

1 **Tissue heterogeneity is associated with phenotypic but 2 not genomic diversity in *Wolbachia* endosymbionts**

3 Romain Pigeault^{1*}, Yann Dussert¹, Raphaël Jorge^{3,4}, Theo Ulve¹, Marie Panza¹, Maryline
4 Raimond¹, Carine Delaunay¹, Willy Aucher¹, Thierry Berges¹, David Ogereau⁵, Bouziane
5 Moumen¹, Jean Peccoud^{1†}, Richard Cordaux^{5†}

6 ¹ Université de Poitiers, CNRS, EBI, UMR 7267, Poitiers, France

7 ² Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry,
8 Université Paris-Saclay, Evry, 91057, France

9 ³ Université Lyon 1, CNRS, VetAgroSup, Laboratoire de Biométrie et Biologie Evolutive, UMR
10 5558, Villeurbanne, France

11 ⁴ INSA Lyon, INRAE, Biologie fonctionnelle, insectes et interactions, UMR203, Villeurbanne,
12 France

13 ⁵ Université Paris-Saclay, CNRS, IRD, UMR Évolution Génomes Comportement Écologie, 91190
14 Gif-sur-Yvette, France

15 **ORCID :**

16 Romain Pigeault: 0000-0002-8011-4600

17 Yann Dussert: 0000-0003-1900-7715

18 David Ogereau : 0000-0002-4496-3007

19 Bouziane Moumen: 0000-0002-1789-6160

20 Jean Peccoud: 0000-0002-3356-7869

21 Richard Cordaux: 0000-0003-4997-735X

22 *Corresponding author: **Romain Pigeault** - romain.pigeault@univ-poitiers.fr

23 [†]Jean Peccoud and Richard Cordaux share senior authorship

24 **Running Head:** *Wolbachia* within-host diversity

25

26 Abstract

27 The mechanisms underlying within-host diversification in parasite populations are poorly
28 understood. Yet, phenotypic and genotypic variation in parasites can shape their evolutionary
29 trajectories and have important epidemiological consequences. Our aim was to determine
30 whether the constraints associated with infecting different host tissues lead to the emergence
31 and coexistence of multiple parasite sub-populations with distinct phenotypes. We tested this
32 hypothesis using the most widespread bacterial endosymbiont, *Wolbachia*. We injected
33 *Wolbachia* bacteria isolated from three tissues of the common pill-bug (*Armadillidium*
34 *vulgarum*) into uninfected individuals and monitored the growth rate and virulence of each
35 bacterial sub-population in the new hosts. Our results highlight that within-host tissue
36 heterogeneity leads to diverse *Wolbachia* phenotypes. High-depth genome re-sequencing
37 of *Wolbachia* sub-populations revealed that this polymorphism was not due to genomic
38 variation but was more likely a result of phenotypic plasticity. Indeed, we found no recurrent
39 tissue-specific genomic variation among infected individuals. Our single nucleotide
40 polymorphism (SNP) filtration pipeline, developed to ensure SNP validity, detected only one
41 substitution. This *Wolbachia* variant, observed in one female, was present in all three bacterial
42 sub-populations, with frequencies ranging from 24% to 58% depending on the tissue. Overall,
43 our results support the stability of the *Wolbachia* genome with respect to the rarity of point
44 mutations, in agreement with reports from other symbiotic systems. From a methodological
45 perspective, our study highlights the need for considerable caution when detecting variants
46 in endosymbiont populations, as our conservative approach led us to exclude more than
47 99.5% of the initially called variants.

48 **Keywords:** adaptation, acclimation, feminizing *Wolbachia*, infection dynamics, subpopulation,
49 tissue tropism, variant calling, within-host evolution

50 1. Introduction

51 Among the many factors that influence species richness and community structure,
52 environmental heterogeneity is generally considered to be a particularly important driver
53 (Ben-Hur & Kadmon, 2020; Stein et al., 2014; Stein & Kreft, 2015). Since heterogeneous
54 environments offer a variety of ecological niches and refuges from adverse conditions, species
55 richness and persistence should increase with greater spatial heterogeneity (Ben-Hur &
56 Kadmon, 2020; Burnett et al., 1998; Stein et al., 2014; Yang et al., 2015). Environmental
57 heterogeneity also promotes genetic and phenotypic diversity within species through
58 diversifying selection (Houle et al., 2020; B.-H. Huang et al., 2017; McDonald & Ayala, 1974;
59 Rainey & Travisano, 1998), which may underpin local adaptations (Y. Huang et al., 2016; Qian
60 et al., 2024; Trevail et al., 2021; van Houte et al., 2021). However, most studies that
61 investigated relationships between environmental heterogeneity and diversity have focused
62 on free-living species (e.g., (Langenheder & Lindström, 2019; Stein & Kreft, 2015)). The
63 relationship between environmental heterogeneity and both endoparasites species diversity
64 and phenotypic variability remains underexplored.

65 For endoparasites, environmental heterogeneity can exist both within individual hosts and
66 across different hosts. Variation among individuals within host population is known to shape
67 parasite evolution (Johnson et al., 2016; Regoes et al., 2000; White et al., 2020), driving rapid
68 diversification (Johnson et al., 2016; Kamiya et al., 2014). However, a single host individual is
69 treated by most theoretical and empirical studies on endoparasite evolution as a
70 homogeneous environment – a single population of target cells without any structure –
71 neglecting heterogeneities in cell type, immune response, nutrient supply or microbiota
72 composition. Yet, several parasites exploit a heterogeneous environment composed of

73 different biological tissues and fluids which form a spatially structured fitness landscape for
74 the parasite. Successful colonization of different microenvironments, with their contrasted
75 constraints, may involve the expression or selection of different parasitic phenotypes leading
76 to within-host differentiation into several sub-populations (Didelot et al., 2016). This
77 phenotypic variability can reflect phenotypic plasticity (e.g., expression plasticity,
78 (Wernegreen & Wheeler, 2009), selection of genetic variants initially present in the inoculum
79 (Chrostek & Teixeira, 2018) or of new variants arising from spontaneous mutations (Ailloud et
80 al., 2019).

81 The co-occurrence of polymorphic sub-populations of parasites in different tissues or
82 cell types has been described in several biological models. RNA viruses (e.g., plum pox virus,
83 influenza, SARS-CoV-2, poliovirus) may display genetic diversity within single infected hosts,
84 and co-existing viral variants may evolve differently in distinct cell types (Gupta et al., 2022;
85 Jridi et al., 2006; Xiao et al., 2017). The ability of some RNA viruses to adapt to tissue-specific
86 innate immune microenvironments may actually be critical for establishing robust infections
87 (Xiao et al., 2017). Gastric biopsies from multiple stomach regions of *Helicobacter pylori*-
88 infected hosts showed location-specific evolution of the bacteria, suggesting the existence of
89 structured niches with distinct selective pressures within the stomach (Ailloud et al., 2019). In
90 other cases, such as *Pseudomonas aeruginosa* or *Mycobacterium tuberculosis* chronic
91 infections, the emergence of polymorphic sub-populations seems to be driven by tissue-
92 specific adaptation (Jorth et al., 2015; Lieberman et al., 2016). Some within-host parasite sub-
93 populations may constitute a reservoir from which new virulent variants can emerge (Bessière
94 & Volmer, 2021), and which can delay clearance of parasite infection by the host immune
95 system or drugs (Avettand-Fenoel et al., 2011; Clement et al., 2005; Obaldia et al., 2018).
96 Understanding the evolutionary forces and mechanisms at the origin of within-host parasite

97 diversity is essential, yet it is rarely studied. Descriptive studies (e.g., long-term ambulatory
98 monitoring of chronically infected patients) cannot trace the divergence of variants found
99 within a host and cannot identify the drivers of their diversification without controlling or
100 assessing the composition of the infectious inoculum and ensuring the absence of subsequent
101 infections. For this purpose, vertically transmitted parasites are particularly useful, as their
102 transmission mode ensures the common origin of all within-host parasite sub-populations.

103 Among the most widespread vertically transmitted endosymbionts in animals is
104 *Wolbachia pipiensis*. This primarily maternally transmitted intracellular alpha-
105 proteobacterium is widely distributed among arthropods and has been extensively studied
106 with respect to its peculiar effects on its hosts (Kaur et al., 2021; LePage & Bordenstein, 2013).

107 *Wolbachia* manipulates host reproduction in various ways, including the feminization of
108 chromosomal male embryos, parthenogenesis, male killing, and sperm–egg incompatibility
109 (Werren et al., 2008)). This endosymbiont can also have positive or negative effects on other
110 aspects of the host’s life cycle (e.g., immunity, senescence) and influence the evolution of the
111 host genome through horizontal gene transfer (Cordaux & Gilbert, 2017; Depeux et al., 2024;
112 Sicard et al., 2014). The diversity of effects of *Wolbachia* on its hosts certainly relates to its
113 wide distribution within infected individuals (Sicard et al., 2014). In addition to colonizing the
114 female germline, ensuring vertical transmission, *Wolbachia* has indeed been observed in all
115 major tissues (e.g., nerve chain, immune and digestive compartments, (Pietri et al., 2016)) of
116 many arthropod species. The presence of vertically transmitted endosymbionts in somatic
117 tissues may seem paradoxical, especially considering that systemic infection can decrease host
118 fitness. Given this disadvantage (i.e., fitness alignment), these extensive somatic localizations
119 must somehow benefit the parasite. Localization of *Wolbachia* in somatic tissues could
120 influence host biology in such a way that favours its vertical and, possibly, horizontal

121 transmission. However, the ability of the bacteria to colonize and establish in different tissular
122 microenvironments could involve the expression or selection of different phenotypes.

123 To investigate this hypothesis, we assessed the relationship between tissue
124 environment heterogeneity and phenotype variability in the wVulC *Wolbachia* strain, which
125 infects the common pill-bug *Armadillidium vulgare* (Cordaux et al., 2004). We focused on three
126 naturally infected tissues, which we selected for their physiological characteristics and the
127 benefits that *Wolbachia* could gain by colonizing them: (i) gonads, which are a prime target
128 for vertical transmission, (ii) haemocytes, as these circulating immune cells could contribute
129 to spread *Wolbachia* to different host tissues and may facilitate its horizontal transmission
130 (Braquart-Varnier et al., 2015), and (iii) the nerve chain, as the localization of *Wolbachia* in the
131 brain and nerve chord could induce adaptive modifications of host behaviour (Bi & Wang,
132 2020; Templé & Richard, 2015). We hypothesized that the main phenotypic variation between
133 bacteria sub-populations colonizing these tissues pertained to their replication rate. A high
134 replication rate in vital tissues, such as the nerve chain, could disrupt tissue structure and
135 reduce host lifespan (Le Clec'h et al., 2012; Strunov & Kiseleva, 2016). Thus, we expected
136 *Wolbachia* populations from the host nerve system to show lower replication rates than those
137 from the other tissues. We tested this hypothesis by injecting *Wolbachia* extracted from the
138 three tissue types into uninfected *A. vulgare* individuals, and by monitoring their growth rates
139 in their new hosts. We then tested whether *Wolbachia* sub-populations were adapted and not
140 merely acclimated to their tissue types. In this case, we expected to find recurrent tissue-
141 specific genomic variation among infected individuals. We tested this prediction by
142 sequencing the whole genomes of focal bacterial sub-populations.

143 **2. Materials and Methods**

144 **2.1 Biological models**

145 All *A. vulgare* individuals used in this experiment were reared as previously described (Sicard
146 et al., 2010). Given that the *Wolbachia* strain used in this study is feminizing, all the individuals
147 used were females. As *Wolbachia* is not cultivable, phenotyping sub-populations requires
148 trans-infection of an uninfected host with bacterial isolates from naturally infected animals.
149 For this purpose, we used a common pill-bug source line (WXw) infected by the wVulC
150 *Wolbachia* strain (source individuals) and an uninfected recipient line (WXa, recipient
151 individuals) into which we have injected bacteria. The two laboratory lines came from the
152 same original population sampled in Helsingør (Denmark).

153 **2.2 Experimental infection**

154 To characterize the phenotype of the different *Wolbachia* sub-populations associated to three
155 different tissues of their native host, five batches of trans-infection were carried out. Three
156 batches (i.e., three biological replicates) were used to monitor early infection dynamics within
157 the recipient host (day 0 to day 60 post-infection, trans-infection experiment 1), and two
158 batches were used to estimate bacterial persistence in tissues (i.e., two biological replicates,
159 day 200 post-infection, trans-infection experiment 2). For each batch, one tissue suspension
160 was prepared from each of the following tissues: haemolymph, ovaries and nerve chain.
161 Tissues were collected from five source females from the WXw line (infection status previously
162 validated by quantitative PCR, see section 2.4). For each suspension, tissues were crushed in
163 1 mL of Ringer solution (1.4 mM CaCl₂, 2.4 mM HNaCO₃, 2 mM KCl, 0.4 M NaCl) for
164 haemolymph and 2 mL for ovaries and nerve chain. The resulting suspension was filtered
165 through a 1.2 µm pore membrane to remove cell debris and host cell nuclei. A prior

166 experiment conducted on 15 females from the source line (WXw) allowed us to highlight that
167 the number of bacteria per ng of DNA differed between the three target tissues (see **Fig. S1** in
168 appendix 1). Therefore, the filtered solutions were diluted in Ringer solution to adjust the final
169 concentration of bacteria at 2500 ± 300 cells/ μL for the trans-infection batches used to
170 describe *Wolbachia* infection dynamics, and at 1282 ± 205 cells/ μL for the two batches made
171 to investigate bacterial persistence 200 days after injection. The variation in *Wolbachia*
172 concentration between the two experiments stems from their differing timing, with the first
173 conducted in January and the second in April. Since *Wolbachia* concentration (number/ng of
174 DNA) can fluctuate based on host size and, consequently, age, this resulted in slight
175 differences in *Wolbachia* concentration between the two trans-infection experiments.
176 Another prior experiment showed that the proportion of live bacteria in the different filtered
177 tissue solutions was similar (LRT = 4.0279, $p = 0.1335$, proportion of live *Wolbachia* \pm 95%CI,
178 haemolymph = 0.815 ± 0.017 , nervous chain = 0.875 ± 0.014 , ovaries = 0.862 ± 0.037 , see
179 appendix 1 for a detailed protocol).

180 One μL of each filtrate was injected using a thin glass needle into the general cavity of
181 each recipient individual through a small hole pierced at its posterior part. Each tissue filtrate
182 from the three trans-infection batches used to study *Wolbachia* infection dynamics (trans-
183 infection experiment 1) was injected into 21 recipient females of the WXa line, resulting in a
184 total of 63 females transinfected per tissue filtrate. Then, on days 20, 40 and 60 post-injection,
185 6-7 recipient females per trans-infection batch were randomly selected to quantify *Wolbachia*
186 in the focal tissues (see section 2.4). To study bacterial persistence in recipient host tissues
187 (trans-infection experiment 2), 10 females were injected with each tissue filtrate for each of
188 the two trans-infection batches. Two hundred days post-injection, all surviving females were
189 dissected to quantify *Wolbachia* in the three focal tissues (see section 2.4). For each trans-

190 infection batch, control groups were created using the same protocol, but with female sources
191 originating from the WXa line.

192 [2.3 Mortality monitoring](#)

193 The effect of *Wolbachia* injection on pill-bug mortality was monitored every 10 days as part
194 of the study of the influence of *Wolbachia* tissue origin on the dynamics of early infection
195 within the recipient host (trans-infection experiment 1), and every 15-25 days as part of the
196 study of *Wolbachia* tissue origin on the persistence of the bacterium in tissues (trans-infection
197 experiment 2). When individuals were harvested during the experiment to quantify
198 *Wolbachia*, they were censored for the survival analysis (see section 2.9).

199 [2.4 Quantification of *Wolbachia* in source and recipient host's tissues](#)

200 To compare *Wolbachia* density in different tissues of source line and recipient hosts, total DNA
201 was extracted from the haemolymph, nerve chain and ovaries of individuals using standard
202 protocols (Qiagen DNeasy 96 Blood & Tissue kit). For each sample, the purity of the extracted
203 DNA (OD 260/280 nm and 260/230 nm ratios) was measured using a Nanodrop 1000
204 spectrophotometer (Thermofisher). To quantify *Wolbachia* load, we developed a fluorescent
205 probe-based quantitative PCR (qPCR) approach amplifying a *Wolbachia* locus and a reference
206 host nuclear locus in the same reaction. We used primers wsp208f (5'- TGG-TGC-AGC-ATT-
207 TAC-TCC-AG-3') and wsp413r (5'-TCG-CTT-GAT-AAG-CAA-AAC-CA-3') targeting the *Wolbachia*
208 protein surface gene (*wsp*, (W. L. Le Clec'h et al., 2012)) and we designed primers amplifying
209 a portion of the single-copy nuclear gene encoding the mitochondrial leucine-tRNA ligase of
210 *A. vulgare*: TLeuF (5'- TGT-ACA-CAT-CGA-GCA-GCA-AG-3') and TLeuR (5'- AAA-GAG-GAG-CGG-
211 AGA-GTT-TCA-G-3') (Durand et al., 2023). The *Wolbachia* *wsp* double-dye probe (5'-TTG-CAG-
212 ACA-GTG-TGA-CAG-CGT-T-3') was labelled with Hexachlorofluorescein (HEX) as a reporter at
213 the 5' end and Black Hole Quencher 1 (BHQ-1) at the 3' end. *A. vulgare* TLeu probe (5'-ACG-

214 AAG-TTC-GCC-CTG-TTC-TGG-A-3') was labelled with 6-carboxy-fluorescein (FAM) as a reporter
215 and BHQ-1 as a quencher. The qPCR reactions were performed using Roche LIGHTCYCLER 480
216 with the following program: 2 min at 50°C, 10 min at 95°C and 45 cycles, 15 s at 95°C, and 1
217 min at 60°C. For each sample, two independent technical replicates were carried out and the
218 mean cycle-threshold value was calculated. *Wolbachia* load was then calculated relative to
219 the reference gene (TLeu) using the delate CP method: $2^{-(CP(wsp) - CP(TLeu))}$.

220 [2.5 Genome assembly of *Wolbachia* wVulC](#)

221 To study the within-host genetic diversity of *Wolbachia*, we first assembled the genome of the
222 wVulC *Wolbachia* strain from the WXw line. Three female individuals were used for Oxford
223 Nanopore Technologies (ONT) long-read sequencing and one for Illumina short-read
224 sequencing. Total DNA from haemolymph, nerve chain and ovaries of each female was
225 extracted using standard protocols (DNA used for ONT sequencing: Macherey-Nagel
226 NucleoBond HMW DNA kit, DNA used for Illumina sequencing: Qiagen DNeasy 96 Blood &
227 Tissue kit). The long-read sequencing library was prepared using the SQK-LSK109 Ligation
228 Sequencing Kit (ONT) and sequenced with an R9.4.1 flow cell on a MinION Mk1B (ONT). Reads
229 were basecalled with Guppy 6.3.8 (RRID:SCR_023196) using the SUP model. The short-read
230 library was prepared using the TruSeq Nano DNA Library Prep kit (Illumina) and sequenced on
231 a HiSeq X (Illumina, paired-end 2 × 150 bp).

232 ONT adapters were first trimmed with porechop 0.2.4
233 (<https://github.com/rrwick/Porechop>), and reads were filtered using NanoFilt 2.7.1 (minimum
234 average quality: 7, minimum length: 1000 bp) implemented in NanoPack (De Coster et al.,
235 2018). Reads were then assembled with Flye 2.8.3 (Kolmogorov et al., 2019) using default
236 parameters. The entire assembly was first polished with the ONT reads using medaka 1.7
237 (<https://github.com/nanoporetech/medaka>, r941_min_fast_g507 model, 2 rounds). For

238 assembly polishing using short reads, Illumina reads were mapped onto the assembly with
239 bwa-mem2 2.2.1 (Vasimuddin et al., 2019) and used for further polishing with Polypolish 0.4.3
240 (Wick & Holt, 2022). This step was carried out twice. The largest assembled contig was
241 reported detected as circular by the Flye assembler and had the expected length (~1.6 Mb) of
242 the wVulC *Wolbachia* genome. We aligned this contig against a previous version of the
243 genome (GenBank accession: ALWU00000000.1) with nucmer in MUMmer 4.0.0rc1 (Marçais
244 et al., 2018), confirming that the contig corresponded to the wVulC strain. After mapping the
245 short reads for a third time onto this contig, short variants were called with Freebayes 1.3.1
246 (Garrison & Marth, 2012). Variants were then visually reviewed using the IGV genome browser
247 (version 2.14.0) (Robinson et al., 2017). Eight of them, corresponding to errors, were kept. We
248 corrected the genome sequence with these eight variants using the consensus command in
249 BCFtools 1.17 (Danecek et al., 2021). Following the recommendations of Ioannidis (Ioannidis
250 et al., 2007), the genome sequence was rotated to start at the *hemE* gene using the fixstart
251 command of Circlator 1.5.5 (Hunt et al., 2015) . The genome was annotated with the NCBI
252 Prokaryotic Genome Annotation Pipeline (PGAP) 2022-12-13.build6494 (Haft et al., 2024; Li et
253 al., 2021; Tatusova et al., 2016). A search of Insertion Sequence (IS) elements was carried out
254 with digIS v1.2 (Puterová & Martínek, 2021). Additionally, bacteriophage-derived regions were
255 detected using PHASTEST (Wishart et al., 2023). Results of these annotations were plotted
256 with Circos v0.69-9 (Krzywinski et al., 2009). The completeness of the genome and the gene
257 annotation was assessed using BUSCO 5.3.2 (Manni et al., 2021) using the rickettsiales_odb10
258 dataset.

259 2.6 Whole-genome resequencing and variant calling

260 Three *A. vulgare* females from the WXw line were used to study the genetic diversity of the
261 different *Wolbachia* sub-populations associated with the nerve chain, ovaries and

262 haemolymph. Two of these females were sisters (names: F1_2015 & F2_2015). The matriline
263 of the third one (F_1999) diverged from the matriline of the sisters for 18 generations (i.e., 18
264 years). Females were dissected and their tissues isolated individually. Total DNA of each
265 biological sample was extracted using the Qiagen DNeasy 96 Blood & Tissue kit. DNA purity
266 and quantity were measured as described above. The haemolymph of two females could not
267 be sequenced because it did not yield enough DNA. DNA libraries were prepared using the
268 TruSeq Nano DNA Library Prep kit and sequenced on the Illumina HiSeq 2000 platform to
269 generate 2×150 bp reads, by Genoscreen (Lille, France). Read quality was assessed with
270 FastQC 0.11.9 (<http://www.bioinformatics.babraham.ac.uk/projects/fastqc>). Fastp 0.23.0
271 (Chen et al., 2018) was used to remove adapter contamination and systematic base calling
272 errors. To mitigate misalignments of reads originating from the host genome, notably from
273 *Wolbachia*-derived nuclear insertions (Chebbi et al., 2019; Leclercq et al., 2016), reads were
274 aligned using bwa-mem2 (Vasimuddin et al., 2019) against a reference including our wVulC
275 genome assembly, the assembly of the partial mitochondrial genome of *A. vulgare* (GenBank
276 accession number: MF187614.1, (Peccoud et al., 2017)) and the genome assembly of *A.*
277 *vulgare* (accession number: GCA_004104545.1, (Chebbi et al., 2019)). PCR duplicates were
278 marked with samtools markdup (v1.14). Read coverage along the wVulC genome was
279 computed for each sample for adjacent 5 kb windows using mosdepth 0.2.9 (Pedersen &
280 Quinlan, 2018). For a given sample, normalized coverage for each window was calculated by
281 dividing the coverage value by the median of all values in R (v. 4.2.1) (R Core Team, 2022).
282 SNPs and short indels were detected using Freebayes 1.3.1 (Garrison & Marth, 2012), with a
283 filter on the minimum fraction of observations supporting a variant (F = 0.03), disabling
284 population priors (-k argument) and using an aggregate probability of observation balance
285 between alleles (-a argument). Variants were then filtered using a custom R script. This script

286 selected only variable positions for which the read total depth was over 200 and for which the
287 alternative allele was supported by at least 10 reads within a tissue (*Wolbachia* genome
288 coverage - mean \pm se: ovaries = 723.9 reads \pm 134.8, nerve chain = 769.8 \pm 81.0, haemolymph
289 = 533.7).

290 **2.7 Variant validation**

291 As the *A. vulgare* lineage used in our experiments may contain nuclear inserts absent from the
292 reference genome used for read mapping (Chebbi et al., 2019) the risk that sequences from
293 *Wolbachia*-derived nuclear inserts generated spurious SNPs may not have been eliminated.
294 To exclude remaining spurious SNPs, we implemented a three-step approach. (1) We checked
295 that the sequences containing candidate SNPs were absent from uninfected individuals
296 sequenced in previous studies, using all short-read data generated by (Chebbi et al., 2019) and
297 (Cordaux et al., 2021). These data constitute whole genome sequences of six pools of 10 males
298 or females and five individuals, from three uninfected lineages. We aligned these short reads
299 with bwa-mem2 on the wVulC reference sequence. On the 11 resulting alignment files, variant
300 calling was carried out with the same parameters as above, but only at positions of detected
301 candidate *Wolbachia* variants. All variants for which the alternative allele was present in the
302 reads sequenced from uninfected individuals were eliminated. We then defined a 300-bp
303 window around the position of each remaining variant (starting 150 bp before the site) and
304 excluded variants in windows containing at least two reads from uninfected individuals. (2) To
305 further check that each remaining variable region was absent from uninfected individuals, we
306 then designed PCR primers to amplify 120-250 bp targets encompassing the focal variant.
307 These primers were tested on two females from the recipient lineage (i.e., uninfected by
308 *Wolbachia*), on two females from the source line (i.e., infected by *Wolbachia*) and on two of
309 their brothers (not infected by *Wolbachia*, since infection induces feminization). If the primers

310 amplified DNA from at least one non-infected host, then the variant was eliminated. (3)
311 Finally, we checked whether sequencing reads carrying non-reference SNP alleles represented
312 sequences that were exceedingly divergent from the reference strain (e.g., insertions of
313 *Wolbachia* DNA into the host genome, or a related bacterium). To do so, we automatically
314 analyzed every candidate SNP via a script that parses the alignment (.bam) files of reads
315 generated in this experiment. This script records the proportion of clipped reads, the
316 proportion of read pairs that were aligned in proper pairs and the number of mismatches
317 between reads and the reference (excluding the SNP itself). The script then performs Fisher
318 exact tests to evaluate if these proportions significantly differ between reads carrying the
319 reference allele and reads carrying the alternative allele. Any SNP for which the p-value of any
320 test was below 5% (after false discovery rate correction) was excluded. Lastly, the sequencing
321 depth around SNPs that had passed all filters was averaged over 100-bp windows, via samtools
322 depth, and plotted to check for anomalies, mainly the presence of collapsed repeated regions
323 not fully resolved in the *Wolbachia* reference genome assembly.

324 To predict the effect of retained SNPs and indels on proteins coded by annotated
325 genes, we used SNPeff 5.2c (Cingolani et al., 2012). Functional domains in these proteins were
326 annotated using the InterProScan online service (<http://www.ebi.ac.uk/interpro/>, database
327 release 100.0, (Paysan-Lafosse et al., 2023)).

328 2.8 Screening for variants in maternal lines

329 To determine whether the *Wolbachia* variant(s) validated by our filtration procedure (see
330 above) arose during the focal individuals' lifetime or were maternally inherited, we searched
331 for these variants in their maternal lineage. Specifically, we extracted DNA from the ovaries of
332 sisters and maternal ancestors of focal individuals, going back six generations thanks to our
333 broodstock collection stored at -20°C. The variants as well as the *Wolbachia* reference lineage

334 were searched by amplification-refractory mutation system (ARMS, (C. R. Newton et al.,
335 1989)). For this purpose, for each variant we designed a couple of primers targeting either the
336 reference allele or the variant allele (see primers in appendix 1). ARMS analyses were
337 performed in a 25 μ l reaction volume containing 0.5 μ l genomic DNA, 5 μ l 5X buffer (Promega),
338 0.5 μ l dNTP, 1.25 μ l forward and reverse primers and 0.125 μ l GoTaq[®] polymerase (Promega).
339 The volume was adjusted to 25 μ l with double-distilled water. PCR regimen was as follows:
340 initial denaturation at 95°C for 5 min, followed by 35 cycles for 30 s at 95°C, 30 s at 61°C, 30 s
341 at 72°C, and then a final extension for 5 min at 72°C, and finally the PCR products were
342 maintained at 4°C in the end. PCR products were separated on a 1.5% agarose gel (23min.,
343 100V).

344 [2.9 Statistical Analyses](#)

345 Statistical analyses were carried out using the R software (R Core Team, 2022). The influence
346 of the tissular origin of the injected *Wolbachia* on *A. vulgare* mortality was evaluated using
347 the 'survreg' function with either exponential or Weibull errors distribution ('survival'
348 package, (Therneau et al., 2024)). The model included survival as a response variable, and
349 infection status (i.e., injected with *Wolbachia*-infected or uninfected tissue filtrate), tissue
350 origin of the injected filtrate and experimental block as explanatory variables. The influence
351 of *Wolbachia* tissue origin on its ability to colonize and infect different focal tissues of recipient
352 hosts over time was assessed using a generalized linear mixed model (GLMM). Log-
353 transformed relative quantification (RQ) values representing the per-host cell *Wolbachia* dose
354 were fitted as a response variable, assuming normal error distribution. The tissular origin of
355 *Wolbachia*, the focal tissue of recipient injected hosts and the day post injection were used as
356 explanatory variables. The quadratic term day post injection was added to assess whether it
357 significantly improved the model fit. Individual IDs nested in experimental block were

358 specified as random-effect variables in the model. To compare *Wolbachia* loads measured in
359 the tissues of recipient hosts six months after experimental infection with that measured in
360 the same tissues from females of the same age but naturally infected by *Wolbachia* (from the
361 WXw line), we ran, for each tissue, a linear model with log-transformed relative quantification
362 (RQ) values fitted as a response variable and the origin of the individuals (i.e., naturally
363 infected or experimentally infected) as an explanatory variable.

364 Maximal models including all higher-order interactions were simplified by sequentially
365 eliminating non-significant terms and interactions to establish a minimal model (Crawley,
366 2012). The significance of the effects of explanatory variables was established using a
367 likelihood ratio test (LRT, (Crawley, 2012)) whose statistics approximately follows a Chi-square
368 distribution (Bolker, 2008) or an F test. The significant LRT or F value given in the Results
369 section are for the minimal model, whereas non-significant values correspond to those
370 obtained before the deletion of the variables from the model. *A posteriori* contrasts were
371 carried out by aggregating factor levels together and by testing the fit of the simplified model
372 using a likelihood-ratio test (Bolker, 2008; Crawley, 2012).

373 3. Results

374 3.1 *Wolbachia* infection does not significantly influence host survival
375 Under the assumption of both exponential errors and non-constant hazard, no effect of
376 *Wolbachia* tissue origin on the survival rate of *A. vulgare* during early stage of infection (from
377 day 0 to 60, trans-infection experiment 1) was detected (exponential errors: LRT = 0.600, p =
378 0.740, Weibull errors: LRT = 0.602, p = 0.741, **Fig. 1A**). Overall, the injection of *Wolbachia*,
379 irrespective of its tissue origin, was not shown to influence the survival of individuals
380 (exponential errors: LRT = 1.040, p = 0.308, Weibull errors: LRT = 1.039, p = 0.307). Sixty days

381 after injection, the survival rate of infected individuals was 0.87 (\pm 95% CI, \pm 0.79-0.96),
382 compared to 0.80 (\pm 0.71-0.91) for control animals.

383 In the trans-infection batches used to investigate the influence of *Wolbachia* tissue
384 origin on its ability to persist in recipient host tissue (trans-infection experiment 2), the
385 mortality of animals was also not significantly influenced by *Wolbachia* tissue origin
386 (exponential errors: LRT = 2.65, p = 0.265, Weibull errors: LRT = 2.88, p = 0.236) or even just
387 by the fact of being infected by the bacteria (whatever the origin of the tissue, exponential
388 errors: LRT = 2.22, p = 0.136, Weibull errors: LRT = 2.45, p = 0.117, **Fig. 1B**). The survival rate
389 of infected individuals 200 days after the experimental infection was 0.59 ± 0.48 -0.74 and 0.47
390 \pm 0.36-0.61 for infected and control animals respectively.

391 3.2 The tissue origin of *Wolbachia* influences its early infection dynamics in recipient
392 host tissues (trans-infection experiment 1)

393 After injection, the presence of *Wolbachia* was detected by qPCR in the three tested tissues
394 of all recipient hosts, confirming its ability to colonize a new host. *Wolbachia* density increased
395 over time (post-injection day: LRT = 16.239, p < 0.0001) and fitting the quadratic term
396 (day_post_injection²) strongly improved model fit (LRT = 32.181, p < 0.0001), suggesting that
397 *Wolbachia* burden was more accurately modelled by an accelerated polynomial function of
398 day post-injection (**Fig. 2A**). The density of *Wolbachia* in tissues started very low on day 20
399 post-injection, then rose slightly between day 20 and day 40, to drastically increase between
400 day 40 and day 60 post-injection. Although the pattern of infection in the different recipient
401 tissues was overall similar, *Wolbachia* load was significantly influenced by the interaction
402 between the colonized recipient tissue and the day post-injection (LRT = 74.309, p < 0.0001).
403 The dynamics of infection within the nerve chain were significantly different from those

404 observed in the haemolymph and ovaries, leading to a higher bacterial load in nerve tissues
405 60 days post-infection (LRT = 57.228, $p < 0.0001$, LRT = 122.240, $p < 0.0001$, respectively, **Fig.**
406 **2A**). The dynamics of infection were also significantly different within haemolymph and
407 ovaries (LRT = 17.771, $p = 0.0013$, **Fig. 2A**), as bacterial load was lower in ovaries at the end of
408 monitoring (mean RQ \pm se, nerve chain = 6.582 ± 1.596 , haemolymph = 4.864 ± 1.612 , ovaries
409 = 2.533 ± 0.594 , **Fig. 2A**). *Wolbachia* infection dynamics were also influenced by the tissue
410 origin of the injected bacteria (interaction between days post-injection and tissue origin: LRT
411 = 24.205, $p < 0.0001$). Whether the bacteria came from the haemolymph or ovaries of
412 naturally infected animals did not significantly affect the colonization dynamics of *Wolbachia*
413 in the injected recipients (LRT = 0.647, $p = 0.723$, **Fig. 2B**). However, bacteria from the nerve
414 chain colonized recipient hosts less rapidly than bacteria from other tissues (nerve chain
415 versus haemolymph: LRT = 28.981, $p < 0.0001$, nerve chain versus ovaries: LRT = 33.64, $p <$
416 0.0001). At 60 days post-injection, the *Wolbachia* load was on average more than twice as
417 high when the bacteria came from the ovaries and haemolymph than when they came from
418 the nerve chain of infected source hosts (mean RQ \pm se, ovaries = 8.191 ± 2.18 , haemolymph
419 = 5.26 ± 1.077 , nerve chain = 0.899 ± 0.197 , **Fig. 2B**). However, there was no significant
420 interaction between the colonized recipient tissue and the *Wolbachia*'s original tissue,
421 suggesting that bacteria originating from a tissue do not colonize that same tissue more
422 effectively in recipient hosts (LRT = 6.957, $p = 0.138$).

423 [3.3 The tissue origin of *Wolbachia* does not influence significantly its persistence in
424 recipient host tissues \(trans-infection experiment 2\)](#)
425 *Wolbachia* densities at 200 days after infection were significantly different between tissues
426 from the recipient hosts (LRT = 39.224, $p < 0.0001$, **Fig. 3**). Bacterial load was the highest in

427 the nerve chain and the lowest in the haemolymph (contrast analyses, haemolymph versus
428 nerve chain: LRT = 38.133, p < 0.0001, haemolymph versus ovaries: LRT = 20.823, p < 0.0001,
429 nerve chain versus ovaries: LRT = 6.969, p = 0.008, **Fig. 3**). The bacterial load in the ovaries and
430 haemolymph of recipient females were similar to those observed in the same tissues of
431 females naturally infected by *Wolbachia* (source lineage, F = 0.184, p = 0.672, F = 0.268, p =
432 0.609, respectively, **Fig. 3 & 4**). In contrast, bacterial density in the nerve chain of
433 experimentally infected females was on average more than twice that measured in the nerve
434 chain of naturally infected individuals (F = 38.089, p < 0.0001, **Fig. 3 & 4**).

435 Contrary to what was observed during the early phase of infection, there was no effect
436 of the tissue origin of *Wolbachia* on the bacterial load in recipient tissues at 200 days post-
437 injection (LRT = 0.368, p = 0.832). Similarly, *Wolbachia* density in recipient tissues was not
438 influenced by the interaction between the colonized tissue and the tissue origin of the injected
439 bacteria (LRT = 9.539, p = 0.059).

440 [3.4 Complete genome assembly of the wVulC *Wolbachia* strain](#)

441 Using ONT reads, a complete circular genome sequence (1,638,144 bp) of the wVulC
442 *Wolbachia* strain was assembled. The estimated completeness of the assembly was very high,
443 with 99.8% of the expected BUSCO genes found in the sequence (C: 99.8% [S: 99.5%, D: 0.3%],
444 F: 0.0%). The annotation of the genome resulted in 1,390 protein-coding sequences and 208
445 pseudogenes (**Fig. 5**). The wVulC genome contained 138 IS elements that are larger than 150
446 bp, representing 8.45% of the total length of the genome. This high proportion of repeated
447 sequences for a bacterium is similar to that of other *Wolbachia* strains (Cerveau et al., 2011).
448 We also identified seven prophage regions (six intact and one questionable region, following
449 PHASTEST scoring criteria), representing 12.1% of the wVulC genome.

450 3.5 Whole-genome resequencing and variant calling reveal *Wolbachia* genome stability

451 The variant calling performed using the whole-genome resequencing of tissues from three

452 females naturally infected by *Wolbachia* (i.e., source lineage) detected 641 SNPs and short

453 indels. However, 584 of these apparent variants were also detected in the resequenced

454 genome of several *A. vulgare* lineages not infected by *Wolbachia* (validation procedure, step

455 1), meaning that these variants probably amounted to *Wolbachia* sequences inserted into the

456 host nuclear genome. The presence of reads sequenced from uninfected hosts within a 300-

457 bp window around the 57 remaining polymorphic regions resulted in the exclusion of 26

458 variants (validation procedure step 2). Of the remaining 31 SNPs and small indels, 7 were

459 excluded because their regions were PCR-amplified in males not infected with *Wolbachia*

460 (infection status confirmed by qPCR, validation procedure step 3). Finally, in the last step of

461 variant validation, we excluded 23 variants due to anomalies detected, such as a high

462 proportion of clipped reads and/or a high number of mismatches between reads and

463 reference. Overall, only 0.15% (one SNP) of the originally detected variants were finally

464 validated. This unique SNP was observed in a single individual (F_1999). The frequency of this

465 variant varied slightly among the three tissues (**Table 1**). The mutation affected a protein-

466 coding gene, with a non-synonymous substitution (**Table 1, Fig. 5**). The putative protein did

467 not have any recognized functional domain. The variant was not detected in the F_1999

468 individual's sisters, and was also absent from all females tested in the maternal line (traced

469 back 6 generations, see appendix 1).

470 **4. Discussion**

471 Experimental trans-infections enabled us to study the influence of the tissue origin of

472 *Wolbachia* on the early infection dynamics of the endosymbiont in different recipient host

473 tissues, and the ability of each bacterial sub-population to establish a chronic infection. At the
474 same time, regular monitoring of injected individuals over a period of six months shed light
475 on the influence of *Wolbachia* on the survival rate of recipient hosts and did not reveal any
476 difference between *Wolbachia* sub-populations with respect to their virulence. In addition,
477 our results corroborate a previous report showing a similar survival rate between trans-
478 infected and un-infected animals (Le Clec'h et al., 2012). As the source and recipient lines
479 belonged to the same field-collected *A. vulgare* population, they should be ecologically similar
480 for *Wolbachia*. Low virulence is therefore expected, as for most vertically transmitted
481 endosymbionts transferred between closely related hosts (Le Clec'h et al., 2013).

482 Colonization of recipient female tissues was relatively fast, with a threefold increase in
483 *Wolbachia* density between the second and sixth month after infection. At the end of the
484 experiment, the bacterial load in the tissues of the recipient females was similar to, or even
485 higher than, that observed in the tissues of naturally vertically infected females.

486 Nevertheless, although rapid, the dynamics of *Wolbachia* infection varied according to
487 the tissue origin of the bacteria. Bacteria from the nerve chain colonized recipient hosts much
488 less rapidly than bacteria from ovaries and haemolymph. Two months after infection with a
489 similar dose of bacteria, *Wolbachia* load was more than twice as low in hosts injected with
490 bacteria from nerve chain, compared with hosts infected by bacteria from the other two
491 tissues. The growth rate of bacteria is known to largely vary according to the type and amount
492 of nutrients available in their environment (Keiblinger et al., 2010; Liu et al., 2005). The lower
493 growth rate of bacteria from nerve chain, compared with those from the other tissues, could
494 therefore be explained by the fact that in naturally infected hosts, this tissue is less favourable
495 to the development of *Wolbachia* (e.g., poorer in resources). If so, bacteria from the nerve
496 chain could be subject to growth-limiting stress at the time of their horizontal transfer, which

497 would explain their lower replication rate within the recipient host at the start of infection.
498 However, the nerve chain was the recipient host tissue the most rapidly colonized by
499 *Wolbachia* after trans-infection, and the one showing the highest bacterial load at each
500 sampling point irrespective of the tissue origin of the bacteria. As well as showing no tropism
501 towards the tissue of origin, this result suggests that nervous tissue is actually favourable to
502 the development of *Wolbachia*.

503 Alternatively, the lower growth rate from bacteria originating from the nerve chain
504 could be adaptive. Classic theory for the evolution of virulence is based on a trade-off between
505 parasite growth, transmission and host survival, which predicts that higher growth increases
506 not only transmission but also virulence (Alizon et al., 2009; Frank, 1996). *Wolbachia*
507 transmission is essentially maternal (Turelli et al., 2018; Werren et al., 2008), but cases of non-
508 maternal transmission have been observed *in natura* (Durand et al., 2024; Sanaei et al., 2021)
509 and in the laboratory (Le Clec'h et al., 2013; Rigaud & Juchault, 1995). In a tissue not directly
510 involved in parasite transmission, we predicted that virulence should constrain the parasite
511 growth to low levels. Our results corroborate this prediction, as *Wolbachia* from the nerve
512 chain of *A. vulgare* should not be transmissible – except maybe in rare cases of cannibalism
513 and predation (Le Clec'h et al., 2013) – and may prove detrimental to the host if they
514 proliferate. Uncontrolled colonization of nerve cells has indeed been shown to alter host
515 behaviour in several *Wolbachia*-host pairs (Bi & Wang, 2020; Le Clec'h et al., 2012), and to
516 lead to severe tissue degeneration and premature host death (Kosmidis et al., 2014; W. L. Le
517 Clec'h et al., 2012; Min & Benzer, 1997; Strunov & Kiseleva, 2016). In tissues that allow
518 parasite transmission, the balance between *Wolbachia* growth and host fitness should favour
519 higher growth rates. In terrestrial isopods, both ovaries and haemolymph play a key role in
520 both intra- and inter-host dissemination of *Wolbachia*. Ovaries are the route for vertical

521 transmission and haemolymph, in addition to participating in the dissemination of the bacteria
522 across host tissues (Braquart-Varnier et al., 2015; Sanaei et al., 2021), may also be involved in
523 horizontal transfer via contact between injured individuals (Rigaud & Juchault, 1995).

524 Although initial differences were observed at two months post-infection, the tissue
525 origin of the injected *Wolbachia* had no significant effect on bacterial load in the three tissues
526 analysed four months later (i.e., 6 months post-injection). The convergence of growth rates
527 over time suggests that the early phenotypic variability observed two months post-infection
528 may result from phenotypic plasticity. This interpretation is further supported by the absence
529 of recurrent small genomic variations associated with tissue types in naturally infected
530 individuals from the source lineage. More broadly, SNP and small indel analyses revealed a
531 single substitution detected across sequence data from seven tissue samples. This SNP,
532 observed in one female (F_1999), was nevertheless present in all three *Wolbachia*
533 subpopulations, with allelic frequencies ranging from 24% to 58% depending on the tissue.
534 This mutation, located in a gene coding for a protein of unknown function, leads to an amino
535 acid substitution. Although we currently have no information on the phenotypic impact of this
536 mutation, amino acid substitution may have strong phenotypic effects in bacteria (e.g.,
537 (Abdelaal et al., 2009; Bacigalupe et al., 2019)).

538 The variant, although predominant in the nerve chain, was present at lower
539 frequencies in the ovaries. Nevertheless, over a quarter of the *Wolbachia* population in this
540 tissue carried the mutation. This suggests that some of the female's oocytes may have been
541 colonized by the variant and that, despite the suspicion of a strong bottleneck, it could have
542 passed it on to its offspring (Chrostek & Teixeira, 2015). However, this hypothesis could not
543 be verified in our study, as the female was sacrificed before reproducing. What is clear is that
544 the absence of this SNP within the individual's maternal lineage strongly suggests that this

545 *Wolbachia* variant arose during its lifetime. The emergence of *Wolbachia* variants within just
546 a few host generations or even during a host's lifetime has been documented (Chrostek &
547 Teixeira, 2018; Martinez & Sinkins, 2023; Namias et al., 2024; Newton & Sheehan, 2015).
548 However, most reported variants were associated with structural genomic changes rather
549 than point genomic mutations (e.g., (Chrostek & Teixeira, 2018; Namias et al., 2024)). We
550 currently have no information on the presence of structural genomic changes within the
551 different *Wolbachia* tissular subpopulations, but in agreement with reports from other
552 symbiotic systems, the very low number of point mutations observed in our study tends to
553 support the stability of the *Wolbachia* genome (Dainty et al., 2021; Huang et al., 2020; Ross et
554 al., 2022; Trouche et al., 2024).

555 In conclusion, our study reveals that within-host environmental heterogeneity can lead
556 to diverse phenotypes in the most widespread bacterial endosymbiont in animals, *Wolbachia*.
557 This variability did not appear to result from genomic variation, but from phenotypic plasticity.
558 From a methodological point of view, we showed that the detection of variants in
559 endosymbiont populations requires considerable caution, as our conservative approach led
560 us to exclude more than 99.85% of the initially called variants. We recommend the use of a
561 rigorous step-by-step approach to eliminate spurious genetic variants caused by the presence
562 of endosymbiont genomic sequences inserted into the host genome.

563 **Data accessibility statement**

564 The R scripts and data supporting the conclusions of this article are available on the Figshare
565 data repository (<https://figshare.com/s/b1f84643b65b4f897c54>). To ensure the stability and
566 reliability of the command-lines used for genome assembly and SNP calling we have included
567 all necessary information and options in the github repository ([https://github.com/UMR-
568 CNRS-7267/Wolbachia_endosymbiont_heterogeneity_paper](https://github.com/UMR-CNRS-7267/Wolbachia_endosymbiont_heterogeneity_paper)). We have taken proactive

569 measures to address potential volatility on GitHub by uploading a compressed archive of this
570 GitHub methodology to the Figshare data repository. Raw sequencing data have been
571 deposited in GenBank (*wVulC* genome assembly: BioProject PRJNA1116085; *Wolbachia*
572 resequencing: PRJNA1117639).

573 **Author's contributions**

574 R.P. and R.C. conceived and designed the experiments. R.P., R.J., M.P. and M.R. performed the
575 trans-infection experiments. RP, TU, WA performed the preliminary experiment. RP and C.D
576 prepared the samples for resequencing and C.D, TB and TU carried out the PCRs. D.O.
577 performed *Wolbachia* genome sequencing. Y.D. assembled the *Wolbachia* genome. R.P., Y.D.,
578 B.M. and J.P. analysed the data. R.P. wrote the first draft of the manuscript, and all authors
579 contributed substantially to revision.

580 **Competing interests**

581 We declare we have no competing interests.

582 **Funding**

584 This work was funded by Agence Nationale de la Recherche Grants ANR-21-CE02-0004
585 (RESIST) to RC and ANR-20-CE02-004 (SymChroSex) to JP, and intramural funds from the CNRS
586 and the University of Poitiers.

587 **Acknowledgements**

588 We thank Isabelle Giraud for the extraction of the DNA used to sequence and assemble the
589 genome of *Wolbachia* *wVulC* and Pierre Grève and Didier Bouchon for providing us with
590 preliminary data so that we could fine-tune the bioinformatics analyses. We would like to
591 thank Alexandra Lafitte for her invaluable work supervising the breeding of *A. vulgare*.

592 5. References

593 Abdelaal, A., El-Ghaffar, H. A., Zaghloul, M. H. E., El Mashad, N., Badran, E., & Fathy, A.

594 (2009). Genotypic detection of rifampicin and isoniazid resistant *Mycobacterium*

595 *tuberculosis* strains by DNA sequencing: A randomized trial. *Annals of Clinical*

596 *Microbiology and Antimicrobials*, 8(1), 4. <https://doi.org/10.1186/1476-0711-8-4>

597 Ailloud, F., Didelot, X., Woltemate, S., Pfaffinger, G., Overmann, J., Bader, R. C., Schulz, C.,

598 Malfertheiner, P., & Suerbaum, S. (2019). Within-host evolution of *Helicobacter pylori*

599 shaped by niche-specific adaptation, intragastric migrations and selective sweeps.

600 *Nature Communications*, 10(1), Article 1. <https://doi.org/10.1038/s41467-019-10050>

601 1

602 Alizon, S., Hurford, A., Mideo, N., & Van Baalen, M. (2009). Virulence evolution and the

603 trade-off hypothesis: History, current state of affairs and the future. *Journal of*

604 *Evolutionary Biology*, 22(2), 245–259. <https://doi.org/10.1111/j.1420-9101.2008.01658.x>

605

606 Avettand-Fenoel, V., Hocqueloux, L., Müller-Trutwin, M., Prazuck, T., Melard, A., Chaix, M.-L.,

607 Agoute, E., Michau, C., & Rouzioux, C. (2011). Greater diversity of HIV DNA variants in

608 the rectum compared to variants in the blood in patients without HAART. *Journal of*

609 *Medical Virology*, 83(9), 1499–1507. <https://doi.org/10.1002/jmv.22132>

610 Bacigalupe, R., Tormo-Mas, M. Á., Penadés, J. R., & Fitzgerald, J. R. (2019). A multihost

611 bacterial pathogen overcomes continuous population bottlenecks to adapt to new

612 host species. *Science Advances*, 5(11), eaax0063.

613 <https://doi.org/10.1126/sciadv.aax0063>

614 Ben-Hur, E., & Kadmon, R. (2020). Heterogeneity–diversity relationships in sessile organisms:
615 A unified framework. *Ecology Letters*, 23(1), 193–207.
616 <https://doi.org/10.1111/ele.13418>

617 Bessière, P., & Volmer, R. (2021). From one to many: The within-host rise of viral variants.
618 *PLOS Pathogens*, 17(9), e1009811. <https://doi.org/10.1371/journal.ppat.1009811>

619 Bi, J., & Wang, Y. (2020). The effect of the endosymbiont *Wolbachia* on the behavior of
620 insect hosts. *Insect Science*, 27(5), 846–858. <https://doi.org/10.1111/1744-7917.12731>

622 Bolker, B. M. (2008). *Ecological Models and Data in R*. Princeton, Princeton University Press.

623 Braquart-Varnier, C., Raimond, M., Mappa, G., Chevalier, F. D., Le Clec'h, W., & Sicard, M.
624 (2015). The Hematopoietic organ: A cornerstone for *Wolbachia* propagation between
625 and within Hosts. *Frontiers in Microbiology*, 6.
626 <https://doi.org/10.3389/fmicb.2015.01424>

627 Burnett, M. R., August, P. V., Brown, J. H., & Killingbeck, K. T. (1998). The influence of
628 geomorphological heterogeneity on biodiversity: I. A patch-scale perspective.
629 *Conservation Biology*, 12(2), 363–370.

630 Cerveau, N., Leclercq, S., Leroy, E., Bouchon, D., & Cordaux, R. (2011). Short- and Long-term
631 evolutionary dynamics of bacterial insertion sequences: Insights from *Wolbachia*
632 endosymbionts. *Genome Biology and Evolution*, 3, 1175–1186.
633 <https://doi.org/10.1093/gbe/evr096>

634 Chebbi, M. A., Becking, T., Moumen, B., Giraud, I., Gilbert, C., Peccoud, J., & Cordaux, R.
635 (2019). The Genome of *Armadillidium vulgare* (Crustacea, Isopoda) provides insights
636 into sex chromosome evolution in the context of cytoplasmic sex determination.

637 *Molecular Biology and Evolution*, 36(4), 727–741.

638 <https://doi.org/10.1093/molbev/msz010>

639 Chen, S., Zhou, Y., Chen, Y., & Gu, J. (2018). fastp: An ultra-fast all-in-one FASTQ

640 preprocessor. *Bioinformatics*, 34(17), i884–i890.

641 <https://doi.org/10.1093/bioinformatics/bty560>

642 Chrostek, E., & Teixeira, L. (2015). Mutualism breakdown by amplification of *Wolbachia*

643 genes. *PLOS Biology*, 13(2), e1002065. <https://doi.org/10.1371/journal.pbio.1002065>

644 Chrostek, E., & Teixeira, L. (2018). Within host selection for faster replicating bacterial

645 symbionts. *PLoS ONE*, 13(1). <https://doi.org/10.1371/journal.pone.0191530>

646 Cingolani, P., Platts, A., Wang, L. L., Coon, M., Nguyen, T., Wang, L., Land, S. J., Lu, X., &

647 Ruden, D. M. (2012). A program for annotating and predicting the effects of single

648 nucleotide polymorphisms, SnpEff: SNPs in the genome of *Drosophila melanogaster*

649 strain w1118; iso-2; iso-3. *Fly*, 6(2), 80–92. <https://doi.org/10.4161/fly.19695>

650 Clement, S., Vaudaux, P., Francois, P., Schrenzel, J., Huggler, E., Kampf, S., Chaponnier, C.,

651 Lew, D., & Lacroix, J.-S. (2005). Evidence of an intracellular reservoir in the nasal

652 mucosa of patients with recurrent *Staphylococcus aureus* rhinosinusitis. *The Journal*

653 of *Infectious Diseases*, 192(6), 1023–1028. <https://doi.org/10.1086/432735>

654 Cordaux, R., Chebbi, M. A., Giraud, I., Pleydell, D. R. J., & Peccoud, J. (2021). Characterization

655 of a sex-determining region and its genomic context via statistical estimates of

656 haplotype frequencies in daughters and sons sequenced in pools. *Genome Biology*

657 and *Evolution*, 13(8), evab121. <https://doi.org/10.1093/gbe/evab121>

658 Cordaux, R., & Gilbert, C. (2017). Evolutionary significance of *Wolbachia*-to-animal horizontal

659 gene transfer: Female sex determination and the f element in the isopod

660 *Armadillidium vulgare*. *Genes*, 8(7), 186. <https://doi.org/10.3390/genes8070186>

661 Cordaux, R., Michel-Salzat, A., Frelon-Raimond, M., Rigaud, T., & Bouchon, D. (2004).
662 Evidence for a new feminizing *Wolbachia* strain in the isopod *Armadillidium vulgare*:
663 evolutionary implications. *Heredity*, 93(1), 78–84.
664 <https://doi.org/10.1038/sj.hdy.6800482>

665 Crawley, M. J. (2012). *The R Book*. John Wiley & Sons.

666 Dainty, K. R., Hawkey, J., Judd, L. M., Pacidônio, E. C., Duyvestyn, J. M., Gonçalves, D. S., Lin,
667 S. Y., O'Donnell, T. B., O'Neill, S. L., Simmons, C. P., Holt, K. E., & Flores, H. A. (2021).
668 wMel *Wolbachia* genome remains stable after 7 years in Australian *Aedes aegypti*
669 field populations. *Microbial Genomics*, 7(9), 000641.
670 <https://doi.org/10.1099/mgen.0.000641>

671 Danecek, P., Bonfield, J. K., Liddle, J., Marshall, J., Ohan, V., Pollard, M. O., Whitwham, A.,
672 Keane, T., McCarthy, S. A., Davies, R. M., & Li, H. (2021). Twelve years of SAMtools
673 and BCFtools. *GigaScience*, 10(2), giab008.
674 <https://doi.org/10.1093/gigascience/giab008>

675 De Coster, W., D'Hert, S., Schultz, D. T., Cruts, M., & Van Broeckhoven, C. (2018). NanoPack:
676 Visualizing and processing long-read sequencing data. *Bioinformatics (Oxford, England)*, 34(15), 2666–2669. <https://doi.org/10.1093/bioinformatics/bty149>

677 Depeux, C., Branger, A., Paulhac, H., Pigeault, R., & Beltran-Bech, S. (2024). Deleterious
679 effects of *Wolbachia* on life history and physiological traits of common pill woodlice.
680 *Journal of Invertebrate Pathology*, 207, 108187.
681 <https://doi.org/10.1016/j.jip.2024.108187>

682 Didelot, X., Walker, A. S., Peto, T. E., Crook, D. W., & Wilson, D. J. (2016). Within-host
683 evolution of bacterial pathogens. *Nature Reviews. Microbiology*, 14(3), 150–162.
684 <https://doi.org/10.1038/nrmicro.2015.13>

685 Durand, S., Lheraud, B., Giraud, I., Bech, N., Grandjean, F., Rigaud, T., Peccoud, J., & Cordaux,
686 R. (2023). Heterogeneous distribution of sex ratio distorters in natural populations of
687 the isopod *Armadillidium vulgare*. *Biology Letters*, 19(1), 20220457.
688 <https://doi.org/10.1098/rsbl.2022.0457>

689 Durand, S., Pigeault, R., Giraud, I., Loisier, A., Bech, N., Grandjean, F., Rigaud, T., Peccoud, J.,
690 & Cordaux, R. (2024). Temporal stability of sex ratio distorter prevalence in natural
691 populations of the isopod *Armadillidium vulgare*. *Heredity*, 1–11.
692 <https://doi.org/10.1038/s41437-024-00713-1>

693 Frank, S. A. (1996). Models of parasite virulence. *The Quarterly Review of Biology*, 71(1), 37–
694 78. <https://doi.org/10.1086/419267>

695 Garrison, E., & Marth, G. (2012). *Haplotype-based variant detection from short-read*
696 *sequencing* (No. arXiv:1207.3907). arXiv. <https://doi.org/10.48550/arXiv.1207.3907>

697 Gupta, K., Toelzer, C., Williamson, M. K., Shoemark, D. K., Oliveira, A. S. F., Matthews, D. A.,
698 Almuqrin, A., Staufer, O., Yadav, S. K. N., Borucu, U., Garzoni, F., Fitzgerald, D., Spatz,
699 J., Mulholland, A. J., Davidson, A. D., Schaffitzel, C., & Berger, I. (2022). Structural
700 insights in cell-type specific evolution of intra-host diversity by SARS-CoV-2. *Nature*
701 *Communications*, 13(1), Article 1. <https://doi.org/10.1038/s41467-021-27881-6>

702 Haft, D. H., Badretdin, A., Coulouris, G., DiCuccio, M., Durkin, A. S., Jovenitti, E., Li, W.,
703 Mersha, M., O'Neill, K. R., Virothaisakun, J., & Thibaud-Nissen, F. (2024). RefSeq and
704 the prokaryotic genome annotation pipeline in the age of metagenomes. *Nucleic*
705 *Acids Research*, 52(D1), D762–D769. <https://doi.org/10.1093/nar/gkad988>

706 Houle, C., Pelletier, F., Bélisle, M., & Garant, D. (2020). Impacts of environmental
707 heterogeneity on natural selection in a wild bird population. *Evolution*, 74(6), 1142–
708 1154. <https://doi.org/10.1111/evo.13939>

709 Huang, B., Yang, Q., Hoffmann, A. A., Ritchie, S. A., Hurk, A. F. van den, & Warrilow, D.

710 (2020). *Wolbachia* genome stability and mtDNA variants in *Aedes aegypti* field

711 populations eight years after release. *iScience*, 23(10).

712 <https://doi.org/10.1016/j.isci.2020.101572>

713 Huang, B.-H., Huang, C.-W., Huang, C.-L., & Liao, P.-C. (2017). Continuation of the genetic

714 divergence of ecological speciation by spatial environmental heterogeneity in island

715 endemic plants. *Scientific Reports*, 7(1), 5465. <https://doi.org/10.1038/s41598-017-05900-1>

716

717 Huang, Y., Tran, I., & Agrawal, A. F. (2016). Does genetic variation maintained by

718 environmental heterogeneity facilitate adaptation to novel selection? *The American*

719 *Naturalist*, 188(1), 27–37. <https://doi.org/10.1086/686889>

720 Hunt, M., Silva, N. D., Otto, T. D., Parkhill, J., Keane, J. A., & Harris, S. R. (2015). Circlator:

721 automated circularization of genome assemblies using long sequencing reads.

722 *Genome Biology*, 16(1), 294. <https://doi.org/10.1186/s13059-015-0849-0>

723 Ioannidis, P., Hotopp, J. C. D., Sapountzis, P., Siozios, S., Tsiamis, G., Bordenstein, S. R., Baldo,

724 L., Werren, J. H., & Bourtzis, K. (2007). New criteria for selecting the origin of DNA

725 replication in *Wolbachia* and closely related bacteria. *BMC Genomics*, 8(1), 182.

726 <https://doi.org/10.1186/1471-2164-8-182>

727 Johnson, P. T. J., Wood, C. L., Joseph, M. B., Preston, D. L., Haas, S. E., & Springer, Y. P.

728 (2016). Habitat heterogeneity drives the host-diversity-begets-parasite-diversity

729 relationship: Evidence from experimental and field studies. *Ecology Letters*, 19(7),

730 752–761. <https://doi.org/10.1111/ele.12609>

731 Jorth, P., Staudinger, B. J., Wu, X., Hisert, K. B., Hayden, H., Garudathri, J., Harding, C. L.,

732 Radey, M. C., Rezayat, A., Bautista, G., Berrington, W. R., Goddard, A. F., Zheng, C.,

733 Angermeyer, A., Brittnacher, M. J., Kitzman, J., Shendure, J., Fligner, C. L., Mittler, J.,

734 ... Singh, P. K. (2015). Regional isolation drives bacterial diversification within cystic

735 fibrosis lungs. *Cell Host & Microbe*, 18(3), 307–319.

736 <https://doi.org/10.1016/j.chom.2015.07.006>

737 Jridi, C., Martin, J.-F., Marie-Jeanne, V., Labonne, G., & Blanc, S. (2006). Distinct Viral

738 Populations differentiate and evolve independently in a single perennial host plant.

739 *Journal of Virology*, 80(5), 2349–2357. <https://doi.org/10.1128/jvi.80.5.2349-2357.2006>

740 Kamiya, T., O'Dwyer, K., Nakagawa, S., & Poulin, R. (2014). Host diversity drives parasite

741 diversity: Meta-analytical insights into patterns and causal mechanisms. *Ecography*,

742 37(7), 689–697.

743 Kaur, R., Shropshire, J. D., Cross, K. L., Leigh, B., Mansueto, A. J., Stewart, V., Bordenstein, S.

744 R., & Bordenstein, S. R. (2021). Living in the endosymbiotic world of *Wolbachia*: A

745 centennial review. *Cell Host & Microbe*, 29(6), 879–893.

746 <https://doi.org/10.1016/j.chom.2021.03.006>

747 Keiblinger, K. M., Hall, E. K., Wanek, W., Szukics, U., Hämmerle, I., Ellersdorfer, G., Böck, S.,

748 Strauss, J., Sterflinger, K., Richter, A., & Zechmeister-Boltenstern, S. (2010). The effect

749 of resource quantity and resource stoichiometry on microbial carbon-use-efficiency.

750 *FEMS Microbiology Ecology*, 73(3), 430–440. <https://doi.org/10.1111/j.1574-6941.2010.00912.x>

751 Kolmogorov, M., Yuan, J., Lin, Y., & Pevzner, P. A. (2019). Assembly of long, error-prone

752 reads using repeat graphs. *Nature Biotechnology*, 37(5), 540–546.

753 <https://doi.org/10.1038/s41587-019-0072-8>

756 Kosmidis, S., Missirlis, F., Botella, J. A., Schneuwly, S., Rouault, T. A., & Skoulakis, E. M. C.

757 (2014). Behavioral decline and premature lethality upon pan-neuronal ferritin

758 overexpression in *Drosophila* infected with a virulent form of *Wolbachia*. *Frontiers in*

759 *Pharmacology*, 5, 66. <https://doi.org/10.3389/fphar.2014.00066>

760 Krzywinski, M., Schein, J., Birol, I., Connors, J., Gascoyne, R., Horsman, D., Jones, S. J., &

761 Marra, M. A. (2009). Circos: An information aesthetic for comparative genomics.

762 *Genome Research*, 19(9), 1639–1645. <https://doi.org/10.1101/gr.092759.109>

763 Langenheder, S., & Lindström, E. S. (2019). Factors influencing aquatic and terrestrial

764 bacterial community assembly. *Environmental Microbiology Reports*, 11(3), 306–315.

765 <https://doi.org/10.1111/1758-2229.12731>

766 Le Clec'h, W. L., Braquart-Varnier, C., Raimond, M., Ferdy, J.-B., Bouchon, D., & Sicard, M.

767 (2012). High Virulence of *Wolbachia* after host switching: When autophagy hurts.

768 *PLOS Pathogens*, 8(8), e1002844. <https://doi.org/10.1371/journal.ppat.1002844>

769 Le Clec'h, W. L., Chevalier, F. D., Genty, L., Bertaux, J., Bouchon, D., & Sicard, M. (2013).

770 Cannibalism and predation as paths for horizontal passage of *Wolbachia* between

771 terrestrial isopods. *PLOS ONE*, 8(4), e60232.

772 <https://doi.org/10.1371/journal.pone.0060232>

773 Le Clec'h, W., Raimond, M., Guillot, S., Bouchon, D., & Sicard, M. (2013). Horizontal transfers

774 of feminizing versus non-feminizing *Wolbachia* strains: From harmless passengers to

775 pathogens. *Environmental Microbiology*, 15(11), 2922–2936.

776 <https://doi.org/10.1111/1462-2920.12172>

777 Leclercq, S., Thézé, J., Chebbi, M. A., Giraud, I., Moumen, B., Ernenwein, L., Grève, P., Gilbert,

778 C., & Cordaux, R. (2016). Birth of a W sex chromosome by horizontal transfer of

779 *Wolbachia* bacterial symbiont genome. *Proceedings of the National Academy of*
780 *Sciences*, 113(52), 15036–15041. <https://doi.org/10.1073/pnas.1608979113>

781 LePage, D., & Bordenstein, S. R. (2013). *Wolbachia*: Can we save lives with a great pandemic?

782 *Trends in Parasitology*, 29(8), 385–393. <https://doi.org/10.1016/j.pt.2013.06.003>

783 Li, W., O'Neill, K. R., Haft, D. H., DiCuccio, M., Chetvernin, V., Badretdin, A., Coulouris, G.,
784 Chitsaz, F., Derbyshire, M. K., Durkin, A. S., Gonzales, N. R., Gwadz, M., Lanczycki, C.
785 J., Song, J. S., Thanki, N., Wang, J., Yamashita, R. A., Yang, M., Zheng, C., ... Thibaud-
786 Nissen, F. (2021). RefSeq: Expanding the prokaryotic genome annotation pipeline
787 reach with protein family model curation. *Nucleic Acids Research*, 49(D1), D1020–
788 D1028. <https://doi.org/10.1093/nar/gkaa1105>

789 Lieberman, T. D., Wilson, D., Misra, R., Xiong, L. L., Moodley, P., Cohen, T., & Kishony, R.
790 (2016). Genomic diversity in autopsy samples reveals within-host dissemination of
791 HIV-associated *Mycobacterium tuberculosis*. *Nature Medicine*, 22(12), Article 12.
792 <https://doi.org/10.1038/nm.4205>

793 Liu, M., Durfee, T., Cabrera, J. E., Zhao, K., Jin, D. J., & Blattner, F. R. (2005). Global
794 transcriptional programs reveal a carbon source foraging strategy by *Escherichia coli*.
795 *The Journal of Biological Chemistry*, 280(16), 15921–15927.
796 <https://doi.org/10.1074/jbc.M414050200>

797 Manni, M., Berkeley, M. R., Seppey, M., & Zdobnov, E. M. (2021). BUSCO: Assessing genomic
798 data quality and beyond. *Current Protocols*, 1(12), e323.
799 <https://doi.org/10.1002/cpz1.323>

800 Marçais, G., Delcher, A. L., Phillippy, A. M., Coston, R., Salzberg, S. L., & Zimin, A. (2018).
801 MUMmer4: A fast and versatile genome alignment system. *PLOS Computational*
802 *Biology*, 14(1), e1005944. <https://doi.org/10.1371/journal.pcbi.1005944>

803 Martinez, J., & Sinkins, S. P. (2023). *Rapid evolution of Wolbachia genomes in mosquito cell*
804 *culture*. *Evolutionary Biology*. <https://doi.org/10.1101/2023.09.20.558649>

805 Mcdonald, J. F., & Ayala, F. J. (1974). Genetic response to environmental heterogeneity.
806 *Nature*, 250(5467), 572–574. <https://doi.org/10.1038/250572a0>

807 Min, K. T., & Benzer, S. (1997). *Wolbachia*, normally a symbiont of *Drosophila*, can be
808 virulent, causing degeneration and early death. *Proceedings of the National Academy of Sciences of the United States of America*, 94(20), 10792–10796.
809
810 <https://doi.org/10.1073/pnas.94.20.10792>

811 Namias, A., Ngaku, A., Makoundou, P., Unal, S., Sicard, M., & Weill, M. (2024). Intra-lineage
812 microevolution of *Wolbachia* leads to the emergence of new cytoplasmic
813 incompatibility patterns. *PLOS Biology*, 22(2), e3002493.
814 <https://doi.org/10.1371/journal.pbio.3002493>

815 Newton, C. R., Graham, A., Heptinstall, L. E., Powell, S. J., Summers, C., Kalsheker, N., Smith,
816 J. C., & Markham, A. F. (1989). Analysis of any point mutation in DNA. The
817 amplification refractory mutation system (ARMS). *Nucleic Acids Research*, 17(7),
818 2503–2516. <https://doi.org/10.1093/nar/17.7.2503>

819 Newton, I. L. G., & Sheehan, K. B. (2015). Passage of *Wolbachia pipiensis* through mutant
820 *Drosophila melanogaster* induces phenotypic and genomic changes. *Applied and Environmental Microbiology*, 81(3), 1032–1037. <https://doi.org/10.1128/AEM.02987-14>

821
822 14

823 Obaldia, N., Meibalan, E., Sa, J. M., Ma, S., Clark, M. A., Mejia, P., Moraes Barros, R. R.,
824 Otero, W., Ferreira, M. U., Mitchell, J. R., Milner, D. A., Huttenhower, C., Wirth, D. F.,
825 Duraisingh, M. T., Wellem, T. E., & Marti, M. (2018). Bone marrow is a major

826 parasite reservoir in *Plasmodium vivax* infection. *mBio*, 9(3).

827 <https://doi.org/10.1128/mBio.00625-18>

828 Paysan-Lafosse, T., Blum, M., Chuguransky, S., Grego, T., Pinto, B. L., Salazar, G. A., Bileschi,

829 M. L., Bork, P., Bridge, A., Colwell, L., Gough, J., Haft, D. H., Letunić, I., Marchler-

830 Bauer, A., Mi, H., Natale, D. A., Orengo, C. A., Pandurangan, A. P., Rivoire, C., ...

831 Bateman, A. (2023). InterPro in 2022. *Nucleic Acids Research*, 51(D1), D418–D427.

832 <https://doi.org/10.1093/nar/gkac993>

833 Peccoud, J., Chebbi, M. A., Cormier, A., Moumen, B., Gilbert, C., Marcadé, I., Chandler, C., &

834 Cordaux, R. (2017). Untangling heteroplasmy, structure, and evolution of an atypical

835 mitochondrial genome by PacBio sequencing. *Genetics*, 207(1), 269–280.

836 <https://doi.org/10.1534/genetics.117.203380>

837 Pedersen, B. S., & Quinlan, A. R. (2018). Mosdepth: Quick coverage calculation for genomes

838 and exomes. *Bioinformatics*, 34(5), 867–868.

839 <https://doi.org/10.1093/bioinformatics/btx699>

840 Pietri, J. E., DeBruhl, H., & Sullivan, W. (2016). The rich somatic life of *Wolbachia*.

841 *MicrobiologyOpen*, 5(6), 923–936. <https://doi.org/10.1002/mbo3.390>

842 Puterová, J., & Martínek, T. (2021). digIS: Towards detecting distant and putative novel

843 insertion sequence elements in prokaryotic genomes. *BMC Bioinformatics*, 22(1),

844 258. <https://doi.org/10.1186/s12859-021-04177-6>

845 Qian, H., Qian, S., Zhang, J., & Kessler, M. (2024). Effects of climate and environmental

846 heterogeneity on the phylogenetic structure of regional angiosperm floras

847 worldwide. *Nature Communications*, 15(1), 1079. <https://doi.org/10.1038/s41467-024-45155-9>

849 R Core Team. (2022). *R: A language and environment for statistical computing*. [Computer
850 software]. <https://www.R-project.org/>

851 Rainey, P. B., & Travisano, M. (1998). Adaptive radiation in a heterogeneous environment.
852 *Nature*, 394(6688), Article 6688. <https://doi.org/10.1038/27900>

853 Regoes, R. R., Nowak, M. A., & Bonhoeffer, S. (2000). Evolution of virulence in a
854 heterogeneous host population. *Evolution*, 54(1), 64–71.
855 <https://doi.org/10.1111/j.0014-3820.2000.tb00008.x>

856 Rigaud, T., & Juchault, P. (1995). Success and failure of horizontal transfers of feminizing
857 *Wolbachia* endosymbionts in woodlice. *Journal of Evolutionary Biology*, 8(2), 249–
858 255. <https://doi.org/10.1046/j.1420-9101.1995.8020249.x>

859 Robinson, J. T., Thorvaldsdóttir, H., Wenger, A. M., Zehir, A., & Mesirov, J. P. (2017). Variant
860 review with the integrative genomics viewer. *Cancer Research*, 77(21), e31–e34.
861 <https://doi.org/10.1158/0008-5472.CAN-17-0337>

862 Ross, P. A., Robinson, K. L., Yang, Q., Callahan, A. G., Schmidt, T. L., Axford, J. K., Coquilleau,
863 M. P., Staunton, K. M., Townsend, M., Ritchie, S. A., Lau, M.-J., Gu, X., & Hoffmann, A.
864 A. (2022). A decade of stability for wMel *Wolbachia* in natural *Aedes aegypti*
865 populations. *PLOS Pathogens*, 18(2), e1010256.
866 <https://doi.org/10.1371/journal.ppat.1010256>

867 Sanaei, E., Charlat, S., & Engelstädt, J. (2021). *Wolbachia* host shifts: Routes, mechanisms,
868 constraints and evolutionary consequences. *Biological Reviews*, 96(2), 433–453.
869 <https://doi.org/10.1111/brv.12663>

870 Sicard, M., Chevalier, F., De Vlechouwer, M., Bouchon, D., Grève, P., & Braquart-Varnier, C.
871 (2010). Variations of immune parameters in terrestrial isopods: A matter of gender,

872 aging and *Wolbachia*. *Naturwissenschaften*, 97(9), 819–826.

873 <https://doi.org/10.1007/s00114-010-0699-2>

874 Sicard, M., Dittmer, J., Grève, P., Bouchon, D., & Braquart-Varnier, C. (2014). A host as an

875 ecosystem: *Wolbachia* coping with environmental constraints. *Environmental*

876 *Microbiology*, 16(12), 3583–3607. <https://doi.org/10.1111/1462-2920.12573>

877 Stein, A., Gerstner, K., & Kreft, H. (2014). Environmental heterogeneity as a universal driver

878 of species richness across taxa, biomes and spatial scales. *Ecology Letters*, 17(7), 866–

879 880. <https://doi.org/10.1111/ele.12277>

880 Stein, A., & Kreft, H. (2015). Terminology and quantification of environmental heterogeneity

881 in species-richness research. *Biological Reviews of the Cambridge Philosophical*

882 *Society*, 90(3), 815–836. <https://doi.org/10.1111/brv.12135>

883 Strunov, A., & Kiseleva, E. (2016). *Drosophila melanogaster* brain invasion: Pathogenic

884 *Wolbachia* in central nervous system of the fly. *Insect Science*, 23(2), 253–264.

885 <https://doi.org/10.1111/1744-7917.12187>

886 Tatusova, T., DiCuccio, M., Badretdin, A., Chetvernin, V., Nawrocki, E. P., Zaslavsky, L.,

887 Lomsadze, A., Pruitt, K. D., Borodovsky, M., & Ostell, J. (2016). NCBI prokaryotic

888 genome annotation pipeline. *Nucleic Acids Research*, 44(14), 6614–6624.

889 <https://doi.org/10.1093/nar/gkw569>

890 Templé, N., & Richard, F.-J. (2015). Intra-cellular bacterial infections affect learning and

891 memory capacities of an invertebrate. *Frontiers in Zoology*, 12(1), 36.

892 <https://doi.org/10.1186/s12983-015-0129-6>

893 Therneau, T. M., until 2009), T. L. (original S->R port and R. maintainer, Elizabeth, A., &

894 Cynthia, C. (2024). *survival: Survival Analysis* (Version 3.6-4) [Computer software].

895 <https://cran.r-project.org/web/packages/survival/index.html>

896 Trevail, A. M., Green, J. A., Bolton, M., Daunt, F., Harris, S. M., Miller, P. I., Newton, S., Owen,
897 E., Polton, J. A., Robertson, G., Sharples, J., & Patrick, S. C. (2021). Environmental
898 heterogeneity promotes individual specialisation in habitat selection in a widely
899 distributed seabird. *Journal of Animal Ecology*, 90(12), 2875–2887.
900 <https://doi.org/10.1111/1365-2656.13588>

901 Trouche, B., Schrieke, H., Duron, O., Eren, A. M., & Reveillaud, J. (2024). *Wolbachia*
902 populations across organs of individual *Culex pipiens*: Highly conserved intra-
903 individual core pangenome with inter-individual polymorphisms. *ISME
904 Communications*, ycae078. <https://doi.org/10.1093/ismeco/ycae078>

905 Turelli, M., Cooper, B. S., Richardson, K. M., Ginsberg, P. S., Peckenpaugh, B., Antelope, C. X.,
906 Kim, K. J., May, M. R., Abrieux, A., Wilson, D. A., Bronski, M. J., Moore, B. R., Gao, J.-J.,
907 Eisen, M. B., Chiu, J. C., Conner, W. R., & Hoffmann, A. A. (2018). Rapid global spread
908 of wRi-like *Wolbachia* across multiple *Drosophila*. *Current Biology*, 28(6), 963-971.e8.
909 <https://doi.org/10.1016/j.cub.2018.02.015>

910 van Houte, S., Padfield, D., Gómez, P., Luján, A. M., Brockhurst, M. A., Paterson, S., &
911 Buckling, A. (2021). Compost spatial heterogeneity promotes evolutionary
912 diversification of a bacterium. *Journal of Evolutionary Biology*, 34(2), 246–255.
913 <https://doi.org/10.1111/jeb.13722>

914 Vasimuddin, Md., Misra, S., Li, H., & Aluru, S. (2019). Efficient architecture-aware
915 acceleration of BWA-MEM for multicore systems. *2019 IEEE International Parallel
916 and Distributed Processing Symposium (IPDPS)*, 314–324.
917 <https://doi.org/10.1109/IPDPS.2019.00041>

918 Wernegreen, J. J., & Wheeler, D. E. (2009). Remaining flexible in old alliances: Functional
919 plasticity in constrained mutualisms. *DNA and Cell Biology*, 28(8), 371–382.
920 <https://doi.org/10.1089/dna.2009.0872>

921 Werren, J. H., Baldo, L., & Clark, M. E. (2008). *Wolbachia*: Master manipulators of
922 invertebrate biology. *Nature Reviews Microbiology*, 6(10), 741–751.
923 <https://doi.org/10.1038/nrmicro1969>

924 White, P. S., Choi, A., Pandey, R., Menezes, A., Penley, M., Gibson, A. K., de Roode, J., &
925 Morran, L. (2020). Host heterogeneity mitigates virulence evolution. *Biology Letters*,
926 16(1), 20190744. <https://doi.org/10.1098/rsbl.2019.0744>

927 Wick, R. R., & Holt, K. E. (2022). Polypolish: Short-read polishing of long-read bacterial
928 genome assemblies. *PLOS Computational Biology*, 18(1), e1009802.
929 <https://doi.org/10.1371/journal.pcbi.1009802>

930 Wishart, D. S., Han, S., Saha, S., Oler, E., Peters, H., Grant, J. R., Stothard, P., & Gautam, V.
931 (2023). PHASTEST: Faster than PHASTER, better than PHAST. *Nucleic Acids Research*,
932 51(W1), W443–W450. <https://doi.org/10.1093/nar/gkad382>

933 Xiao, Y., Dolan, P. T., Goldstein, E. F., Li, M., Farkov, M., Brodsky, L., & Andino, R. (2017).
934 Poliovirus intrahost evolution is required to overcome tissue-specific innate immune
935 responses. *Nature Communications*, 8(1), Article 1. <https://doi.org/10.1038/s41467-017-00354-5>

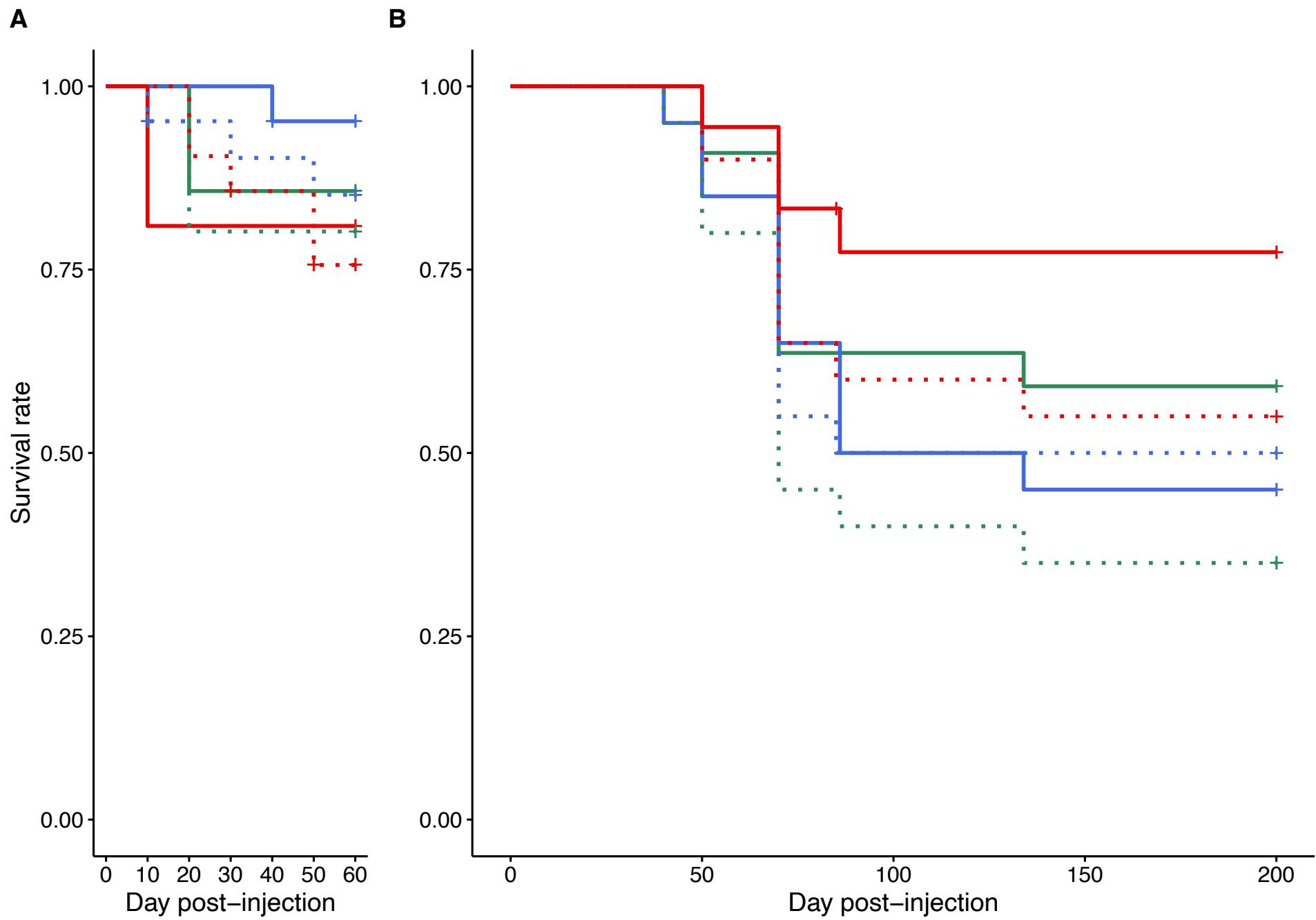
937 Yang, Z., Liu, X., Zhou, M., Ai, D., Wang, G., Wang, Y., Chu, C., & Lundholm, J. T. (2015). The
938 effect of environmental heterogeneity on species richness depends on community
939 position along the environmental gradient. *Scientific Reports*, 5(1), 15723.
940 <https://doi.org/10.1038/srep15723>

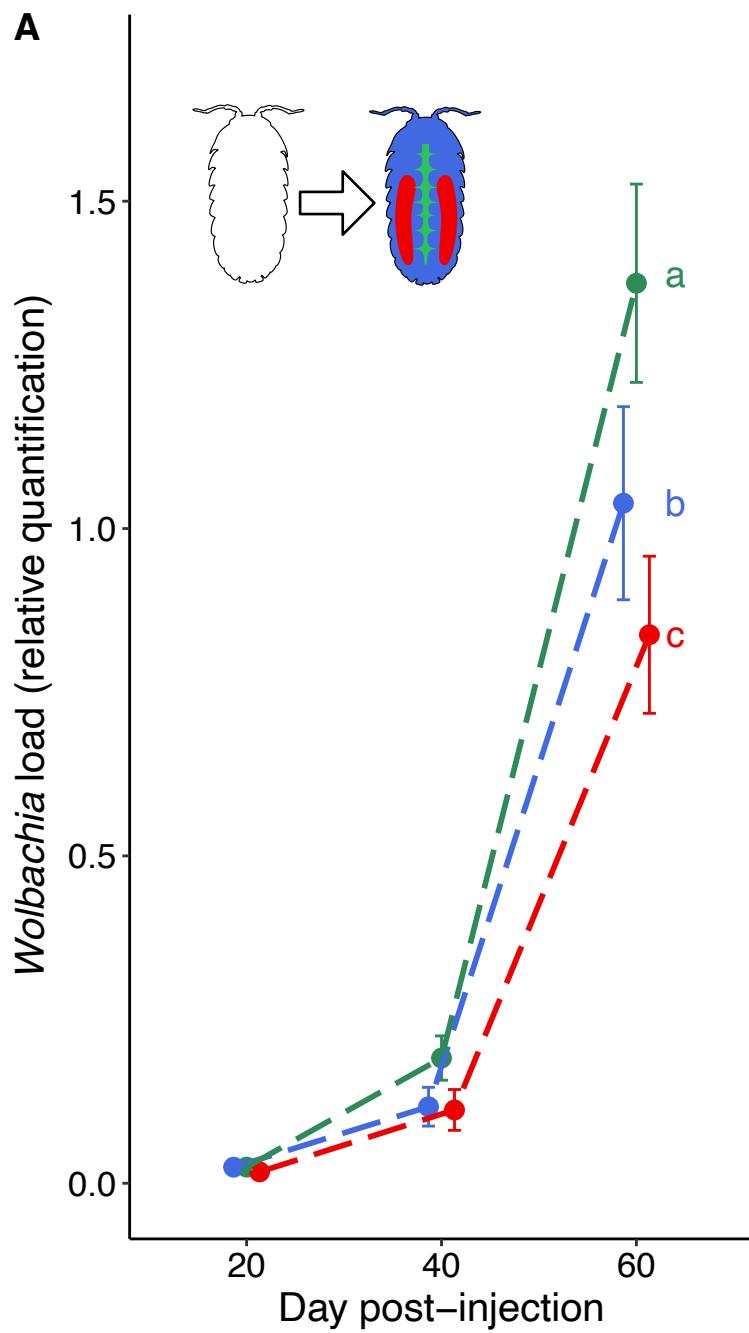
941

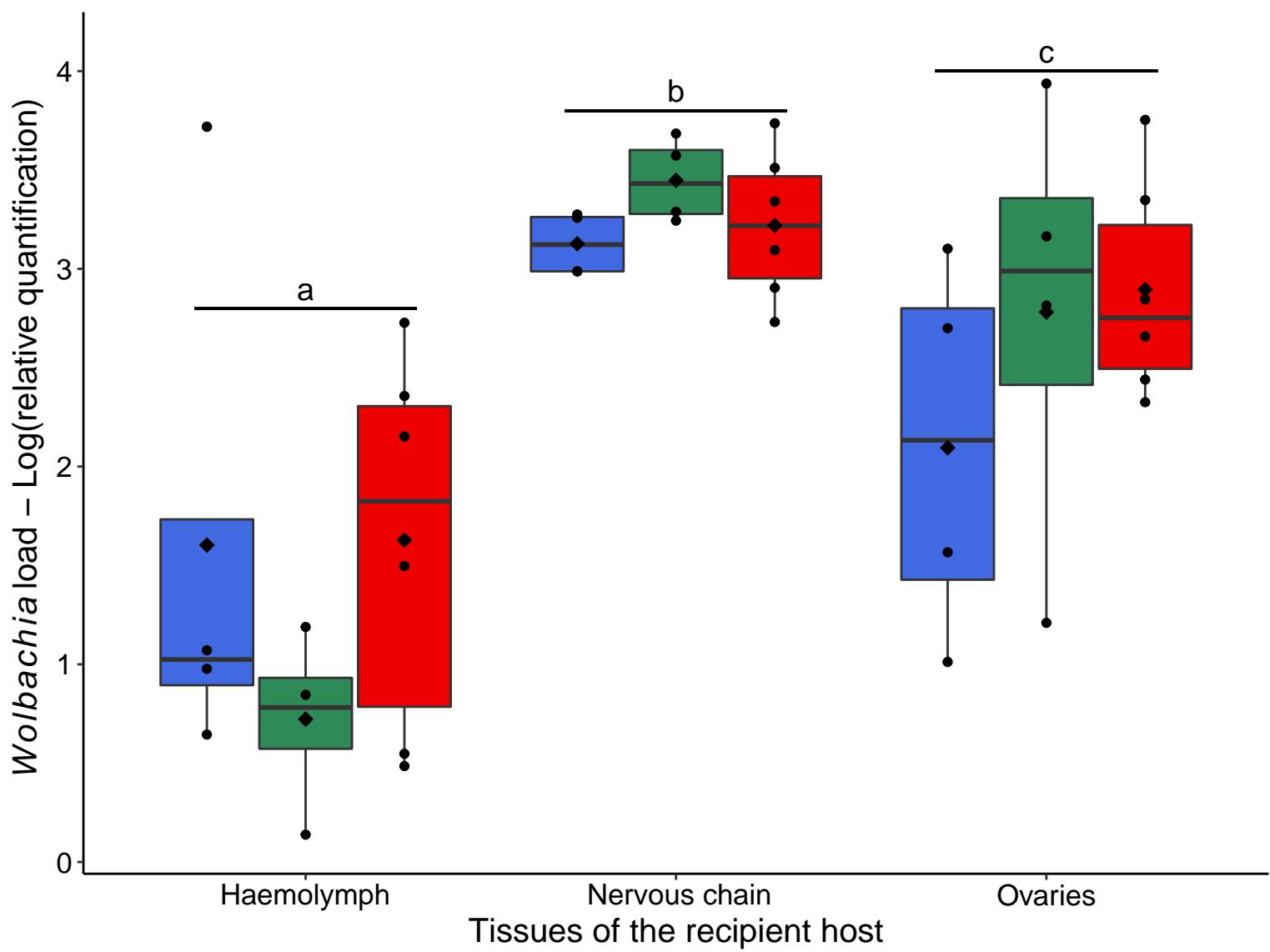
Table 1. Nucleotide difference between *Wolbachia* from three tissues of naturally infected *Armadillidium vulgare*. HAEM: haemolymph, NC: nerve chain, OVA: ovaries. Nucl: Nucleotide, AA: amino acid; Arg: arginine, Gln: glutamine

Figure captions

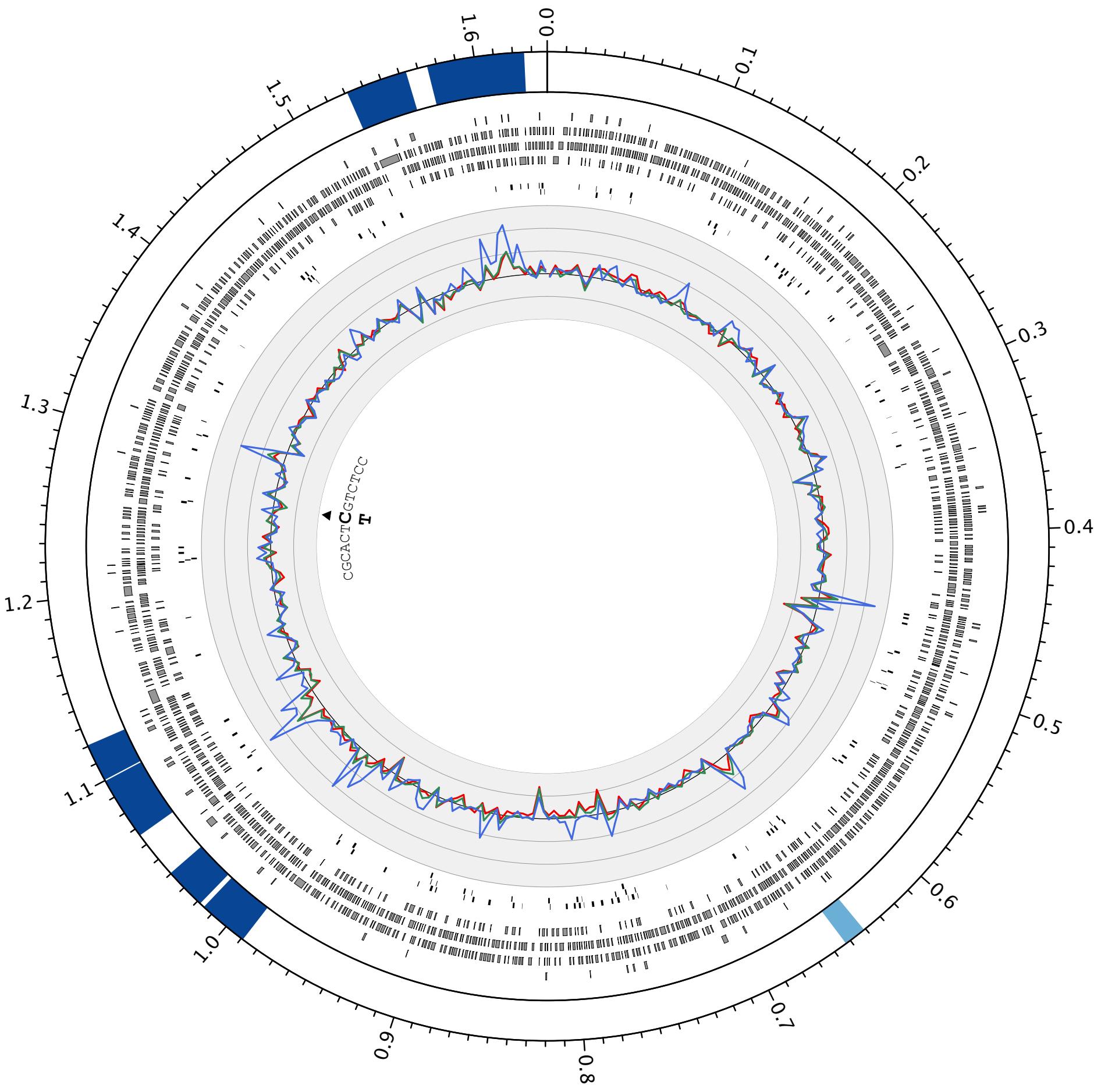
Figure 1. Survival rate of *Armadillidium vulgare* following *Wolbachia* (wVulC) trans-infection. Effect of tissue origin of injected *Wolbachia* on mortality of recipient hosts monitored (A) every 10 days from day 0 to day 60 post-injection and (B) every 15-20 days from day 0 to day 200 post-injection. Solid lines: recipient hosts injected with crushed filtered tissue from animals naturally infected by *Wolbachia* wVulc. Dotted lines: control individuals injected with crushed filtered tissue from *A. vulgare* not infected by *Wolbachia*. The three colours correspond to the tissue of origin of *Wolbachia*. Green: nerve chain, red: ovaries, blue: haemolymph


Figure 2. Infection dynamics of *Wolbachia* (wVulC) in *Armadillidium vulgare* from day 0 to day 60 post-injection. (A) *Wolbachia* loads in nerve chain (green), haemolymph (blue) and ovaries (red) of recipient hosts trans-infected by *Wolbachia*, all source tissue considered. (B) Influence of *Wolbachia* tissue origin on infection dynamics in tissue loads in recipient host, all recipient tissue considered. Green: nerve chain, red: ovaries, blue: haemolymph. Error bars correspond to the standard error. Infection dynamics not connected by the same letter are significantly different ($p < 0.05$).


Figure 3. *Wolbachia* (wVulC) load in *Armadillidium vulgare* tissues six months post-injection. The coloured boxplots illustrate the tissue origin of *Wolbachia* (green: nerve chain, red: ovaries, blue: haemolymph). However, the analysis did not reveal any significant effect of the tissue origin of the bacteria on the intensity of infection (RQ) in the recipient host tissues. Boxes above and below the medians (horizontal lines) show the first and third quartiles, respectively. Black diamonds represent the means. Levels not connected by the same letter are significantly different ($p < 0.05$).


Figure 4 *Wolbachia* (wVulC) load in tissues from naturally infected females (source line).

Wolbachia load was measured in the haemolymph, nerve chain and ovaries of 15 females from the source line. The analysis showed that the bacterial load was lower in the haemolymph than in the ovaries and nerve chain. Boxes above and below the medians (horizontal lines) show the first and third quartiles, respectively. Black diamonds represent the means. Levels not connected by the same letter are significantly different ($p < 0.05$). Green: nerve chain, red: ovaries, blue: haemolymph.


Figure 5. Circos plot of the wVulC *Wolbachia* genome. Prophage-derived regions are indicated inside the genome ideogram (outer track), with their colour corresponding to the score attributed by PHASTEST (dark blue: intact, light blue: questionable). Ticks on the ideogram are separated by 10 kb intervals, and indicated values are in Mb. Predicted protein-coding genes are represented by grey rectangles (second track), and Insertion Sequence elements by black rectangles (third track). In the fourth track, the normalized read coverage for 5 kb adjacent windows (averaged over recipient individuals) is represented for the different resequenced tissues: ovaries (red), nerve chain (green) and haemolymph (blue). The black line corresponds to a mean normalized coverage of one, and grey lines are separated by 0.1 unit. Black triangle indicates the position of the detected variant and the bold letter (C and T) correspond to the two alleles.

