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Abstract

Background: Affective symptoms are a prevalent psychopathological feature in

various psychiatric disorders. However, the underlying neurobiological mechanisms

are complex and not yet fully understood.

Methods: We used normative modelling to establish a reference for neurofunctional

activation of functional magnetic resonance imaging based on an emotional episodic

memory task, which is frequently used to study affective symptoms in psychiatric

disorders. This normative reference was derived from a large dataset of healthy

individuals (n = 409), and used to evaluate individualized functional alterations by

calculating deviations from this reference in a clinical dataset of 328 participants,

which included 168 healthy controls and patients with major depressive disorder

(MDD, n = 56), bipolar disorder (BD, n = 31), and schizophrenia (SZ, n = 73). The

neurofunctional deviations were mapped to emotional networks with specific

emotional functions and used to predict affective symptoms in different mental

disorders. The microscale cellular signatures underlying macroscale variations were

identified using imaging transcriptomic analysis, and associated with affective

symptoms.

Results: We observed distinct patterns of cross-scale neural alterations linked to

affective symptoms in three psychiatric disorders. Macroscale neural dysfunctions in

distinct disorders were embedded into non-overlapping emotional networks and

significantly associated with affective symptoms. The oligodendrocytes may mediate

the network-specific impairments, and microglia for MDD, astrocytes for BD, and

excitatory neurons for SZ as replicable cell-type correlates of affective symptoms.

Conclusions: These findings have potential implications for the understanding of

unique neuropathological patterns of affective symptoms in distinct psychiatric

disorders and improving individualized treatment response.
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Introduction

Affective symptoms, a basic dimension of psychopathology, are highly prevalent

across multiple psychiatric conditions (1). In clinic, affective symptoms in psychiatric

patients manifest disturbances in emotional processing, the result of which is

emotional extremes in perception (2), attention (3), and response (4), and display

significant variability in distinct forms of clinical phenotype (5, 6). Clarifying the

neurobiological underpinnings related to psychiatric symptoms and behaviors is a

major challenge for contemporary research in psychiatry and would help to advance

the intervention optimization of psychiatric disorders (7-9). However, the

neurobiological alterations underlying affective symptoms in psychiatry are complex

and remain poorly understood.

Functional magnetic resonance imaging (fMRI) studies have been a major step

forward in characterizing macroscale neural dysfunctions related to affective

symptoms in psychiatric patients (5, 10, 11). The emotional episodic memory task

(12-14), a widely used paradigm, effectively captures neurofunctional activation

associated with adaptive memory-enhancing effects induced by emotional stimuli (15-

17) and maladaptive alterations observed in various mental illnesses (18, 19).

Disrupted emotional memory retrieval has been reported that may manifest in

multiple processes of pathological emotion in psychiatric patients, involving

disturbances in emotional attention (20), perceptions (21) and regulation (22), relating

to the vulnerability and development of specific clinical affective syndromes (23, 24).

Studies using this paradigm have identified altered neurofunctions related to affective

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 24, 2025. ; https://doi.org/10.1101/2024.06.22.600146doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.22.600146


4

symptoms in the amygdala and medial temporal lobe (MTL) system across various

mental illnesses (25-27), while also suggesting heterogeneous patterns of neural

dysfunctions in distinct diagnoses (28-31).

However, inconsistent results have often been reported, both within one specific

diagnosis and across different diagnoses. Increased activity in the amygdala and

orbitofrontal gyrus has often been associated with emotional bias in major depressive

disorder (MDD) (29, 32), but another study has shown no abnormalities (30).

Hypoactivation in the amygdala and occipital gyrus has been recognized in bipolar

disorder (BD) compared with MDD patients (33, 34), although an earlier study

reported increased activity (35). In individuals diagnosed with schizophrenia (SZ),

both hyperactivation and hypoactivation in the prefrontal and parietal cortices have

been found (36-38), accompanied by increased or decreased co-activation with the

MTL areas (36, 37, 39). In addition, a study has reported that the activation of

cingulate cortex was significantly higher in patients with BD relative to SZ (31), but

similar tasks found lower activation of cingulate cortex in BD (40). Although these

mixed findings could partly be due to differences from task design, one more major

reason is the individual differences within and across clinical cohorts, which are often

failed to capture by traditional case-control designs (41, 42). An approach that

identifies individual-specific alterations and thereby disentangling intersubject

heterogeneity of neural dysfunctions that underpin affective symptoms is therefore

needed. Normative modelling quantifies each patient as an extreme deviation from

normative expectations for MRI-derived phenotypes based on clinical or cognitive

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 24, 2025. ; https://doi.org/10.1101/2024.06.22.600146doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.22.600146


5

characteristics, could avoid confounds arising from intersubject differences to some

extent (43, 44).

Complex clinical phenotypes of affective symptoms are not only associated with

macroscale functional abnormalities but are also tied to neurobiological alterations at

the microscale genetic and cellular levels (45-47). Analyses of postmortem brain

samples and animal models have consistently pointed towards cellular processes in

the central nervous system, including pathological alterations of neurons and

neuroglial cells such as astrocytes and microglia, as an important factor in the

development of affective symptoms (48-50). However, due to limitations in spatial

resolution and coarse diagnostic classifications, the relationship between microscopic

vulnerabilities, macroscale neural dysfunctions, and clinical phenotypes remains

poorly understood. The brain-wide gene expression atlas has made it possible to

bridge the gap between cross-scale neurofunctional alterations (51) and, by

combining with normative modelling framework, could identify the personalized

multiscale associations of neural vulnerability.

In the present study, we aimed to investigate multiscale patterns of neural

dysfunctions related to affective symptoms in patients with MDD, BD and SZ by

considering neurofunctional activation during emotional memory retrieval (Figure 1).

By employing two task-fMRI datasets and a normative modelling framework, robust

and individualized neurofunctional deviation during emotional memory retrieval was

firstly identified. Next, we embedded deviation patterns into macroscale emotional

networks to explore the functional annotations of emotional profiling associated with
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neural variability in distinct disorders, and applied machine-learning approaches to

uncover the associations between macroscale alterations and specific effective

symptoms dimension in each diagnostic condition. Finally, we conducted

transcriptomic association analysis to plausibly determine the cellular abnormalities

linked to affective symptoms by integrating macroscale dysfunctions with microscale

alterations from the perspective of brain-wide transcriptome and brain single-cell

sequencing.

-------------------------------- Insert Figure 1 here -------------------------------

Figure 1. The workflow of the current study design. (A) Functional activation for each
participant under task-fMRI of emotional episodic memory were extracted from two
research datasets (Healthy dataset and Clinical dataset). (B) The normative model was
first established based on functional activation of each region as response variables
and task performances as predicted covariates, drawing from the HCtrain of Healthy
dataset. The HCtest in Clinical dataset were further put into normative model for
replicate validation, and Individualized alterations were evaluated as deviations
relative to normative range at any given brain region at each patient in Clinical dataset.
(C) Overview of analysis pipeline comprised of three steps. The model
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generalizability was assessed based on the similarity between the HCtrain and HCtest,
and the stability of measurements derived from the normative reference was evaluated
through replicate validation using different brain parcellations atlas and modeling
methods, and validated whether could be influenced by the medication effect (step 1).
The macroscale alterations were quantified as the differences between the proportion
of individuals showing an extreme deviation of each case and healthy controls at
regional level, and further embedded into emotional network for specific functional
annotations of emotional profiling. Individual deviations with significant difference
were used to predict affective symptom of each psychiatric disorder (step 2).
Transcriptomic analysis and cell-type enrichment were further applied to examine the
microscale alterations related to macroscale variability, and linked to affective
symptom in distinct disorders (step 3). HC, healthy controls; MDD, major depressive
disorder; BD, bipolar disorders; SZ, schizophrenia; fMRI, functional magnetic
resonance imaging; ROI, region of interest

Methods and Materials

2.1 Participants

The participants of this study were drawn from two datasets. To construct the

normative models, Healthy dataset included 409 healthy controls (HCtrain) recruited

from the Center for MRI Research, Peking University. The Clinical dataset consisted

of 328 individuals: 56 with MDD, 31 with BD, 73 with SZ, and 164 healthy controls

(HCtest). These participants were recruited from the Center for Neuroimaging, Peking

University Sixth Hospital. The study was approved by the medical ethics committee

of Peking University Sixth Hospital (see Supplement for details of the Ethics Reviews)

and all participants provided written informed consent before taking part in the study.

All psychiatric patients were assessed and diagnosed using the Diagnostic and

Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) criteria by

experienced psychiatric physicians. The severity of depression in MDD patients was
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accessed using the Hamilton Depression Scale (HAMD), while the clinical symptoms

of BD were assessed using both HAMD and the Young Mania Rating Scale (YMRS).

The symptoms of patients with SZ were evaluated using the Positive and Negative

Syndrome Scale (PANSS). The healthy controls had no current or lifetime history of

axis I psychiatric disorders or neurological disorders. See Supplement for additional

criteria for participants inclusion and exclusion and quality control details.

2.2 Task paradigm

The fMRI paradigm of emotional episodic memory was adopted in Healthy and

Clinical dataset, which has been used in previous studies (52), conducting an

emotional pictures-encoding and retrieval task during scanning. Briefly, during

encoding phase, participants firstly were instructed to determine whether each

aversive or neutral picture represented an ‘indoor’ or ‘outdoor’ scene. All participants

were not informed about the subsequent retrieval phase before scanning and thus did

not realize that they were engaged in a memory task. About 2 minutes after the

encoding phase, participants then need to memorize whether the image presented was

seen during the encoding session in the case of mixing with half new picture. Finally,

both reaction time (RT) and accuracy (ACC) in encoding and retrieval phase were

extracted from log files of task performance after scanning. The schematic diagram of

the task was shown in Figure 2A and detailed description is in the Supplement.

2.3 Image acquisition and preprocessing

Images data of all participants were acquired on a 3.0 T GE Discovery MR750
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scanner in the Center for MRI Research, Peking University (Healthy dataset), and the

Center for Neuroimaging, Peking University Sixth Hospital (Clinical dataset). For

each participant, the high-resolution structural T1-weighted MRI and fMRI blood

oxygenation level-dependent (BOLD) signal were acquired, and was preprocessed

using the SPM12 (Statistical Parametric Mapping, http://www.fil.ion.ucl.ac.uk/spm)

with a standardized protocol whose details can be found elsewhere (53). The details of

imaging acquisition and preprocessing can be found in the Supplement.

2.4 Functional activation analysis

The analysis of functional activation under emotional episodic memory was

based on SPM12 and custom code in MATLAB (The MathWorks, Natick, MA, USA).

For each participant, general linear modelling (GLM) analysis was used to identify

functions activated by task of each brain regions defined by the Desikan-Killiany (DK)

atlas (54). The brain parcellation included 68 cortical regions and 14 subcortical

regions, which limited computational burden. Using GLM, regressors were firstly

constructed from the rest, aversive and neutral blocks which were then convolved

with a canonical double‐gamma haemodynamic response function and combined with

the temporal derivatives of each main regressor. Then, a first-order autoregressive

model was used to remove serial correlations, and ratio normalized to the whole-brain

global mean to control for systematic differences in global activity, and temporally

filtered using a high-pass filter of 128s to remove low-frequency signal. Next, the

contrasts of interest were brain activation responses under rest, aversive and neutral
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task conditions with the six parameters of head motion as nuisance covariates. Finally,

condition-specific regional responses were obtained in three task conditions during

retrieval phase, and the “aversive − neutral” activation difference maps in retrieval

phase were generated to indicate the effect induced by emotion and, meanwhile, avoid

the interference of relevant cognitive factors.

2.5 Normative modelling and estimating individual deviations

The normative modelling approach sought to construct a normative distribution to

represent the reference range of interest characteristics by calculating the mean and

variance of a response variable from a set of predictive factors, thus allowing to

characterize a personalized deviation relative to the normative reference (41, 43). We

employed gaussian process regression to estimate normative models reflecting

relevant neurofunctional activation underlying emotional episodic memory using

Predictive Clinical Neuroscience toolkit software

(https://pcntoolkit.readthedocs.io/en/latest). Firstly, the activation maps of “aversive −

neutral” during retrieval were used as response variables, and predictive factors were

comprised of task performances including RT in encoding and retrieval phase and

ACC in retrieval phase. Then, the HCtrain of Healthy dataset was set as training sample

to establish the normative reference, the testing sample comprised of the Clinical

dataset, including HCtest, cases with MDD, with BD, and with SZ, was positioned on

the normative percentile charts to evaluate individualized deviations for replicate

validation and subsequent analyses. We derived a z value from model that quantified
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the deviation from the normative range for each participant in any given brain regions,

which can be defined as a measurement of individualized alterations. Finally, to

demonstrate the robustness of our main findings, we repeatedly validated our results

in the model generalizability and measurements stability. The model generalizability

was assessed based on internal validation using cross-validation and external

verification based on a testing dataset. Additionally, the stability of individual

deviations was validated by considering several potential confounding factors,

including different strategies of brain parcellation and modeling method, as well as

influences derived from medication effect. Details were described in the Supplement.

2.6 Group convergent effect of individual deviations

To quantify the convergent effect of individual neurofunctional deviations in

distinct forms of psychiatric disorders, we further defined extreme deviations

underlying functional activations by thresholding the individualized deviation (z value)

maps derived from normative modelling using z = ± 2.6 (corresponding to p < .005 in

standard normal distribution), as was performed in previous studies (41, 55). A group-

specific percentage map quantifying the proportion of individuals showing an extreme

deviation was calculated, separately for positive and negative extreme deviations. The

group convergent effect was assessed as proportion difference of individuals with

extreme deviations (Δ percentage map) between each diagnostic group with the HCtest

of Clinical dataset, aiming at group differences after removing intersubject

heterogeneity rather than traditional group-averaged differences. To avoid reliance on
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a single threshold, the Δ percentage map of each group was estimated based on a

threshold-weighted calculation for defining extreme deviations, which integrated

results across a range of thresholds (Supplement).

A nonparametric group-based permutation test was conducted to identify

significant brain regions of convergent effect at each diagnostic group. Briefly, the

percentage maps showing extreme regional deviation in HCtest were subtracted from

each case’s percentage map to obtain the Δ percentage maps of each disorder at any

given brain region. Subsequently, group labels of case group and HC group were

shuffled, Δ percentage maps were re-calculated based on permuted group labels. The p

values were obtained as the proportion of null values that exceeded the observed

difference in 10,000 times permutations. and statistical significance was set at 0.05

with multiple comparisons correction based on the false discovery rate (p < .05, FDR

corrected). The statistically significant differences of positive and negative extreme

deviations were respectively defined as supra-normal and infra-normal in current

study. The higher or lower infra-normal deviations implied that the hyper- and hypo-

inhibition of neural activity, while higher or lower supra-normal deviation suggested

hyper- and hypo-excitation, respectively.

Group convergent effect was also assessed at network-level to explore the

relevant emotional functional disruptions in distinct disorders, by embedding extreme

deviations of brain regions were into large-scale emotional network with specific

emotional profiling. A well-recognized framework of four large-scale emotional

networks (ENs) with distinct spatial distributions and functional profiles ranging from
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emotional generation to regulation. (EN 1: working memory and response inhibition

in emotional regulation; EN 2: cognitive appraisal and language processing of

emotional stimuli; EN 3: emotion perception and generation; EN 4: emotional

reactivity), was revealed by a recent meta-analysis study (56), and positioned on DK

atlas (Figure S1 and Table S1). Network percentage map was estimated by assigning

each region with extreme deviation to one of four large-scale emotional networks, and

calculating the proportion of individuals that showed at least one positive and

negative extreme deviation in a region within the network. The significant network

differences were then evaluated by computing differences between network

percentage (Δ network percentage map) of HCtest and each diagnostic group using

10,000 times group-based permutation test (p < .05, FDR corrected), as at regional

level. The details of method can be found in the Supplement and Figure S2, and

previous studies (55).

2.7 Association with clinical affective symptoms

The machine-learning approaches based on multiple linear regression were

conducted to investigate the underlying relationships between individualized

neurofunctional deviations and clinical affective symptoms in different diagnostic

groups. The affective symptoms in MDD patients were defined using

anxiety/somatization factor derived from six-factor domains of HAMD. Considering

the lack of specific item scores, the total scores of HAMD were alternatively used as

affective symptoms in BD patients. For SZ patients, since a specific assessment scale
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for depressive symptoms was not adopted, the anxiety/depression factor from five-

factor scores of PANSS was used. We used individual deviation of brain regions with

significant infra-normal and supra-normal deviation to predict clinical scores in

distinct diagnostic category. The nested leave-one-out cross-validation (LOOCV) was

adopted to avoid selection biases and evaluate the performance of the linear

regression models. The Pearson correlation and root mean square error (RMSE)

between the observed scores and predicted scores were used to assess the performance

of prediction model. The statistical significance of correlation coefficient was

estimated by applying a non-parametric permutation test, which calculated by

randomly shuffling the clinical scores and re-calculated Pearson correlation

coefficient. An empirical distribution of correlation coefficient was then obtained

based on 10,000 times permutation and the significance level threshold was set at

pperm < .05. Furthermore, we used virtual lesion analysis to determine the important

regions and networks in the clinical prediction model by re-calculating the prediction

accuracy (correlation coefficient between observed scores and predicted scores) after

removing one brain region at a time (i.e., virtual lesion). If the prediction accuracy of

model decreased after removing a region, we considered the region to be important

for prediction.

2.8 Imaging transcriptomic analysis and cell-type enrichment

The imaging transcriptomic analysis was performed to investigate underlying

microscale alterations of macroscale dysfunctions linked to affective symptoms in
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distinct mental illnesses. The brain-wide transcriptome was acquired from post-

mortem brain tissue samples of six neurotypical adult donors derived from the Allen

Human Brain Atlas (AHBA, http://human.brain-map.org), and preprocessed using

abagen toolbox (https://www.github.com/netneurolab/abagen) following established

protocols (57), including probe-to-gene reannotation, background noise filtering,

sample spatial assignment and normalization. More details of preprocessing of gene

expression data can be found in the Supplement. Considering right hemisphere data

was available from only two donors, the analysis was restricted to left hemisphere. In

total, the preprocessing resulted in a gene expression map (41 brain regions × 15,633

genes) for subsequent analyses. The spatial correlation (Spearman’s ρ) between the

expression value of each gene in AHBA and neuroimaging phenotypes were then

calculated separately at the group- and individual-level.

To conduct the cell-type enrichment analysis, two cortical single-cell gene

sequencing datasets were acquired from previous studies, including the Lake cell-type

gene markers obtained from transcriptional data in the frontal and visual cortex (58),

as well as the Li cell-type gene markers based on transcriptomic and epigenomic data

covering 16 brain regions ranging from prefrontal cortex to cerebellum (59).

Following a previous study that conducted a clustering analysis on the above two

datasets (60), seven specific cell types were adopted in the current study, including

astrocytes, endothelial cells, excitatory neurons, inhibitory neurons, microglia,

oligodendrocytes and oligodendrocyte precursors (OPC). As shown in Figure 4A,

based on two cell-type gene markers, the FGSEA method was applied to the sorted

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 24, 2025. ; https://doi.org/10.1101/2024.06.22.600146doi: bioRxiv preprint 

http://human.brain-map.org
https://www.github.com/netneurolab/abagen
https://doi.org/10.1101/2024.06.22.600146


16

gene rank calculated from spatial correlation analysis to perform cell-type enrichment

analysis (61), and then obtained normalized enrichment scores (NES) at group- and

individual-level, respectively. The group-level cell-type enrichment was separately

computed at infra- and supra-normal Δ percentage maps at each diagnostic group to

capture microscale basis of group convergent neurofunctional alterations, and

individualized deviation map was used to calculate individual cell-type enrichment

score, as an indicator of cell type-specific molecular contributions underlying

macroscale abnormalities. The Pearson correlation was further used to evaluate the

relationship between individual cell-type enrichment score and clinical affective

symptoms in distinct psychiatric disorders to plausibly determine the cellular

abnormalities linked to affective symptoms. All statistical significance was set at 0.05

with multiple comparisons correction by FDR.

Results

3.1 Demographic, clinical characteristics and task performances

The demographical and clinical characteristics are presented in Table 1. A total of

409 HCtrain participants (mean age, 24.6 ± 3.8 years; age range, 18 to 43 years; 206

female) were recruited in the Healthy dataset. In the Clinical dataset, there were no

significant differences in sex (χ2 = 0.333, p = .954) and age (F = 2.195, p = .089)

among the HCtest, MDD, BD and SZ groups. The statistical analysis of task

performances found that emotional memory-enhancing effect was observed across all
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groups of two datasets, showing significantly greater retrieval accuracy for aversive

than for neutral scenes (Table S2). Detailed results of task performances are provided

in the Supplement.

-------------------------------- Insert Table 1 here -------------------------------

Table 1. Demographic and clinical characteristics

Data are presented as mean (standard deviations). HC, healthy control; MDD, major
depressive disorder; BD, bipolar disorder; SZ, schizophrenia; M, male; F, female;
HAMD, Hamilton depression scale; YMRS, Young mania rating scale; PANSS,
positive and negative syndrome scale

a The p-value was obtained by a chi-square test.
b The p-value was obtained by a one-way ANOVAwith post hoc analyses.
c There are 44.16% (14/31) of patients with BD taking Sodium valproate, 29.03%

(9/31) Lithium carbonate and 22.58% (7/31) Quetiapine.

Healthy
dataset Clinical dataset

HCtrian
(n = 409)

HCtest
(n = 164)

MDD
(n = 56)

BD
(n = 31)

SZ
(n = 73)

χ2/ F
(p)

Demographic characteristics

Sex (M/F) 203/206 63/101 20/36 13/18 28/45 0.333
(.954a)

Age, years 24.6
(3.8)

24.6
(4.0)

25.1
(5.0)

27.0
(5.3)

25.2
(5.6)

2.195
(.086b)

Clinical characteristics

HAMD 24.982
(5.472)

12.581
(14.631)

YMRS 4.581
(8.007)

PANSS 67.833
(14.049)

On-medications,
n patients 37 14/9/7c 39
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3.2 Normative model of neurofunctional activations underlying emotional

episodic memory

We constructed a verifiable normative model based on functional activation

evoked by the emotional episodic memory paradigm, which was fitted in each region

respectively. As shown in Figure 2B, our normative models predicted a normative

reference for neurofunctional activations given behavioural performances under

emotional episodic memory task, and fitted well in healthy individuals, showing that

99.51% of individuals in HCtrain and 100% of individuals in HCtestwere located within

the normative range (−2.6 < z < 2.6) for the mean regional deviations. There was no

significant difference of the distribution of mean regional normative z scores between

HCtrain and HCtest (Kolmogorov-Smirnov test, K-S = 0.087, p = .320). Based on

general linear model, traditional group-averaged functional activation in HCtrain

showed that regions with higher activation located mostly in the occipital cortices,

amygdala and other MTL areas, while those with decreased deviations were mainly in

precentral and postcentral gyrus, and insula (p < .05, FDR corrected; Figure 2C),

consistent with previous studies (62, 63). This spatial distribution of neural activation

is highly correlated with individual-level mean distribution patterns of HCtrain (r =

0.973, pspin < .001, 10,000 times permutation tests with spatial autocorrelation),

indicating that spatial alignment between group-averaged effect and individualized

components by characterizing neural activation in given task performances under

emotion memory. More importantly, our normative model exhibited a higher
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generalizability indicated by internal cross-validation (Supplement; Figure S3) and

independent external sample validation, showing mean regional deviation map in

HCtrain and HCtest was highly associated (Figure 2C, r = 0.956, pspin < .001, 10,000

times permutation tests with spatial autocorrelation). The normative models

established based on behavior performances, sex and age also showed high correlation

with current models, which implied that sex and age had no significant effect on our

normative model (Supplement; Figure S4).

-------------------------------- Insert Figure 2 here -------------------------------
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Figure 2. The emotional episodic memory task and generalizability evaluation of
normative model. (A) The emotional episodic memory task consisted of encoding and
retrieval phases and each phase included neutral and aversive scenes. The participants
were instructed to determine whether each image represented an ‘indoor’ or ‘outdoor’
scene in encoding phase (left) and respond ‘new’ or for ‘old’ in retrieval phase (right).
(B) The distribution of mean regional deviations in HCtrain and HCtest. There was no
significant difference between these two distributions. (C) The spatial distribution of
regional deviation map in HCtrain exhibited significant spatial correlations with group-
averaged activation and regional deviation map in HCtest. HC, healthy controls
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3.3 Clinical heterogeneity of neurofunctional activations underlying emotional

episodic memory

Similar to the evaluation of model generalizability in the validation sample of

HCtest in the Clinical dataset, each patient with specific psychiatric disorder was

positioned on the normative percentile charts to calculate individual deviations in

each brain region. The results of measurement stability found that individual

deviations of all disorders in main findings have high similarity with using different

atlas for brain parcellation (Figure S5), and are unrelated to dose of medicine (Figure

S6). Considerable intersubject heterogeneity in patients with the same diagnosis was

revealed by individualized measurements from normative modelling. About 50% of

patients showed extreme deviations in at least one brain region and distributed

diffusely in ~75% regions (Supplement; Figure S7). More specifically, patients with

MDD exhibited a higher percentage of supra-normal deviations (90.24%) compared

to infra-normal deviations (40.24%). In contrast, BD patients had fewer regions with

positive extrema deviations, showing 37.80% supra-normal regions and 65.85% infra-

normal regions. For patients with SZ, both positive and negative out-of-range

alterations were widely distributed across brain regions, with 93.90% showing supra-

normal deviations and 89.02% showing infra-normal deviations (Supplement). As a

control analysis, we found that the classical group-level comparison did not reveal

any significant regional case-control differences of functional activation (Figure S8).

These findings underscored the efficiency of normative modelling in parsing inter-

individual differences.
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3.4 Macroscale alterations linked to affective symptoms

The group-based permutation test was then used to identify convergent effect of

individual deviations at each diagnostic group by comparing the proportion of

individuals showing significant extreme deviation between HCtest and each diagnostic

group in the Clinical dataset (Figure 3A). This was done by assessing the observed

difference for each disorder in any given brain region (Δ percentage map) against an

empirical null distribution. The results showed that there are few spatial overlaps,

including as amygdala, insula and supramarginal gyrus, across all mental disorders (p

< .05, FDR corrected; Figure S9 and Table S3), but the overall spatial distribution is

extraordinary different. The infra-normal regions in the patients with MDD mainly

located in frontal lobe and temporal lobe, while supra-normal regions were mainly

located in superior frontal gyrus, superior temporal gyrus and amygdala (all p < .0167

(.05/3), FDR corrected; Figure 3B). The regions with statistically significant

difference in MDD patients were summarized in Table S4. Relative to controls, the

patients with BD showed infra-normal regions in the occipital lobe, precuneus,

hippocampus and amygdala but supra-normal regions in the insula, striatum, and

amygdala (all p < .0167 (.05/3), FDR corrected; Figure 3E; Table S5). The between-

group comparison between SZ patients and HCtest showed that the infra-normal

regions in insula, hippocampus, and caudate (p < .0167 (.05/3), FDR corrected) and

supra-normal regions in insula, fusiform gyrus, putamen, and amygdala (p < .0167

(.05/3), FDR corrected) in SZ group (Figures 3H; Table S6). These finding were
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similar with the Δ percentage map using different threshold setting that avoids

reliance on a single threshold (Figure S10).

Group convergent effect at network level further found that heterogeneous

spatial patterns of neural dysfunctions in distinct diagnoses could be attributable to

total deviation burden driven by functional alterations of large-scale emotional

networks. These networks also covered most of the regions that showed significant

functional activation under task conditions (Supplement; Figure S11). Compared to

HC, patients with MDD exhibited supra-normal deviations in EN 3 (Δ percentage =

8.84%, p = .013, FDR corrected; Figure 3C), indicating higher functional activation in

the brain network associated with emotion perception and generation during the

emotional episodic memory task; BD patients exhibited infra-normal deviations in

networks for appraisal and language processing (EN 2, Δ percentage = 16.66%, p

= .009, FDR corrected) and emotional reactivity (EN 4, Δ percentage = 19.71%, p

= .001, FDR corrected) (Figure 3F); SZ patients showed infra-normal deviations in

network involving working memory and response inhibition (EN1, Δ percentage =

8.21%, p = .025, FDR corrected; Figure 3I). The results from symptom association

analyses showed that there are significant correlations between predicted scores and

observed scores of anxiety/somatization factor of HAMD in MDD patients (r = 0.295,

pperm = .032, RMSE = 2.324; Figure 3D), total scores of HAMD in BD patients (r =

0.415, pperm = .020, RMSE = 18.515; Figure 3G), and anxiety/depression factor of

PANSS in SZ patients (r = 0.319, pperm = .007, RMSE = 5.297; Figure 3J). The

analysis of important features assessing by virtual lesion analysis have found that
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emotional networks specific to heterogenous deviations at each psychiatric disorder

exhibited maximum predictive weight respectively: EN 3 for MDD, EN 4 for BD,

and EN 1 for SZ (Figure S12).

-------------------------------- Insert Figure 3 here -------------------------------

Figure 3. Regional differences and clinical symptom association in MDD, BD and SZ
patients. (A) Schematic showing the proportion of individuals with infra-normal or
supra-normal at any given regions in HCtest and each diagnostic group. The infra-
normal and supra-normal regions in MDD (B), BD (E) and SZ (H) patients were
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identified using 10,000 times group-base permutation test and statistical significance
was adjusted by FDR. Regional differences were further enriched into four large-scale
emotional networks. The infra-normal and supra-normal alterations at network level
in the patients with MDD (C), BD (F) and SZ (I) were shown. The statistically
significance was determined by using 10,000 times group-base permutation test and
adjusted by FDR. The scatter plot showed the significant associations between
individual neurofunctional deviations and clinical affective symptoms in MDD
patients (D), BD (G) and SZ (J) patients. MDD, major depressive disorder; BD,
bipolar disorders; SZ, schizophrenia; HC, healthy controls; EN, emotional network;
RMSE, root mean square error; HAMD, Hamilton depression scale; PANSS, positive
and negative syndrome scale

3.5 Microscale alterations linked to affective symptoms

Microscale cellular abnormalities underlying macroscale neurofunctional

alterations associated with affective symptoms have been identified in distinct forms

of mental illnesses, using imaging transcriptomic analysis and single-cell gene data.

The results from microscale level showed that macroscale neural dysfunctions exhibit

distinct patterns of enrichment across various cell types, but converged on

oligodendrocyte across distinct disorders (Figure 4B). More specifically, the results of

group-level cell-type enrichment showed that neurofunctional alterations correlated

genes in MDD patients were mainly enriched in the microglia for both infra- and

supra-normal group effect, and in the oligodendrocyte for supra-normal deviations.

For patients with BD, the significantly enriched cell types were in the astrocyte,

endothelial cell and oligodendrocyte for infra-normal deviations, and in the

oligodendrocyte for supra-normal deviations. The most significant enriched cells in

SZ patients are located in the excitatory neurons for both infra- and supra-normal, and

in the oligodendrocyte for infra-normal. It is noted that the oligodendrocyte was the
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most significant enriched cell type in the macroscale neural alterations that showed

significant network deviations in distinct diagnostic groups. The analysis of symptom

associations of individual cell-type enrichment found that the individual-specific NES

of cell types that have significant enrichment at the group-level exhibited significant

association with clinical affective symptoms in each psychiatric disorder. The

microglia in MDD patients, astrocytes in BD, and excitatory neurons in SZ emerged

as replicable cell-level correlates of clinical affective symptoms across two

independent single-cell datasets (Figure 4C).

-------------------------------- Insert Figure 4 here -------------------------------
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Figure 4. Imaging transcriptomic analysis and cell-type enrichment. (A) Schematic
diagram of imaging transcriptomic analysis at the group- and individual-level,
respectively. Infra- and supra-normal Δ percentage maps at each diagnostic group
were spatially correlated with the 15,633 gene expressions of six post-modern brain
tissue sample from AHBA using spearman correlation analysis. Individual deviation
maps from each patient with psychiatric disorders were also spatially correlated with
AHBA gene expressions. Based on two independent cell-type gene makers, the
analysis of cell-type enrichment was conducted using FGSEA method in the sorted
gene rank to separately calculate group cell-type enrichment and individual-level cell-
type enrichment scores. (B) Group-level cell-type enrichment. Cell types enriched by
infra- and supra-normal deviations were shown across two cell-type gene makers. The
horizontal bar plots showed the statistical significance of enrichment that was
quantified by sign(NES) × −log10(p-value) given by the FGSEA method. The
replicable significant cell types across two datasets were labeled. The network group
effects of individual deviations corresponding to significant cell-type enrichment were
also marked on the side. (C) Symptom association of individual cell-type enrichment.
The associations between individual-level NES of specific cell type and clinical
affective symptoms were examined using the Pearson correlation analysis in distinct
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psychiatric disorders. The cell types that significantly enriched at the group-level also
exhibited significant association with clinical affective symptoms in each psychiatric
disorder. The bar plots showed the statistical significance of correlation, and
replicable significant cell types across two datasets were labeled. MDD, major
depressive disorder; BD, bipolar disorders; SZ, schizophrenia; EN, emotional network;
FGSEA, fast gene set enrichment analysis; OPC, oligodendrocyte precursors

Discussion

The present study aims to identify cross-scale neural alterations that underpin

affective symptoms in three major psychiatric disorders. Our findings revealed that

macroscale neural dysfunctions associated with specific domains of affective

symptoms across different mental illnesses, after removing the confounds from

clinical heterogeneity by applying the normative modelling in task-fMRI of emotional

memory paradigm. Altered neurofunctions in different disorders could be embedded

into non-overlapping emotional networks with specific functional profiling, and the

main disruptions of emotional functions related to affective symptoms in distinct

disorders are identified. Our results also revealed microscale cellular signatures

underlying macroscale functional abnormalities and the cell type-specific processes

linked to affective symptoms in various mental illnesses. Overall, our study provides

critical insights for better understanding the neural mechanisms underlying specific

affective symptoms in distinct psychiatric disorders.

Mapping complex clinical symptoms to neurobiological alterations is significant

for exposing more effective interventions for patients with complex psychiatric

symptoms (8). Previous studies focusing on the neural activities of affective

symptoms commonly applied the emotional episodic memory task to characterizing
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relevant brain regions, and indicated better performances compared with task-free

neuroimaging markers (52, 64). However, limiting methodology and high intersubject

heterogeneity, objective and reliable neural correlates related to affective symptoms in

multiple psychiatric disorders still have not been revealed. According to the

evaluation of sample sizes for traditional case-control designs (Table S7), previous

studies have often used a relatively small size of samples. Using normative modelling

techniques, we were able to not be limited by the requirements of sample size, and

disentangle the clinical heterogeneity to some extent, based on a nonparametric

estimation by incorporating neural alterations into a continuous spectrum derived

from a large healthy population. Our results from normative modelling also revealed

considerable inconsistency in the functional alterations under emotional memory task,

showing only a low proportion of the patients shared the consistent extreme deviation

for any single brain region (Figure S7). After removing the confounds from clinical

heterogeneity, different degrees of neurobiological alterations associated with

affective symptom dimension were measured at each patient in distinct diagnostic

categories. Association analyses revealed individual deviations significant predicted

the affective symptom dimension in specific disorder condition, further determining

that results from our paradigm and model might be a promising predictor for clinical

affective symptoms. More importantly, strict replicate validations were applied in our

model, ranging from model generalizability to measurements stability based on

multiple strategies (Figure S3-S6). Among them, medication has long been considered

as an important confounding factor, contributing to the lack of consistent findings
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across studies (65). For instance, the use of psychoactive drugs may impact on

neurocognitive systems supporting procedural learning and conditioning and thereby

modulate emotional memory processes (63). The stability of the medication effects

has critical implications for understanding mechanisms underlying impaired

emotional functions across different diagnostic conditions.

To characterize macroscale pattern of neural alterations underlying affective

symptoms and better compare with previous studies, the group convergent effects of

individual neurofunctional deviations at each diagnostic group were estimated as in a

previous study (55). The results showed that the macroscale alterations in distinct

disorders are largely distinct but have some overlap. Neural dysfunctions intersected

across all mental disorders were found in hyperactivation of the right amygdala, left

insula and right supramarginal gyrus (Figure S9). The amygdala has been widely

emphasized as underlying emotional impairments in mental illness, engaging

abnormal responses to external negative stimuli (5, 66), while the insula is associated

with inflexible updating and preferential maintenance of negative or threatening

stimuli (67, 68). The co-hyperactivation of amygdala and insula may indicate that

excessive attention to negative stimulation may produce an interference effect on

memory of stimuli, contributing to systematic distortions in emotional information

processing in mental disorders. Additionally, growing evidence suggests that

emotional memory bias is not limited to attention and emotion-related problems but is

embedded in stable negative self-referential schemas (29, 69). The supramarginal

gyrus, part of the default mode network, is linked to self-focused rumination and
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abnormal self-referential processes (70, 71). Its abnormal activation may drive

weakened cognitive structures to produce interpretive biases in mental disorders (14).

The heterogeneous patterns of macroscale functional impairments in different

diagnostic groups were embedded into non-overlapping large-scale emotional

networks. After embedding to network level, the proportions of individuals with

extreme deviations have increased relative to at regional level (Figure S13), showing

heterogeneous deficits of distinct disorders could be aggregated within lesioned large-

scale emotional networks. Specifically, we found that patients with MDD exhibited

hyperactivations in a network related to emotion perception and generation, which

comprised of the amygdala, fusiform, and medial orbitofrontal gyrus. Cognitive

theories of MDD hold that emotional abnormalities derive from a negative schema for

representing negative knowledge and experiences (72), which could alter perceptions

and evaluations of external stimuli (73) and its weakening has been hypothesized to

underlie recovery (74, 75). A recent study also suggested that regulating emotion

perception could be used to reduce emotional memory and improve depressive

symptoms (22). SZ patients showed infra-normal deviations in a cognitive emotion

regulation network strongly associated with working memory and response inhibition,

which is a frontoparietal network consisting of dorsolateral prefrontal cortex and

inferior parietal gyrus. The emotional flattening and anhedonia in SZ patients have

been reported may contribute to the overuse of suppression strategy, and thereby

disrupt emotional appraisal and recognition (76, 77), which align with our findings of

dysfunctions of cognitive emotion regulation network. In contrast, individuals with
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BD were associated with two emotional networks, jointly responsible for integrating

emotional reactivity and cognition. This finding provided consistent evidence for

support that the effective segregation of neural mechanisms between over-

sensitive reactivity and cognitive dysregulation in different emotional states of BD

(78), suggesting set state-specific psychotherapeutic targets at the depressive and

manic state of BD patients (79). Analyses of symptom associations further found that

parallel deficits of large-scale emotional networks in specific psychiatric conditions

exhibited maximum predictive weight in the midst of each predictive model (Figure

S12). This investigation has critical heuristic value for guiding the optimization of

clinical treatment strategies for affective symptoms.

Microscale cellular abnormalities underlying macroscale neurofunctional

deviations could further be revealed using imaging transcriptomic analysis and

cellular decoding. Considering previous studies indicated that those microscopic

cellular alterations possibly induced macroscopic functional variations linked to

affective symptoms (45-47), our analyses mainly focused on the cellular basis of

functional deviations. The results from group-level cell-type enrichment showed the

specific cell types were associated with macroscale alterations in distinct disorders,

suggesting heterogeneous cellular abnormalities across distinct mental illnesses, but a

convergence of significant network deviations was found in the oligodendrocytes in

all disorders. The consistent enrichment in oligodendrocytes may imply that network-

level neurofunctional alterations at each diagnostic group may be mediated by

dysfunction in integration or segregation within the network, that is, the impaired
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patterns of functional deviations at the circuit-level. To prove it, using lesion network

mapping methodology (8, 80), circuit group convergent effects of individual

deviations were calculated based on seed regions with significant extreme deviations,

as conducted in a previous study (55). The significant functional circuit was further

located into four ENs and found the most significant circuit was focused on specific

emotional networks of each case group (Supplement; Figure S14 and Tables S8-10).

This raised a hypothesis that the network characteristic with emotional functional

profiling were decoded by abnormal connectivity integrations and thereby

contributing to clinical affective symptoms. Benefit from measuring individual

functional deviations from normative modelling, we could further determine whether

the identified cellular characteristics can be used as a potential microscale

vulnerability risk factor reflecting clinical symptoms. We found that individual-

specific cellular transcriptomic profiles of the identified group-level cell types were

significantly associated with affective symptoms. It is suggested that cellular

abnormalities play a role in mediating the relationship with macroscale neural

activities and external affective symptoms.

In clinic, patients with MDD show persistent low mood and rumination about

negative thoughts (81), whereas the hallmark feature of BD patients is

fluctuating episodes of depression and mania (82). Diminished emotion expression or

affective flattening are also a core feature of persistent functional disability in SZ and

may heighten impending psychotic relapse (77, 83). Considering the heterogeneous

nature of affective symptoms in different psychiatric disorders, the cross-scale neural
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alterations comprising of macroscale diagnosis-specific emotional networks and

microscale cellular abnormalities may provide enlightening evidences of unique

dysfunctional neural characteristics. These findings are consistent with previous

theoretical models and research summaries (6, 28), and our research revealed the

neurodiverse dysfunctions of affective symptoms in different mental disorders for the

first time in empirical research.

Several issues need to be considered. First, the sample size of clinical diagnostic

group in the current dataset was relatively small. Although we used a nonparametric

group-based permutation test to identify statistically significant deviations in each

case group, which is not affected by sample size, a larger sample would help to better

parse clinical heterogeneity. Second, data on depressive severity in BD patients was

partially missing, making it impossible to calculate the anxiety/somatization factor of

HAMD to represent affective symptoms in BD. Additionally, a greater number and

more comprehensive assessment will help better characterize the affective symptoms

of different mental disorders. Finally, most BD patients in this study were in the

euthymic stage. Further study with more patients in different stages is imperative to

assess the reproducibility of our findings.

Conclusion

To summarize, this study proposed cross-scale neural alterations underlying

affective symptoms in multiple psychiatric disorders. Based on a stable and cross-

sample verifiable normative model of functional activation under emotional episodic
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memory task, we identified macroscale heterogenous patterns of neurofunctional

alterations annotating specific emotional profiling from large-scale emotional network

in three common psychiatric disorders. The microscale specific cellular abnormalities

mediated the macroscale diagnosis-specific network dysfunctions, and as a potential

risk factor of biological vulnerability reflecting clinical symptoms. These findings are

a step forward in understanding the cross-scale neurobiology underlying basic

dimensions of affectivity and provide a novel insight for translating into clinical

management and treatment approaches.
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