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Abstract

Background: Affective symptoms are a prevalent psychopathological feature in
various psychiatric disorders. However, the underlying neurobiological mechanisms
are complex and not yet fully understood.

Methods: We used normative modelling to establish a reference for neurofunctional
activation of functional magnetic resonance imaging based on an emotional episodic
memory task, which is frequently used to study affective symptoms in psychiatric
disorders. This normative reference was derived from a large dataset of healthy
individuals (n = 409), and used to evaluate individualized functional alterations by
calculating deviations from this reference in a clinical dataset of 328 participants,
which included 168 healthy controls and patients with major depressive disorder
(MDD, n = 56), bipolar disorder (BD, n = 31), and schizophrenia (SZ, n = 73). The
neurofunctional deviations were mapped to emotional networks with specific
emotional functions and used to predict affective symptoms in different mental
disorders. The microscale cellular signatures underlying macroscale variations were
identified using imaging transcriptomic analysis, and associated with affective
Symptoms.

Results: We observed distinct patterns of cross-scale neural alterations linked to
affective symptoms in three psychiatric disorders. Macroscale neural dysfunctions in
distinct disorders were embedded into non-overlapping emotional networks and
significantly associated with affective symptoms. The oligodendrocytes may mediate
the network-specific impairments, and microglia for MDD, astrocytes for BD, and
excitatory neurons for SZ as replicable cell-type correlates of affective symptoms.
Conclusions: These findings have potential implications for the understanding of
unique neuropathological patterns of affective symptoms in distinct psychiatric

disorders and improving individualized treatment response.
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Introduction

Affective symptoms, a basic dimension of psychopathology, are highly prevalent
across multiple psychiatric conditions (1). In clinic, affective symptoms in psychiatric
patients manifest disturbances in emotional processing, the result of which is
emotional extremes in perception (2), attention (3), and response (4), and display
significant variability in distinct forms of clinical phenotype (5, 6). Clarifying the
neurobiological underpinnings related to psychiatric symptoms and behaviors is a
major challenge for contemporary research in psychiatry and would help to advance
the intervention optimization of psychiatric disorders (7-9). However, the
neurobiological alterations underlying affective symptoms in psychiatry are complex
and remain poorly understood.

Functional magnetic resonance imaging (fMRI) studies have been a major step
forward in characterizing macroscale neural dysfunctions related to affective
symptoms in psychiatric patients (5, 10, 11). The emotional episodic memory task
(12-14), a widely used paradigm, effectively captures neurofunctional activation
associated with adaptive memory-enhancing effects induced by emotional stimuli (15-
17) and maladaptive alterations observed in various mental illnesses (18, 19).
Disrupted emotional memory retrieval has been reported that may manifest in
multiple processes of pathological emotion in psychiatric patients, involving
disturbances in emotional attention (20), perceptions (21) and regulation (22), relating
to the vulnerability and development of specific clinical affective syndromes (23, 24).

Studies using this paradigm have identified altered neurofunctions related to affective
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symptoms in the amygdala and medial temporal lobe (MTL) system across various
mental illnesses (25-27), while also suggesting heterogeneous patterns of neural
dysfunctions in distinct diagnoses (28-31).

However, inconsistent results have often been reported, both within one specific
diagnosis and across different diagnoses. Increased activity in the amygdala and
orbitofrontal gyrus has often been associated with emotional bias in major depressive
disorder (MDD) (29, 32), but another study has shown no abnormalities (30).
Hypoactivation in the amygdala and occipital gyrus has been recognized in bipolar
disorder (BD) compared with MDD patients (33, 34), although an earlier study
reported increased activity (35). In individuals diagnosed with schizophrenia (SZ),
both hyperactivation and hypoactivation in the prefrontal and parietal cortices have
been found (36-38), accompanied by increased or decreased co-activation with the
MTL areas (36, 37, 39). In addition, a study has reported that the activation of
cingulate cortex was significantly higher in patients with BD relative to SZ (31), but
similar tasks found lower activation of cingulate cortex in BD (40). Although these
mixed findings could partly be due to differences from task design, one more major
reason is the individual differences within and across clinical cohorts, which are often
failed to capture by traditional case-control designs (41, 42). An approach that
identifies individual-specific alterations and thereby disentangling intersubject
heterogeneity of neural dysfunctions that underpin affective symptoms is therefore
needed. Normative modelling quantifies each patient as an extreme deviation from

normative expectations for MRI-derived phenotypes based on clinical or cognitive
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characteristics, could avoid confounds arising from intersubject differences to some
extent (43, 44).

Complex clinical phenotypes of affective symptoms are not only associated with
macroscale functional abnormalities but are also tied to neurobiological alterations at
the microscale genetic and cellular levels (45-47). Analyses of postmortem brain
samples and animal models have consistently pointed towards cellular processes in
the central nervous system, including pathological alterations of neurons and
neuroglial cells such as astrocytes and microglia, as an important factor in the
development of affective symptoms (48-50). However, due to limitations in spatial
resolution and coarse diagnostic classifications, the relationship between microscopic
vulnerabilities, macroscale neural dysfunctions, and clinical phenotypes remains
poorly understood. The brain-wide gene expression atlas has made it possible to
bridge the gap between cross-scale neurofunctional alterations (51) and, by
combining with normative modelling framework, could identify the personalized
multiscale associations of neural vulnerability.

In the present study, we aimed to investigate multiscale patterns of neural
dysfunctions related to affective symptoms in patients with MDD, BD and SZ by
considering neurofunctional activation during emotional memory retrieval (Figure 1).
By employing two task-fMRI datasets and a normative modelling framework, robust
and individualized neurofunctional deviation during emotional memory retrieval was
firstly identified. Next, we embedded deviation patterns into macroscale emotional

networks to explore the functional annotations of emotional profiling associated with
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neural variability in distinct disorders, and applied machine-learning approaches to
uncover the associations between macroscale alterations and specific effective
symptoms dimension in each diagnostic condition. Finally, we conducted
transcriptomic association analysis to plausibly determine the cellular abnormalities
linked to affective symptoms by integrating macroscale dysfunctions with microscale

alterations from the perspective of brain-wide transcriptome and brain single-cell

sequencing.
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Figure 1. The workflow of the current study design. (A) Functional activation for each
participant under task-fMRI of emotional episodic memory were extracted from two
research datasets (Healthy dataset and Clinical dataset). (B) The normative model was
first established based on functional activation of each region as response variables
and task performances as predicted covariates, drawing from the HCain of Healthy
dataset. The HCis in Clinical dataset were further put into normative model for
replicate validation, and Individualized alterations were evaluated as deviations
relative to normative range at any given brain region at each patient in Clinical dataset.
(C) Overview of analysis pipeline comprised of three steps. The model
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generalizability was assessed based on the similarity between the HCain and HCies,
and the stability of measurements derived from the normative reference was evaluated
through replicate validation using different brain parcellations atlas and modeling
methods, and validated whether could be influenced by the medication effect (step 1).
The macroscale alterations were quantified as the differences between the proportion
of individuals showing an extreme deviation of each case and healthy controls at
regional level, and further embedded into emotional network for specific functional
annotations of emotional profiling. Individual deviations with significant difference
were used to predict affective symptom of each psychiatric disorder (step 2).
Transcriptomic analysis and cell-type enrichment were further applied to examine the
microscale alterations related to macroscale variability, and linked to affective
symptom in distinct disorders (step 3). HC, healthy controls; MDD, major depressive
disorder; BD, bipolar disorders; SZ, schizophrenia; fMRI, functional magnetic
resonance imaging; ROI, region of interest

Methods and Materials

2.1 Participants

The participants of this study were drawn from two datasets. To construct the
normative models, Healthy dataset included 409 healthy controls (HCyain) recruited
from the Center for MRI Research, Peking University. The Clinical dataset consisted
of 328 individuals: 56 with MDD, 31 with BD, 73 with SZ, and 164 healthy controls
(HCrest). These participants were recruited from the Center for Neuroimaging, Peking
University Sixth Hospital. The study was approved by the medical ethics committee
of Peking University Sixth Hospital (see Supplement for details of the Ethics Reviews)
and all participants provided written informed consent before taking part in the study.
All psychiatric patients were assessed and diagnosed using the Diagnostic and
Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) criteria by

experienced psychiatric physicians. The severity of depression in MDD patients was
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accessed using the Hamilton Depression Scale (HAMD), while the clinical symptoms
of BD were assessed using both HAMD and the Young Mania Rating Scale (YMRS).
The symptoms of patients with SZ were evaluated using the Positive and Negative
Syndrome Scale (PANSS). The healthy controls had no current or lifetime history of
axis | psychiatric disorders or neurological disorders. See Supplement for additional

criteria for participants inclusion and exclusion and quality control details.

2.2 Task paradigm

The fMRI paradigm of emotional episodic memory was adopted in Healthy and
Clinical dataset, which has been used in previous studies (52), conducting an
emotional pictures-encoding and retrieval task during scanning. Briefly, during
encoding phase, participants firstly were instructed to determine whether each
aversive or neutral picture represented an ‘indoor’ or ‘outdoor’ scene. All participants
were not informed about the subsequent retrieval phase before scanning and thus did
not realize that they were engaged in a memory task. About 2 minutes after the
encoding phase, participants then need to memorize whether the image presented was
seen during the encoding session in the case of mixing with half new picture. Finally,
both reaction time (RT) and accuracy (ACC) in encoding and retrieval phase were
extracted from log files of task performance after scanning. The schematic diagram of

the task was shown in Figure 2A and detailed description is in the Supplement.

2.3 Image acquisition and preprocessing

Images data of all participants were acquired on a 3.0 T GE Discovery MR750
8
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scanner in the Center for MRI Research, Peking University (Healthy dataset), and the
Center for Neuroimaging, Peking University Sixth Hospital (Clinical dataset). For
each participant, the high-resolution structural T1-weighted MRI and fMRI blood
oxygenation level-dependent (BOLD) signal were acquired, and was preprocessed

using the SPM12 (Statistical Parametric Mapping, http://www.fil.ion.ucl.ac.uk/spm)

with a standardized protocol whose details can be found elsewhere (53). The details of

imaging acquisition and preprocessing can be found in the Supplement.

2.4 Functional activation analysis

The analysis of functional activation under emotional episodic memory was
based on SPM12 and custom code in MATLAB (The MathWorks, Natick, MA, USA).
For each participant, general linear modelling (GLM) analysis was used to identify
functions activated by task of each brain regions defined by the Desikan-Killiany (DK)
atlas (54). The brain parcellation included 68 cortical regions and 14 subcortical
regions, which limited computational burden. Using GLM, regressors were firstly
constructed from the rest, aversive and neutral blocks which were then convolved
with a canonical double-gamma haemodynamic response function and combined with
the temporal derivatives of each main regressor. Then, a first-order autoregressive
model was used to remove serial correlations, and ratio normalized to the whole-brain
global mean to control for systematic differences in global activity, and temporally
filtered using a high-pass filter of 128s to remove low-frequency signal. Next, the

contrasts of interest were brain activation responses under rest, aversive and neutral
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task conditions with the six parameters of head motion as nuisance covariates. Finally,
condition-specific regional responses were obtained in three task conditions during
retrieval phase, and the “aversive — neutral” activation difference maps in retrieval
phase were generated to indicate the effect induced by emotion and, meanwhile, avoid

the interference of relevant cognitive factors.

2.5 Normative modelling and estimating individual deviations

The normative modelling approach sought to construct a normative distribution to
represent the reference range of interest characteristics by calculating the mean and
variance of a response variable from a set of predictive factors, thus allowing to
characterize a personalized deviation relative to the normative reference (41, 43). We
employed gaussian process regression to estimate normative models reflecting
relevant neurofunctional activation underlying emotional episodic memory using
Predictive Clinical Neuroscience toolkit software

(https://pentoolkit.readthedocs.io/en/latest). Firstly, the activation maps of “aversive —

neutral” during retrieval were used as response variables, and predictive factors were
comprised of task performances including RT in encoding and retrieval phase and
ACC in retrieval phase. Then, the HCiain of Healthy dataset was set as training sample
to establish the normative reference, the testing sample comprised of the Clinical
dataset, including HCes, cases with MDD, with BD, and with SZ, was positioned on
the normative percentile charts to evaluate individualized deviations for replicate

validation and subsequent analyses. We derived a z value from model that quantified

10


https://pcntoolkit.readthedocs.io/en/latest
https://doi.org/10.1101/2024.06.22.600146

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.22.600146; this version posted January 24, 2025. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

the deviation from the normative range for each participant in any given brain regions,
which can be defined as a measurement of individualized alterations. Finally, to
demonstrate the robustness of our main findings, we repeatedly validated our results
in the model generalizability and measurements stability. The model generalizability
was assessed based on internal validation using cross-validation and external
verification based on a testing dataset. Additionally, the stability of individual
deviations was validated by considering several potential confounding factors,
including different strategies of brain parcellation and modeling method, as well as

influences derived from medication effect. Details were described in the Supplement.

2.6 Group convergent effect of individual deviations

To quantify the convergent effect of individual neurofunctional deviations in
distinct forms of psychiatric disorders, we further defined extreme deviations
underlying functional activations by thresholding the individualized deviation (z value)
maps derived from normative modelling using z = + 2.6 (corresponding to p < .005 in
standard normal distribution), as was performed in previous studies (41, 55). A group-
specific percentage map quantifying the proportion of individuals showing an extreme
deviation was calculated, separately for positive and negative extreme deviations. The
group convergent effect was assessed as proportion difference of individuals with
extreme deviations (A percentage map) between each diagnostic group with the HCqes
of Clinical dataset, aiming at group differences after removing intersubject

heterogeneity rather than traditional group-averaged differences. To avoid reliance on
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a single threshold, the A percentage map of each group was estimated based on a
threshold-weighted calculation for defining extreme deviations, which integrated
results across a range of thresholds (Supplement).

A nonparametric group-based permutation test was conducted to identify
significant brain regions of convergent effect at each diagnostic group. Briefly, the
percentage maps showing extreme regional deviation in HCest were subtracted from
each case’s percentage map to obtain the A percentage maps of each disorder at any
given brain region. Subsequently, group labels of case group and HC group were
shuffled, A percentage maps were re-calculated based on permuted group labels. The p
values were obtained as the proportion of null values that exceeded the observed
difference in 10,000 times permutations. and statistical significance was set at 0.05
with multiple comparisons correction based on the false discovery rate (p < .05, FDR
corrected). The statistically significant differences of positive and negative extreme
deviations were respectively defined as supra-normal and infra-normal in current
study. The higher or lower infra-normal deviations implied that the hyper- and hypo-
inhibition of neural activity, while higher or lower supra-normal deviation suggested
hyper- and hypo-excitation, respectively.

Group convergent effect was also assessed at network-level to explore the
relevant emotional functional disruptions in distinct disorders, by embedding extreme
deviations of brain regions were into large-scale emotional network with specific
emotional profiling. A well-recognized framework of four large-scale emotional

networks (ENs) with distinct spatial distributions and functional profiles ranging from
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emotional generation to regulation. (EN 1: working memory and response inhibition
in emotional regulation; EN 2: cognitive appraisal and language processing of
emotional stimuli; EN 3: emotion perception and generation; EN 4: emotional
reactivity), was revealed by a recent meta-analysis study (56), and positioned on DK
atlas (Figure S1 and Table S1). Network percentage map was estimated by assigning
each region with extreme deviation to one of four large-scale emotional networks, and
calculating the proportion of individuals that showed at least one positive and
negative extreme deviation in a region within the network. The significant network
differences were then evaluated by computing differences between network
percentage (A network percentage map) of HCis and each diagnostic group using
10,000 times group-based permutation test (p < .05, FDR corrected), as at regional
level. The details of method can be found in the Supplement and Figure S2, and

previous studies (55).

2.7 Association with clinical affective symptoms

The machine-learning approaches based on multiple linear regression were
conducted to investigate the underlying relationships between individualized
neurofunctional deviations and clinical affective symptoms in different diagnostic
groups. The affective symptoms in MDD patients were defined using
anxiety/somatization factor derived from six-factor domains of HAMD. Considering
the lack of specific item scores, the total scores of HAMD were alternatively used as

affective symptoms in BD patients. For SZ patients, since a specific assessment scale

13


https://doi.org/10.1101/2024.06.22.600146

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.22.600146; this version posted January 24, 2025. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

for depressive symptoms was not adopted, the anxiety/depression factor from five-
factor scores of PANSS was used. We used individual deviation of brain regions with
significant infra-normal and supra-normal deviation to predict clinical scores in
distinct diagnostic category. The nested leave-one-out cross-validation (LOOCV) was
adopted to avoid selection biases and evaluate the performance of the linear
regression models. The Pearson correlation and root mean square error (RMSE)
between the observed scores and predicted scores were used to assess the performance
of prediction model. The statistical significance of correlation coefficient was
estimated by applying a non-parametric permutation test, which calculated by
randomly shuffling the clinical scores and re-calculated Pearson correlation
coefficient. An empirical distribution of correlation coefficient was then obtained
based on 10,000 times permutation and the significance level threshold was set at
Prerm < .05. Furthermore, we used virtual lesion analysis to determine the important
regions and networks in the clinical prediction model by re-calculating the prediction
accuracy (correlation coefficient between observed scores and predicted scores) after
removing one brain region at a time (i.e., virtual lesion). If the prediction accuracy of
model decreased after removing a region, we considered the region to be important

for prediction.

2.8 Imaging transcriptomic analysis and cell-type enrichment

The imaging transcriptomic analysis was performed to investigate underlying

microscale alterations of macroscale dysfunctions linked to affective symptoms in
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distinct mental illnesses. The brain-wide transcriptome was acquired from post-
mortem brain tissue samples of six neurotypical adult donors derived from the Allen

Human Brain Atlas (AHBA, http://human.brain-map.org), and preprocessed using

abagen toolbox (https://www.github.com/netneurolab/abagen) following established

protocols (57), including probe-to-gene reannotation, background noise filtering,
sample spatial assignment and normalization. More details of preprocessing of gene
expression data can be found in the Supplement. Considering right hemisphere data
was available from only two donors, the analysis was restricted to left hemisphere. In
total, the preprocessing resulted in a gene expression map (41 brain regions x 15,633
genes) for subsequent analyses. The spatial correlation (Spearman’s p) between the
expression value of each gene in AHBA and neuroimaging phenotypes were then
calculated separately at the group- and individual-level.

To conduct the cell-type enrichment analysis, two cortical single-cell gene
sequencing datasets were acquired from previous studies, including the Lake cell-type
gene markers obtained from transcriptional data in the frontal and visual cortex (58),
as well as the Li cell-type gene markers based on transcriptomic and epigenomic data
covering 16 brain regions ranging from prefrontal cortex to cerebellum (59).
Following a previous study that conducted a clustering analysis on the above two
datasets (60), seven specific cell types were adopted in the current study, including
astrocytes, endothelial cells, excitatory neurons, inhibitory neurons, microglia,
oligodendrocytes and oligodendrocyte precursors (OPC). As shown in Figure 4A,

based on two cell-type gene markers, the FGSEA method was applied to the sorted
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gene rank calculated from spatial correlation analysis to perform cell-type enrichment
analysis (61), and then obtained normalized enrichment scores (NES) at group- and
individual-level, respectively. The group-level cell-type enrichment was separately
computed at infra- and supra-normal A percentage maps at each diagnostic group to
capture microscale basis of group convergent neurofunctional alterations, and
individualized deviation map was used to calculate individual cell-type enrichment
score, as an indicator of cell type-specific molecular contributions underlying
macroscale abnormalities. The Pearson correlation was further used to evaluate the
relationship between individual cell-type enrichment score and clinical affective
symptoms in distinct psychiatric disorders to plausibly determine the cellular
abnormalities linked to affective symptoms. All statistical significance was set at 0.05

with multiple comparisons correction by FDR.

Results

3.1 Demographic, clinical characteristics and task performances

The demographical and clinical characteristics are presented in Table 1. A total of
409 HCrain participants (mean age, 24.6 + 3.8 years; age range, 18 to 43 years; 206
female) were recruited in the Healthy dataset. In the Clinical dataset, there were no
significant differences in sex (y> = 0.333, p = .954) and age (F = 2.195, p = .089)
among the HCies, MDD, BD and SZ groups. The statistical analysis of task
performances found that emotional memory-enhancing effect was observed across all
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groups of two datasets, showing significantly greater retrieval accuracy for aversive
than for neutral scenes (Table S2). Detailed results of task performances are provided

in the Supplement.

Insert Table 1 here

Table 1. Demographic and clinical characteristics

Healthy Clinical dataset
dataset
HCtrian HCtest MDD BD SZ XZ/ F

(n = 409) (n=164) (n=56) (n=31) (=73) (p)

Demographic characteristics

Sex (M/F) 203/206 63/101 20/36 13/18 28/45 ?9353::1)
Ace. vears 24.6 24.6 25.1 27.0 25.2 2.195

g8 Y (3.8) (4.0) (5.0)  (5.3) (5.6) (.086%)
Clinical characteristics

24982  12.581
HAMD (5.472)  (14.631)
4.581
YMRS (8.007)
67.833
PANSS (14.049)
On-medications, 14/9/7¢ 39
: 37

n patients

Data are presented as mean (standard deviations). HC, healthy control; MDD, major
depressive disorder; BD, bipolar disorder; SZ, schizophrenia; M, male; F, female;
HAMD, Hamilton depression scale; YMRS, Young mania rating scale; PANSS,
positive and negative syndrome scale

2 The p-value was obtained by a chi-square test.

b The p-value was obtained by a one-way ANOVA with post hoc analyses.

¢ There are 44.16% (14/31) of patients with BD taking Sodium valproate, 29.03%
(9/31) Lithium carbonate and 22.58% (7/31) Quetiapine.
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3.2 Normative model of neurofunctional activations underlying emotional

episodic memory

We constructed a verifiable normative model based on functional activation
evoked by the emotional episodic memory paradigm, which was fitted in each region
respectively. As shown in Figure 2B, our normative models predicted a normative
reference for neurofunctional activations given behavioural performances under
emotional episodic memory task, and fitted well in healthy individuals, showing that
99.51% of individuals in HCiin and 100% of individuals in HCiest were located within
the normative range (—2.6 < z < 2.6) for the mean regional deviations. There was no
significant difference of the distribution of mean regional normative z scores between
HCimin and HCrst (Kolmogorov-Smirnov test, K-S = 0.087, p = .320). Based on
general linear model, traditional group-averaged functional activation in HCiain
showed that regions with higher activation located mostly in the occipital cortices,
amygdala and other MTL areas, while those with decreased deviations were mainly in
precentral and postcentral gyrus, and insula (p < .05, FDR corrected; Figure 2C),
consistent with previous studies (62, 63). This spatial distribution of neural activation
is highly correlated with individual-level mean distribution patterns of HCyin (7 =
0.973, pspin < .001, 10,000 times permutation tests with spatial autocorrelation),
indicating that spatial alignment between group-averaged effect and individualized
components by characterizing neural activation in given task performances under

emotion memory. More importantly, our normative model exhibited a higher
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generalizability indicated by internal cross-validation (Supplement; Figure S3) and
independent external sample validation, showing mean regional deviation map in
HClin and HCrest was highly associated (Figure 2C, » = 0.956, pspin < .001, 10,000
times permutation tests with spatial autocorrelation). The normative models
established based on behavior performances, sex and age also showed high correlation
with current models, which implied that sex and age had no significant effect on our

normative model (Supplement; Figure S4).

Insert Figure 2 here
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Figure 2. The emotional episodic memory task and generalizability evaluation of
normative model. (A) The emotional episodic memory task consisted of encoding and
retrieval phases and each phase included neutral and aversive scenes. The participants
were instructed to determine whether each image represented an ‘indoor’ or ‘outdoor’
scene in encoding phase (left) and respond ‘new’ or for ‘old’ in retrieval phase (right).
(B) The distribution of mean regional deviations in HCiain and HCrest. There was no
significant difference between these two distributions. (C) The spatial distribution of
regional deviation map in HCy.in exhibited significant spatial correlations with group-
averaged activation and regional deviation map in HCs. HC, healthy controls
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3.3 Clinical heterogeneity of neurofunctional activations underlying emotional
episodic memory

Similar to the evaluation of model generalizability in the validation sample of
HCist in the Clinical dataset, each patient with specific psychiatric disorder was
positioned on the normative percentile charts to calculate individual deviations in
each brain region. The results of measurement stability found that individual
deviations of all disorders in main findings have high similarity with using different
atlas for brain parcellation (Figure S5), and are unrelated to dose of medicine (Figure
S6). Considerable intersubject heterogeneity in patients with the same diagnosis was
revealed by individualized measurements from normative modelling. About 50% of
patients showed extreme deviations in at least one brain region and distributed
diffusely in ~75% regions (Supplement; Figure S7). More specifically, patients with
MDD exhibited a higher percentage of supra-normal deviations (90.24%) compared
to infra-normal deviations (40.24%). In contrast, BD patients had fewer regions with
positive extrema deviations, showing 37.80% supra-normal regions and 65.85% infra-
normal regions. For patients with SZ, both positive and negative out-of-range
alterations were widely distributed across brain regions, with 93.90% showing supra-
normal deviations and 89.02% showing infra-normal deviations (Supplement). As a
control analysis, we found that the classical group-level comparison did not reveal
any significant regional case-control differences of functional activation (Figure S8).
These findings underscored the efficiency of normative modelling in parsing inter-

individual differences.
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3.4 Macroscale alterations linked to affective symptoms

The group-based permutation test was then used to identify convergent effect of
individual deviations at each diagnostic group by comparing the proportion of
individuals showing significant extreme deviation between HCrest and each diagnostic
group in the Clinical dataset (Figure 3A). This was done by assessing the observed
difference for each disorder in any given brain region (A percentage map) against an
empirical null distribution. The results showed that there are few spatial overlaps,
including as amygdala, insula and supramarginal gyrus, across all mental disorders (p
< .05, FDR corrected; Figure S9 and Table S3), but the overall spatial distribution is
extraordinary different. The infra-normal regions in the patients with MDD mainly
located in frontal lobe and temporal lobe, while supra-normal regions were mainly
located in superior frontal gyrus, superior temporal gyrus and amygdala (all p <.0167
(.05/3), FDR corrected; Figure 3B). The regions with statistically significant
difference in MDD patients were summarized in Table S4. Relative to controls, the
patients with BD showed infra-normal regions in the occipital lobe, precuneus,
hippocampus and amygdala but supra-normal regions in the insula, striatum, and
amygdala (all p <.0167 (.05/3), FDR corrected; Figure 3E; Table S5). The between-
group comparison between SZ patients and HCes showed that the infra-normal
regions in insula, hippocampus, and caudate (p < .0167 (.05/3), FDR corrected) and
supra-normal regions in insula, fusiform gyrus, putamen, and amygdala (p < .0167

(.05/3), FDR corrected) in SZ group (Figures 3H; Table S6). These finding were
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similar with the A percentage map using different threshold setting that avoids
reliance on a single threshold (Figure S10).

Group convergent effect at network level further found that heterogeneous
spatial patterns of neural dysfunctions in distinct diagnoses could be attributable to
total deviation burden driven by functional alterations of large-scale emotional
networks. These networks also covered most of the regions that showed significant
functional activation under task conditions (Supplement; Figure S11). Compared to
HC, patients with MDD exhibited supra-normal deviations in EN 3 (A percentage =
8.84%, p = .013, FDR corrected; Figure 3C), indicating higher functional activation in
the brain network associated with emotion perception and generation during the
emotional episodic memory task; BD patients exhibited infra-normal deviations in
networks for appraisal and language processing (EN 2, A percentage = 16.66%, p
= .009, FDR corrected) and emotional reactivity (EN 4, A percentage = 19.71%, p
= .001, FDR corrected) (Figure 3F); SZ patients showed infra-normal deviations in
network involving working memory and response inhibition (EN1, A percentage =
8.21%, p = .025, FDR corrected; Figure 3I). The results from symptom association
analyses showed that there are significant correlations between predicted scores and
observed scores of anxiety/somatization factor of HAMD in MDD patients ( = 0.295,
Pperm = .032, RMSE = 2.324; Figure 3D), total scores of HAMD in BD patients (» =
0.415, pperm = .020, RMSE = 18.515; Figure 3G), and anxiety/depression factor of
PANSS in SZ patients (» = 0.319, pperm = .007, RMSE = 5.297; Figure 3J). The
analysis of important features assessing by virtual lesion analysis have found that
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emotional networks specific to heterogenous deviations at each psychiatric disorder
exhibited maximum predictive weight respectively: EN 3 for MDD, EN 4 for BD,

and EN 1 for SZ (Figure S12).

Insert Figure 3 here
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Figure 3. Regional differences and clinical symptom association in MDD, BD and SZ
patients. (A) Schematic showing the proportion of individuals with infra-normal or
supra-normal at any given regions in HCis and each diagnostic group. The infra-
normal and supra-normal regions in MDD (B), BD (E) and SZ (H) patients were
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identified using 10,000 times group-base permutation test and statistical significance
was adjusted by FDR. Regional differences were further enriched into four large-scale
emotional networks. The infra-normal and supra-normal alterations at network level
in the patients with MDD (C), BD (F) and SZ (I) were shown. The statistically
significance was determined by using 10,000 times group-base permutation test and
adjusted by FDR. The scatter plot showed the significant associations between
individual neurofunctional deviations and clinical affective symptoms in MDD
patients (D), BD (G) and SZ (J) patients. MDD, major depressive disorder; BD,
bipolar disorders; SZ, schizophrenia; HC, healthy controls; EN, emotional network;
RMSE, root mean square error; HAMD, Hamilton depression scale; PANSS, positive
and negative syndrome scale

3.5 Microscale alterations linked to affective symptoms

Microscale cellular abnormalities underlying macroscale neurofunctional
alterations associated with affective symptoms have been identified in distinct forms
of mental illnesses, using imaging transcriptomic analysis and single-cell gene data.
The results from microscale level showed that macroscale neural dysfunctions exhibit
distinct patterns of enrichment across various cell types, but converged on
oligodendrocyte across distinct disorders (Figure 4B). More specifically, the results of
group-level cell-type enrichment showed that neurofunctional alterations correlated
genes in MDD patients were mainly enriched in the microglia for both infra- and
supra-normal group effect, and in the oligodendrocyte for supra-normal deviations.
For patients with BD, the significantly enriched cell types were in the astrocyte,
endothelial cell and oligodendrocyte for infra-normal deviations, and in the
oligodendrocyte for supra-normal deviations. The most significant enriched cells in
SZ patients are located in the excitatory neurons for both infra- and supra-normal, and

in the oligodendrocyte for infra-normal. It is noted that the oligodendrocyte was the
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most significant enriched cell type in the macroscale neural alterations that showed
significant network deviations in distinct diagnostic groups. The analysis of symptom
associations of individual cell-type enrichment found that the individual-specific NES
of cell types that have significant enrichment at the group-level exhibited significant
association with clinical affective symptoms in each psychiatric disorder. The
microglia in MDD patients, astrocytes in BD, and excitatory neurons in SZ emerged
as replicable cell-level correlates of clinical affective symptoms across two

independent single-cell datasets (Figure 4C).

Insert Figure 4 here
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Figure 4. Imaging transcriptomic analysis and cell-type enrichment. (A) Schematic
diagram of imaging transcriptomic analysis at the group- and individual-level,
respectively. Infra- and supra-normal A percentage maps at each diagnostic group
were spatially correlated with the 15,633 gene expressions of six post-modern brain
tissue sample from AHBA using spearman correlation analysis. Individual deviation
maps from each patient with psychiatric disorders were also spatially correlated with
AHBA gene expressions. Based on two independent cell-type gene makers, the
analysis of cell-type enrichment was conducted using FGSEA method in the sorted
gene rank to separately calculate group cell-type enrichment and individual-level cell-
type enrichment scores. (B) Group-level cell-type enrichment. Cell types enriched by
infra- and supra-normal deviations were shown across two cell-type gene makers. The
horizontal bar plots showed the statistical significance of enrichment that was
quantified by sign(NES) X —logl0(p-value) given by the FGSEA method. The
replicable significant cell types across two datasets were labeled. The network group
effects of individual deviations corresponding to significant cell-type enrichment were
also marked on the side. (C) Symptom association of individual cell-type enrichment.
The associations between individual-level NES of specific cell type and clinical
affective symptoms were examined using the Pearson correlation analysis in distinct

27


https://doi.org/10.1101/2024.06.22.600146

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.22.600146; this version posted January 24, 2025. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

psychiatric disorders. The cell types that significantly enriched at the group-level also
exhibited significant association with clinical affective symptoms in each psychiatric
disorder. The bar plots showed the statistical significance of correlation, and
replicable significant cell types across two datasets were labeled. MDD, major
depressive disorder; BD, bipolar disorders; SZ, schizophrenia; EN, emotional network;
FGSEA, fast gene set enrichment analysis; OPC, oligodendrocyte precursors

Discussion

The present study aims to identify cross-scale neural alterations that underpin
affective symptoms in three major psychiatric disorders. Our findings revealed that
macroscale neural dysfunctions associated with specific domains of affective
symptoms across different mental illnesses, after removing the confounds from
clinical heterogeneity by applying the normative modelling in task-fMRI of emotional
memory paradigm. Altered neurofunctions in different disorders could be embedded
into non-overlapping emotional networks with specific functional profiling, and the
main disruptions of emotional functions related to affective symptoms in distinct
disorders are identified. Our results also revealed microscale cellular signatures
underlying macroscale functional abnormalities and the cell type-specific processes
linked to affective symptoms in various mental illnesses. Overall, our study provides
critical insights for better understanding the neural mechanisms underlying specific
affective symptoms in distinct psychiatric disorders.

Mapping complex clinical symptoms to neurobiological alterations is significant
for exposing more effective interventions for patients with complex psychiatric
symptoms (8). Previous studies focusing on the neural activities of affective

symptoms commonly applied the emotional episodic memory task to characterizing
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relevant brain regions, and indicated better performances compared with task-free
neuroimaging markers (52, 64). However, limiting methodology and high intersubject
heterogeneity, objective and reliable neural correlates related to affective symptoms in
multiple psychiatric disorders still have not been revealed. According to the
evaluation of sample sizes for traditional case-control designs (Table S7), previous
studies have often used a relatively small size of samples. Using normative modelling
techniques, we were able to not be limited by the requirements of sample size, and
disentangle the clinical heterogeneity to some extent, based on a nonparametric
estimation by incorporating neural alterations into a continuous spectrum derived
from a large healthy population. Our results from normative modelling also revealed
considerable inconsistency in the functional alterations under emotional memory task,
showing only a low proportion of the patients shared the consistent extreme deviation
for any single brain region (Figure S7). After removing the confounds from clinical
heterogeneity, different degrees of neurobiological alterations associated with
affective symptom dimension were measured at each patient in distinct diagnostic
categories. Association analyses revealed individual deviations significant predicted
the affective symptom dimension in specific disorder condition, further determining
that results from our paradigm and model might be a promising predictor for clinical
affective symptoms. More importantly, strict replicate validations were applied in our
model, ranging from model generalizability to measurements stability based on
multiple strategies (Figure S3-S6). Among them, medication has long been considered

as an important confounding factor, contributing to the lack of consistent findings
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across studies (65). For instance, the use of psychoactive drugs may impact on
neurocognitive systems supporting procedural learning and conditioning and thereby
modulate emotional memory processes (63). The stability of the medication effects
has critical implications for understanding mechanisms underlying impaired
emotional functions across different diagnostic conditions.

To characterize macroscale pattern of neural alterations underlying affective
symptoms and better compare with previous studies, the group convergent effects of
individual neurofunctional deviations at each diagnostic group were estimated as in a
previous study (55). The results showed that the macroscale alterations in distinct
disorders are largely distinct but have some overlap. Neural dysfunctions intersected
across all mental disorders were found in hyperactivation of the right amygdala, left
insula and right supramarginal gyrus (Figure S9). The amygdala has been widely
emphasized as underlying emotional impairments in mental illness, engaging
abnormal responses to external negative stimuli (5, 66), while the insula is associated
with inflexible updating and preferential maintenance of negative or threatening
stimuli (67, 68). The co-hyperactivation of amygdala and insula may indicate that
excessive attention to negative stimulation may produce an interference effect on
memory of stimuli, contributing to systematic distortions in emotional information
processing in mental disorders. Additionally, growing evidence suggests that
emotional memory bias is not limited to attention and emotion-related problems but is
embedded in stable negative self-referential schemas (29, 69). The supramarginal

gyrus, part of the default mode network, is linked to self-focused rumination and
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abnormal self-referential processes (70, 71). Its abnormal activation may drive
weakened cognitive structures to produce interpretive biases in mental disorders (14).
The heterogeneous patterns of macroscale functional impairments in different
diagnostic groups were embedded into non-overlapping large-scale emotional
networks. After embedding to network level, the proportions of individuals with
extreme deviations have increased relative to at regional level (Figure S13), showing
heterogeneous deficits of distinct disorders could be aggregated within lesioned large-
scale emotional networks. Specifically, we found that patients with MDD exhibited
hyperactivations in a network related to emotion perception and generation, which
comprised of the amygdala, fusiform, and medial orbitofrontal gyrus. Cognitive
theories of MDD hold that emotional abnormalities derive from a negative schema for
representing negative knowledge and experiences (72), which could alter perceptions
and evaluations of external stimuli (73) and its weakening has been hypothesized to
underlie recovery (74, 75). A recent study also suggested that regulating emotion
perception could be used to reduce emotional memory and improve depressive
symptoms (22). SZ patients showed infra-normal deviations in a cognitive emotion
regulation network strongly associated with working memory and response inhibition,
which is a frontoparietal network consisting of dorsolateral prefrontal cortex and
inferior parietal gyrus. The emotional flattening and anhedonia in SZ patients have
been reported may contribute to the overuse of suppression strategy, and thereby
disrupt emotional appraisal and recognition (76, 77), which align with our findings of

dysfunctions of cognitive emotion regulation network. In contrast, individuals with
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BD were associated with two emotional networks, jointly responsible for integrating
emotional reactivity and cognition. This finding provided consistent evidence for
support that the effective segregation of neural mechanisms between over-
sensitive reactivity and cognitive dysregulation in different emotional states of BD
(78), suggesting set state-specific psychotherapeutic targets at the depressive and
manic state of BD patients (79). Analyses of symptom associations further found that
parallel deficits of large-scale emotional networks in specific psychiatric conditions
exhibited maximum predictive weight in the midst of each predictive model (Figure
S12). This investigation has critical heuristic value for guiding the optimization of
clinical treatment strategies for affective symptoms.

Microscale cellular abnormalities underlying macroscale neurofunctional
deviations could further be revealed using imaging transcriptomic analysis and
cellular decoding. Considering previous studies indicated that those microscopic
cellular alterations possibly induced macroscopic functional variations linked to
affective symptoms (45-47), our analyses mainly focused on the cellular basis of
functional deviations. The results from group-level cell-type enrichment showed the
specific cell types were associated with macroscale alterations in distinct disorders,
suggesting heterogeneous cellular abnormalities across distinct mental illnesses, but a
convergence of significant network deviations was found in the oligodendrocytes in
all disorders. The consistent enrichment in oligodendrocytes may imply that network-
level neurofunctional alterations at each diagnostic group may be mediated by

dysfunction in integration or segregation within the network, that is, the impaired
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patterns of functional deviations at the circuit-level. To prove it, using lesion network
mapping methodology (8, 80), circuit group convergent effects of individual
deviations were calculated based on seed regions with significant extreme deviations,
as conducted in a previous study (55). The significant functional circuit was further
located into four ENs and found the most significant circuit was focused on specific
emotional networks of each case group (Supplement; Figure S14 and Tables S8-10).
This raised a hypothesis that the network characteristic with emotional functional
profiling were decoded by abnormal connectivity integrations and thereby
contributing to clinical affective symptoms. Benefit from measuring individual
functional deviations from normative modelling, we could further determine whether
the identified cellular characteristics can be used as a potential microscale
vulnerability risk factor reflecting clinical symptoms. We found that individual-
specific cellular transcriptomic profiles of the identified group-level cell types were
significantly associated with affective symptoms. It is suggested that cellular
abnormalities play a role in mediating the relationship with macroscale neural
activities and external affective symptoms.

In clinic, patients with MDD show persistent low mood and rumination about
negative thoughts (81), whereas the hallmark feature of BD patients is
fluctuating episodes of depression and mania (82). Diminished emotion expression or
affective flattening are also a core feature of persistent functional disability in SZ and
may heighten impending psychotic relapse (77, 83). Considering the heterogeneous

nature of affective symptoms in different psychiatric disorders, the cross-scale neural
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alterations comprising of macroscale diagnosis-specific emotional networks and
microscale cellular abnormalities may provide enlightening evidences of unique
dysfunctional neural characteristics. These findings are consistent with previous
theoretical models and research summaries (6, 28), and our research revealed the
neurodiverse dysfunctions of affective symptoms in different mental disorders for the
first time in empirical research.

Several issues need to be considered. First, the sample size of clinical diagnostic
group in the current dataset was relatively small. Although we used a nonparametric
group-based permutation test to identify statistically significant deviations in each
case group, which is not affected by sample size, a larger sample would help to better
parse clinical heterogeneity. Second, data on depressive severity in BD patients was
partially missing, making it impossible to calculate the anxiety/somatization factor of
HAMD to represent affective symptoms in BD. Additionally, a greater number and
more comprehensive assessment will help better characterize the affective symptoms
of different mental disorders. Finally, most BD patients in this study were in the
euthymic stage. Further study with more patients in different stages is imperative to

assess the reproducibility of our findings.

Conclusion

To summarize, this study proposed cross-scale neural alterations underlying
affective symptoms in multiple psychiatric disorders. Based on a stable and cross-

sample verifiable normative model of functional activation under emotional episodic
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memory task, we identified macroscale heterogenous patterns of neurofunctional
alterations annotating specific emotional profiling from large-scale emotional network
in three common psychiatric disorders. The microscale specific cellular abnormalities
mediated the macroscale diagnosis-specific network dysfunctions, and as a potential
risk factor of biological vulnerability reflecting clinical symptoms. These findings are
a step forward in understanding the cross-scale neurobiology underlying basic
dimensions of affectivity and provide a novel insight for translating into clinical

management and treatment approaches.
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