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1 Abstract

1.1 Background

Porto-sinusoidal vascular disease (PSVD) is a complex, rare liver disease characterized
by the absence of cirrhosis, with or without the presence of portal hypertension or
histological lesions. Given the knowledge gaps in the mechanisms involved in this
disease with unknown etiology, we used omics-based approaches to further elucidate the
pathways affected by PSVD, facilitating improvements in the prognosis, diagnosis, and
treatment options for these patients.

1.2 Methods

We applied gene set enrichment analysis (GSEA) and weighted gene coexpression
network analysis (WGCNA) to identify pathways dysregulated in PSVD. Network
construction and visualization were performed in Cytoscape to explore interconnectivity
among enriched processes. Within key modules, candidate genes were prioritized by
ranking approaches and cross-referenced with findings from previous studies.

1.3 Results and Conclusion

This study revealed that PSVD is characterized by coordinated dysregulation, with
immune and signaling pathways activated alongside the suppression of metabolic,
ribosomal, and mitochondrial programs. Alterations in ribosomal proteins, ATP
synthase subunits, and serpin family members highlight translational, bioenergetic, and
anticoagulant dysfunction as core mechanisms. Together, these findings define PSVD as
a disorder of integrated immune, vascular, and metabolic imbalance.

2 Introduction 1

Porto-sinusoidal vascular disease (PSVD) is a complex, rare liver disease characterized 2

by the absence of cirrhosis, with or without the presence of portal hypertension or 3

histological lesions [1]. This term was recently coined to improve the understanding of 4

the disease by reducing the effect of heterogeneity, facilitating improved diagnosis, and 5
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simplifying comparisons between different clinical studies [1]. PSVD is a rare disease 6

with a currently unknown prevalence. 7

The diagnosis of patients suffering from PSVD includes noninvasive imaging 8

methods focused on splenomegaly,rtosystemic colcollaterals,nd hepatic vein venography. 9

However, imaging by itself is insufficient, and further invasive methods, such as biopsies, 10

are an essential part of the diagnostic routines for PSVD [1]. The accuracy of analysis 11

remains highly variable depending on the experience of the histopathologist [1]. In a 12

recently published metabolomics study, a group of metabolite markers was identified 13

that could predict patients diagnosed with PSVD with an accuracy of 88% [2]. 14

The mechanism of disease development for PSVD is not known but is dependent on 15

the vascular developments within the liver [1]. 43-48% of patients with PSVD patients 16

have one or more associated conditions majorly classified into disorders of immunity, 17

blood diseases and prothrombotic conditions, infections, congenital or familial defects, 18

and drug exposure [1]. 19

Because PSVD incorporates a small, heterogeneous diseased patient group with 20

varying physiological and histological features, there is sparse information regarding 21

molecular pathways or processes affected in this condition. A recent study by 22

Hernandéz-Gea et al., revealed previously unknown regulatory pathways affected in 23

PSVD using co-expression analysis using gene expression data from healthy, PSVD and 24

liver cirrhosis patients. The study indicated deregulation of pathways specific to vascular 25

homeostasis and oxidative phosphorylation affecting the endothelial function [3]. 26

Omics analysis, especially transcriptomics, has been widely used to understand genes 27

differentially regulated in a disease and next to link these genes to pathways thereby 28

explaining the molecular mechanisms underlying the disease. Also, other approaches 29

based on network algorithms, especially co-expression networks, have been constructed 30

from omics data to identify novel disease-specific mechanisms by identifying genes that 31

are coexpressed or change [4, 5]. 32

In this study, we implemented two methods: first, gene set enrichment analysis, and 33

second, co-expression network analysis using transcriptomics to identify pathways or 34

processes affected in patients with PSVD. Understanding the pathways or processes 35

would shed light on the mode of action of the disease, thereby allowing for improved 36

prognosis, diagnosis, and the treatment options available to the patients suffering from 37

this rare disorder. 38

3 Materials and methods 39

3.1 Data 40

A previously published transcriptomics dataset by Lozano et al. was obtained from the 41

GEO database (GEO:GSE77627) [3], including their ethical approval (HCB/2009/5448). 42

The dataset contains liver mRNA expression profiles for histologically normal liver 43

(HNL), PSVD and liver cirrhosis patients. In this study, liver cirrhosis patients were 44

excluded given that their transcriptomic profile overlapped with the PSVD 45

transcriptomic profile (see supplementary Fig. Principal component analysis 46

(PCA) for healthy, liver cirrhosis, and PSVD liver biopsy samples. PCA was 47

performed on normalized transformed gene expression data. The PCA plot above 48

represents the variance explained by the top two components). Additional clinical data 49

and information were obtained from the original study authors, Hospital Clinic of the 50

University of Barcelona. The measured variables included information on sex, wedged 51

hepatic vein pressure (WHVP), hepatic venous pressure gradient (HVPG), bilirubin, 52

platelet count, spleen size, liver stiffness, PSVD-specific, and non-specific biopsy 53

markers. 54
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3.2 Data pre-processing 55

The raw Illumina probe data using the Illumina HumanHT-12 DASL 4.0 R2 expression 56

beadchip platform annotation was first filtered for protein-coding genes using the 57

biomaRt(v2.64.0) R package with the filters: biotype (protein coding), chromosome 58

name (22 chromosomes, mitochondrial chromosome and sex chromosomes) using the 59

gene identifiers provided in the annotation file. Next, the filtered probe data was 60

pre-processed using the lumi(v) R package [6]. Background correction and quantile 61

normalisation was performed using the neqc function with an offset value of 16. The 62

data was re-annotated using ENSEMBL gene identifiers. A misdiagnosed patient 63

(PSVD17) was removed from the analysis. Samples with incomplete sex information 64

were removed from the analysis. The data distribution for before and after normalized 65

data is provided in supplementary Fig. Distribution of the gene expression data 66

across samples. (A)Distribution of the gene expression data before and after 67

normalization. X-axis represents the samples (pink – Healthy liver biopsies and blue- 68

PSVD liver biopsies). Y-axis represents the genes expression values in logarithmic scale. 69

(B) Distribution of the detection p-value before and after normalization. X-axis 70

represents the samples (pink – Healthy liver biopsies and blue- PSVD liver biopsies). 71

Y-axis represents the p-values of the probes used to measure the gene expression of the 72

samples. 73

To detect outliers, hierarchical clustering on the samples was performed and the 74

dendrogram is provided in supplementary Fig. Hierarchical clustering of the 75

samples. (a) Dendogram of the sample clustering. Sample PSVD05 (shown in red) was 76

removed from the analysis given that it was clustering with the healthy liver samples. 77

(b) Dendogram representing the sample clustering after outlier removal against the 78

clinical variables visualized in the rows(a). Based on the clustering, sample ‘PSVD05’ 79

was removed from further analysis. The dendrogram of samples and clinical variables 80

measured for these samples is provided in supplementary Fig. Hierarchical clustering 81

of the samples. (a) Dendogram of the sample clustering. Sample PSVD05 (shown in 82

red) was removed from the analysis given that it was clustering with the healthy liver 83

samples. (b) Dendogram representing the sample clustering after outlier removal against 84

the clinical variables visualized in the rows(b). 85

3.3 Differentially expressed gene (DEG) analysis 86

Differential gene expression analysis was performed to determine genes that are 87

significantly altered (up- or down-regulated) in PSVD patients compared to healthy 88

controls after sex correction using the limma(v3.64.1) R package [7]. The cut-off for 89

significantly upregulated genes is logFC > 1 and adjusted p-value < 0.05, significantly 90

weak upregulated genes is 0.58 < logFC > 1 and adjusted p-value > 0.05 . For 91

down-regulated genes the cut-off used is logFC < −1 and adjusted p-value < 0.05. A 92

cut-off of 0.58 < logFC > 1 and adjusted p-value > 0.05 is used for significantly 93

downregulated genes. The EnhancedVolcano function in EnhancedVolcano(v1.26.0) R 94

package was used for creating the volcano plot for differentially regulated genes 95

identified in PSVD vs HNL comparison [8]. 96

3.4 Gene set enrichment analysis for DEGs 97

Gene set enrichment analysis (GSEA) was performed using the clusterProfiler(v4.6.2) R 98

package using a maximum and minimum gene set sizes of 500 and 10 respectively [9, 10]. 99

The DEGs were ranked based on the product of signed log fold change and the negative 100

logarithm of the adjusted p-value, see the equation below. 101
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ranking = log2FC ∗ −log10adjustedp− value (1)

For the enrichment analysis, the human canonical pathway gene sets from the 102

Molecular Signatures Database (MSigDB, v2023.2.Hs) were used ( [10,11]). The 103

pathway genesets from Kyoto Encyclopedia of Genes and Genomes (KEGG, 186 gene 104

sets ( [12,13])), WikiPathways (733 gene sets ( [14])) and Reactome (1,654 gene sets 105

( [15])) were included. Additionally, 7,751 gene sets from the Biological Process ontology 106

from Gene Ontology (GO) were included for the analysis ( [16,17]). 107

3.5 Cytoscape visualisation of the enrichment analysis 108

The gene set enrichment analysis results were visualized in Cytoscape using a custom R 109

script. To calculate similarity between two enriched terms the overlap coefficient (k) 110

was used. [18]. 111

k =
|A ∩B|

|min(A,B)|
(2)

A cut-off score of k > 0.4 was used to add an edge between two enriched terms. 112

3.6 Coexpression network construction 113

The weighted gene co-expression analysis (WGCNA) is a network algorithm tool that 114

constructs correlation networks based on similar gene expression patterns across 115

samples. It uses an unsupervised approach to identify co-expression gene modules. This 116

tool was implemented using the WGCNA(v1.73) R package to identify gene expression 117

modules correlating to the PSVD phenotype [19]. 118

Normalized gene expression data was adjusted for sex effects using the 119

removeBatchEffect function from the limma(v) R package [7]. Next, lowly expressed 120

genes, i.e., genes with average expression values below 0.05 were removed. The input 121

was the pre-processed normalized data of all the samples used (healthy and PSVD). A 122

step-by-step method was used to generate the consensus network and to further detect 123

the modules. 124

Firstly, a similarity network was constructed using Pearson correlation for all gene 125

pairs in the dataset. Next, a signed adjacency matrix was calculated by raising the 126

similarity matrix to a soft-thresholding power (β = 18). 127

Next, the adjacency matrix was converted into a Topological Overlap Matrix (TOM). 128

The TOM is a robust network similarity measure by calculating the effect of 129

neighboring nodes on pairs of genes. The resulting proximity matrix is then converted 130

to a dissimilarity TOM matrix. The dissimilarity measure works well in the clustering 131

of gene expression profiles by identifying distinct gene modules. 132

From these results, a dendrogram was constructed using the dissimilarity matrix and 133

average hierarchical clustering method (see Supplementary Fig. Cluster dendrogram 134

and modules detected. Hierarchical tree (average linkage) using dynamic tree cutting 135

method was used for module detection. The Dynamic Tree Cut band represents the 136

genes assigned to particular modules. 24 modules were detected. To identify modules 137

with highly interconnected genes, a dynamic tree-cut method was implemented with a 138

minimum module size of 150. 139
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3.7 Identification of key clinically significant modules and core 140

genes for the key modules 141

The consensus co-expression network generated previously was then used to identify 142

modules of highly interconnected genes or genes with a higher degree of co-expression 143

using the dynamic tree-cut algorithm. For identifying modules relevant to clinical 144

phenotypes associated with PVSD, the module eigengene, and the module membership 145

are calculated. Finally, a significant correlation between the modules and the clinical 146

phenotype ’Diagnosis of PSVD’ was used to identify clinically significant gene modules. 147

Core genes from significant modules were retained based on thresholds of gene 148

significance > 0.5 and |module membership| > 0.5. 149

3.8 Over-representation analysis (ORA) and functional 150

annotation for key modules 151

Functional analysis of the core genes for the key clinically significant modules was 152

performed using the enricher function in the clusterProfiler R package [9]. The Gene 153

Ontology: Biological Process geneset for performing the over-representation analysis was 154

obtained from the Molecular Signatures Database (MSigDB, v2023.2.Hs)( [10,11,16,17]). 155

For certain modules where enriched terms were not obtained using the above gene set, 156

WikiPathways and the Reactome gene sets were used for performing enrichment 157

analysis. The key modules were then manually functionally annotated by assigning an 158

appropriate biological term based on the enriched terms for each module. 159

3.9 Module Eigengene Correlation Network 160

Pearson correlation using the cor function from the stats(v3.6.2) R package was 161

implemented [20]. The Pearson correlation of the module eigengenes obtained from 162

coexpression network analysis was calculated for the 14 key modules. The network was 163

then exported to Cytoscape and the key modules (as nodes in the network) were 164

annotated using the results from Section 3.8. 165

3.10 Cytoscape network analysis of the PPI network for the 166

module clusters 167

Module clusters identified from Section 4.3 were then used for generating PPI networks. 168

Core genes from the immune (grey60 and red) and signaling (yellow and turquoise) 169

module clusters identified in section 4.3 were exported to Cytoscape using the Ensembl 170

identifiers with a STRING confidence score of 0.7 [21]. For the metabolic module 171

cluster, the core genes from black, blue, and lightgreen modules were exported to 172

Cytoscape using Ensembl identifiers with a STRING confidence score of 0.9 [21]. Next, 173

Glay community detection algorithm using the Cluster Network option in the 174

clusterMaker app in Cytoscape was implemented to detect clusters within the PPI 175

networks [22,23]. Clusters with less than 20 nodes were removed from the network. The 176

top five genes in the network were selected based on the ranking measure of the product 177

of the absolute log fold change and the node degree. 178

3.11 Open source code 179

All analysis steps described were fully automated, and the scripts used for this study are 180

available on WorkflowHub for reproduction and further exploration: 181

https://workflowhub.eu/workflows/1040?version=1. 182
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4 Results 183

4.1 Differentially expressed genes in PSVD 184

The raw transcriptomics data consisting of 26,776 Illumina probes was processed to 185

correspond to 15,551 protein-coding genes (annotated with ENSEMBL gene identifiers). 186

DEG analysis identified 3,152 significantly upregulated genes, 803 significantly and 187

weakly upregulated genes, 2,412 significantly downregulated genes, and 788 significantly 188

weak downregulated genes in PSVD patients. 189

The top 3 up-regulated genes were erythropoietin (EPO) - logFC 4.8, Ankyrin 190

Repeat Domain 1 (ANKRD1) - logFC 4.8 and G Antigen 12J (GAGE12J) - logFC 4.5 191

while the top 3 down-regulated genes were ephrin A2 (EFNA 2) logFC −5.1, Nuclear 192

Factor I C (NFIC)- logFC −5.0 and meteorin, glial cell differentiation regulator 193

(METRN) - logFC −4.9 (Fig. 1). 194

Fig 1. Volcano plot for differential gene expression. Volcano plot of all the
differentially expressed genes between PSVD and healthy samples in liver
tissues. Dots represent individual genes, and the color represents the not significant
genes (NS) - grey, Non-significant genes with -1 < logFC > 1 and adjusted p- value >
0.05 - green , Significant upregulated genes with logFC => 1 and adjusted p-value <
0.05 - red, Significant weak upregulated gene with 0.58 < logFC > 1 and adjusted p-
value > 0.05 - light red, Significant downregulated genes with logFC <= −1 and
adjusted p-value < 0.05 - red. The top six differentially regulated genes are highlighted
in the figure.

4.2 Gene set enrichment analysis 195

Gene set enrichment analysis (GSEA) was performed on the differentially expressed 196

genes in PSVD. Using the Gene Ontology, KEGG, Reactome and WikiPathways gene 197
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sets, 69 significantly enriched terms were obtained, in which 9 positively enriched terms 198

and 60 negatively enriched terms were visualised in Cytoscape (Fig. 2). The top 199

positively significantly enriched term was the Olfactory signaling pathway (Reactome) 200

with a normalised enrichment score (NES) of 2 while the Peroxisome pathway (KEGG) 201

was the top negatively significantly enriched term with a NES of −1.9. A similarity 202

threshold of 0.4 was applied to cluster the enriched terms based on the number of genes 203

common between the terms, thereby sharing similar functional profiles. 204

From Fig. 2 we observe that the lipid and fatty acid metabolism processes, 205

insulin-related processes, tissue and epithelial cell migration processes, endoplasmic 206

reticulum and Golgi associated processes, organic compounds and tricarboxylic acid 207

metabolic process, organic hydroxy compound metabolic process, monosaccharide 208

metabolic process, glycerolipid metabolic process, nucleoside biphosphate metabolic 209

process, immune-related processes like neutrophil degranulation, viral process, 210

SARS-CoV infection, and protein translation were negatively enriched. Processes 211

related to olfactory and sensory stimulus, sleep regulation, meiosis cell cycle and 212

retinoblastoma were positively enriched. 213

Fig 2. Gene set enrichment analysis (GSEA) results. A node represents each
enriched gene set of the Gene Ontology class Biological Process and canonical pathways
with a false discovery rate cut-off of < 0.05. The node border color indicates normalized
enrichment scores of the terms. The pie chart displayed within the node indicates the
number of significantly downregulated and weak downregulated genes (darkblue and
lightblue respectively) and significantly upregulated and weak upregulated genes (red
and light red respectively) out of the total genes in a gene set. The node size is assigned
based on the setSize (number of genes in a term). The edge weight representing the
overlap coefficient (similarity index between two terms) has filtered with a cut-off value
of 0.4.

4.3 Identification of 15 key PSVD modules using co-expression 214

network analysis 215

The co-expression network was constructed using 15,551 protein-coding genes from 27 216

liver biopsy samples (11 healthy and 16 PSVD patients) using the ’WGCNA’ R package. 217

The patients with PSVD included in this study have clinical signs of portal 218

hypertension. The two most frequent signs of portal hypertension in PSVD patients 219

being splenomegaly and the presence of gastroesophageal varices. Splenomegaly was 220

present in all PSVD patients with a mean size of 15.3 ± 2.7 cm (Table 1). Additionally, 221

68% of PSVD patients show clinically elevated portal hypertension with a mean hepatic 222

venous pressure gradient (HVPG) of 7.9 ± 3.8 (Table 1). 223
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A range of soft-thresholding powers (β) were used to assess the scale free topology of 224

the network constructed. For this analysis, β of 18 was selected which had a scale-free 225

topology fit (R2) of 0.81; shown in Fig. 3(a). Using the average hierarchical clustering 226

and dynamic tree cut method, a total of 35 distinct gene modules and the corresponding 227

coexpressed genes for each module were identified. To explore the relationship between 228

the identified coexpressed modules and the clinical variables associated with PSVD 229

phenotype, such as diagnosis, sex, gastroesophageal varices, spleen size, HVPG, WHVP, 230

platelet count, PHT-specific, and PSVD-specific histological markers. Out of the 35 231

distinctly identified modules, 15 modules were selected which significantly correlated to 232

the diagnosis of PSVD, shown in Fig. 3(b) (see Supplementary Fig. Module-trait 233

relationship heatmap. A heatmap of the module-trait relationship for modules 234

significantly correlating to the diagnosis of PSVD on the y- axis and clinical variables 235

on the x-axis. The color gradient on the heatmap represents the strength of the Pearson 236

correlation coefficients. Number in each cell is the correlation and the p-value (in 237

brackets). Hepatic venous pressure gradient (HVPG), wedged hepatic vein pressure 238

(WHVP), portal hypertension (PHT), porto-sinusoidal vascular diseases (PSVD) for 239

module-trait relationship for all 35 modules). 240
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a)

b)

Fig 3. Scale-free topology and module trait relationship for the coexpression
network. (a) Determination of soft thresholding power for coexpression network
construction: 1) Analysis of scale-free index for a range of soft thresholding values (β).
2) Analysis of the mean connectivity for a range of soft thresholding values (β). (b) A
heatmap of the module-trait relationship for modules significantly correlating to the
diagnosis of PSVD on the y- axis and clinical variables on the x-axis. The color gradient
on the heatmap represents the strength of the Pearson correlation coefficients. *
represents the modules significantly correlating to the respective clinical variables (p <
0.05). Hepatic venous pressure gradient (HVPG) wedged hepatic vein pressure
(WHVP), portal hypertension (PHT), porto-sinusoidal vascular diseases (PSVD).

4.4 Selection of Core Genes in PSVD-Associated Modules 241

Core genes for each module were selected based on a threshold of 0.5 for both Gene 242

Significance (GS) and Module Membership (MM). Scatter plots of GS versus MM for 243

each module are shown in Supplementary Fig. The scatter plots depict the relationship 244

between gene significance (GS) for PSVD diagnosis and module membership (MM) 245

within each key co-expression module identified by WGCNA. Each point represents a 246

single gene, where GS reflects the correlation between gene expression and PSVD 247

diagnosis, and MM represents the correlation between the gene and the module 248

eigengene, indicating its connectivity within the module. Genes in the upper-right 249

quadrant (GS > 0.5 and MM > 0.5) were designated as core (hub) genes, as they are 250

both strongly associated with the trait and highly central within the module network. 251
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Table 1. Clinical characteristics

HNL (n=11) PSVD (n=16)

Sex(Male) 4(36%) 11(69%)
Presence GEV 0 5(31%)
HVPG (mmHg) 3.9± 0.8 7.9± 3.8
WHVP (mmHg) 7.0± 0.7 13.3± 4.1
Platelet Count (109/l) 236.5± 63.8 163.6± 143.0
Total Bilirubin (mg/dl) 0.8± 0.4 1.2± 1.2
Spleen size (cm) 9.5± 0.7 15.3± 2.7
Liver stiffness (kPa) 5.8± 0.9 7.8± 3.1
Direct Bilirubin (mg/dl) 0.4± 0.2 0.4± 0.3

Mean± SD
GEV, Gastroesophageal varices; HVPG, hepatic venous pressure gradient; WHVP,
wedged hepatic venous pressure, HNL, healthy normal liver; PSVD, porto-sinusoidal
vascular disease.

Data points are color-coded to reflect differential expression in PSVD: significantly 252

upregulated (red), weakly upregulated (light red), significantly downregulated (blue), 253

weakly downregulated (light blue), and non-significant genes (grey). The lightyellow 254

module was excluded from downstream analyses primarily because none of the genes 255

with the module met the 0.5 cut-off for GS, and additionally, the module showed a low 256

correlation with PSVD diagnosis (r = −0.40). Fig. 4 illustrates the distribution of genes 257

and core genes across modules, as well as their expression profiles. 258
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Fig 4. Barplots visualizing the distribution of differentially expressed genes
within key modules significantly correlated with the diagnosis of PSVD
patients. a) Percentage distribution of all genes in the key modules. The x-axis
represents modules, with the total number of genes per module indicated above each
bar. The y-axis shows the proportion of genes that are significantly downregulated
(dark blue, log FC < −1), weakly downregulated (light blue, −1 ≤ log FC ≤ −0.58),
weakly upregulated (light red, 0.58 ≤ log FC ≤ 1), or significantly upregulated (dark
red, log FC > 1). (b) Percentage distribution restricted to the core genes of each
module. Modules are shown on the x-axis, with the number of core genes per module
indicated above each bar. The color coding reflects the same categories of differential
expression as in panel (a).
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4.5 Module Eigengene Correlation Network analysis identifies 259

immune, signaling, and metabolic pathways as core 260

dysregulated modules in PSVD 261

To understand the biological processes affected in PSVD, we performed functional 262

over-representation analysis for the 14 selected modules using the Gene Ontology - 263

Biological Process gene sets from MSigDB. grey60 module with the highest positive 264

correlation and significance (r = 0.91, p = 6.255351e− 11) to PSVD diagnosis trait 265

identified processes related to immune cell activation and differentiation, involving the 266

T cells, leukocytes and lymphocytes. This module highlights the adaptive immune 267

system related processes due to terms involving acute and antigenic inflammatory 268

response, positive regulation of cell-cell adhesion and cytokine signaling pathways. (The 269

enrichment of cardiac and placental morphogenesis terms may reflect shared 270

developmental signaling pathways active during hepatic organogenesis or in hepatic 271

stromal or endothelial compartments) - part of the discussion . 272

Blue module with highest significant negative correlation 273

(r = −0.91, p = 6.298297e− 11) to PSVD diagnosis is strongly enriched for metabolic, 274

translational and insulin-responsive processes. This module reflects the core metabolic 275

functions associated with liver tissue. Key metabolic processes part of the blue module 276

enrichment are fatty acid β-oxidation, lipid catabolism and biosynthesis, steroid and 277

ketone metabolism, and cellular energy production via oxidative phosphorylation and 278

aerobic respiration processes. Additionally, enriched terms related to cytoplasmic 279

translation, protein ubiquitination and TOR signaling regulation suggest the nutrient 280

sensing, energy balance, and stress response role of liver. Vesicle transport and ER-Golgi 281

trafficking terms hint at active protein and lipid processing, critical in hepatocytes. 282

Fig. 5 presents the Module Eigengene Correlation Network for key modules 283

significantly associated with PSVD diagnosis. The immune-related modules, grey60 284

(Immune cell Activation and Adhesion) and red (Innate Immune & Vitamin 285

Biosynthesis), exhibit a strong positive correlation with each other, indicating 286

coordinated expression patterns, and both modules show a positive association with 287

PSVD diagnosis. Metabolic modules, including blue (Lipid Metabolism, Energy 288

Production & Insulin Signaling), black (Hepatic Detoxification, and Amino Acid & 289

Lipid Catabolism), and lightgreen (Glycoprotein Metabolism & Endothelial Regulation), 290

also display strong positive correlations among themselves; however, they are negatively 291

associated with PSVD, suggesting a potential downregulation of metabolic pathways in 292

PSVD patients. Signaling-related modules, turquoise (Chemosensory & ciliary motility) 293

and yellow (Sensory Perception & GPCR Signaling), show a strong positive correlation 294

with each other and are positively associated with PSVD, indicating co-regulated 295

signaling processes in PSVD patients. Interestingly, there is a pronounced negative 296

correlation between the metabolic modules (black, blue, lightgreen) and the immune 297

modules (grey60, red), as well as between the metabolic modules and the signaling 298

modules (turquoise, yellow). These patterns reveal the existence of three functionally 299

distinct module clusters: immune, metabolic, and signaling clusters with opposing 300

correlations to the diagnosis of PSVD. This organization may reflect antagonistic or 301

complementary regulatory mechanisms, suggesting that upregulation of immune and 302

signaling pathways may occur concurrently with downregulation of metabolic pathways 303

in PSVD pathogenesis. 304
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Fig 5. Module Eigengene Correlation Network of PSVD-associated key
modules. The network visualization depicts the correlations among module eigengenes
for modules significantly associated with PSVD diagnosis, highlighting pathways
relevant to PSVD. Node size reflects the strength of correlation with PSVD (larger
nodes indicate higher correlation, ranging from 0.47 to 0.91), while node shape indicates
the direction of the correlation (triangle = positive, diamond = negative). Edges
represent correlations between module eigengenes, with color indicating the correlation
direction (red = positive, blue = negative) and edge width proportional to the Pearson
correlation strength (0.7–1.0). Modules are annotated with enriched biological functions
based on Gene Ontology: Biological Processes, providing insights into the functional
relevance of PSVD-associated co-expression modules.

4.6 Protein-protein Interaction (PPI) networks for the Immune, 305

Signaling and Metabolic module clusters 306

Fig. 6 shows the PPI network for the immune and signaling module clusters. Fig. 6a, 307

representing the PPI network of the immune module cluster for grey60 and red module 308

core genes, indicates five sub clusters identified by the Glay community detection 309

algorithm and functionally annotated using the STRINGapp enrichment function. The 310

large red-bordered node, A2M, has been previously linked to PSVD pathogenesis in the 311

study by Hernandez-Gea V et al. [3]. The large black-bordered nodes (CCR7, 312

JUN,BARD1, RPS27A, and SNRPG) are the top five ranked genes based on the 313

product of node degree and gene log-fold change. 314

Fig. 6b, representing the PPI network of the signaling module cluster for turquoise 315

and yellow module core genes, indicates six sub clusters identified by the Glay 316

community detection algorithm and functionally annotated using the STRINGapp 317

enrichment function. The large red-bordered node, SERPINA12, has been previously 318

linked to PSVD pathogenesis in the study by Hernandez-Gea V et al. [3]. The large 319

black-bordered nodes (GHRL, TOP2A, CDC6, IL6, and CD19) are the top five ranked 320

genes based on the product of node degree and gene log-fold change. 321

Supplementary Fig. Protein–Protein Interaction (PPI) Networks for the 322

Metabolic Module cluster (blue, black, lightgreen). Nodes represent core genes, 323

colored by log-fold change (logFC). The red-bordered node is a previously reported 324

gene, while large black-bordered nodes are the top five genes ranked by absolute(logFC) 325

× node degree. Subclusters (circles) were identified using the Glay community detection 326

algorithm, with functional enrichment and annotation performed via STRINGapp 327
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represents the PPI network of the metabolic module cluster (blue, black, and 328

lightgreen). The network shows 11 sub clusters identified by the Glay community 329

detection algorithm and functionally annotated using the STRINGapp enrichment 330

function. The large red-bordered node, (ATP5MG, ATP5PF, ATPV0C, ATP5F1C, 331

ATP6V0E1, ATP5PO, ATP5F1A, SERPIND1, APOE and APOA2), has been 332

previously linked to PSVD pathogenesis in the study by Hernandez-Gea V et al. [3]. 333

The large black-bordered nodes (RPS6, RPS8, RPS11, MRPL12 and RPL12) are the 334

top five ranked genes based on the product of node degree and gene log-fold change. 335
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Fig 6. Protein–Protein Interaction (PPI) Networks for Immune and
Signaling Module Clusters. a) Immune module cluster (grey60 and red): Nodes
represent core genes, colored by log-fold change (logFC). The red-bordered node is a
previously reported gene, while large black-bordered nodes are the top five genes ranked
by absolute(logFC) × node degree. Subclusters (circles) were identified using the Glay
community detection algorithm, with functional enrichment and annotation performed
via STRINGapp. b) Signaling module cluster (turquoise and yellow): Nodes represent
core genes, colored by logFC. The red-bordered node is a previously reported gene,
while large black-bordered nodes are the top five ranked genes. Sub clusters and
functional enrichment and annotation were done as above.
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5 Discussion 336

In this study, we re-analyzed a transcriptomics dataset on PSVD originally produced by 337

Lonzano et al. and focused on the in-depth comparison of transcriptomic changes 338

between the PSVD and HNL groups. 339

The top differentially expressed genes indicate early cellular stress and vascular 340

dysfunction in PSVD. Upregulated EPO, ANKRD1, and GAGE12J suggests the 341

activation of erythropoietic and mechanotransductive stress pathways [24–30]. Elevated 342

EPO likely reflects IL-6–dependent hepatic signaling under hypoxic or inflammatory 343

conditions [31]. ANKRD1, a YAP/Hippo-responsive mechanosensor induced by 344

pro-inflammatory cytokines, may mirror endothelial strain and extracellular-matrix 345

remodeling, both central to sinusoidal injury [32–34]. GAGE12J, lacking functional 346

annotation, represents a novel transcript of potential relevance to PSVD. 347

Downregulated EFNA2, NFIC, and METRN indicate impaired vascular stability and 348

regeneration. EFNA2 loss may weaken angiogenic and immune–endothelial 349

communication [35–37]. Unlike hepatocellular carcinoma, where EFNA2 is upregulated 350

and pro-angiogenic [38], this downregulation may represent a PSVD-specific 351

maladaptive response of the portal microcirculation. NFIC reduction suggests 352

diminished hepatocyte proliferation and matrix regulation through TGF-β-dependent 353

signaling [39,40]. METRN downregulation implies disturbed endothelial–immune 354

signaling and vascular repair [41]. Together, these genes define early molecular events 355

linking inflammation, vascular stress, and regenerative failure. 356

Using both GSEA and WGCNA, we examined altered processes in PSVD and their 357

interrelationships to gain mechanistic insights into disease pathogenesis. The Module 358

Eigengene Correlation Network (see Fig. 5) highlighted three major clusters. The 359

immune cluster (immune cell activation, adhesion (grey60) and innate immune and 360

vitamin biosynthesis (red) modules) was positively associated with PSVD. Interestingly, 361

immune enrichment was not detected by GSEA, suggesting that coexpression analysis 362

may capture subtler immune dysregulation. The signaling cluster (chemosensory and 363

ciliary motility (turquoise) and sensory perception and GPCR signaling (yellow) 364

modules) was also positively associated, consistent with GSEA findings. In contrast, the 365

metabolic cluster (hepatic detoxification, amino acid and lipid catabolism (black), lipid 366

metabolism, energy production and insulin signaling (blue), and glycoprotein 367

metabolism with endothelial regulation (lightgreen) modules) was negatively associated, 368

corroborated by GSEA. Importantly, immune and signaling modules were positively 369

correlated with each other but negatively correlated with metabolic modules. This 370

pattern suggests a coordinated dysregulation in PSVD, where heightened immune and 371

signaling activity occurs in parallel with the suppression of metabolic pathways, 372

highlighting novel pathway interconnections that may underlie disease mechanisms. 373

Within the immune module cluster network (see Fig. 6a), we identified the top five 374

ranked genes based on their node degree and log fold change. No direct link between 375

BARD1 and PSVD has been reported; BARD1 is mainly studied as a BRCA1 partner 376

in DNA repair and is overexpressed in hepatocellular carcinoma, where it promotes 377

tumor progression [42].Although RPS27A has not been linked to PSVD to date, its roles 378

in translational control, ubiquitin signaling, and inflammation via NF-κB suggest it is a 379

plausible candidate for influencing endothelial stress or regenerative pathways in the 380

portal microvasculature. No known direct evidence links JUN (c-Jun) to PSVD. 381

However, in the liver, c-Jun regulates hepatocyte survival, proliferation, and fibrosis in 382

injury contexts [43]. Though not studied in PSVD, CCR7’s role in modulating hepatic 383

T-cell homeostasis and its immunoregulatory function make it a plausible candidate for 384

involvement in portal microvascular inflammation and immune infiltration in PSVD. In 385

a PSVD co-expression network study, A2M was identified as a highly connective gene, 386

suggesting it may contribute to disease pathogenesis through roles in protease inhibition 387
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and matrix remodeling [3]. 388

For the signaling module cluster network (see Fig. 6b), the top 5 ranked genes, 389

GHRL, IL6, CD19, CDC6, and TOP2A, have not been directly linked to PSVD. 390

However, their roles in hepatoprotection and fibrosis (GHRL) [44], inflammation and 391

endothelial injury (IL6, CD19) [45], and liver inflammation and immune cell regulation 392

(CDC6, TOP2A) [46] suggest that their dysregulation could contribute to vascular 393

remodeling and impaired regeneration in PSVD. In contrast to Hernández-Gea et al., 394

SERPINC1 was found to be downregulated when comparing PSVD to liver cirrhosis 395

and healthy controls; our PSVD versus healthy liver biopsy analysis revealed 396

SERPINA12 upregulation within the signaling module cluster [3]. Given that serpins 397

act as key regulators of protease activity, coagulation balance, and inflammatory 398

signaling, this pattern suggests that distinct serpin family members may differentially 399

contribute to PSVD pathogenesis. SERPINC1 reflects altered anticoagulant activity, 400

while SERPINA12 may participate in modulating vascular inflammation and 401

endothelial–immune interactions. 402

In the metabolic module cluster (see Supplementary Fig. Protein–Protein 403

Interaction (PPI) Networks for the Metabolic Module cluster (blue, black, 404

lightgreen). Nodes represent core genes, colored by log-fold change (logFC). The 405

red-bordered node is a previously reported gene, while large black-bordered nodes are 406

the top five genes ranked by absolute(logFC) × node degree. Subclusters (circles) were 407

identified using the Glay community detection algorithm, with functional enrichment 408

and annotation performed via STRINGapp), the top 5 ranked genes, RPS6, RPS8, and 409

RPS11, part of the translation and ribosome biogenesis subcluster, were downregulated, 410

indicating impaired ribosome biogenesis and translational activity. Ribosomal stress is 411

known to activate p53, disrupt hepatocyte viability, and modulate immune 412

regulation [47–49], suggesting that suppressed ribosomal protein expression may 413

contribute to endothelial dysfunction and microvascular remodeling in PSVD. In PSVD, 414

SERPINC1 (antithrombin III) has been highlighted as a hub gene in co-expression 415

network analysis, underscoring the role of anticoagulant serpins in disease 416

pathogenesis [3]. SERPIND1 (heparin cofactor II), part of the complement, proteolysis, 417

and vesicle-mediated immune regulation subcluster, although not yet studied in PSVD, 418

shares functional overlap with SERPINC1 as a liver-derived serpin that inhibits 419

thrombin activity in the presence of heparin or dermatan sulfate [50,51]. Together, 420

these findings suggest that the dysregulation of multiple anticoagulant serpins may 421

collectively influence coagulation balance and vascular remodeling in PSVD. APOE and 422

APOA2, part of the complement, proteolysis, and vesicle-mediated immune regulation 423

subcluster in the metabolic module network, were downregulated in PSVD, contrasting 424

with their upregulation in Hernández-Gea et al. [3]. This difference likely reflects 425

variations in the control groups (HNL vs. cirrhosis+HNL), but consistently implicates 426

lipid metabolism in PSVD pathogenesis. In the network, we additionally observed a 427

consistent downregulation of multiple ATPase subunits, including mitochondrial ATP 428

synthase components (ATP5MG, ATP5PF, ATP5F1C, ATP5PO, ATP5F1A) and 429

vacuolar proton pump subunits (ATP6V0E1, ATPV0C), which are part of the 430

mitochondrial energy metabolism and biosynthesis subcluster. This points to deficits in 431

oxidative phosphorylation and vesicular acidification. Notably, Hernández-Gea et al. 432

(2021) also flagged ATP synthases (e.g., ATP5G1, ATP5B) as highly connective genes 433

within the PSVD transcriptomic network, implicating mitochondrial energy dysfunction 434

as a shared pathogenic axis [3]. The coordinated downregulation of ribosomal proteins 435

(RPS6, RPS8, RPS11) and ATPase subunits (ATP5MG, ATP5PF, ATP5F1C, ATP5PO, 436

ATP5F1A, ATP6V0E1, ATPV0C) points to a combined translational and bioenergetic 437

dysfunction. Together with Hernández-Gea et al. (2021) highlighting these pathways as 438

network hubs, this underscores impaired protein synthesis and mitochondrial energy 439
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metabolism as central drivers of PSVD pathogenesis. 440

A limitation of this study is the relatively small patient cohort, a common issue in 441

studying rare diseases. Although pooling transcriptomic data across studies could help, 442

evolving diagnostic criteria for PSVD and INCPH complicate integration. Nonetheless, 443

our re-analysis provides complementary insights to earlier work by Hernández-Gea et al. 444

(2021). By directly comparing PSVD with HNL, we refined existing observations and 445

uncovered additional interconnected processes and candidate genes. A central pattern 446

emerging from our analysis is a coordinated dysregulation in PSVD of the immune and 447

signaling pathways being upregulated in parallel with the suppression of metabolic 448

processes. While these findings describe processes at the population level, patient 449

heterogeneity in risk factors, genetics, and environmental exposures remains a challenge. 450

Emerging evidence indicates that gut dysbiosis contributes to PSVD onset and 451

progression by driving porto-sinusoidal abnormalities and intrahepatic thrombosis. 452

Disruption of the gut–liver axis permit translocation of microbial products, such as LPS 453

and metabolites, into the liver. Future studies integrating microbiome profiling with 454

transcriptomic and metabolic analyses are needed to uncover gut–liver–vascular 455

interactions in disease pathogenesis. 456

6 Conclusion 457

This re-analysis of PSVD transcriptomics, focusing on the comparison with 458

histologically normal liver, uncovers a coordinated imbalance between upregulated 459

immune and signaling processes and suppressed metabolic, translational, and 460

bioenergetic pathways. GSEA demonstrated upregulation of signaling and chemosensory 461

pathways and, broad suppression of metabolic and protein translation associated 462

processes. Coexpression network analysis further revealed consistent downregulation of 463

ribosomal proteins (RPS6, RPS8, RPS11) and ATP synthase subunits (ATP5MG, 464

ATP5PF, ATP5F1C, ATP5PO, ATP5F1A, ATP6V0E1, ATPV0C), implicating 465

combined deficits in protein synthesis and mitochondrial energy metabolism as central 466

drivers of vascular remodeling. The contrasting regulation of serpin family members 467

(SERPINC1, SERPINA12, SERPIND1) highlights disrupted anticoagulant and 468

inflammatory control as additional disease mechanisms. Differences from prior studies 469

likely reflect distinct control group selection but consistently point to lipid metabolism 470

and coagulation as core pathogenic axes. 471

Together, these findings position PSVD as a disorder of integrated immune, vascular, 472

and metabolic dysregulation. They also underscore the need for effective multi-omics 473

studies to validate candidate genes and pathways uncovered in this and previous studies, 474

while emerging evidence on the gut–liver axis suggests that incorporating microbiome 475

analysis may uncover novel methods of non-invasive patient diagnosis and prognosis. 476

This systems-level framework would refine our understanding of PSVD pathogenesis 477

and open up further avenues for mechanistic exploration and biomarker discovery. 478

7 Supporting information 479

S1 Fig. 480
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Figure S1. Principal component analysis (PCA) for healthy, liver cirrhosis,
and PSVD liver biopsy samples. PCA was performed on normalized transformed
gene expression data. The PCA plot above represents the variance explained by the top
two components.
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a)

c)

b)

d)

Figure S2. Distribution of the gene expression data across samples.
(A)Distribution of the gene expression data before and after normalization. X-axis
represents the samples (pink – Healthy liver biopsies and blue- PSVD liver biopsies).
Y-axis represents the genes expression values in logarithmic scale. (B) Distribution of
the detection p-value before and after normalization. X-axis represents the samples
(pink – Healthy liver biopsies and blue- PSVD liver biopsies). Y-axis represents the
p-values of the probes used to measure the gene expression of the samples.

S2 Fig. 481

S3 Fig. 482
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Figure S3. Hierarchical clustering of the samples. (a) Dendogram of the sample
clustering. Sample PSVD05 (shown in red) was removed from the analysis given that it
was clustering with the healthy liver samples. (b) Dendogram representing the sample
clustering after outlier removal against the clinical variables visualized in the rows.
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Figure S4. Cluster dendrogram and modules detected. Hierarchical tree
(average linkage) using dynamic tree cutting method was used for module detection.
The Dynamic Tree Cut band represents the genes assigned to particular modules. 24
modules were detected.

S4 Fig. 483

S5 Fig. 484
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Figure S5. Module-trait relationship heatmap. A heatmap of the module-trait
relationship for modules significantly correlating to the diagnosis of PSVD on the y-
axis and clinical variables on the x-axis. The color gradient on the heatmap represents
the strength of the Pearson correlation coefficients. Number in each cell is the
correlation and the p-value (in brackets). Hepatic venous pressure gradient (HVPG),
wedged hepatic vein pressure (WHVP), portal hypertension (PHT), porto-sinusoidal
vascular diseases (PSVD).

October 21, 2025 23/30

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 21, 2025. ; https://doi.org/10.1101/2024.06.14.599028doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.14.599028
http://creativecommons.org/licenses/by/4.0/


Figure S6. The scatter plots depict the relationship between gene significance (GS) for
PSVD diagnosis and module membership (MM) within each key co-expression module
identified by WGCNA. Each point represents a single gene, where GS reflects the
correlation between gene expression and PSVD diagnosis, and MM represents the
correlation between the gene and the module eigengene, indicating its connectivity
within the module. Genes in the upper-right quadrant (GS > 0.5 and MM > 0.5) were
designated as core (hub) genes, as they are both strongly associated with the trait and
highly central within the module network. Data points are color-coded to reflect
differential expression in PSVD: significantly upregulated (red), weakly upregulated
(light red), significantly downregulated (blue), weakly downregulated (light blue), and
non-significant genes (grey).

S6 Fig. 485

S7 Fig. 486
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Figure S7. Protein–Protein Interaction (PPI) Networks for the Metabolic
Module cluster (blue, black, lightgreen). Nodes represent core genes, colored by
log-fold change (logFC). The red-bordered node is a previously reported gene, while
large black-bordered nodes are the top five genes ranked by absolute(logFC) × node
degree. Subclusters (circles) were identified using the Glay community detection
algorithm, with functional enrichment and annotation performed via STRINGapp.
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S1 Table. Enrichment output for all the 14 key modules. See S1 Table.xlsx for 487

the complete dataset. 488
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