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Abstract

Foundation models, which encode patterns in large, high-dimensional data as embeddings, show promise in many machine
learning related applications in molecular biology. Embeddings learned by the models provide informative features for
downstream prediction tasks, however, the information captured by the model is often not interpretable. One approach to
understanding the captured information is through the analysis of their learned embeddings, which in molecular biology
so far has mainly focused on visualizing individual embedding spaces. This study introduces a quantitative framework
for cross-space comparison, enabling intuitive exploration and comparison of embedding spaces in molecular biology. The
framework emphasizes analyzing the distribution of known biological information within embedding space neighborhoods
and provides insights into relationships between multiple embedding spaces. Comparison techniques include global pairwise
distance measurements as well as local nearest neighbor analyses. By applying our framework to embeddings from protein
language models, we demonstrate how embedding space analysis can serve as a valuable pre-filtering step for task-specific
supervised machine learning applications and for the recognition of differential patterns in data encoded within and
across different embedding spaces. To support a wide usability, we provide a Python library that implements all analysis
methods, available at https://github.com/broadinstitute/EmmaEmb.

Key words: foundation models, protein language models, molecular biology, embedding spaces, vector space analysis,
embedding interpretability, data exploration

Introduction

With the growing availability of data and computing power,

foundation models have become increasingly relevant in

molecular biology for encoding the high-dimensional data

generated by laboratory experiments. Foundation models are

trained to identify the inherent relationships within the training

data, uncovering complex patterns. By using large datasets

as input, foundation models place individual data points

into a broader context, generating representations that are

informative for a range of applications (22; 10).

Protein language models (PLMs) are a specific type of

foundation model. These models are based on the architectures

of Large Language Models, which have revolutionized text

processing in Natural Language Processing. PLMs, such as

ESM2 (22) and ProtT5 (10), are trained on large amounts

of protein sequence data from various species and generate

representations that capture the evolutionary relationships of

proteins. The learned representations, also referred to as

embeddings, can be leveraged for a variety of downstream tasks,

including protein structure prediction (22), function prediction

(20), and variant effect prediction (7).

As more foundation models, such as PLMs, based on

varying architectures, training data, and data modalities

emerge, it becomes increasingly important and interesting

to understand what they have learned. This understanding

can guide the appropriate application of the models but

also help to detect biases in the models’ representations (8).

Further, understanding the models’ learned patterns enables

researchers to leverage them to offer new biological insights

(4). However, due to their complex architecture and high
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Table 1. Comparison of published tools for the simultaneous analysis of multiple embedding spaces.
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Tool Description

EmmaEmb PCA, t-SNE, UMAP ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ The proposed tool in this paper

repcomp (28) - - - - - ✔ ✔ - ✔ Computation of similarities between two embedding

spaces; Nearest neighbours, canonical correlation, unit

match; No visualisation of results

embComp (15) IsoMap, LLE, MDS,

PCA, t-SNE, UMAP

- - - ✔ - ✔ - - Visual local neighbourhood analysis, based on KNN;

Distribution of similarities; Cosine or Euclidean distance

Embedding

Comparator (5)

PCA, t-SNE, UMAP - - - ✔ - ✔ - ✔ Visual local neighbourhood analysis, based on KNN;

Distribution of similarities; Highlighting least similar

samples and their nearest neighbours; Cosine or Euclidean

distance

Vectory (24) PCA, UMAP - - - ✔ ✔ - - ✔ Aggregated similarity of local neighbourhoods based on

KNN; Cosine or Euclidean distance

Emblaze (29) PCA, t-SNE, UMAP ✔ - - ✔ - ✔ - ✔ Visual local neighbourhood analysis, based on KNN;

Visualising trajectories of points between embedding

spaces; Highlighting nearest neighbours of individual

embeddings and user-selected sets of embeddings; Cosine

or Euclidean distance

EmbCompare

(11)

PCA ✔ - - ✔ ✔ ✔ - ✔ Visual local neighbourhood analysis, based on KNN;

Distribution of similarities; Highlighting least similar

samples; Cosine distance

* IsoMap (32); LLE: local linear embedding (25); MDS: multi-dimensional scaling (19); PCA: principal component analysis; t-SNE: t-stochastic

neighborhood embedding; UMAP: uniform manifold approximation and projection

number of parameters, understanding what these models have

learned is not straightforward. Therefore, it is crucial to

develop methods for understanding the underlying patterns and

features captured by the models.

In Natural Language Processing, embedding space analysis

is a key approach for interpreting model behavior. Getting a

better understanding of the distribution of points within one

embedding space has helped to reveal semantic relationships

(33) and biases (6) in the embeddings of language models.

Additionally, identifying similarities between embedding spaces

from different languages has facilitated the transfer of

information from high-resource languages to a low-resource

language, which has limited training data (13).

In the field of molecular biology, embedding space

analysis has also been leveraged, for example, to understand

the properties of the embedding space and its impact

on continuous prediction tasks (1; 12), as well as to

analyze multiple modalities within a single embedding space

(3). However, comparisons across embedding spaces have

primarily been performed visually, often using dimensionality

reduction techniques such as principal component analysis, t-

distributed stochastic neighbor embedding, uniform manifold

approximation and projection, pairwise controlled manifold

approximation, and multidimensional scaling (27; 22) or by

the use of tree-based hierarchical visualizations (35). We see

a potential for advancing the use of embedding space analysis

in the field of molecular biology through quantitative analysis

across embedding space.

A common standard for understanding which features,

such as the function of a protein, are captured by a model

is to benchmark the model on downstream tasks using

supervised machine learning (ML) (16). Small task-specific

classifiers are trained on PLM embeddings. This approach

requires task-specific models for each feature and each PLM

of interest, which becomes increasingly resource-intensive

as the number of models and benchmark datasets grows.

Analysis of the embedding space provides a less resource-

intensive initial evaluation. By examining the distribution

of categorical features across various embedding spaces, we

can gain insights into how these features are represented

by assessing the proximity of samples from different classes.

Although this analysis is less detailed and does not uncover

complex relationships between the embedding dimensions, it

offers valuable initial insights into the informativeness of

the representations across different embedding spaces and

contexts. This initial evaluation is particularly useful for

determining which models warrant the application of more

resource-intensive ML approaches.

Additionally, by directly comparing the distances between

samples in different embedding spaces, we gain insights

into similarities and differences between the models’ learned

information. Discrepancies in distances between the spaces

can provide insights into complementary information that the

models have acquired or highlight potential biases or noise

the models have learned. One bottleneck hindering the cross-

space embedding analysis of foundation models in molecular

biology is the lack of frameworks and tools to facilitate
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Fig. 1. Overview of the proposed analysis workflow. Our framework aims to analyse the information captured in different embedding spaces. A. Starting

with a set of samples (e.g. genes or proteins, here: Data s1 − s6), embeddings are derived from different foundation models (here: Foundation Models

1-3). In the example of proteins, embeddings could be derived from protein language models that vary in their architecture or training. B Categorical

data about the samples (here: f1 − f3) is integrated into the analysis, e.g. annotations of the function of proteins, protein families, etc. The embeddings,

along with sample-specific categorical feature data, are then analyzed together using two main types of approaches. First, C. deriving the distribution of

specific features, such as protein families, within neighborhoods of each embedding space, and comparing them across embedding spaces. This analysis

is based on a k-nearest neighbors approach, quantifying how closely features from one class are in proximity and which classes are neighboring classes.

Secondly, D. two embedding spaces can be compared to identify similarities and differences in the pairwise distances between embeddings or k-nearest

neighbors. Regions of high difference can be further analyzed using the feature data to characterize the samples that were represented differently by the

model. The introduced EmmaEmb python framework is a freely accessible implementation of the described approach.

rapid exploration. Although approaches for comparing multiple

embedding spaces exist in other domains, particularly language

(see Table 1), their value in molecular biology applications

remains limited, and to our knowledge, the listed tools have

not been applied in this context. Two key factors contribute to

this gap. First, there has been a great emphasis on comparing

embedding spaces visually after dimension reduction methods

are applied, with little exploration of quantifying feature

distributions. Second, there is often a focus on analyzing

individual data points, a practice common in tools designed for

Natural Language Processing, where entities such as words are

easily interpretable by users. However, in molecular biology,

context is essential, as the names of proteins and genes

by themselves may not provide substantial meaning, even

to experts. Instead, valuable insights are often gained by

understanding the distribution of groups of data points with

a specific biological meaning. Therefore, we emphasize the

importance of incorporating the relationship between different

natural groupings of the samples into the analysis, which is

commonly lacking in Natural Language Processing tools.

To bridge this gap, we developed a comprehensive

framework for the quantitative and cross-space analysis

of embedding spaces in molecular biology. Our approach

focuses on feature distributions within embedding space

neighborhoods and enables comparisons across embedding

spaces using methods such as global distance metrics and

local neighborhood analyses. We evaluate insights gained from

our analysis framework by comparing them to those derived

from task-specific ML models. Additionally, we investigate how

embedding space analysis can be leveraged to generate new

hypotheses about the similarities between data representations

across different models. To promote accessibility, we publish

the Python library Embedding, Metadata, and Multimodel

Analyzer for Exploration in Molecular Biology (EmmaEmb),

which implements all framework components.

Methods and Materials

1. Embedding space analysis framework
Figure 1 provides an overview of our analysis framework. We

consider a set of samples s1, . . . , sNs
, e.g. proteins, genes, etc.,

and NV ≥ 2 embedding spaces Vh ⊂ Rdh , h = 1, ..., NV . Every

embedding space Vh corresponds to a different foundation

model which embeds the input samples into numerical vectors,

i.e., si 7→ v
(h)
i ∈ Vh, ∀h, i. To analyze the information captured

in the embedding spaces, a table of categorical feature vectors

f1, . . . , fNf
, where each is a vector of length Ns containing

the feature values of each sample. By fp[i] we denote the

value of the p-th feature of si. The feature data can for

example include biological natural groupings, such as protein

family information, or experimental data, such as functional

annotations.

The embedding spaces may vary in dimensions, and there is

no direct correspondence between dimensions across embedding

spaces. To facilitate comparison across models, we focus our

analysis on the distances between embeddings within each

space. For each pair of samples si and sj , the distance between

their respective embeddings, dist(v
(h)
i , v

(h)
j ), is measured in

each embedding space Vh. The pairwise distance measures form

the foundation for the following analysis. Different distance

measures, such as Euclidean, cosine, and Manhattan distance,

can and should be used to inspect the proximity of data points

from varying viewpoints (21). For parts of the analysis, only

the k-nearest neighbors (KNN) are considered to focus on

local parts of the embedding space. KNN based metrics have

been tailored for various applications (34), here we adjust and

leverage them for the needs of embedding comparisons. The

neighbors are identified based on pairwise distance measures,

with users defining the distance metric and the number of

neighbors k. We suggest setting k to around 10% of the total
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number of samples, but it will not be larger than the size of the

smallest feature class.

1.1 Analysis methods

We gathered a set of quantitative methods that are suitable

to measure information across embedding spaces. We group

the methods into feature distribution and pairwise space

comparison methods (see Figure 2). The choice of analysis steps

depends on the research goals, and we do not suggest that all

methods must be applied or follow a particular sequence. Each

method provides a unique perspective on what the foundation

models have learned, enabling insights tailored to specific use

cases.

1.1.1 Feature distribution across spaces

KNN feature alignment scores

We define scores that provide insight into how closely related a

sample is to its neighbors in terms of the feature fp.

For a given feature fp and embedding space Vh, the KNN

feature alignment score for each sample is defined as the fraction

of KNN N (h)
si

that share the same class label as the sample.

Score
(h)
p (si) :=

1

k

∣∣∣{sj ∈ N (h)
si

: fp[j] = fp[i]
}∣∣∣

The score ranges from 0 to 1, with higher values indicating

a greater representation of the feature class in the sample’s

neighborhood.

KNN feature alignment scores can be stratified by feature

labels to examine the extent to which each feature class is

captured in an embedding space. Furthermore, KNN feature

alignment scores of one embedding space can be directly

compared to those from another embedding space, enabling an

assessment of how well different models capture relationships

for the same feature.

KNN class mixing matrix

We propose the inspection of how close individual feature

classes are in each of the embedding spaces to gain insights into

feature classes how similar different feature classes are encoded

by the models. For each sample in a given embedding space and

for a selected feature, we count how many times each feature

class occurs within the KNN embeddings. For each feature

class, we then sum the number of times the neighbors belong

to that class for all samples that share the same class label.

This process is repeated for every feature class, aggregating

the class counts across all samples in the embedding space to

get a comprehensive view of how feature classes are distributed

within the space. The results are presented in a matrix format,

where each column corresponds to a specific feature class, and

each row represents the count of neighbors for samples labeled

with that feature class, organized by their own feature class.

High values in the matrix suggest that embeddings from the

feature class in the column are frequently found close to samples

from the feature class in the row, indicating that the model

interprets them as more similar. However, it is important to

note that a high degree of neighborhood coherence for a feature

class may also imply the presence of multiple subclusters within

that class.

1.1.2 Pairwise space comparison

Global comparison of pairwise distances

To perform a global comparison of pairwise distances

across embeddings, we compute Spearman’s rank correlation

coefficient of pairwise distance values. This statistical measure

allows us to evaluate how well the pairwise relationships

between embeddings are preserved across different embedding

spaces by comparing their ranking across different spaces.

To visualize, the pairwise distances in the two embedding

spaces can be plotted against each other in a scatter plot.

Cross-space neighborhood similarity

To quantify and analyze local differences between two

embedding spaces, we first identify the KNN for each sample

in both spaces. As in previous approaches for embedding space

comparison (15; 5; 29; 11), we compute the overlap of these

KNN between the two spaces for each sample, enabling a

comparison of how similar the local neighborhoods of each

sample are in the two embedding spaces. We focus on the most

and least similar sets of samples. In addition to previous work,

we quantify the feature distribution within these subsets to

characterise the differing samples and provide context.

1.2 Implementation in the EmmaEmb Python library

To make the proposed framework accessible, we developed

a light-weight modular Python library called EmmaEmb.

The library is centered around the Emma object, which

handles embedding spaces, feature data, and intermediate

computational results. Multiple functions on the Emma object

enable analysis of feature distributions across embedding

spaces, including feature alignment and neighborhood analysis,

as well as pairwise space comparisons between different

embedding spaces. EmmaEmb integrates functionalities from

established libraries such as scikit-learn (23) and Plotly

(17) to calculate the described analysis measures and offers

intuitive options for visualizing the results. For distance

measurement, EmmaEmb provides a variety of metrics,

including Manhattan, Euclidean, and cosine distances, along

with their normalized and scaled variants. The library is

designed as a modular framework that can be extended for

further types of analysis, such as clustering approaches or

topological analysis. Additionally, the repository includes

a script that facilitates the extraction of embeddings from

the PLMs listed in Table 2, integrating sequence-chopping

algorithms to process long sequences.

2. Experimental setup

2.1 Datasets

Two datasets were chosen to test the capabilities of our

embedding space analysis framework.

DeepLoc

We utilized the training set of version 1.0 of the

DeepLoc dataset, which consists of 11,231 protein sequences

from eukaryotes annotated with subcellular localization

information across 10 distinct classes (2). DeepLoc is

a widely used benchmark dataset for evaluating protein

subcellular localization prediction models (30; 16), offering a

comprehensive resource for comparing the embedding space

analysis framework’s results to task-specific supervised ML

model performance.

PLA2G2

The PLA2G2 dataset consists of protein sequences from the

phospholipase A2 family, specifically the phospholipase A2

Isozyme Group II (PLA2G2) published in (18). The dataset

includes protein sequences annotated across 7 different species

and proteins are categorized into 11 different enzyme classes. To

enable comprehensive data integration, only proteins with both
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Fig. 2. Graphical overview of proposed methods for embedding space analysis. For the analysis of the feature distribution of a specific feature (here:

feature f1) for a set of samples (here: s1 − s6) across embedding spaces (here: feature V1 − V3) we propose two methods. Firstly, A. KNN feature

alignment scores. The KNN feature alignment scores are calculated for each embedding within its embedding space, as a fraction of its k-nearest

neighboring embeddings that share the same class label as the embedding itself. By comparing the distribution of KNN feature alignment scores across

different embedding spaces, we can assess how closely embeddings of the same f1 class are to other embeddings of the same class. The score provides

insights into how well an embedding model has learned to group embeddings with similar characteristics. Secondly, B. KNN class mixing matrix.

The matrix is calculated separately for each embedding space (here: for V1). For each embedding, the class distribution of class labels of its k-nearest

neighbors is computed. The class distributions are then summed for all embeddings of the same class. The resulting matrix shows, for each class, the

number of k-nearest neighbors of embeddings from this class for another class. This allows insights into which classes are close to each other and which are

more differentiated within the embedding space. We also propose methods for pairwise embedding space comparison, such as C. Global comparison

of pairwise distances (here: between embedding space V2 and V3). For this method, we first calculate all pairwise distances between embeddings

within each embedding space. Then, we compare the correlation of pairwise distances, e.g. distance between s1, s2, across the two embedding spaces.

This method provides an overview of the global similarity between embedding spaces and reveals groups of samples that are differently represented. D.

Cross-space neighborhood similarity, in contrast, quantifies local differences between two embedding spaces. It is calculated for each sample as the

number of k-nearest neighbors shared between V2 and V3. Identifying and characterizing samples with high divergence in their local neighborhood can

help to uncover structural differences between the embedding spaces.

species and enzyme class information were included, resulting

in a final set of 446 proteins. Compared to the DeepLoc dataset,

the PLA2G2 dataset exhibits greater sequence similarity,

making it more suitable for studying evolutionary changes.

2.2 Embeddings

Table 2 provides an overview of the transformer-based protein

language models evaluated in the experiments. As some of these

models have restrictions on the maximum sequence length,

protein sequences longer than 1022 amino acids were divided

into smaller chunks. Each chunk was processed with a minimum

overlap of 300 amino acids to maintain sequence continuity.

The embeddings for each chunk were then aggregated using
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Table 2. Overview of the protein language models used in this study.

Model

name

Ref Version #

parameters

Embedding

length

Training

Ankh (9) large 1.15B 1536 Only trained on sequence data

ProtT5 (10) prot t5 xl uniref50 3B 1024 Only trained on sequence data

ProstT5 (20) - 3B 1024 ProtT5 fine-tuned for translation between sequence and structure

ESM2 (22) esm2 t36 3B UR50D 3B 2560 Only trained on sequence data

ESMC (31) esmc-300m-2024-12 300M 960 Related to the multimodal ESM3 model (14), but optimised for

representation learning

the mean of all chunk embeddings, resulting in a single unified

representation for the full-length protein. As proposed by

Brandes et al. (7), to ensure that the entire sequence is

effectively represented, chunks were taken with overlapping

windows from both sides, and if necessary, an additional

window was included in the middle to fill any gaps.

Results and discussion

Distribution of protein localization information
We evaluate our embedding space analysis approach by

comparing its results with those derived from training ML

models on embeddings, focusing on the subcellular localization

task. In particular, we consider results from light-attention

networks, which have demonstrated superior performance

compared to other approaches on embeddings from PLMs for

this task (30). The networks were trained specifically for the

subcellular localization task using the DeepLoc training set

(30; 16), and we compare our findings to the results of these

task-specific models reported on test sets. KNN computation

in the embedding space analysis was conducted using k = 100

and the cosine distance.

To compare how well models capture the subcellular

localization information we calculated the KNN feature

alignment scores. According to the estimated distribution,

ProtT5 has the highest scores on average, followed by Ankh,

ESM2 and ProstT5 (Figure 3A). This ranking was statistically

validated using one-sided Wilcoxon signed-rank tests (n =

11,231): ProtT5 vs ESM2 (p-value < 0.0001, ranked biserial

correlation coefficient = 0.20), ESM2 vs Ankh (p-value <

0.0001, ranked biserial correlation coefficient = 0.12), and

Ankh vs ProtT5 (p-value < 0.0001 , ranked biserial correlation

coefficient = 0.46). This ranking aligns with previously reported

performance when the embeddings from these models were

used with a trained light-attention network for this task

(16). The observed consistency between the mean KNN

feature alignment scores and ML-based performance rankings

shows that embedding-based KNN feature alignment analysis

can serve as a proxy for evaluating the informativeness of

embeddings in downstream tasks.

Next, we calculated mean aggregated KNN enrichment

scores per embedding space, stratified by feature classes

(Figure 3B). This approach highlights which feature classes are

consistently well captured in the model’s representations, such

as “Extracellular”and “Nucleus”, while also identifying models

that capture specific classes more effectively, such as ProtT5

for “Plastid”and “Mitochondrion”. Further analysis reveals a

strong correlation between the mean KNN feature alignment

scores of the ProtT5 embedding space for specific subcellular

localization classes and the prediction accuracy achieved by

a light-attention model trained on ProtT5 embeddings, as

reported in (30). This relationship, illustrated in Figure 3C,

is supported by a two-sided Spearman’s rank correlation

coefficient of 0.97 (p-value < 0.0001). This analysis provides

similar insights but at a more granular level, demonstrating

that embedding space analysis can be used to approximate the

models’ overall understanding of not only of specific features

but also for different feature classes.

Even more fine-grained, the differentiation of different

feature classes within the ProtT5 embedding space are also

examined using the proposed KNN class mixing matrix (see

Figure 3D). For classes that are not yet well differentiated in

the space, such as “Cytoplasm”, it is possible to dive deeper

into feature classes that proteins from this class are located

nearby and might be “mixed”with. For example, proteins

classified as “Cytoplasm”are in proximity to those classified as

“Nucleus”. This information can aid in more targeted training

of models to better differentiate specific features and improve

class separation in the embedding space. Again we compare

the results with the results from the light-attention approach.

For each class, we examine the closest neighboring class in the

KNN class matrix and then identify the classes to which the

proteins were most frequently misclassified in task-specific ML

classification. We found that for all 8 of 10 classes, the closest

neighboring class corresponded to the class where proteins

were most often misclassified as belonging to that class in the

task-specific ML model.

Our results support the idea that, with an increasing number

of models and benchmarking tasks, embedding space analysis

could play a key role in pre-selecting models for further,

more computationally intensive, task-specific, and embedding-

specific analyses. It is important to recognize that task-specific

ML models may uncover task-relevant complex relationships

between dimensions that might not be apparent in a global

analysis on the entire embedding space. Adding to this, recent

work comparing the performance of task-specific ML models

trained on embeddings versus fine-tuning PLMs suggests that

the superior performance of one PLM over another in a task-

specific embedding approach does not necessarily predict its

superiority after fine-tuning (26). Therefore, benchmarking

for specific tasks remains essential for evaluating task-specific

models.

Comparison of ESMC and ProtT5 embeddings for
PLA2G2 proteins
In this section, we apply our pairwise space comparison to the

PLA2G2 dataset. We compare the ProtT5 model against the

recently published ESMC model. The two models differ in their

training, parameter sizes, as well as embedding dimensions (see
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Fig. 3. Feature distribution analysis of subcellular localization feature in the DeepLoc dataset across the ProstT5, ESM2, Ankh, and ProtT5 models.

KNN analysis is performed with k = 100 and cosine distance. A. Boxplots displaying the KNN feature distribution scores per model. Protein localization

information is most closely represented in ProtT5, followed by ESM2, Ankh, and ProstT5. B. Heatmap of the mean KNN feature distribution score per

embedding space and feature class. Some classes are strongly represented across all models, while others are captured by only specific models. C. Scatter

plot comparing the accuracy of a supervised machine learning model trained on the ProtT5 embeddings (as reported by Stärk et al. (30)) on the x-axis

and the mean KNN feature alignment scores for the ProtT5 embeddings on the y-axis. Each dot represents a different localization class, and a strong

correlation is observed between these two measures. D. KNN class mixing matrix for the ProtT5 embedding space. Some classes are represented in closer

proximity to each other than others. Cyt: Cytoplasm; End: Endoplasmic reticulum; Ext: Extracellular; Gol: Golgi apparatus; Lys: Lysosome/vacuole;

Mem: Cell membrane; Mit: Mitochondrion; Nuc: Nucleus; Per: Peroxisome; Pla: Plastid.

Table 2). Our aim is to investigate whether these models exhibit

differences in how they represent this set of enzyme proteins.

Global correlation analysis of the pairwise cosine distances

between the embeddings of the models shows a high Spearman’s

rank correlation coefficient of 0.75 (p-value < 0.0001) between

ESMC and ProtT5. This indicates a substantial similarity

in how these two models represent relationships among the

sequences overall.

When examining the scatter plot of pairwise cosine distances

for embeddings of the ESMC and ProtT5 models, we observe

that many data points align along a linear trend, consistent

with the high correlation value. However, a distinct cluster

of proteins deviates profoundly, with much greater pairwise

distances in ProtT5 compared to ESMC (see Figure 4A.1).

We could identify this driven by a subset of bird proteins

as illustrated in Figure 4A.2. Notably, this difference in

representation is not observed when comparing pairwise

distances for other species, such as crocodiles (see Figure 4A.3).

This analysis raises new questions about the models and

why they have learned to represent a subset of bird proteins
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Fig. 4. A. The top row displays pairwise cosine distances between PLA2G2 embeddings using ESMC (x-axis) and ProtT5 (y-axis). A.1 for all

embeddings, A.2 between embeddings of bird proteins (red), and A.3 between embeddings of crocodile proteins (yellow). B. The bottom row illustrates

the class distribution of proteins with 30% local neighborhood overlap (cosine distance, k = 10) between the ESMC and ProtT5 models, compared to

overall dataset representation (x-axis) for the features: B.1 species, B.2 enzyme classes, and B.3 sequence length.

differently. One possibility is that one of the models has learned

finer distinctions between subgroups of bird species, potentially

due to differences in training data.

As a final step, we compare local neighborhoods between

the models and identified proteins with a local neighborhood

similarity of less than 30% when comparing the ESMC and

ProtT5 models. Analyzing the distribution of species, enzyme

classes and amino acid sequence lengths (see Figure 4B).

In comparison to the global analysis, local changes between

the ESMC and ProtT5 models were not observed in bird

proteins but rather in proteins from squamates and reptilia.

This suggests that, even though the positions of points

corresponding to bird species may have shifted within the

embedding space, the local neighborhood information for bird

sequences is preserved, indicating a consistent representation

of their relationships within the space. This analysis highlights

the importance of analyzing embedding spaces at both global

and local levels, which will give partially complementary views.

Conclusion

In summary, we show that comparing embedding space

analysis with supervised machine learning models trained on

the embeddings provides similar insights into model learning,

without requiring task-specific or model-specific training. While

embedding space analysis is limited to the information captured

in the overall embedding space without accounting for complex

interactions or subspaces, it can play a key role in pre-selecting

the growing number of models for further training.

Further, we explore the use of embedding space analysis to

investigate discrepancies between PLMs on subsets of the data.

This approach helps to identify discrepancies in the information

captured by the models, which can reveal gaps in the training

data or highlight complementary learned information.

Although our approach is demonstrated here with protein

sequence embeddings, it is domain-agnostic. It can be applied

to embedding spaces across foundation models in molecular

biology and beyond, particularly in cases foundation models

are combined with structured metadata.
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2. José Juan Almagro Armenteros, Casper Kaae Sønderby,

Søren Kaae Sønderby, et al. Deeploc: prediction

of protein subcellular localization using deep learning.

Bioinformatics, 33(21):3387–3395, 2017.

3. Tom Altenburg, Thilo Muth, Patrick van Zalm, et al.

Foundation model enables interpretable open and error-

tolerant searching for mass spectrometry-based proteomics.

bioRxiv, 2025.
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