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Abstract

Foundation models, which encode patterns in large, high-dimensional data as embeddings, show promise in many machine
learning related applications in molecular biology. Embeddings learned by the models provide informative features for
downstream prediction tasks, however, the information captured by the model is often not interpretable. One approach to
understanding the captured information is through the analysis of their learned embeddings, which in molecular biology
so far has mainly focused on visualizing individual embedding spaces. This study introduces a quantitative framework
for cross-space comparison, enabling intuitive exploration and comparison of embedding spaces in molecular biology. The
framework emphasizes analyzing the distribution of known biological information within embedding space neighborhoods
and provides insights into relationships between multiple embedding spaces. Comparison techniques include global pairwise
distance measurements as well as local nearest neighbor analyses. By applying our framework to embeddings from protein
language models, we demonstrate how embedding space analysis can serve as a valuable pre-filtering step for task-specific
supervised machine learning applications and for the recognition of differential patterns in data encoded within and
across different embedding spaces. To support a wide usability, we provide a Python library that implements all analysis
methods, available at https://github.com/broadinstitute/EmmaEmb.

Key words: foundation models, protein language models, molecular biology, embedding spaces, vector space analysis,
embedding interpretability, data exploration

Introduction of protein sequence data from various species and generate

. . R . representations that capture the evolutionary relationships of
With the growing availability of data and computing power, K X
. . . . proteins. The learned representations, also referred to as
foundation models have become increasingly relevant in R .
. . . . . embeddings, can be leveraged for a variety of downstream tasks,
molecular biology for encoding the high-dimensional data X R K L. K o
including protein structure prediction (22), function prediction

(20), and variant effect prediction (7).
As more foundation models, such as PLMs, based on

generated by laboratory experiments. Foundation models are
trained to identify the inherent relationships within the training

data, uncovering complex patterns. By using large datasets R X . .
. . R . varying architectures, training data, and data modalities
as input, foundation models place individual data points K X . R . .
. . . emerge, it becomes increasingly important and interesting
into a broader context, generating representations that are X .
. . L to understand what they have learned. This understanding
informative for a range of applications (22; 10). . . o
. . can guide the appropriate application of the models but
Protein language models (PLMs) are a specific type of Iso help to detect bi i th dels’ tati ®)
also he o detect biases in the models’ representations .
foundation model. These models are based on the architectures p K b
. .. Further, understanding the models’ learned patterns enables
of Large Language Models, which have revolutionized text . . ..
. . . researchers to leverage them to offer new biological insights
processing in Natural Language Processing. PLMs, such as

ESM2 (22) and ProtT5 (10), are trained on large amounts (4). However, due to their complex architecture and high
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Table 1. Comparison of published tools for the simultaneous analysis of multiple embedding spaces.
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EmmaEmb PCA, t-SNE, UMAP v v v v Vv
repcomp (28) - - - - - v
embComp (15) IsoMap, LLE, MDS,- - - v -
PCA, t-SNE, UMAP

Embedding PCA, t-SNE, UMAP - - - « -
Comparator (5)

Vectory (24) PCA, UMAP - - - v Vv
Emblaze (29) PCA, t-SNE, UMAP v - - v -
EmbCompare PCA v - - v Vv

(11)

The proposed tool in this paper

Computation of similarities between two embedding
spaces; Nearest neighbours, canonical correlation, unit
match; No visualisation of results

Visual local neighbourhood analysis, based on KNN;
Distribution of similarities; Cosine or Euclidean distance
Visual local neighbourhood analysis, based on KNN;
Distribution of similarities; Highlighting least similar
samples and their nearest neighbours; Cosine or Euclidean
distance

Aggregated similarity of local neighbourhoods based on
KNN; Cosine or Euclidean distance

Visual local neighbourhood analysis, based on KNN;
Visualising trajectories of points between embedding
spaces; Highlighting nearest neighbours of individual
embeddings and user-selected sets of embeddings; Cosine
or Euclidean distance

Visual local neighbourhood analysis, based on KNN;
Distribution of similarities; Highlighting least similar

samples; Cosine distance

* IsoMap (32); LLE: local linear embedding (25); MDS: multi-dimensional scaling (19); PCA: principal component analysis; t-SNE: t-stochastic

neighborhood embedding; UMAP: uniform manifold approximation and projection

number of parameters, understanding what these models have
learned is not straightforward. Therefore, it is crucial to
develop methods for understanding the underlying patterns and
features captured by the models.

In Natural Language Processing, embedding space analysis
is a key approach for interpreting model behavior. Getting a
better understanding of the distribution of points within one
embedding space has helped to reveal semantic relationships
(33) and biases (6) in the embeddings of language models.
Additionally, identifying similarities between embedding spaces
from different languages has facilitated the transfer of
information from high-resource languages to a low-resource
language, which has limited training data (13).

In the field of molecular biology, embedding space
analysis has also been leveraged, for example, to understand
the properties of the embedding space and its impact
on continuous prediction tasks (1; 12), as well as to
analyze multiple modalities within a single embedding space
(3). However, comparisons across embedding spaces have
primarily been performed visually, often using dimensionality
reduction techniques such as principal component analysis, t-
distributed stochastic neighbor embedding, uniform manifold
approximation and projection, pairwise controlled manifold
approximation, and multidimensional scaling (27; 22) or by
the use of tree-based hierarchical visualizations (35). We see
a potential for advancing the use of embedding space analysis
in the field of molecular biology through quantitative analysis
across embedding space.

A common standard for understanding which features,
such as the function of a protein, are captured by a model
is to benchmark the model on downstream tasks wusing
supervised machine learning (ML) (16). Small task-specific
classifiers are trained on PLM embeddings. This approach
requires task-specific models for each feature and each PLM
of interest, which becomes increasingly resource-intensive
as the number of models and benchmark datasets grows.
Analysis of the embedding space provides a less resource-
intensive initial evaluation. By examining the distribution
of categorical features across various embedding spaces, we
can gain insights into how these features are represented
by assessing the proximity of samples from different classes.
Although this analysis is less detailed and does not uncover
complex relationships between the embedding dimensions, it
offers valuable initial insights into the informativeness of
the representations across different embedding spaces and
contexts. This initial evaluation is particularly useful for
determining which models warrant the application of more
resource-intensive ML approaches.

Additionally, by directly comparing the distances between
samples in different embedding spaces, we gain insights
into similarities and differences between the models’ learned
information. Discrepancies in distances between the spaces
can provide insights into complementary information that the
models have acquired or highlight potential biases or noise
the models have learned. One bottleneck hindering the cross-
space embedding analysis of foundation models in molecular
biology is the lack of frameworks and tools to facilitate
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Fig. 1. Overview of the proposed analysis workflow. Our framework aims to analyse the information captured in different embedding spaces. A. Starting

with a set of samples (e.g. genes or proteins, here: Data s; — sg), embeddings are derived from different foundation models (here: Foundation Models

1-3). In the example of proteins, embeddings could be derived from protein language models that vary in their architecture or training. B Categorical

data about the samples (here: f; — f3) is integrated into the analysis, e.g. annotations of the function of proteins, protein families, etc. The embeddings,

along with sample-specific categorical feature data, are then analyzed together using two main types of approaches. First, C. deriving the distribution of

specific features, such as protein families, within neighborhoods of each embedding space, and comparing them across embedding spaces. This analysis

is based on a k-nearest neighbors approach, quantifying how closely features from one class are in proximity and which classes are neighboring classes.

Secondly, D. two embedding spaces can be compared to identify similarities and differences in the pairwise distances between embeddings or k-nearest

neighbors. Regions of high difference can be further analyzed using the feature data to characterize the samples that were represented differently by the

model. The introduced EmmaEmb python framework is a freely accessible implementation of the described approach.

rapid exploration. Although approaches for comparing multiple
embedding spaces exist in other domains, particularly language
(see Table 1), their value in molecular biology applications
remains limited, and to our knowledge, the listed tools have
not been applied in this context. Two key factors contribute to
this gap. First, there has been a great emphasis on comparing
embedding spaces visually after dimension reduction methods
are applied, with little exploration of quantifying feature
distributions. Second, there is often a focus on analyzing
individual data points, a practice common in tools designed for
Natural Language Processing, where entities such as words are
easily interpretable by users. However, in molecular biology,
context

is essential, as the names of proteins and genes

by themselves may not provide substantial meaning, even

to experts. Instead, valuable insights are often gained by
understanding the distribution of groups of data points with
a specific biological meaning. Therefore, we emphasize the
importance of incorporating the relationship between different
natural groupings of the samples into the analysis, which is
commonly lacking in Natural Language Processing tools.

To bridge this gap,

framework for the quantitative and cross-space analysis

we developed a comprehensive

of embedding spaces in molecular biology. Our approach
focuses on feature distributions within embedding space
neighborhoods and enables comparisons across embedding
spaces using methods such as global distance metrics and
local neighborhood analyses. We evaluate insights gained from
our analysis framework by comparing them to those derived
from task-specific ML models. Additionally, we investigate how
embedding space analysis can be leveraged to generate new
hypotheses about the similarities between data representations
across different models. To promote accessibility, we publish
the Python library Embedding, Metadata, and Multimodel
Analyzer for Exploration in Molecular Biology (EmmaEmb),
which implements all framework components.

Methods and Materials

1. Embedding space analysis framework

Figure 1 provides an overview of our analysis framework. We
consider a set of samples s1,...,sn,, e.g. proteins, genes, etc.,
and Ny > 2 embedding spaces Vj, C Rd", h=1,...,Ny. Every
embedding space Vj, corresponds to a different foundation
model which embeds the input samples into numerical vectors,
ie., s; — vgh) € Vi, Y h,i. To analyze the information captured
in the embedding spaces, a table of categorical feature vectors
fi,...,fn;, where each is a vector of length N, containing
the feature values of each sample. By f,[i] we denote the
value of the p-th feature of s;. The feature data can for
example include biological natural groupings, such as protein
family information, or experimental data, such as functional
annotations.

The embedding spaces may vary in dimensions, and there is
no direct correspondence between dimensions across embedding
spaces. To facilitate comparison across models, we focus our
analysis on the distances between embeddings within each
space. For each pair of samples s; and s;, the distance between
(h) , UYL))’

their respective embeddings, dist(v; is measured in
each embedding space V},. The pairwise distance measures form
the foundation for the following analysis. Different distance
measures, such as Euclidean, cosine, and Manhattan distance,
can and should be used to inspect the proximity of data points
from varying viewpoints (21). For parts of the analysis, only
the k-nearest neighbors (KNN) are considered to focus on
local parts of the embedding space. KNN based metrics have
been tailored for various applications (34), here we adjust and
leverage them for the needs of embedding comparisons. The
neighbors are identified based on pairwise distance measures,
with users defining the distance metric and the number of

neighbors k. We suggest setting k to around 10% of the total
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number of samples, but it will not be larger than the size of the
smallest feature class.

1.1 Analysis methods

We gathered a set of quantitative methods that are suitable
to measure information across embedding spaces. We group
the methods into feature distribution and pairwise space
comparison methods (see Figure 2). The choice of analysis steps
depends on the research goals, and we do not suggest that all
methods must be applied or follow a particular sequence. Each
method provides a unique perspective on what the foundation
models have learned, enabling insights tailored to specific use

cases.

1.1.1 Feature distribution across spaces
KNN feature alignment scores
We define scores that provide insight into how closely related a
sample is to its neighbors in terms of the feature f,.

For a given feature f,, and embedding space V},, the KNN
feature alignment score for each sample is defined as the fraction
of KNN ./\fs(lh> that share the same class label as the sample.

Score;h)(si) = % Hsj € .N’;h) ] = fp[i]}‘

The score ranges from 0 to 1, with higher values indicating
a greater representation of the feature class in the sample’s
neighborhood.

KNN feature alignment scores can be stratified by feature
labels to examine the extent to which each feature class is
captured in an embedding space. Furthermore, KNN feature
alignment scores of one embedding space can be directly
compared to those from another embedding space, enabling an
assessment of how well different models capture relationships
for the same feature.

KNN class mixing matrix

We propose the inspection of how close individual feature
classes are in each of the embedding spaces to gain insights into
feature classes how similar different feature classes are encoded
by the models. For each sample in a given embedding space and
for a selected feature, we count how many times each feature
class occurs within the KNN embeddings. For each feature
class, we then sum the number of times the neighbors belong
to that class for all samples that share the same class label.
This process is repeated for every feature class, aggregating
the class counts across all samples in the embedding space to
get a comprehensive view of how feature classes are distributed
within the space. The results are presented in a matrix format,
where each column corresponds to a specific feature class, and
each row represents the count of neighbors for samples labeled
with that feature class, organized by their own feature class.
High values in the matrix suggest that embeddings from the
feature class in the column are frequently found close to samples
from the feature class in the row, indicating that the model
interprets them as more similar. However, it is important to
note that a high degree of neighborhood coherence for a feature
class may also imply the presence of multiple subclusters within
that class.

1.1.2 Pairwise space comparison

Global comparison of pairwise distances

To perform a global comparison of pairwise distances
across embeddings, we compute Spearman’s rank correlation
coefficient of pairwise distance values. This statistical measure

perpetuity. It is made available under aCC-BY 4.0 International license.

allows us to evaluate how well the pairwise relationships
between embeddings are preserved across different embedding
spaces by comparing their ranking across different spaces.

To visualize, the pairwise distances in the two embedding
spaces can be plotted against each other in a scatter plot.

Cross-space neighborhood similarity

To quantify and analyze local differences between two
embedding spaces, we first identify the KNN for each sample
in both spaces. As in previous approaches for embedding space
comparison (15; 5; 29; 11), we compute the overlap of these
KNN between the two spaces for each sample, enabling a
comparison of how similar the local neighborhoods of each
sample are in the two embedding spaces. We focus on the most
and least similar sets of samples. In addition to previous work,
we quantify the feature distribution within these subsets to
characterise the differing samples and provide context.

1.2 Implementation in the EmmaEmb Python library

To make the proposed framework accessible, we developed
a light-weight modular Python library called EmmaEmb.
which
handles embedding spaces, feature data, and intermediate

The library is centered around the Emma object,

computational results. Multiple functions on the Emma object
enable analysis of feature distributions across embedding
spaces, including feature alignment and neighborhood analysis,
as well as pairwise space comparisons between different
embedding spaces. EmmaEmb integrates functionalities from
established libraries such as scikit-learn (23) and Plotly
(17) to calculate the described analysis measures and offers
intuitive options for visualizing the results. For distance
measurement, EmmaEmb provides a variety of metrics,
including Manhattan, Euclidean, and cosine distances, along
with their normalized and scaled variants. The library is
designed as a modular framework that can be extended for
further types of analysis, such as clustering approaches or
topological analysis. Additionally, the repository includes
a script that facilitates the extraction of embeddings from
the PLMs listed in Table 2, integrating sequence-chopping
algorithms to process long sequences.

2. Experimental setup
2.1 Datasets

Two datasets were chosen to test the capabilities of our
embedding space analysis framework.

DeepLoc
We utilized the of the
DeepLoc dataset, which consists of 11,231 protein sequences

training set of wversion 1.0
from eukaryotes annotated with subcellular localization
information across 10 distinct classes (2). DeepLoc is
a widely used benchmark dataset for evaluating protein
subcellular localization prediction models (30; 16), offering a
comprehensive resource for comparing the embedding space
analysis framework’s results to task-specific supervised ML
model performance.

PLA2G2

The PLA2G2 dataset consists of protein sequences from the
phospholipase A2 family, specifically the phospholipase A2
Isozyme Group II (PLA2G2) published in (18). The dataset
includes protein sequences annotated across 7 different species
and proteins are categorized into 11 different enzyme classes. To
enable comprehensive data integration, only proteins with both
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Fig. 2. Graphical overview of proposed methods for embedding space analysis. For the analysis of the feature distribution of a specific feature (here:
feature f;) for a set of samples (here: s; — sg) across embedding spaces (here: feature Vi — V3) we propose two methods. Firstly, A. KNN feature
alignment scores. The KNN feature alignment scores are calculated for each embedding within its embedding space, as a fraction of its k-nearest
neighboring embeddings that share the same class label as the embedding itself. By comparing the distribution of KNN feature alignment scores across
different embedding spaces, we can assess how closely embeddings of the same f; class are to other embeddings of the same class. The score provides
insights into how well an embedding model has learned to group embeddings with similar characteristics. Secondly, B. KNN class mixing matrix.
The matrix is calculated separately for each embedding space (here: for V). For each embedding, the class distribution of class labels of its k-nearest
neighbors is computed. The class distributions are then summed for all embeddings of the same class. The resulting matrix shows, for each class, the
number of k-nearest neighbors of embeddings from this class for another class. This allows insights into which classes are close to each other and which are
more differentiated within the embedding space. We also propose methods for pairwise embedding space comparison, such as C. Global comparison
of pairwise distances (here: between embedding space V, and V3). For this method, we first calculate all pairwise distances between embeddings
within each embedding space. Then, we compare the correlation of pairwise distances, e.g. distance between sy, sz, across the two embedding spaces.
This method provides an overview of the global similarity between embedding spaces and reveals groups of samples that are differently represented. D.
Cross-space neighborhood similarity, in contrast, quantifies local differences between two embedding spaces. It is calculated for each sample as the
number of k-nearest neighbors shared between V> and V3. Identifying and characterizing samples with high divergence in their local neighborhood can

help to uncover structural differences between the embedding spaces.

species and enzyme class information were included, resulting 2.2 Embeddings

in a final set of 446 proteins. Compared to the DeepLoc dataset, Table 2 provides an overview of the transformer-based protein
the PLA2G2 dataset exhibits greater sequence similarity, language models evaluated in the experiments. As some of these
making it more suitable for studying evolutionary changes. models have restrictions on the maximum sequence length,

protein sequences longer than 1022 amino acids were divided
into smaller chunks. Each chunk was processed with a minimum
overlap of 300 amino acids to maintain sequence continuity.
The embeddings for each chunk were then aggregated using
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Table 2. Overview of the protein language models used in this study.

perpetuity. It is made available under aCC-BY 4.0 International license.

Only trained on sequence data
Only trained on sequence data
ProtT5 fine-tuned for translation between sequence and structure
Only trained on sequence data

Model Ref Version # Embedding Training
name parameters length

Ankh (9) large 1.15B 1536

ProtT5 (10) prot_t5_xl_uniref50 3B 1024

ProstT5 (20) - 3B 1024

ESM2 (22) esm2_t36_.3B_.UR50D 3B 2560

ESMC (31) esmc-300m-2024-12 300M 960

Related to the multimodal ESM3 model (14), but optimised for

representation learning

the mean of all chunk embeddings, resulting in a single unified
representation for the full-length protein. As proposed by
Brandes et al. (7), to ensure that the entire sequence is
effectively represented, chunks were taken with overlapping
windows from both sides, and if necessary, an additional
window was included in the middle to fill any gaps.

Results and discussion

Distribution of protein localization information

We evaluate our embedding space analysis approach by
comparing its results with those derived from training ML
models on embeddings, focusing on the subcellular localization
task. In particular, we consider results from light-attention
networks, which have demonstrated superior performance
compared to other approaches on embeddings from PLMs for
this task (30). The networks were trained specifically for the
subcellular localization task using the Deeploc training set
(30; 16), and we compare our findings to the results of these
task-specific models reported on test sets. KNN computation
in the embedding space analysis was conducted using k = 100
and the cosine distance.

To compare how well models capture the subcellular
localization information we calculated the KNN feature
alignment scores. According to the estimated distribution,
ProtT5 has the highest scores on average, followed by Ankh,
ESM2 and ProstT5 (Figure 3A). This ranking was statistically
validated using one-sided Wilcoxon signed-rank tests (n =
11,231): ProtT5 vs ESM2 (p-value < 0.0001, ranked biserial
correlation coefficient = 0.20), ESM2 vs Ankh (p-value <
0.0001, ranked biserial correlation coefficient = 0.12), and
Ankh vs ProtT5 (p-value < 0.0001 , ranked biserial correlation
coefficient = 0.46). This ranking aligns with previously reported
performance when the embeddings from these models were
used with a trained light-attention network for this task
(16). The observed consistency between the mean KNN
feature alignment scores and ML-based performance rankings
shows that embedding-based KNN feature alignment analysis
can serve as a proxy for evaluating the informativeness of
embeddings in downstream tasks.

Next, we calculated mean aggregated KNN enrichment
scores per embedding space, stratified by feature classes
(Figure 3B). This approach highlights which feature classes are
consistently well captured in the model’s representations, such
as “Extracellular”and “Nucleus”, while also identifying models
that capture specific classes more effectively, such as ProtT5
for “Plastid”and “Mitochondrion”. Further analysis reveals a
strong correlation between the mean KNN feature alignment
scores of the ProtT5 embedding space for specific subcellular
localization classes and the prediction accuracy achieved by

a light-attention model trained on ProtT5 embeddings, as
reported in (30). This relationship, illustrated in Figure 3C,
is supported by a two-sided Spearman’s rank correlation
coefficient of 0.97 (p-value < 0.0001). This analysis provides
similar insights but at a more granular level, demonstrating
that embedding space analysis can be used to approximate the
models’ overall understanding of not only of specific features
but also for different feature classes.

Even more fine-grained, the differentiation of different
feature classes within the ProtT5 embedding space are also
examined using the proposed KNN class mixing matrix (see
Figure 3D). For classes that are not yet well differentiated in
the space, such as “Cytoplasm”, it is possible to dive deeper
into feature classes that proteins from this class are located
nearby and might be “mixed”with. For example, proteins
classified as “Cytoplasm”are in proximity to those classified as
“Nucleus”. This information can aid in more targeted training
of models to better differentiate specific features and improve
class separation in the embedding space. Again we compare
the results with the results from the light-attention approach.
For each class, we examine the closest neighboring class in the
KNN class matrix and then identify the classes to which the
proteins were most frequently misclassified in task-specific ML
classification. We found that for all 8 of 10 classes, the closest
neighboring class corresponded to the class where proteins
were most often misclassified as belonging to that class in the
task-specific ML model.

Our results support the idea that, with an increasing number
of models and benchmarking tasks, embedding space analysis
could play a key role in pre-selecting models for further,
more computationally intensive, task-specific, and embedding-
specific analyses. It is important to recognize that task-specific
ML models may uncover task-relevant complex relationships
between dimensions that might not be apparent in a global
analysis on the entire embedding space. Adding to this, recent
work comparing the performance of task-specific ML models
trained on embeddings versus fine-tuning PLMs suggests that
the superior performance of one PLM over another in a task-
specific embedding approach does not necessarily predict its
superiority after fine-tuning (26). Therefore, benchmarking
for specific tasks remains essential for evaluating task-specific
models.

Comparison of ESMC and ProtT5 embeddings for
PLA2G2 proteins

In this section, we apply our pairwise space comparison to the
PLA2G2 dataset. We compare the ProtT5 model against the
recently published ESMC model. The two models differ in their
training, parameter sizes, as well as embedding dimensions (see
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Fig. 3. Feature distribution analysis of subcellular localization feature in the DeepLoc dataset across the ProstT5, ESM2, Ankh, and ProtT5 models.

KNN analysis is performed with k = 100 and cosine distance. A. Boxplots displaying the KNN feature distribution scores per model. Protein localization

information is most closely represented in ProtT5, followed by ESM2, Ankh, and ProstT5. B. Heatmap of the mean KNN feature distribution score per

embedding space and feature class. Some classes are strongly represented across all models, while others are captured by only specific models. C. Scatter

plot comparing the accuracy of a supervised machine learning model trained on the ProtT5 embeddings (as reported by Stark et al. (30)) on the x-axis

and the mean KNN feature alignment scores for the ProtT5 embeddings

on the y-axis. Each dot represents a different localization class, and a strong

correlation is observed between these two measures. D. KNN class mixing matrix for the ProtT5 embedding space. Some classes are represented in closer

proximity to each other than others. Cyt: Cytoplasm; End: Endoplasmic reticulum; Ext: Extracellular; Gol: Golgi apparatus; Lys: Lysosome/vacuole;

Mem: Cell membrane; Mit: Mitochondrion; Nuc: Nucleus; Per: Peroxisome; Pla: Plastid.

Table 2). Our aim is to investigate whether these models exhibit
differences in how they represent this set of enzyme proteins.

Global correlation analysis of the pairwise cosine distances
between the embeddings of the models shows a high Spearman’s
rank correlation coefficient of 0.75 (p-value < 0.0001) between
ESMC and ProtT5. This indicates a substantial similarity
in how these two models represent relationships among the
sequences overall.

‘When examining the scatter plot of pairwise cosine distances
for embeddings of the ESMC and ProtT5 models, we observe

that many data points align along a linear trend, consistent
with the high correlation value. However, a distinct cluster
of proteins deviates profoundly, with much greater pairwise
distances in ProtT5 compared to ESMC (see Figure 4A.1).
We could identify this driven by a subset of bird proteins
as illustrated in Figure 4A.2. Notably, this difference
representation is not observed when comparing pairwise

in

distances for other species, such as crocodiles (see Figure 4A.3).
This analysis raises new questions about the models and
why they have learned to represent a subset of bird proteins
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Fig. 4. A. The top row displays pairwise cosine distances between PLA2G2 embeddings using ESMC (x-axis) and ProtT5 (y-axis). A.1l for all
embeddings, A.2 between embeddings of bird proteins (red), and A.3 between embeddings of crocodile proteins (yellow). B. The bottom row illustrates

the class distribution of proteins with 30% local neighborhood overlap (cosine distance, k = 10) between the ESMC and ProtT5 models, compared to

overall dataset representation (x-axis) for the features: B.1 species, B.2 enzyme classes, and B.3 sequence length.

differently. One possibility is that one of the models has learned
finer distinctions between subgroups of bird species, potentially
due to differences in training data.

As a final step, we compare local neighborhoods between
the models and identified proteins with a local neighborhood
similarity of less than 30% when comparing the ESMC and
ProtT5 models. Analyzing the distribution of species, enzyme
classes and amino acid sequence lengths (see Figure 4B).
In comparison to the global analysis, local changes between
the ESMC and ProtT5 models were not observed in bird
proteins but rather in proteins from squamates and reptilia.
This suggests that, even though the positions of points
corresponding to bird species may have shifted within the
embedding space, the local neighborhood information for bird
sequences is preserved, indicating a consistent representation
of their relationships within the space. This analysis highlights
the importance of analyzing embedding spaces at both global
and local levels, which will give partially complementary views.

Conclusion

In summary, we show that comparing embedding space
analysis with supervised machine learning models trained on
the embeddings provides similar insights into model learning,
without requiring task-specific or model-specific training. While
embedding space analysis is limited to the information captured
in the overall embedding space without accounting for complex
interactions or subspaces, it can play a key role in pre-selecting
the growing number of models for further training.

Further, we explore the use of embedding space analysis to
investigate discrepancies between PLMs on subsets of the data.

This approach helps to identify discrepancies in the information
captured by the models, which can reveal gaps in the training
data or highlight complementary learned information.

Although our approach is demonstrated here with protein
sequence embeddings, it is domain-agnostic. It can be applied
to embedding spaces across foundation models in molecular
biology and beyond, particularly in cases foundation models
are combined with structured metadata.
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