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Abstract 
 
Recent advances in fetal fMRI present a new opportunity for neuroscience to study functional 
human brain connectivity at the time of its emergence. Progress in the field however has 
been hampered by the lack of openly available datasets that can be exploited by researchers 
across disciplines to develop methods that would address the unique challenges associated 
with imaging and analysing functional brain in utero, such as unconstrained head motion, 
dynamically evolving geometric distortions, or inherently low signal-to-noise ratio. Here we 
describe the developing Human Connectome Project’s release of the largest open access fetal 
fMRI dataset to date, containing 275 scans from 255 fetuses and spanning the period of 20.86 
to 38.29 post-menstrual weeks.  We present a systematic approach to its pre-processing, 
implementing multi-band soft SENSE reconstruction, dynamic distortion corrections via phase 
unwrapping method, slice-to-volume reconstruction and a tailored temporal filtering model, 
with attention to the prominent sources of structured noise in the in utero fMRI. The dataset 
is accompanied with an advanced registration infrastructure, enabling group-level data 
fusion, and contains outputs from the main intermediate processing steps. This allows for 
various levels of data exploration by the imaging and neuroscientific community, starting 
from the development of robust pipelines for anatomical and temporal corrections to 
methods for elucidating the development of functional connectivity in utero.  By providing a 
high-quality template for further method development and benchmarking, the release of the 
dataset will help to advance fetal fMRI to its deserved and timely place at the forefront of the 
efforts to build a life-long connectome of the human brain.  
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1. Introduction. 1 
 2 
Already at birth, brain activity appears to be organised into a “connectome” of distributed 3 
networks (Doria et al., 2010; Fitzgibbon et al., 2020; Gao et al., 2015) that underpin complex 4 
behaviours and cognitive functions later in life. Multiple lines of evidence now also point to 5 
the critical importance of the fetal period for healthy development (Bergman et al., 2007; 6 
Boukhris et al., 2016; Brown et al., 1995; Laplante et al., 2008; O’Donnell et al., 2009; Rakers 7 
et al., 2020; Sandman et al., 2012; Skranes & Løhaugen, 2022; Zerbo et al., 2015). There is 8 
thus an increasing need for data on how functional connections become established in the 9 
prenatal brain. 10 
  11 
Advances in fetal fMRI present an opportunity for neuroscientific studies of the functional 12 
human brain at the time of its emergence (Ferrazzi et al., 2014; Schöpf et al., 2012). Imaging 13 
an in-utero brain, however, poses numerous unique challenges (Ferrazzi et al., 2014; 14 
Seshamani et al., 2016; Sobotka et al., 2022; Taymourtash et al., 2019). Unconstrained 15 
motion, non-rigid maternal tissues surrounding the fetal brain, a greater distance between 16 
the head and receiver coil are among the MRI-adverse factors that lower signal-to-noise ratio 17 
(SNR) and increase the level of structured artifacts. Motion-free periods are empirically rare in 18 
in utero fMRI acquisitions given that motion associated with maternal respiration and fetal 19 
movement itself systematically induce fetal head displacements. When extreme, these 20 
displacements may prohibit the reconstruction of particular volumes in the timeseries 21 
(Sobotka et al., 2022; Taymourtash et al., 2021). When mild to moderate, they can still cause 22 
significant spin-history effects (Ferrazzi et al., 2014; Seshamani et al., 2016), manifested by 23 
spatially non-stationary image intensity changes (travelling waves),  not readily amenable to 24 
established methods of data temporal filtering (Griffanti et al., 2014; Salimi-Khorshidi et al., 25 
2014). The interaction between the magnetic properties of the moving fetal head and the 26 
adjacent maternal tissues induces dynamic changes in the “static” magnetic field (B0) 27 
inhomogeneity that results in temporally evolving distortion of fetal brain geometry (Cordero-28 
Grande et al., 2018a). The high contrast of maternal tissues may also induce leakage artifacts 29 
in the multi-band (MB) sensitivity encoded (SENSE) MRI data reconstruction. Overall, the in 30 
utero setting introduces multiple challenges to be navigated en route to artifact-controlled 31 
characterisation of emerging brain functional connectivity. 32 
 33 
Finding solutions to these challenges, as well as the development of tailored methods for 34 
fetal brain connectivity analyses, requires a community-wide effort. Progress in this direction 35 
however is being hampered by the lack of openly available datasets that could be exploited by 36 
researchers across disciplines. The developing Human Connectome Project (dHCP) closes this 37 
gap by releasing the first open-access and largest-to-date fetal fMRI dataset (Data and code 38 
availability, Resource 1) of 275 scans from 255 individuals (gestational age (GA): 20.86 - 38.29 39 
weeks), processed using tailored methods and accompanied by an advanced registration 40 
infrastructure between imaging and template spaces. The dataset complements the open-41 
access dataset of neonatal fMRI data (Fitzgibbon et al., 2020), together allowing for detailed 42 
investigations of connectivity in the perinatal brain. In this paper we set forth details of this 43 
endeavour to process the fetal fMRI data from the stage of frequency-to-image 44 
reconstruction all the way to the level when they can be utilised for group-level analyses. To 45 
aid future method benchmarking, we make available the outputs from all the main pre-46 
processing stages. This allows for various levels of data exploration by the imaging and 47 
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neuroscientific community, starting from the development of robust pipelines for anatomical, 48 
distortion and temporal corrections to the analyses investigating the development of the 49 
prenatal functional connectivity. The aim of this paper is threefold: 1) describe the 50 
organisation of the dHCP fetal fMRI release data, 2) provide detailed descriptions and 51 
motivations for the pre-processing methods implemented in the released data; 3) 52 
demonstrate its capacity for performing group-level analyses. We interleave descriptions of 53 
methods and results for a clearer exposition of analytical approaches and their contribution 54 
to the improvement of data quality. 55 
 56 

2. Methods and Results 57 
 58 
2.1.  Acquisition parameters and data sample 59 
 60 
Participants were prospectively recruited as part of the dHCP, a cross-sectional open science 61 
initiative funded by the European Research Council. Resting-state fMRI data were acquired 62 
with a Philips Achieva 3T system (Best, NL) using a 32-channel cardiac coil at St Thomas’ 63 
Hospital London. Scanner software was R3.2.2 with a custom patch. Each data set consists of 64 
350 volumes (48 slices each), acquired using a single-shot echo planar imaging (EPI) (TR/TE = 65 
2200/60) sequence, with slice matrix = 144 x 144, isotropic resolution = 2.2 mm, MB factor = 66 
3, and SENSE factor = 1.4 (Price, 2019). Brains of all fetuses were reported by a 67 
neuroradiologist as showing appropriate appearances on the T2-weighted anatomical scan 68 
for their GA with no acquired lesions or congenital malformations of clinical significance. 69 
 70 
A total of 277 completed fetal fMRI scans were acquired. Two were excluded from public data 71 
release due to poor data quality across all modalities (T2-weighted, diffusion, and fMRI).  The 72 
remaining 275 fMRI sessions were acquired from 255 unique individual subjects (137 male, 73 
116 female, 2 unrecorded, GA: 20.86 - 38.29 weeks). The mothers of 77.25% babies identified 74 
themselves as white, 2.75% as black, 13.33% of any Asian origin (including South East Asia), 75 
3.53% of any mixed origin, 2.75% of other unspecified origin, and 1 case refusing to provide 76 
this information. The details of ethnicity as well as mother’s medical, obstetric and mental 77 
health information are made available with the release (Data and code availability, Resource 78 
1). For comparison, the average numbers for Greater London and South East England, i.e., 79 
recruitment area for the study, are: white - 70.1%, black - 7.95%, Asian - 13.85%, mixed - 80 
4.25%, other - 3.9% (https://www.ethnicity-facts-figures.service.gov.uk/uk-population-by-81 
ethnicity/national-and-regional-populations/regional-ethnic-diversity/latest/).  82 
 83 
Following an initial visual assessment, 1 scan was excluded from further processing due to an 84 
incomplete field-of-view. With one exception, all fMRI scans were complemented by a T2-85 
weighted anatomical scan obtained at the same scanning session. Of these, 248 were 86 
successfully pre-processed using the dHCP anatomical pipeline, generating brain tissue 87 
segmentations. In addition, brain masks (released with the dCHP anatomical data) and 88 
cortical quasi-probabilistic segmentations (Data and code availability, Resource 2) of 89 
anatomical scans generated using a 3D U-Net based tool (Uus et al., 2023) were available for 90 
all cases with an anatomical scan. 91 
 92 
 93 
 94 
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2.2. Overview of data processing stages and data structure 95 
 96 

Figure 1 graphically presents the overview and inter-dependencies of processing stages, 97 
derived data, and complementary data/images utilised in the process. The processing stages 98 
comprise of MB-SENSE image reconstruction, dynamic distortion correction, motion 99 
correction, and temporal filtering. The naming convention for the outputs of each stage, 100 
along with pointers to their location within the data structure, is available on the online 101 
resource (Data and code availability, Resource 3). 102 
 103 
Of relevance, the released data contains items in two imaging spaces: the native acquisition 104 
space and the anatomically consistent (tissue) space. The anatomically consistent space 105 
results from distortion and motion correction processes, which involve warping, moving, and 106 
rotating the original image slices, so that the resulting voxel timeseries represent the 107 
temporal signal evolution at specific tissue locations.  108 

 109 
Figure 1. Overview of the processing stages and data structure of fetal dHCP fMRI. 110 

2.3. MB-SENSE image reconstruction 111 
 112 
We used the soft SENSE reconstruction proposed as part of ESPIRIT (Uecker et al., 2014) for 113 
considering motion or fat-shift induced model inconsistencies, which was extended to 114 
account for MB acquisition (Zhu et al., 2016). Sensitivities were obtained from a single-band 115 
(SB) dataset with matched readout (included in the release). Nyquist ghosting correction 116 
parameters were obtained for all slices in the field-of-view by using the calibration 117 
information collected with the SB data. Three image components were reconstructed with 118 
soft SENSE, one corresponding to the target reconstruction and the other two to artefactual 119 
information. Spatially adaptive regularisation maps (Fuderer et al., 2004) were constructed 120 
for each image component by combining SB reconstructions and the corresponding 121 
eigenvalue maps from ESPIRIT. 122 
 123 
 124 
 125 
 126 
 127 
 128 
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2.4. Spatial Corrections 129 
 130 

2.4.1. Dynamic distortion correction 131 
 132 
A major challenge of fetal imaging is overcoming the effects of fetal motion and its interaction 133 
with the changing in utero and maternal environment. The presence of gas bubbles in the gut, 134 
changes in maternal body pose during respiration and other incidental movements all cause 135 
susceptibility-induced B0 inhomogeneities resulting in highly unpredictable spatial and 136 
temporal signal fluctuations, particularly in the fetal brain boundaries. Therefore, spatially and 137 
temporally resolved dynamic shot-by-shot B0 field correction is required for improved 138 
imaging, especially when imaging at 3T where the aforementioned inhomogeneities are 139 
amplified. As a result, the efficiency of registration-based methods (Hutter et al., 2018; 140 
Kuklisova-Murgasova et al., 2018; Oubel et al., 2012) may be compromised in this scenario. 141 
We instead opted to use the phase information in the reconstructed gradient echo EPI images 142 
acquired for fMRI, as it allows direct estimation of dynamic distortion and therefore 143 
separation of distortion and motion correction problems. As residual B0 dynamic evolution is 144 
proportional to the phase of the observed signal, its estimation can be posed as a phase 145 
unwrapping problem. The solution is obtained by a global phase unwrapping method based 146 
on a 4D weighted least squares formulation (Ghiglia & Romero, 1994) with weights 147 
constructed by the combination of magnitude information and local phase gradients. A global 148 
method is used due to its robustness to local deviations of the phase-based distortion model 149 
due to structural noise. Its application has been effective in removing clear distortions in 150 
many individuals, with an example shown in Figure 2A. 151 
 152 

 153 
Figure 2. Spatial corrections in the fetal dHCP dataset. Images are in radiological orientation (right is left). A) Distortion 154 
correction: Visual example of image data before and after dynamic distortion corrections; B) Motion correction: TSNR for 155 
volumetrically aligned, slice-to-volume reconstructed (SVR) volumes and the difference between the two for an exemplar 156 
case. Positive values for the latter indicate higher TSNR for the slice-to-volume approach; C) Motion correction: Distributions 157 
of averaged (across image) TSNR in the entire dHCP fMRI dataset; v2v – volumetric alignment, s2v – slice-to-volume 158 
approach, s2v-v2v – the difference between slice-to-volume and volume-to-volume approaches (s2v-v2v). Positive values for 159 
the latter indicate higher TSNR for the slice-to-volume approach. 160 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 20, 2025. ; https://doi.org/10.1101/2024.06.13.598863doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.13.598863
http://creativecommons.org/licenses/by/4.0/


2.4.2. Motion correction 161 
 162 
FMRI data can be severely compromised by motion between the acquisition of different 163 
slices. Estimation of rigid-body fetal head motion at the slice level is challenging and 164 
correction is ill-posed in the absence of orthogonal stacks (as are typically acquired for 165 
anatomical imaging). To address these challenges, we have followed a multi-scale strategy. 166 
First, volume-to-volume motion estimates are obtained by standard multiresolution 167 
longitudinal registration. Then, these are used to initialise slice-to-volume motion estimation 168 
and correction with motion states defined jointly for simultaneously excited slices. Motion 169 
parameters are obtained by registering the collected information corresponding to each 170 
motion state against a motion-compensated temporal average target. In a final step, motion 171 
compensated reconstructions of each fMRI volume are obtained by using the conjugate 172 
gradient algorithm for inverting a forward model of the observed fMRI data that considers 173 
previously estimated motion parameters and second order regularisation in the slice 174 
direction. The whole procedure is based on the framework introduced in (Cordero-Grande et 175 
al., 2018b). 176 
 177 
The advantage of using slice-to-volume alignment compared to volume-to-volume alignment 178 
(still the default approach in much ex utero image pre-processing) can be observed both at 179 
individual and group levels. Figure 2B shows the map of temporal signal-to-noise ratio (TSNR, 180 
calculated as signal mean divided by its standard deviation over timeseries) difference 181 
between both approaches for an exemplary individual. Figure 2C shows average-across-map 182 
group-level TSNR distributions for each approach and their difference, indicating the benefit 183 
of the slice-to-volume alignment. 184 
 185 
2.5. Native-to-template mappings  186 
 187 
At this stage, the spatially corrected fMRI data were integrated into the dHCP volumetric 188 
registration infrastructure (Figure 3), adopting an approach previously implemented for the 189 
neonatal dHCP data release (Fitzgibbon et al., 2020). This allows users to flexibly manipulate 190 
the data and map between template space and native spaces of all modalities. The remainder 191 
of this section will focus on the detailed description of how this infrastructure has been built. 192 
A reader interested in processing functional data only can proceed to Section 2.6, without 193 
missing out on important details.  194 
 195 
The building blocks of this infrastructure are: 1) linear mapping between native (i.e., 196 
individual) functional and T2 spaces, 2) non-linear mapping between native T2 and age-197 
matched template spaces, and 3) non-linear mapping between each pair of age-adjacent 198 
templates. The first two building blocks are included in the release,  whereas the between-199 
template mappings are available at the dHCP fetal weekly structural atlas repository (Uus et 200 
al., 2023 ; Data and code availability, 2). The age-matched template corresponded to that of 201 
the subject’s age when rounded to the nearest integer, except for subjects whose GA was > 202 
36.5 weeks, which were all assigned to the 36-week-old template, the oldest template in the 203 
dHCP structural atlas.  204 
 205 
All linear mappings, including those that preceded estimation of non-linear transformations, 206 
were computed using FSL FLIRT. All non-linear warps were estimated using ANTs. The warps 207 
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were converted into the FSL fnirt format, which can be concatenated using the convertwarp 208 
tool from the FSL library (Smith et al., 2004) in order to create composite displacement warps, 209 
incorporating both linear and non-linear components.  These composite warps would provide 210 
mappings between distant imaging spaces while avoiding multiple image interpolation steps. 211 
 212 
To lower the computational burden for the dataset users, two types of composite warps and 213 
their inverse have been made available in the release: 1) mapping between native functional 214 
and age-matched template spaces and 2) between native functional and 36-week-old 215 
template spaces, which could be used for the group-level data synthesis. In addition, the 216 
release includes a forward mapping between native functional and the 36-week-old template 217 
space optimised for the group-level fMRI analysis, the creation of which is described Section 218 
2.5.4. Details of the procedures used to obtain the required mappings are included below. 219 
 220 

 221 
Figure 3. Registration infrastructure associated with the fetal dHCP fMRI data. Concatenated transformations between 222 
native fMRI and template spaces are part of the release. Concatenated transformations between template spaces (within-223 
fetal and fetal-to-neonatal) are available at g-node (Data and code availability, Resource 2). 224 

2.5.1. Native functional to structural mapping 225 
For cross-modal mapping between native fMRI and T2 spaces, a modified standard 226 
procedure, as implemented in the FSL’s epi_reg tool, was used. It consists of two stages: a) 227 
rigid whole-brain linear registration (using global search and mutual information as a cost 228 
function), followed by b) refinement using boundary-based registration (BBR) with local 229 
absolute differences cost function and restricting the search angle to ±20o. All other 230 
parameters were set to default.  231 
 232 
As the fetal brain is surrounded by maternal tissues, including high-intensity amniotic fluid 233 
which has an intensity similar to that of cerebrospinal fluid (CSF), accurate masking is required 234 
to ensure good alignment, particularly for whole-brain registration. The loose masks used for 235 
motion correction of fMRI data, obtained using a spherical Markov Random Field deformable 236 
model based on  (Cordero-Grande et al., 2011), were employed to initialise alignment. 237 
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Subsequently, iterations were performed between function-to-structure alignment and back-238 
projection of high-quality T2 masks into the native functional space.  239 
 240 
The details of the procedure are as follows. The alignment of a functional mean image to an 241 
anatomical scan was initialised using the masks used for fMRI motion correction. The results 242 
were visually checked for being approximately correct and, if necessary, were recomputed 243 
after manual mask adjustments. The following steps were then repeated twice. First, 244 
anatomical masks were projected into the functional space by inverting the mapping 245 
obtained from the initial alignment. These new masks were applied and the N4 corrections 246 
for intensity non-uniformity (bias field) within the new mask were applied to the mean fMRI 247 
image. The corrected image was then used to re-compute the rigid alignment. 248 
 249 
The output from the second iteration of the above procedure was then used to initialise BBR. 250 
For the cases (N=26) which lacked the white matter (WM) segmentation required for BBR, 251 
binarised cortical quasi-probability maps were used instead, thresholded by minimising the 252 
difference between the volume of the thresholded maps and the volume of the cortical mask 253 
obtained by the dHCP anatomical pipeline segmentation in the rest of the sample. The results 254 
of whole-brain and BBR were visually checked and compared against each other by one of the 255 
co-authors (VRK). The BBR alignment was retained if it was rated (based on visual inspection) 256 
as performing similarly or better than the whole-brain alignment. 257 
 258 
Out of 273 cases with an anatomical scan, 8 scans failed the function-to-structure alignment. 259 
All of these failed cases had very poor MB-SENSE reconstruction quality and thus were 260 
dropped from the subsequent pre-processing. The BBR alignment was retained in 254 out of 261 
265 cases. The differences between the two approaches were typically subtle but non-262 
negligible in many cases, as in an example of whole-brain and boundary-based registrations 263 
presented in Figure 4A. 264 
 265 

 266 
Figure 4. Mapping between image spaces. A. Example of whole-brain vs boundary-based mapping between native fMRI and 267 
T2 spaces. Images are in radiological orientation (right is left). The outline of the native structural cortical segmentation is 268 
overlaid in cyan. Compare regions pointed by arrows following the whole-brain registration and corresponding regions 269 
following BBR. B. Example of mapping the mean functional image into age-matched (27-week-old) and 36-week-old 270 
template spaces. The outline of the template cortical segmentation is overlaid in cyan. The original functional data are 271 
shown in Figure 2A. Note an accurate alignment of this young case with the “old” (36-week-old) template, despite large 272 
morphological differences, owing to concatenation of transformations between age-adjacent template spaces. 273 

2.5.2. T2 to age-matched template mapping 274 
The registrations between native T2 images and age-matched templates were initialised by 275 
12-degrees-of-freedom linear registration using FSL FLIRT (Jenkinson et al., 2002). Default 276 
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parameters (including cross-correlation metric as a cost function) were utilised. Non-linear 277 
alignment was obtained using ANTs SyN diffeomorphic multi-channel registration (Avants et 278 
al., 2011), with T2-weighted and cortical probability maps serving as moving sources (i.e., the 279 
images to be aligned) and corresponding maps of the dHCP fetal template as the targets. 280 
Local cross-correlation metric was used as a cost-function. Default parameters, as 281 
implemented using ANTs antsRegistrationSyN.sh wrapper function, were utilised.  282 
 283 
The motivation for using separate tools for linear and non-linear parts of registration was that 284 
FLIRT demonstrated a robust performance for functional-to-T2 alignment across all ages 285 
whereas ANTs is considered to be a state-of-the-art tool for estimation of non-linear mapping 286 
(Klein et al., 2009) and proved to perform reliably in the neonatal dHCP cohort (Fitzgibbon et 287 
al., 2020). All outputs were inspected visually, and we found no cases of apparent 288 
misregistration. The script performing registration between native T2 and age-matched 289 
template spaces is available at Resource 3 (Data and code availability).  290 
 291 
2.5.3. Template-to-template mapping 292 
The registration procedure between age-adjacent fetal templates (and between fetal and 293 
neonatal 36-week-old templates described below) mirrored the registration procedure for 294 
individual T2 images to the age-matched template, i.e., was initialised with FLIRT and non-295 
linearly refined with ANTs using T2 and cortical probability maps as registration channels. The 296 
older template in each pair was used as the target. The example of mapping a functional 297 
image into age-matched and 36-week-old template spaces is shown in Figure 4B. 298 
 299 
2.5.4. Fetal-to-neonatal template mapping 300 
To create the mappings between dHCP neonatal (Serag et al., 2012; Data and code 301 
availability, Resource 4) and fetal templates, a non-linear transformation was computed 302 
between fetal and neonatal 36-week-old templates, followed by creation of composite warps 303 
to achieve a direct mapping between arbitrary neonatal and fetal GA template spaces. For the 304 
purpose of this study, the mappings between each week fetal template and the “standard” 305 
40-week-old neonatal template were explicitly computed (Data and code availability, 306 
Resource 2). 307 
 308 
2.5.5. fMRI-optimised standard space for group-level analyses 309 
To compensate for possible residual distortions or misalignment, the registration of the fMRI 310 
data to the standard group space was further optimised for group-level analyses. For this 311 
sake, mean-across-time native fMRI data were mapped into the 36-week-old template space 312 
and a grand-average (i.e., across all subjects) of the mapped data was computed, as well as 313 
the grand averages of T2 images and WM and cortical segmentations. We then used ANTs to 314 
run a multi-channel non-linear alignment. The subject’s fMRI mean and the grand-average of 315 
all subjects’ fMRI means were used respectively, as moving sources and target for the first 316 
channel of alignment and the cross-subject means of T2 volumes, and WM and cortical 317 
segmentations were used as both moving sources and targets in three other channels. In 318 
other words, the deformations were driven by the fMRI image intensities, with identical 319 
structural anatomical features between the moving source and the target used to provide 320 
spatially varying (contingent on the anatomy) constraints for the scale of deformations 321 
allowed. The weight for each structural data channel was assigned to be 10% of the fMRI data 322 
channel. The obtained warps were concatenated with warps mapping functional data to the 323 
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36-week-old template, allowing for a direct mapping between native fMRI and standard fMRI-324 
optimised spaces.   325 
 326 
2.6. Temporal filtering 327 
 328 
As the standards for temporal filtering of fetal fMRI are yet to be established, the 329 
development of a regression-based temporal filtering model was accompanied by an in-depth 330 
study of the effect that various types of deconfounding regressors may have on data 331 
characteristics, thereby promoting a better understanding of signal properties.  We started 332 
with an identification of sources for prominent artefacts in the fetal fMRI data and split them 333 
into 3 coherent classes. We then selected candidate deconfounding regressors for each class 334 
and defined an order in which they were incorporated into a temporal filtering model. After 335 
temporal filtering, the data underwent quality assessment, identifying cases suitable for 336 
group-level analysis. Finally, we performed a post-hoc study of the unique effects that each 337 
set of deconfounding regressors had on the data metrics. For the latter, we used TSNR and 338 
seed-to-brain correlations, with the left and right thalami as seeds. 339 
 340 
We define 3 broad classes of artefacts. The first class pertains to factors that may affect 341 
spatial similarity of the volumes across time. Broadly speaking, here we deal with the effect of 342 
imperfections in spatial corrections on the evolution of the signal in the temporal domain. 343 
Potential artefacts attributed to this class are: a) poor motion correction in the presence of 344 
large fetal motion; b) signal leakages not fully suppressed during MB-SENSE reconstruction; c) 345 
residuals of dynamic distortion correction; d). low-frequency temporal drifts in signal 346 
intensity, related to gradient system instabilities. 347 
 348 
The second class of artefacts constitute motion-induced changes in the temporal evolution of 349 
the signal, potentially causing biology-unrelated covariance structure. Within this group, 350 
particular attention is required for spin history artefacts. Their manifestation is likely to take 351 
the form of spatially non-stationary image intensity changes (travelling waves) (Ferrazzi et al., 352 
2014), which are particularly difficult to address using traditional spatial ICA denoising (which 353 
presumes spatial invariance of the signal source). 354 

 355 
The third class pertains to the sequential MB data sampling scheme used in the dHCP which 356 
induces variable temporal gaps between the acquisition of two spatially adjacent slices. In all 357 
cases except for the first and last slices from two adjacent MB stacks, this gap corresponds to 358 
the time in between two consecutive RF excitations. In contrast, the temporal gap is on the 359 
order of the repetition time (TR) for the slices at the edges of the MB stacks, which can result 360 
in abrupt signal changes between them.  361 
 362 
These broad classes of potential artefacts lead to the usage of three groups of temporal 363 
deconfounding regressors, specific to each class. 364 
 365 
2.6.1. Group 1. Temporal regressors for spatial inconsistency artefacts 366 
This group consisted of detrending regressors, volume censoring (“scrubbing”) regressors 367 
(Power et al., 2012) and two novel types of voxelwise regressors, which we call folding and 368 
density maps respectively. Together they constitute a minimal set of denoising regressors 369 
which were used both in combination with other regressors to define more complex 370 
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denoising models and on their own to residualise the data prior to obtaining data-derived 371 
regressors using spatial ICA (see below, Group 2 regressors). 372 
 373 
Detrending regressors. These were formed by the first 10 columns of the discrete cosine 374 
transform matrix, which for the current data corresponded to a high-pass filter with cut-off at 375 
0.0067Hz (150 secs). 376 
 377 
Volume censoring (“scrubbing”) regressors. This  was implemented by spike regressors 378 
(Lemieux et al., 2007; Satterthwaite et al., 2013), which in effect equates a censored volume 379 
to a temporal average. The criterion for censoring was based on the spatial similarity of a 380 
volume to that average. As a metric for the latter, we utilised the root mean square 381 
difference (RMSD) measured in terms of the ratio to the grand average of data intensity. 382 
More precisely,  383 
 384 

𝑑!	 =	$
1
𝑛'(

𝑓!,$ −	𝑀$

𝑀 ,
%&

$'(

 385 

where 𝑓!,$  is the image intensity in voxel location 𝑖 , 𝑖 = 1, 2, . . , 𝑛 , and volume 𝑡 , 𝑀$  is the 386 
temporal median of 𝑓!,$  , and 𝑀 is the spatial mean of 𝑀$. 387 
  388 
A volume t was censored if 𝑑!	 −𝑚𝑒𝑑𝑖𝑎𝑛(𝑑!	) > 	 .05. The threshold was determined 389 
empirically in order to capture not only global perturbations in image characteristics due to 390 
excessive motion but also identifying the volumes with strong local artefacts, caused either by 391 
incomplete volume sampling or strong leakage artefacts. The volumes that immediately 392 
followed an above-threshold volume were also censored, due to higher likelihood of spin-393 
history impacting the integrity and motion parameter estimates of the next volume (Friston et 394 
al., 1996). 395 
 396 
Folding maps. We utilised the timecourses of the voxels that were simultaneously acquired 397 
with a target voxel as deconfounding regressors for potential leakage artefacts in that voxel. 398 
For this, we applied a positional shift to the fMRI timecourses, such that the timecourse of a 399 
voxel simultaneously acquired with the timecourse of a target voxel was assigned to the latter 400 
voxel’s location. Given MB = 3, two 4D maps of this type were formed, which we called 401 
folding maps.  402 
 403 
As noted previously, there is a distinction between acquisition and anatomically consistent 404 
spaces (as in Figure 1). For this reason, distortion and motion correction operators must be 405 
applied to the folding maps in order to bring them from the acquisition space into the 406 
anatomically consistent space.  As a result, voxels in the resultant folding maps represent 407 
weighted averages of the original maps in accordance with the transformations and 408 
interpolation schema applied to the data. 409 
 410 
Density maps. These were designed to remove temporal dependencies potentially induced 411 
by the distortion correction procedure. Specifically, in addition to spatial coordinate 412 
transformations, the distortion correction involves a Jacobian modulation which compensates 413 
for the compression/spread of the signal in the phase encoding direction. Modulation is a 414 
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voxel-wise multiplicative factor which corrects image intensities and should not, in principle, 415 
be correlated with the temporal evolution of the signal after correction; if this is the case it 416 
can be assumed that it is likely to be artefactual. To generate the denoising map that carries 417 
this information, we created a 4D image of uniform intensity with geometry matched to the 418 
geometry of the data in the acquisition space. We then applied distortion- and motion-419 
correction transformations to simultaneously bring the image into the anatomically 420 
consistent space and scale it with the applied modulation. 421 
  422 
2.6.2. Group 2. Temporal regressors for motion-induced signal changes 423 
This group included two types of regressors: 1) time-courses of non-grey-matter (GM) tissues 424 
(WM and CSF), derived in a data-driven manner and 2) 4D voxel-wise maps representing the 425 
evolution of motion parameters over time. 426 
 427 
Data-derived regressors. Data-derived non-GM maps regressors (e.g., Behzadi et al., 2007) 428 
were obtained by performing probabilistic ICA (FSL MELODIC) analysis (Beckmann & Smith, 429 
2004) on the data within regions combining subarachnoid and ventricular CSF and WM that 430 
were residualised with respect to Group 1 regressors. The mask combining these tissues was 431 
eroded by one voxel to reduce partial voluming. For cases in which the dHCP anatomical data 432 
failed the quality control assessment, missing segmented WM and CSF masks were generated 433 
by projecting the segmentations of age-matched subjects into the native functional space of 434 
that particular case and averaging them to produce an approximate map. Depending on the 435 
particular denoising model (as described below), the ICA dimensionality was set to 6, 24, or 436 
automatically determined using FSL MELODIC implementation of the Minka algorithm (Minka, 437 
2000)/capped at 90 components (whichever was smaller). 438 
 439 
Motion parameter (MP)-based voxelwise maps. Following slice-to-volume motion 440 
correction, each of the 16 MB excitations (i.e., 48 slices / MB factor of 3) in a volume obtains 441 
its own set of 6 motion re-alignment parameters. The utility of this information on the motion 442 
evolution is compromised by the fact that they describe transformations applied to the slices 443 
of the volumes residing in the acquisition space. In other words, each parameter is specific 444 
here for a set of 3 slices, but not voxel-specific. To account for this, we created 4D maps for 445 
each parameter, where all voxels within slices belonging to a particular MB group were 446 
assigned the MP that was used to map them into the anatomically consistent space. After 447 
that, the motion-correction operations were applied to these maps to bring them into the 448 
anatomically consistent space. The resultant denoising map no longer contains identical 449 
values within a slice, since the value for each voxel is derived from interpolation.  450 
 451 
12 maps of this type were created. The first 6 corresponded to 3 rotation angles and 3 452 
translation values and the other 6 represented corresponding differentials in the slice 453 
direction. The slice differentials were calculated as a difference 𝑆!)( −	𝑆! ,		obtained by 454 
rearranging the MP timeseries in the anatomically consistent space, 𝑉(, 𝑉%, …	 , 𝑉*+, (where 455 
any 𝑉- is a 𝑛	 × 	1 vector, 𝑛 is the number of voxels, and 350 is the number of timepoints), 456 
into the simultaneously excited slices-to-slices timeseries 𝑆(, 𝑆%, …	 , 𝑆*+,	×	(/ (where any 𝑆- 	is 457 
a 𝑛/16	 × 	1 vector, with 16 the number of excitations in the acquisition of a volume, i.e., 458 
they comprise slices in the same MB excitation). The reason for creating maps of 459 
simultaneously excited slices’ differentials was to enrich MP-based regressors with dynamics 460 
in the intrinsic dimension for spin-history effects. 461 
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  462 
The above maps were used to create a broader set of MP-based regressors, unique for each 463 
voxel. By defining the temporal evolution of the set of 6 MP and their differentials in the slice 464 
direction at a voxel in location 𝑖 as 𝑀/

$  and ∆0𝑀/
$ , respectively, and first- and second-order 465 

differentials in volume-to-volume direction as ∆1 and ∆%1, respectively, the complete set of 60 466 
regressors for each voxel was defined as 𝑐𝑎𝑡 C𝑀/

$ , D𝑀/
$E%, ∆1𝑀/

$ , 	D∆1𝑀/
$E%, ∆%1	𝑀/

$ , D∆%1𝑀/
$E%,467 

∆0𝑀/
$ , D∆0𝑀/

$E%, ∆1(∆0𝑀/
$), D∆1(∆0𝑀/

$)E%F, where 𝑐𝑎𝑡{} denotes column-wise 468 
concatenation. This set was transformed first by z-scoring each column and then by using 469 
principal component analysis, considering only non-censored volumes, with the number of 470 
components retained to account for 99% of variance in the regressor set. 471 
 472 
Selection of Group 2 regressors – signal implanting test. Having a broad choice of Group 2 473 
regressors potentially creates an overfitting problem, especially when considering that the 474 
temporal filtering model can combine both MP-based and data-derived regressors. Overly 475 
aggressive temporal filtering can inadvertently remove the biologically relevant signal 476 
fluctuations of interest, which could seriously hamper further analysis given the inherently 477 
low SNR of fetal fMRI data, especially at the single-subject level.  478 
 479 
To guide the selection of the best performing denoising models, we designed a surrogate test, 480 
which we call the signal implanting test. This test is based on injecting a biologically-plausible 481 
signal into the data, and observe which composition of temporal regressors allows for: 1) 482 
most accurate recovery of this signal and 2) maximally preventing signal loss. For this, we 483 
utilised the neonatal group-level maps (Fitzgibbon et al., 2020) and their timecourses, 484 
estimated by regressing the group maps against individual data in the neonatal subjects from 485 
the dHCP neonatal cohort, aged between 37 and 43 weeks. The timecourses were paired at 486 
random with the fetal subjects and the group maps were projected into the fetal native 487 
functional spaces. The product of the timecourses and the group maps was then scaled to 488 
either 3% or 6% of the temporal standard deviation of the real data for each particular 489 
subject and added to the data, constituting an “implanted signal”. The data were then 490 
residualised with respect to a candidate set of denoising regressors, and the spatial maps 491 
were regressed against the denoised data to obtain estimates of their timecourses; the 492 
correlation between their vectorised product and vectorised implanted signal were taken as a 493 
single measure of the quality of signal recovery. Similarly, the same procedure was applied to 494 
the timecourses that were removed from the data with implanted signal during denoising. A 495 
high correlation between removed and implanted signal would indicate that the model 496 
inadvertently removes signal from the data. We will refer to the latter measure as signal loss 497 
statistics. 498 
 499 
We tested several models that differed in the number of data-derived and MP-based 500 
regressors (Figure 5A). All candidate models were complemented with Group 1 regressors. 501 
Figure 5B shows the results of the test. Overall, the analysis indicates that MP-based 502 
denoising models with a limited number of non-GM data-derived regressors performed best 503 
with respect to the signal recovery statistics. Considering both signal recovery and signal loss 504 
statistics, the MP-based model with 6 non-GM regressors (highlighted) performed the best. 505 
Firstly, it performed better than the others with respect to signal recovery statistics. Secondly, 506 
the model also showed a similar performance to the model with 0 non-GM regressors with 507 
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respect to signal loss statistics whereas the model with 24 non-GM regressors showed 508 
significant losses.  509 
 510 
In three cases, the application of the best-performing model to the real data resulted in a 511 
numerical overflow. These cases were of a very poor quality and had a large number (> 210) 512 
of volumes to censor; for this reason, no attempt was made to correct the issue 513 
retrospectively. Consequently, the fully processed dHCP dataset consists of 263 sessions (247 514 
unique individual subjects, 132 male, 113 female, 2 unrecorded). 515 
 516 
Visual inspection of the filtered data reveals a notable reduction of the travelling waves 517 
pattern, indicating that MP-based voxel-wise regressors are effective in ameliorating the spin-518 
history effects. Quantification of this phenomenon is not straightforward, but it can be 519 
observed qualitatively when temporally demeaned data are rearranged into slices-to-slices 520 
timeseries (Figure 5C).  521 
 522 

 523 
Figure 5. Group 2 regressors. A) Scope of temporal denoising models assessed using the signal implanting test. “F” stands for 524 
the “full” set for a particular (MP-based or data-derived) type of regressors. Correspondingly, the “F/0” model includes full 525 
set of MP-based and no data-derived regressors, the “0/F” model includes the full set of data-derived and no MP-based 526 
regressors, with intermediate models in between. The “greedy” model includes maximal number of regressors of both the 527 
MP-based and data-derived type. The sample distributions for the number of regressors in the extreme and greedy (F/F) 528 
models are plotted underneath, calculated for 266 scan sessions that passed the function-to-structure alignment. As the full 529 
set of data-derived regressors is estimated from the data, implanting different volumes of signal (3% or 6%) may change the 530 
output of the Minka algorithm/capping at 90. The sample distribution of MP-based regressors is calculated from the spatial 531 
means, given that .99 variance may be represented by a different number of components across voxels. B) Results of the 532 
signal implanting test. Model ordering as in A. Left - signal recovery statistics. Right - same for the signal loss statistics. The 533 
best performing model is highlighted. C) Segment of slices-to-slices timeseries before (Group1 regressors only) and after 534 
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application of Group 2 regressors. Ticks along x-axis mark TRs, i.e., 16 slices. Note the vertical stripes, repeating at the rate 535 
of approximately 2-3 TRs and likely to be caused by mother’s breathing cycle, that are significantly reduced after application 536 
of Group 2 regressors. 537 

 538 
2.6.3. Group 3. Temporal regressors for sampling scheme artefacts  539 

 540 
A set of regressors addressing artefacts related to the difference in temporal separation 541 
between first and last slice of adjacent MB stacks compared to other neighbouring slices were 542 
derived using single-subject spatial ICA with dimensionality set to 30 components run on the 543 
timeseries following their residualisation with respect to the model that included Group 1 and 544 
(best performing) Group 2 regressor sets. Prior to this, the data were slightly smoothed using 545 
a FWHM=1 mm 3D Gaussian filter. Here we sought to identify slab-like spatial patterns 546 
repeating roughly across the MB stacks width (i.e., 16 slices). Two observers (VRK and DB) 547 
independently performed the rating of spatial component maps, with three scores allowed: 548 
‘to remove’, or ‘to be equivocal’, or ‘to keep’. One observer started the rating from the first 549 
subject in the subject list, and the other started the rating from the middle subject. To ensure 550 
that similar subjective criteria were applied across the cohort, each observer used the rating 551 
of the first 20 subjects to get accustomed to the task. The ratings for these subjects were 552 
reviewed again after the observer completed the rating of the whole dataset. The criterion 553 
for consensus to regress out component timecourses was defined as either ‘to remove’ by 554 
both raters or ‘to remove’ by one and ‘to be equivocal’ by the other. 555 
 556 
Figure 6A shows examples of components that were rated by consensus as representing a 557 
sampling artefact. The average number of such components per subject was 7.6, sd = 3.96 558 
(Figure 6B). Residualisation of the data with respect to the timecourses of these components 559 
was performed on top of residualisation with respect to Group 1 and Group 2 regressors.  560 
Because the timecourses of the independent components are not constrained to be 561 
orthogonal, the regression coefficients for the timecourses to regress out were estimated in 562 
combination with other components’ timecourses. This procedure generated the most 563 
thoroughly processed data in the release. 564 
 565 

 566 
Figure 6. Group 3 regressors. Images are in radiological orientation (right is left). A) Examples of components with double-567 
slab-like spatial structure in an exemplary subject; B) Distribution of the number of components rated to be removed per 568 
subject 569 

. 570 
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2.6.4. Quality control and data selection for group-level analyses 571 
 572 
To rate the quality of individual pre-processed data and select cases suitable for group-level 573 
analyses, we used both visual assessment and parametric measures.  574 
 575 
For visual assessment, the timeseries were rated by an observer (VRK) using a 5-point scale, 0 576 
– fail, 1 – bad quality (seemingly unusable), 2 – seemingly usable, 3 – reasonably good, 4 – 577 
good. This was complemented with the two parametric measures, mean (over voxels) tsnr 578 
and dvars, disregarding censored volumes. Specifically, mean-over-voxels tsnr was defined as: 579 
 580 
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𝑡, 𝑡 − 1 ∈ 	𝑅2 	 589 
 590 
where 𝑡 is the order number of a volume, 𝑅2  is the set of 𝑇 uncensored volumes, 𝑁 is the 591 
number of consecutive pairs of uncensored volumes, 𝑡, 𝑡 − 1 ∈ 	𝑅2, and 𝑛 is the number of 592 
voxels. Both measures were calculated in the functional native space, within a binarised 593 
anatomical segmentation image, which provides a tight mask by excluding non-brain tissues 594 
(e.g., subarachnoid CSF).  595 
 596 
The decision rule was as follows: all cases rated >1 (high score) were considered as suitable 597 
for analysis EXCEPT when they were EITHER positive dvars outliers OR negative tsnr outliers 598 
with respect to all cases rated > 1. Specifically, the outlier 𝑂41560 for dvars and 𝑂!0&6  for tsnr 599 
were defined as: 600 

𝑂41560 	> 	𝑃7+ + 1.5𝐼𝑄𝑅 601 
𝑂!0&6 <	𝑃%+ − 1.5𝐼𝑄𝑅 602 

where 𝑃%+ and 𝑃7+ are 25th and 75th percentiles of the cases rated > 1, and 𝐼𝑄𝑅 is their 603 
interquartile range.  604 
 605 
Furthermore, all cases rated <=1 (low score) were also considered as suitable for an analysis, 606 
if BOTH their dvars AND tsnr were, respectively, < 𝑃7+  AND > 𝑃%+ of cases rated > 1. All 607 
ratings as well as their dvars and tsnr measures are available at Data and code availability, 608 
Resource 3.  609 
 610 
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Figure 7A-B shows that visual assessment of the pre-processed data, dvars and tsnr were all in 611 
reasonable agreement.  Based on the predetermined criteria, 217 out of 263 scans passed the 612 
QC (114 male, 101 female, 2 unrecorded). Figure 7C demonstrates an example of the QC 613 
report, available for each individual subject (Data and code availability, Resource 3).  614 
 615 

 616 
Figure 7. Quality assessment. A) Average dvars and tsnr for high (> 1) and low (<=1) scores in visual quality assessment. B) 617 
Relationship between average tsnr and dvars; C) QC report for an exemplar subject, showing carpet plots of z-scored 618 
intensity, spatial profiles of TSNR and temporal evolution of dvars for the data after motion and distortion correction (type: 619 
mcdc, without censoring) and for the fully processed data (type: preproc, including censoring). 620 

2.6.5. Group-level statistics of deconfounding regressor groups 621 
 622 
Figure 8 shows the summary statistics of all 263 fully pre-processed cases for the temporal 623 
filtering regressor groups with respect to the loss of the effective degrees-of-freedom (DOFs, 624 
= number of regressors, Figure 8A) and TSNR (Figure 8B). On average, the fully pre-processed 625 
data lose approximately 32% of effective DOFs, and gain more than 2 times TSNR, compared 626 
to the data that underwent spatial distortion and slice-to-volume motion correction only. The 627 
loss in DOFs is significantly higher than reported in adult imaging (e.g., approx. 15% for 628 
minimally pre-processed data in the Human Connectome Project (HCP) - Smith et al., 2013), 629 
but much of it occurs via volume censoring, which has no analogy in HCP. 630 
 631 
In order to evaluate the local effects of the temporal filtering models, we utilise the dataset 632 
capacity for group-level analyses, afforded by the released registration infrastructure, 633 
projecting TSNR maps (smoothed with a FWHM = 3 mm Gaussian kernel in the native space) 634 
into the fMRI-optimised group space. The aligned maps were then modelled with linear 635 
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regression, with demeaned age as a co-variate, providing estimates of average TSNR 636 
characteristics in the sample and their association with age.  637 
 638 
The mean TSNR maps (Figure 8C) and the maps of the TSNR differences (Figure 8D) between 639 
temporal filtering models help appreciate the effect of each regressor group. The patterns are 640 
presented in terms of fitted beta coefficients for intercept and after conversion into t-641 
statistics for both intercept and age effect. In terms of beta coefficients, both the average 642 
TSNR and its gain from application of the more complex denoising model was the highest in 643 
WM, which reflects the fact that mean intensity (i.e., numerator in the TSNR formula) is 644 
higher in the WM than in the GM and CSF. This points to the multiplicative effect of noise, 645 
supported by the observation that WM TSNR is no longer greater than GM TSNR when 646 
converted into t-statistic values, taking into account across-subject variability. 647 
 648 
As TSNR is not informative with respect to the effects of deconfounding regressors on 649 
estimates of brain functional connectivity, we investigated the latter in the context of seed-650 
to-brain correlation maps, using the left and right thalami as seeds.  The analysis was 651 
performed in the sample of individuals GA > 24.5, which passed quality control criteria. This 652 
comprised 201 subjects (106 male, 93 female, 2 unrecorded). Individual correlation maps 653 
were computed for the left and right thalamus separately in the native functional space 654 
(following FWHM = 3 mm smoothing) and projected into left-right symmetrised space (Data 655 
and code availability, Resource 3) for group-level analysis. To enable computing of the left-656 
right subject’s average maps, the maps of the left thalamus connectivity were left-right 657 
flipped. We then modelled the average maps using linear regression with demeaned age as a 658 
covariate. 659 
 660 
Figure 8E-F shows the results for the fitting. In summary, using a more complex denoising 661 
model results in a decrease of correlations throughout the brain. However, perhaps with 662 
exception for Group 1 regressors (spatial correlation -0.20 between “mcdc” and “Group1-663 
mcdc” maps in Figure 8E), this decrease was proportionally scaled, i.e., more prominent in 664 
areas showing a stronger correlation to the seed timecourse prior to model application 665 
(spatial correlation -0.95 between “Group1” and “Group1&2-Group1” maps and -0.73 666 
between “Group1&2” and “Group1&2&3-Group1&2” maps). A similar proportional effect was 667 
observed for the age effect (Figure 8F; spatial correlations = -0.04, -0.92 and -0.62, 668 
respectively). The most profound decrease for both intercept and age-effect was observed 669 
when including Group 2 regressors. 670 
 671 
  672 
 673 
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 674 
Figure 8. Statistics for different temporal filtering models. Images are in radiological orientation (right is left). A) The loss in 675 
effective DOFs. “mcdc” signifies a null model, i.e., motion and distortion corrected data, without temporal filtering. The 676 
average per model is represented by its median. Differences in percentages are calculated with respect to the average for 677 
Group1&2&3 model. B) The gain in average TSNR. The average per model is represented by its mean. C) Spatial maps of 678 
TSNR and estimates of the age effect; Right is left. D) Spatial maps of differences in TSNR between different denoising 679 
models. E) T-statistics for the intercept of seed-to-brain thalamic correlation maps (top row) and the maps representing the 680 
difference in correlations after applying different denoising models (bottom row); hemisphere on the left is uni-lateral to the 681 
location of the seed; F) same as E) for the age effect. 682 
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2.7. Group-ICA analysis. 683 
 684 
To demonstrate the dataset capacity for multi-variate network analysis, we performed 685 
estimation of functional modes (“networks”) in the same sample as in the analysis of thalamic 686 
connectivity. All individual data were smoothed in native space using a FWHM=3 mm 687 
Gaussian kernel. To account for heterogeneity inherent to a sample with large maturational 688 
differences, we first concatenated the timeseries of age-matched individuals (as defined for 689 
age-matched template registration) and compressed them to 1400 principal components for 690 
each age. After transforming within-component (across voxels) values by z-scoring, the 691 
components were concatenated with similarly defined components from other age groups 692 
and compressed to a sample-average set of 1400 principal components which was then fed 693 
into FSL melodic ICA to obtain whole-sample decomposition into 25 components. In other 694 
words, the procedure ensured a balanced contribution of each age to the final factorisation, 695 
whereas z-scoring of values within each component ensures that factorisation attends to 696 
common patterns irrespective of their absolute scale, thereby implicitly taking into account 697 
that these patterns may have different prominence across ages.  698 
 699 
Figure 9A shows functional modes obtained in these data, which predominantly comprise of 700 
components localised to one brain region (hereafter - dominant node). Despite this, there 701 
was a notable prevalence of component pairs (7 pairs, grouped together in the figure), where 702 
dominant nodes are a left-right reflection of each other. Out of these 7 pairs, 3 pairs (ICs 14 vs 703 
21, 10 vs 16, and 6 vs 19) showed symmetry not only in the location of a dominant node, but 704 
also in the location of secondary non-negligible nodes. Another notable observation is that 3 705 
components (ICs 15, 20, and 24, highlighted in bold green in Figure 9A) were characterised by 706 
a node pair, one dominant and another smaller, located in the homologous regions of the two 707 
hemispheres, and another (IC 3) showed one medial component with approximately equal 708 
bilateral representation. 709 
 710 
To evaluate the structure of whole-brain functional architecture, we derived the temporal 711 
time courses of the obtained 25 ICs by spatial regression (Beckmann et al., 2009) against 712 
individual fMRI data in native functional space. For each subject individually, we computed 713 
the correlation matrix between component timecourses, excluding timecourses of IC0 which 714 
is of a distinctively vascular origin. We then combined matrices from all subjects in order to fit 715 
each element with linear regression, using demeaned age as a covariate. The procedure 716 
resulted in two matrices, one containing estimates of an average strength of association 717 
between each pair of components’ timecourses and the other providing estimates of their 718 
age-related changes. The elements of these two matrices were converted into t-values, 719 
thereby accounting for between-subject variability. Normalised Laplacian embedding of each 720 
matrix (positively thresholded to make this estimable) was then used to represent the 721 
relationships between components in terms of a Euclidean distance between their 722 
coordinates in the embedded space. We then applied hierarchical clustering using the Ward 723 
method (Ward, 1963), based on the coordinates in the first 3 non-null dimensions.  724 
 725 
The results of clustering (Figure 9B) demonstrate a weakness of association between 726 
contralateral nodes in terms of average strength of their correlation; the overall tendency for 727 
this metric was to form clusters of unilateral nodes, sometimes representing a symmetrical 728 
image of each other (e.g., ICs 17,22,18 vs ICs 8,13,23 and ICs 6,10 vs ICs 16,19) and/or 729 
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representing coherent functional systems, such as right dorsal fronto-parietal (ICs 7,14), left-730 
dominated sensori-motor (ICs 2,3,20,21), left (ICs 5,9,12) and right (ICs 1,4,11) frontal. 731 
  732 
Clusters that mix both uni- and contralateral components are more evident in the analysis of 733 
age-related changes (Figure 9C). Of particular interest is a cluster (ICs 10, 15, 16, 19, 24) that 734 
combines areas belonging to semantic and language processing. Notably, it includes only a 735 
left but not right anterior temporal node, which aligns well with a previous report on 736 
connectivity of these areas in the adult brain (Hurley et al., 2015). 737 

 738 
Figure 9. Modes of covariation (fetal “resting-state networks”). Images are in radiological orientation (right is left). A) 739 
Spatial maps grouped by their anatomical location. The dotted-line boxes show pairs of maps showing a distinctive 740 
interhemispheric symmetry. Components with non-negligible bilateral homotopic representation are highlighted in bold 741 
green.  B) Full (lower triangle)- partial (upper triangle) correlation matrix and hierarchical clustering based on full 742 
correlations transformed into t-statistics. C) Same as B) for the age-related changes in correlations.  743 
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3. Discussion 744 
 745 
Despite its rapid progress (De Asis-Cruz et al., 2021; Ferrazzi et al., 2014; Jakab et al., 2014; Ji 746 
et al., 2022; Karolis et al., 2023; Schöpf et al., 2012, 2014; Seshamani et al., 2016; Sobotka et 747 
al., 2022; Taymourtash et al., 2021, 2023; Thomason et al., 2015; van den Heuvel et al., 2018), 748 
fetal fMRI remains a relatively novel field, where pre-processing standards are yet to be 749 
established and which until now lacked an open-access resource available to researchers. In 750 
this paper, we introduce an open-access fetal fMRI data repository and present a systematic 751 
approach for pre-processing, spanning stages from image reconstruction to group-level 752 
analysis. We implemented state-of-the-art methods for the spatial reconstruction and 753 
correction of the data, including MB- SENSE reconstruction, dynamic distortion and slice-to-754 
volume corrections, and a tailored temporal filtering model with attention to the prominent 755 
sources of structured noise. The final dataset consists of 263 fully processed cases, with 217 756 
cases determined to be suitable for the connectivity analyses. We thereby provide both a 757 
resource and a high-quality template to facilitate further development and benchmarking of 758 
methods for fetal fMRI. In the remainder of the discussion, we focus on the potential areas 759 
for improvement. 760 
 761 
Studying fetal samples using fMRI is perhaps an exemplary case where the age of a subject 762 
simultaneously represents the most important variable-of-interest and the most prominent 763 
confound. The latter manifestations encompass, to name a few, signal-altering differences 764 
resulting from rapidly changing tissue properties, drastically different morphology, and three-765 
fold differences in effective resolution. These factors entail various challenges for the 766 
progress of the fetal fMRI field. Firstly, they create obstacles for reproducible experiments. 767 
The standard practice of scanning one participant repeatedly (Duff et al., 2022; Noble et al., 768 
2017; Shah et al., 2016; Shehzad et al., 2009) in fetal imaging settings is practically 769 
complicated and ethically dubious, as this approach can render meaningful results only if 770 
there is no significant temporal gap between scanning sessions. Secondly, they entail 771 
difficulties in defining sound quantitative metrics, appropriate for the entire age range, that 772 
would enable comparative testing between various processing approaches. Thirdly, they may 773 
entail differences in magnitudes of distortion and motion, thereby affecting data quality in an 774 
age-related manner. The released data, that includes outputs from different processing 775 
stages and information on motion and dynamic field mapping, represents therefore a 776 
valuable asset for investigating motion patterns at different gestation ages and dynamic 777 
distortion and motion relationship. Finally, they also complicate the inter-subject data fusion 778 
for group-level analysis and defining ground truths that could guide pre-processing 779 
approaches in order to harmonise data quality across ages and fit a broad range of potential 780 
goals for a study. As an example, the immature fetal WM is thought to contain its own 781 
functional units within temporary developmental structures such as the subplate and 782 
constitutes a metabolically active area, especially at younger ages (Colonnese & Phillips, 2018; 783 
Tolner et al., 2012). Consequently, studying the WM BOLD signal at younger ages may require 784 
a different approach to the temporal filtering problem.  785 
 786 
Our approach to the temporal filtering follows the trend that was set by the seminal work by 787 
(Power et al., 2012) and (Satterthwaite et al., 2013), evaluating the effect of motion on 788 
resting-state connectivity in adults. This work demonstrated an improved precision of 789 
connectivity estimates following application of sophisticated denoising models enriched with 790 
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motion-related or data-derived deconfounding regressors (Power et al., 2014; Pruim et al., 791 
2015; Satterthwaite et al., 2013; Yan et al., 2013). Here, by virtue of using the recovery of an 792 
artificially implanted cortical signal as a metric to assess efficiency of temporal filtering 793 
models, we sought to optimise the data for the analysis of cortical networks.  We were 794 
conscious of the possibility that the usage of complex models may inadvertently remove 795 
relevant signal information, i.e., that selectivity may be prioritised at the expense of 796 
sensitivity, which may be suboptimal in the fetal fMRI low-SNR setting. Namely, we found that 797 
the data-derived regressors (obtained using ICA on non-GM timeseries), which represent a 798 
popular choice for ex utero data (Kiviniemi et al., 2003; Kochiyama et al., 2005; Salimi-799 
Khorshidi et al., 2014) including paediatric data (Fitzgibbon et al., 2020), are particularly prone 800 
to undesired implanted signal removal in the fetal fMRI. 801 
 802 
Correspondingly, our approach to temporal filtering relied on a rich set of MP-based 803 
regressors, helping us to achieve a notable reduction of artefacts, including difficult-to-tackle 804 
spin-history artefacts. In spite of taking these measures, we observed proportionally scaled 805 
decreases in TSNR and estimates of thalamic connectivity following the application of 806 
complex MP-enriched models. These appear to suggest that in real data signal and noise do 807 
not fully comply to the additivity assumption of the signal implanting test. The proportional-808 
like decrease in the strength of the age effect following application of MP-based and data-809 
derived regressors points to the same possibility. A case in point here is the age-related 810 
changes in connectivity between the thalamus and sensorimotor and parietal areas. On the 811 
one hand, age-related increases in these functional connections are expected based on 812 
current knowledge of prenatal brain development from post-mortem studies (Kostović et al., 813 
2019; Kostović & Judaš, 2010). On the other hand, these changes are best detectable in the 814 
data before any temporal filtering, indicating contribution of age-related structured noise to 815 
this contrast. Taken together, these findings suggest several far-reaching implications. Firstly, 816 
they suggest that magnitude of the structured noise may scale with age and therefore the 817 
strength of the age effect cannot be accepted as a sole criterion for optimisation of the model 818 
for temporal filtering. Secondly, in the absence of a ground truth, the intricate entanglement 819 
of signal and noise complicates the determination of the temporal filtering complexity for a 820 
right sensitivity-selectivity trade-off. Thirdly, more sophisticated motion modelling could be 821 
required to increase selectivity of temporal regressors to structured noise. 822 
 823 
We therefore invite dataset users to develop temporal filtering models that could better fit 824 
the requirements of their analyses and/or investigate the ways to boost their statistical 825 
power, including alternatives not considered in this paper, such as more aggressive spatial 826 
smoothing and lowpass temporal filtering. To facilitate this, we release a rich set of 827 
complementary data in the form of denoising maps and provide Python code that can be 828 
used with the regressors in the released database or adapted to include new ones (Data 829 
availability statement, Resource 3). We also remark that the implementation of data 830 
reconstruction and spatial corrections was developed to be compatible with proprietary 831 
format of raw data collected by the scanner used in the dHCP, considered not only fetal fMRI 832 
but many other MRI scanning domains, and was optimized for the local computing hardware 833 
infrastructure. Therefore, we have decided not to provide a ready-to-use code release for 834 
data reconstruction and spatial corrections to be run externally but we release the code for 835 
dynamic correction (Data and code availability, Resource 5). 836 
 837 
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Another area for improvement relates to incorporation of deep learning models for improving 838 
brain extraction, spatial corrections and temporal denoising in the proposed pipeline, with 839 
recent approaches mature enough, in particular, for the brain extraction problem (e.g., 840 
(Rutherford et al., 2022)). A particularly challenging scenario is encountered in scans where 841 
the brain’s orientation varies significantly in time. In the current implementation, such 842 
differences could result in an orientation flip in some volumes of the reconstructed 843 
timeseries, which had to be censored for downstream processing. The extreme situation 844 
where a fetus may turn upside-down within an fMRI scan is far from being manageable with 845 
current analysis techniques, which exemplifies that data rejection criteria and quality control 846 
also merit future efforts for improvement and standardisation across studies.  847 
 848 
Finally, detailed investigations are also needed to determine how the large age-dependent 849 
variability in brain characteristics can analytically be incorporated into building group-level 850 
normative models of functional brain development. Fetal fMRI data reveals idiosyncratic 851 
properties (Karolis et al., 2023), apparent in various forms, including when results of group-852 
level ICA factorisation between fetal and neonatal samples are contrasted. Analysis in the 853 
fetal brain typically reveals a dominance of a single-node functional modes and a paucity of 854 
spatially distributed patterns (Ji et al., 2022; Karolis et al., 2023), whereas in the neonatal 855 
brain the latter are not uncommon, especially those left-right symmetrically organised (Eyre 856 
et al., 2021; Fitzgibbon et al., 2020; Gao et al., 2015). This may reflect a genuine property of 857 
the fetal brain’s functional organisation, its immaturity and perhaps the functional state of 858 
the brain while in utero, but may also simply be a reflection of a lower signal-to-noise ratio or 859 
may suggest that the method, that implicates estimation of a group-level ‘mean’ model in a 860 
developmentally heterogeneous sample, is not appropriate for these data (Karolis et al., 861 
2023). In this paper we adopted pre-processing steps in group-ICA analysis that aimed to 862 
ameliorate the challenges of data fusion across ages. The obtained results were more prone 863 
to revealing signatures of distributed spatial patterns than previously reported (e.g., Ji et al., 864 
2022;  Karolis et al., 2023). Furthermore, they reveal a range of symmetrically located 865 
network pairs, tentatively pointing to an emergence of a bilaterally organised functional 866 
architecture (Thomason et al., 2013). However, despite these elements of qualitative 867 
convergence with the neonatal data, harmonisation of in- and ex-utero cohorts for a 868 
combined analysis remains a task for future research.  869 
 870 
In conclusion, research into functional brain development in utero is strongly motivated by a 871 
large body of evidence that shows the fetal period has critical importance for individual 872 
development. This information can be obtained non-invasively using fetal fMRI, but much 873 
work is required in order to establish the standards of data acquisition, pre-processing and 874 
analysis in this challenging domain. The current dataset represents a unique resource that 875 
aims to provide a firm foundation for advancing fetal fMRI from its current status as a niche 876 
research field to its deserved and timely place at the forefront of the community-wide efforts 877 
to build a life-long connectome of the human brain. 878 
 879 
 880 
 881 
 882 
 883 
 884 
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Data and code availability. 885 
The data and code presented in this paper are available in the following locations: 886 

1. dHCP fetal release: https://nda.nih.gov/edit_collection.html?id=3955  887 
2. The dHCP volumetric template can be accessed at: https://gin.g-888 

node.org/kcl_cdb/fetal_brain_mri_atlas. Folder “structural” contains T2-weighted 889 
spatiotemporal atlas, folder “composite_warps” contains fsl-style warps between 890 
different ages of template; folder “composite_warps_fetal2neonatal” contains 891 
mappings between fetal template and the 2 neonatal templates spaces. Folder 892 
“cnn_cortex_probability” contains quasi-probability maps of cortical segmentations. 893 

3. Materials associated with this paper, such as sample demographics, naming 894 
convention, supplementary data, QC reports, the script to perform registration of 895 
native T2 images to age-adjacent templates, and the python code used for performing 896 
temporal filtering, are available at: https://gin.g-897 
node.org/kcl_cdb/dHCP_fetal_fMRI_release_paper. 898 

4. The neonatal templates and mappings between different ages are available at: 899 
https://git.fmrib.ox.ac.uk/seanf/dhcp-resources  900 

5. The code for distortion correction is available at: 901 
https://github.com/mriphysics/fetalPhaseEPI/releases/tag/1.0.0. Enquiries about 902 
sharing the existing code for image reconstruction and motion corrections and 903 
guidance on its application should be directed to co-author LCG. 904 
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