBSR washes.  18 

 19 
After smFISH primary probe hybridization, PRISM amplification steps (including blocking, 20 
padlock hybridization, ligation, RCA and post-fix) were performed as mentioned above. 21 
Then the cells were stained with 10% dextran sulfate, 10% formamide, 2X SSC, 1U/μL 22 
Ribolock RNase inhibitor, 200 μg/mL Yeast tRNA and 10 nM smFISH secondary probe 23 
(TxRed-labeled) and 10 nM RCP imaging probe (AF488-labeled) for 3 h at 37°C. The cells 24 
were then washed three-time for 10min in prehybridization buffer B, followed by three-time 25 
washes in PBSR.  26 

 27 
Finally, the cells were mounted in Anti-Fade Mounting Medium (Sangon, E675011-0010) 28 
and imaged with confocal microscopy (LSM 880). The result showed that more than 90% 29 
of RCP signal is co-localized with smFISH signal (Supplementary Fig. 3). In this experiment, 30 
we observed an inverse correlation between RCA and smFISH signal intensity, suggesting 31 
a certain degree of potential physical mutual exclusivity from two detection. While these co-32 
localization results can be used to validate the specificity and accuracy of amplification (> 33 
90%, the rest 10% includes RNA degradation, primary smFISH probe degradation and RCA 34 
false detection) this experiment cannot be used to assess amplification sensitivity due to 35 
the exclusivity.  36 

 37 
b) Serial detection using Stellaris smFISH and RCA on the same sample (Supplementary Fig. 38 

4). smFISH experiment was also prioritized before RCA since it is susceptible to RNA 39 
degradation. 40 
 41 
In this experiment, we first used fluorophore-labeled smFISH probe to directly hybridize 42 
sample and perform imaging, after which we strip the smFISH probe and then perform 43 
‘Padlock & RCA’ (PRISM amplification) as well as imaging probes staining and imaging.  44 

 45 
In detail, after two-time PBS rinsing, fresh cultured cells were fixed in 4% PFA at room 46 
temperature for 15 min, and then rinsed with PBS. Then the cells were permeabilized for 47 
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20 min at 4°C in PBSR (8 U/ml Ribolock RNase Inhibitor) with 0.1% Triton X-100. After 1 
three-time PBSR washes, the cells were further permeabilized in a series of ethanol washes 2 
(30%-50%-70%-100%, 3 min for each step). After drying in 100% ethanol, the cells on glass 3 
slide are put in -80°C refrigerator for stock. The cells were taken out from -80°C refrigerator 4 
and rehydrated with three-time PBSR washes. After incubating for 20 min at room 5 
temperature with prehybridization buffer A (30% formamide and 2X SSC buffer), the cells 6 
were stained overnight at 37°C with hybridization buffer consisting of 10% dextran sulfate, 7 
30% formamide, 2X SSC, 1U/μL Ribolock RNase inhibitor, 200 μg/mL Yeast tRNA and 10 8 
nM TxRed-labeled smFISH probe. Then the cells were washed using prehybridization buffer 9 
A for 20 min at 37°C for three times, followed by three-time PBSR washes. 10 

 11 
The cells were mounted in Anti-Fade Mounting Medium and imaged using wide-field 12 
microscopy with 60X objective lens. We collected a z-stack of 8-9 planes at ~1 µm intervals 13 
and used all-in-focus algorithm to achieve focal stack as described in ‘imaging process’ 14 
section. The field-of-view positions were recorded. 15 

 16 
After acquiring smFISH signals, the coverslip on cells was unmounted and mounting 17 
medium was washed away using PBSR. Then, the smFISH probe was washed away in 60% 18 
formamide at 50°C for 10 min, repeated for three times and then washed with PBSR for 19 
three times. Then, PRISM amplification steps (including blocking, padlock hybridization, 20 
ligation, RCA and post-fix) were performed as described above. After staining with imaging 21 
probes for amplification product, the cells were mounted again in Anti-Fade Mounting 22 
Medium. Imaging was performed with the same condition and at the same positions as 23 
recorded during 1st smFISH-imaging round, and RCA signal at these positions were 24 
acquired.  25 
 26 
Signals from smFISH and RCA are registered during analysis. As the result in 27 
Supplementary Fig. 4 shows, more than 95% of RCA signals are co-localized (position shift 28 
< 0.3 µm) with smFISH signals. The sub-micron position displacement between two signals 29 
is mainly due to two reasons: the RCP has a typical size around hundreds of nanometers, 30 
and the inter-steps stripping.  31 

 32 
Notably, both experiment (a) and (b) demonstrate that ‘Padlock + RCA’ signal amplification 33 
exhibits high accuracy and specificity, but neither of these two colocalization experiments 34 
can be used to characterize sensitivity (detection efficiency) of RCA. Mutually exclusive 35 
pattern was also observed in experiment (b), where smFISH signals were dense and strong, 36 
RCA signals were notably weak or sparse. This is particularly pronounced in the nucleus, 37 
where RCA signals become nearly undetectable. Such exclusion may be attributed to 38 
interference from the co-localization experiment workflow such as steric hindrance, RNA 39 
degradation, or buffer incompatibility. To fairly evaluate sensitivity of RCA in a standalone 40 
condition, we performed the experiment (c).  41 
 42 

c) Parallel smFISH and PRISM tests to evaluate detection sensitivity (Supplementary Fig. 5). 43 
In this experiment, we performed smFISH and PRISM on different sample and directly 44 
compared the mRNA count. The cell culture condition and pre-treatment procedures were 45 
kept consistent in two groups.  46 

 47 
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For smFISH-group, the workflow was consistent with (b) until the completion of smFISH-1 
imaging. For RCA-group, the workflow was consistent with direct PRISM experiment from 2 
PFA fixation to imaging.  3 

 4 
Cells with similar sizes were selected for mRNA quantification during analysis. Results 5 
showed that the overall sensitivity of RCA (one RCA probe) is around 21% (Supplementary 6 
Fig. 5). It should be noted that the sensitivity may vary depending on multiple factors, 7 
including padlock probe numbers, target gene, and sample type. 8 
 9 

2) RNAscopeTM (ACD). To systematically benchmark PRISM overall accuracy and sensitivity in 10 
tissues, 30-plex PRISM (one RCA probe per gene) were benchmarked with RNAscope. We used 11 
one brain section to perform PRISM and its adjacent three sections to perform RNAscope for 12 
three different genes (Snap25, Slc17a7 and Apod). The probes and reagents were ordered from 13 
ACD, and experiment was performed strictly according to ACD protocols (UM 323100), with one 14 
gene per section. Imaging procedure followed the wide-field microscopy conditions as mentioned 15 
above. Signal extraction was also performed as described in ‘Gene decoding’ section (tophat 16 
and local maximum). Sensitivity for the three selected genes was quantified by comparing signal 17 
count ratios between PRISM and RNAscope, yielding average values of 9.4% (total gene counts), 18 
15.8% (median per cell with non-zero expression), or 11.5% (mean per cell with non-zero 19 
expression). 20 
 21 

3) Nanoball decoding verification. While the amplification accuracy (corresponding to mRNA-to-22 
nanoball process) has been validated by co-localization experiment (1-a) and (1-b), the nanoball 23 
decoding accuracy (corresponding to PRISM color-coding) was assessed through a strip-24 
rehybridization based nanoball-specific FISH experiment following a PRISM experiment.  25 

The experiment began with either a 30-plex or 64-plex PRISM assay. Tissue sections were 26 
assembled into a flow cell by stacking the slide, a strip of double-sided adhesive tape (20106, 27 
ARcare) with a cut-opening to form a flow channel, and a blank slide containing two holes for in-28 
and-out reagent flow, as we described in the SPRINTseq protocol26.  29 
 30 
All post-imaging reactions were performed within the flow cell to facilitate accurate image 31 
registration. After PRISM imaging, the imaging probes were stripped away using 60% formamide 32 
at 50°C.  33 
 34 
To obtain the ground truth nanoball positions from a specific gene, we designed a fluorescently-35 
labeled nanoball-check probe targeting the mRNA-binding region on padlock probe, which is 36 
also amplified along with the barcode region during RCA. These nanoballs of a specific gene 37 
were selectively stained using corresponding nanoball-check probe (50 nM, in 2X SSC and 20% 38 
formamide), generating nanoball-check image for that gene (Extended Data Fig. 5a). This 39 
process was performed iteratively for different genes. Prior to hybridizing a new nanoball-check 40 
probe, the previous check probe (already imaged) was stripped away using 60% formamide at 41 
50°C.  42 
 43 
We then aligned the PRISM decoded coordinates for each gene with its corresponding gene’s 44 
nanoball-check image. Fluorescent intensity value was obtained by reading the nanoball-check 45 
image using coordinates decoded by PRISM. To eliminate the potential registration-induced bias 46 
on accuracy calculation, we selected fields of view with perfect inter-round registration for such 47 
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intensity reading. 1 
 2 
The frequency distribution of the intensity was plotted to characterize the decoding accuracy 3 
(Extended Data Fig. 5b). Nanoballs correctly decoded in the PRISM assay will be fluorescently 4 
stained in the check-image (overlapping part), showing high fluorescence intensity and forming 5 
a right-skewed Gaussian-like peak (gaussian like: since the size of nanoballs is heterogeneous). 6 
In contrast, misidentified coordinates exhibited low intensity (non-overlapping), forming a sharp 7 
left peak . The proportion of “non-overlapping” coordinates represented the false decoding rate. 8 
Different barcodes / genes were used for such decoding accuracy calculation. For the 30-plex 9 
PRISM assay on mouse brain tissue, the average false decoding rate was around 4.33%.  10 

 11 
Further validation of decoding accuracy on nanoball was performed on 64-plex PRISM datasets 12 
from mouse brain and embryo tissues, yielding false decoding rates of 4.20% and 2.40% 13 
respectively, suggesting robust gene-calling performance for 64-plex multiplexity (Extended Data 14 
Figs. 9, 10).  15 

 16 
Notably, we found that some barcodes may be prone to false calling: barcodes with only one 17 
channel signal in the first three channel (‘single color’, such as 0040: 5.85%, and 0052: 7.20%) 18 
showed increased susceptibility to cross-talk from neighboring barcodes. We attribute this to 19 
minor color aberrations or imperfect signal registration that may cause a small fraction of ‘spot 20 
splitting’. As such, we recommend avoiding the use of single-color barcodes for critical targets, 21 
particularly when imaging or signal extraction conditions are suboptimal. 22 

 23 
Cell segmentation. Cell segmentation and RNA assignment for thin tissue were performed as 24 
described in SPRINTseq26 (Supplementary Fig. 10, Fig. 2b). Briefly, nuclei were segmented using 25 
adaptive thresholding of DAPI-stained images to generate binary images. The binary image 26 
underwent Euclidean transform and was further segmented using the watershed algorithm. 27 
Identified RNA spots were assigned to the nearest nucleus centroid using a K-D tree, with a “Cell 28 
Index” assigned to each RNA in the result table to create an expression matrix for the cells. For 3D 29 
data from thick tissue, nuclei segmentation was achieved using the StarDist algorithm with a pre-30 
trained model. 31 
 32 
Annotating and mapping cell types. Different cell-type classification methods were applied. For 33 
data derived from mouse embryos, due to the large number of cell types and the lack of 34 
comprehensive reference single-cell transcriptome datasets, cell types were directly annotated 35 
based on marker gene expression levels. For other datasets, we primarily used Harmony61 algorithm 36 
to integrate our data with published single cell transcriptome datasets. After integration, a graph-37 
based structure was created, enabling the division of cells into multiple clusters using Leiden 38 
algorithm at high resolution, followed by manual annotation of cell type based on marker genes. This 39 
process was applied to the 2D mouse brain section (Supplementary Fig. 11), 3D mouse brain data 40 
(Fig. 6d), and Human Hepatocellular Carcinoma (HCC) samples (Fig. 4c, Supplementary Fig. 30). 41 
Each cell’s boundary was delineated by constructing a convex hull based on its peripheral RNA spot. 42 
Cells were visualized in 2D or 3D using uniform manifold approximation and projection, with colors 43 
assigned to each cell type. 44 
 45 
For the 2D coronal section of the mouse brain, single-cell transcriptome datasets from 46 
mousebrain.org for four tissues (CTX: cortex, HP: hippocampus, TH: thalamus, HY: hypothalamus) 47 
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were integrated with our data. After preprocessing, PCA, neighbor detection, Leiden clustering, and 1 
annotation, the cells were divided into 14 types, including excitatory neurons, inhibitory neurons, 2 
and glial cells (Supplementary Fig. 11). 3 
 4 
For 3D mouse brain, the cell classification was performed by 4 tissue types respectively, and the 5 
strategy was similar. Different thresholds were used based on the differences between tissues (CTX, 6 
HP, TH, HY). The integration of single-cell datasets for these tissues, obtained from mousebrain.org, 7 
was conducted using the Harmony algorithm. Following integration, a graph-based structure was 8 
created, enabling the division of cells into multiple clusters using the Leiden algorithm at a high 9 
resolution and then manually annotated as various cell types and subtypes based on marker genes 10 
and tissue type (Fig. 6d). Detailed parameters are shown in the corresponding Jupyter Notebook. 11 
 12 
For HCC, the data passed quality control was processed standard pipeline, including normalization, 13 
log1p, regress_out, and scaling, before performing Principal Component Analysis (PCA). This 14 
foundational work facilitated the integration of spatial transcriptomics data with three distinct single-15 
cell transcriptome datasets (GSE151530, GSE140228, CNP0000650) using the Harmony algorithm 16 
within the Scanpy framework. Utilizing high-resolution Leiden shared nearest neighbor clustering. 17 
We identified a fine-grained set of subclusters, which were meticulously annotated based on the 18 
expression of numerous housekeeping and marker genes associated with HCC, revealing 35 19 
subclusters representing a diverse array of immune and nonimmune cell types. Notably, the 20 
challenge posed by the absence of well-defined marker genes for liver cells was addressed by 21 
leveraging elevated Hepatitis B Virus (HBV) expression as a proxy, allowing for the precise 22 
annotation of liver cell types. This approach helped to reclassify cells initially tagged as ‘other’ types, 23 
ultimately enriching the final dataset with 60,329 cells categorized into 17 major types and 35 24 
subtypes (Fig. 4d, Supplementary Fig. 25). Each cell type was visually distinguished using a unique 25 
color scheme in the convex hull representation, with the dataset displayed in two dimensions using 26 
Uniform Manifold Approximation and Projection (UMAP)62.  27 
 28 
A similar methodology was applied to analyze the quasi-3D HCC dataset, yielding annotations that 29 
identified the same major cell types while revealing slight variations in cell subtypes. 30 
 31 
Cell classification evaluation using single-cell transcriptome data. To verify the accuracy of cell 32 
classification, we subjected the single-cell data from the mouse brain cortex, comprising 50,478 33 
cells with 27,998 genes from mousebrain.org, to Leiden clustering. We manually annotated these 34 
cells based on the expression of the 30 marker genes we were interested in. Subsequently, we took 35 
the expression matrices processed by normalization, log1p, regress_out, and scale of 36 
corresponding cell types from both spatial transcriptomics and single-cell transcriptome data, and 37 
then averaged the data across the cells within each cell type. This process transformed the gene 38 
expression of each cell type into a 1x30 vector. We then conducted a Pearson correlation analysis 39 
on the representative vectors of these nine cell types, obtaining a correlation between PRISM data 40 
and single-cell transcriptome data (Fig. 4c, Supplementary Fig. 30b, Supplementary Fig. 35a).  41 
 42 
Spatial analysis in 2D mouse embryos and brains. Spatial-related quantitative analysis in mouse 43 
embryos involved coarse-grained spatial correlation and intracellular interaction analyses. For 44 
coarse-grained spatial correlation analysis, annotated cells were spatially sub-sampled to proper 45 
bin size (~ 200 µm x 200 µm). Pearson correlation was calculated across each bin and cell type to 46 
analyze the co-occurrence between cell types (Fig. 2g). For intracellular interaction analysis, the 47 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 5, 2025. ; https://doi.org/10.1101/2024.06.29.601330doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.29.601330
http://creativecommons.org/licenses/by-nc/4.0/


 30 

nearest neighbor cell for each cell was first identified through the KD-Tree search, and such neighbor 1 
cell pair counts between any two cell types were calculated. Each pair was normalized by dividing 2 
the total cell numbers in each cell type, eliminating the bias caused by the total cell count difference 3 
(e.g., muscleneuron / muscle, muscleneuron refers to the number of muscle cells whose nearest 4 
neighbour cell are neurons) (Fig. 2h). This approach can reveal the interaction between cell types 5 
from a direct-interaction perspective.  6 

 7 
Spatial analysis in 2D HCC. Spatial-related quantitative analysis in HCC tissue included three 8 
major parts: spatial domain segmentation using GASTON44, region-specific cell type diversity 9 
quantification, and neighborhood interaction analysis.  10 

 11 
Tissue segmentation was performed using GASTON, an algorithm that integrates transcriptomic 12 
and spatial information. Dimensionality reduction of the gene expression matrix was conducted 13 
using Generalized Linear Model Principal Component Analysis (GLM-PCA) under a Poisson noise 14 
model, retaining the top 30 principal components. These GLM-PCs, combined with spatial 15 
coordinates, were used to train a dual-component neural network consisting of an isodepth network, 16 
which maps spatial coordinates to a continuous scalar isodepth value, and an expression 17 
reconstruction network, which predicts the GLM-PCs from the isodepth value. To ensure robustness, 18 
the model was initialized and trained 30 times with different random seeds.  19 
 20 
After training, isodepth values were discretized into spatial domains using dynamic programming. 21 
The optimal number of domains was determined by identifying the knee point in the log-likelihood 22 
curve, resulting in six spatial domains in our analysis. These domains group tissue regions based 23 
on transcriptional similarity, not physical proximity, and are thus not necessarily spatially contiguous. 24 
This approach enables the identification of similar biological microenvironments that may occur in 25 
spatially disconnected regions of the tissue. Final visualization included both continuous isodepth 26 
contour plots and discrete spatial domain maps, providing complementary views of tissue structure. 27 
Cell subtype relationships within the tumor microenvironment were subsequently inferred from the 28 
spatial transcriptomics data.  29 
 30 
From the GASTON-defined domains, five representative Regions of Interest (ROIs) were manually 31 
selected for in-depth analysis. These ROIs were chosen to represent archetypal, spatially 32 
contiguous regions within each domains and were guided by the isodepth map to ensure they 33 
reflected high-confidence transcriptional signatures. To assess cellular diversity, a Chi-squared test 34 
was performed across these ROIs. Cell type enrichment, particularly among immune populations, 35 
was quantified using observed-to-expected cell ratios (Ro/e)41,63. Spatial relationships between cell 36 
subtypes were then further examined within each ROI using the spatial transcriptomics dataset. 37 
 38 
Spatial adjacency relationships were defined using Delaunay triangulation, as implemented in the 39 
Squidpy framework64. Cell-cell interactions were quantified through identified adjacency frequencies 40 
matrices, normalized by subtype abundance to correct for compositional bias. A significance 41 
threshold (θ = 0.06) was applied to identify biologically relevant interactions. The filtered interaction 42 
matrix was represented as a directed, weighted graph using igraph library65,66, where nodes 43 
represent cell subtypes (n=32) and edges denote significant spatial interactions, weighted by 44 
normalized interaction frequency. Visualization employed a force-directed Kamada-Kawai layout, 45 
with node color indicating lineage (e.g., T cells, B cells, myeloid cells), and edge width scaled 46 
logarithmically (log₁₀(W)) to emphasize strong interactions. For cell type-specific analyses (e.g., 47 
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AFP-high tumor cells), interaction profiles were extracted, transformed using log₁₀(x+1) to enhance 1 
dynamic range, and visualized via ranked bar plots, distinguishing encirhed interactions from 2 
background.  3 

 4 
Spatial analysis in 3D Stacked HCC Data. For 3D HCC data, we extended spatial analysis to 5 
account for volumetric tissue structure, including the assessment of neighborhood enrichment, cell 6 
type distribution evaluation with respect to specific orientation, and spatial functional modules 7 
defined by STAGATE67.  8 

 9 
Neighborhood enrichment was computed using Squidpy64. A spatial neihbor graph was constructed 10 
from 3D cell centroid coordinates using default parameters. Enrichment scores were calculated via 11 
a 1000-round permutation test using the ‘gr.nhood_enrichment’ function and through heatmaps 12 
generated by ‘pl.nhood_enrichment’ function. To assess directional distribution of specific cell types 13 
(e.g., to examine the ‘barrier effect’ of CAF), cells were projected onto a reference line based on 14 
their centroids, and density distributions were computed (Fig. 5f).  15 
 16 
We employed STAGATE for domain segmentation in stacked slices. Spatial neighborhood graphs 17 
of continuous slices were generated with radial distance cutoffs (8-65 μm) to define cellular 18 
interactions. A graph autoencoders was trained to embed spatial and transcriptomic features into a 19 
low-dimensional latent space. Based on UMAP visualization of embeddings, a cutoff of 40 μm was 20 
selected as optimal for balancing spatial continuity with resolution. Subsequent multi-resolution 21 
clustering yielded 10 biologically meaningful spatial modules. Each domain was characterized by its 22 
cell type composition, enrichment ratio (Ro/e), and spatial distribution, revealing distinct 23 
microenvironmental niches in HCC tissues. 24 
 25 
Subcellular analysis. Given the coordinates of each RNA spot, the nucleus centroid, and the 26 
nucleus region, we profiled the nuclear RNA enrichment level, along with subcellular polarity, which 27 
exhibited certain specificities on the tissue or cell type. The chi-square test was used to analyze the 28 
relation of different variables. The variables in our experiment are RNA distribution and tissue or cell 29 
type. To further represent the direction of the relation, we calculate the Ratio of Observed to 30 
Expected (Ro/e) of annotated RNA molecules. This allowed us to observe under which classification 31 
conditions RNA “clusters”, thereby determining its distribution characteristics.  32 
 33 
For the nuclear RNA enrichment analysis, our analytical approach relied on the classification of RNA 34 
molecules based on four parameters for each RNA molecule: tissue type (CTX, HP, TH, HY), cell 35 
type (including excitatory neurons, inhibitory neurons, glial cells, and their subtypes), gene type 36 
(among the thirty genes detected), and the RNA’s cellular location (either inside or outside the 37 
nucleus). RNA was divided into several categories across four dimensions, and the Ro/e for each 38 
subdivided category was obtained by dividing the observed count of RNA molecules by the expected 39 
count of RNA molecules calculated for each category.  40 
 41 
To focus on the differences in RNA distribution across different tissues and cell types, we reduced 42 
the dimensionality for the gene type dimension by averaging Ro/e values. Due to the enrichment 43 
effect of marker genes in corresponding cell types, marker genes contribute significantly when 44 
averaging across the thirty genes (Supplementary Fig. 36b). We then reduced the dimensionality 45 
for the nuclear/extranuclear dimension by using the extranuclear/nuclear ratio, ultimately obtaining 46 
the average relative abundance of RNA from thirty genes inside and outside the nucleus across 47 
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different tissue and cell types (Fig. 6g). Nuclear RNA enrichment analysis was validated using 1 
RNAscope, with Plp1 selected as the representative gene (Supplementary Fig. 37b-d). 2 
 3 
In addition to the nuclear RNA enrichment analysis, we observed that the distribution of some RNAs 4 
within the cell exhibited polarity. To reflect the overall polarity of RNA, we first calculated the ratio of 5 
the distance between each RNA’s centroid and the cell nucleus’s centroid to the average distance 6 
of each RNA to the cell nucleus’s centroid for each cell. This ratio was used to indicate the overall 7 
polarity of RNA, and after compiling statistics for all cells, we obtained a quasi-normal distribution 8 
with a mean of 0.35. We designated the top 20% of this distribution as high polarity, the bottom 20% 9 
as low polarity, and the middle portion as moderate polarity, thus setting the thresholds for polarity. 10 
Subsequently, to reflect the variability among different genes, we focused on genes with counts of 11 
more than 5 per cell for our analysis. We calculated their relative polarity using the aforementioned 12 
method and classified them into one of three categories (low, medium, high) based on the calculated 13 
thresholds.  14 
 15 
Similar to the nuclear and extranuclear analysis, we classified each RNA molecule based on four 16 
parameters: tissue type (CTX, HP, TH, HY), cell type (excitatory neurons, inhibitory neurons, glial 17 
cells, and their subtypes), gene type (the thirty genes we detected), and the polarity of the gene 18 
within the cell (low, medium, high). RNA was categorized across four dimensions, and the Ro/e 19 
value for each category was obtained. Likewise, since our main interest was in the differences in 20 
RNA polarity distribution across different tissues and cell types, we reduced the dimensionality for 21 
the gene type dimension by averaging different gene types. Due to the enrichment effect of marker 22 
genes in corresponding cell types, resulting in higher Ro/e values, thus making marker genes 23 
contribute significantly when averaging across the thirty genes (Supplementary Fig. 36b). We further 24 
reduced the dimensionality for the polarity dimension by using the high-to-low polarity ratio, 25 
ultimately obtaining the average RNA polarity distribution of thirty genes across different tissue and 26 
cell types (Fig. 6f). It’s worth noting that since we assigned a high, medium, or low polarity to each 27 
RNA molecule, the higher the RNA counts of a particular gene in a cell, the greater its impact on the 28 
polarity calculation result. To validate subcellular RNA polarity, we used an in situ sequencing 29 
dataset from mouse brain sections26 that includes subcellular information. Due to different cell type 30 
annotations between datasets, analysis focused on shared marker genes with well-defined 31 
subcellular localization patterns. For each gene, polarity was quantified as the normalized distance 32 
between the transcript centroid and the nuclear centroid, scaled by the cell’s longest axis to control 33 
for size variation. RNA polarity measurements were consistent between datasets (spearman 34 
correlation r = 0.857, Supplementary Fig. 37a). 35 
 36 
 37 

Data availability 38 

Single cell RNA-seq data were obtained from mousebrain.org, GEO accession number 39 
(GSE151530, GSE140228) and CNP0000650. Raw data of this study was deposited in zenodo 40 
including raw images (HCC: 10.5281/zenodo.12750711; MouseEmbryo: 10.5281/zenodo.12750725; 41 
MouseBrain: 10.5281/zenodo.12673246) and analysis related data (10.5281/zenodo.12755414)68-42 
71. A website (http://www.spatialprism.org) is available to provide a clear understanding of PRISM’s 43 
capabilities. 44 
 45 
 46 
 47 
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Code availability 1 

Source code is provided in Github repository at: https://github.com/HuangLab-PKU/PRISM-Code72 2 
for gene calling pipeline and https://github.com/HuangLab-PKU/PRISM-Analysis73 for post-gene-3 
calling analysis for this manuscript. 4 
 5 
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