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Abstract

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a chronic illness with a
multifactorial etiology and heterogeneous symptomatology, posing major challenges for
diagnosis and treatment. Here, we present BioMapAl, a supervised deep neural network
trained on a four-year, longitudinal, multi-omics dataset from 249 participants, which integrates
gut metagenomics, plasma metabolomics, immune cell profiling, blood laboratory data, and
detailed clinical symptoms. By simultaneously modeling these diverse data types to predict
clinical severity, BioMapAl identifies disease- and symptom-specific biomarkers and robustly
classifies ME/CFS in both held-out and independent external cohorts. Using an explainable Al
approach, we construct the first connectivity map spanning the microbiome, immune system,
and plasma metabolome in health and ME/CFS, adjusted for age, gender, and additional clinical
factors. This map uncovers disrupted associations between microbial metabolism (e.g., short-
chain fatty acids, branched-chain amino acids, tryptophan, benzoate), plasma lipids and bile
acids, and heightened inflammatory responses in mucosal and inflammatory T cell subsets
(MAIT, y&T) secreting IFNy and GzA. Overall, BioMapAl provides unprecedented systems-level
insights into ME/CFS, refining existing hypotheses and hypothesizing new pathways associated
to the disease’s heterogeneous symptoms.

Introduction

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a debilitating, multi-system
illness that often persists for years or even decades and presents with substantial heterogeneity
in clinical manifestations. Affecting an estimated 10 million individuals worldwide, ME/CFS is
characterized by persistent fatigue, post-exertional malaise, multi-site pain, sleep disturbances,
orthostatic intolerance, cognitive impairment, gastrointestinal symptoms, and other issues. This
complexity not only hinders timely diagnosis but also poses significant challenges for effective
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treatment.},2,3. The pathogenesis of ME/CFS is not well understood, with some triggers believed
to include viral infections such as Epstein-Barr Virus (EBV)?, enteroviruses® and SARS
coronavirus®, in addition to bacterial infections and other causes’. As a chronic disease, ME/CFS
can persist for years or even a lifetime, with each patient developing distinct illness patterns?.
Hence, a single standardized approach to clinical care and symptom management is unlikely to
suffice; instead, personalized, symptom-specific strategies may be necessary to effectively
address the multifaceted nature of ME/CFS.

For ME/CFS and other chronic diseases such as cancer?, diabetes®, rheumatoid arthritis (RA)°,
and long COVID,22 this heterogeneity has been problematic to accommodate in research
studies, leaving substantial knowledge and technical gaps!3. The approach of most cohort
studies is to focus on identifying one or two key disease indicators, such as HbA1C levels for
diabetes!*! or survival rates for cancer?®, even with the advent of multi-‘omics. This approach
has difficulty accommodating the highly multifactorial etiology and progression of most chronic
diseases, with different patients exhibiting varying symptoms and disease markers?’. To address
this challenge, methods must link a more complex matrix of disease-associated outcomes with a
range of ‘omics data types to enable precise targeting of biomarkers tailored to each patient’s
specific symptoms.

In this study, we generated and assembled a longitudinal, multi-omics dataset from 153 ME/CFS
patients and 96 age- and gender-matched healthy controls, encompassing gut metagenomics,
plasma metabolomics, immune cell profiling (including activation and cytokine measures),
blood labs, detailed clinical symptoms, and lifestyle surveys. To integrate these diverse data
types with ME/CFS symptomatology, we developed BioMapAl, an explainable supervised deep
neural network (DNN) that maps multi-omics profiles to a matrix of clinical symptoms. We
aimed to: (1) identify novel disease biomarkers for ME/CFS, including those specifically tied to
its heterogeneous symptomatology, and (2) map interactions among the microbiome, immune
system, and metabolome rather than focusing on single or pairwise data types.

Using BioMapAl, we identified both disease- and symptom-specific biomarkers, reconstructed
key clinical symptoms, and accurately classified ME/CFS in held-out and external cohorts. We
then constructed a comprehensive multi-omics connectivity map that refines existing
hypotheses and proposes new ones regarding microbial, metabolomic, and immune factors in
ME/CFS. Critically, we accounted for confounders such as age and gender to contextualize the
interplay among data types in health versus disease. For example, we observed that depletion
of microbial short-chain fatty acids (e.g., butyrate) and branched-chain amino acids (BCAAs) in
ME/CFS is linked to abnormal activation of mucosal and inflammatory immune cells (MAIT and
y6T), which produce IFNy and GzA—an altered dynamic correlated with worse perceived health
and reduced social activity. Furthermore, microbial metabolites such as tryptophan and
benzoate displayed fewer connections with plasma lipids in patients, an association that in turn
tracked with fatigue, emotional dysregulation, and sleep disturbances.

To our knowledge, this dataset is among the most comprehensive multi-omics resources
assembled for ME/CFS (including other complex chronic diseases). We further introduce an
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88 innovative Al approach that begins to address the multifaceted nature of this chronic disease,
89  generating new hypotheses for host—-microbiome interactions in both health and ME/CFS. Given
90 the recognized parallels in both etiology and clinical presentation between ME/CFS and long
91  COVID,1?, studying ME/CFS can offer broader insights into the pathophysiology of post-viral
92  syndromes. More generally, our Al-driven framework may prove valuable for other complex
93 conditions where symptom variability cannot be fully captured by a single data type.
94
95 Results
96
97  Cohort Overview
98  We tracked 249 participants over 3-4 years, including 153 ME/CFS patients (75 'short-term' with
99 disease symptoms < 4 years and 78 'long-term' with disease symptoms > 10 years) and 96
100  healthy controls (Fig 1A; Supplemental Table 1). The cohort is 68% female and 32% male,
101 aligning with the epidemiological data showing that women are 3-4 times more likely to develop
102  ME/CFS8,19, Participants ranged in age from 19 to 68 years with body mass indexes (BMI) from
103 16 to 43 kg/m?2. Throughout the study, we collected detailed clinical metadata, blood samples,
104  and fecal samples. In total, 1471 biological samples were collected across all participants at 515
105 timepoints (Methods, Supplemental Figure 1A, Supplemental Table 1).
106
107 Blood samples were 1) sent for clinical testing at Quest Laboratory (48 features measured,
108 N=503 samples), 2) fractionated into peripheral blood mononuclear cells (PBMCs), which were
109 examined via flow cytometry, yielding data on 443 immune cells and cytokines (N=489), 3)
110  plasma and serum, for untargeted liquid chromatography with tandem mass spectrometry (LC-
111 MS/MS), identifying 958 metabolites (N=414). Detailed demographic documentation and
112  questionnaires covering medication use, medical history, and key ME/CFS symptoms were
113  collected (Methods). Finally, whole genome shotgun metagenomic sequencing of stool samples
114 (N=479) produced an average of 12,302,079 high-quality, classifiable reads per sample, detailing
115  gut microbiome composition (1293 species detected) and KEGG gene function (9993 genes
116  reconstructed).
117
118  Heterogeneity and Non-linear Progression of ME/CFS
119  First, we demonstrated the phenotypic complexity and heterogeneity of ME/CFS. Collaborating
120  with clinical experts, we consolidated detailed questionnaires and clinical metadata
121 foundational to diagnosing ME/CFS, into twelve essential clinical scores (Methods). These scores
122  covered core symptoms including physical and mental health, fatigue, pain levels, cognitive
123  efficiency, sleep disturbances, orthostatic intolerance, and gastrointestinal issues (Supplemental
124  Table 1).
125
126  While healthy individuals consistently presented low symptom scores (Supplemental Figure 1D,
127  1F), ME/CFS patients exhibited significant variability in symptom severity, with each individual
128  showing different predominant symptoms (Figure 1B, Supplemental Figure 1C, 1G). Principal
129  coordinates analysis (PCoA) of the ‘omics matrices highlighted the difficulty in distinguishing
130  patients from controls, emphasizing the complex symptomatology of ME/CFS and the
131 challenges in developing predictive models (Supplemental Figure 1E). Additionally, over time, in
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132  contrast to the stable patterns typical of healthy individuals (Supplemental Figure 1B), ME/CFS
133  patients demonstrated distinctly varied patterns each year, as evidenced by the diversity in

134  symptom severity and noticeable separation on the ‘omics PCoA (Figure 1B, Supplemental

135  Figure 1C). Despite employing multiple longitudinal models (Methods), we found no consistent
136  temporal signals, confirming the non-linear progression of ME/CFS.

137

138 This individualized, multifaceted, and dynamic nature of ME/CFS that intensifies with disease
139  progression necessitates new approaches that extend beyond simple disease versus control
140  comparisons. Here, we created and implemented an Al-driven model that integrates the

141 multi-‘'omics profiles to learn host phenotypes. This allowed us not only to develop an accurate
142  disease classifier, but more importantly, to identify specific biomarker sets for each clinical

143  symptom as well as unique interaction networks that differed between patients and controls.
144

145  BioMapAl, an Explainable Neural Network Connecting ‘Omics to Multi-Type Outcomes

146  ME/CFS research is hindered by the complexity of its clinical phenotypes and biological

147  measurements, which are highly individualized. To associate multi-‘'omics data with clinical

148  symptoms, a model must accommodate the learning of multiple different outcomes within a
149  single framework. However, traditional machine learning models are generally designed to

150  predict a single categorical outcome or continuous variable?°,21,22, This simplified disease

151 classification and conventional biomarker identification typically fails to encapsulate the

152  heterogeneity of complex diseases?3,%4. Our goal was to integrate multi-‘omics data with clinical
153  symptoms into a single model, which would enable a direct comparison of the predictive value
154  of different ‘omics datasets and the identification of symptom-specific biomarkers within a

155  unified framework.

156

157  We developed an Al-powered multi-‘'omics framework, BioMapAl, a fully connected deep neural
158  network that inputs ‘omics matrices (X), and outputs a mixed-type outcome matrix (Y), thereby
159  mapping multiple ‘omics features to multiple clinical indicators (Figure 2A). By assigning tailored
160 loss functions for each output to each output based on its data type (See Methods), BioMapAl
161 aims to comprehensively learn every y (i.e., each of the 12 continuous or categorical clinical
162  scores in this study), using the ‘omics data inputs. Between the input layer X and the output
163  layerY = [y4,¥,, ..., Vnl, the model consists of two shared hidden layers (Z! with 64 nodes, and
164  Z? with 32 nodes) for general pattern learning, followed by a parallel hidden layer (Z3 =

165  [z3,23, ..., z3]), with sub-layers (z3, each with 8 nodes) tailored for each outcome (y,,), to

166  capture outcome-specific patterns (Figure 2A). This unique architecture — two shared and one
167  specific hidden layer — allows the model to capture both general and output-specific patterns.
168  This model is made 1) explainable by incorporating a SHAP (SHapley Additive exPlanations)

169  explainer, which quantifies the feature importance of each predictions, providing both local
170  (symptom-level) and global (disease-level) interpretability, and 2) flexible by automatically

171  finding appropriate learning goals and loss functions for each type of outcomes (without need
172  of format refinement), facilitating BioMapAl's potential adaptability to broader research

173  applications.

174
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175  BioMapAl Reconstructed Clinical Symptoms and Demonstrated Robust Capability to Classify
176  ME/CFS from Healthy Controls

177  BioMapAl is a supervised deep learning Al framework that connects a biological ‘omics matrix to
178  multiple phenotypic outputs. Here, we trained and validated it on our ME/CFS dataset,

179  employing a ten-fold cross-validation. Additionally, 10% of the data was held out as an

180 independent validation set, separate from the cross-validation process, to assess the model's
181 generalizability (Methods). This trained model, nicknamed DeepMECFS for the ME/CFS

182  community, was able to represent the structure of diverse clinical symptom score types and
183  discriminated between healthy individuals and patients (Figure 2, Supplemental Figure 2,

184  Supplemental Table 2-3). For example, it effectively differentiated the physical health scores,
185  where patients exhibited more severe conditions compared to healthy controls (category

186  datatype 4 vs. 0, respectively, Figure 2B, Supplemental Table 2) and pain scores (continuous
187  datatype ranging from 1(highest)- O(lowest), mean 0.52+0.24 vs. 0.11+0.12 for patients vs.

188  controls). Though compressing some inherent variance, BioMapAl accurately reconstructed key
189  statistical measures such as the mean and interquartile range (25%-75%), and highlighted the
190 distinctions between healthy and disease. (Figure 2B, Supplemental Figure 2A-B, Supplemental
191 Table 2).

192

193  To determine the accuracy of BioMapAl’s reconstructed clinical scores, we compared their

194  ability to discriminate ME/CFS patients from controls with the original clinical scores. We used
195  one additional fully connected layer to regress the 12 predicted clinical scores Y(12,) into a
196  binary outcome of patient vs. control §(1,). Because the diagnosis of ME/CFS relies on clinical
197  interpretation of key symptoms (i.e., the original clinical scores), the original clinical scores have
198 near-perfect accuracy in classification, as expected (AUC, Area Under the Curve >99%,

199  Supplemental Figure 2C). BioMapAl’s predicted scores achieved a 91% AUC in distinguishing
200 disease from healthy controls as evaluated through 10-fold cross-validation (Figure 2D,

201 Supplemental Figure 2D). To benchmark its performance, we compared it with four machine
202 learning models - generalized linear model with elastic net regularization (GImnet), GImnet with
203 interaction terms, support vector machine (SVM), and gradient boosting (GDBT) — and a deep
204  learning model (DNN) with two fully connected layers but without the third "spread-out"

205 hidden layer (Supplemental Table 3). In terms of the 10-fold cross-validation for disease

206 classification, BioMapAl, DNN, and GImnet performed comparably well overall. BioMapAl

207  showed slightly better performance with the full ‘omics dataset (AUC = 91.5%) and immune
208 data (81.8%), while GImnet outperformed in metabolome (79.0%) and questionnaire data

209  (72.5%).

210

211 BioMapAl demonstrated robust performance with unseen data, as validated on held-out cohort
212  data (Supplemental Figure 2E, Table 3) and independent, previously published ME/CFS cohorts
213  (Figure 2E, Supplemental Table 4). In the held-out validation, it outperformed in most ‘omics
214  datasets, including ‘omics altogether (AUC=82.3%), immune (78.5%), KEGG (69.1%), species
215  (71.5%), and metabolome (76.4%), while GImnet excelled in Quest data (74.8%). Public datasets
216  included two microbiome cohorts, Guo, Cheng et al., 2023 (US)?® and Raijmakers, Ruud et al.,
217 2020 (Netherlands)?® and two metabolome cohorts, Germain, Arnaud et al., 2022 (US)?” and
218  Che, Xiaoyu et al., 2022 (US)?. Despite the challenges of validating traditional microbiome and
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219  metabolite ML models using external cohorts — often having technical (e.g., metabolomic

220 features only overlapped by 79% and 19% for the two studies, respectively) and clinical

221  differences?®,3°,3!, BioMapAl demonstrated good performance and outperformed other models
222  (Figure 2E, Supplemental Table 4). While BioMapAl’s accuracy using these external datasets was
223  lower, its improved performance highlights the value of incorporating clinical symptoms into a
224  predictive model, demonstrating that connecting ‘omics features to clinical symptoms improves
225  disease classification.

226

227  ‘Omics’ Strengths Varied in Symptom Prediction; Immune is the Most Predictive

228  One innovation of BioMapAl is its ability to leverage different ‘omics data to predict individual
229  clinical scores in addition to disease vs. healthy classification. We evaluated the predictive

230  accuracy by calculating the mean squared error between actual (y) and predicted (y) scores
231 and observed that the different ‘omics showed varying strengths in predicting clinical scores
232  (Figure 2C), likely due in part to the wide differences in dimensionality specific to each datatype.
233 Immune profiling consistently had the highest ability to forecast a wide range of symptoms,
234  including pain, fatigue, orthostatic intolerance, and general health perception, underscoring the
235 immune system's crucial role in health regulation. In contrast, blood measurements

236  demonstrated limited predictive ability, except for cognitive efficiency, likely owing to their

237 limited focus on 48 specific blood bioactives. Plasma metabolomics, which encompasses nearly
238 athousand measurements, performed significantly better with notable correlations with facets
239  of physical health and social activity. These findings corroborate published metabolites and

240  mortality®2,33, longevity*,3>, cognitive function®, and social interactions®’,38,3°, Microbiome
241 profiles surpassed other ‘omics in predicting gastrointestinal abnormalities (as anticipated??,4?),
242  emotional well-being, and sleep disturbances, supporting recently established links in gut-brain
243  health®?,% %,

244

245  BioMapAl is Explainable, Identifying Disease- and Symptom-Specific Biomarkers

246  Deep learning (DL) models are often referred to as ‘black box’, with limited ability to identify
247  and evaluate specific features that influence the model’s predictions. BioMapAl is made

248  explainable by incorporating SHAP values, which quantify how each feature influenced the

249  model's predictions. BioMapAl’s architecture — two shared layers (Z* and Z?) for general

250 disease pattern learning and one parallel layer for each clinical score (Z3 = [23,23, ..., 23,]) -
251 allowed us to identify both disease-specific biomarkers, which are shared across symptoms and
252  models (Supplemental Figure 3, Supplemental Table 5), and symptom-specific biomarkers,

253  which are tailored to each clinical symptom (Figure 3, Supplemental Figure 4-5, Supplemental
254  Table 6).

255

256  Disease-specific biomarkers are important features across symptoms and models (Methods,
257  Supplemental Figure 3). Increased B cells (CD19+CD3-), CCR6+ CD8 memory T cells

258 (mCD8+CCR6+CXCR3-), and CD4 naive T cells (nCD4+FOXP3+) in patients were associated with
259  most symptoms, suggesting a potentially broad dysregulation of the adaptive immune

260 response. The species model highlighted the importance of Dysosmobacteria welbionis, a gut
261 microbe previously reported in obesity and diabetes, with a role in bile acid and butyrate

262  metabolism*,%. The metabolome model categorized increased levels of glycodeoxycholate 3-
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263  sulfate, a bile acid, and decreased vanillylmandelate (VMA), a catecholamine breakdown

264  product?’. These features shared for all symptoms were consistently validated across ML and
265 DL models, demonstrating the efficacy of BioMapAl (Supplemental Table 5).

266

267  More uniquely, BioMapAl linked ‘omics profiles to clinical symptoms and thus enabled the

268 identification of symptom-specific biomarkers (Figure 3A). Certain ‘omics data, like species-
269 gastrointestinal and immune-pain associations, were especially effective in predicting specific
270  clinical phenotypes (Figure 2C). Utilizing SHAP, BioMapAl identified distinct sets of biomarkers
271  for each symptom (Supplemental Table 6, Supplemental Figure 5). We found that while disease-
272  specific biomarkers accounted for a substantial portion of the variance, symptom-specific

273  biomarkers crucially refined the predictions, aligned predicted scores — consistently across age
274  and gender — more closely with actual values (Figure 3A-B, Supplemental Figure 4B-D). For

275 example, in the case of pain, CD4 memory and CD1c+ dendritic cells (DC) were particularly

276  important features, and Faecalibacterium prausnitzii was also uniquely associated, with varying
277  impact across individual (Figure 3B). Similar to pain, each clinical score in ME/CFS was

278  characterized by its unique ‘omics features, distinct from those common across other

279  symptoms (Supplemental Table 6).

280

281 In addition, we observed a spectrum of interaction types (linear, biphasic, and dispersed)

282  extending beyond conventional linear interactions, underscoring the heterogeneity inherent in
283  ME/CFS (Figure 3C). High-abundance species and immune cells often had a biphasic relationship
284  with symptoms, showing dual effects, while low-abundance species and metabolites displayed
285 alinear relationship with positive or negative associations with clinical scores (Supplemental
286  Figure 5).

287

288  An example of a relatively straightforward monotonic (linear) relationship was observed

289  between CD4 memory (CD4 M) cells, CD1c+ DCs and pain, with positive associations of CD4 M
290 cells to pain intensity severity. Conversely, CD1c+ DCs had negative associations to pain severity
291 in both patients and control (Figure 3C, E). These variations suggest alterations in inflammatory
292  responses and specific pathogenic processes in ME/CFS, which may be virally triggered and is
293  marked by prolonged infection symptoms. Many microbial biomarkers demonstrated linear
294  contributions to symptoms, evidenced by numerous negative peaks indicating a positive

295  association in symptom severity (Figure 3A). For example, Dysosmobacteria welbionis, a

296  disease-specific biomarker, was associated with more severe sleeping and gastrointestinal

297  issues (Supplemental Figure 3), whereas Clostridium sp. and Alistipes communis were

298  associated with less severe scores (Figure 3A, Supplemental Figure 5B).

299

300 A more complex, biphasic relationship was observed in the association of Faecalibacterium

301 prausnitzii with pain, whose saddle curve (Figure 3C) had a mixture of positive and negative
302  contribution peaks (Figure 3B), which means that either abnormally low and high relative

303 abundances could be associated with pain severity. In disease, F. prausnitzii was associated
304  with higher pain scores, while in healthy individuals, it was associated with lower pain scores
305  (Figure 3D). Notably, F. prausnitzii was identified as a biomarker in several ME/CFS

306  cohorts?®,%6,% but also has been implicated in numerous anti-inflammatory effects*°,>°,°,52,
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307  Here, BioMapAl could identify a duality in its association with symptom severity. Similar

308 biphasic relationships were observed for plasma metabolomics biomarkers, glucuronide and
309 glutamine, in relation to pain (Figure 3C).

310

311 Distinct from other ‘omics features, KEGG genes exhibited sparse and dispersed contributions
312  (Figure 3C, Supplemental Figure 4C). The vast feature matrix of KEGG models complicated the
313 identification of a universal biomarker for any single symptom, as individuals possessed distinct
314  symptom-specific KEGG biomarkers. For example, the gene FNR, an anaerobic regulatory

315  protein transcription factor, was negatively associated with pain but appeared only in a small
316  portion of patients, with the majority showing no significant impact (Figure 3C). This pattern
317  was consistent for other KEGG biomarkers, which were sparsely associated with symptom

318  severity (Supplemental Figures 4C).

319

320 Taken together, BioMapAl made associations between symptom-specific biomarkers and

321 clinical phenotypes, which has been inaccessible to single models to date. Our models unveil a
322  nuanced correlation between ‘omics features and disease symptomology, emphasizing ME/CFS’
323 complex etiology.

324

325 Healthy Microbiome-Immune-Metabolome Networks are Dysbiotic in ME/CFS

326  BioMapAl elucidated that each ‘omics layer provided distinct insights into the disease symptoms
327 andinfluenced host phenotypes in a dynamic and complex manner. To examine crosstalk

328 between ‘omics layers, we modeled co-expression modules for each ‘omics using weighted gene
329  co-expression network analysis (WGCNA), identifying seven microbial species, six microbial gene
330 set, nine metabolome, and nine immune clusters (Methods, Supplemental Table 7). Observing
331 significant associations of these modules with disease classification (microbial modules), age
332 and gender (immune and metabolome modules) (Supplemental Figure 6A), we first established
333  baseline networks of inter-‘omics interactions by calculating Spearman correlation coefficients
334  (corrected, see Methods) among the module eigengenes of each omics cluster. An adjacency
335  matrix was constructed using a cutoff of 0.3 to identify meaningful correlations, focusing on
336  healthy individuals and incorporating clinical covariates such as age, weight, and gender (Figure
337  4A). We then examined how these correlations were altered in patient populations (Figure 4B,
338  Supplemental Figure 6B-C).

339

340  Healthy control-derived host-microbiome interactions, such as the microbial pyruvate module
341 associating with multiple immune modules, and connections between commensal gut microbes
342  (Prevotella, Clostridia sp., Ruminococcaceae) with Th17 memory cells, plasma steroids,

343  phospholipids, and tocopherol (vitamin E) (Figure 4A), were disrupted in ME/CFS patients.

344 Increased correlations between gut microbiome and mucosal/inflammatory immune modules,
345  including CD8+ MAIT, and INFg+ CD4 memory cells, suggested an increased association with
346  microbiome and inflammatory elements in ME/CFS (Supplemental Figure 6D). Young, female,
347  and normal-weight patients shared those changes, while male patients showed different

348  correlations between microbial and plasma metabolites. Elderly and overweight patients had
349  more interaction abnormalities than other subgroups, with specific increases between Blautia,
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350  Flavonifractor, Firmicutes sp. linked with TNFa cytotoxic T cells and plasma plasmalogen, and
351 decreased correlations between Lachnospiraceae sp. with Th17 cells (Figure 4B).

352

353  Further examining the pyruvate hub as well as several other key microbial modules whose

354  networks were dysbiotic in patients, we mapped the correlations of their metabolic

355  subpathways to plasma metabolites and immune cells and detailed the collective associations
356  with host phenotypes (Figure 4C, Supplemental Table 8). We further validated these findings
357  with two independent cohorts (Guo 20232 and Raijmakers 2020%°). For example, increased
358 tryptophan metabolism, associated with gastrointestinal issues, lost its negative association
359  with Th22 cells, and gained correlations with y6 T cells and the secretion of INFg and GzA from
360 CD8 and CD8+ MAIT cells. Several networks associated with emotional dysregulation and fatigue
361  —again underscoring the gut-brain axis** — differed significantly in patients vs. controls, including
362  decreased butyrate production - especially from the pyruvate®? and glutarate®* sub-pathways-
363  and branched-chain amino acid (BCAA) biosynthesis, which had opposite correlations with
364  Th17, Treg cells, and plasma lipids while having more correlations with inflammatory immune
365 cellsincluding y6 T and CD8+ MAIT cells in patients; and increased microbial benzoate,

366  synthesized by Clostridia sp.>>,*® then converted to hippurate in the liver®’,>®, showed a strong
367  positive correlation with plasma hippurate in long-term ME/CFS patients, supporting enhanced
368  pathway activity in later stages of the disease. These disrupted pathways also had modified
369  associations with a variety of plasma metabolites—among them steroids, phenols, branched-
370 chain amino acids, fatty acids, and vitamins B5 and B6. Notably, short-term ME/CFS patients
371 presented a transitional profile, in which some health-associated networks were already

372  dysbiotic but had not yet fully stabilized; these pathological connections became more firmly
373  established in long-term ME/CFS.

374

375  Based on BioMapAl’s predictions and subsequent network analyses, we propose that some of
376  the disease-specific changes in ME/CFS arise from disrupted associations between the gut

377  microbiome, immune system, and metabolome (Figure 5). Reduced relative abundances of key
378  microbes—such as Faecalibacterium prausnitzii—and corresponding disturbances in microbial
379  metabolic pathways (e.g., butyrate, tryptophan, and BCAA production) correlated with pain and
380 gastrointestinal abnormalities in ME/CFS. In healthy controls, these microbial metabolites are
381 associated with activity of mucosal immune cells, including Th17, Th22, and Treg cells. In

382  ME/CFS, however, these regulatory networks break down, with heightened pro-inflammatory
383  responses mediated by yd T cells and CD8 MAIT cells producing IFNy and GzA, which in turn
384  were associated with subjective health perception and social functioning.

385

386  Additional health-associated interactions between microbial benzoate metabolism and various
387  plasma metabolites (e.g., lipids, glycerophosphoethanolamine, fatty acids, and bile acids) we
388  hypothesized are also diminished or reversed in ME/CFS. This breakdown in host—-microbiome
389 metabolic networks correlates with more severe fatigue, emotional disturbances, and sleep
390 problems, aligning with emerging evidence that microbially derived metabolites may affect the
391  gut-brain axis>®,0,°L,

392

393 Discussion
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394  Democratization of Al technologies and large-scale multi-‘omics has the promise of

395 revolutionizing precision medicine®?,3,%4 5, This study generated among the most extensive
396  paired multi-'omics dataset for ME/CFS to date®®,25,26,27 28 67 68 69 hringing new technical and
397  biological insights. Technically, BioMapAl marks the first supervised deep learning model trained
398 to accommodate these complex, multi-system ME/CFS symptoms. The rationale behind

399  BioMapAl is that understanding long-term, post-infection syndromes like ME/CFS is not

400 necessarily solved by pinpointing an exact diagnosis or tracing disease origins’®,2,’%, but rather
401 by addressing the chronic, multifaceted symptoms that significantly impacts patients' quality of
402 life’2,73. Biologically, our study introduces a highly nuanced approach to link physiological

403  changes in gut microbiome, plasma metabolome, and immune status, with host symptoms,
404  moving beyond the initial causes of the disease’*’>. Importantly, we validated key biomarkers in
405 external cohorts?®,26,27 28 despite significant demographic and methodological differences

406  between the studies.

407

408  This study represents a substantial technical and biological advance over our previous work and
409  other investigations of ME/CFS to date. First, we developed BioMapAl, a supervised deep neural
410  network architecture that accommodates the full complexity of our multi-omics datasets—

411 encompassing gut microbiome, plasma metabolome, immune profiling, blood labs, and

412  extensive clinical surveys—beyond what traditional ML models can handle. By jointly modeling
413  these diverse data types, BioMapAl explains the phenotypic heterogeneity of ME/CFS more
414  effectively than single-outcome methods and simultaneously identifies symptom-specific

415  biomarkers. Furthermore, our dataset’s unprecedented size, in both participant numbers and
416  the depth of datatypes, allowed us to build a robust Al model validated on both held-out data
417  and external cohorts. As a sanity check, we confirmed key biomarkers—such as altered

418  Faecalibacterium prausnitzii and butyrate producers (reported by Guo et al.) as well as

419  sphingolipid pathway changes (described by Raijmakers et al., Germain et al., and Che et al.)—
420 using independent datasets, which other studies have not performed. Nonetheless, a caveat of
421 our model is that from a clinical perspective, simply distinguishing ME/CFS from healthy controls
422  may be less challenging than differentiating ME/CFS from other conditions with overlapping
423  symptoms, such as fibromyalgia. To establish whether our pre-trained model (“DeepMECFS”)
424  can discriminate among multiple chronic diseases, similar datasets with other diseases and

425  comparative models are needed in future work.

426

427  Second, we added a new, detailed blood immune-profiling dataset, which provided the most
428  biologically explanatory features for both disease classification and symptom severity.

429  Leveraging these data, we were able to construct new microbiome—metabolome—immune

430 networks in both health and ME/CFS—an advance over earlier investigations that generally
431  focused on only one ‘omics layer (e.g., stool microbiome in Guo et al.; plasma metabolomics in
432  Germain et al. and Che et al.). While Raijmakers et al. examined 92 inflammatory circulating
433  markers, plasma metabolites, and gut microbiome in a smaller study (n=50 ME/CFS, n=72

434  healthy control for metagenomics, and n=22 for metabolomics), their analyses were relatively
435 limited in that they used ML models to differentiate ME/CFS from controls and only examined
436  fatigue as a clinical variate, not adjusting for other clinical variables that could affect ‘omics
437  associations such as age, gender, or BMI. Moreover, their approach only assessed pairwise
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438  associations among data types. In contrast, our multi-‘omics strategy explicitly accounts for
439  demographic and clinical covariates like age, gender and BMI, revealing that these factors can
440  markedly reshape immune—microbiome—metabolome interaction networks, just as comorbid
441 conditions such as obesity or advanced age can further individualize disease phenotypes.

442

443  Taken together, our dataset uncovers an array of correlations that while not explaining causality
444  or confirming mechanism, can further our understanding of ME/CFS in several ways. First, our
445  analyses underscore the importance of considering clinical symptom heterogeneity and cohort-
446 level covariates because interactions among the microbiome, metabolome, and immune system
447  vary substantially depending on these factors. Although it has long been assumed that

448  confounders play a major role, previous studies have seldom controlled for them in a

449  comprehensive manner, potentially explaining some of the inconsistencies reported in single-
450  ‘omics analyses. Second, while our findings are correlative rather than causal, they generate
451 numerous hypotheses about both specific and more extensive pathways that may be disrupted
452  in ME/CFS. For example, our previous analysis, and work by Guo et al., suggest that diminished
453  butyrate-producing microbes in ME/CFS lower the availability of short-chain fatty acids (SCFAs)
454  in the stool (Guo) and plasma (Xiong). Here, we refine that hypothesis by pinpointing potential
455  immunological or metabolic mediators of this change. In healthy controls, multiple butyrate
456  biosynthesis routes are inversely associated with Th17 cells, whereas the glutarate—butyrate
457  pathway aligns with Tregs. These patterns become largely reversed in long-term disease, with
458  succinate—butyrate showing new negative correlations to Tregs and positive links with CD8+
459  MAIT cells. ME/CFS also substantially alters metabolite associations with Th17 cells.

460  On the metabolomic side, there is currently no direct biochemical link reported between

461  glutarate—butyrate and glycerophosphoethanolamine (GPE)—though in healthy controls, they
462  exhibited a strong positive correlation which was altered in ME/CFS. One can then hypothesize
463  anindirect link with phospholipid metabolism and its effect on neurotransmission.

464

465  In addition to refining established hypotheses, our results propose new links among tryptophan
466  metabolism, branched-chain amino acids (BCAAs), and benzoate metabolism in shaping

467  immune function and symptomatology in ME/CFS. Although no direct biochemical connection
468  between tryptophan metabolism and 2-hydroxyglutarate is currently known, both pathways
469 likely influence immune regulation and metabolic reprogramming, indicating a more complex
470  regulatory landscape. In healthy controls, tryptophan metabolism is closely tied to various T cell
471 subsets, including Th22 cells, whereas these relationships are disrupted in ME/CFS.

472  Furthermore, we observed significant alterations in benzoate metabolism modules and their
473  associations with plasma steroids, hippurate, and fatty acids. These pathways, linked to both
474  steroid biosynthesis and neurotransmitter production (e.g., serotonin, cortisol), highlight a

475  potential gut—brain axis component in ME/CFS pathophysiology.

476

477  While some of these findings may seem granular or only indirectly testable—such as potential
478  sex differences in the interaction network—our detailed, multi-‘omics perspective is valuable for
479  unraveling the disease’s heterogeneity. As experimental models attempt to validate these

480 hypotheses, one must keep in mind that many interactions may be context- or model-specific
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481 rather than universally turned on or off in disease states. This context dependency underscores
482  the need for nuanced, carefully controlled mechanistic studies that incorporate patient

483  heterogeneity and environmental factors when investigating ME/CFS.

484

485  Additional limitations of our study include that that our study population was comprised more
486  females and older individuals, primarily Caucasian, though this is consistent with the

487  epidemiology of ME/CFS'8,76,77, and was from a single geographic location (Bateman Horne
488  Center). This may limit our findings to certain populations. In addition, previous RNA sequencing
489  studies have suggested mitochondrial dysfunction and altered energy metabolism in

490 ME/CFS’8,7°,80 81 82, thys, incorporating host PBMC RNA or ATAC sequencing in future research
491 could provide deeper insights into regulatory changes. The typical decades-long disease

492  progression of ME/CFS makes it challenging for our four-year longitudinal design to capture
493  stable temporal signals - although separating our short-term (<4 years) and long-term (>10
494  years) provided valuable insights — ideally, tracking the same patients over a longer period

495  would likely yield more accurate trends®3,2. Long disease history also increases the likelihood of
496  exposure to various diets and medications®®, which could influence biomarker identification,
497  particularly in metabolomics. Finally, model-wise, BioMapAl was trained on < 500 samples with
498 tenfold cross-validation, which is relatively small given the complexity of the outcome matrix;
499  expanding the training dataset and incorporating more independent validation sets could

500 potentially enhance its performance and generalizability®®,2’. Currently, the model treated all 12
501 studied symptoms with equal importance due to the unclear symptom prioritization in

502  ME/CFS8. We computed modules to assign different weights to symptoms to enhance

503 diagnostic accuracy. While this approach was not particularly effective for ME/CFS, it may be
504  more promising for diseases with more clearly defined symptom hierarchies®,%°. In such cases,
505 adjusting the weights of symptoms in the model’s final layer could improve performance and
506  help pinpoint which symptoms more strongly contributing.

507

508 Although our findings are still preliminary for direct therapeutic application, the nuanced

509 insights and deconstructed approach described here offer numerous hypotheses for dysbiotic
510  microbiome—metabolome—immune connections in ME/CFS. We hope that the unprecedented
511 systems-level resolution of our dataset, algorithm, and analyses will contribute to filling out
512  heretofore unknown links between these factors thus explaining some of the disease

513  heterogeneity in this important disease.

514

12
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518  Figure 1: Cohort Summary and Heterogeneity of ME/CFS. A) Cohort Design and ‘Omics

519  Profiling. 96 healthy donors and 153 ME/CFS patients were followed over 3-4 years with yearly
520 sampling. Clinical metadata including lifestyle and dietary surveys, blood clinical laboratory
521 measures (N=503), gut microbiome (N=479), plasma metabolome (N=414), and immune

522  profiles (N=489) were collected (Supplemental Table 1 and Supplemental Figure 1A). B)

523  Heterogeneity and Non-Linear Progression of ME/CFS in Symptom Severity and ‘Omics

524  Profiles. This section highlights variability in symptom severity (top) and ‘omics profiles

525 (bottom) for 20 representative ME/CFS patients over 3—4 time points. Top, Symptom severity is
526  shown for 12 major clinical symptoms (x-axis, with each column representing one symptom)
527  against severity scores (scaled from 0% (no symptom) to 100% (most severe), y-axis) for each
528  patient (each represented by a distinct color). Lines indicate average severity, and shaded areas
529  represent the severity range across time points (controls shown in Supplemental Figure 1B).
530 Here, we observed a lack of consistent temporal patterns for ME/CFS symptomatology,

531 indicated by the widespread shaded areas, and significant heterogeneity over time

532  (Supplemental Figure 1F—G). Notably, among the 12 symptoms, trends differed: fatigue

533 (Symptom 1) remains consistently severe over years, whereas emotional dysregulation

534  (Symptom 8) exhibit notable variability and instability over time. Bottom, PCoA of integrated
535  ‘omics data with color dots matching patient timepoints in the symptom plot and grey dots
536  representing the entire cohort. Again, the spread and overlap of the colored space reflect the
537  diversity in ‘omics signatures vs. the more consistent pattern typical of controls (Supplemental
538  Figure 1C). Abbreviations: ME/CFS, Myalgic Encephalomyelitis/Chronic Fatigue Syndrome;

539  PCoA, Principal Coordinates Analysis. Supporting Materials: Supplemental Table 1,

540  Supplemental Figure 1.
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542

543  Figure 2: BioMapAl’s Model Structure and Performance. A) Structure of BioMapAl. BioMapAl
544 s a fully connected deep neural network comprised of an input layer (X), a normalization layer
545  (not shown), three sequential hidden layers (Z%, Z2,Z3), and one output layer (Y). Hidden layer
546 1(Z', 64 nodes) and hidden layer 2 (Z?, 32 nodes), both feature a dropout ratio of 50% to

547  prevent overfitting (visually represented by dark and light gray nodes). Hidden layer 3 has 12
548  parallel sub-layers each with 8 nodes (Z3 = [z3, z3, ..., z3,]) to learn 12 objects in the output
549 layer (Y = [y, V3, ..., ¥12]) representing key clinical symptoms of ME/CFS. B) True vs. Predicted
550 Clinical Scores highlight BioMapAl’s accuracy. Three example density maps (full set,

551 Supplemental Figure 2A) compare the true score, y (Column 1) against BioMapAl’s predictions
552 generated from different ‘omics prOf”es - yimmuner yquestryspeciesr yKEGG: ymetabolomel yomics
553 (Columns 2-7). Y-axis represents the diversity calculated by kernel density estimation (KDE),
554  which is a smoothed estimate of the distribution of the symptom severity along the x-axis for
555  each omics. Color gradient from blue (lower density) to red (higher density) illustrates the

556  occurrence frequency (e.g., true scores for ~100% of healthy controls’ physical health ~ 0 = red),
557  with dashed lines indicating key statistical percentiles (100%, 75%, 50%, 25%, and 0%). Note
558 that model’s predicted scores a preserve differences between healthy controls and patients for
559 these three examples, irrespective of ‘omics type. C) ‘Omics' Strengths in Symptom Prediction.
560  Radar plot shows BioMapAl’s performance in predicting the 12 clinical outcomes for each

561 ‘omics datatype. Each of the 12 axes represents a clinical score output (Y = [y, ¥2, -, V12]),
562  with five colors denoting the ‘omics datasets used for model training. The spread of each color
563 along an axis reflects the 1 - normalized mean square error (MSE) (Supplemental Table 2)

564  between the actual, y, and the predicted, y, outputs, illustrating the predictive strength or

565  weakness of each ‘omics for specific clinical scores. The radial scale ranges from 0.8 (center) to
566 1.0 (outer circle), where values closer to the outer edge correspond to lower MSE and better
567  predictions. For instance, species abundance predicted gastrointestinal, emotional, and sleep
568 issues effectively, while the immune profile was broadly accurate across most scores. D)
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569 BioMapAl’s Performance in Healthy vs. Disease Classification (10-Fold Cross Validation). ROC
570  curves show BioMapAl’s performance in disease classification using each ‘omics dataset

571 separately or combined (‘Omics’), with the AUC in parentheses showing prediction accuracy
572  (full report in Supplemental Table 3, held out data ROC in Supplemental Figure 2E). E)

573  Validation of BioMapAl with External Cohorts. External cohorts with microbiome data (Guo et
574  al.?’, Ruud et al.??) and metabolome data (Germain et al.?’, Che et al.3?) were used to test

575  BioMapAl’s model, underscoring its generalizability (detailed classification matrix,

576  Supplemental Table 4). Abbreviations: KEGG, Kyoto Encyclopedia of Genes and Genomes;

577 ‘Omics’ refers to the combined multi-‘omics matrix; MSE, Mean Square Error; ROC curve,

578 Receiver Operating Characteristic curve; AUC, Area Under the Curve; y, True Score; ¥, Predicted
579  Score. Supporting Materials: Supplemental Tables 2-4, Supplemental Figures 1-2.
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581 Figure 3: BioMapAlI Identifies both Disease- and Symptom-Specific Biomarkers. For Symptom-
582

Specific Biomarkers, A) Circularized Diagram of Species Model with B) Zoomed Segment for
583  Pain. Each circular panel illustrates how the model predicts each of the 12 symptom-specific

584  biomarkers derived from one type of ‘omics data (all datatypes shown in Supplemental Figure
585  4). The x-axis for each panel represents an individual’s values for each of the following
586  contributors to the model’s performance (from top to bottom): 1. Variance Explained by
587  Biomarker Categories: Gradients of dark green (100%) to white (0%) show variance explained
588 by the model. For many biomarkers, disease-specific biomarkers account for the greatest
589  proportion of variance, and symptom-specific biomarkers provide additional tailored
590 explanations, with residual accounting for the remaining variance; 2. Aggregated SHAP Values
591  quantify the contribution of each feature to the model's predictions, with disease-specific
592  biomarkers in grey and symptom-specific in purple. 3. Demography and Cohort Classification:
593 cohort (controls, white vs. patients, black); age <50 (white) vs. >50 years old (black); sex (male,
594  white vs. female, black); 4. True vs. Predicted Scores show BioMapAl’s predictive performance
595  atthe individual sample level, with true in blue and model-predicted scores in orange; 5.
596  Examples of Symptom-Specific Biomarkers: Line graphs show the contribution of select
597  symptom-specific biomarkers to the model across individuals, e.g., 5 gut species in A). In B), the
598  three features most specific to the pain model include gut microbe F. prausnitzii, CD4 memory
599

T, and DC CD1c+ cells. Peaks above 0 (middle line) indicate a positive contribution and below 0
600 for a negative contribution. For example, the mixed positive and negative contribution peaks of
601 F. prausnitzii indicated a biphasic contribution to pain intensity. Disease-Specific Biomarkers are
602 shown in Supplemental Figure 3. C) Different Correlation Patterns of Biomarkers to
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603  Symptoms: For pain (other symptoms in Supplemental Figure 5), correlation analysis of raw
604  abundance (x-axis) of each biomarker with pain score (y-axis) show monotonic (e.g., CD4

605 memory and DC CD1c+ markers), biphasic (microbial and metabolomic markers), or sparse

606 (KEGG genes) contribution patterns for those features. Dots represent an individual color-coded
607  to SHAP value, where the color spectrum indicates negative (blue) to neutral (grey) to positive
608 (red) contributions to pain prediction. Superimposed trend lines with shaded error bands

609 represents the predicted correlation trends between biomarkers and pain intensity. Adjacent
610  bar plots represent the data distribution. D-E) Examples of Pain-Specific Biomarkers’

611 Contributions. SHAP waterfall plots (colors corresponding to gradient in C) illustrate the

612  contribution of individual features to a model's predictive output. The top 10 features for two
613  pairs of controls and patients are shown here, illustrating the species and the immune model
614  (additional examples in Supplemental Figure 4A). The contribution of each feature is shown as a
615  step (SHAP values provided adjacent), and the cumulative effect of all the steps provides the
616  final prediction value, E[f (X)]. Our example of F. prausnitzii exhibits a protective role (negative
617  SHAP) in controls but exacerbates pain (positive SHAP) in patients — consistent with the biphasic
618 relationship observed in C). As a second example, all CD4 memory cells in this model have

619  positive SHAP values, reinforcing the positive monotonic relationship with pain severity

620 observed in C). Conversely, DC CD1c+ cells contribute negatively and thus may have a

621 protective role. *Note, the reported biomarkers were calculated using the entire dataset and
622  were not validated on held-out data. Abbreviation: SHAP, SHapley Additive exPlanations; DNN,
623  Deep Neuron Network; GBDT, Gradient Boosting Decision Tree; KEGG, Kyoto Encyclopedia of
624  Genes and Genomes. Supporting Materials: Supplemental Table 5-6, Supplemental Figure 3-5.
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625
626  Figure 4: Microbiome-Immune-Metabolome Crosstalk is Dysbiotic in ME/CFS. A-B)

627  Microbiome-Immune-Metabolome Network in A) Healthy and B) Patient Subgroups. A
628  baseline network was established with 200+ healthy control samples (A), bifurcating into two
629 segments: the gut microbiome (species in yellow, genetic modules in orange) and blood
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630 elements (immune modules in green, metabolome modules in purple). Nodes: modules; size: #
631 of members; colors: ‘omics type; edges: interactions between modules, with Spearman

632  coefficient (adjusted) represented by thickness, transparency, and color - positive (red) and
633  negative (blue). Here, key microbial pathways (pyruvate, amino acid, and benzoate) interact
634  with immune and metabolome modules in healthy individuals. Specifically, these correlations
635  were disrupted in patient subgroups (B), as a function of gender, age (young <26 years old vs.
636  older >50), BMI (normal <26 vs. overweight >26), and health status (individuals with IBS or

637 infections). Correlations significantly shifted from healthy counterparts (Supplemental Figure
638  6C) are highlighted with colored nodes and edges indicating increased (red) or decreased (blue)
639 interactions. C) Targeted Microbial Pathways and Host Interactions. Four microbial metabolic
640 mechanisms (tryptophan, butyrate, BCAA, benzoate) were further analyzed to compare control,
641 short and long-term ME/CFS patients, and external cohorts for validation (Guo?> and

642  Raijmakers?®).1. Microbial Pathway Fold Change: Key genes were grouped and annotated in
643  subpathways. Circle size: fold change over control; color: increase (red) or decrease (blue), p-
644  values (Patient vs Control, Wilcoxon, FDR adjusted) marked. 2. Microbiome-Host Interactions:
645  Sankey diagrams visualize interactions between microbial pathways and host immune

646 cells/metabolites. Line thickness and transparency: Spearman coefficient (adjusted); color: red
647  (positive), blue (negative). 3. Immune & Metabolites Fold Change: Pathway-correlated immune
648 cells and metabolites are grouped by category. 4. Contribution to Disease Symptoms: Stacked
649  bar plots show accumulated SHAP values (contributions to symptom severity) for each disease
650 symptom (1-12, as in Supplemental Table 1). Colors: microbial subpathways and

651 immune/metabolome categories match module color in fold change maps. X-axis: accumulated
652  SHAP values (contributions) from negative to positive, with the most contributed symptoms
653  highlighted. P-values: *p < 0.05, **p < 0.01, ***p < 0.001. Abbreviations: IBS, Irritable Bowel
654  Syndrome; BMI, Body Mass Index; BCAA, Branched-Chain Amino Acids; MAIT, Mucosal-

655  Associated Invariant T cell; SHAP, SHapley Additive exPlanations; GPE,

656  Glycerophosphoethanolamine; INFy, Interferon Gamma; CD, Cluster of Differentiation; Th, T
657  helper cell; TMAO, Trimethylamine N-oxide; KEGG, Kyoto Encyclopedia of Genes and Genomes.
658  Supporting Materials: Supplemental Table 7-8, Supplemental Figure 6.
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659
660  Figure 5: Overview of Dysbiotic Host-Microbiome Interactions in ME/CFS. This conceptual

661 diagram visualizes the host-microbiome interactions in healthy conditions (left) and its

662  disruption and transition into the disease state in ME/CFS (right). The base icons of the figure
663  remain consistent, while gradients and changes in color and size visually represent the

664  progression of the disease. Process of production and processing is represented by lines with
665 arrows, where the color indicates an increase (red) or decrease (blue) in the pathway in

666  disease; lines without arrows indicate correlations, with red representing positive and blue
667  representing negative correlations. In healthy conditions, microbial metabolites support

668 immune regulation, maintaining mucosal integrity and healthy inflammatory responses by

669  positively regulating Treg and Th22 cell activity, and controlling Th17 activities, including the
670  secretion of IL17 (purple cells), IL22 (blue), and IFNy. These microbial metabolites also maintain
671 many positive interactions with plasma metabolites like lipids, bile acids, vitamins, and phenols.
672 In ME/CFS, there is a significant decrease in beneficial microbes and a disruption in metabolic
673  pathways, marked by a decrease in the butyrate (brown-red dots) and BCAA (yellow) pathways
674  and anincrease in tryptophan (green) and benzoate (red) pathways. These changes are linked
675  to gastrointestinal issues. In ME/CFS, the regulatory capacity of the immune system diminishes,
676 leading to the loss of health-associated interactions with Th17, Th22, and Treg cells, and an
677  increase in inflammatory immune activity. Pathogenic immune cells, including CD8 MAIT and
678  yoT cells, show increased activity, along with the secretion of inflammatory cytokines such as
679 IFNy and GzmA, contributing to worsened general health and social functioning. Healthy

680 interactions between gut microbial metabolites and plasma metabolites weaken or even

681 reverse in the disease state. A notable strong connection increased in ME/CFS is benzoate

682 transformation to hippurate, associated with emotional disturbances, sleep issues, and fatigue.
683  Abbreviations: IFNy, Interferon gamma; Th17, T helper 17 cells; Th22, T helper 22 cells; Treg,
684  Regulatory T cells; GzmA, Granzyme A; MAIT, Mucosa-Associated Invariant T cells; y6T, Gamma
685 delta T cells; BCAA, Branched-Chain Amino Acids; GPE, Glycerophosphoethanolamine.
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686 Methods

687  Study Design. This was 4-year prospective study. All participants had a physical examination at
688  the baseline visit that included evaluation of vital signs, BMI, orthostatic vital signs, skin,

689  lymphatic system, HEENT, pulmonary, cardiac, abdomen, musculoskeletal, nervous system and
690 fibromyalgia (FM) tender points. We enrolled a total of 153 ME/CFS patients (of which 75 had
691 been diagnosed with ME/CFS <4 years before recruitment and 78 had been diagnosed with
692  ME/CFS >10 years before recruitment) and 96 healthy controls. Among them, 110 patients and
693 58 healthy controls were followed one year after the recruitment as timepoint 2; 81 patients
694  and 13 healthy controls were followed two years after the recruitment as timepoint 3; and 4
695  patients were followed four years after the recruitment as timepoint 4. Subject characteristics
696  are shown in Supplemental Table 1 and Supplemental Figure 1A.

697

698  Medical history and concomitant medications were documented. Blood samples were obtained
699  prior to orthostatic and cognitive testing. The 10-minute NASA Lean Test and cognitive testing
700  were conducted after the physical examination and blood draw®. Cognitive efficiency was

701 tested with the DANA Brain Vital, measuring three reaction time and information processing
702  measurements?. The orthostatic challenge was assessed with the 10-minute NASA Lean Test
703  (NLT). Participants rested supine for 10 minutes, and baseline blood pressure (BP) and heart rate
704  (HR) were measured twice during the last 2 minutes of rest®3.

705

706  Participants were provided with an at-home stool collection kit at the end of each in-person
707  visit. The following questionnaires were completed at baseline: DePaul Symptom Questionnaire
708  (DSQ), Post-Exertional Fatigue Questionnaire, RAND-36, Fibromyalgia Impact Questionnaire-R,
709  ACR 2010 Fibromyalgia Criteria Symptom Questionnaire, Pittsburgh Sleep Quality Index (PSQl),
710  Stanford Brief Activity Survey, Orthostatic Intolerance Daily Activity Scale, Orthostatic

711 Intolerance Symptom Assessment, Brief Wellness Survey, Hours of Upright Activity (HUA),

712 medical history and family history. All but medical history and family history were administered
713  again when participants came for their annual visit.

714

715  Approval was received before enrolling any subjects in the study (The Jackson Laboratory

716 Institutional Review Board, 17-JGM-13). All participants were educated about the study prior to
717  enrollment and signed all appropriate informed consent documents. Research staff followed
718  Good Clinical Practices (GCP) guidelines to ensure subject safety and privacy.

719

720  ME/CFS Cohort. Beginning in January 2018, we enrolled ME/CFS patients who had been sick for
721 <4 years or sick for >10 years. No ME/CFS patients with duration 24 years and <10 years were
722  enrolled in order to have clear distinctions between short and long duration of illness with

723  ME/CFS. All participants were 18 to 65 years old at the time of enrollment. ME/CFS diagnosis
724  according to the Institute of Medicine clinical diagnostic criteria and disease duration of <4

725  years were confirmed during clinical differential diagnosis and thorough medical work up®*.
726  Additional inclusion criteria required, 1) a substantial reduction or impairment in the ability to
727  engage in pre-illness levels of occupational, educational, social, or personal activities that

728  persists for more than 6 months and less than 4 years and is accompanied by fatigue, which is
729  often profound, is of new or definite onset (not lifelong), is not the result of ongoing excessive

21


https://doi.org/10.1101/2024.06.24.600378
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.24.600378; this version posted February 13, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

730  exertion, and is not substantially alleviated by rest, and 2) post-exertional malaise. Exclusionary
731 criteria for the <4 year ME/CFS cohort were, 1) morbid obesity BMI>40, 2) other active and

732  untreated disease processes that explain most of the major symptoms of fatigue, sleep

733  disturbance, pain, and cognitive dysfunction, 3) untreated primary sleep disorders, 4)

734  rheumatological disorders, 5) immune disorders, 6) neurological disorders, 7) infectious

735  diseases, 8) psychiatric disorders that alter perception of reality or ability to communicate

736  clearly or impair physical health and function, 9) laboratory testing or imaging are available that
737  support an alternate exclusionary diagnosis, and 10) treatment with short-term (less than 2
738  weeks) antiviral or antibiotic medication within the past 30 days.

739  For the >10 year ME/CFS cohort, disease duration of >10 year and clinical criteria was confirmed
740  to meet the Institute of Medicine criteria for ME/CFS during clinical evaluation and medical

741 history review®*. Other than disease duration, inclusion and exclusion criteria were the same as
742  for <4 year ME/CFS cohort.

743

744  Healthy Control Cohort. Healthy control participants were also between 18 to 65 years of age
745  andin general good health. Enrollment began in 2018 and subjects were selected to match the
746 <4 year ME/CFS cohort by age (within 5 years), race, and sex (~2:1 female to male ratio).

747 Exclusion criteria for healthy controls included, 1) a diagnosis or history of ME/CFS, 2) morbid
748  obesity BMI>40, 3) treatment with short-term (less than 2 weeks) antiviral or antibiotic

749  medication within the past 30 days or 4) treatment long-term (longer than 2 weeks) antiviral
750  medication or immunomodulatory medications within the past 6 months.

751

752  Clinical Metadata and Scores. Clinical symptoms and baseline health status were assessed on
753 the day of physical examination and biological sample collection for both case and control

754  subjects. For each participant, we collected demographic information (including age, gender,
755  diet, race, BMI, family, work, and education), medical histories, clinical tests and questionnaires.
756  From questionnaires and test as described above, we summarized 12 clinical scores to cover
757  major symptoms of ME/CFS: Scores 1-8 were derived from the RAND36, following standardized
758  rules * and summarized into eight categories: Physical Functioning (also referred to as Daily
759  Activity in the main contents), Role Limitations due to Physical Health (Physical Limitations),
760  Role Limitations due to Emotional Problems (Emotional Problems), Energy/Fatigue, Emotional
761 Wellbeing (Mental Health), Social Functioning (Social Activity), Pain, and General Health (Health
762  Perception). Cognitive Efficiency was summarized from the DANA Brain Vital test, Orthostatic
763  Intolerance from the NLT test, Sleeping Problem Score from the Pittsburgh Sleep Quality Index
764  (PSQIl) questionnaire, and Gastrointestinal Problems Score from the Gastrointestinal Symptom
765  Rating Scale (GSRS) questionnaire. Each score was transformed into a 0-1 scale to facilitate

766  combination and comparison, where a score of 1 indicates maximum disability or severity and a
767  score of 0 indicates no disability or disturbance.

768

769  Plasma Sample collection and Preparation. Healthy and patient blood samples were obtained
770  from Bateman Horne Center, Salt Lake City, UT and approved by JAX IRB. One 4 mL lavender top
771 tube (K2EDTA) was collected, and tube slowly inverted 8-10 times immediately after collection.
772  Blood was centrifuged within 30 minutes of collection at 1000 x g with low brake for 10

773 minutes. 250 uL of plasma was transferred into three 1 mL cryovial tubes, and tubes were
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774  frozen upright at -80°C. Frozen plasma samples were batch shipped overnight on dry ice to The
775  Jackson Laboratory, Farmington, CT, and stored at -80°C. Heparinized blood samples were

776  shipped overnight at room temperature. Peripheral blood mononuclear cells (PBMC) were

777  isolated using Ficoll-paque plus (GE Healthcare) and cryopreserved in liquid nitrogen.

778

779  Plasma untargeted metabolome by UPLC-MS/MS. Plasma samples were sent to Metabolon
780  platform and processed by Ultrahigh Performance Liquid Chromatography-Tandem Mass

781 Spectroscopy (UPLC-MS/MS) following the CFS cohort pipeline. In brief, samples were prepared
782  using the automated MicroLab STAR® system from Hamilton Company. The extract was divided
783 into five fractions: two for analysis by two separate reverse phases (RP)/UPLC-MS/MS methods
784  with positive ion mode electrospray ionization (ESI), one for analysis by RP/UPLC-MS/MS with
785  negative ion mode ESI, one for analysis by HILIC/UPLC-MS/MS with negative ion mode ESI, and
786  one sample was reserved for backup. QA/QC were analyzed with several types of controls were
787  analyzed including a pooled matrix sample generated by taking a small volume of each

788  experimental sample (or alternatively, use of a pool of well-characterized human plasma),

789  extracted water samples, and a cocktail of QC standards that were carefully chosen not to

790 interfere with the measurement of endogenous compounds were spiked into every analyzed
791 sample, allowed instrument performance monitoring, and aided chromatographic alignment.
792  Compounds were identified by comparison to Metabolon library entries of purified standards or
793  recurrent unknown entities. The output raw data included the annotations and the value of
794  peaks quantified using area-under-the-curve for metabolites.

795

796  Immune Profiling: Flow Cytometry Analysis. Frozen PBMC aliquots were thawed, counted and
797  divided into two parts, one part for day 0 surface staining, and the other part cultured in

798  complete RPMI 1640 medium (RPMI plus 10% Fetal Bovine Serum (FBS, Atlanta Biologicals) and
799 1% penicillin/streptomycin (Corning Cellgro) supplemented with IL-2+IL15 (20ng/ml) for Treg
800 subsets day 1 surface and transcription factors staining after culture with IL-7 (20ng/ml) for day
801 1 and day 6 intracellular cytokine staining, and a combination of cytokines (20ng/ml IL-12,

802  20ng/ml IL-15, and 40ng/ml IL-18) for day 1 intracellular cytokine staining (IL-12 from R&D, IL-7
803 and IL-15 from Biolegend). Surface staining was performed in staining buffer containing PBS +
804 2% FBS for 30 minutes at 4°C. When staining for chemokine receptors the incubation was done
805 atroom temperature. Antibodies used in the surface staining are 2B4, CD1c, CD14, CD16, CD19,
806 CD25,CD27,(CD31, CD3, CD303, CD38, CD4, CD45R0, CD56, CD8, CD95, CD161, CCR4, CCR6,
807  CCR7, CX3CR1, CXCR3, CXCRS5, yb TCR bio, HLA-DR, IgG, IgM, LAG3, PD-1, TIM3, Va7.2, Va24Jal8
808  all were obtained from Biolegend.

809

810  For intracellular cytokine staining, cells were stimulated with PMA (40ng/ml for overnight

811  cultured cells and 20ng/ml for 6 days cultured cells) and lonomycin (500ng/ml) (both from

812  Sigma-Aldrich) in the presence of GolgiStop (BD Biosciences) for 4 hours at 37°C. For cytokine
813  secretion after stimulation with IL-12+IL-15+IL-18, GolgiStop was added to the culture on day 1
814  for 4 hours. For intracellular cytokine and transcription factor staining, PMA+lonomycin

815  stimulated cells of unstimulated cells were collected, stained with surface markers including
816 CD3, CD4, CD8, CD161, PD1, 2B4, Va7.2, CD45R0O, CCR6, and CD27 followed by one wash with
817  PBS (Phosphate buffer Saline) and staining with fixable viability dye (eBioscience). After surface
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818  staining, cells were fixed and permeabilized using fixation/permeabilization buffers

819  (eBioscience) according to the manufacturer’s instruction. Permeabilized cells were then stained
820 for intracellular FOXP3, Helios, IL-4, IFNy, TNFq, IL-17A, IL-22, Granzyme A, GM-CSF, and

821 Perforin from Biolegend. Flow cytometry analysis was performed on Cytek Aurora (Cytek

822  Biosciences) and analyzed using FlowlJo (Tree Star).

823

824  Fecal Sample Collection and DNA Extraction. Stool was self-collected at home by volunteers
825  using a BioCollector fecal collection kit (The BioCollective, Denver, CO) according to

826  manufacturer instructions for preservation for sequencing prior to sending the sample in a

827  provided Styrofoam container with a cold pack. Upon receipt, stool and OMNIgene samples
828  were immediately aliquoted and frozen at —80°C for storage. Prior to aliquoting, OMNIgene
829  stool samples were homogenized by vortexing (using the metal bead inside the OMNIgene

830 tube), then divided into 2 microfuge tubes, one with 100uL aliquot and one with 1mL. DNA was
831 extracted using the Qiagen (Germantown, MD, USA) QlAamp 96 DNA QlAcube HT Kit with the
832 following modifications: enzymatic digestion with 50ug of lysozyme (Sigma, St. Louis, MO, USA)
833  and 5U each of lysostaphin and mutanolysin (Sigma) for 30 min at 37 °C followed by bead-

834  beating with 50 pug 0.1 mm of zirconium beads for 6 min on the Tissuelyzer Il (Qiagen) prior to
835 loading onto the Qiacube HT. DNA concentration was measured using the Qubit high sensitivity
836  dsDNA kit (Invitrogen, Carlsbad, CA, USA).

837

838  Metagenomic Shotgun Sequencing. Approximately 50uL of thawed OMNIgene preserved stool
839  sample was added to a microfuge tube containing 350 pL Tissue and Cell lysis buffer and 100 pg
840 0.1 mm zirconia beads. Metagenomic DNA was extracted using the QiaAmp 96 DNA QiaCube HT
841 kit (Qiagen, 5331) with the following modifications: each sample was digested with 5uL of

842  Lysozyme (10 mg/mL, Sigma-Aldrich, L6876), 1uL Lysostaphin (5000U/mL, Sigma-Aldrich, L9043)
843  and 1pL oh Mutanolysin (5000U/mL, Sigma-Aldrich, M9901) were added to each sample to
844  digest at 37°C for 30 minutes prior to the bead-beating in the in the Tissuelyser Il (Qiagen) for 2
845  x 3 minutes at 30 Hz. Each sample was centrifuged for 1 minute at 15000 x g prior to loading
846  200ul into an S-block (Qiagen, 19585) Negative (environmental) controls and positive (in-house
847  mock community of 26 unique species) controls were extracted and sequenced with each

848  extraction and library preparation batch to ensure sample integrity. Pooled libraries were

849  sequenced over 13 sequencing runs using both HiSeq (N=87) and NovaSeq (N=392) platforms.
850  To address potential biases arising from varying read depths, all samples were down-sampled,
851 using seqtk®® (v1.3-r106), to 5 million reads. This threshold corresponds to the 95th percentile
852  of the read count distribution across the dataset.

853

854  Sequencing adapters and low-quality bases were removed from the metagenomic reads using
855  scythe (v0.994) and sickle (v1.33), respectively, with default parameters. Host reads were

856  removed by mapping all sequencing reads to the hg19 human reference genome using Bowtie2
857  (v2.3.1), under ‘very-sensitive’ mode. Unmapped reads (i.e., microbial reads) were used to

858  estimate the relative abundance profiles of the microbial species in the samples using

859  MetaPhlAn4.

860
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861  Taxonomic Profiling (Specie Abundance) and KEGG Gene Profiling. Taxonomic compositions
862  were profiled using Metaphlan4.0°” and the species whose average relative abundance > 1e-4
863  were kept for further analysis, giving 384 species. The gene profiling was computed with

864  USEARCH (v8.0.15) (with parameters: evalue 1e-9, accel 0.5, top_hits_only) to KEGG

865  Orthology (KO) database v54, giving a total of 9452 annotated KEGG genes. The reads count
866  profile was normalized by DeSeq2% in R. Genes with a prevalence of over 20% were selected for
867 downstream analysis.

868

869  Confounder Analysis. Confounder analysis was done by R package MaAsLin21%, We considered
870  demographic features (including age, gender, BMI, ethnicity, and race), diet records,

871 medications (antivirals, antifungals, antibiotics, and probiotics), and self-reported IBS scores as
872  potential confounders. The analysis followed the model formula:

873 expr ~ age + gender + bmi + ethnic + race + IBS + diet_meat + diet_sugar + diet_veg
874 + diet_grains + diet_fruit + antifungals + antibiotics + probiotics
875 + antivirals + (1|sample_id_tp1)

876  where expr refers to the 'omics matrix. For each feature in the 'omics data, we ran this

877  generalized linear model to identify multivariable associations between each 'omics feature and
878  each metadata feature. Identified confounders were handled differently based on the type of
879  data. For species and KEGG genes, any feature with a significant statistical association with any
880 metadata feature was removed from all subsequent analyses, resulting in the removal of 21
881 species and 946 microbial genes. For immune profiling and plasma metabolomics, to remove
882 the effects of identified confounders, each feature was adjusted by retaining the residuals®’, i.e.,
883  the part of the outcome not explained by the confounding factors, from a general linear model:
884 y' = (y ~ predicted confounders)$residual

885  Additionally, for network and patient subset analysis (Methods), age, gender, BMI, and IBS were
886 notincluded as confounders since we analyzed different age groups, gender groups, weight
887  groups, and IBS groups separately. However, other identified confounders were still considered
888 inthe residual models.

889

890 BioMapAl. The rationale behind BioMapAl is we believe that ME/CFS is characterized by

891 significant heterogeneity and individual variability, making traditional approaches—such as

892 classifying patients versus controls and reporting single-disease biomarkers—insufficient to us.
893  This motivated us to develop a sophisticated model that directly integrates rich biological multi-
894  omics data with clinical phenotypes. The primary learning goal of BioMapAl is to connect high-
895 dimensional biology data, X to mixed-type output matrix, Y. Unlike traditional ML or DL

896 classifiers that typically predict a single outcome, y, BioMapAl is designed to learn multiple

897  objects, Y = [y, V5, ..., ¥n], simultaneously within a single model. This approach allows for the
898  simultaneous prediction of diverse clinical outcomes - including binary, categorical, continuous
899  variables - with ‘omics profiles, thus address disease heterogeneity by tailoring each patient’s
900 specific symptomology. The uniqueness of BioMapAl is it is the first supervised deep learning
901 model that integrates omics directly with clinical phenotypes in ME/CFS. This design enables
902 simultaneous identification of symptom-specific and disease-general biomarkers, accounting for
903 ME/CFS’s phenotypic heterogeneity.
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904 1. BioMapAl Structure. BioMapAl is a fully connected deep neural network framework

905  comprising an input layer X, a normalization layer, three sequential hidden layers, Z1, Z2, Z3,and
906 one output layerY.

907 1) Input layer (X) takes high-dimensional ‘omics data, such as gene expression, species

908 abundance, metabolome matrix, or any customized matrix like immune profiling and blood labs.
909 2) Normalization Layer standardizes the input features to have zero mean and unit variance,

910 defined as
X—u
911 X' =

o
912  where u is the mean and o is the standard deviation of the input features.

913  3) Feature Learning Module is the core of BioMapAl, responsible for extracting and learning
914  important patterns from input data. Each fully connected layer (hidden layer 1-3) is designed to
915  capture complex interactions between features. Hidden Layer 1 (Z!) and Hidden Layer 2 (Z?)
916  contain 64 and 32 nodes, respectively, both with ReLU activation and a 50% dropout rate,

917  defined as:

918 Z¥ = ReLU(WkZk-1 4 pF), k €{1,2}

919  Hidden Layer 3 (Z3) has n parallel sub-layers for each object, y; in Y. Every sub-layer, Zi3,

920 contains 8 nodes, represented as:

921 Z} =ReLUW?Z3+b?), i€{1.2,..,n}
922  All hidden layers used RelLU activation functions, defined as:
923 ReLU(x) = max(0, x)

924  4) Outcome Prediction Module is responsible for the final prediction of the objects. The output
925 layer (Y) has n nodes, each representing a different object:

oWz} + b} for binary object
926 y; = {softmax(W;*Z? + b}) for categorical object
WAZ3 + b} for continuous object
927  The loss functions are dynamically assigned based on the type of each object:
(1N
N lyilog(y;) + (1 —y;)log(1 —y;)]  for binary object
i=1
1 N c
928 L= ——Z Z Vij log(ﬁij) for categorical object
NLaj—q14aj-q

1 N . C— )2 = <
kﬁz {O S =% iflyi =5l <6 for continuous object
i=1

8ly; — 9;| — 0.58%, otherwise
929

930 During training, the weights are adjusted using the Adam optimizer. The learning rate was set to
931 0.01, and weights were initialized using the He normal initializer. L2 regularizations were applied
932  to prevent overfitting.

933  5) Optional Binary Classification Layer (not used for parameter training). An additional binary
934  classification layer is attached to the output layer Y to evaluate the model's performance in

935  binary classification tasks. This layer is not used for training BioMapAl but serves as an auxiliary
936 component to assess the accuracy of predicting binary outcomes, for example, disease vs.

937  control. This ScoreLayer takes the predicted scores from the output layer and performs binary
938 classification:

26


https://doi.org/10.1101/2024.06.24.600378
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.24.600378; this version posted February 13, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

939 ybinary = 0_(Vl/binaryy + bbinary)

940 The initial weights of the 12 scores are derived from the original clinical data, and the weights
941 are adjusted based on the accuracy of BioMapAl's predictions:

942 Whew = Wold — NV-Lyse

943  where VL refers to the mean squared error (MSE) between the predicted y’ and true y,
944  then adjusts the weights to optimize the accuracy of the binary classification.

945 2. Training and Evaluation of BioMapAl for ME/CFS — BioMapAl::DeepMECFS. BioMapAl is a
946  framework designed to connect high-dimensional, sparse biological ‘omics matrix X to multi-
947  output Y. While BioMapAl is not tailored to a specific disease, it is versatile and applicable to a
948  broad range of biomedical topics. In this study, we trained and validated BioMapAl using our
949 ME/CFS datasets. The trained models are available on GitHub, nicknamed DeepMECFS, for the
950  benefit of the ME/CFS research community.

951 1) Dataset Pre-Processing Module: Handling Sample Imbalance. To ensure uniform learning for
952  each output y, it is crucial to address sample imbalance before fitting the framework. We

953 recommend using customized sample imbalance handling methods, such as Synthetic Minority
954  Over-sampling Technique (SMOTE)%?, Adaptive Synthetic (ADASYN)!%2, or Random Under-

955  Sampling (RUS)¥3, In our ME/CFS dataset, there is a significant imbalance, with the patient data
956  being twice the size of the control data. To effectively manage this class imbalance, we

957 employed RUS as a random sampling method for the majority class. Specifically, we randomly
majority

958  sampled the majority class 100 times. For each iteration i, a different random subset S;

959  was used. This subset S""%°"'Y of the majority class was combined with the entire minority
l

960  class S™NOTILY For each iteration i:

961 Si ] y c Sma]ortly' gminority — gminority

962 Si — Simajorify y gminority

963  where the combined dataset S; was used for training at each iteration. This approach allows the
964  model to generalize better and avoid biases towards the majority class, improving overall

965  performance and robustness.

966  2) Model Training, Cross-Validation and Held-out Validation. DeepMECFS is the name of the
967 trained BioMapAl model with ME/CFS datasets. We trained on five preprocessed ‘omics

968 datasets, including species abundances (Feature N=118, Sample N=474) and KEGG gene

969 abundances (Feature N=3959, Sample N=474) from the microbiome, plasma metabolome

970  (Feature N=730, Sample N=407), immune profiling (Feature N=311, Sample N=481), and blood
971 measurements (Feature N=48, Sample N=495). Additionally, an integrated ‘omics profile was
972  created by merging the most predictive features from each ‘omics model related to each clinical
973  score (SHAP Methods), forming a comprehensive matrix of 154 features, comprising 50 immune
974  features, 32 species, 30 KEGG genes, and 42 plasma metabolites.

975  To evaluate the performance of BioMapAl, we employed a robust 10-fold cross-validation

976 alongside a held-out validation approach. Specifically, 10% of the data was excluded from the
977  cross-validation process to serve as an independent validation set. This allowed us to assess
978  both the model's performance during cross-validation and its generalizability on unseen data.
979  Training was conducted over 500 epochs with a batch size of 64 and a learning rate of 0.0005,
980  optimized through grid search. The Adam optimizer was used to adjust the weights during

981  training, chosen for its ability to handle sparse gradients on noisy data. The initial learning rate
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982  was set to 0.0005, with betal set to 0.9, beta2 set to 0.999, and epsilon set to 1le-7 to ensure
983  numerical stability. Dropout layers with a 50% dropout rate were used after each hidden layer to
984  prevent overfitting, and L2 regularization (1 = 0.008) was applied to the kernel weights,

985  defined as:

N

/1 2

986 Lyeg = Ez w}
i=1

987  3) Model Evaluation. To evaluate the performance of the models, we employed several metrics
988 tailored to both regression and classification tasks. The Mean Squared Error (MSE) was used to
989  evaluate the performance of the reconstruction of each object. For each y;, MSE was calculated
990 as:

991 MSE; = NZ(yl —yl =12, ..,n

992  where yi] is the actual values, ¥ yl. is the predlcted values, and N is the number of samples, n is
993 the number of objects. For binary classification tasks (ME/CFS vs control), we utilized multiple
994  metrics including accuracy, precision, recall, and F1 score to enable a comprehensive evaluation
995  of the model's performance.
996  To benchmark the performance of BioMapAl, we compared its binary classification performance
997  with four traditional machine learning models and one deep neural network (DNN) model. The
998 traditional machine learning models included: 1) Logistic Regression (LR) (C=0.5, saga solver
999  with Elastic Net regularization); 1) Generalized linear modeling with elastic net regularization
1000 (GImnet) (grid search for best alpha/lambda, tuneLength = 10) - R glmnet, caret; 2) GImnet with
1001 interaction terms (Glmnet-int) - R gimnet, caret; 3) Support Vector Machine (SVM) with an RBF
1002  kernel (C=2) - sklearn.svm.SVC; and 4) Gradient Boosting Decision Trees (GBDT) (learning rate =
1003  0.05, maximum depth = 5, estimators = 1000) - sklearn.ensemble.GradientBoostingClassifier.
1004 DNN model employed the same hyperparameters as BioMapAl, except it did not include the
1005  parallel sub-layer, Z3, thus it only performed binary classification instead of multi-output
1006  predictions. The comparison between BioMapAl and DNN aims to assess the specific
1007  contribution of the spread-out layer, designed for discerning object-specific patterns, in binary
1008  prediction. Evaluation metrics are detailed in Supplemental Table 3.
1009  4) Hyperparameter Tuning of BioMapAl. We conducted a systematic hyperparameter tuning
1010  procedure to optimize BioMapAl’s performance on twelve symptom-specific clinical outcomes
1011 and disease status (ME/CFS vs. control). Our goal was to balance predictive accuracy, model
1012  complexity, and generalizability across high-dimensional ‘omics datasets. The results of our
1013  tuning experiments are illustrated in Supplemental Figure 7. We began with a base BioMapAl
1014  architecture consisting of two shared hidden layers (each with 128 nodes), no dropout, no L2
1015  penalty, and training for 1000 epochs.
1016  We first investigated how varying the number of shared hidden layers (1, 2, 3, or 4) affected
1017  both clinical score prediction (mean squared error, MSE) and disease classification (accuracy). As
1018  shown in Supplemental Figure 7A, two shared hidden layers achieved the best predictive
1019  performance.
1020  Next, we performed a grid search over learning rates
1021 {0.01,0.001,0.0005,0.0001,0.00005,0.00001} and batch sizes {32,64,128}. We trained each
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1022  configuration for 1000 epochs using the Adam optimizer. Supplemental Figure 7B (heatmaps)
1023  displays the MSE for each of the 12 clinical scores at different combinations of learning rate and
1024  batch size. A learning rate of 0.0005 and batch size 64 emerged as the optimal balance, yielding
1025  stable training curves and minimal variance across folds. Although we initially trained for 1000
1026  epochs, we observed that validation metrics consistently stabilized by around 500 epochs. To
1027  prevent overfitting and reduce computational burden, we introduced early stopping at 500
1028  epochs in subsequent experiments.

1029  We then tuned the number of neurons in each of the two shared hidden layers. Configurations
1030 tested included {256,128,64,32,16,8} for the first and the second layer. As shown in

1031 Supplemental Figure 7C, while the 128—64 setting performed similarly to other higher-width
1032  combinations, we observed that 64—32 minimized overfitting risk yet retained robust predictive
1033  accuracy. Thus, we selected 64 neurons in the first shared layer and 32 in the second.

1034  To further mitigate overfitting in the hidden layers, we examined dropout rates {0.1,0.2,0.5,0.8}.
1035  Supplemental Figure 7D demonstrates that 0.5 offered the best overall balance. We therefore
1036  used a 50% dropout after each shared layer. Lastly, we tested L2 penalty strengths A €

1037 {0.1,0.05,0.01,0.005,0.008,0.001,0.0001}. A moderate penalty of A = 0.008 was selected
1038  (Supplemental Figure 7E).

1039  Our final chosen hyperparameters include: Two shared hidden layers with sizes 64 and 32, each
1040 followed by a RelLU activation and 50% dropout; Batch size = 64, 500 epochs with early stopping;
1041 An Adam optimizer (initial learning rate = 0.0005, 1 = 0.9, 2 = 0.999,e =1 x 10— 7), L2
1042  penalty A = 0.008. We observed that the model’s overall performance (MSE on symptom

1043  scores, accuracy for ME/CFS classification) was not highly sensitive to small deviations in these
1044  hyperparameters. Even with the baseline configuration (128 nodes, no dropout, no penalty), the
1045  predictive performance was reasonable; however, this final tuned setup led to an improvement
1046  of approximately 5-10% and yielded more stable and generalizable outcomes across the five
1047  ‘omics datasets.

1048  5) Sensitivity Analyses of BioMapAl. For sensitivity analysis of BioMapAl, we first re-trained our
1049 final BioMapAl configuration ten times with different random initializations. Classification

1050 metrics and regression metrics (MSE) for the twelve clinical outcomes were collected. As shown
1051 in Supplemental Table 3, the standard deviations (SD) were minimal (<5%) across these ten
1052  runs, indicating that BioMapAl is robust to changes in random seed initialization. We also

1053  evaluated three similarly performing model architectures (chosen based on grid search results)
1054  thatyield near-identical or slightly different loss values: Model 1: 128 nodes in the first shared
1055 layer, 32 nodes in the second shared layer, A = 0.008; Model 2: 32 nodes in the first shared
1056 layer, 32 nodes in the second shared layer, A = 0.008; Model 3: 64 nodes in the first shared
1057  layer, 32 nodes in the second shared layer, A = 0.005. As shown in Supplemental Table 3, while
1058  minor fluctuations in classification performance were observed, the results were genernally
1059  consistent. This underscores BioMapAl’s stability: adjusting the number of neurons in the

1060 shared layers or slightly altering the L2 penalty does not substantially degrade classification or
1061 regression outcomes. Collectively, these analyses confirm that BioMapAl’s core design is not
1062  overly sensitive to small architectural or regularization variations. Even when trained with

1063  alternative hyperparameter settings, the model yields robust and consistent performance on
1064  both classification (ME/CFS vs. control) and symptom severity score learning.
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1065  6) External Validation with Independent Dataset. To validate BioMapAl's robustness in binary
1066 classification, we utilized 4 external cohorts?>,26,27,28 comprising more than 100 samples. For
1067 these external cohorts, only binary classification is available. A detailed summary of data

1068  collection for these cohorts is provided in Supplemental Table 4. For each external cohort, we
1069  processed the raw data (if available) using our in-house pipeline. The features in the external
1070  datasets were aligned to match those used in BioMapAl by reindexing the datasets. The overlap
1071 between the features in the external dataset and BioMapAl's feature set was calculated to
1072  determine feature coverage. Any missing features were imputed with zeros to maintain

1073  consistency across datasets. The input data was then standardized as BioMapAl. We loaded the
1074  pre-trained BioMapAl, GBDT, and DNN for comparison. LR and SVM were excluded because they
1075  did not perform well during the in-cohort training process. The performance of the models was
1076  evaluated using the same binary classification evaluation metrics. Evaluation metrics detailed in
1077  Supplemental Table 4.

1078 3. BioMapAl Decode Module: SHAP. BioMapAl is designed to be explainable, ensuring that it
1079  not only reconstructs and predicts accurately but also is interpretable, which is particularly
1080 crucial in the biological domain. To achieve this, we incorporated SHapley Additive exPlanations
1081 (SHAP) into our framework. SHAP offers a consistent measure of feature importance by

1082  quantifying the contribution of each input feature to the model's output.1%

1083  We applied SHAP to BioMapAl to interpret the results, following these three steps:

1084 1) Model Reconstruction. BioMapAl's architecture includes two shared hidden layers - Z1, Z2-
1085  and one parallel sub-layers - Zi3— for each object y;. To decode the feature contributions for each
1086  object y;, we reconstructed sub-models from single comprehensive model:

1087 Model; =Z*+Z?+Z},i=12,..,n

1088  where n is the number of learned objects.

1089  2) SHAP Kernel Explainer. For each reconstructed model, Model;, we used the SHAP Kernel
1090  Explainer to compute the feature contributions. The explainer was initialized with the model's
1091 prediction function and the input data X:

1092 explainer; = shap. KernelExplainer(Model;.predict,X),i = 1,2, ...,n
1093  Then SHAP values were computed to determine the contribution of each feature to y;:
1094 ¢; = explainer;(X),i = 1,2,...,n

1095  The kernel explainer is a model-agnostic approach that approximates SHAP by evaluating the
1096  model with and without the feature of interest and then assigning weights to these evaluations
1097  to ensure fairness. For each model;, with each feature j:

; Silt(m —18;] — 1)!
1098 ol (f,x) = ISt € mll =1 (Model,(S; U j) — Model,(S)))
SiENI\U} '
1 m—1 \* , _
1099 = — z ( ) (Modell-(Sl- Uj)— Modeli(Si)),L =12, ..,n
m—|S;| -1
SiEN\{}

1100  where n is the number of learned objects, m is the total number of features, ¢l.’ is the Shapley
1101  value for feature j in model;, N; is the full set of features in model;, S; is the subset of features
1102  notincluding feature j, Model;(S;) is the model prediction for the subset S;. The SHAP value
1103  matrix, ¢;, were further reshaped to align with the input data dimensions.
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1104  3) Feature Categorization. Analyzing the SHAP value matrices, [¢1, ¢5, ..., ¢, ], features can be
1105  roughly assigned to two categories: shared features - important to all outputs; or specific

1106  features - specifically important to individual outputs. We set the cutoff at 75%, where features
1107  consistently identified as top contributors in 75% of the models were classified as shared

1108 important features, termed disease-specific biomarkers. Features that were top contributors in
1109  only a few models were classified as specific important features, termed symptom-specific
1110  biomarkers.

1111 By reconstructing individual models, Model;, for each object, y;, and applying SHAP explainer
1112  individually, we effectively decoded the contributions of input features to BioMapAl's

1113  predictions. This method allowed us to categorize features into shared and specific categories—
1114  termed as disease-specific and symptom-specific biomarkers—providing novel interpretations
1115  of the ‘omics feature contribution to clinical symptoms.

1116  4) Interaction Types of Important Feature.

1117  Linear (Monotonic) Relationship: A feature x and a symptom y follow a roughly linear (or
1118  strictly monotonic) trend when the change in y can be approximated by a single slope over x’s
1119  range. Formally, y = a + Bx, with § # 0, implying a consistently increasing (§ > 0) or

1120  decreasing (f < 0) trend. Biologically, as the biomarker goes up, the symptom steadily

1121  increases (positive ) or decreases (negative f3).

1122  Biphasic Relationship. A biomarker x relates to a symptom y through a two-phase pattern, such
1123  as a U-shaped or inverted U-shaped curve. One way to represent this is by including a squared
1124  term:y =~ a + Blx + B2x?, with B2 # 0. Biologically, this often reveals that both very low and
1125  very high biomarker values are associated with greater symptom severity, whereas moderate
1126  values relate to reduced severity (or vice versa).

1127  Dispersed Relationship. If there is no single coherent shape (linear or otherwise) that describes
1128  the biomarker—symptom relationship across all individuals. Instead, contributions may appear
1129  sparse (affecting only a small subset of participants) or highly variable with no dominant

1130  pattern. Biologically, this is a typical relationship at KEGG profile in our case, where different
1131 individuals can exhibit different directions or magnitudes of effect, leading to scattered or

1132  “patchy” patterns.

1133  5) Stability of SHAP Values. To the stability of SHAP values under repeated experiments and
1134  similar model configurations, we conducted re-ran the Same Data with the Same Architecture
1135  (Different Random Seeds) as above. We then computed the standard deviation (SD) of the SHAP
1136  values for each feature. Over 90% of features exhibit less than 3% variation in their SHAP

1137  contributions across runs, indicating that the top features remain highly consistent despite
1138 random seed variation.

1139  We also computed SHAP values for each of the three alternative model architectures (Model 1,
1140 Model 2, Model 3) described above. Despite their slight architectural or regularization

1141 differences, the top 50 features identified by SHAP largely overlapped with those from the final
1142 BioMapAl. While some lower-ranked features did differ across models, those changes

1143  accounted for less than 5% of the total SHAP variance, suggesting that the core set of important
1144  predictors remains stable. Consequently, the minor variations observed are unlikely to affect
1145  clinical interpretation or downstream analyses. In summary, both random initializations and
1146  small architectural changes do not substantially alter the SHAP-based feature importance
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1147  patterns in BioMapAl. The top features remain consistent, reinforcing the reliability and

1148 interpretability of our multi-output deep learning framework.

1149 4. Packages and Tools. BioMapAl was constructed by Tensorflow(v2.12.0)1% and Keras(v2.12.0).
1150 ML models were from scikit-learn(v 1.1.2)1%, GImnet models were using R package

1151  glmnet!'%’(v4.1-4) and caret'®®(v6.0.93).

1152 5. Usage of BioMapAl. We have included our GitHub README.md file and introduced a Jupyter
1153  notebook for user instruction. Because there are limited large-scale multi-‘omics datasets with
1154  sufficient matched clinical data for us to test BioMapAl’s generalizability, we have not trained
1155  BioMapAl on other disease states. However, BioMapAl’s specialized deep neural network

1156  structured with two shared general layers and one outcome-focused parallel layer should be
1157  generalizable and scalable to other cohort studies that aim to utilize ‘omics data for a range of
1158  outputs (e.g., not just limited to clinical symptoms). For instance, researchers could employ our
1159  model to link whole genome sequencing data with blood or protein measurements.

1160  Constructed to automatically adapt to any input matrix and any output matrix, BioMapAl

1161 defaults to parallelly align specific layers for each output.

1162

1163  WGCNA and Network Analysis. To identify co-expressed patterns of each ‘omics, we employed
1164  the Weighted Gene Co-expression Network Analysis (WGCNA) using the WGCNA% package in
1165  R. The analysis was performed on preprocessed omics data (Methods): species abundances
1166  (Feature N=373, Sample N=479) and KEGG gene abundances (Feature N=4462, Sample N=479)
1167  from the microbiome, plasma metabolome (Feature N=395, Sample N=414), immune profiling
1168  (Feature N=311, Sample N=489). Network construction and module detection involved choosing
1169  soft-thresholding powers tailored to each dataset: 6 for species, 7 for KEGG, 5 for immune, and
1170 6 for metabolomic. The adjacency matrices were transformed into topological overlap matrices
1171 (TOM) to reduce noise and spurious associations. Hierarchical clustering was performed using
1172  the TOM, and modules were identified using the dynamic tree cut method with a minimum
1173  module size of 30 genes. Module eigengenes were calculated, and modules with highly similar
1174  eigengenes (correlation > 0.75) were merged. Module-trait relationships were assessed by
1175  correlating module eigengenes with clinical traits, and gene significance (GS) and module

1176  membership (MM) were used to identify hub genes within significant modules.

1177  Network analysis was conducted using igraph'?? in R. Module eigengenes from the WGCNA
1178  analysis were extracted for each dataset. A combined network was constructed by calculating
1179  Spearman correlation coefficients (corrected, Methods) between the module eigengenes of
1180 different datasets, and an adjacency matrix was created based on a threshold of 0.3 (absolute
1181  value) to include only significant associations. Network nodes represented module eigengenes
1182  and edges represented significant correlations. Degree centrality and betweenness centrality
1183  were calculated to identify highly connected and influential nodes. Networks in patient

1184  subgroups were displayed as the correlation differences from their healthy counterparts to
1185  exclude the influence of covariates. For example, correlations in female patients were compared
1186  with female healthy, and correlations in older patients were compared with older healthy.
1187

1188  Statistical Analysis. The dimensionality reduction analysis was conducted by Principal

1189  Correspondence Analysis (PCoA) using sklearn.manifold.MDS function for ‘omics. For combined
1190  'omics data, PCoA was applied to combined module eigengenes from WGCNA. Fold change of
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1191 species, genes, immune cells, and metabolites were compared between patient and control
1192  groups, short-term and control groups, and long-term and control groups. P values were

1193 computed by Wilcoxon signed-rank test with False Discovery Rate (FDR) correction, adjusted for
1194  multiple group comparisons. Spearman's rank correlation was used to assess correlation

1195  covariant. P-values were adjusted using Holm's method, accounting for multiple group

1196  comparisons. P value annotations: ns: p > 0.05, *: 0.01 < p <= 0.05, **: 0.001 < p <=0.01, ***: p
1197 <=0.001.

1198

1199  Longitudinal Analysis. To capture statistically meaningful temporal signals, we employed

1200 various statistical and modeling methods, accounting for both linear and non-linear trends and
1201 intra-individual correlations:

1202 1. Interquartile Range (IQR) and Intraclass Correlation Coefficient (ICC). We initially assessed
1203  statistics at different time points by computing the IQR and ICC. Data were standardized to a
1204  mean of zero and a standard deviation of one to ensure comparability across features with
1205  different scales. The IQR quantified variability, while the ICC assessed the dependence of

1206  repeated measurements!!?, indicating the similarity of measurements over time. Data showed
1207  no statistical dependence and no trend of stable variance across time points.

1208 2. Generalized Linear Models (GLMs). GLMs!!2 were then used to analyze the effects of time
1209  points, considering age, gender, and their interactions. Time points were included as predictors
1210  to reveal changes in dependent variables over time, with interaction terms exploring variations
1211 based on age and gender. Random effects accounted for intra-individual correlations. Although
1212 12 features out of 5000 showed weak trends over time (slopes < 0.2), they were not deemed
1213  sufficient to be potential longitudinal biomarkers, possibly due to individualized patterns.

1214 3. Repeated Measures Correlation (rmcorr). To better consider individual effects, we employed
1215  rmcorr!®3 to assess consistent patterns of association within individuals over time. This method
1216  captured stable within-individual associations across different time points. However, only 30
1217  features out of 5000 showed weak slopes (< 0.3), and these were not considered sufficient to
1218  conclude the presence of longitudinal signals.

1219 4. Smoothing Spline ANOVA (SS-ANOVA). We then considered the longitudinal trends could be
1220  non-linear and more complex. To model complex, non-linear relationships between response
1221  variables and predictors over time, SS-ANOVA!4 was used. SS-ANOVA uncovered non-linear
1222  trends and interactions in the omics data, however, no strong temporal signals were identified.
1223  In conclusion, robust analysis of the longitudinal data, accounting for both linear and non-linear
1224  trends and intra-individual correlations, revealed the difficulty in extracting strong and

1225  statistically meaningful temporal signals. As Myalgic Encephalomyelitis/Chronic Fatigue

1226  Syndrome (ME/CFS) is a disease that usually lasts for decades with non-linear progression, the
1227  four-year tracking period with annual measurements is likely insufficient for capturing

1228  consistent temporal signals, necessitating longer follow-up periods.
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1229 Data and Code

1230 Metagenomics data is being deposited under the BioProject submission number SUB14546737
1231 and will be publicly available as of the date of publication. Accession numbers are listed in the
1232  key resources table. BioMapAl framework is available at

1233  https://github.com/ohlab/BioMapAl/codes/Al. All original code, analyzed data and trained
1234  model has been deposited at https://github.com/ohlab/BioMapAl. All other 'omics data,
1235 including clinical metadata, are available in Supplementary Tables, GitHub and at the

1236  MapMECFS portal (https://mecfs.rti.org/research/). Any additional information required to
1237  reanalyze the data reported in this paper is available from the lead contact upon request.
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1264  Supplemental Figure 1: Data Pairedness Overview and Heterogeneity in Healthy and Patients.
1265 A) Cohort Composition and Data Collection. Over four years, 515 time points were collected:
1266  baseline year from all 249 donors (Healthy N=96, ME/CFS N=153); second year from 168

1267 individuals (Healthy N=58, ME/CFS N=110); third year from 94 individuals (Healthy N=13,

1268  ME/CFS N=81); fourth year from N=4 ME/CFS patients. Nearly 400 collection points included
1269  complete sets of 5 ‘omics datasets, with others capturing 3-4 ‘omics profiles. Clinical metadata
1270  and blood measures were collected at all 515 points. Immune profiles from PBMCs were

1271 recorded at 489 points, microbiome data from stool samples at 479 points, and plasma

1272  metabolome data at 414 points. A total of 1,471 biosamples were collected. B-C) Heterogeneity
1273  of B) Healthy Controls and C) All Patients in Symptom Severity and ‘Omics Profiles.

1274  Supplemental information for Figure 1B, which shows examples from 20 patients. Variability in
1275  symptom severity (top) and ‘omics profiles (bottom) for all healthy controls and all patients with
1276  3-4 time points. The top x-axis numbers represent 12 symptoms, arranged in the same order as
1277  Supplemental Figure F-G (left to right, top to bottom). D) Distribution of 12 Clinical Symptoms
1278  in ME/CFS and Control. Density plots compare the distributions of 12 clinical scores between
1279  control (blue) and ME/CFS patients (orange) with the x-axis represents the values of symptom
1280  severity (scaled from 0%, no symptom, to 100%, most severe)n and the y-axis represents the
1281 frequency (count) of data points. Clinical scores include RAND36 subscales (e.g., Physical

1282  Functioning, Emotional Wellbeing), Cognitive Efficiency from the DANA test, Orthostatic

1283 Intolerance from the NLT test, Sleep Problems from the PSQI questionnaire, and Gastrointestinal
1284  Symptoms from the GSRS questionnaire. E) Principal Coordinates Analysis (PCoA) of each

1285  'Omics. PCoA based on Bray-Curtis distance for clinical scores, immune profiles, plasma

1286 metabolome, blood measures, species abundance, and KEGG gene data. Control samples (blue)
1287  and ME/CFS patients (red) show distinct clustering. Here, except for the clinical scores, controls
1288  areindistinguishable from patients, highlighting the difficulty of building classification models.
1289  F-G) Symptom Progression Over Time in F) Healthy vs. G) ME/CFS Patients. Symptom

1290 progression for each individual (represented by different colors) is shown using line plots of
1291  symptom severity (y-axis) over time points (years 1-4). Compared to healthy controls, ME/CFS
1292  patients exhibit higher severity (indicated by higher y-axis values), greater heterogeneity

1293 (indicated by differences within the patient group), and inconsistent or non-linear progression
1294  (indicated by substantial variation over time without a consistent pattern) in clinical symptoms.
1295  Abbreviations: ME/CFS, Myalgic Encephalomyelitis/Chronic Fatigue Syndrome; PCoA, Principal
1296  Coordinates Analysis; RAND36, 36-ltem Short Form Health Survey; DANA, DANA Brain Vital; NLT,
1297  NASA Lean Test; PSQl, Pittsburgh Sleep Quality Index; GSRS, Gastrointestinal Symptom Rating
1298  Scale; KEGG, Kyoto Encyclopedia of Genes and Genomes. Related to: Figure 1-2.
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1300 Supplemental Figure 2: BioMapAl’s Performance at Clinical Score Reconstruction and Disease
1301 Classification. A) Density map of True vs. Predicted Clinical Scores. Supplemental information
1302  for Figure 2B, which shows three examples. Here, the full set of 12 clinical scores compares the
1303  true score, y (Column 1), against BioMapAl’s predictions generated from different ‘omics

1304 prOﬁIeS - yimmuner yspecieSf yKEGG: ymetabolomer yquestr yomics (COIumns 2‘7)' B) Scatter Plot of
1305  True vs. Predicted Clinical Scores. Scatter plots display the relationship between true clinical
1306  scores (x-axis) and predicted clinical scores (y-axis) for six different models: Omics, Immune,
1307  Species, KEGG, Metabolome, and Quest Labs. Each plot demonstrates the clinical score

1308  prediction accuracy for each model. C) ROC Curve for Disease Classification with Original

1309 Clinical Scores. The Receiver Operating Characteristic (ROC) curve evaluates the performance of
1310 disease classification using the original 12 clinical scores. The mean Area Under the Curve (AUC)
1311 is 0.99, indicating high prediction accuracy, which aligns with the clinical diagnosis of ME/CFS
1312  based on key symptoms. D) 3D t-SNE Visualization of Hidden Layers. 3D t-SNE plots show how
1313  BioMapAl progressively distinguishes disease from control across hidden layers for five trained
1314  'omics models: Immune, KEGG, Species, Metabolome, and Quest Labs. Each plot uses the first
1315  three principal components to show the spatial distribution of control samples (blue) and

1316  ME/CFS patients (red). The progression from the input layer (mixed groups) to Hidden Layer 3
1317  (fully separated groups) illustrates how BioMapAl progressively learns to separate ME/CFS from
1318  healthy controls. E) ROC Curve for Disease Classification with Held-out Data. ROC curves show
1319  BioMapAl’s performance in disease classification with held-out data. Abbreviations: ROC,

1320 Receiver Operating Characteristic; AUC, Area Under the Curve; t-SNE, t-Distributed Stochastic
1321 Neighbor Embedding; PCs, Principal Components; y, True Score; ¥y, Predicted Score. Related to:
1322  Figure 2.

39


https://doi.org/10.1101/2024.06.24.600378
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.24.600378; this version posted February 13, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Immune Species Metabolome

DeepMECFS: = —

Feature Imp Rank N

DeepMECFS:
SHAP Value
~ 12 Scores

DNN: Feature
Contribution

i|ig!'¢‘!g

GDBT: Feature
Importance

-

Data: Normalized
Abundance

k06996 —{il

K11004; hlyB, cyaB —
Calcium —

X-24556
K09939 -
Albumin/Globulin Ratio —

vanillylmandelate
Hemoglobin

Neutrophils —
eGFR African American —f

K01338; lon
K13018; wbpD, wibB —
Urea Nitrogen (BUN) —

Platelet Count —f

Blautia Faecis —
K22232; iolN —

Sutterella Wadsworthensis —
KO07505; repA —

K23303; qrcD —

CD19+CD3-
K09951; cas2 -

CD8+MCCR6+CXCR3-
DNMCD27+

CD8+MVa7.2-INFg+TNFa-
imidazole lactate —
choline phosphate —
undecenoylcarnitine —
androstenediol
K21023; mucR —
Cholesterol, Total —

Alistipes Ihumii
taurolithocholate 3-sulfate —

CD4+NFOXP3+

CD4+MCD25+CD27-

CD4+INFg-TNFa+

CD19+CD3-CD27+1gG+
Ggb9615 Sgb15053 —
Alistipes Finegoldii
N-acetylglucosamine —
6-bromotryptophan —

Non HDL Cholesterol
Absolute Neutrophils —

CD4+CCR7+CD31+CXCR3+
Roseburia Intestinalis -

Bilophila Wadsworthia
Barnesiella Intestinihominis —

DNMCCR6-INFg+TNFa+
Dysosmobacter Welbionis
Clostridiales Bacterium
glycodeoxycholate 3-sulfate

1323
1324  Supplemental Figure 3: Disease-Specific Biomarkers - Top 10 Biomarkers Shared across

1325  Clinical Symptoms and Multiple Models. Through the top 30 high-ranking features for each
1326  score, we discovered that the most critical features for all 12 symptoms were largely shared
1327  and consistently validated across ML and DL models, particularly the foremost 10. Here, this
1328  multi-panel figure presents the top 10 most significant features identified by BioMapAl across
1329 five ‘omics profiles, highlighting their importance in predicting clinical symptoms and diagnostic
1330  outcomes across BioMapAl, DNN, and GBDT models, along with their data prevalence. Each
1331  vertical section represents one ‘omics profile, with columns of biomarkers ordered by average
1332  feature importance from right to left. From top to bottom: 1. Feature Importance Ranking in
1333  BioMapAl. Lines depict the rank of feature importance for each clinical score, color-coded by
1334  the 12 clinical scores. Consistency among the top 5 features suggests they are shared disease
1335  biomarkers crucial for all clinical symptoms; 2. Heatmap of SHAP Values from BioMapAl. This
1336  heatmap shows averaged SHAP values with the 12 scores on the rows and the top 10 features
1337 inthe columns. Darker colors indicate a stronger impact on the model's output; 3. Swarm Plot
1338  of SHAP Values from DNN. This plot represents the distribution of feature contributions from
1339  DNN, which is structurally similar to BioMapAl but omits the third hidden layer (Z3). SHAP
1340 values are plotted vertically, ranging from negative to positive, showing each feature's influence
1341 on prediction outcomes. Points represent individual samples, with color gradients denoting
1342  actual feature values. For instance, Dysosmobacteria welbionis, identified as the most critical
1343  species, shows that greater species relative abundance correlates with a higher likelihood of
1344  disease prediction; 4. Bar Graphs of Feature Importance in GBDT. GBDT is another machine
1345  learning model used for comparison. Each bar's height indicates a feature's significance within
1346  the GBDT model, providing another perspective on the predictive relevance of each biomarker;
1347 5. Heatmap of Normalized Raw Abundance Data. This heatmap compares biomarker prevalence
1348 between healthy and disease states, with colors representing z-scored abundance values,

1349  highlighting biomarker differences between groups. Abbreviations: DNN: Here refer to our
1350 deep Learning model without the hidden 3, ‘spread out’ layer; GBDT: Gradient Boosting

1351 Decision Tree; SHAP: SHapley Additive exPlanations. Supporting Materials: Supplemental Table
1352 5. Related to: Figure 3.
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1354  Supplemental Figure 4: Symptom-Specific Biomarkers - Immune, KEGG and Metabolome
1355

Models. By linking ‘omics profiles to clinical symptoms, BioMapAl identified unique symptom-
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1356  specific biomarkers in addition to disease-specific biomarkers (Supplemental Figure 3). Each
1357  ‘omics has a circularized diagram (Figure 3A, Supplemental Figure 4B-D) to display how

1358  BioMapAl use this ‘omics profile to predict 12 clinical symptoms and to discuss the contribution
1359  of disease- and symptom-specific biomarkers. Detailed correlation between symptom-specific
1360  biomarkers and their corresponding symptoms is in Supplemental Figure 5. A) Examples of
1361  Sleeping Problem-Specific Species’ and Gastrointestinal-Specific Species’ Contributions.
1362  Supplemental information for Figure 3D, which shows the contribution of pain-specific species.
1363  B-D) Circularized Diagram for Immune, KEGG and Metabolome Models. Supplemental

1364  information for Figure 3A, which shows the species model. E-F) Zoomed Segment for Pain in
1365 KEGG and Metabolome Model. Supplemental information for Figure 3B, which shows the
1366 zoomed segment for pain in the species and immune models. *Note, the reported biomarkers
1367  were calculated using the entire dataset and were not validated on held-out data.

1368  Abbreviations and Supporting Materials: Supplemental Figure 5. Related to: Figure 3.
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1370  Supplemental Figure 5: Symptom-Specific Biomarkers - Different Correlation Patterns of
1371 Biomarkers to Symptom. Supplemental information for Figure 3C, which shows six pain
1372  biomarkers from multiple models. Here for each ‘omics, we plotted the correlation of symptom-
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specific biomarkers (x-axis) to its related symptom (y-axis), colored by SHAP value (contribution
to the symptom). Abbreviations: CD4, Cluster of Differentiation 4; CD8, Cluster of
Differentiation 8; IFNg, Interferon Gamma; DC, Dendritic Cells; MAIT, Mucosal-Associated
Invariant T; Th17, T helper 17 cells; CD4+ TCM, CD4+ Central Memory T cells; DC CD1c+ mBtp+,
Dendritic Cells expressing CD1c+ and myelin basic protein; DC CD1c+ mHsp, Dendritic Cells
expressing CD1c+ and heat shock protein; CD4+ TEM, CD4+ Effector Memory T cells; CD4+ Th17
rfx4+, CD4+ T helper 17 cells expressing RFX4; F. prausnitzii, Faecalibacterium prausnitzii; A.
communis, Akkermansia communis; NAD, Nicotinamide Adenine Dinucleotide. Related to:
Figure 3.

44


https://doi.org/10.1101/2024.06.24.600378
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.24.600378; this version posted February 13, 2025. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

1382

A Species Immune

Metabolome

N I E W - -II WGCNA_Color

I . (Intercept)
|| B . study_ptorhcMECFS
. - = |Ilness _durationLong
— -= e B - =R _...
[ | raceWhne
ethnicHispanic or Latino
|| ethnicNot Hispanic
- diet_meat Linear Model
|| | diet_sugar Coeffici
| || diet_veg oeficients
| diet_grains 6
| | diet_fruit 4
antifungalsYes 2
|| [ | antibioticsYes 0
probioticsYes
antiviralsYes -2
| | | BRI (Intercept) -4
|| | RAND36.Physical.Functioning -6
|| | | RAND36.Role.Limitations. dueto Physical.Health
|| RAND36.Role.Limitations.due.to.Emotional.Problems
| | | [ | [ | [ | RAND36.Energy.Fatigue
RAND36.Emotional.wellbeing
RAND36.Social.Functioning
RAND36.Pain
RAND36.General.Health
| DANA.Cognitive.Efficiency
| NLT.Orthostatic.Intolerance
PSQl.sleeping_problem
GSRS.gastrointestinal
T VUQOVDE5A NT VOO N>k ©oos NLT OO B C
S238853 288288 bEEERR33 5548582825
5883888 =2I38I0RFESSO00F 552c<E2238
38SE2EE2 >255228 28 2ot S92F8252FT
200 ETESEE SEAPOEL 2narys SS0S5E E
n_O"mgoﬁ-cE LLPE S ”-GE 2 OL9%Sa
SES832EB<c Q%< G £ECOZ0F5 =55 g-x828
SEESLC § 2 t £ f= o5 2TIEED
£ S © < 3 © © ﬁ W 2 S F8<a g
5 S8S€ o CE’ 5 ] 8BS 88 20 «
o 3 w NE 2o
© [0} [ + =z c e
@ o P &= g8 S
z e -
B coeem G Young Healthy Female Healthy NormalWeight Healthy
Delta
Mo et et e
e T S W S
Biautia HiG \ [N T e IS - #uﬂhv-“mr Sy rhkaqnhx.rr m‘nﬂr""w s ; ANESE Optotonic T
autia ifractor INFg+ GzA$CD8 MAIT obiciliad wobsd o il 57 Y
ppe T oo TIEERSTe TSSO TR
3 : e Ty | e A e o
Fatfeo idi p m\wmgcww«::vw.mu uh,‘\‘immcmmc%(y‘/ucm u.m;m&fb"ga.c‘sv o8
Lactobacil ae
| Elder Healthy Male Healthy OverWeight Healthy
Firmicutes A uvat —_
P-evomg: T et sine M i o5 o5
e L .
SCOOA‘GMCI Oics ] Olmmpg*.w Cb4 ’l'uwvhﬂmbﬂthbuh:.‘ uty Ackd 1-up<-uueuumm Fay Acid
; e Gl consTE Bl fm.-.. R A CORMATE
s e S %
M Lactobi oy / Lu-mbadlhx Wp’cm
""""““/ M:’;"“"" T ”’mnx l’x
. Wum-ﬂlﬂbﬁwmy(m - ng//é.mumm%mm
e aceaeC iCSE A+ con L CD‘-%F‘-VCDK
D e
g o6
=
g 'Ill ll Ly lll l s ' ' i l ' ' "
S 4]
ol g e Hl it ity i, T '11, iy i1
g 02 z
0.252
0
O
0.003
Ey
" 0.253
foa2s Ly ! g
Loso ¥ v e i T "" X "mn 1""! U U
’.‘Za ! l ' ' @ Healthy
2 ® Patient
=0.75 — T T T

Pyruvate Steroids CD8 MAIT Amino Acid i
Hemo Gut Microbiome ~ Gut Microbiome Hemo Hemo

Benzoate [
Hemo

Fg+ Memory CDa

Th17 i i ING
Gut Microbiome Hemo ‘Gut Microbjome  Gut Microbiome

45


https://doi.org/10.1101/2024.06.24.600378
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.24.600378; this version posted February 13, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

1383  Supplemental Figure 6: ‘Omics WGCNA Modules and Host-Microbiome Network. A)

1384  Correlation of WGCNA Modules with Clinical Metadata. Weighted Gene Co-expression

1385  Network Analysis (WGCNA) was used to identify co-expression modules for each ‘omics layer:
1386  species, KEGG, immune, and metabolome. The top dendrograms show hierarchical clustering of
1387  'omics features, with modules identified. The bottom heatmap shows the relationship of

1388 module eigengenes (colored as per dendrogram) with clinical metadata — including

1389  demographic information and environmental factors - and 12 clinical scores. General linear
1390 models were used to determine the primary clinical drivers for each module, with the color
1391  gradient representing the coefficients (red = positive, blue = negative). Microbial modules were
1392 influenced by disease presence and energy-fatigue levels, while metabolome and immune
1393 modules correlated with age and gender. B-C) Microbiome-Immune-Metabolome Network in
1394  B) Patient and C) Healthy Subgroups. Supplemental information for Figure 4A (Healthy

1395 Network) and 4B (Patient Subgroups). Figure 4A is the healthy network; here, Supplemental
1396  Figure 6B presented the shifted correlations in all patients. Figure 4B represented the network
1397 in patient subgroups; here, Supplemental Figure 6C is the corresponding healthy counterpart,
1398 for example, female patients were compared with female controls to exclude gender influences.
1399 D) Differences in Host-Microbiome Correlations between Healthy and Patient Subgroups.
1400 Selected host-microbiome module pairs are grouped on the x-axis (e.g., pyruvate to blood
1401 modules, steroids to gut microbiome). Significant positive and negative correlations (top and
1402  bottom y-axis) of module members pairs are shown as dots for each subgroup (blue = healthy,
1403  orange = patient) (Spearman, adjusted p < 0.05), from left to right: Young, Elder, Female, Male,
1404  NormalWeight, OverWeight Healthy and Young, Elder, Female, Male, NormalWeight,

1405  OverWeight Patient. The middle bars represent the total count of associations. This panel
1406  highlights the shifts in host-microbiome networks from health to disease, for example, in

1407  patients, the loss of pyruvate to host blood modules correlation and the increase of INFg+ CD4
1408 memory correlation with gut microbiome. Abbreviations: WGCNA, Weighted Gene Co-

1409  expression Network Analysis; AA, Amino Acids; SCFA, Short-Chain Fatty Acids; IL, Interleukin;
1410  GM-CSF, Granulocyte-Macrophage Colony-Stimulating Factor. Related to: Figure 4.
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Supplemental Figure 7: Hyperparameter Tuning of BioMapAl. This figure illustrates how
BioMapAl’s predictive performance for 12 symptom-specific clinical objectives and disease
classification (ME/CFS vs. control) responds to different hyperparameter settings across five
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1415  ‘omics datasets (species abundance, KEGG gene abundances, plasma metabolome, immune
1416  profiling, and quest blood measurements). Each sub-panel shows a comparison of performance
1417  metrics (e.g., mean squared error for clinical scores, classification accuracy for disease

1418 classification) versus the tested hyperparameter values. For mean squared error (MSE) of

1419 clinical scores, smaller values indicate better predictions, as predicted scores are closer to true
1420  scores. For classification accuracy, larger values reflect better performance. A) Number of

1421 Shared Hidden Layers. The y-axis represents performance metrics tuned against the number of
1422  shared hidden layers {1,2,3,4} on the x-axis Each ‘omics dataset is distinguished by color. Two
1423  shared hidden layers were selected, as this configuration demonstrated the best balance

1424  between predictive accuracy for clinical scores and disease classification. B) Grid Search for
1425  Learning Rate and Batch Size. Each heatmap represents one ‘omics dataset (columns), with
1426  rows corresponding to individual clinical scores (total of 12). Colors indicate MSE between

1427  predicted yp,req and Yire values across combinations of learning rates

1428  {0.01,0.001,0.0005,0.0001,0.00005,0.00001} and batch sizes {32,64,128}. Darker colors
1429  represent higher MSE (worse prediction), while lighter colors indicate lower MSE (better

1430 prediction). Red boxes mark optimal settings. A learning rate of 0.0005 and batch size of 64
1431  achieved stable training with minimal variance across predictions. C) Grid Search for Number of
1432  Neurons in Each Shared Layer. Similar to (B), this panel visualizes the tuning of network width
1433  for each shared layer. Configurations tested include {256,128,64,32,16,8}. While configurations
1434  like 128-64 (Layer 1) and 64—-32 (Layer 2) performed similarly, 64—32 was chosen for minimizing
1435  overfitting while preserving predictive accuracy. D) Dropout Rate. The x-axis shows tested

1436  dropout rates {0.1,0.2,0.5,0.8}, while the y-axis tracks performance metrics as in (A). A dropout
1437  rate of 50% (0.5) provided the best trade-off between overfitting control and prediction stability.
1438 E) L2 Penalty Rate. Each line or bar corresponds to different regularization strengths 1 €

1439  {0.1,0.05,0.01,0.005,0.008,0.001,0.0001}. A moderate penalty of A = 0.008 was selected,
1440  offering an optimal balance between overfitting prevention and model capacity. Together, these
1441 panels demonstrate how each hyperparameter affects BioMapAl’s ability to predict 12 clinical
1442  scores and classify disease status across five distinct ‘omics datasets. The final configuration—
1443  two shared hidden layers (64 and 32 neurons), a learning rate of 0.0005, batch size of 64,

1444  dropout of 50%, and L2 penalty A = 0.008 —achieved optimal balance between predictive
1445  performance and generalizability for high-dimensional ‘omics data. Abbreviations: ME/CFS:
1446  Myalgic Encephalomyelitis/Chronic Fatigue Syndrome; KEGG: Kyoto Encyclopedia of Genes and
1447  Genomes; MSE: Mean Squared Error. Related to: Methods.
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1448  Supplemental Table

1449  Supplemental Table 1 Sample Metadata and Clinical Scores

1450  Supplemental Table 2 Model Performance at Reconstructing Twelve Clinical Scores: Averaged
1451  Average Mean Squared Error by Model and Model Sensitivity Analysis

1452  Supplemental Table 3 Model Performance in Diagnostic Comparison—Within-Cohort, Cross-
1453  Validated and Held-Out by Various ML and DL Models

1454  Supplemental Table 4 Model Performance in Diagnostic Comparison—Across Independent
1455  Cohorts

1456  Supplemental Table 5 Disease-Specific Biomarker: Averaged Feature Contribution of BioMapAl,
1457  DNN and GDBT

1458  Supplemental Table 6 Symptom-Specific Biomarker: Distinct Sets of Biomarkers for Each

1459  Symptom

1460  Supplemental Table 7 WGCNA Module Eigengene

1461 Supplemental Table 8 Targeted Pathways: Normalized Gene Read Counts and Their Correlation
1462  with Blood Responders
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