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1 Abstract

1.1 Background

Porto-sinusoidal vascular disease (PSVD) is a complex, rare liver disease characterized
by the absence of cirrhosis, with or without the presence of portal hypertension or
histological lesions. Given the knowledge gaps in the mechanisms involved in this
disease with unknown etiology, we used omics-based approaches to further elucidate the
pathways affected by PSVD, facilitating improvements in the prognosis, diagnosis, and
treatment options for these patients.

1.2 Methods

We applied gene set enrichment analysis (GSEA) and weighted gene coexpression
network analysis (WGCNA) to identify pathways dysregulated in PSVD. Network
construction and visualization were performed in Cytoscape to explore interconnectivity
among enriched processes. Within key modules, candidate genes were prioritized by
ranking approaches and cross-referenced with findings from previous studies.

1.3 Results and Conclusion

This study revealed that PSVD is characterized by coordinated dysregulation, with
immune and signaling pathways activated alongside the suppression of metabolic,
ribosomal, and mitochondrial programs. Alterations in ribosomal proteins, ATP
synthase subunits, and serpin family members highlight translational, bioenergetic, and
anticoagulant dysfunction as core mechanisms. Together, these findings define PSVD as
a disorder of integrated immune, vascular, and metabolic imbalance.

2 Introduction

Porto-sinusoidal vascular disease (PSVD) is a complex, rare liver disease characterized
by the absence of cirrhosis, with or without the presence of portal hypertension or

histological lesions [1]. This term was recently coined to improve the understanding of
the disease by reducing the effect of heterogeneity, facilitating improved diagnosis, and
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simplifying comparisons between different clinical studies [1]. PSVD is a rare disease
with a currently unknown prevalence.

The diagnosis of patients suffering from PSVD includes noninvasive imaging
methods focused on splenomegaly,rtosystemic colcollaterals,nd hepatic vein venography.
However, imaging by itself is insufficient, and further invasive methods, such as biopsies,
are an essential part of the diagnostic routines for PSVD [1]. The accuracy of analysis
remains highly variable depending on the experience of the histopathologist [1]. In a
recently published metabolomics study, a group of metabolite markers was identified
that could predict patients diagnosed with PSVD with an accuracy of 88% [2].

The mechanism of disease development for PSVD is not known but is dependent on
the vascular developments within the liver [1]. 43-48% of patients with PSVD patients
have one or more associated conditions majorly classified into disorders of immunity,
blood diseases and prothrombotic conditions, infections, congenital or familial defects,
and drug exposure [1].

Because PSVD incorporates a small, heterogeneous diseased patient group with
varying physiological and histological features, there is sparse information regarding
molecular pathways or processes affected in this condition. A recent study by
Hernandéz-Gea et al., revealed previously unknown regulatory pathways affected in
PSVD using co-expression analysis using gene expression data from healthy, PSVD and
liver cirrhosis patients. The study indicated deregulation of pathways specific to vascular
homeostasis and oxidative phosphorylation affecting the endothelial function [3].

Omics analysis, especially transcriptomics, has been widely used to understand genes
differentially regulated in a disease and next to link these genes to pathways thereby
explaining the molecular mechanisms underlying the disease. Also, other approaches
based on network algorithms, especially co-expression networks, have been constructed
from omics data to identify novel disease-specific mechanisms by identifying genes that
are coexpressed or change [4L/5].

In this study, we implemented two methods: first, gene set enrichment analysis, and
second, co-expression network analysis using transcriptomics to identify pathways or
processes affected in patients with PSVD. Understanding the pathways or processes
would shed light on the mode of action of the disease, thereby allowing for improved
prognosis, diagnosis, and the treatment options available to the patients suffering from
this rare disorder.

3 Materials and methods
3.1 Data

A previously published transcriptomics dataset by Lozano et al. was obtained from the
GEO database (GEO:GSE77627) (3], including their ethical approval (HCB/2009/5448).
The dataset contains liver mRNA expression profiles for histologically normal liver
(HNL), PSVD and liver cirrhosis patients. In this study, liver cirrhosis patients were
excluded given that their transcriptomic profile overlapped with the PSVD
ranscriptomic profile (see supplementary Fig. |[Principal component analysis

PCA) for healthy, liver cirrhosis, and PSVD liver biopsy samples. PCA was

erformed on normalized transtormed gene expression data. The PCA plot above

represents the variance explained by the top two components|). Additional clinical data

and information were obtained from the original study authors, Hospital Clinic of the
University of Barcelona. The measured variables included information on sex, wedged
hepatic vein pressure (WHVP), hepatic venous pressure gradient (HVPG), bilirubin,
platelet count, spleen size, liver stiffness, PSVD-specific, and non-specific biopsy
markers.
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3.2 Data pre-processing

The raw Illumina probe data using the Illumina HumanHT-12 DASL 4.0 R2 expression
beadchip platform annotation was first filtered for protein-coding genes using the
biomaR#t(v2.64.0) R package with the filters: biotype (protein coding), chromosome
name (22 chromosomes, mitochondrial chromosome and sex chromosomes) using the
gene identifiers provided in the annotation file. Next, the filtered probe data was
pre-processed using the lumi(v) R package HEI] Background correction and quantile
normalisation was performed using the negc function with an offset value of 16. The
data was re-annotated using ENSEMBL gene identifiers. A misdiagnosed patient
(PSVD17) was removed from the analysis. Samples with incomplete sex information
were removed from the analysis. The data distribution for before and after normalized

data is provided in supplementary Fig. |Distribution of the gene expression data

cross samples. (A)Distribution of the gene expression data before and after

ormalization. X-axis represents the samples (pink — Healthy liver biopsies and blue-

SVD liver biopsies). Y-axis represents the genes expression values in logarithmic scale

B) Distribution of the detection p-value before and after normalization. X-axis

epresents the samples (pink — Healthy liver biopsies and blue- PSVD liver biopsies).

-axis represents the p-values of the probes used to measure the gene expression of the

samples
To detect outliers, hierarchical clustering on the samples was performed and the

dendrogram is provided in supplementary Fig. |Hierarchical clustering of the

amples. (a) Dendogram of the sample clustering. Sample PSVDO05 (shown in red) was

removed from the analysis given that it was clustering with the healthy liver samples.

b) Dendogram representing the sample clustering after outlier removal against the

clinical variables visualized in the rows(a). Based on the clustering, sample ‘PSVD05’

was removed from further analysis. The dendrogram of samples and clinical variables

measured for these samples is provided in supplementary Fig. [Hierarchical clustering

f the samples. (a) Dendogram of the sample clustering. Sample PSVDO05 (shown inl

ed) was removed from the analysis given that it was clustering with the healthy liver

amples. (b) Dendogram representing the sample clustering after outlier removal against|

the clinical variables visualized in the rows(b).

3.3 Differentially expressed gene (DEG) analysis

Differential gene expression analysis was performed to determine genes that are
significantly altered (up- or down-regulated) in PSVD patients compared to healthy
controls after sex correction using the limma(v3.64.1) R package . The cut-off for
significantly upregulated genes is logFC > 1 and adjusted p-value < 0.05, significantly
weak upregulated genes is 0.58 < logFC > 1 and adjusted p-value > 0.05 . For
down-regulated genes the cut-off used is logFC < —1 and adjusted p-value < 0.05. A
cut-off of 0.58 < logFC > 1 and adjusted p-value > 0.05 is used for significantly
downregulated genes. The EnhancedVolcano function in EnhancedVolcano(v1.26.0) R
package was used for creating the volcano plot for differentially regulated genes
identified in PSVD vs HNL comparison .

3.4 Gene set enrichment analysis for DEGs

Gene set enrichment analysis (GSEA) was performed using the clusterProfiler(v4.6.2) R

package using a maximum and minimum gene set sizes of 500 and 10 respectively @

The DEGs were ranked based on the product of signed log fold change and the negative
logarithm of the adjusted p-value, see the equation below.
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ranking = logo F'C x —logipadjustedp — value (1)

For the enrichment analysis, the human canonical pathway gene sets from the
Molecular Signatures Database (MSigDB, v2023.2.Hs) were used ( [10,/11]). The
pathway genesets from Kyoto Encyclopedia of Genes and Genomes (KEGG, 186 gene
sets ( [12}]13])), WikiPathways (733 gene sets ( [14])) and Reactome (1,654 gene sets
( |15])) were included. Additionally, 7,751 gene sets from the Biological Process ontology
from Gene Ontology (GO) were included for the analysis ( [16L[17]).

3.5 Cytoscape visualisation of the enrichment analysis

The gene set enrichment analysis results were visualized in Cytoscape using a custom R
script. To calculate similarity between two enriched terms the overlap coefficient (k)
was used. [1§].

__JAnB
= min(4, B) @

A cut-off score of k > 0.4 was used to add an edge between two enriched terms.

3.6 Coexpression network construction

The weighted gene co-expression analysis (WGCNA) is a network algorithm tool that
constructs correlation networks based on similar gene expression patterns across
samples. It uses an unsupervised approach to identify co-expression gene modules. This
tool was implemented using the WGCNA(v1.73) R package to identify gene expression
modules correlating to the PSVD phenotype [19].

Normalized gene expression data was adjusted for sex effects using the
removeBatchEffect function from the limma(v) R package [7]. Next, lowly expressed
genes, i.e., genes with average expression values below 0.05 were removed. The input
was the pre-processed normalized data of all the samples used (healthy and PSVD). A
step-by-step method was used to generate the consensus network and to further detect
the modules.

Firstly, a similarity network was constructed using Pearson correlation for all gene
pairs in the dataset. Next, a signed adjacency matrix was calculated by raising the
similarity matrix to a soft-thresholding power (8 = 18).

Next, the adjacency matrix was converted into a Topological Overlap Matrix (TOM).

The TOM is a robust network similarity measure by calculating the effect of
neighboring nodes on pairs of genes. The resulting proximity matrix is then converted
to a dissimilarity TOM matrix. The dissimilarity measure works well in the clustering
of gene expression profiles by identifying distinct gene modules.

From these results, a dendrogram was constructed using the dissimilarity matrix and

verage hierarchical clustering method (see Supplementary Fig. [Cluster dendrogram

nd modules detected. Hierarchical tree (average linkage) using dynamic tree cutting

ethod was used for module detection. The Dynamic Tree Cut band represents the

[genes assigned to particular modules. 24 modules were detectedl To identify modules
with highly interconnected genes, a dynamic tree-cut method was implemented with a
minimum module size of 150.
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3.7 Identification of key clinically significant modules and core
genes for the key modules

The consensus co-expression network generated previously was then used to identify
modules of highly interconnected genes or genes with a higher degree of co-expression
using the dynamic tree-cut algorithm. For identifying modules relevant to clinical
phenotypes associated with PVSD, the module eigengene, and the module membership
are calculated. Finally, a significant correlation between the modules and the clinical

phenotype 'Diagnosis of PSVD’ was used to identify clinically significant gene modules.

Core genes from significant modules were retained based on thresholds of gene
significance > 0.5 and |module membership| > 0.5.

3.8 Over-representation analysis (ORA) and functional
annotation for key modules

Functional analysis of the core genes for the key clinically significant modules was
performed using the enricher function in the clusterProfiler R package [9]. The Gene
Ontology: Biological Process geneset for performing the over-representation analysis was

obtained from the Molecular Signatures Database (MSigDB, v2023.2.Hs)( [10}/11,/16L17]).

For certain modules where enriched terms were not obtained using the above gene set,
WikiPathways and the Reactome gene sets were used for performing enrichment
analysis. The key modules were then manually functionally annotated by assigning an
appropriate biological term based on the enriched terms for each module.

3.9 Module Eigengene Correlation Network

Pearson correlation using the cor function from the stats(v3.6.2) R package was
implemented [20]. The Pearson correlation of the module eigengenes obtained from
coexpression network analysis was calculated for the 14 key modules. The network was
then exported to Cytoscape and the key modules (as nodes in the network) were
annotated using the results from Section [3.8

3.10 Cytoscape network analysis of the PPI network for the
module clusters

Module clusters identified from Section [4.3| were then used for generating PPI networks.

Core genes from the immune (grey60 and red) and signaling (yellow and turquoise)
module clusters identified in section were exported to Cytoscape using the Ensembl
identifiers with a STRING confidence score of 0.7 [21]. For the metabolic module
cluster, the core genes from black, blue, and lightgreen modules were exported to
Cytoscape using Ensembl identifiers with a STRING confidence score of 0.9 [21]. Next,
Glay community detection algorithm using the Cluster Network option in the
clusterMaker app in Cytoscape was implemented to detect clusters within the PPI
networks [22,23]. Clusters with less than 20 nodes were removed from the network. The
top five genes in the network were selected based on the ranking measure of the product
of the absolute log fold change and the node degree.

3.11 Open source code

All analysis steps described were fully automated, and the scripts used for this study are
available on WorkflowHub for reproduction and further exploration:
https://workflowhub.eu/workflows/10407version=1.
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4 Results

4.1 Differentially expressed genes in PSVD

The raw transcriptomics data consisting of 26,776 Illumina probes was processed to

correspond to 15,551 protein-coding genes (annotated with ENSEMBL gene identifiers).

DEG analysis identified 3,152 significantly upregulated genes, 803 significantly and
weakly upregulated genes, 2,412 significantly downregulated genes, and 788 significantly
weak downregulated genes in PSVD patients.

The top 3 up-regulated genes were erythropoietin (EPO) - logFC 4.8, Ankyrin
Repeat Domain 1 (ANKRD1) - logFC 4.8 and G Antigen 12J (GAGE12]J) - logFC 4.5
while the top 3 down-regulated genes were ephrin A2 (EFNA 2) logFC —5.1, Nuclear
Factor I C (NFIC)- logFC —5.0 and meteorin, glial cell differentiation regulator
(METRN) - logFC —4.9 (Fig. [).

® Non-significant with logFC > 1 or logFC < -1 ® Significant downregulated (logFC <=-1) = Significant weak downregulated (logFC -1 to -0.58)

NS ® Significant upregulated (logFC => 1) Significant weak upregulated (logFC 0.58 to 1)
10.0
. .
.

7.5
o
ko]
(O]
—
%]
S

T 50
©
o
(o))
o

|
25
0.0

-6 -3 3 6
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Fig 1. Volcano plot for differential gene expression. Volcano plot of all the
differentially expressed genes between PSVD and healthy samples in liver

tissues. Dots represent individual genes, and the color represents the not significant

genes (NS) - grey, Non-significant genes with -1 < logFC > 1 and adjusted p- value >
0.05 - green , Significant upregulated genes with logFC => 1 and adjusted p-value <

0.05 - red, Significant weak upregulated gene with 0.58 < logFC > 1 and adjusted p-

value > 0.05 - light red, Significant downregulated genes with logFC <= —1 and

adjusted p-value < 0.05 - red. The top six differentially regulated genes are highlighted
in the figure.

4.2 Gene set enrichment analysis

Gene set enrichment analysis (GSEA) was performed on the differentially expressed
genes in PSVD. Using the Gene Ontology, KEGG, Reactome and WikiPathways gene
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sets, 69 significantly enriched terms were obtained, in which 9 positively enriched terms
and 60 negatively enriched terms were visualised in Cytoscape (Fig. . The top
positively significantly enriched term was the Olfactory signaling pathway (Reactome)
with a normalised enrichment score (NES) of 2 while the Peroxisome pathway (KEGG)
was the top negatively significantly enriched term with a NES of —1.9. A similarity
threshold of 0.4 was applied to cluster the enriched terms based on the number of genes
common between the terms, thereby sharing similar functional profiles.

From Fig. [2| we observe that the lipid and fatty acid metabolism processes,
insulin-related processes, tissue and epithelial cell migration processes, endoplasmic
reticulum and Golgi associated processes, organic compounds and tricarboxylic acid
metabolic process, organic hydroxy compound metabolic process, monosaccharide
metabolic process, glycerolipid metabolic process, nucleoside biphosphate metabolic
process, immune-related processes like neutrophil degranulation, viral process,
SARS-CoV infection, and protein translation were negatively enriched. Processes
related to olfactory and sensory stimulus, sleep regulation, meiosis cell cycle and
retinoblastoma were positively enriched.

Node Border Paint: NES_score
Node Size: setSize

1o_Edge width: Overlap co-efficient

d (0gFC >=1)

quiated (ogFC 0.5610 1)
fted (0gFC <= -1)
Significanty weak downregulated (1ogFC -0.58 o -1)

Fig 2. Gene set enrichment analysis (GSEA) results. A node represents each
enriched gene set of the Gene Ontology class Biological Process and canonical pathways
with a false discovery rate cut-off of < 0.05. The node border color indicates normalized
enrichment scores of the terms. The pie chart displayed within the node indicates the
number of significantly downregulated and weak downregulated genes (darkblue and
lightblue respectively) and significantly upregulated and weak upregulated genes (red
and light red respectively) out of the total genes in a gene set. The node size is assigned
based on the setSize (number of genes in a term). The edge weight representing the
overlap coefficient (similarity index between two terms) has filtered with a cut-off value
of 0.4.

4.3 Identification of 15 key PSVD modules using co-expression
network analysis

The co-expression network was constructed using 15,551 protein-coding genes from 27

liver biopsy samples (11 healthy and 16 PSVD patients) using the "'WGCNA’ R package.

The patients with PSVD included in this study have clinical signs of portal
hypertension. The two most frequent signs of portal hypertension in PSVD patients
being splenomegaly and the presence of gastroesophageal varices. Splenomegaly was
present in all PSVD patients with a mean size of 15.3 £ 2.7 cm (Table . Additionally,
68% of PSVD patients show clinically elevated portal hypertension with a mean hepatic
venous pressure gradient (HVPG) of 7.9 + 3.8 (Table [1)).
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A range of soft-thresholding powers (3) were used to assess the scale free topology of
the network constructed. For this analysis, 8 of 18 was selected which had a scale-free
topology fit (R?) of 0.81; shown in Fig. a). Using the average hierarchical clustering
and dynamic tree cut method, a total of 35 distinct gene modules and the corresponding
coexpressed genes for each module were identified. To explore the relationship between
the identified coexpressed modules and the clinical variables associated with PSVD
phenotype, such as diagnosis, sex, gastroesophageal varices, spleen size, HVPG, WHVP,
platelet count, PHT-specific, and PSVD-specific histological markers. Out of the 35
distinctly identified modules, 15 modules were selected which significantly correlated to
the diagnosis of PSVD, shown in Fig. b) (see Supplementary Fig. Module-trait

relationship heatmap. A heatmap of the module-trait relationship for modules
ignificantly correlating to the diagnosis of PSVD on the y- axis and clinical variables

n the x-axis. The color gradient on the heatmap represents the strength of the Pearson

correlation coefficients. Number in each cell is the correlation and the p-value (in

brackets). Hepatic venous pressure gradient (HVPG), wedged hepatic vein pressure

WHVP), portal hypertension (PHT), porto-sinusoidal vascular diseases (PSVD)| for

module-trait relationship for all 35 modules).
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Fig 3. Scale-free topology and module trait relationship for the coexpression
network. (a) Determination of soft thresholding power for coexpression network
construction: 1) Analysis of scale-free index for a range of soft thresholding values (3).
2) Analysis of the mean connectivity for a range of soft thresholding values (3). (b) A
heatmap of the module-trait relationship for modules significantly correlating to the
diagnosis of PSVD on the y- axis and clinical variables on the x-axis. The color gradient
on the heatmap represents the strength of the Pearson correlation coefficients. *
represents the modules significantly correlating to the respective clinical variables (p <
0.05). Hepatic venous pressure gradient (HVPG) wedged hepatic vein pressure
(WHVP), portal hypertension (PHT), porto-sinusoidal vascular diseases (PSVD).

4.4 Selection of Core Genes in PSVD-Associated Modules

Core genes for each module were selected based on a threshold of 0.5 for both Gene
Significance (GS) and Module Membership (MM). Scatter plots of GS versus MM for

each module are shown in Supplementary Fig. [The scatter plots depict the relationship

between gene significance (GS) for PSVD diagnosis and module membership (MM)

within each key co-expression module identified by WGCNA. Fach point represents a

single gene, where reflects the correlation between gene expression an
1agNosis, an represents the correlation between the gene and the module

cigengene, indicating its connectivity within the module. Genes in the upper-right

quadrant (GS > 0.5 and MM > 0.5) were designated as core (hub) genes, as they are

oth strongly associated with the trait and highly central within the module network.
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Table 1. Clinical characteristics

HNL (n=11) PSVD (n=16)
Sex(Male) 4(36%) 11(69%)
Presence GEV 0 5(31%)
HVPG (mmHg) 3.9+0.8 7.9+38
WHVP (mmHg) 7.04£0.7 13.3 £ 4.1
Platelet Count (10°/1) 236.5 +63.8 163.6 £ 143.0
Total Bilirubin (mg/dl) 0.8+0.4 1.2+1.2
Spleen size (cm) 9.5+0.7 15.3+ 2.7
Liver stiffness (kPa) 5.8+0.9 7.8+3.1
Direct Bilirubin (mg/dl) 0.4+0.2 0.440.3

Mean + SD

GEV, Gastroesophageal varices; HVPG, hepatic venous pressure gradient; WHVP,
wedged hepatic venous pressure, HNL, healthy normal liver; PSVD, porto-sinusoidal
vascular disease.

ata points are color-coded to retlect ditferential expression in PSVD: significantly

upregulated (red), weakly upregulated (light red), significantly downregulated (blue),

weakly downregulated (light blue), and non-significant genes (grey)l The lightyellow

module was excluded from downstream analyses primarily because none of the genes
with the module met the 0.5 cut-off for GS, and additionally, the module showed a low
correlation with PSVD diagnosis (r = —0.40). Fig. [4]illustrates the distribution of genes
and core genes across modules, as well as their expression profiles.
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Fig 4. Barplots visualizing the distribution of differentially expressed genes
within key modules significantly correlated with the diagnosis of PSVD
patients. a) Percentage distribution of all genes in the key modules. The x-axis
represents modules, with the total number of genes per module indicated above each
bar. The y-axis shows the proportion of genes that are significantly downregulated

1

October 21, 2025

\uallx Lluc, 1U5 e —1}, mlucsulabcd \llglw Lluc, e 1\% FE— _G.:JO),
weakly upregulated (light red, 0.58 < log FC < 1), or significantly upregulated (dﬁ
red, log FC > 1). (b) Percentage distribution restricted to the core genes of each
module. Modules are shown on the x-axis, with the number of core genes per module
indicated above each bar. The color coding reflects the same categories of differential
expression as in panel (a).
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4.5 Module Eigengene Correlation Network analysis identifies
immune, signaling, and metabolic pathways as core
dysregulated modules in PSVD

To understand the biological processes affected in PSVD, we performed functional
over-representation analysis for the 14 selected modules using the Gene Ontology -
Biological Process gene sets from MSigDB. grey60 module with the highest positive
correlation and significance (r = 0.91,p = 6.255351e — 11) to PSVD diagnosis trait
identified processes related to immune cell activation and differentiation, involving the
T cells, leukocytes and lymphocytes. This module highlights the adaptive immune
system related processes due to terms involving acute and antigenic inflammatory
response, positive regulation of cell-cell adhesion and cytokine signaling pathways. (The
enrichment of cardiac and placental morphogenesis terms may reflect shared
developmental signaling pathways active during hepatic organogenesis or in hepatic
stromal or endothelial compartments) - part of the discussion .

Blue module with highest significant negative correlation
(r=-0.91,p = 6.298297¢ — 11) to PSVD diagnosis is strongly enriched for metabolic,
translational and insulin-responsive processes. This module reflects the core metabolic
functions associated with liver tissue. Key metabolic processes part of the blue module
enrichment are fatty acid -oxidation, lipid catabolism and biosynthesis, steroid and
ketone metabolism, and cellular energy production via oxidative phosphorylation and
aerobic respiration processes. Additionally, enriched terms related to cytoplasmic
translation, protein ubiquitination and TOR signaling regulation suggest the nutrient
sensing, energy balance, and stress response role of liver. Vesicle transport and ER-Golgi
trafficking terms hint at active protein and lipid processing, critical in hepatocytes.

Fig. p| presents the Module Eigengene Correlation Network for key modules
significantly associated with PSVD diagnosis. The immune-related modules, grey60
(Immune cell Activation and Adhesion) and red (Innate Immune & Vitamin
Biosynthesis), exhibit a strong positive correlation with each other, indicating
coordinated expression patterns, and both modules show a positive association with
PSVD diagnosis. Metabolic modules, including blue (Lipid Metabolism, Energy
Production & Insulin Signaling), black (Hepatic Detoxification, and Amino Acid &
Lipid Catabolism), and lightgreen (Glycoprotein Metabolism & Endothelial Regulation),
also display strong positive correlations among themselves; however, they are negatively
associated with PSVD, suggesting a potential downregulation of metabolic pathways in
PSVD patients. Signaling-related modules, turquoise (Chemosensory & ciliary motility)
and yellow (Sensory Perception & GPCR Signaling), show a strong positive correlation
with each other and are positively associated with PSVD, indicating co-regulated
signaling processes in PSVD patients. Interestingly, there is a pronounced negative
correlation between the metabolic modules (black, blue, lightgreen) and the immune
modules (grey60, red), as well as between the metabolic modules and the signaling
modules (turquoise, yellow). These patterns reveal the existence of three functionally
distinct module clusters: immune, metabolic, and signaling clusters with opposing
correlations to the diagnosis of PSVD. This organization may reflect antagonistic or
complementary regulatory mechanisms, suggesting that upregulation of immune and
signaling pathways may occur concurrently with downregulation of metabolic pathways
in PSVD pathogenesis.
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Cellular Stress Regulation &
Repulsive Signaling
Hepatic Detoxification and Glycoprotein Metabolism & Node size: Correlation to PSVD Diagnosis

Amino Acid & Lipid Endothelial Regulation
Catabolism 0,80
/ RNA Processing, Inmune

Lipid Metabolism, Energy Signaling & Cell Migration
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Node Shape: Correlation direction

Immune Activation,
P Inflammation & Cell Cycle Negat'ive
Chemosensory & ciliary Regulation
motility module
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Iron Transport, Insulin
Sensory Perception & GPCR /' Signaling & Autophagic

Regulation
Edge color: Module eigengene correlation
Bl Positive

Protein localization to ¢ mRNA processing B Negative

Edge width: Pearson correlation
Innate Immune & Vitamin
Biosynthesis

2

Immune cell Activation and
Adhesion

07

Fig 5. Module Eigengene Correlation Network of PSVD-associated key
modules. The network visualization depicts the correlations among module eigengenes
for modules significantly associated with PSVD diagnosis, highlighting pathways
relevant to PSVD. Node size reflects the strength of correlation with PSVD (larger
nodes indicate higher correlation, ranging from 0.47 to 0.91), while node shape indicates
the direction of the correlation (triangle = positive, diamond = negative). Edges
represent correlations between module eigengenes, with color indicating the correlation
direction (red = positive, blue = negative) and edge width proportional to the Pearson
correlation strength (0.7-1.0). Modules are annotated with enriched biological functions
based on Gene Ontology: Biological Processes, providing insights into the functional
relevance of PSVD-associated co-expression modules.

4.6 Protein-protein Interaction (PPI) networks for the Immune,
Signaling and Metabolic module clusters

Fig. [6] shows the PPI network for the immune and signaling module clusters. Fig. [6p,
representing the PPI network of the immune module cluster for grey60 and red module
core genes, indicates five sub clusters identified by the Glay community detection
algorithm and functionally annotated using the STRINGapp enrichment function. The
large red-bordered node, A2M, has been previously linked to PSVD pathogenesis in the
study by Hernandez-Gea V et al. . The large black-bordered nodes (CCRY,
JUN,BARDI, RPS27A, and SNRPG) are the top five ranked genes based on the
product of node degree and gene log-fold change.

Fig. [6b, representing the PPI network of the signaling module cluster for turquoise
and yellow module core genes, indicates six sub clusters identified by the Glay
community detection algorithm and functionally annotated using the STRINGapp
enrichment function. The large red-bordered node, SERPINA12, has been previously
linked to PSVD pathogenesis in the study by Hernandez-Gea V et al. . The large
black-bordered nodes (GHRL, TOP2A, CDC6, IL6, and CD19) are the top five ranked
genes based on the product of node degree and gene log-fold change.

Supplementary Fig. [Protein—Protein Interaction (PPI) Networks for the

etabolic Module cluster (blue, black, lightgreen). Nodes represent core genes
olored by log-fold change (logFC). The red-bordered node is a previously reported
ene, while large black-bordered nodes are the top five genes ranked by absolute(logFC
node degree. Subclusters (circles) were identified using the Glay community detection
algorithm, with functional enrichment and annotation performed via STRINGapp|
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represents the PPI network of the metabolic module cluster (blue, black, and
lightgreen). The network shows 11 sub clusters identified by the Glay community
detection algorithm and functionally annotated using the STRINGapp enrichment
function. The large red-bordered node, (ATP5MG, ATP5PF, ATPVOC, ATP5F1C,
ATP6VOEL, ATP5PO, ATP5F1A, SERPIND1, APOE and APOA2), has been
previously linked to PSVD pathogenesis in the study by Hernandez-Gea V et al. [3].
The large black-bordered nodes (RPS6, RPS8, RPS11, MRPL12 and RPL12) are the
top five ranked genes based on the product of node degree and gene log-fold change.
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is, and Cell Cycle Control
a)

Node Fill Color: logFC

Mediated mRNA
and Vitamin D Metabolism

Cytokine and NF-kB-Mediated Regulation of Adaptive

and Host Defense Responses

Cell Cycle and DNA Damage Response
lon Transport and Membrane Potential Regulation Node Fill Color: logFC

GPCR-Mediated Sensory Processing

Molecular Regulation of Cytokine Signaling
and Immune Activation

Fig 6. Protein—Protein Interaction (PPI) Networks for Immune and
Signaling Module Clusters. a) Immune module cluster (grey60 and red): Nodes
represent core genes, colored by log-fold change (logFC). The red-bordered node is a
previously reported gene, while large black-bordered nodes are the top five genes ranked
by absolute(logFC) x node degree. Subclusters (circles) were identified using the Glay
community detection algorithm, with functional enrichment and annotation performed
via STRINGapp. b) Signaling module cluster (turquoise and yellow): Nodes represent
core genes, colored by logFC. The red-bordered node is a previously reported gene,
while large black-bordered nodes are the top five ranked genes. Sub clusters and
functional enrichment and annotation were done as above.

October 21, 2025 15


https://doi.org/10.1101/2024.06.14.599028
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.14.599028; this version posted October 21, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

5 Discussion

In this study, we re-analyzed a transcriptomics dataset on PSVD originally produced by
Lonzano et al. and focused on the in-depth comparison of transcriptomic changes
between the PSVD and HNL groups.

The top differentially expressed genes indicate early cellular stress and vascular
dysfunction in PSVD. Upregulated EPO, ANKRD1, and GAGE12J suggests the
activation of erythropoietic and mechanotransductive stress pathways [24-30]. Elevated
EPO likely reflects IL-6—dependent hepatic signaling under hypoxic or inflammatory
conditions [31]. ANKRDI1, a YAP/Hippo-responsive mechanosensor induced by
pro-inflammatory cytokines, may mirror endothelial strain and extracellular-matrix
remodeling, both central to sinusoidal injury [32-34]. GAGE12J, lacking functional
annotation, represents a novel transcript of potential relevance to PSVD.
Downregulated EFNA2, NFIC, and METRN indicate impaired vascular stability and
regeneration. EFNA2 loss may weaken angiogenic and immune—endothelial
communication [35H37]. Unlike hepatocellular carcinoma, where EFNA2 is upregulated
and pro-angiogenic 38|, this downregulation may represent a PSVD-specific
maladaptive response of the portal microcirculation. NFIC reduction suggests
diminished hepatocyte proliferation and matrix regulation through TGF-g-dependent
signaling [39,/40]. METRN downregulation implies disturbed endothelial-immune
signaling and vascular repair [41]. Together, these genes define early molecular events
linking inflammation, vascular stress, and regenerative failure.

Using both GSEA and WGCNA, we examined altered processes in PSVD and their
interrelationships to gain mechanistic insights into disease pathogenesis. The Module
Eigengene Correlation Network (see Fig. [5)) highlighted three major clusters. The
immune cluster (immune cell activation, adhesion (grey60) and innate immune and
vitamin biosynthesis (red) modules) was positively associated with PSVD. Interestingly,
immune enrichment was not detected by GSEA, suggesting that coexpression analysis
may capture subtler immune dysregulation. The signaling cluster (chemosensory and
ciliary motility (turquoise) and sensory perception and GPCR signaling (yellow)
modules) was also positively associated, consistent with GSEA findings. In contrast, the
metabolic cluster (hepatic detoxification, amino acid and lipid catabolism (black), lipid
metabolism, energy production and insulin signaling (blue), and glycoprotein
metabolism with endothelial regulation (lightgreen) modules) was negatively associated,
corroborated by GSEA. Importantly, immune and signaling modules were positively
correlated with each other but negatively correlated with metabolic modules. This
pattern suggests a coordinated dysregulation in PSVD, where heightened immune and
signaling activity occurs in parallel with the suppression of metabolic pathways,
highlighting novel pathway interconnections that may underlie disease mechanisms.

Within the immune module cluster network (see Fig. @), we identified the top five
ranked genes based on their node degree and log fold change. No direct link between
BARD1 and PSVD has been reported; BARD1 is mainly studied as a BRCA1 partner
in DNA repair and is overexpressed in hepatocellular carcinoma, where it promotes
tumor progression [42].Although RPS27A has not been linked to PSVD to date, its roles
in translational control, ubiquitin signaling, and inflammation via NF-xB suggest it is a
plausible candidate for influencing endothelial stress or regenerative pathways in the
portal microvasculature. No known direct evidence links JUN (c-Jun) to PSVD.
However, in the liver, c-Jun regulates hepatocyte survival, proliferation, and fibrosis in
injury contexts [43]. Though not studied in PSVD, CCR7’s role in modulating hepatic
T-cell homeostasis and its immunoregulatory function make it a plausible candidate for
involvement in portal microvascular inflammation and immune infiltration in PSVD. In
a PSVD co-expression network study, A2M was identified as a highly connective gene,
suggesting it may contribute to disease pathogenesis through roles in protease inhibition
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and matrix remodeling .

For the signaling module cluster network (see Fig. |§|b)7 the top 5 ranked genes,
GHRL, IL6, CD19, CDC6, and TOP2A, have not been directly linked to PSVD.
However, their roles in hepatoprotection and fibrosis (GHRL) [44], inflammation and
endothelial injury (IL6, CD19) [45], and liver inflammation and immune cell regulation
(CDC6, TOP2A) suggest that their dysregulation could contribute to vascular
remodeling and impaired regeneration in PSVD. In contrast to Herndndez-Gea et al.,
SERPINC1 was found to be downregulated when comparing PSVD to liver cirrhosis
and healthy controls; our PSVD versus healthy liver biopsy analysis revealed
SERPINA12 upregulation within the signaling module cluster |3]. Given that serpins
act as key regulators of protease activity, coagulation balance, and inflammatory
signaling, this pattern suggests that distinct serpin family members may differentially
contribute to PSVD pathogenesis. SERPINCI reflects altered anticoagulant activity,
while SERPINA12 may participate in modulating vascular inflammation and
endothelial-immune interactions.

In the metabolic module cluster (see Supplementary Fig. |Protein—Protein

nteraction (PPI) Networks for the Metabolic Module cluster (blue, black,
lightgreen). Nodes represent core genes, colored by log-fold change (logl"C). The
fred-bordered node is a previously reported gene, while large black-bordered nodes are
the top five genes ranked by absolute(logFC) x node degree. Subclusters (circles) were
identified using the Glay community detection algorithm, with functional enrichment
and annotation performed via STRINGapp)), the top 5 ranked genes, RPS6, RPS8, and
RPS11, part of the translation and ribosome biogenesis subcluster, were downregulated,
indicating impaired ribosome biogenesis and translational activity. Ribosomal stress is
known to activate p53, disrupt hepatocyte viability, and modulate immune
regulation [47H49], suggesting that suppressed ribosomal protein expression may
contribute to endothelial dysfunction and microvascular remodeling in PSVD. In PSVD,
SERPINCI1 (antithrombin IIT) has been highlighted as a hub gene in co-expression
network analysis, underscoring the role of anticoagulant serpins in disease
pathogenesis . SERPIND1 (heparin cofactor IT), part of the complement, proteolysis,
and vesicle-mediated immune regulation subcluster, although not yet studied in PSVD,
shares functional overlap with SERPINCI] as a liver-derived serpin that inhibits
thrombin activity in the presence of heparin or dermatan sulfate . Together,
these findings suggest that the dysregulation of multiple anticoagulant serpins may
collectively influence coagulation balance and vascular remodeling in PSVD. APOE and
APOA2, part of the complement, proteolysis, and vesicle-mediated immune regulation
subcluster in the metabolic module network, were downregulated in PSVD, contrasting
with their upregulation in Hernandez-Gea et al. . This difference likely reflects
variations in the control groups (HNL vs. cirrhosis+HNL), but consistently implicates
lipid metabolism in PSVD pathogenesis. In the network, we additionally observed a
consistent downregulation of multiple ATPase subunits, including mitochondrial ATP
synthase components (ATP5MG, ATP5PF, ATP5F1C, ATP5PO, ATP5F1A) and
vacuolar proton pump subunits (ATP6VOEL, ATPVOC), which are part of the
mitochondrial energy metabolism and biosynthesis subcluster. This points to deficits in
oxidative phosphorylation and vesicular acidification. Notably, Herndndez-Gea et al.
(2021) also flagged ATP synthases (e.g., ATP5G1, ATP5B) as highly connective genes
within the PSVD transcriptomic network, implicating mitochondrial energy dysfunction
as a shared pathogenic axis [3]. The coordinated downregulation of ribosomal proteins
(RPS6, RPS8, RPS11) and ATPase subunits (ATP5MG, ATP5PF, ATP5F1C, ATP5PO,
ATP5F1A, ATP6VOE1L, ATPVOC) points to a combined translational and bioenergetic
dysfunction. Together with Herndndez-Gea et al. (2021) highlighting these pathways as
network hubs, this underscores impaired protein synthesis and mitochondrial energy
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metabolism as central drivers of PSVD pathogenesis.

A limitation of this study is the relatively small patient cohort, a common issue in
studying rare diseases. Although pooling transcriptomic data across studies could help,
evolving diagnostic criteria for PSVD and INCPH complicate integration. Nonetheless,
our re-analysis provides complementary insights to earlier work by Herndndez-Gea et al.
(2021). By directly comparing PSVD with HNL, we refined existing observations and
uncovered additional interconnected processes and candidate genes. A central pattern
emerging from our analysis is a coordinated dysregulation in PSVD of the immune and
signaling pathways being upregulated in parallel with the suppression of metabolic
processes. While these findings describe processes at the population level, patient

heterogeneity in risk factors, genetics, and environmental exposures remains a challenge.

Emerging evidence indicates that gut dysbiosis contributes to PSVD onset and
progression by driving porto-sinusoidal abnormalities and intrahepatic thrombosis.
Disruption of the gut-liver axis permit translocation of microbial products, such as LPS
and metabolites, into the liver. Future studies integrating microbiome profiling with
transcriptomic and metabolic analyses are needed to uncover gut—liver—vascular
interactions in disease pathogenesis.

6 Conclusion

This re-analysis of PSVD transcriptomics, focusing on the comparison with
histologically normal liver, uncovers a coordinated imbalance between upregulated
immune and signaling processes and suppressed metabolic, translational, and
bioenergetic pathways. GSEA demonstrated upregulation of signaling and chemosensory
pathways and, broad suppression of metabolic and protein translation associated
processes. Coexpression network analysis further revealed consistent downregulation of
ribosomal proteins (RPS6, RPS8, RPS11) and ATP synthase subunits (ATP5MG,
ATP5PF, ATP5F1C, ATP5PO, ATP5F1A, ATP6VOEL, ATPVO0C), implicating
combined deficits in protein synthesis and mitochondrial energy metabolism as central
drivers of vascular remodeling. The contrasting regulation of serpin family members
(SERPINC1, SERPINA12, SERPIND1) highlights disrupted anticoagulant and
inflammatory control as additional disease mechanisms. Differences from prior studies
likely reflect distinct control group selection but consistently point to lipid metabolism
and coagulation as core pathogenic axes.

Together, these findings position PSVD as a disorder of integrated immune, vascular,
and metabolic dysregulation. They also underscore the need for effective multi-omics
studies to validate candidate genes and pathways uncovered in this and previous studies,
while emerging evidence on the gut-liver axis suggests that incorporating microbiome
analysis may uncover novel methods of non-invasive patient diagnosis and prognosis.
This systems-level framework would refine our understanding of PSVD pathogenesis
and open up further avenues for mechanistic exploration and biomarker discovery.

7 Supporting information

S1 Fig.
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Figure S1. Principal component analysis (PCA) for healthy, liver cirrhosis,
and PSVD liver biopsy samples. PCA was performed on normalized transformed
gene expression data. The PCA plot above represents the variance explained by the top

two components.
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Figure S2. Distribution of the gene expression data across samples.
(A)Distribution of the gene expression data before and after normalization. X-axis
represents the samples (pink — Healthy liver biopsies and blue- PSVD liver biopsies).
Y-axis represents the genes expression values in logarithmic scale. (B) Distribution of
the detection p-value before and after normalization. X-axis represents the samples
(pink — Healthy liver biopsies and blue- PSVD liver biopsies). Y-axis represents the
p-values of the probes used to measure the gene expression of the samples.
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a) Sample clustering to detect outliers
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Figure S3. Hierarchical clustering of the samples. (a) Dendogram of the sample
clustering. Sample PSVDO05 (shown in red) was removed from the analysis given that it
was clustering with the healthy liver samples. (b) Dendogram representing the sample
clustering after outlier removal against the clinical variables visualized in the rows.
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Figure S4. Cluster dendrogram and modules detected. Hierarchical tree
(average linkage) using dynamic tree cutting method was used for module detection.
The Dynamic Tree Cut band represents the genes assigned to particular modules. 24
modules were detected.
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Figure S5. Module-trait relationship heatmap. A heatmap of the module-trait
relationship for modules significantly correlating to the diagnosis of PSVD on the y-
axis and clinical variables on the x-axis. The color gradient on the heatmap represents
the strength of the Pearson correlation coefficients. Number in each cell is the
correlation and the p-value (in brackets). Hepatic venous pressure gradient (HVPG),
wedged hepatic vein pressure (WHVP), portal hypertension (PHT), porto-sinusoidal
vascular diseases (PSVD).
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Figure S6. The scatter plots depict the relationship between gene significance (GS) for
PSVD diagnosis and module membership (MM) within each key co-expression module
identified by WGCNA. Each point represents a single gene, where GS reflects the
correlation between gene expression and PSVD diagnosis, and MM represents the
correlation between the gene and the module eigengene, indicating its connectivity
within the module. Genes in the upper-right quadrant (GS > 0.5 and MM > 0.5) were
designated as core (hub) genes, as they are both strongly associated with the trait and
highly central within the module network. Data points are color-coded to reflect
differential expression in PSVD: significantly upregulated (red), weakly upregulated
(light red), significantly downregulated (blue), weakly downregulated (light blue), and
non-significant genes (grey).
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Figure S7. Protein—Protein Interaction (PPI) Networks for the Metabolic
Module cluster (blue, black, lightgreen). Nodes represent core genes, colored by
log-fold change (logFC). The red-bordered node is a previously reported gene, while
large black-bordered nodes are the top five genes ranked by absolute(logF'C) x node
degree. Subclusters (circles) were identified using the Glay community detection
algorithm, with functional enrichment and annotation performed via STRINGapp.
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S1 Table. Enrichment output for all the 14 key modules. See |S1_Table.xlsx for
the complete dataset.
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