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Abstract 19 
Myalgic EncephalomyeliPs/Chronic FaPgue Syndrome (ME/CFS) is a chronic illness with a 20 
mulPfactorial ePology and heterogeneous symptomatology, posing major challenges for 21 
diagnosis and treatment.  Here, we present BioMapAI, a supervised deep neural network 22 
trained on a four-year, longitudinal, mulP-omics dataset from 249 parPcipants, which integrates 23 
gut metagenomics, plasma metabolomics, immune cell profiling, blood laboratory data, and 24 
detailed clinical symptoms.  By simultaneously modeling these diverse data types to predict 25 
clinical severity, BioMapAI idenPfies disease- and symptom-specific biomarkers and robustly 26 
classifies ME/CFS in both held-out and independent external cohorts. Using an explainable AI 27 
approach, we construct the first connecPvity map spanning the microbiome, immune system, 28 
and plasma metabolome in health and ME/CFS, adjusted for age, gender, and addiPonal clinical 29 
factors. This map uncovers disrupted associaPons between microbial metabolism (e.g., short-30 
chain fafy acids, branched-chain amino acids, tryptophan, benzoate), plasma lipids and bile 31 
acids, and heightened inflammatory responses in mucosal and inflammatory T cell subsets 32 
(MAIT, γδT) secrePng IFNγ and GzA. Overall, BioMapAI provides unprecedented systems-level 33 
insights into ME/CFS, refining exisPng hypotheses and hypothesizing new pathways associated 34 
to the disease’s heterogeneous symptoms. 35 
 36 
Introduc1on 37 
Myalgic EncephalomyeliPs/Chronic FaPgue Syndrome (ME/CFS) is a debilitaPng, mulP-system 38 
illness that oken persists for years or even decades and presents with substanPal heterogeneity 39 
in clinical manifestaPons. AffecPng an esPmated 10 million individuals worldwide, ME/CFS is 40 
characterized by persistent faPgue, post-exerPonal malaise, mulP-site pain, sleep disturbances, 41 
orthostaPc intolerance, cogniPve impairment, gastrointesPnal symptoms, and other issues. This 42 
complexity not only hinders Pmely diagnosis but also poses significant challenges for effecPve 43 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 13, 2025. ; https://doi.org/10.1101/2024.06.24.600378doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.24.600378
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2 

treatment.1,2,3. The pathogenesis of ME/CFS is not well understood, with some triggers believed 44 
to include viral infecPons such as Epstein-Barr Virus (EBV)4, enteroviruses5 and SARS 45 
coronavirus6, in addiPon to bacterial infecPons and other causes7. As a chronic disease, ME/CFS 46 
can persist for years or even a lifePme, with each paPent developing disPnct illness paferns1. 47 
Hence, a single standardized approach to clinical care and symptom management is unlikely to 48 
suffice; instead, personalized, symptom-specific strategies may be necessary to effecPvely 49 
address the mulPfaceted nature of ME/CFS. 50 
  51 
For ME/CFS and other chronic diseases such as cancer8, diabetes9, rheumatoid arthriPs (RA)10, 52 
and long COVID11,12, this heterogeneity has been problemaPc to accommodate in research 53 
studies, leaving substanPal knowledge and technical gaps13. The approach of most cohort 54 
studies is to focus on idenPfying one or two key disease indicators, such as HbA1C levels for 55 
diabetes14,15 or survival rates for cancer16, even with the advent of mulP-‘omics. This approach 56 
has difficulty accommodaPng the highly mulPfactorial ePology and progression of most chronic 57 
diseases, with different paPents exhibiPng varying symptoms and disease markers17. To address 58 
this challenge, methods must link a more complex matrix of disease-associated outcomes with a 59 
range of ‘omics data types to enable precise targePng of biomarkers tailored to each paPent’s 60 
specific symptoms. 61 
 62 
In this study, we generated and assembled a longitudinal, mulP-omics dataset from 153 ME/CFS 63 
paPents and 96 age- and gender-matched healthy controls, encompassing gut metagenomics, 64 
plasma metabolomics, immune cell profiling (including acPvaPon and cytokine measures), 65 
blood labs, detailed clinical symptoms, and lifestyle surveys. To integrate these diverse data 66 
types with ME/CFS symptomatology, we developed BioMapAI, an explainable supervised deep 67 
neural network (DNN) that maps mulP-omics profiles to a matrix of clinical symptoms. We 68 
aimed to: (1) idenPfy novel disease biomarkers for ME/CFS, including those specifically Ped to 69 
its heterogeneous symptomatology, and (2) map interacPons among the microbiome, immune 70 
system, and metabolome rather than focusing on single or pairwise data types. 71 
 72 
Using BioMapAI, we idenPfied both disease- and symptom-specific biomarkers, reconstructed 73 
key clinical symptoms, and accurately classified ME/CFS in held-out and external cohorts. We 74 
then constructed a comprehensive mulP-omics connecPvity map that refines exisPng 75 
hypotheses and proposes new ones regarding microbial, metabolomic, and immune factors in 76 
ME/CFS. CriPcally, we accounted for confounders such as age and gender to contextualize the 77 
interplay among data types in health versus disease. For example, we observed that deplePon 78 
of microbial short-chain fafy acids (e.g., butyrate) and branched-chain amino acids (BCAAs) in 79 
ME/CFS is linked to abnormal acPvaPon of mucosal and inflammatory immune cells (MAIT and 80 
γδT), which produce IFNγ and GzA—an altered dynamic correlated with worse perceived health 81 
and reduced social acPvity. Furthermore, microbial metabolites such as tryptophan and 82 
benzoate displayed fewer connecPons with plasma lipids in paPents, an associaPon that in turn 83 
tracked with faPgue, emoPonal dysregulaPon, and sleep disturbances. 84 
 85 
To our knowledge, this dataset is among the most comprehensive mulP-omics resources 86 
assembled for ME/CFS (including other complex chronic diseases). We further introduce an 87 
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innovaPve AI approach that begins to address the mulPfaceted nature of this chronic disease, 88 
generaPng new hypotheses for host–microbiome interacPons in both health and ME/CFS. Given 89 
the recognized parallels in both ePology and clinical presentaPon between ME/CFS and long 90 
COVID11,12, studying ME/CFS can offer broader insights into the pathophysiology of post-viral 91 
syndromes. More generally, our AI-driven framework may prove valuable for other complex 92 
condiPons where symptom variability cannot be fully captured by a single data type. 93 
 94 
Results 95 
 96 
Cohort Overview 97 
We tracked 249 parPcipants over 3-4 years, including 153 ME/CFS paPents (75 'short-term' with 98 
disease symptoms < 4 years and 78 'long-term' with disease symptoms > 10 years) and 96 99 
healthy controls (Fig 1A; Supplemental Table 1). The cohort is 68% female and 32% male, 100 
aligning with the epidemiological data showing that women are 3-4 Pmes more likely to develop 101 
ME/CFS18,19. ParPcipants ranged in age from 19 to 68 years with body mass indexes (BMI) from 102 
16 to 43 kg/m². Throughout the study, we collected detailed clinical metadata, blood samples, 103 
and fecal samples. In total, 1471 biological samples were collected across all parPcipants at 515 104 
Pmepoints (Methods, Supplemental Figure 1A, Supplemental Table 1).  105 
 106 
Blood samples were 1) sent for clinical tesPng at Quest Laboratory (48 features measured, 107 
N=503 samples), 2) fracPonated into peripheral blood mononuclear cells (PBMCs), which were 108 
examined via flow cytometry, yielding data on 443 immune cells and cytokines (N=489), 3) 109 
plasma and serum, for untargeted liquid chromatography with tandem mass spectrometry (LC-110 
MS/MS), idenPfying 958 metabolites (N=414). Detailed demographic documentaPon and 111 
quesPonnaires covering medicaPon use, medical history, and key ME/CFS symptoms were 112 
collected (Methods). Finally, whole genome shotgun metagenomic sequencing of stool samples 113 
(N=479) produced an average of 12,302,079 high-quality, classifiable reads per sample, detailing 114 
gut microbiome composiPon (1293 species detected) and KEGG gene funcPon (9993 genes 115 
reconstructed). 116 
 117 
Heterogeneity and Non-linear Progression of ME/CFS 118 
First, we demonstrated the phenotypic complexity and heterogeneity of ME/CFS. CollaboraPng 119 
with clinical experts, we consolidated detailed quesPonnaires and clinical metadata 120 
foundaPonal to diagnosing ME/CFS, into twelve essenPal clinical scores (Methods). These scores 121 
covered core symptoms including physical and mental health, faPgue, pain levels, cogniPve 122 
efficiency, sleep disturbances, orthostaPc intolerance, and gastrointesPnal issues (Supplemental 123 
Table 1). 124 
 125 
While healthy individuals consistently presented low symptom scores (Supplemental Figure 1D, 126 
1F), ME/CFS paPents exhibited significant variability in symptom severity, with each individual 127 
showing different predominant symptoms (Figure 1B, Supplemental Figure 1C, 1G). Principal 128 
coordinates analysis (PCoA) of the ‘omics matrices highlighted the difficulty in disPnguishing 129 
paPents from controls, emphasizing the complex symptomatology of ME/CFS and the 130 
challenges in developing predicPve models (Supplemental Figure 1E). AddiPonally, over Pme, in 131 
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contrast to the stable paferns typical of healthy individuals (Supplemental Figure 1B), ME/CFS 132 
paPents demonstrated disPnctly varied paferns each year, as evidenced by the diversity in 133 
symptom severity and noPceable separaPon on the ‘omics PCoA (Figure 1B, Supplemental 134 
Figure 1C). Despite employing mulPple longitudinal models (Methods), we found no consistent 135 
temporal signals, confirming the non-linear progression of ME/CFS.  136 
 137 
This individualized, mulPfaceted, and dynamic nature of ME/CFS that intensifies with disease 138 
progression necessitates new approaches that extend beyond simple disease versus control 139 
comparisons. Here, we created and implemented an AI-driven model that integrates the 140 
mulP-’omics profiles to learn host phenotypes. This allowed us not only to develop an accurate 141 
disease classifier, but more importantly, to idenPfy specific biomarker sets for each clinical 142 
symptom as well as unique interacPon networks that differed between paPents and controls.  143 
 144 
BioMapAI, an Explainable Neural Network Connec1ng ‘Omics to Mul1-Type Outcomes  145 
ME/CFS research is hindered by the complexity of its clinical phenotypes and biological 146 
measurements, which are highly individualized. To associate mulP-’omics data with clinical 147 
symptoms, a model must accommodate the learning of mulPple different outcomes within a 148 
single framework. However, tradiPonal machine learning models are generally designed to 149 
predict a single categorical outcome or conPnuous variable20,21,22. This simplified disease 150 
classificaPon and convenPonal biomarker idenPficaPon typically fails to encapsulate the 151 
heterogeneity of complex diseases23,24. Our goal was to integrate mulP-‘omics data with clinical 152 
symptoms into a single model, which would enable a direct comparison of the predicPve value 153 
of different ‘omics datasets and the idenPficaPon of symptom-specific biomarkers within a 154 
unified framework. 155 
 156 
We developed an AI-powered mulP-’omics framework, BioMapAI, a fully connected deep neural 157 
network that inputs ‘omics matrices (𝑋), and outputs a mixed-type outcome matrix (𝑌), thereby 158 
mapping mulPple ‘omics features to mulPple clinical indicators (Figure 2A). By assigning tailored 159 
loss funcPons for each output to each output based on its data type (See Methods), BioMapAI 160 
aims to comprehensively learn every 𝑦 (i.e., each of the 12 conPnuous or categorical clinical 161 
scores in this study), using the ‘omics data inputs. Between the input layer 𝑋 and the output 162 
layer 𝑌 = [𝑦!, 𝑦", … , 𝑦#], the model consists of two shared hidden layers (𝑍! with 64 nodes, and 163 
𝑍" with 32 nodes) for general pafern learning, followed by a parallel hidden layer (𝑍$ =164 
[𝑧!$, 𝑧"$, … , 𝑧#$]), with sub-layers (𝑧#$, each with 8 nodes) tailored for each outcome (𝑦#), to 165 
capture outcome-specific paferns (Figure 2A). This unique architecture – two shared and one 166 
specific hidden layer – allows the model to capture both general and output-specific paferns. 167 
This model is made 1) explainable by incorporaPng a SHAP (SHapley AddiPve exPlanaPons) 168 
explainer, which quanPfies the feature importance of each predicPons, providing both local 169 
(symptom-level) and global (disease-level) interpretability, and 2) flexible by automaPcally 170 
finding appropriate learning goals and loss funcPons for each type of outcomes (without need 171 
of format refinement), facilitaPng BioMapAI's potenPal adaptability to broader research 172 
applicaPons. 173 
 174 
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BioMapAI Reconstructed Clinical Symptoms and Demonstrated Robust Capability to Classify 175 
ME/CFS from Healthy Controls 176 
BioMapAI is a supervised deep learning AI framework that connects a biological ‘omics matrix to 177 
mulPple phenotypic outputs. Here, we trained and validated it on our ME/CFS dataset, 178 
employing a ten-fold cross-validaPon. AddiPonally, 10% of the data was held out as an 179 
independent validaPon set, separate from the cross-validaPon process, to assess the model's 180 
generalizability (Methods). This trained model, nicknamed DeepMECFS for the ME/CFS 181 
community, was able to represent the structure of diverse clinical symptom score types and 182 
discriminated between healthy individuals and paPents (Figure 2, Supplemental Figure 2, 183 
Supplemental Table 2-3). For example, it effecPvely differenPated the physical health scores, 184 
where paPents exhibited more severe condiPons compared to healthy controls (category 185 
datatype 4 vs. 0, respecPvely, Figure 2B, Supplemental Table 2) and pain scores (conPnuous 186 
datatype ranging from 1(highest)- 0(lowest), mean 0.52±0.24 vs. 0.11±0.12 for paPents vs. 187 
controls). Though compressing some inherent variance, BioMapAI accurately reconstructed key 188 
staPsPcal measures such as the mean and interquarPle range (25%-75%), and highlighted the 189 
disPncPons between healthy and disease. (Figure 2B, Supplemental Figure 2A-B, Supplemental 190 
Table 2). 191 
 192 
To determine the accuracy of BioMapAI’s reconstructed clinical scores, we compared their 193 
ability to discriminate ME/CFS paPents from controls with the original clinical scores. We used 194 
one addiPonal fully connected layer to regress the 12 predicted clinical scores Y,(12, ) into a 195 
binary outcome of paPent vs. control y2(1, ). Because the diagnosis of ME/CFS relies on clinical 196 
interpretaPon of key symptoms (i.e., the original clinical scores), the original clinical scores have 197 
near-perfect accuracy in classificaPon, as expected (AUC, Area Under the Curve >99%, 198 
Supplemental Figure 2C). BioMapAI’s predicted scores achieved a 91% AUC in disPnguishing 199 
disease from healthy controls as evaluated through 10-fold cross-validaPon (Figure 2D, 200 
Supplemental Figure 2D). To benchmark its performance, we compared it with four machine 201 
learning models - generalized linear model with elasPc net regularizaPon (Glmnet), Glmnet with 202 
interacPon terms, support vector machine (SVM), and gradient boosPng (GDBT) – and a deep 203 
learning model (DNN) with two fully connected layers but without the third "spread-out" 204 
hidden layer (Supplemental Table 3). In terms of the 10-fold cross-validaPon for disease 205 
classificaPon, BioMapAI, DNN, and Glmnet performed comparably well overall. BioMapAI 206 
showed slightly befer performance with the full ‘omics dataset (AUC = 91.5%) and immune 207 
data (81.8%), while Glmnet outperformed in metabolome (79.0%) and quesPonnaire data 208 
(72.5%).  209 
 210 
BioMapAI demonstrated robust performance with unseen data, as validated on held-out cohort 211 
data (Supplemental Figure 2E, Table 3) and independent, previously published ME/CFS cohorts 212 
(Figure 2E, Supplemental Table 4). In the held-out validaPon, it outperformed in most ‘omics 213 
datasets, including ‘omics altogether (AUC=82.3%), immune (78.5%), KEGG (69.1%), species 214 
(71.5%), and metabolome (76.4%), while Glmnet excelled in Quest data (74.8%). Public datasets 215 
included two microbiome cohorts, Guo, Cheng et al., 2023 (US)25 and Raijmakers, Ruud et al., 216 
2020 (Netherlands)26 and two metabolome cohorts, Germain, Arnaud et al., 2022 (US)27 and 217 
Che, Xiaoyu et al., 2022 (US)28. Despite the challenges of validaPng tradiPonal microbiome and 218 
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metabolite ML models using external cohorts – oken having technical (e.g., metabolomic 219 
features only overlapped by 79% and 19% for the two studies, respecPvely) and clinical 220 
differences29,30,31, BioMapAI demonstrated good performance and outperformed other models 221 
(Figure 2E, Supplemental Table 4). While BioMapAI’s accuracy using these external datasets was 222 
lower, its improved performance highlights the value of incorporaPng clinical symptoms into a 223 
predicPve model, demonstraPng that connecPng ‘omics features to clinical symptoms improves 224 
disease classificaPon. 225 
 226 
‘Omics’ Strengths Varied in Symptom Predic1on; Immune is the Most Predic1ve 227 
One innovaPon of BioMapAI is its ability to leverage different ‘omics data to predict individual 228 
clinical scores in addiPon to disease vs. healthy classificaPon. We evaluated the predicPve 229 
accuracy by calculaPng the mean squared error between actual	(𝑦) and predicted (𝑦2) scores 230 
and observed that the different ‘omics showed varying strengths in predicPng clinical scores 231 
(Figure 2C), likely due in part to the wide differences in dimensionality specific to each datatype. 232 
Immune profiling consistently had the highest ability to forecast a wide range of symptoms, 233 
including pain, faPgue, orthostaPc intolerance, and general health percepPon, underscoring the 234 
immune system's crucial role in health regulaPon. In contrast, blood measurements 235 
demonstrated limited predicPve ability, except for cogniPve efficiency, likely owing to their 236 
limited focus on 48 specific blood bioacPves. Plasma metabolomics, which encompasses nearly 237 
a thousand measurements, performed significantly befer with notable correlaPons with facets 238 
of physical health and social acPvity. These findings corroborate published metabolites and 239 
mortality32,33, longevity34,35, cogniPve funcPon36, and social interacPons37,38,39. Microbiome 240 
profiles surpassed other ‘omics in predicPng gastrointesPnal abnormaliPes (as anPcipated40,41), 241 
emoPonal well-being, and sleep disturbances, supporPng recently established links in gut-brain 242 
health42,43,44. 243 
 244 
BioMapAI is Explainable, Identifying Disease- and Symptom-Specific Biomarkers 245 
Deep learning (DL) models are often referred to as ‘black box’, with limited ability to identify 246 
and evaluate specific features that influence the model’s predictions. BioMapAI is made 247 
explainable by incorporating SHAP values, which quantify how each feature influenced the 248 
model's predictions. BioMapAI’s architecture – two shared layers (𝑍! and 𝑍") for general 249 
disease pattern learning and one parallel layer for each clinical score (𝑍$ = [𝑧!$, 𝑧"$, … , 𝑧!"$ ]) – 250 
allowed us to identify both disease-specific biomarkers, which are shared across symptoms and 251 
models (Supplemental Figure 3, Supplemental Table 5), and symptom-specific biomarkers, 252 
which are tailored to each clinical symptom (Figure 3, Supplemental Figure 4-5, Supplemental 253 
Table 6).  254 
 255 
Disease-specific biomarkers are important features across symptoms and models (Methods, 256 
Supplemental Figure 3). Increased B cells (CD19+CD3-), CCR6+ CD8 memory T cells 257 
(mCD8+CCR6+CXCR3-), and CD4 naïve T cells (nCD4+FOXP3+) in patients were associated with 258 
most symptoms, suggesting a potentially broad dysregulation of the adaptive immune 259 
response. The species model highlighted the importance of Dysosmobacteria welbionis, a gut 260 
microbe previously reported in obesity and diabetes, with a role in bile acid and butyrate 261 
metabolism45,46. The metabolome model categorized increased levels of glycodeoxycholate 3-262 
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sulfate, a bile acid, and decreased vanillylmandelate (VMA), a catecholamine breakdown 263 
product47. These features shared for all symptoms were consistently validated across ML and 264 
DL models, demonstrating the efficacy of BioMapAI (Supplemental Table 5).  265 
 266 
More uniquely, BioMapAI linked ‘omics profiles to clinical symptoms and thus enabled the 267 
identification of symptom-specific biomarkers (Figure 3A). Certain ‘omics data, like species-268 
gastrointestinal and immune-pain associations, were especially effective in predicting specific 269 
clinical phenotypes (Figure 2C). Utilizing SHAP, BioMapAI identified distinct sets of biomarkers 270 
for each symptom (Supplemental Table 6, Supplemental Figure 5). We found that while disease-271 
specific biomarkers accounted for a substantial portion of the variance, symptom-specific 272 
biomarkers crucially refined the predictions, aligned predicted scores – consistently across age 273 
and gender – more closely with actual values (Figure 3A-B, Supplemental Figure 4B-D). For 274 
example, in the case of pain, CD4 memory and CD1c+ dendritic cells (DC) were particularly 275 
important features, and Faecalibacterium prausnitzii was also uniquely associated, with varying 276 
impact across individual (Figure 3B). Similar to pain, each clinical score in ME/CFS was 277 
characterized by its unique ‘omics features, distinct from those common across other 278 
symptoms (Supplemental Table 6).  279 
 280 
In addition, we observed a spectrum of interaction types (linear, biphasic, and dispersed) 281 
extending beyond conventional linear interactions, underscoring the heterogeneity inherent in 282 
ME/CFS (Figure 3C). High-abundance species and immune cells often had a biphasic relationship 283 
with symptoms, showing dual effects, while low-abundance species and metabolites displayed 284 
a linear relationship with positive or negative associations with clinical scores (Supplemental 285 
Figure 5).  286 
 287 
An example of a relatively straightforward monotonic (linear) relationship was observed 288 
between CD4 memory (CD4 M) cells, CD1c+ DCs and pain, with positive associations of CD4 M 289 
cells to pain intensity severity. Conversely, CD1c+ DCs had negative associations to pain severity 290 
in both patients and control (Figure 3C, E). These variations suggest alterations in inflammatory 291 
responses and specific pathogenic processes in ME/CFS, which may be virally triggered and is 292 
marked by prolonged infection symptoms. Many microbial biomarkers demonstrated linear 293 
contributions to symptoms, evidenced by numerous negative peaks indicating a positive 294 
association in symptom severity (Figure 3A). For example, Dysosmobacteria welbionis, a 295 
disease-specific biomarker, was associated with more severe sleeping and gastrointestinal 296 
issues (Supplemental Figure 3), whereas Clostridium sp. and Alistipes communis were 297 
associated with less severe scores (Figure 3A, Supplemental Figure 5B). 298 
 299 
A more complex, biphasic relationship was observed in the association of Faecalibacterium 300 
prausnitzii with pain, whose saddle curve (Figure 3C) had a mixture of positive and negative 301 
contribution peaks (Figure 3B), which means that either abnormally low and high relative 302 
abundances could be associated with pain severity. In disease, F. prausnitzii was associated 303 
with higher pain scores, while in healthy individuals, it was associated with lower pain scores 304 
(Figure 3D). Notably, F. prausnitzii was identified as a biomarker in several ME/CFS 305 
cohorts25,26,48, but also has been implicated in numerous anti-inflammatory effects49,50,51,52. 306 
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Here, BioMapAI could identify a duality in its association with symptom severity. Similar 307 
biphasic relationships were observed for plasma metabolomics biomarkers, glucuronide and 308 
glutamine, in relation to pain (Figure 3C).  309 
 310 
Distinct from other ‘omics features, KEGG genes exhibited sparse and dispersed contributions 311 
(Figure 3C, Supplemental Figure 4C). The vast feature matrix of KEGG models complicated the 312 
identification of a universal biomarker for any single symptom, as individuals possessed distinct 313 
symptom-specific KEGG biomarkers. For example, the gene FNR, an anaerobic regulatory 314 
protein transcription factor, was negatively associated with pain but appeared only in a small 315 
portion of patients, with the majority showing no significant impact (Figure 3C). This pattern 316 
was consistent for other KEGG biomarkers, which were sparsely associated with symptom 317 
severity (Supplemental Figures 4C). 318 
 319 
Taken together, BioMapAI made associations between symptom-specific biomarkers and 320 
clinical phenotypes, which has been inaccessible to single models to date. Our models unveil a 321 
nuanced correlation between ‘omics features and disease symptomology, emphasizing ME/CFS’ 322 
complex etiology.  323 
 324 
Healthy Microbiome-Immune-Metabolome Networks are Dysbio1c in ME/CFS 325 
BioMapAI elucidated that each ‘omics layer provided disPnct insights into the disease symptoms 326 
and influenced host phenotypes in a dynamic and complex manner. To examine crosstalk 327 
between ‘omics layers, we modeled co-expression modules for each ‘omics using weighted gene 328 
co-expression network analysis (WGCNA), idenPfying seven microbial species, six microbial gene 329 
set, nine metabolome, and nine immune clusters (Methods, Supplemental Table 7). Observing 330 
significant associaPons of these modules with disease classificaPon (microbial modules), age 331 
and gender (immune and metabolome modules) (Supplemental Figure 6A), we first established 332 
baseline networks of inter-‘omics interacPons by calculaPng Spearman correlaPon coefficients 333 
(corrected, see Methods) among the module eigengenes of each omics cluster. An adjacency 334 
matrix was constructed using a cutoff of 0.3 to idenPfy meaningful correlaPons, focusing on 335 
healthy individuals and incorporaPng clinical covariates such as age, weight, and gender (Figure 336 
4A). We then examined how these correlaPons were altered in paPent populaPons (Figure 4B, 337 
Supplemental Figure 6B-C).  338 
 339 
Healthy control-derived host-microbiome interacPons, such as the microbial pyruvate module 340 
associaPng with mulPple immune modules, and connecPons between commensal gut microbes 341 
(Prevotella, Clostridia sp., Ruminococcaceae) with Th17 memory cells, plasma steroids, 342 
phospholipids, and tocopherol (vitamin E) (Figure 4A), were disrupted in ME/CFS paPents. 343 
Increased correlaPons between gut microbiome and mucosal/inflammatory immune modules, 344 
including CD8+ MAIT, and INFg+ CD4 memory cells, suggested an increased associaPon with 345 
microbiome and inflammatory elements in ME/CFS (Supplemental Figure 6D). Young, female, 346 
and normal-weight paPents shared those changes, while male paPents showed different 347 
correlaPons between microbial and plasma metabolites. Elderly and overweight paPents had 348 
more interacPon abnormaliPes than other subgroups, with specific increases between Blau=a, 349 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 13, 2025. ; https://doi.org/10.1101/2024.06.24.600378doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.24.600378
http://creativecommons.org/licenses/by-nc-nd/4.0/


 9 

Flavonifractor, Firmicutes sp. linked with TNFα cytotoxic T cells and plasma plasmalogen, and 350 
decreased correlaPons between Lachnospiraceae sp. with Th17 cells (Figure 4B).  351 
  352 
Further examining the pyruvate hub as well as several other key microbial modules whose 353 
networks were dysbioPc in paPents, we mapped the correlaPons of their metabolic 354 
subpathways to plasma metabolites and immune cells and detailed the collecPve associaPons 355 
with host phenotypes (Figure 4C, Supplemental Table 8). We further validated these findings 356 
with two independent cohorts (Guo 202325 and Raijmakers 202026). For example, increased 357 
tryptophan metabolism, associated with gastrointesPnal issues, lost its negaPve associaPon 358 
with Th22 cells, and gained correlaPons with γδ T cells and the secrePon of INFg and GzA from 359 
CD8 and CD8+ MAIT cells. Several networks associated with emoPonal dysregulaPon and faPgue 360 
– again underscoring the gut-brain axis44 – differed significantly in paPents vs. controls, including 361 
decreased butyrate producPon - especially from the pyruvate53 and glutarate54 sub-pathways-  362 
and branched-chain amino acid (BCAA) biosynthesis, which had opposite correlaPons with 363 
Th17, Treg cells, and plasma lipids while having more correlaPons with inflammatory immune 364 
cells including γδ T and CD8+ MAIT cells in paPents; and increased microbial benzoate, 365 
synthesized by Clostridia sp.55,56 then converted to hippurate in the liver57,58, showed a strong 366 
posiPve correlaPon with plasma hippurate in long-term ME/CFS paPents, supporPng enhanced 367 
pathway acPvity in later stages of the disease. These disrupted pathways also had modified 368 
associaPons with a variety of plasma metabolites—among them steroids, phenols, branched-369 
chain amino acids, fafy acids, and vitamins B5 and B6. Notably, short-term ME/CFS paPents 370 
presented a transiPonal profile, in which some health-associated networks were already 371 
dysbioPc but had not yet fully stabilized; these pathological connecPons became more firmly 372 
established in long-term ME/CFS. 373 
 374 
Based on BioMapAI’s predicPons and subsequent network analyses, we propose that some of 375 
the disease-specific changes in ME/CFS arise from disrupted associaPons between the gut 376 
microbiome, immune system, and metabolome (Figure 5). Reduced relaPve abundances of key 377 
microbes—such as Faecalibacterium prausnitzii—and corresponding disturbances in microbial 378 
metabolic pathways (e.g., butyrate, tryptophan, and BCAA producPon) correlated with pain and 379 
gastrointesPnal abnormaliPes in ME/CFS. In healthy controls, these microbial metabolites are 380 
associated with acPvity of mucosal immune cells, including Th17, Th22, and Treg cells. In 381 
ME/CFS, however, these regulatory networks break down, with heightened pro-inflammatory 382 
responses mediated by γδ T cells and CD8 MAIT cells producing IFNγ and GzA, which in turn 383 
were associated with subjecPve health percepPon and social funcPoning. 384 
 385 
AddiPonal health-associated interacPons between microbial benzoate metabolism and various 386 
plasma metabolites (e.g., lipids, glycerophosphoethanolamine, fafy acids, and bile acids) we 387 
hypothesized are also diminished or reversed in ME/CFS. This breakdown in host–microbiome 388 
metabolic networks correlates with more severe faPgue, emoPonal disturbances, and sleep 389 
problems, aligning with emerging evidence that microbially derived metabolites may affect the 390 
gut–brain axis59,60,61.  391 
 392 
Discussion 393 
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DemocraPzaPon of AI technologies and large-scale mulP-‘omics has the promise of 394 
revoluPonizing precision medicine62,63,64,65. This study generated among the most extensive 395 
paired mulP-’omics dataset for ME/CFS to date66,25,26,27,28,67,68,69, bringing new technical and 396 
biological insights. Technically, BioMapAI marks the first supervised deep learning model trained 397 
to accommodate these complex, mulP-system ME/CFS symptoms. The raPonale behind 398 
BioMapAI is that understanding long-term, post-infecPon syndromes like ME/CFS is not 399 
necessarily solved by pinpoinPng an exact diagnosis or tracing disease origins70,2,71, but rather 400 
by addressing the chronic, mulPfaceted symptoms that significantly impacts paPents' quality of 401 
life72,73. Biologically, our study introduces a highly nuanced approach to link physiological 402 
changes in gut microbiome, plasma metabolome, and immune status, with host symptoms, 403 
moving beyond the iniPal causes of the disease74,75. Importantly, we validated key biomarkers in 404 
external cohorts25,26,27,28, despite significant demographic and methodological differences 405 
between the studies.  406 
 407 
This study represents a substanPal technical and biological advance over our previous work and 408 
other invesPgaPons of ME/CFS to date. First, we developed BioMapAI, a supervised deep neural 409 
network architecture that accommodates the full complexity of our mulP-omics datasets—410 
encompassing gut microbiome, plasma metabolome, immune profiling, blood labs, and 411 
extensive clinical surveys—beyond what tradiPonal ML models can handle. By jointly modeling 412 
these diverse data types, BioMapAI explains the phenotypic heterogeneity of ME/CFS more 413 
effecPvely than single-outcome methods and simultaneously idenPfies symptom-specific 414 
biomarkers. Furthermore, our dataset’s unprecedented size, in both parPcipant numbers and 415 
the depth of datatypes, allowed us to build a robust AI model validated on both held-out data 416 
and external cohorts. As a sanity check, we confirmed key biomarkers—such as altered 417 
Faecalibacterium prausnitzii and butyrate producers (reported by Guo et al.) as well as 418 
sphingolipid pathway changes (described by Raijmakers et al., Germain et al., and Che et al.)—419 
using independent datasets, which other studies have not performed. Nonetheless, a caveat of 420 
our model is that from a clinical perspecPve, simply disPnguishing ME/CFS from healthy controls 421 
may be less challenging than differenPaPng ME/CFS from other condiPons with overlapping 422 
symptoms, such as fibromyalgia. To establish whether our pre-trained model (“DeepMECFS”) 423 
can discriminate among mulPple chronic diseases, similar datasets with other diseases and 424 
comparaPve models are needed in future work. 425 
 426 
Second, we added a new, detailed blood immune-profiling dataset, which provided the most 427 
biologically explanatory features for both disease classificaPon and symptom severity. 428 
Leveraging these data, we were able to construct new microbiome–metabolome–immune 429 
networks in both health and ME/CFS—an advance over earlier invesPgaPons that generally 430 
focused on only one ’omics layer (e.g., stool microbiome in Guo et al.; plasma metabolomics in 431 
Germain et al. and Che et al.). While Raijmakers et al. examined 92 inflammatory circulaPng 432 
markers, plasma metabolites, and gut microbiome in a smaller study (n=50 ME/CFS, n=72 433 
healthy control for metagenomics, and n=22 for metabolomics), their analyses were relaPvely 434 
limited in that they used ML models to differenPate ME/CFS from controls and only examined 435 
faPgue as a clinical variate, not adjusPng for other clinical variables that could affect ‘omics 436 
associaPons such as age, gender, or BMI. Moreover, their approach only assessed pairwise 437 
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associaPons among data types. In contrast, our mulP-‘omics strategy explicitly accounts for 438 
demographic and clinical covariates like age, gender and BMI, revealing that these factors can 439 
markedly reshape immune–microbiome–metabolome interacPon networks, just as comorbid 440 
condiPons such as obesity or advanced age can further individualize disease phenotypes.  441 
 442 
Taken together, our dataset uncovers an array of correlaPons that while not explaining causality 443 
or confirming mechanism, can further our understanding of ME/CFS in several ways. First, our 444 
analyses underscore the importance of considering clinical symptom heterogeneity and cohort-445 
level covariates because interacPons among the microbiome, metabolome, and immune system 446 
vary substanPally depending on these factors. Although it has long been assumed that 447 
confounders play a major role, previous studies have seldom controlled for them in a 448 
comprehensive manner, potenPally explaining some of the inconsistencies reported in single-449 
‘omics analyses. Second, while our findings are correlaPve rather than causal, they generate 450 
numerous hypotheses about both specific and more extensive pathways that may be disrupted 451 
in ME/CFS. For example, our previous analysis, and work by Guo et al., suggest that diminished 452 
butyrate-producing microbes in ME/CFS lower the availability of short-chain fafy acids (SCFAs) 453 
in the stool (Guo) and plasma (Xiong). Here, we refine that hypothesis by pinpoinPng potenPal 454 
immunological or metabolic mediators of this change. In healthy controls, mulPple butyrate 455 
biosynthesis routes are inversely associated with Th17 cells, whereas the glutarate→butyrate 456 
pathway aligns with Tregs. These paferns become largely reversed in long-term disease, with 457 
succinate→butyrate showing new negaPve correlaPons to Tregs and posiPve links with CD8+ 458 
MAIT cells. ME/CFS also substanPally alters metabolite associaPons with Th17 cells. 459 
On the metabolomic side, there is currently no direct biochemical link reported between 460 
glutarate→butyrate and glycerophosphoethanolamine (GPE)—though in healthy controls, they 461 
exhibited a strong posiPve correlaPon which was altered in ME/CFS. One can then hypothesize 462 
an indirect link with phospholipid metabolism and its effect on neurotransmission.  463 
 464 
In addiPon to refining established hypotheses, our results propose new links among tryptophan 465 
metabolism, branched-chain amino acids (BCAAs), and benzoate metabolism in shaping 466 
immune funcPon and symptomatology in ME/CFS. Although no direct biochemical connecPon 467 
between tryptophan metabolism and 2-hydroxyglutarate is currently known, both pathways 468 
likely influence immune regulaPon and metabolic reprogramming, indicaPng a more complex 469 
regulatory landscape. In healthy controls, tryptophan metabolism is closely Ped to various T cell 470 
subsets, including Th22 cells, whereas these relaPonships are disrupted in ME/CFS. 471 
Furthermore, we observed significant alteraPons in benzoate metabolism modules and their 472 
associaPons with plasma steroids, hippurate, and fafy acids. These pathways, linked to both 473 
steroid biosynthesis and neurotransmifer producPon (e.g., serotonin, corPsol), highlight a 474 
potenPal gut–brain axis component in ME/CFS pathophysiology. 475 
 476 
While some of these findings may seem granular or only indirectly testable—such as potenPal 477 
sex differences in the interacPon network—our detailed, mulP-‘omics perspecPve is valuable for 478 
unraveling the disease’s heterogeneity. As experimental models afempt to validate these 479 
hypotheses, one must keep in mind that many interacPons may be context- or model-specific 480 
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rather than universally turned on or off in disease states. This context dependency underscores 481 
the need for nuanced, carefully controlled mechanisPc studies that incorporate paPent 482 
heterogeneity and environmental factors when invesPgaPng ME/CFS. 483 
 484 
AddiPonal limitaPons of our study include that that our study populaPon was comprised more 485 
females and older individuals, primarily Caucasian, though this is consistent with the 486 
epidemiology of ME/CFS18,76,77, and was from a single geographic locaPon (Bateman Horne 487 
Center). This may limit our findings to certain populaPons. In addiPon, previous RNA sequencing 488 
studies have suggested mitochondrial dysfuncPon and altered energy metabolism in 489 
ME/CFS78,79,80,81,82; thus, incorporaPng host PBMC RNA or ATAC sequencing in future research 490 
could provide deeper insights into regulatory changes. The typical decades-long disease 491 
progression of ME/CFS makes it challenging for our four-year longitudinal design to capture 492 
stable temporal signals - although separaPng our short-term (<4 years) and long-term (>10 493 
years) provided valuable insights – ideally, tracking the same paPents over a longer period 494 
would likely yield more accurate trends83,84. Long disease history also increases the likelihood of 495 
exposure to various diets and medicaPons85, which could influence biomarker idenPficaPon, 496 
parPcularly in metabolomics. Finally, model-wise, BioMapAI was trained on < 500 samples with 497 
tenfold cross-validaPon, which is relaPvely small given the complexity of the outcome matrix; 498 
expanding the training dataset and incorporaPng more independent validaPon sets could 499 
potenPally enhance its performance and generalizability86,87. Currently, the model treated all 12 500 
studied symptoms with equal importance due to the unclear symptom prioriPzaPon in 501 
ME/CFS88. We computed modules to assign different weights to symptoms to enhance 502 
diagnosPc accuracy. While this approach was not parPcularly effecPve for ME/CFS, it may be 503 
more promising for diseases with more clearly defined symptom hierarchies89,90. In such cases, 504 
adjusPng the weights of symptoms in the model’s final layer could improve performance and 505 
help pinpoint which symptoms more strongly contribuPng. 506 
 507 
Although our findings are sPll preliminary for direct therapeuPc applicaPon, the nuanced 508 
insights and deconstructed approach described here offer numerous hypotheses for dysbioPc 509 
microbiome–metabolome–immune connecPons in ME/CFS. We hope that the unprecedented 510 
systems-level resoluPon of our dataset, algorithm, and analyses will contribute to filling out 511 
heretofore unknown links between these factors thus explaining some of the disease 512 
heterogeneity in this important disease.   513 

514 
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Main Figure 515 
*Note: Figures in Word file are screenshots to reduce file size; Original PDFs aIached.516 

 517 
Figure 1: Cohort Summary and Heterogeneity of ME/CFS. A) Cohort Design and ‘Omics 518 
Profiling. 96 healthy donors and 153 ME/CFS patients were followed over 3-4 years with yearly 519 
sampling. Clinical metadata including lifestyle and dietary surveys, blood clinical laboratory 520 
measures (N=503), gut microbiome (N=479), plasma metabolome (N=414), and immune 521 
profiles (N=489) were collected (Supplemental Table 1 and Supplemental Figure 1A). B) 522 
Heterogeneity and Non-Linear Progression of ME/CFS in Symptom Severity and ‘Omics 523 
Profiles. This section highlights variability in symptom severity (top) and ‘omics profiles 524 
(bottom) for 20 representative ME/CFS patients over 3–4 time points. Top, Symptom severity is 525 
shown for 12 major clinical symptoms (x-axis, with each column representing one symptom) 526 
against severity scores (scaled from 0% (no symptom) to 100% (most severe), y-axis) for each 527 
patient (each represented by a distinct color). Lines indicate average severity, and shaded areas 528 
represent the severity range across time points (controls shown in Supplemental Figure 1B). 529 
Here, we observed a lack of consistent temporal patterns for ME/CFS symptomatology, 530 
indicated by the widespread shaded areas, and significant heterogeneity over time 531 
(Supplemental Figure 1F–G). Notably, among the 12 symptoms, trends differed: fatigue 532 
(Symptom 1) remains consistently severe over years, whereas emotional dysregulation 533 
(Symptom 8) exhibit notable variability and instability over time. Bottom, PCoA of integrated 534 
‘omics data with color dots matching patient timepoints in the symptom plot and grey dots 535 
representing the entire cohort. Again, the spread and overlap of the colored space reflect the 536 
diversity in ‘omics signatures vs. the more consistent pattern typical of controls (Supplemental 537 
Figure 1C). Abbreviations: ME/CFS, Myalgic Encephalomyelitis/Chronic Fatigue Syndrome; 538 
PCoA, Principal Coordinates Analysis. Supporting Materials: Supplemental Table 1, 539 
Supplemental Figure 1.  540 
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 541 

542 
Figure 2: BioMapAI’s Model Structure and Performance. A) Structure of BioMapAI. BioMapAI 543 
is a fully connected deep neural network comprised of an input layer (𝑋), a normalization layer 544 
(not shown), three sequential hidden layers (𝑍!, 𝑍", 𝑍$), and one output layer (𝑌). Hidden layer 545 
1 (𝑍!, 64 nodes) and hidden layer 2 (𝑍", 32 nodes), both feature a dropout ratio of 50% to 546 
prevent overfitting (visually represented by dark and light gray nodes). Hidden layer 3 has 12 547 
parallel sub-layers each with 8 nodes (𝑍$ = [𝑧!$, 𝑧"$, … , 𝑧!"$ ]) to learn 12 objects in the output 548 
layer (𝑌 = [𝑦!, 𝑦", … , 𝑦!"]) representing key clinical symptoms of ME/CFS. B) True vs. Predicted 549 
Clinical Scores highlight BioMapAI’s accuracy. Three example density maps (full set, 550 
Supplemental Figure 2A) compare the true score, 𝑦 (Column 1) against BioMapAI’s predictions 551 
generated from different ‘omics profiles - 𝑦2%&&'#(, 𝑦2)'(*+,𝑦2*,(-%(*, 𝑦2./00 , 𝑦2&(+12343&(, 𝑦23&%-* 552 
(Columns 2-7). Y-axis represents the diversity calculated by kernel density estimation (KDE), 553 
which is a smoothed estimate of the distribution of the symptom severity along the x-axis for 554 
each omics. Color gradient from blue (lower density) to red (higher density) illustrates the 555 
occurrence frequency (e.g., true scores for ~100% of healthy controls’ physical health ~ 0 = red), 556 
with dashed lines indicating key statistical percentiles (100%, 75%, 50%, 25%, and 0%). Note 557 
that model’s predicted scores a preserve differences between healthy controls and patients for 558 
these three examples, irrespective of ‘omics type. C) ‘Omics' Strengths in Symptom Prediction. 559 
Radar plot shows BioMapAI’s performance in predicting the 12 clinical outcomes for each 560 
‘omics datatype. Each of the 12 axes represents a clinical score output (𝑌 = [𝑦!, 𝑦", … , 𝑦!"]), 561 
with five colors denoting the ‘omics datasets used for model training. The spread of each color 562 
along an axis reflects the 1 - normalized mean square error (MSE) (Supplemental Table 2) 563 
between the actual, 𝑦, and the predicted, 𝑦2, outputs, illustrating the predictive strength or 564 
weakness of each ‘omics for specific clinical scores. The radial scale ranges from 0.8 (center) to 565 
1.0 (outer circle), where values closer to the outer edge correspond to lower MSE and better 566 
predictions. For instance, species abundance predicted gastrointestinal, emotional, and sleep 567 
issues effectively, while the immune profile was broadly accurate across most scores. D) 568 
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BioMapAI’s Performance in Healthy vs. Disease Classification (10-Fold Cross Validation). ROC 569 
curves show BioMapAI’s performance in disease classification using each ‘omics dataset 570 
separately or combined (‘Omics’), with the AUC in parentheses showing prediction accuracy 571 
(full report in Supplemental Table 3, held out data ROC in Supplemental Figure 2E). E) 572 
Validation of BioMapAI with External Cohorts. External cohorts with microbiome data (Guo et 573 
al.25, Ruud et al.26) and metabolome data (Germain et al.27, Che et al.32) were used to test 574 
BioMapAI’s model, underscoring its generalizability (detailed classification matrix, 575 
Supplemental Table 4). Abbreviations: KEGG, Kyoto Encyclopedia of Genes and Genomes; 576 
‘Omics’ refers to the combined multi-‘omics matrix; MSE, Mean Square Error; ROC curve, 577 
Receiver Operating Characteristic curve; AUC, Area Under the Curve; 𝑦, True Score; 𝑦2, Predicted 578 
Score. Supporting Materials: Supplemental Tables 2-4, Supplemental Figures 1-2.  579 
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 580 
Figure 3: BioMapAI Identifies both Disease- and Symptom-Specific Biomarkers. For Symptom-581 
Specific Biomarkers, A) Circularized Diagram of Species Model with B) Zoomed Segment for 582 
Pain. Each circular panel illustrates how the model predicts each of the 12 symptom-specific 583 
biomarkers derived from one type of ‘omics data (all datatypes shown in Supplemental Figure 584 
4). The x-axis for each panel represents an individual’s values for each of the following 585 
contributors to the model’s performance (from top to bottom): 1. Variance Explained by 586 
Biomarker Categories: Gradients of dark green (100%) to white (0%) show variance explained 587 
by the model. For many biomarkers, disease-specific biomarkers account for the greatest 588 
proportion of variance, and symptom-specific biomarkers provide additional tailored 589 
explanations, with residual accounting for the remaining variance; 2. Aggregated SHAP Values 590 
quantify the contribution of each feature to the model's predictions, with disease-specific 591 
biomarkers in grey and symptom-specific in purple. 3. Demography and Cohort Classification: 592 
cohort (controls, white vs. patients, black); age <50 (white) vs. >50 years old (black); sex (male, 593 
white vs. female, black); 4. True vs. Predicted Scores show BioMapAI’s predictive performance 594 
at the individual sample level, with true in blue and model-predicted scores in orange; 5. 595 
Examples of Symptom-Specific Biomarkers: Line graphs show the contribution of select 596 
symptom-specific biomarkers to the model across individuals, e.g., 5 gut species in A). In B), the 597 
three features most specific to the pain model include gut microbe F. prausnitzii, CD4 memory 598 
T, and DC CD1c+ cells. Peaks above 0 (middle line) indicate a positive contribution and below 0 599 
for a negative contribution. For example, the mixed positive and negative contribution peaks of 600 
F. prausnitzii indicated a biphasic contribution to pain intensity. Disease-Specific Biomarkers are 601 
shown in Supplemental Figure 3. C) Different Correlation Patterns of Biomarkers to 602 
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Symptoms: For pain (other symptoms in Supplemental Figure 5), correlation analysis of raw 603 
abundance (x-axis) of each biomarker with pain score (y-axis) show monotonic (e.g., CD4 604 
memory and DC CD1c+ markers), biphasic (microbial and metabolomic markers), or sparse 605 
(KEGG genes) contribution patterns for those features. Dots represent an individual color-coded 606 
to SHAP value, where the color spectrum indicates negative (blue) to neutral (grey) to positive 607 
(red) contributions to pain prediction. Superimposed trend lines with shaded error bands 608 
represents the predicted correlation trends between biomarkers and pain intensity. Adjacent 609 
bar plots represent the data distribution. D-E) Examples of Pain-Specific Biomarkers’ 610 
Contributions. SHAP waterfall plots (colors corresponding to gradient in C) illustrate the 611 
contribution of individual features to a model's predictive output. The top 10 features for two 612 
pairs of controls and patients are shown here, illustrating the species and the immune model 613 
(additional examples in Supplemental Figure 4A). The contribution of each feature is shown as a 614 
step (SHAP values provided adjacent), and the cumulative effect of all the steps provides the 615 
final prediction value, 𝐸[𝑓(𝑋)]. Our example of F. prausnitzii exhibits a protective role (negative 616 
SHAP) in controls but exacerbates pain (positive SHAP) in patients – consistent with the biphasic 617 
relationship observed in C). As a second example, all CD4 memory cells in this model have 618 
positive SHAP values, reinforcing the positive monotonic relationship with pain severity 619 
observed in C). Conversely, DC CD1c+ cells contribute negatively and thus may have a 620 
protective role. *Note, the reported biomarkers were calculated using the entire dataset and 621 
were not validated on held-out data. Abbreviation: SHAP, SHapley Additive exPlanations; DNN, 622 
Deep Neuron Network; GBDT, Gradient Boosting Decision Tree; KEGG, Kyoto Encyclopedia of 623 
Genes and Genomes. Supporting Materials: Supplemental Table 5-6, Supplemental Figure 3-5. 624 
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 625 
Figure 4: Microbiome-Immune-Metabolome Crosstalk is Dysbiotic in ME/CFS. A-B) 626 
Microbiome-Immune-Metabolome Network in A) Healthy and B) Patient Subgroups. A 627 
baseline network was established with 200+ healthy control samples (A), bifurcating into two 628 
segments: the gut microbiome (species in yellow, genetic modules in orange) and blood 629 
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elements (immune modules in green, metabolome modules in purple). Nodes: modules; size: # 630 
of members; colors: ‘omics type; edges: interactions between modules, with Spearman 631 
coefficient (adjusted) represented by thickness, transparency, and color - positive (red) and 632 
negative (blue). Here, key microbial pathways (pyruvate, amino acid, and benzoate) interact 633 
with immune and metabolome modules in healthy individuals. Specifically, these correlations 634 
were disrupted in patient subgroups (B), as a function of gender, age (young <26 years old vs. 635 
older >50), BMI (normal <26 vs. overweight >26), and health status (individuals with IBS or 636 
infections). Correlations significantly shifted from healthy counterparts (Supplemental Figure 637 
6C) are highlighted with colored nodes and edges indicating increased (red) or decreased (blue) 638 
interactions. C) Targeted Microbial Pathways and Host Interactions. Four microbial metabolic 639 
mechanisms (tryptophan, butyrate, BCAA, benzoate) were further analyzed to compare control, 640 
short and long-term ME/CFS patients, and external cohorts for validation (Guo25 and 641 
Raijmakers26).1. Microbial Pathway Fold Change: Key genes were grouped and annotated in 642 
subpathways. Circle size: fold change over control; color: increase (red) or decrease (blue), p-643 
values (Patient vs Control, Wilcoxon, FDR adjusted) marked. 2. Microbiome-Host Interactions: 644 
Sankey diagrams visualize interactions between microbial pathways and host immune 645 
cells/metabolites. Line thickness and transparency: Spearman coefficient (adjusted); color: red 646 
(positive), blue (negative). 3. Immune & Metabolites Fold Change: Pathway-correlated immune 647 
cells and metabolites are grouped by category. 4. Contribution to Disease Symptoms: Stacked 648 
bar plots show accumulated SHAP values (contributions to symptom severity) for each disease 649 
symptom (1-12, as in Supplemental Table 1). Colors: microbial subpathways and 650 
immune/metabolome categories match module color in fold change maps. X-axis: accumulated 651 
SHAP values (contributions) from negative to positive, with the most contributed symptoms 652 
highlighted. P-values: *p < 0.05, **p < 0.01, ***p < 0.001. Abbreviations: IBS, Irritable Bowel 653 
Syndrome; BMI, Body Mass Index; BCAA, Branched-Chain Amino Acids; MAIT, Mucosal-654 
Associated Invariant T cell; SHAP, SHapley Additive exPlanations; GPE, 655 
Glycerophosphoethanolamine; INFγ, Interferon Gamma; CD, Cluster of Differentiation; Th, T 656 
helper cell; TMAO, Trimethylamine N-oxide; KEGG, Kyoto Encyclopedia of Genes and Genomes. 657 
Supporting Materials: Supplemental Table 7-8, Supplemental Figure 6.  658 
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  659 
Figure 5: Overview of Dysbiotic Host-Microbiome Interactions in ME/CFS. This conceptual 660 
diagram visualizes the host-microbiome interactions in healthy conditions (left) and its 661 
disruption and transition into the disease state in ME/CFS (right). The base icons of the figure 662 
remain consistent, while gradients and changes in color and size visually represent the 663 
progression of the disease. Process of production and processing is represented by lines with 664 
arrows, where the color indicates an increase (red) or decrease (blue) in the pathway in 665 
disease; lines without arrows indicate correlations, with red representing positive and blue 666 
representing negative correlations. In healthy conditions, microbial metabolites support 667 
immune regulation, maintaining mucosal integrity and healthy inflammatory responses by 668 
positively regulating Treg and Th22 cell activity, and controlling Th17 activities, including the 669 
secretion of IL17 (purple cells), IL22 (blue), and IFNγ. These microbial metabolites also maintain 670 
many positive interactions with plasma metabolites like lipids, bile acids, vitamins, and phenols. 671 
In ME/CFS, there is a significant decrease in beneficial microbes and a disruption in metabolic 672 
pathways, marked by a decrease in the butyrate (brown-red dots) and BCAA (yellow) pathways 673 
and an increase in tryptophan (green) and benzoate (red) pathways. These changes are linked 674 
to gastrointestinal issues. In ME/CFS, the regulatory capacity of the immune system diminishes, 675 
leading to the loss of health-associated interactions with Th17, Th22, and Treg cells, and an 676 
increase in inflammatory immune activity. Pathogenic immune cells, including CD8 MAIT and 677 
γδT cells, show increased activity, along with the secretion of inflammatory cytokines such as 678 
IFNγ and GzmA, contributing to worsened general health and social functioning. Healthy 679 
interactions between gut microbial metabolites and plasma metabolites weaken or even 680 
reverse in the disease state. A notable strong connection increased in ME/CFS is benzoate 681 
transformation to hippurate, associated with emotional disturbances, sleep issues, and fatigue. 682 
Abbreviations: IFNγ, Interferon gamma; Th17, T helper 17 cells; Th22, T helper 22 cells; Treg, 683 
Regulatory T cells; GzmA, Granzyme A; MAIT, Mucosa-Associated Invariant T cells; γδT, Gamma 684 
delta T cells; BCAA, Branched-Chain Amino Acids; GPE, Glycerophosphoethanolamine.  685 
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Methods 686 
Study Design. This was 4-year prospecPve study. All parPcipants had a physical examinaPon at 687 
the baseline visit that included evaluaPon of vital signs, BMI, orthostaPc vital signs, skin, 688 
lymphaPc system, HEENT, pulmonary, cardiac, abdomen, musculoskeletal, nervous system and 689 
fibromyalgia (FM) tender points. We enrolled a total of 153 ME/CFS paPents (of which 75 had 690 
been diagnosed with ME/CFS <4 years before recruitment and 78 had been diagnosed with 691 
ME/CFS >10 years before recruitment) and 96 healthy controls. Among them, 110 paPents and 692 
58 healthy controls were followed one year aker the recruitment as Pmepoint 2; 81 paPents 693 
and 13 healthy controls were followed two years aker the recruitment as Pmepoint 3; and 4 694 
paPents were followed four years aker the recruitment as Pmepoint 4. Subject characterisPcs 695 
are shown in Supplemental Table 1 and Supplemental Figure 1A. 696 
 697 
Medical history and concomitant medicaPons were documented. Blood samples were obtained 698 
prior to orthostaPc and cogniPve tesPng. The 10-minute NASA Lean Test and cogniPve tesPng 699 
were conducted aker the physical examinaPon and blood draw91. CogniPve efficiency was 700 
tested with the DANA Brain Vital, measuring three reacPon Pme and informaPon processing 701 
measurements92. The orthostaPc challenge was assessed with the 10-minute NASA Lean Test 702 
(NLT). ParPcipants rested supine for 10 minutes, and baseline blood pressure (BP) and heart rate 703 
(HR) were measured twice during the last 2 minutes of rest93. 704 
 705 
ParPcipants were provided with an at-home stool collecPon kit at the end of each in-person 706 
visit. The following quesPonnaires were completed at baseline: DePaul Symptom QuesPonnaire 707 
(DSQ), Post-ExerPonal FaPgue QuesPonnaire, RAND-36, Fibromyalgia Impact QuesPonnaire-R, 708 
ACR 2010 Fibromyalgia Criteria Symptom QuesPonnaire, Pifsburgh Sleep Quality Index (PSQI), 709 
Stanford Brief AcPvity Survey, OrthostaPc Intolerance Daily AcPvity Scale, OrthostaPc 710 
Intolerance Symptom Assessment, Brief Wellness Survey, Hours of Upright AcPvity (HUA), 711 
medical history and family history. All but medical history and family history were administered 712 
again when parPcipants came for their annual visit.  713 
 714 
Approval was received before enrolling any subjects in the study (The Jackson Laboratory 715 
InsPtuPonal Review Board, 17-JGM-13). All parPcipants were educated about the study prior to 716 
enrollment and signed all appropriate informed consent documents. Research staff followed 717 
Good Clinical PracPces (GCP) guidelines to ensure subject safety and privacy. 718 
 719 
ME/CFS Cohort. Beginning in January 2018, we enrolled ME/CFS paPents who had been sick for 720 
<4 years or sick for >10 years. No ME/CFS paPents with duraPon ≥4 years and ≤10 years were 721 
enrolled in order to have clear disPncPons between short and long duraPon of illness with 722 
ME/CFS. All parPcipants were 18 to 65 years old at the Pme of enrollment. ME/CFS diagnosis 723 
according to the InsPtute of Medicine clinical diagnosPc criteria and disease duraPon of <4 724 
years were confirmed during clinical differenPal diagnosis and thorough medical work up94. 725 
AddiPonal inclusion criteria required, 1) a substanPal reducPon or impairment in the ability to 726 
engage in pre-illness levels of occupaPonal, educaPonal, social, or personal acPviPes that 727 
persists for more than 6 months and less than 4 years and is accompanied by faPgue, which is 728 
oken profound, is of new or definite onset (not lifelong), is not the result of ongoing excessive 729 
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exerPon, and is not substanPally alleviated by rest, and 2) post-exerPonal malaise. Exclusionary 730 
criteria for the <4 year ME/CFS cohort were, 1) morbid obesity BMI>40, 2) other acPve and 731 
untreated disease processes that explain most of the major symptoms of faPgue, sleep 732 
disturbance, pain, and cogniPve dysfuncPon, 3) untreated primary sleep disorders, 4) 733 
rheumatological disorders, 5) immune disorders, 6) neurological disorders, 7) infecPous 734 
diseases, 8) psychiatric disorders that alter percepPon of reality or ability to communicate 735 
clearly or impair physical health and funcPon, 9) laboratory tesPng or imaging are available that 736 
support an alternate exclusionary diagnosis, and 10) treatment with short-term (less than 2 737 
weeks) anPviral or anPbioPc medicaPon within the past 30 days.  738 
For the >10 year ME/CFS cohort, disease duraPon of >10 year and clinical criteria was confirmed 739 
to meet the InsPtute of Medicine criteria for ME/CFS during clinical evaluaPon and medical 740 
history review94. Other than disease duraPon, inclusion and exclusion criteria were the same as 741 
for <4 year ME/CFS cohort. 742 
 743 
Healthy Control Cohort. Healthy control parPcipants were also between 18 to 65 years of age 744 
and in general good health. Enrollment began in 2018 and subjects were selected to match the 745 
<4 year ME/CFS cohort by age (within 5 years), race, and sex (~2:1 female to male raPo). 746 
Exclusion criteria for healthy controls included, 1) a diagnosis or history of ME/CFS, 2) morbid 747 
obesity BMI>40, 3) treatment with short-term (less than 2 weeks) anPviral or anPbioPc 748 
medicaPon within the past 30 days or 4) treatment long-term (longer than 2 weeks) anPviral 749 
medicaPon or immunomodulatory medicaPons within the past 6 months. 750 
 751 
Clinical Metadata and Scores. Clinical symptoms and baseline health status were assessed on 752 
the day of physical examinaPon and biological sample collecPon for both case and control 753 
subjects. For each parPcipant, we collected demographic informaPon (including age, gender, 754 
diet, race, BMI, family, work, and educaPon), medical histories, clinical tests and quesPonnaires. 755 
From quesPonnaires and test as described above, we summarized 12 clinical scores to cover 756 
major symptoms of ME/CFS: Scores 1-8 were derived from the RAND36, following standardized 757 
rules 95 and summarized into eight categories: Physical FuncPoning (also referred to as Daily 758 
AcPvity in the main contents), Role LimitaPons due to Physical Health (Physical LimitaPons), 759 
Role LimitaPons due to EmoPonal Problems (EmoPonal Problems), Energy/FaPgue, EmoPonal 760 
Wellbeing (Mental Health), Social FuncPoning (Social AcPvity), Pain, and General Health (Health 761 
PercepPon). CogniPve Efficiency was summarized from the DANA Brain Vital test, OrthostaPc 762 
Intolerance from the NLT test, Sleeping Problem Score from the Pifsburgh Sleep Quality Index 763 
(PSQI) quesPonnaire, and GastrointesPnal Problems Score from the GastrointesPnal Symptom 764 
RaPng Scale (GSRS) quesPonnaire. Each score was transformed into a 0–1 scale to facilitate 765 
combinaPon and comparison, where a score of 1 indicates maximum disability or severity and a 766 
score of 0 indicates no disability or disturbance. 767 
 768 
Plasma Sample collec1on and Prepara1on. Healthy and paPent blood samples were obtained 769 
from Bateman Horne Center, Salt Lake City, UT and approved by JAX IRB. One 4 mL lavender top 770 
tube (K2EDTA) was collected, and tube slowly inverted 8-10 Pmes immediately aker collecPon. 771 
Blood was centrifuged within 30 minutes of collecPon at 1000 x g with low brake for 10 772 
minutes. 250 uL of plasma was transferred into three 1 mL cryovial tubes, and tubes were 773 
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frozen upright at -80°C. Frozen plasma samples were batch shipped overnight on dry ice to The 774 
Jackson Laboratory, Farmington, CT, and stored at -80°C. Heparinized blood samples were 775 
shipped overnight at room temperature. Peripheral blood mononuclear cells (PBMC) were 776 
isolated using Ficoll-paque plus (GE Healthcare) and cryopreserved in liquid nitrogen. 777 
 778 
Plasma untargeted metabolome by UPLC-MS/MS. Plasma samples were sent to Metabolon 779 
pla�orm and processed by Ultrahigh Performance Liquid Chromatography-Tandem Mass 780 
Spectroscopy (UPLC-MS/MS) following the CFS cohort pipeline. In brief, samples were prepared 781 
using the automated MicroLab STAR® system from Hamilton Company. The extract was divided 782 
into five fracPons: two for analysis by two separate reverse phases (RP)/UPLC-MS/MS methods 783 
with posiPve ion mode electrospray ionizaPon (ESI), one for analysis by RP/UPLC-MS/MS with 784 
negaPve ion mode ESI, one for analysis by HILIC/UPLC-MS/MS with negaPve ion mode ESI, and 785 
one sample was reserved for backup. QA/QC were analyzed with several types of controls were 786 
analyzed including a pooled matrix sample generated by taking a small volume of each 787 
experimental sample (or alternaPvely, use of a pool of well-characterized human plasma), 788 
extracted water samples, and a cocktail of QC standards that were carefully chosen not to 789 
interfere with the measurement of endogenous compounds were spiked into every analyzed 790 
sample, allowed instrument performance monitoring, and aided chromatographic alignment. 791 
Compounds were idenPfied by comparison to Metabolon library entries of purified standards or 792 
recurrent unknown enPPes. The output raw data included the annotaPons and the value of 793 
peaks quanPfied using area-under-the-curve for metabolites. 794 
 795 
Immune Profiling: Flow Cytometry Analysis. Frozen PBMC aliquots were thawed, counted and 796 
divided into two parts, one part for day 0 surface staining, and the other part cultured in 797 
complete RPMI 1640 medium (RPMI plus 10% Fetal Bovine Serum (FBS, Atlanta Biologicals) and 798 
1% penicillin/streptomycin (Corning Cellgro) supplemented with IL-2+IL15 (20ng/ml) for Treg 799 
subsets day 1 surface and transcripPon factors staining aker culture with IL-7 (20ng/ml) for day 800 
1 and day 6 intracellular cytokine staining, and a combinaPon of cytokines (20ng/ml IL-12, 801 
20ng/ml IL-15, and 40ng/ml IL-18) for day 1 intracellular cytokine staining (IL-12 from R&D, IL-7 802 
and IL-15 from Biolegend). Surface staining was performed in staining buffer containing PBS + 803 
2% FBS for 30 minutes at 4°C. When staining for chemokine receptors the incubaPon was done 804 
at room temperature. AnPbodies used in the surface staining are 2B4, CD1c, CD14, CD16, CD19, 805 
CD25, CD27, CD31, CD3, CD303, CD38, CD4, CD45RO, CD56, CD8, CD95, CD161, CCR4, CCR6, 806 
CCR7, CX3CR1, CXCR3, CXCR5, γδ TCR bio, HLA-DR, IgG, IgM, LAG3, PD-1, TIM3, Va7.2, Va24Ja18 807 
all were obtained from Biolegend. 808 
 809 
For intracellular cytokine staining, cells were sPmulated with PMA (40ng/ml for overnight 810 
cultured cells and 20ng/ml for 6 days cultured cells) and Ionomycin (500ng/ml) (both from 811 
Sigma-Aldrich) in the presence of GolgiStop (BD Biosciences) for 4 hours at 37°C. For cytokine 812 
secrePon aker sPmulaPon with IL-12+IL-15+IL-18, GolgiStop was added to the culture on day 1 813 
for 4 hours. For intracellular cytokine and transcripPon factor staining, PMA+Ionomycin 814 
sPmulated cells of unsPmulated cells were collected, stained with surface markers including 815 
CD3, CD4, CD8, CD161, PD1, 2B4, Va7.2, CD45RO, CCR6, and CD27 followed by one wash with 816 
PBS (Phosphate buffer Saline) and staining with fixable viability dye (eBioscience). Aker surface 817 
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staining, cells were fixed and permeabilized using fixaPon/permeabilizaPon buffers 818 
(eBioscience) according to the manufacturer’s instrucPon. Permeabilized cells were then stained 819 
for intracellular FOXP3, Helios, IL-4, IFNγ, TNFα, IL-17A, IL-22, Granzyme A, GM-CSF, and 820 
Perforin from Biolegend. Flow cytometry analysis was performed on Cytek Aurora (Cytek 821 
Biosciences) and analyzed using FlowJo (Tree Star). 822 
 823 
Fecal Sample Collec1on and DNA Extrac1on. Stool was self-collected at home by volunteers 824 
using a BioCollector fecal collecPon kit (The BioCollecPve, Denver, CO) according to 825 
manufacturer instrucPons for preservaPon for sequencing prior to sending the sample in a 826 
provided Styrofoam container with a cold pack. Upon receipt, stool and OMNIgene samples 827 
were immediately aliquoted and frozen at –80°C for storage. Prior to aliquoPng, OMNIgene 828 
stool samples were homogenized by vortexing (using the metal bead inside the OMNIgene 829 
tube), then divided into 2 microfuge tubes, one with 100µL aliquot and one with 1mL. DNA was 830 
extracted using the Qiagen (Germantown, MD, USA) QIAamp 96 DNA QIAcube HT Kit with the 831 
following modificaPons: enzymaPc digesPon with 50μg of lysozyme (Sigma, St. Louis, MO, USA) 832 
and 5U each of lysostaphin and mutanolysin (Sigma) for 30 min at 37 °C followed by bead-833 
beaPng with 50 μg 0.1 mm of zirconium beads for 6 min on the Tissuelyzer II (Qiagen) prior to 834 
loading onto the Qiacube HT. DNA concentraPon was measured using the Qubit high sensiPvity 835 
dsDNA kit (Invitrogen, Carlsbad, CA, USA). 836 
 837 
Metagenomic Shotgun Sequencing. Approximately 50µL of thawed OMNIgene preserved stool 838 
sample was added to a microfuge tube containing 350 µL Tissue and Cell lysis buffer and 100 µg 839 
0.1 mm zirconia beads. Metagenomic DNA was extracted using the QiaAmp 96 DNA QiaCube HT 840 
kit (Qiagen, 5331) with the following modificaPons: each sample was digested with 5µL of 841 
Lysozyme (10 mg/mL, Sigma-Aldrich, L6876), 1µL Lysostaphin (5000U/mL, Sigma-Aldrich, L9043) 842 
and 1µL oh Mutanolysin (5000U/mL, Sigma-Aldrich, M9901) were added to each sample to 843 
digest at 37°C for 30 minutes prior to the bead-beaPng in the in the TissueLyser II (Qiagen) for 2 844 
x 3 minutes at 30 Hz. Each sample was centrifuged for 1 minute at 15000 x g prior to loading 845 
200µl into an S-block (Qiagen, 19585) NegaPve (environmental) controls and posiPve (in-house 846 
mock community of 26 unique species) controls were extracted and sequenced with each 847 
extracPon and library preparaPon batch to ensure sample integrity. Pooled libraries were 848 
sequenced over 13 sequencing runs using both HiSeq (N=87) and NovaSeq (N=392) pla�orms. 849 
To address potenPal biases arising from varying read depths, all samples were down-sampled, 850 
using seqtk96 (v1.3-r106), to 5 million reads. This threshold corresponds to the 95th percenPle 851 
of the read count distribuPon across the dataset. 852 
 853 
Sequencing adapters and low-quality bases were removed from the metagenomic reads using 854 
scythe (v0.994) and sickle (v1.33), respecPvely, with default parameters. Host reads were 855 
removed by mapping all sequencing reads to the hg19 human reference genome using BowPe2 856 
(v2.3.1), under ‘very-sensiPve’ mode. Unmapped reads (i.e., microbial reads) were used to 857 
esPmate the relaPve abundance profiles of the microbial species in the samples using 858 
MetaPhlAn4. 859 
 860 
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Taxonomic Profiling (Specie Abundance) and KEGG Gene Profiling. Taxonomic composiPons 861 
were profiled using Metaphlan4.097 and the species whose average relaPve abundance > 1e-4 862 
were kept for further analysis, giving 384 species. The gene profiling was computed with 863 
USEARCH98 (v8.0.15) (with parameters: evalue 1e-9, accel 0.5, top_hits_only) to KEGG 864 
Orthology (KO) database v54, giving a total of 9452 annotated KEGG genes. The reads count 865 
profile was normalized by DeSeq299 in R. Genes with a prevalence of over 20% were selected for 866 
downstream analysis.  867 
 868 
Confounder Analysis. Confounder analysis was done by R package MaAsLin2100. We considered 869 
demographic features (including age, gender, BMI, ethnicity, and race), diet records, 870 
medicaPons (anPvirals, anPfungals, anPbioPcs, and probioPcs), and self-reported IBS scores as 871 
potenPal confounders. The analysis followed the model formula: 872 
𝑒𝑥𝑝𝑟	~		age + gender + bmi + ethnic + race + IBS + diet_meat + diet_sugar + diet_veg873 

+ diet_grains + diet_fruit + antifungals + antibiotics + probiotics874 
+ antivirals + (1|sample_id_tp1) 875 

where 𝑒𝑥𝑝𝑟 refers to the 'omics matrix. For each feature in the 'omics data, we ran this 876 
generalized linear model to idenPfy mulPvariable associaPons between each 'omics feature and 877 
each metadata feature. IdenPfied confounders were handled differently based on the type of 878 
data. For species and KEGG genes, any feature with a significant staPsPcal associaPon with any 879 
metadata feature was removed from all subsequent analyses, resulPng in the removal of 21 880 
species and 946 microbial genes. For immune profiling and plasma metabolomics, to remove 881 
the effects of idenPfied confounders, each feature was adjusted by retaining the residuals97, i.e., 882 
the part of the outcome not explained by the confounding factors, from a general linear model:  883 

𝑦′ = (𝑦 ∼ predicted	confounders)$𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 884 
AddiPonally, for network and paPent subset analysis (Methods), age, gender, BMI, and IBS were 885 
not included as confounders since we analyzed different age groups, gender groups, weight 886 
groups, and IBS groups separately. However, other idenPfied confounders were sPll considered 887 
in the residual models. 888 
 889 
BioMapAI. The raPonale behind BioMapAI is we believe that ME/CFS is characterized by 890 
significant heterogeneity and individual variability, making tradiPonal approaches—such as 891 
classifying paPents versus controls and reporPng single-disease biomarkers—insufficient to us. 892 
This moPvated us to develop a sophisPcated model that directly integrates rich biological mulP-893 
omics data with clinical phenotypes. The primary learning goal of BioMapAI is to connect high-894 
dimensional biology data, 𝑋 to mixed-type output matrix, 𝑌. Unlike tradiPonal ML or DL 895 
classifiers that typically predict a single outcome, 𝑦, BioMapAI is designed to learn mulPple 896 
objects, 𝑌 = [𝑦!, 𝑦", … , 𝑦#], simultaneously within a single model. This approach allows for the 897 
simultaneous predicPon of diverse clinical outcomes - including binary, categorical, conPnuous 898 
variables - with ‘omics profiles, thus address disease heterogeneity by tailoring each paPent’s 899 
specific symptomology. The uniqueness of BioMapAI is it is the first supervised deep learning 900 
model that integrates omics directly with clinical phenotypes in ME/CFS. This design enables 901 
simultaneous idenPficaPon of symptom-specific and disease-general biomarkers, accounPng for 902 
ME/CFS’s phenotypic heterogeneity. 903 
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1. BioMapAI Structure. BioMapAI is a fully connected deep neural network framework 904 
comprising an input layer 𝑋, a normalizaPon layer, three sequenPal hidden layers, 𝑍!, 𝑍", 𝑍$,and 905 
one output layer 𝑌.  906 
1) Input layer (𝑿) takes high-dimensional ‘omics data, such as gene expression, species 907 
abundance, metabolome matrix, or any customized matrix like immune profiling and blood labs. 908 
2) Normaliza1on Layer standardizes the input features to have zero mean and unit variance, 909 
defined as  910 

𝑋5 =
𝑋 − 𝜇
𝜎  911 

where 𝜇 is the mean and 𝜎 is the standard deviaPon of the input features. 912 
3) Feature Learning Module is the core of BioMapAI, responsible for extracPng and learning 913 
important paferns from input data. Each fully connected layer (hidden layer 1-3) is designed to 914 
capture complex interacPons between features. Hidden Layer 1 (𝒁𝟏) and Hidden Layer 2 (𝒁𝟐) 915 
contain 64 and 32 nodes, respecPvely, both with ReLU acPvaPon and a 50% dropout rate, 916 
defined as: 917 

𝑍8 = ReLU(𝑊8𝑍89! + 𝑏8), 𝑘 ∈ {1,2} 918 
Hidden Layer 3 (𝒁𝟑) has 𝑛 parallel sub-layers for each object, 𝑦%  in 𝑌. Every sub-layer, 𝑍%$, 919 
contains 8 nodes, represented as: 920 

𝑍%$ = ReLU(𝑊%
$𝑍$ + 𝑏%$), 𝑖 ∈ {1,2, … , n} 921 

All hidden layers used ReLU acPvaPon funcPons, defined as: 922 
ReLU(𝑥) = 𝑚𝑎𝑥(0, 𝑥) 923 

4) Outcome Predic1on Module is responsible for the final predicPon of the objects. The output 924 
layer (𝒀) has 𝑛 nodes, each represenPng a different object: 925 

𝑦% 	= 	o
𝜎(𝑊%

;𝑍%$ + 𝑏%;)																										for	binary	object
softmax(𝑊%

;𝑍%$ + 𝑏%;)						for	categorical	object	
𝑊%

;𝑍%$ + 𝑏%;																									for	continuous	object	
		 926 

The loss funcPons are dynamically assigned based on the type of each object:  927 

ℒ = 	

⎩
⎪⎪
⎨

⎪⎪
⎧
1
N
x [y< log(𝑦2%) + (1 − y<) log(1 − 𝑦2%)]

=

%>!
							for	binary	object

−
1
𝑁
x x y<? logz𝑦2%@{

A

@>!
																									

=

%>!
	for	categorical	object

1
𝑁
x |0.5

(y< − 𝑦2%)",			if |y< − yB�| ≤ 𝛿
δ|y< − 𝑦2%| − 0.5δ", 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

=

%>!
						for	continuous	object

		 928 

 929 
During training, the weights are adjusted using the Adam opPmizer. The learning rate was set to 930 
0.01, and weights were iniPalized using the He normal iniPalizer. L2 regularizaPons were applied 931 
to prevent overfi�ng. 932 
5) Op1onal Binary Classifica1on Layer (not used for parameter training). An addiPonal binary 933 
classificaPon layer is afached to the output layer 𝑌 to evaluate the model's performance in 934 
binary classificaPon tasks. This layer is not used for training BioMapAI but serves as an auxiliary 935 
component to assess the accuracy of predicPng binary outcomes, for example, disease vs. 936 
control. This ScoreLayer takes the predicted scores from the output layer and performs binary 937 
classificaPon: 938 
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𝑦2%#1CD = σz𝑊2%#1CD𝑌 + 𝑏2%#1CD{ 939 
The iniPal weights of the 12 scores are derived from the original clinical data, and the weights 940 
are adjusted based on the accuracy of BioMapAI's predicPons: 941 

𝑤new = 𝑤old − η∇ℒKL/  942 
where ∇ℒKL/  refers to the mean squared error (MSE) between the predicted 𝑦’ and true 𝑦, 943 
then adjusts the weights to opPmize the accuracy of the binary classificaPon. 944 
2. Training and Evalua1on of BioMapAI for ME/CFS – BioMapAI::DeepMECFS. BioMapAI is a 945 
framework designed to connect high-dimensional, sparse biological ‘omics matrix 𝑋 to mulP-946 
output 𝑌. While BioMapAI is not tailored to a specific disease, it is versaPle and applicable to a 947 
broad range of biomedical topics. In this study, we trained and validated BioMapAI using our 948 
ME/CFS datasets. The trained models are available on GitHub, nicknamed DeepMECFS, for the 949 
benefit of the ME/CFS research community. 950 
1) Dataset Pre-Processing Module: Handling Sample Imbalance. To ensure uniform learning for 951 
each output 𝑦, it is crucial to address sample imbalance before fi�ng the framework. We 952 
recommend using customized sample imbalance handling methods, such as SynthePc Minority 953 
Over-sampling Technique (SMOTE)101, AdapPve SynthePc (ADASYN)102, or Random Under-954 
Sampling (RUS)103. In our ME/CFS dataset, there is a significant imbalance, with the paPent data 955 
being twice the size of the control data. To effecPvely manage this class imbalance, we 956 
employed RUS as a random sampling method for the majority class. Specifically, we randomly 957 
sampled the majority class 100 Pmes. For each iteraPon 𝑖, a different random subset 𝑆%

&1@3C%+D 958 
was used. This subset 𝑆%

&1@3C%+D of the majority class was combined with the enPre minority 959 
class 𝑆&%#3C%+D. For each iteraPon 𝑖: 960 

𝑆%
MN?OP<QR ⊆ 𝑆&1@3C+%D , 𝑆&%#3C%+D = 𝑆&%#3C%+D 961 

𝑆% = 𝑆%
&1@3C%+D ∪ 𝑆&%#3C%+D 962 

where the combined dataset 𝑆%  was used for training at each iteraPon. This approach allows the 963 
model to generalize befer and avoid biases towards the majority class, improving overall 964 
performance and robustness. 965 
2) Model Training, Cross-Valida1on and Held-out Valida1on. DeepMECFS is the name of the 966 
trained BioMapAI model with ME/CFS datasets. We trained on five preprocessed ‘omics 967 
datasets, including species abundances (Feature N=118, Sample N=474) and KEGG gene 968 
abundances (Feature N=3959, Sample N=474) from the microbiome, plasma metabolome 969 
(Feature N=730, Sample N=407), immune profiling (Feature N=311, Sample N=481), and blood 970 
measurements (Feature N=48, Sample N=495). AddiPonally, an integrated ‘omics profile was 971 
created by merging the most predicPve features from each ‘omics model related to each clinical 972 
score (SHAP Methods), forming a comprehensive matrix of 154 features, comprising 50 immune 973 
features, 32 species, 30 KEGG genes, and 42 plasma metabolites. 974 
To evaluate the performance of BioMapAI, we employed a robust 10-fold cross-validaPon 975 
alongside a held-out validaPon approach. Specifically, 10% of the data was excluded from the 976 
cross-validaPon process to serve as an independent validaPon set. This allowed us to assess 977 
both the model's performance during cross-validaPon and its generalizability on unseen data. 978 
Training was conducted over 500 epochs with a batch size of 64 and a learning rate of 0.0005, 979 
opPmized through grid search. The Adam opPmizer was used to adjust the weights during 980 
training, chosen for its ability to handle sparse gradients on noisy data. The iniPal learning rate 981 
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was set to 0.0005, with beta1 set to 0.9, beta2 set to 0.999, and epsilon set to 1e-7 to ensure 982 
numerical stability. Dropout layers with a 50% dropout rate were used aker each hidden layer to 983 
prevent overfi�ng, and L2 regularizaPon (𝜆 = 0.008) was applied to the kernel weights, 984 
defined as: 985 

𝐿C(S =
𝜆
2x𝑤%"

=

%>!

 986 

3) Model Evalua1on. To evaluate the performance of the models, we employed several metrics 987 
tailored to both regression and classificaPon tasks. The Mean Squared Error (MSE) was used to 988 
evaluate the performance of the reconstrucPon of each object. For each 𝑦%, MSE was calculated 989 
as:  990 

𝑀𝑆𝐸% =
1
𝑁xz𝑦%

@ − 𝑦2%
@{
"
, 𝑖 = 1,2, … , 𝑛

=

@>!

 991 

where 𝑦%
@  is the actual values, 𝑦2%

@  is the predicted values, and 𝑁 is the number of samples, 𝑛 is 992 
the number of objects. For binary classificaPon tasks (ME/CFS vs control), we uPlized mulPple 993 
metrics including accuracy, precision, recall, and F1 score to enable a comprehensive evaluaPon 994 
of the model's performance. 995 
To benchmark the performance of BioMapAI, we compared its binary classificaPon performance 996 
with four tradiPonal machine learning models and one deep neural network (DNN) model. The 997 
tradiPonal machine learning models included: 1) LogisPc Regression (LR) (C=0.5, saga solver 998 
with ElasPc Net regularizaPon); 1) Generalized linear modeling with elasPc net regularizaPon 999 
(Glmnet) (grid search for best alpha/lambda, tuneLength = 10) - R glmnet, caret; 2) Glmnet with 1000 
interacPon terms (Glmnet-int) - R glmnet, caret; 3) Support Vector Machine (SVM) with an RBF 1001 
kernel (C=2) - sklearn.svm.SVC; and 4) Gradient BoosPng Decision Trees (GBDT) (learning rate = 1002 
0.05, maximum depth = 5, esPmators = 1000) - sklearn.ensemble.GradientBoosPngClassifier. 1003 
DNN model employed the same hyperparameters as BioMapAI, except it did not include the 1004 
parallel sub-layer, 𝑍$, thus it only performed binary classificaPon instead of mulP-output 1005 
predicPons. The comparison between BioMapAI and DNN aims to assess the specific 1006 
contribuPon of the spread-out layer, designed for discerning object-specific paferns, in binary 1007 
predicPon. EvaluaPon metrics are detailed in Supplemental Table 3. 1008 
4) Hyperparameter Tuning of BioMapAI. We conducted a systemaPc hyperparameter tuning 1009 
procedure to opPmize BioMapAI’s performance on twelve symptom-specific clinical outcomes 1010 
and disease status (ME/CFS vs. control). Our goal was to balance predicPve accuracy, model 1011 
complexity, and generalizability across high-dimensional ‘omics datasets. The results of our 1012 
tuning experiments are illustrated in Supplemental Figure 7. We began with a base BioMapAI 1013 
architecture consisPng of two shared hidden layers (each with 128 nodes), no dropout, no L2 1014 
penalty, and training for 1000 epochs.  1015 
We first invesPgated how varying the number of shared hidden layers (1, 2, 3, or 4) affected 1016 
both clinical score predicPon (mean squared error, MSE) and disease classificaPon (accuracy). As 1017 
shown in Supplemental Figure 7A, two shared hidden layers achieved the best predicPve 1018 
performance.  1019 
Next, we performed a grid search over learning rates 1020 
{0.01,0.001,0.0005,0.0001,0.00005,0.00001} and batch sizes {32,64,128}. We trained each 1021 
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configuraPon for 1000 epochs using the Adam opPmizer. Supplemental Figure 7B (heatmaps) 1022 
displays the MSE for each of the 12 clinical scores at different combinaPons of learning rate and 1023 
batch size. A learning rate of 0.0005 and batch size 64 emerged as the opPmal balance, yielding 1024 
stable training curves and minimal variance across folds. Although we iniPally trained for 1000 1025 
epochs, we observed that validaPon metrics consistently stabilized by around 500 epochs. To 1026 
prevent overfi�ng and reduce computaPonal burden, we introduced early stopping at 500 1027 
epochs in subsequent experiments.  1028 
We then tuned the number of neurons in each of the two shared hidden layers. ConfiguraPons 1029 
tested included {256,128,64,32,16,8} for the first and the second layer. As shown in 1030 
Supplemental Figure 7C, while the 128–64 se�ng performed similarly to other higher-width 1031 
combinaPons, we observed that 64–32 minimized overfi�ng risk yet retained robust predicPve 1032 
accuracy. Thus, we selected 64 neurons in the first shared layer and 32 in the second.  1033 
To further miPgate overfi�ng in the hidden layers, we examined dropout rates {0.1,0.2,0.5,0.8}. 1034 
Supplemental Figure 7D demonstrates that 0.5 offered the best overall balance. We therefore 1035 
used a 50% dropout aker each shared layer. Lastly, we tested L2 penalty strengths 𝜆 ∈1036 
{0.1,0.05,0.01,0.005,0.008,0.001,0.0001}.		A moderate penalty of 𝜆 = 0.008 was selected 1037 
(Supplemental Figure 7E).  1038 
Our final chosen hyperparameters include: Two shared hidden layers with sizes 64 and 32, each 1039 
followed by a ReLU acPvaPon and 50% dropout; Batch size = 64, 500 epochs with early stopping; 1040 
An Adam opPmizer (iniPal learning rate = 0.0005, 𝛽1 = 0.9, 𝛽2 = 0.999, 𝜖 = 1 × 10 − 7), L2 1041 
penalty 𝜆 = 0.008. We observed that the model’s overall performance (MSE on symptom 1042 
scores, accuracy for ME/CFS classificaPon) was not highly sensiPve to small deviaPons in these 1043 
hyperparameters. Even with the baseline configuraPon (128 nodes, no dropout, no penalty), the 1044 
predicPve performance was reasonable; however, this final tuned setup led to an improvement 1045 
of approximately 5–10% and yielded more stable and generalizable outcomes across the five 1046 
‘omics datasets. 1047 
5) Sensi1vity Analyses of BioMapAI. For sensiPvity analysis of BioMapAI, we first re-trained our 1048 
final BioMapAI configuraPon ten Pmes with different random iniPalizaPons. ClassificaPon 1049 
metrics and regression metrics (MSE) for the twelve clinical outcomes were collected. As shown 1050 
in Supplemental Table 3, the standard deviaPons (SD) were minimal (<5%) across these ten 1051 
runs, indicaPng that BioMapAI is robust to changes in random seed iniPalizaPon. We also 1052 
evaluated three similarly performing model architectures (chosen based on grid search results) 1053 
that yield near-idenPcal or slightly different loss values: Model 1: 128 nodes in the first shared 1054 
layer, 32 nodes in the second shared layer, 𝜆 = 0.008; Model 2: 32 nodes in the first shared 1055 
layer, 32 nodes in the second shared layer, 𝜆 = 0.008; Model 3: 64 nodes in the first shared 1056 
layer, 32 nodes in the second shared layer, 𝜆 = 0.005. As shown in Supplemental Table 3, while 1057 
minor fluctuaPons in classificaPon performance were observed, the results were genernally 1058 
consistent. This underscores BioMapAI’s stability: adjusPng the number of neurons in the 1059 
shared layers or slightly altering the L2 penalty does not substanPally degrade classificaPon or 1060 
regression outcomes. CollecPvely, these analyses confirm that BioMapAI’s core design is not 1061 
overly sensiPve to small architectural or regularizaPon variaPons. Even when trained with 1062 
alternaPve hyperparameter se�ngs, the model yields robust and consistent performance on 1063 
both classificaPon (ME/CFS vs. control) and symptom severity score learning. 1064 
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6) External Valida1on with Independent Dataset. To validate BioMapAI's robustness in binary 1065 
classificaPon, we uPlized 4 external cohorts25,26,27,28 comprising more than 100 samples. For 1066 
these external cohorts, only binary classificaPon is available. A detailed summary of data 1067 
collecPon for these cohorts is provided in Supplemental Table 4. For each external cohort, we 1068 
processed the raw data (if available) using our in-house pipeline. The features in the external 1069 
datasets were aligned to match those used in BioMapAI by reindexing the datasets. The overlap 1070 
between the features in the external dataset and BioMapAI's feature set was calculated to 1071 
determine feature coverage. Any missing features were imputed with zeros to maintain 1072 
consistency across datasets. The input data was then standardized as BioMapAI. We loaded the 1073 
pre-trained BioMapAI, GBDT, and DNN for comparison. LR and SVM were excluded because they 1074 
did not perform well during the in-cohort training process. The performance of the models was 1075 
evaluated using the same binary classificaPon evaluaPon metrics. EvaluaPon metrics detailed in 1076 
Supplemental Table 4. 1077 
3. BioMapAI Decode Module: SHAP. BioMapAI is designed to be explainable, ensuring that it 1078 
not only reconstructs and predicts accurately but also is interpretable, which is parPcularly 1079 
crucial in the biological domain. To achieve this, we incorporated SHapley AddiPve exPlanaPons 1080 
(SHAP) into our framework. SHAP offers a consistent measure of feature importance by 1081 
quanPfying the contribuPon of each input feature to the model's output.104  1082 
We applied SHAP to BioMapAI to interpret the results, following these three steps: 1083 
1) Model Reconstruc1on. BioMapAI's architecture includes two shared hidden layers - 𝑍!, 𝑍"- 1084 
and one parallel sub-layers - 𝑍%$- for each object 𝑦%. To decode the feature contribuPons for each 1085 
object 𝑦%, we reconstructed sub-models from single comprehensive model: 1086 

𝑀𝑜𝑑𝑒𝑙% = 𝑍! + 𝑍" + 𝑍%$, 𝑖 = 1,2, … , 𝑛 1087 
where 𝑛 is the number of learned objects. 1088 
2) SHAP Kernel Explainer. For each reconstructed model, 𝑀𝑜𝑑𝑒𝑙%, we used the SHAP Kernel 1089 
Explainer to compute the feature contribuPons. The explainer was iniPalized with the model's 1090 
predicPon funcPon and the input data 𝑋: 1091 

𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑟% = 𝑠ℎ𝑎𝑝. 𝐾𝑒𝑟𝑛𝑒𝑙𝐸𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑟(𝑀𝑜𝑑𝑒𝑙% . 𝑝𝑟𝑒𝑑𝑖𝑐𝑡, 𝑋), 𝑖 = 1,2, … , 𝑛 1092 
Then SHAP values were computed to determine the contribuPon of each feature to 𝑦%: 1093 

𝜙% = 𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑟%(𝑋), 𝑖 = 1,2, … , 𝑛 1094 
The kernel explainer is a model-agnosPc approach that approximates SHAP by evaluaPng the 1095 
model with and without the feature of interest and then assigning weights to these evaluaPons 1096 
to ensure fairness. For each 𝑚𝑜𝑑𝑒𝑙%, with each feature 𝑗: 1097 

𝜙%
@(𝑓, 𝑥) = 	 x

|𝑆%|! (𝑚 − |𝑆%| − 1)!
𝑚! z𝑀𝑜𝑑𝑒𝑙%(𝑆% ∪ 𝑗) − 𝑀𝑜𝑑𝑒𝑙%(𝑆%){

L!⊆=!\{@}

	1098 

=	
1
𝑚 x �

𝑚 − 1
𝑚 − |𝑆%| − 1

 
9!

z𝑀𝑜𝑑𝑒𝑙%(𝑆% ∪ 𝑗) − 𝑀𝑜𝑑𝑒𝑙%(𝑆%){
L!⊆=!\{@}

, 𝑖 = 1,2, … , 𝑛 1099 

where 𝑛 is the number of learned objects, 𝑚 is the total number of features, 𝜙%
@  is the Shapley 1100 

value for feature 𝑗 in 𝑚𝑜𝑑𝑒𝑙%, 𝑁%  is the full set of features in 𝑚𝑜𝑑𝑒𝑙%, 𝑆%  is the subset of features 1101 
not including feature 𝑗, 𝑀𝑜𝑑𝑒𝑙%(𝑆%) is the model predicPon for the subset 𝑆%. The SHAP value 1102 
matrix, 𝜙%, were further reshaped to align with the input data dimensions. 1103 
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3) Feature Categoriza1on. Analyzing the SHAP value matrices, [𝜙!, 𝜙", … , 𝜙#], features can be 1104 
roughly assigned to two categories: shared features - important to all outputs; or specific 1105 
features - specifically important to individual outputs. We set the cutoff at 75%, where features 1106 
consistently idenPfied as top contributors in 75% of the models were classified as shared 1107 
important features, termed disease-specific biomarkers. Features that were top contributors in 1108 
only a few models were classified as specific important features, termed symptom-specific 1109 
biomarkers. 1110 
By reconstrucPng individual models, 𝑀𝑜𝑑𝑒𝑙%, for each object, 𝑦%, and applying SHAP explainer 1111 
individually, we effecPvely decoded the contribuPons of input features to BioMapAI's 1112 
predicPons. This method allowed us to categorize features into shared and specific categories—1113 
termed as disease-specific and symptom-specific biomarkers—providing novel interpretaPons 1114 
of the ‘omics feature contribuPon to clinical symptoms.  1115 
4) Interaction Types of Important Feature.  1116 
Linear (Monotonic) Rela1onship: A feature 𝑥 and a symptom 𝑦 follow a roughly linear (or 1117 
strictly monotonic) trend when the change in 𝑦 can be approximated by a single slope over 𝑥’s 1118 
range. Formally, 𝑦 ≈ 𝛼 + 𝛽𝑥, with 𝛽 ≠ 0, implying a consistently increasing (𝛽 > 0) or 1119 
decreasing (𝛽 < 0) trend. Biologically, as the biomarker goes up, the symptom steadily 1120 
increases (posiPve 𝛽) or decreases (negaPve 𝛽).  1121 
Biphasic Rela1onship. A biomarker 𝑥 relates to a symptom 𝑦 through a two-phase pafern, such 1122 
as a U-shaped or inverted U-shaped curve. One way to represent this is by including a squared 1123 
term: 𝑦 ≈ 𝛼 + 𝛽1𝑥 + 𝛽2𝑥", with 𝛽2 ≠ 0. Biologically, this oken reveals that both very low and 1124 
very high biomarker values are associated with greater symptom severity, whereas moderate 1125 
values relate to reduced severity (or vice versa).  1126 
Dispersed Rela1onship. If there is no single coherent shape (linear or otherwise) that describes 1127 
the biomarker–symptom relaPonship across all individuals. Instead, contribuPons may appear 1128 
sparse (affecPng only a small subset of parPcipants) or highly variable with no dominant 1129 
pafern. Biologically, this is a typical relaPonship at KEGG profile in our case, where different 1130 
individuals can exhibit different direcPons or magnitudes of effect, leading to scafered or 1131 
“patchy” paferns. 1132 
5) Stability of SHAP Values. To the stability of SHAP values under repeated experiments and 1133 
similar model configuraPons, we conducted re-ran the Same Data with the Same Architecture 1134 
(Different Random Seeds) as above. We then computed the standard deviaPon (SD) of the SHAP 1135 
values for each feature. Over 90% of features exhibit less than 3% variaPon in their SHAP 1136 
contribuPons across runs, indicaPng that the top features remain highly consistent despite 1137 
random seed variaPon.  1138 
We also computed SHAP values for each of the three alternaPve model architectures (Model 1, 1139 
Model 2, Model 3) described above. Despite their slight architectural or regularizaPon 1140 
differences, the top 50 features idenPfied by SHAP largely overlapped with those from the final 1141 
BioMapAI. While some lower-ranked features did differ across models, those changes 1142 
accounted for less than 5% of the total SHAP variance, suggesPng that the core set of important 1143 
predictors remains stable. Consequently, the minor variaPons observed are unlikely to affect 1144 
clinical interpretaPon or downstream analyses. In summary, both random iniPalizaPons and 1145 
small architectural changes do not substanPally alter the SHAP-based feature importance 1146 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 13, 2025. ; https://doi.org/10.1101/2024.06.24.600378doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.24.600378
http://creativecommons.org/licenses/by-nc-nd/4.0/


 32 

paferns in BioMapAI. The top features remain consistent, reinforcing the reliability and 1147 
interpretability of our mulP-output deep learning framework. 1148 
4. Packages and Tools. BioMapAI was constructed by Tensorflow(v2.12.0)105 and Keras(v2.12.0). 1149 
ML models were from scikit-learn(v 1.1.2)106, Glmnet models were using R package 1150 
glmnet107(v4.1-4) and caret108(v6.0.93). 1151 
5. Usage of BioMapAI. We have included our GitHub README.md file and introduced a Jupyter 1152 
notebook for user instrucPon. Because there are limited large-scale mulP-‘omics datasets with 1153 
sufficient matched clinical data for us to test BioMapAI’s generalizability, we have not trained 1154 
BioMapAI on other disease states. However, BioMapAI’s specialized deep neural network 1155 
structured with two shared general layers and one outcome-focused parallel layer should be 1156 
generalizable and scalable to other cohort studies that aim to uPlize ‘omics data for a range of 1157 
outputs (e.g., not just limited to clinical symptoms). For instance, researchers could employ our 1158 
model to link whole genome sequencing data with blood or protein measurements. 1159 
Constructed to automaPcally adapt to any input matrix and any output matrix, BioMapAI 1160 
defaults to parallelly align specific layers for each output.  1161 
 1162 
WGCNA and Network Analysis. To idenPfy co-expressed paferns of each ‘omics, we employed 1163 
the Weighted Gene Co-expression Network Analysis (WGCNA) using the WGCNA109 package in 1164 
R. The analysis was performed on preprocessed omics data (Methods): species abundances 1165 
(Feature N=373, Sample N=479) and KEGG gene abundances (Feature N=4462, Sample N=479) 1166 
from the microbiome, plasma metabolome (Feature N=395, Sample N=414), immune profiling 1167 
(Feature N=311, Sample N=489). Network construcPon and module detecPon involved choosing 1168 
sok-thresholding powers tailored to each dataset: 6 for species, 7 for KEGG, 5 for immune, and 1169 
6 for metabolomic. The adjacency matrices were transformed into topological overlap matrices 1170 
(TOM) to reduce noise and spurious associaPons. Hierarchical clustering was performed using 1171 
the TOM, and modules were idenPfied using the dynamic tree cut method with a minimum 1172 
module size of 30 genes. Module eigengenes were calculated, and modules with highly similar 1173 
eigengenes (correlaPon > 0.75) were merged. Module-trait relaPonships were assessed by 1174 
correlaPng module eigengenes with clinical traits, and gene significance (GS) and module 1175 
membership (MM) were used to idenPfy hub genes within significant modules. 1176 
Network analysis was conducted using igraph110 in R. Module eigengenes from the WGCNA 1177 
analysis were extracted for each dataset. A combined network was constructed by calculaPng 1178 
Spearman correlaPon coefficients (corrected, Methods) between the module eigengenes of 1179 
different datasets, and an adjacency matrix was created based on a threshold of 0.3 (absolute 1180 
value) to include only significant associaPons. Network nodes represented module eigengenes 1181 
and edges represented significant correlaPons. Degree centrality and betweenness centrality 1182 
were calculated to idenPfy highly connected and influenPal nodes. Networks in paPent 1183 
subgroups were displayed as the correlaPon differences from their healthy counterparts to 1184 
exclude the influence of covariates. For example, correlaPons in female paPents were compared 1185 
with female healthy, and correlaPons in older paPents were compared with older healthy. 1186 
  1187 
Sta1s1cal Analysis. The dimensionality reducPon analysis was conducted by Principal 1188 
Correspondence Analysis (PCoA) using sklearn.manifold.MDS funcPon for ‘omics. For combined 1189 
'omics data, PCoA was applied to combined module eigengenes from WGCNA. Fold change of 1190 
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species, genes, immune cells, and metabolites were compared between paPent and control 1191 
groups, short-term and control groups, and long-term and control groups. P values were 1192 
computed by Wilcoxon signed-rank test with False Discovery Rate (FDR) correcPon, adjusted for 1193 
mulPple group comparisons. Spearman's rank correlaPon was used to assess correlaPon 1194 
covariant. P-values were adjusted using Holm's method, accounPng for mulPple group 1195 
comparisons. P value annotaPons: ns: p > 0.05, *: 0.01 < p <= 0.05, **: 0.001 < p <= 0.01, ***: p 1196 
<= 0.001.  1197 
 1198 
Longitudinal Analysis. To capture staPsPcally meaningful temporal signals, we employed 1199 
various staPsPcal and modeling methods, accounPng for both linear and non-linear trends and 1200 
intra-individual correlaPons: 1201 
1. Interquar1le Range (IQR) and Intraclass Correla1on Coefficient (ICC). We iniPally assessed 1202 
staPsPcs at different Pme points by compuPng the IQR and ICC. Data were standardized to a 1203 
mean of zero and a standard deviaPon of one to ensure comparability across features with 1204 
different scales. The IQR quanPfied variability, while the ICC assessed the dependence of 1205 
repeated measurements111, indicaPng the similarity of measurements over Pme. Data showed 1206 
no staPsPcal dependence and no trend of stable variance across Pme points. 1207 
2. Generalized Linear Models (GLMs). GLMs112 were then used to analyze the effects of Pme 1208 
points, considering age, gender, and their interacPons. Time points were included as predictors 1209 
to reveal changes in dependent variables over Pme, with interacPon terms exploring variaPons 1210 
based on age and gender. Random effects accounted for intra-individual correlaPons. Although 1211 
12 features out of 5000 showed weak trends over Pme (slopes < 0.2), they were not deemed 1212 
sufficient to be potenPal longitudinal biomarkers, possibly due to individualized paferns. 1213 
3. Repeated Measures Correla1on (rmcorr). To befer consider individual effects, we employed 1214 
rmcorr113 to assess consistent paferns of associaPon within individuals over Pme. This method 1215 
captured stable within-individual associaPons across different Pme points. However, only 30 1216 
features out of 5000 showed weak slopes (< 0.3), and these were not considered sufficient to 1217 
conclude the presence of longitudinal signals. 1218 
4. Smoothing Spline ANOVA (SS-ANOVA). We then considered the longitudinal trends could be 1219 
non-linear and more complex. To model complex, non-linear relaPonships between response 1220 
variables and predictors over Pme, SS-ANOVA114 was used. SS-ANOVA uncovered non-linear 1221 
trends and interacPons in the omics data, however, no strong temporal signals were idenPfied. 1222 
In conclusion, robust analysis of the longitudinal data, accounPng for both linear and non-linear 1223 
trends and intra-individual correlaPons, revealed the difficulty in extracPng strong and 1224 
staPsPcally meaningful temporal signals. As Myalgic EncephalomyeliPs/Chronic FaPgue 1225 
Syndrome (ME/CFS) is a disease that usually lasts for decades with non-linear progression, the 1226 
four-year tracking period with annual measurements is likely insufficient for capturing 1227 
consistent temporal signals, necessitaPng longer follow-up periods.  1228 
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Data and Code 1229 
Metagenomics data is being deposited under the BioProject submission number SUB14546737 1230 
and will be publicly available as of the date of publicaPon. Accession numbers are listed in the 1231 
key resources table. BioMapAI framework is available at 1232 
hfps://github.com/ohlab/BioMapAI/codes/AI. All original code, analyzed data and trained 1233 
model has been deposited at https://github.com/ohlab/BioMapAI. All other 'omics data, 1234 
including clinical metadata, are available in Supplementary Tables, GitHub and at the 1235 
MapMECFS portal (hfps://mecfs.rP.org/research/). Any addiPonal informaPon required to 1236 
reanalyze the data reported in this paper is available from the lead contact upon request. 1237 
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Supplemental Figure 1: Data Pairedness Overview and Heterogeneity in Healthy and Pa1ents. 1264 
A) Cohort Composi1on and Data Collec1on. Over four years, 515 Pme points were collected: 1265 
baseline year from all 249 donors (Healthy N=96, ME/CFS N=153); second year from 168 1266 
individuals (Healthy N=58, ME/CFS N=110); third year from 94 individuals (Healthy N=13, 1267 
ME/CFS N=81); fourth year from N=4 ME/CFS paPents. Nearly 400 collecPon points included 1268 
complete sets of 5 ‘omics datasets, with others capturing 3-4 ‘omics profiles. Clinical metadata 1269 
and blood measures were collected at all 515 points. Immune profiles from PBMCs were 1270 
recorded at 489 points, microbiome data from stool samples at 479 points, and plasma 1271 
metabolome data at 414 points. A total of 1,471 biosamples were collected. B-C) Heterogeneity 1272 
of B) Healthy Controls and C) All Pa1ents in Symptom Severity and ‘Omics Profiles. 1273 
Supplemental informaPon for Figure 1B, which shows examples from 20 paPents. Variability in 1274 
symptom severity (top) and ‘omics profiles (bofom) for all healthy controls and all paPents with 1275 
3-4 Pme points. The top x-axis numbers represent 12 symptoms, arranged in the same order as 1276 
Supplemental Figure F-G (lek to right, top to bofom). D) Distribu1on of 12 Clinical Symptoms 1277 
in ME/CFS and Control. Density plots compare the distribuPons of 12 clinical scores between 1278 
control (blue) and ME/CFS paPents (orange) with the x-axis represents the values of symptom 1279 
severity (scaled from 0%, no symptom, to 100%, most severe)n and the y-axis represents the 1280 
frequency (count) of data points.  Clinical scores include RAND36 subscales (e.g., Physical 1281 
FuncPoning, EmoPonal Wellbeing), CogniPve Efficiency from the DANA test, OrthostaPc 1282 
Intolerance from the NLT test, Sleep Problems from the PSQI quesPonnaire, and GastrointesPnal 1283 
Symptoms from the GSRS quesPonnaire. E) Principal Coordinates Analysis (PCoA) of each 1284 
'Omics. PCoA based on Bray-CurPs distance for clinical scores, immune profiles, plasma 1285 
metabolome, blood measures, species abundance, and KEGG gene data. Control samples (blue) 1286 
and ME/CFS paPents (red) show disPnct clustering. Here, except for the clinical scores, controls 1287 
are indisPnguishable from paPents, highlighPng the difficulty of building classificaPon models. 1288 
F-G) Symptom Progression Over Time in F) Healthy vs. G) ME/CFS Pa1ents. Symptom 1289 
progression for each individual (represented by different colors) is shown using line plots of 1290 
symptom severity (y-axis) over Pme points (years 1–4). Compared to healthy controls, ME/CFS 1291 
paPents exhibit higher severity (indicated by higher y-axis values), greater heterogeneity 1292 
(indicated by differences within the paPent group), and inconsistent or non-linear progression 1293 
(indicated by substanPal variaPon over Pme without a consistent pafern) in clinical symptoms. 1294 
Abbrevia1ons: ME/CFS, Myalgic EncephalomyeliPs/Chronic FaPgue Syndrome; PCoA, Principal 1295 
Coordinates Analysis; RAND36, 36-Item Short Form Health Survey; DANA, DANA Brain Vital; NLT, 1296 
NASA Lean Test; PSQI, Pifsburgh Sleep Quality Index; GSRS, GastrointesPnal Symptom RaPng 1297 
Scale; KEGG, Kyoto Encyclopedia of Genes and Genomes. Related to: Figure 1-2.1298 
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Supplemental Figure 2: BioMapAI’s Performance at Clinical Score Reconstruction and Disease 1300 
Classification. A) Density map of True vs. Predicted Clinical Scores. Supplemental informaPon 1301 
for Figure 2B, which shows three examples. Here, the full set of 12 clinical scores compares the 1302 
true score, 𝑦 (Column 1), against BioMapAI’s predictions generated from different ‘omics 1303 
profiles – 𝑦2%&&'#(, 𝑦2*,(-%(*, 𝑦2./00 , 𝑦2&(+12343&(, 𝑦2)'(*+, 𝑦23&%-* (Columns 2-7). B) Scaher Plot of 1304 
True vs. Predicted Clinical Scores. Scafer plots display the relaPonship between true clinical 1305 
scores (x-axis) and predicted clinical scores (y-axis) for six different models: Omics, Immune, 1306 
Species, KEGG, Metabolome, and Quest Labs. Each plot demonstrates the clinical score 1307 
predicPon accuracy for each model. C) ROC Curve for Disease Classifica1on with Original 1308 
Clinical Scores. The Receiver OperaPng CharacterisPc (ROC) curve evaluates the performance of 1309 
disease classificaPon using the original 12 clinical scores. The mean Area Under the Curve (AUC) 1310 
is 0.99, indicaPng high predicPon accuracy, which aligns with the clinical diagnosis of ME/CFS 1311 
based on key symptoms. D) 3D t-SNE Visualiza1on of Hidden Layers. 3D t-SNE plots show how 1312 
BioMapAI progressively disPnguishes disease from control across hidden layers for five trained 1313 
'omics models: Immune, KEGG, Species, Metabolome, and Quest Labs. Each plot uses the first 1314 
three principal components to show the spaPal distribuPon of control samples (blue) and 1315 
ME/CFS paPents (red). The progression from the input layer (mixed groups) to Hidden Layer 3 1316 
(fully separated groups) illustrates how BioMapAI progressively learns to separate ME/CFS from 1317 
healthy controls. E) ROC Curve for Disease Classifica1on with Held-out Data. ROC curves show 1318 
BioMapAI’s performance in disease classification with held-out data. Abbrevia1ons: ROC, 1319 
Receiver OperaPng CharacterisPc; AUC, Area Under the Curve; t-SNE, t-Distributed StochasPc 1320 
Neighbor Embedding; PCs, Principal Components; 𝑦, True Score; 𝑦2, Predicted Score. Related to: 1321 
Figure 2.  1322 
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1323 
Supplemental Figure 3: Disease-Specific Biomarkers - Top 10 Biomarkers Shared across 1324 
Clinical Symptoms and Multiple Models. Through the top 30 high-ranking features for each 1325 
score, we discovered that the most critical features for all 12 symptoms were largely shared 1326 
and consistently validated across ML and DL models, particularly the foremost 10. Here, this 1327 
multi-panel figure presents the top 10 most significant features identified by BioMapAI across 1328 
five ‘omics profiles, highlighting their importance in predicting clinical symptoms and diagnostic 1329 
outcomes across BioMapAI, DNN, and GBDT models, along with their data prevalence. Each 1330 
vertical section represents one ‘omics profile, with columns of biomarkers ordered by average 1331 
feature importance from right to left. From top to bottom: 1. Feature Importance Ranking in 1332 
BioMapAI. Lines depict the rank of feature importance for each clinical score, color-coded by 1333 
the 12 clinical scores. Consistency among the top 5 features suggests they are shared disease 1334 
biomarkers crucial for all clinical symptoms; 2. Heatmap of SHAP Values from BioMapAI. This 1335 
heatmap shows averaged SHAP values with the 12 scores on the rows and the top 10 features 1336 
in the columns. Darker colors indicate a stronger impact on the model's output; 3. Swarm Plot 1337 
of SHAP Values from DNN. This plot represents the distribution of feature contributions from 1338 
DNN, which is structurally similar to BioMapAI but omits the third hidden layer (𝑍$). SHAP 1339 
values are plotted vertically, ranging from negative to positive, showing each feature's influence 1340 
on prediction outcomes. Points represent individual samples, with color gradients denoting 1341 
actual feature values. For instance, Dysosmobacteria welbionis, identified as the most critical 1342 
species, shows that greater species relative abundance correlates with a higher likelihood of 1343 
disease prediction; 4. Bar Graphs of Feature Importance in GBDT. GBDT is another machine 1344 
learning model used for comparison. Each bar's height indicates a feature's significance within 1345 
the GBDT model, providing another perspective on the predictive relevance of each biomarker; 1346 
5. Heatmap of Normalized Raw Abundance Data. This heatmap compares biomarker prevalence 1347 
between healthy and disease states, with colors representing z-scored abundance values, 1348 
highlighting biomarker differences between groups. Abbreviations: DNN: Here refer to our 1349 
deep Learning model without the hidden 3, ‘spread out’ layer; GBDT: Gradient Boosting 1350 
Decision Tree; SHAP: SHapley Additive exPlanations. Supporting Materials: Supplemental Table 1351 
5. Related to: Figure 3. 1352 
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1353 
Supplemental Figure 4: Symptom-Specific Biomarkers - Immune, KEGG and Metabolome 1354 
Models. By linking ‘omics profiles to clinical symptoms, BioMapAI identified unique symptom-1355 
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specific biomarkers in addition to disease-specific biomarkers (Supplemental Figure 3). Each 1356 
‘omics has a circularized diagram (Figure 3A, Supplemental Figure 4B-D) to display how 1357 
BioMapAI use this ‘omics profile to predict 12 clinical symptoms and to discuss the contribution 1358 
of disease- and symptom-specific biomarkers. Detailed correlation between symptom-specific 1359 
biomarkers and their corresponding symptoms is in Supplemental Figure 5. A) Examples of 1360 
Sleeping Problem-Specific Species’ and Gastrointestinal-Specific Species’ Contributions. 1361 
Supplemental information for Figure 3D, which shows the contribution of pain-specific species. 1362 
B-D) Circularized Diagram for Immune, KEGG and Metabolome Models. Supplemental 1363 
information for Figure 3A, which shows the species model. E-F) Zoomed Segment for Pain in 1364 
KEGG and Metabolome Model. Supplemental information for Figure 3B, which shows the 1365 
zoomed segment for pain in the species and immune models. *Note, the reported biomarkers 1366 
were calculated using the entire dataset and were not validated on held-out data. 1367 
Abbreviations and Supporting Materials: Supplemental Figure 5. Related to: Figure 3.  1368 
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1369 
Supplemental Figure 5: Symptom-Specific Biomarkers - Different Correlation Patterns of 1370 
Biomarkers to Symptom. Supplemental informaPon for Figure 3C, which shows six pain 1371 
biomarkers from mulPple models. Here for each ‘omics, we plotted the correlation of symptom-1372 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 13, 2025. ; https://doi.org/10.1101/2024.06.24.600378doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.24.600378
http://creativecommons.org/licenses/by-nc-nd/4.0/


 44 

specific biomarkers (x-axis) to its related symptom (y-axis), colored by SHAP value (contribution 1373 
to the symptom). Abbreviations: CD4, Cluster of Differentiation 4; CD8, Cluster of 1374 
Differentiation 8; IFNg, Interferon Gamma; DC, Dendritic Cells; MAIT, Mucosal-Associated 1375 
Invariant T; Th17, T helper 17 cells; CD4+ TCM, CD4+ Central Memory T cells; DC CD1c+ mBtp+, 1376 
Dendritic Cells expressing CD1c+ and myelin basic protein; DC CD1c+ mHsp, Dendritic Cells 1377 
expressing CD1c+ and heat shock protein; CD4+ TEM, CD4+ Effector Memory T cells; CD4+ Th17 1378 
rfx4+, CD4+ T helper 17 cells expressing RFX4; F. prausnitzii, Faecalibacterium prausnitzii; A. 1379 
communis, Akkermansia communis; NAD, Nicotinamide Adenine Dinucleotide. Related to: 1380 
Figure 3. 1381 
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Supplemental Figure 6: ‘Omics WGCNA Modules and Host-Microbiome Network. A) 1383 
Correla1on of WGCNA Modules with Clinical Metadata. Weighted Gene Co-expression 1384 
Network Analysis (WGCNA) was used to idenPfy co-expression modules for each ‘omics layer: 1385 
species, KEGG, immune, and metabolome. The top dendrograms show hierarchical clustering of 1386 
'omics features, with modules idenPfied. The bofom heatmap shows the relaPonship of 1387 
module eigengenes (colored as per dendrogram) with clinical metadata – including 1388 
demographic informaPon and environmental factors - and 12 clinical scores. General linear 1389 
models were used to determine the primary clinical drivers for each module, with the color 1390 
gradient represenPng the coefficients (red = posiPve, blue = negaPve). Microbial modules were 1391 
influenced by disease presence and energy-faPgue levels, while metabolome and immune 1392 
modules correlated with age and gender. B-C) Microbiome-Immune-Metabolome Network in 1393 
B) Pa1ent and C) Healthy Subgroups. Supplemental informaPon for Figure 4A (Healthy 1394 
Network) and 4B (PaPent Subgroups). Figure 4A is the healthy network; here, Supplemental 1395 
Figure 6B presented the shiked correlaPons in all paPents. Figure 4B represented the network 1396 
in paPent subgroups; here, Supplemental Figure 6C is the corresponding healthy counterpart, 1397 
for example, female paPents were compared with female controls to exclude gender influences. 1398 
D) Differences in Host-Microbiome Correla1ons between Healthy and Pa1ent Subgroups. 1399 
Selected host-microbiome module pairs are grouped on the x-axis (e.g., pyruvate to blood 1400 
modules, steroids to gut microbiome). Significant posiPve and negaPve correlaPons (top and 1401 
bofom y-axis) of module members pairs are shown as dots for each subgroup (blue = healthy, 1402 
orange = paPent) (Spearman, adjusted p < 0.05), from lek to right: Young, Elder, Female, Male, 1403 
NormalWeight, OverWeight Healthy and Young, Elder, Female, Male, NormalWeight, 1404 
OverWeight PaPent. The middle bars represent the total count of associaPons. This panel 1405 
highlights the shiks in host-microbiome networks from health to disease, for example, in 1406 
paPents, the loss of pyruvate to host blood modules correlaPon and the increase of INFg+ CD4 1407 
memory correlaPon with gut microbiome. Abbrevia1ons: WGCNA, Weighted Gene Co-1408 
expression Network Analysis; AA, Amino Acids; SCFA, Short-Chain Fafy Acids; IL, Interleukin; 1409 
GM-CSF, Granulocyte-Macrophage Colony-SPmulaPng Factor. Related to: Figure 4.  1410 
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1411 
Supplemental Figure 7: Hyperparameter Tuning of BioMapAI. This figure illustrates how 1412 
BioMapAI’s predicPve performance for 12 symptom-specific clinical objecPves and disease 1413 
classificaPon (ME/CFS vs. control) responds to different hyperparameter se�ngs across five 1414 
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‘omics datasets (species abundance, KEGG gene abundances, plasma metabolome, immune 1415 
profiling, and quest blood measurements). Each sub-panel shows a comparison of performance 1416 
metrics (e.g., mean squared error for clinical scores, classificaPon accuracy for disease 1417 
classificaPon) versus the tested hyperparameter values. For mean squared error (MSE) of 1418 
clinical scores, smaller values indicate befer predicPons, as predicted scores are closer to true 1419 
scores. For classificaPon accuracy, larger values reflect befer performance. A) Number of 1420 
Shared Hidden Layers. The y-axis represents performance metrics tuned against the number of 1421 
shared hidden layers {1,2,3,4} on the x-axis Each ‘omics dataset is disPnguished by color. Two 1422 
shared hidden layers were selected, as this configuraPon demonstrated the best balance 1423 
between predicPve accuracy for clinical scores and disease classificaPon. B) Grid Search for 1424 
Learning Rate and Batch Size. Each heatmap represents one ‘omics dataset (columns), with 1425 
rows corresponding to individual clinical scores (total of 12). Colors indicate MSE between 1426 
predicted 𝑦,C(X  and 𝑦+C'(  values across combinaPons of learning rates 1427 
{0.01,0.001,0.0005,0.0001,0.00005,0.00001} and batch sizes {32,64,128}. Darker colors 1428 
represent higher MSE (worse predicPon), while lighter colors indicate lower MSE (befer 1429 
predicPon). Red boxes mark opPmal se�ngs. A learning rate of 0.0005 and batch size of 64 1430 
achieved stable training with minimal variance across predicPons. C) Grid Search for Number of 1431 
Neurons in Each Shared Layer. Similar to (B), this panel visualizes the tuning of network width 1432 
for each shared layer. ConfiguraPons tested include {256,128,64,32,16,8}. While configuraPons 1433 
like 128–64 (Layer 1) and 64–32 (Layer 2) performed similarly, 64–32 was chosen for minimizing 1434 
overfi�ng while preserving predicPve accuracy. D) Dropout Rate. The x-axis shows tested 1435 
dropout rates {0.1,0.2,0.5,0.8}, while the y-axis tracks performance metrics as in (A). A dropout 1436 
rate of 50% (0.5) provided the best trade-off between overfi�ng control and predicPon stability. 1437 
E) L2 Penalty Rate. Each line or bar corresponds to different regularizaPon strengths 𝜆 ∈1438 
{0.1,0.05,0.01,0.005,0.008,0.001,0.0001}. A moderate penalty of 𝜆 = 0.008 was selected, 1439 
offering an opPmal balance between overfi�ng prevenPon and model capacity. Together, these 1440 
panels demonstrate how each hyperparameter affects BioMapAI’s ability to predict 12 clinical 1441 
scores and classify disease status across five disPnct ‘omics datasets. The final configuraPon—1442 
two shared hidden layers (64 and 32 neurons), a learning rate of 0.0005, batch size of 64, 1443 
dropout of 50%, and L2 penalty 𝜆 = 0.008 —achieved opPmal balance between predicPve 1444 
performance and generalizability for high-dimensional ‘omics data. Abbrevia1ons: ME/CFS: 1445 
Myalgic EncephalomyeliPs/Chronic FaPgue Syndrome; KEGG: Kyoto Encyclopedia of Genes and 1446 
Genomes; MSE: Mean Squared Error. Related to: Methods.  1447 
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Supplemental Table 1448 
Supplemental Table 1 Sample Metadata and Clinical Scores  1449 
Supplemental Table 2 Model Performance at ReconstrucPng Twelve Clinical Scores: Averaged 1450 
Average Mean Squared Error by Model and Model SensiPvity Analysis 1451 
Supplemental Table 3 Model Performance in DiagnosPc Comparison—Within-Cohort, Cross-1452 
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Supplemental Table 7 WGCNA Module Eigengene 1460 
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