

The developing Human Connectome Project fetal functional MRI release: Methods and data structures

Vyacheslav R. Karolis^{1,2,*†}, Lucilio Cordero-Grande^{1,3,*}, Anthony N. Price¹, Emer Hughes¹, Sean P. Fitzgibbon², Vanessa Kyriakopoulou¹, Alena Uus¹, Nicholas Harper¹, Denis Prokopenko¹, Devi Bridglal¹, Jucha Willers Moore^{1,4}, Sian Wilson¹, Maximilian Pietsch¹, Daan Christiaens^{1,5,6}, Maria Deprez¹, Logan Z.J. Williams^{1,7}, Emma C. Robinson^{1,7}, Antonis Makropoulos¹, Seyedeh-Rezvan Farahibozorg², Jonathan O'Muircheartaigh^{1,4,8}, Mary A. Rutherford¹, Daniel Rueckert^{9,10}, A. David Edwards¹, Tomoki Arichi^{1,4,11}, Stephen M. Smith², Eugene Duff^{2,12}, & Joseph V. Hajnal¹

Affiliations

1. Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.
2. FMRIB, Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
3. Biomedical Image Technologies, ETSI Telecomunicación, Universidad Politécnica de Madrid & CIBER-BBN, ISCIII, Madrid, Spain
4. MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK.
5. Translational MRI, Department of Imaging & Pathology, KU Leuven, Leuven, Belgium
6. Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium
7. Department of Biomedical Computing, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.
8. Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
9. Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, UK.
10. Klinikum rechts der Isar, Technical University of Munich, Germany.
11. Paediatric Neurosciences, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK.
12. Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK.

* - these authors contributed equally.

† - corresponding author: slava.karolis@kcl.ac.uk

Abstract

Recent advances in fetal fMRI present a new opportunity for neuroscience to study functional human brain connectivity at the time of its emergence. Progress in the field however has been hampered by the lack of openly available datasets that can be exploited by researchers across disciplines to develop methods that would address the unique challenges associated with imaging and analysing functional brain in utero, such as unconstrained head motion, dynamically evolving geometric distortions, or inherently low signal-to-noise ratio. Here we describe the developing Human Connectome Project's release of the largest open access fetal fMRI dataset to date, containing 275 scans from 255 fetuses and spanning the period of 20.86 to 38.29 post-menstrual weeks. We present a systematic approach to its pre-processing, implementing multi-band soft SENSE reconstruction, dynamic distortion corrections via phase unwrapping method, slice-to-volume reconstruction and a tailored temporal filtering model, with attention to the prominent sources of structured noise in the in utero fMRI. The dataset is accompanied with an advanced registration infrastructure, enabling group-level data fusion, and contains outputs from the main intermediate processing steps. This allows for various levels of data exploration by the imaging and neuroscientific community, starting from the development of robust pipelines for anatomical and temporal corrections to methods for elucidating the development of functional connectivity in utero. By providing a high-quality template for further method development and benchmarking, the release of the dataset will help to advance fetal fMRI to its deserved and timely place at the forefront of the efforts to build a life-long connectome of the human brain.

Keywords:

Fetal fMRI, open-access data resource, dynamic distortion correction, slice-to-volume motion correction, temporal filtering, network analysis

1 1. Introduction.

2
3 Already at birth, brain activity appears to be organised into a “connectome” of distributed
4 networks (Doria et al., 2010; Fitzgibbon et al., 2020; Gao et al., 2015) that underpin complex
5 behaviours and cognitive functions later in life. Multiple lines of evidence now also point to
6 the critical importance of the fetal period for healthy development (Bergman et al., 2007;
7 Boukhris et al., 2016; Brown et al., 1995; Laplante et al., 2008; O’Donnell et al., 2009; Rakers
8 et al., 2020; Sandman et al., 2012; Skranes & Løhaugen, 2022; Zerbo et al., 2015). There is
9 thus an increasing need for data on how functional connections become established in the
10 prenatal brain.

11
12 Advances in fetal fMRI present an opportunity for neuroscientific studies of the functional
13 human brain at the time of its emergence (Ferrazzi et al., 2014; Schöpf et al., 2012). Imaging
14 an in-utero brain, however, poses numerous unique challenges (Ferrazzi et al., 2014;
15 Seshamani et al., 2016; Sobotka et al., 2022; Taymourtash et al., 2019). Unconstrained
16 motion, non-rigid maternal tissues surrounding the fetal brain, a greater distance between
17 the head and receiver coil are among the MRI-adverse factors that lower signal-to-noise ratio
18 (SNR) and increase the level of structured artifacts. Motion-free periods are empirically rare in
19 *in utero* fMRI acquisitions given that motion associated with maternal respiration and fetal
20 movement itself systematically induce fetal head displacements. When extreme, these
21 displacements may prohibit the reconstruction of particular volumes in the timeseries
22 (Sobotka et al., 2022; Taymourtash et al., 2021). When mild to moderate, they can still cause
23 significant spin-history effects (Ferrazzi et al., 2014; Seshamani et al., 2016), manifested by
24 spatially non-stationary image intensity changes (*travelling waves*), not readily amenable to
25 established methods of data temporal filtering (Griffanti et al., 2014; Salimi-Khorshidi et al.,
26 2014). The interaction between the magnetic properties of the moving fetal head and the
27 adjacent maternal tissues induces dynamic changes in the “static” magnetic field (B0)
28 inhomogeneity that results in temporally evolving distortion of fetal brain geometry (Cordero-
29 Grande et al., 2018a). The high contrast of maternal tissues may also induce leakage artifacts
30 in the multi-band (MB) sensitivity encoded (SENSE) MRI data reconstruction. Overall, the *in*
31 *utero* setting introduces multiple challenges to be navigated *en route* to artifact-controlled
32 characterisation of emerging brain functional connectivity.

33
34 Finding solutions to these challenges, as well as the development of tailored methods for
35 fetal brain connectivity analyses, requires a community-wide effort. Progress in this direction
36 however is being hampered by the lack of openly available datasets that could be exploited by
37 researchers across disciplines. The developing Human Connectome Project (dHCP) closes this
38 gap by releasing the first open-access and largest-to-date fetal fMRI dataset (Data and code
39 availability, Resource 1) of 275 scans from 255 individuals (gestational age (GA): 20.86 - 38.29
40 weeks), processed using tailored methods and accompanied by an advanced registration
41 infrastructure between imaging and template spaces. The dataset complements the open-
42 access dataset of neonatal fMRI data (Fitzgibbon et al., 2020), together allowing for detailed
43 investigations of connectivity in the perinatal brain. In this paper we set forth details of this
44 endeavour to process the fetal fMRI data from the stage of frequency-to-image
45 reconstruction all the way to the level when they can be utilised for group-level analyses. To
46 aid future method benchmarking, we make available the outputs from all the main pre-
47 processing stages. This allows for various levels of data exploration by the imaging and

48 neuroscientific community, starting from the development of robust pipelines for anatomical,
49 distortion and temporal corrections to the analyses investigating the development of the
50 prenatal functional connectivity. The aim of this paper is threefold: 1) describe the
51 organisation of the dHCP fetal fMRI release data, 2) provide detailed descriptions and
52 motivations for the pre-processing methods implemented in the released data; 3)
53 demonstrate its capacity for performing group-level analyses. We interleave descriptions of
54 methods and results for a clearer exposition of analytical approaches and their contribution
55 to the improvement of data quality.

56

57 2. Methods and Results

58

59 2.1. Acquisition parameters and data sample

60

61 Participants were prospectively recruited as part of the dHCP, a cross-sectional open science
62 initiative funded by the European Research Council. Resting-state fMRI data were acquired
63 with a Philips Achieva 3T system (Best, NL) using a 32-channel cardiac coil at St Thomas'
64 Hospital London. Scanner software was R3.2.2 with a custom patch. Each data set consists of
65 350 volumes (48 slices each), acquired using a single-shot echo planar imaging (EPI) (TR/TE =
66 2200/60) sequence, with slice matrix = 144 x 144, isotropic resolution = 2.2 mm, MB factor =
67 3, and SENSE factor = 1.4 (Price, 2019). Brains of all fetuses were reported by a
68 neuroradiologist as showing appropriate appearances on the T2-weighted anatomical scan
69 for their GA with no acquired lesions or congenital malformations of clinical significance.

70

71 A total of 277 completed fetal fMRI scans were acquired. Two were excluded from public data
72 release due to poor data quality across all modalities (T2-weighted, diffusion, and fMRI). The
73 remaining 275 fMRI sessions were acquired from 255 unique individual subjects (137 male,
74 116 female, 2 unrecorded, GA: 20.86 - 38.29 weeks). The mothers of 77.25% babies identified
75 themselves as white, 2.75% as black, 13.33% of any Asian origin (including South East Asia),
76 3.53% of any mixed origin, 2.75% of other unspecified origin, and 1 case refusing to provide
77 this information. The details of ethnicity as well as mother's medical, obstetric and mental
78 health information are made available with the release (Data and code availability, Resource
79 1). For comparison, the average numbers for Greater London and South East England, i.e.,
80 recruitment area for the study, are: white - 70.1%, black - 7.95%, Asian - 13.85%, mixed -
81 4.25%, other - 3.9% (<https://www.ethnicity-facts-figures.service.gov.uk/uk-population-by-ethnicity-national-and-regional-populations/regional-ethnic-diversity/latest/>).

82

83 Following an initial visual assessment, 1 scan was excluded from further processing due to an
84 incomplete field-of-view. With one exception, all fMRI scans were complemented by a T2-
85 weighted anatomical scan obtained at the same scanning session. Of these, 248 were
86 successfully pre-processed using the dHCP anatomical pipeline, generating brain tissue
87 segmentations. In addition, brain masks (released with the dCHP anatomical data) and
88 cortical quasi-probabilistic segmentations (Data and code availability, Resource 2) of
89 anatomical scans generated using a 3D U-Net based tool (Uus et al., 2023) were available for
90 all cases with an anatomical scan.

91

92

93

94

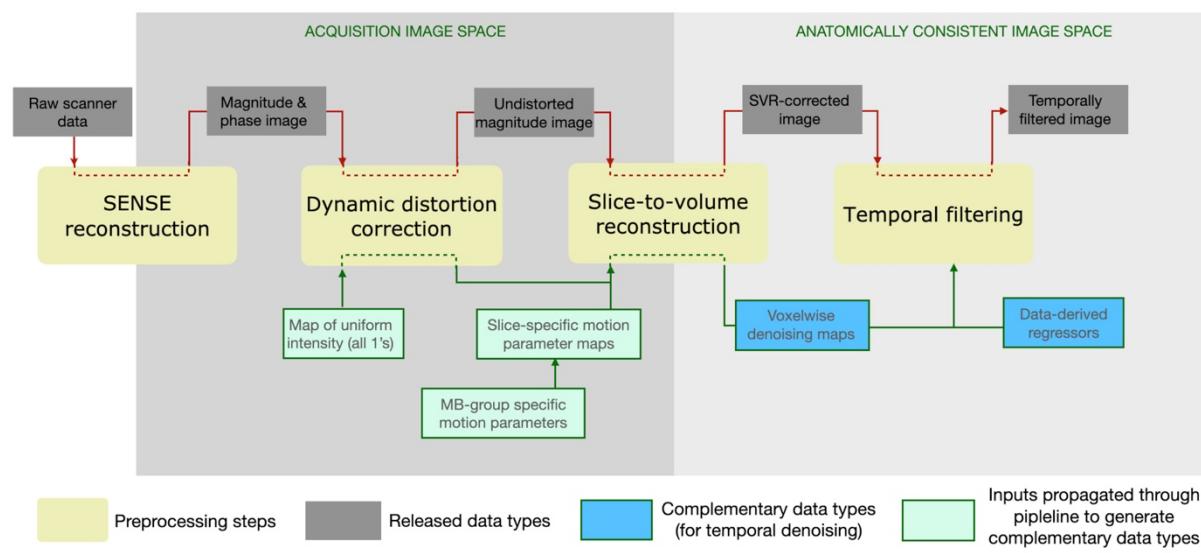
95 2.2. Overview of data processing stages and data structure

96

97 Figure 1 graphically presents the overview and inter-dependencies of processing stages,
98 derived data, and complementary data/images utilised in the process. The processing stages
99 comprise of MB-SENSE image reconstruction, dynamic distortion correction, motion
100 correction, and temporal filtering. The naming convention for the outputs of each stage,
101 along with pointers to their location within the data structure, is available on the online
102 resource (Data and code availability, Resource 3).

103

104 Of relevance, the released data contains items in two imaging spaces: the native acquisition
105 space and the anatomically consistent (tissue) space. The anatomically consistent space
106 results from distortion and motion correction processes, which involve warping, moving, and
107 rotating the original image slices, so that the resulting voxel timeseries represent the
108 temporal signal evolution at specific tissue locations.



109
110

Figure 1. Overview of the processing stages and data structure of fetal dHCP fMRI.

111 2.3. MB-SENSE image reconstruction

112

113 We used the soft SENSE reconstruction proposed as part of ESPiRiT (Uecker et al., 2014) for
114 considering motion or fat-shift induced model inconsistencies, which was extended to
115 account for MB acquisition (Zhu et al., 2016). Sensitivities were obtained from a single-band
116 (SB) dataset with matched readout (included in the release). Nyquist ghosting correction
117 parameters were obtained for all slices in the field-of-view by using the calibration
118 information collected with the SB data. Three image components were reconstructed with
119 soft SENSE, one corresponding to the target reconstruction and the other two to artefactual
120 information. Spatially adaptive regularisation maps (Fuderer et al., 2004) were constructed
121 for each image component by combining SB reconstructions and the corresponding
122 eigenvalue maps from ESPiRiT.

123

124

125

126

127

128

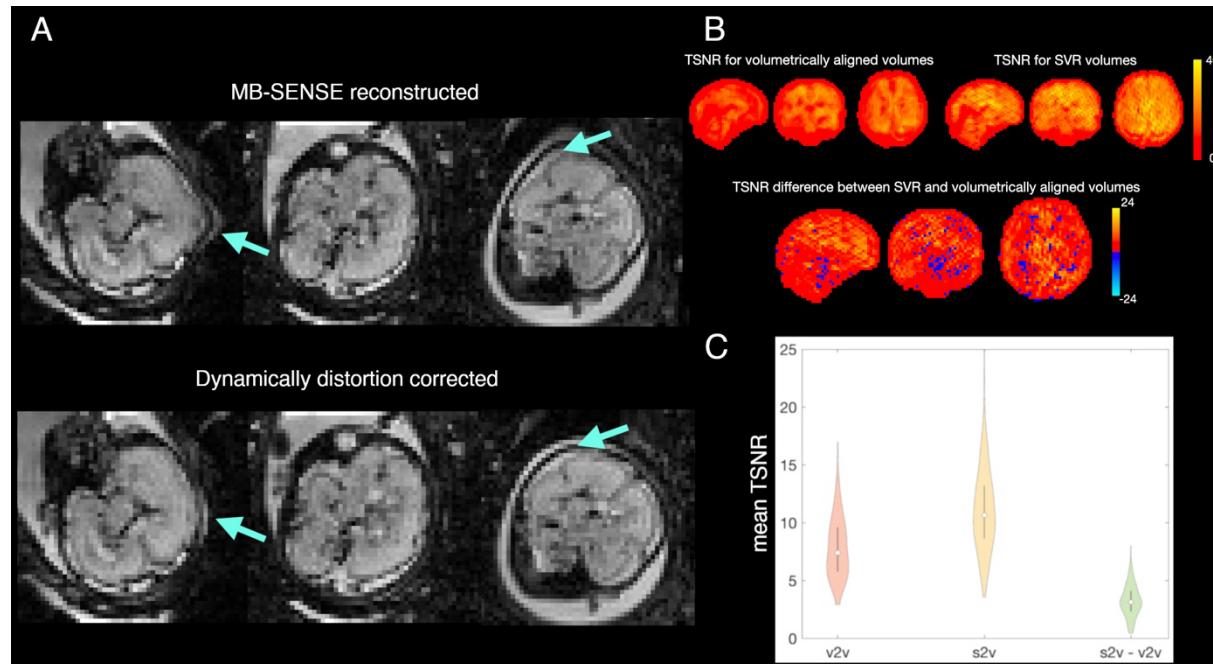
129 2.4. Spatial Corrections

130

131 2.4.1. Dynamic distortion correction

132

133 A major challenge of fetal imaging is overcoming the effects of fetal motion and its interaction
134 with the changing *in utero* and maternal environment. The presence of gas bubbles in the gut,
135 changes in maternal body pose during respiration and other incidental movements all cause
136 susceptibility-induced B0 inhomogeneities resulting in highly unpredictable spatial and
137 temporal signal fluctuations, particularly in the fetal brain boundaries. Therefore, spatially and
138 temporally resolved dynamic shot-by-shot B0 field correction is required for improved
139 imaging, especially when imaging at 3T where the aforementioned inhomogeneities are
140 amplified. As a result, the efficiency of registration-based methods (Hutter et al., 2018;
141 Kuklisova-Murgasova et al., 2018; Oubel et al., 2012) may be compromised in this scenario.
142 We instead opted to use the phase information in the reconstructed gradient echo EPI images
143 acquired for fMRI, as it allows direct estimation of dynamic distortion and therefore
144 separation of distortion and motion correction problems. As residual B0 dynamic evolution is
145 proportional to the phase of the observed signal, its estimation can be posed as a phase
146 unwrapping problem. The solution is obtained by a global phase unwrapping method based
147 on a 4D weighted least squares formulation (Ghiglia & Romero, 1994) with weights
148 constructed by the combination of magnitude information and local phase gradients. A global
149 method is used due to its robustness to local deviations of the phase-based distortion model
150 due to structural noise. Its application has been effective in removing clear distortions in
151 many individuals, with an example shown in Figure 2A.
152



153

154 *Figure 2. Spatial corrections in the fetal dHCP dataset. Images are in radiological orientation (right is left). A) Distortion*
155 *correction: Visual example of image data before and after dynamic distortion corrections; B) Motion correction: TSNR for*
156 *volumetrically aligned, slice-to-volume reconstructed (SVR) volumes and the difference between the two for an exemplar*
157 *case. Positive values for the latter indicate higher TSNR for the slice-to-volume approach; C) Motion correction: Distributions*
158 *of averaged (across image) TSNR in the entire dHCP fMRI dataset; v2v – volumetric alignment, s2v – slice-to-volume*
159 *approach, s2v-v2v – the difference between slice-to-volume and volume-to-volume approaches (s2v-v2v). Positive values for*
160 *the latter indicate higher TSNR for the slice-to-volume approach.*

161 2.4.2. Motion correction

162

163 FMRI data can be severely compromised by motion between the acquisition of different
164 slices. Estimation of rigid-body fetal head motion at the slice level is challenging and
165 correction is ill-posed in the absence of orthogonal stacks (as are typically acquired for
166 anatomical imaging). To address these challenges, we have followed a multi-scale strategy.
167 First, volume-to-volume motion estimates are obtained by standard multiresolution
168 longitudinal registration. Then, these are used to initialise slice-to-volume motion estimation
169 and correction with motion states defined jointly for simultaneously excited slices. Motion
170 parameters are obtained by registering the collected information corresponding to each
171 motion state against a motion-compensated temporal average target. In a final step, motion
172 compensated reconstructions of each fMRI volume are obtained by using the conjugate
173 gradient algorithm for inverting a forward model of the observed fMRI data that considers
174 previously estimated motion parameters and second order regularisation in the slice
175 direction. The whole procedure is based on the framework introduced in (Cordero-Grande et
176 al., 2018b).

177

178 The advantage of using slice-to-volume alignment compared to volume-to-volume alignment
179 (still the default approach in much ex utero image pre-processing) can be observed both at
180 individual and group levels. Figure 2B shows the map of temporal signal-to-noise ratio (TSNR,
181 calculated as signal mean divided by its standard deviation over timeseries) difference
182 between both approaches for an exemplary individual. Figure 2C shows average-across-map
183 group-level TSNR distributions for each approach and their difference, indicating the benefit
184 of the slice-to-volume alignment.

185

186 2.5. Native-to-template mappings

187

188 At this stage, the spatially corrected fMRI data were integrated into the dHCP volumetric
189 registration infrastructure (Figure 3), adopting an approach previously implemented for the
190 neonatal dHCP data release (Fitzgibbon et al., 2020). This allows users to flexibly manipulate
191 the data and map between template space and native spaces of all modalities. The remainder
192 of this section will focus on the detailed description of how this infrastructure has been built.
193 A reader interested in processing functional data only can proceed to Section 2.6, without
194 missing out on important details.

195

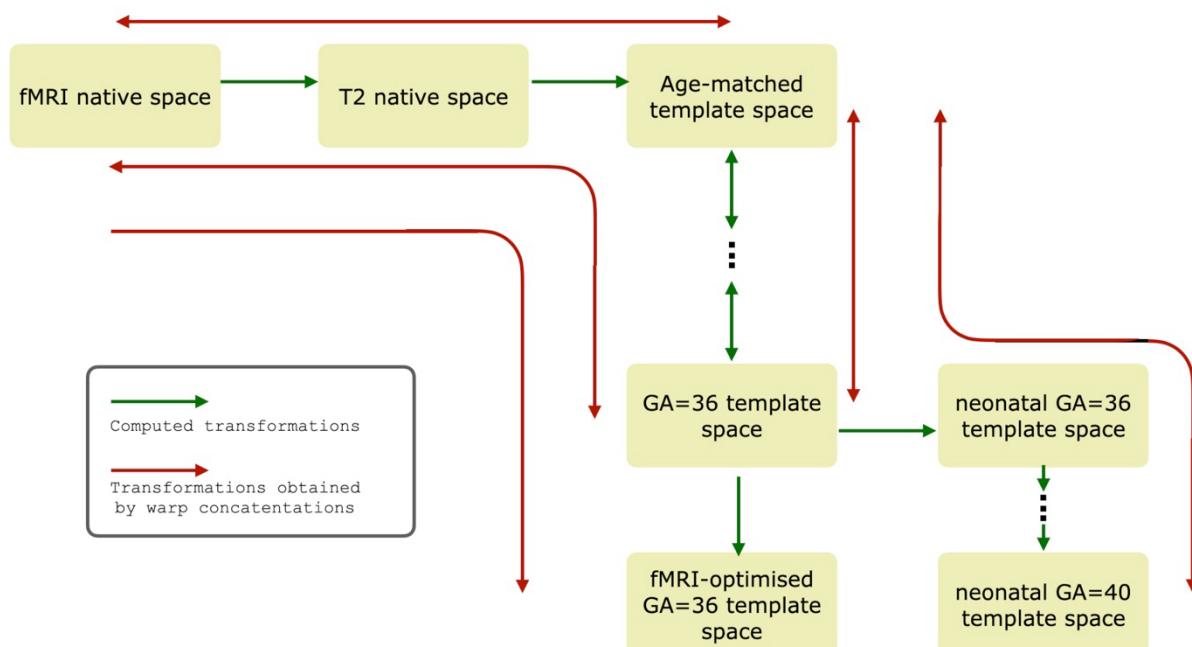
196 The building blocks of this infrastructure are: 1) linear mapping between native (i.e.,
197 individual) functional and T2 spaces, 2) non-linear mapping between native T2 and age-
198 matched template spaces, and 3) non-linear mapping between each pair of age-adjacent
199 templates. The first two building blocks are included in the release, whereas the between-
200 template mappings are available at the dHCP fetal weekly structural atlas repository (Uus et
201 al., 2023 ; Data and code availability, 2). The age-matched template corresponded to that of
202 the subject's age when rounded to the nearest integer, except for subjects whose GA was >
203 36.5 weeks, which were all assigned to the 36-week-old template, the oldest template in the
204 dHCP structural atlas.

205

206 All linear mappings, including those that preceded estimation of non-linear transformations,
207 were computed using FSL FLIRT. All non-linear warps were estimated using ANTs. The warps

208 were converted into the FSL *fnirt* format, which can be concatenated using the *convertwarp*
209 tool from the FSL library (Smith et al., 2004) in order to create composite displacement warps,
210 incorporating both linear and non-linear components. These composite warps would provide
211 mappings between distant imaging spaces while avoiding multiple image interpolation steps.
212

213 To lower the computational burden for the dataset users, two types of composite warps and
214 their inverse have been made available in the release: 1) mapping between native functional
215 and age-matched template spaces and 2) between native functional and 36-week-old
216 template spaces, which could be used for the group-level data synthesis. In addition, the
217 release includes a forward mapping between native functional and the 36-week-old template
218 space optimised for the group-level fMRI analysis, the creation of which is described Section
219 2.5.4. Details of the procedures used to obtain the required mappings are included below.
220



221
222 *Figure 3. Registration infrastructure associated with the fetal dHCP fMRI data. Concatenated transformations between*
223 *native fMRI and template spaces are part of the release. Concatenated transformations between template spaces (within-*
224 *fetal and fetal-to-neonatal) are available at g-node (Data and code availability, Resource 2).*

225 2.5.1. Native functional to structural mapping

226 For cross-modal mapping between native fMRI and T2 spaces, a modified standard
227 procedure, as implemented in the FSL's *epi_reg* tool, was used. It consists of two stages: a)
228 rigid whole-brain linear registration (using global search and mutual information as a cost
229 function), followed by b) refinement using boundary-based registration (BBR) with local
230 absolute differences cost function and restricting the search angle to $\pm 20^\circ$. All other
231 parameters were set to default.

232
233 As the fetal brain is surrounded by maternal tissues, including high-intensity amniotic fluid
234 which has an intensity similar to that of cerebrospinal fluid (CSF), accurate masking is required
235 to ensure good alignment, particularly for whole-brain registration. The loose masks used for
236 motion correction of fMRI data, obtained using a spherical Markov Random Field deformable
237 model based on (Cordero-Grande et al., 2011), were employed to initialise alignment.

238 Subsequently, iterations were performed between function-to-structure alignment and back-
239 projection of high-quality T2 masks into the native functional space.

240

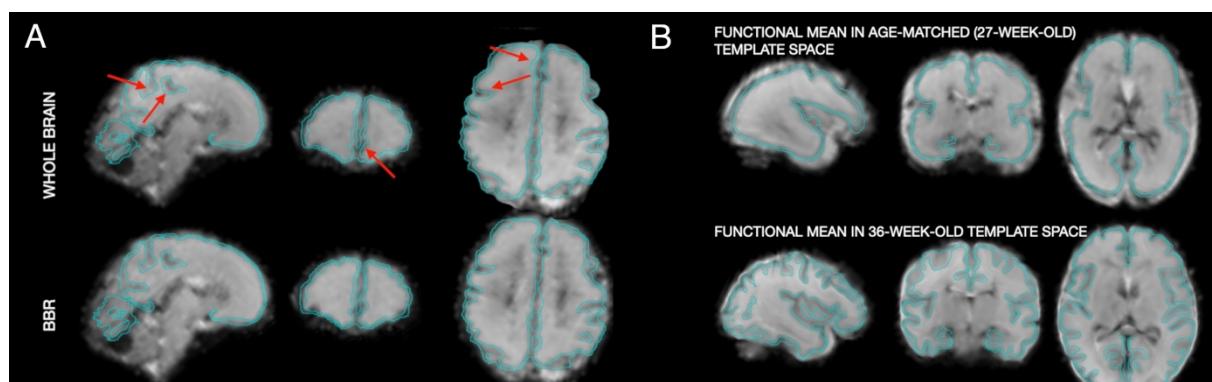
241 The details of the procedure are as follows. The alignment of a functional mean image to an
242 anatomical scan was initialised using the masks used for fMRI motion correction. The results
243 were visually checked for being approximately correct and, if necessary, were recomputed
244 after manual mask adjustments. The following steps were then repeated twice. First,
245 anatomical masks were projected into the functional space by inverting the mapping
246 obtained from the initial alignment. These new masks were applied and the N4 corrections
247 for intensity non-uniformity (bias field) within the new mask were applied to the mean fMRI
248 image. The corrected image was then used to re-compute the rigid alignment.

249

250 The output from the second iteration of the above procedure was then used to initialise BBR.
251 For the cases (N=26) which lacked the white matter (WM) segmentation required for BBR,
252 binarised cortical quasi-probability maps were used instead, thresholded by minimising the
253 difference between the volume of the thresholded maps and the volume of the cortical mask
254 obtained by the dHCP anatomical pipeline segmentation in the rest of the sample. The results
255 of whole-brain and BBR were visually checked and compared against each other by one of the
256 co-authors (VRK). The BBR alignment was retained if it was rated (based on visual inspection)
257 as performing similarly or better than the whole-brain alignment.

258

259 Out of 273 cases with an anatomical scan, 8 scans failed the function-to-structure alignment.
260 All of these failed cases had very poor MB-SENSE reconstruction quality and thus were
261 dropped from the subsequent pre-processing. The BBR alignment was retained in 254 out of
262 265 cases. The differences between the two approaches were typically subtle but non-
263 negligible in many cases, as in an example of whole-brain and boundary-based registrations
264 presented in Figure 4A.
265



266

267 *Figure 4. Mapping between image spaces. A. Example of whole-brain vs boundary-based mapping between native fMRI and*
268 *T2 spaces. Images are in radiological orientation (right is left). The outline of the native structural cortical segmentation is*
269 *overlaid in cyan. Compare regions pointed by arrows following the whole-brain registration and corresponding regions*
270 *following BBR. B. Example of mapping the mean functional image into age-matched (27-week-old) and 36-week-old*
271 *template spaces. The outline of the template cortical segmentation is overlaid in cyan. The original functional data are*
272 *shown in Figure 2A. Note an accurate alignment of this young case with the "old" (36-week-old) template, despite large*
273 *morphological differences, owing to concatenation of transformations between age-adjacent template spaces.*

274 2.5.2. T2 to age-matched template mapping

275 The registrations between native T2 images and age-matched templates were initialised by
276 12-degrees-of-freedom linear registration using FSL FLIRT (Jenkinson et al., 2002). Default

277 parameters (including cross-correlation metric as a cost function) were utilised. Non-linear
278 alignment was obtained using ANTs SyN diffeomorphic multi-channel registration (Avants et
279 al., 2011), with T2-weighted and cortical probability maps serving as moving sources (i.e., the
280 images to be aligned) and corresponding maps of the dHCP fetal template as the targets.
281 Local cross-correlation metric was used as a cost-function. Default parameters, as
282 implemented using ANTs *antsRegistrationSyN.sh* wrapper function, were utilised.
283

284 The motivation for using separate tools for linear and non-linear parts of registration was that
285 FLIRT demonstrated a robust performance for functional-to-T2 alignment across all ages
286 whereas ANTs is considered to be a state-of-the-art tool for estimation of non-linear mapping
287 (Klein et al., 2009) and proved to perform reliably in the neonatal dHCP cohort (Fitzgibbon et
288 al., 2020). All outputs were inspected visually, and we found no cases of apparent
289 misregistration. The script performing registration between native T2 and age-matched
290 template spaces is available at Resource 3 (Data and code availability).
291

292 **2.5.3. Template-to-template mapping**

293 The registration procedure between age-adjacent fetal templates (and between fetal and
294 neonatal 36-week-old templates described below) mirrored the registration procedure for
295 individual T2 images to the age-matched template, i.e., was initialised with FLIRT and non-
296 linearly refined with ANTs using T2 and cortical probability maps as registration channels. The
297 older template in each pair was used as the target. The example of mapping a functional
298 image into age-matched and 36-week-old template spaces is shown in Figure 4B.
299

300 **2.5.4. Fetal-to-neonatal template mapping**

301 To create the mappings between dHCP neonatal (Serag et al., 2012; Data and code
302 availability, Resource 4) and fetal templates, a non-linear transformation was computed
303 between fetal and neonatal 36-week-old templates, followed by creation of composite warps
304 to achieve a direct mapping between arbitrary neonatal and fetal GA template spaces. For the
305 purpose of this study, the mappings between each week fetal template and the “standard”
306 40-week-old neonatal template were explicitly computed (Data and code availability,
307 Resource 2).
308

309 **2.5.5. fMRI-optimised standard space for group-level analyses**

310 To compensate for possible residual distortions or misalignment, the registration of the fMRI
311 data to the standard group space was further optimised for group-level analyses. For this
312 sake, mean-across-time native fMRI data were mapped into the 36-week-old template space
313 and a grand-average (i.e., across all subjects) of the mapped data was computed, as well as
314 the grand averages of T2 images and WM and cortical segmentations. We then used ANTs to
315 run a multi-channel non-linear alignment. The subject’s fMRI mean and the grand-average of
316 all subjects’ fMRI means were used respectively, as moving sources and target for the first
317 channel of alignment and the cross-subject means of T2 volumes, and WM and cortical
318 segmentations were used as both moving sources and targets in three other channels. In
319 other words, the deformations were driven by the fMRI image intensities, with identical
320 structural anatomical features between the moving source and the target used to provide
321 spatially varying (contingent on the anatomy) constraints for the scale of deformations
322 allowed. The weight for each structural data channel was assigned to be 10% of the fMRI data
323 channel. The obtained warps were concatenated with warps mapping functional data to the

324 36-week-old template, allowing for a direct mapping between native fMRI and standard fMRI-
325 optimised spaces.

326

327 2.6. Temporal filtering

328

329 As the standards for temporal filtering of fetal fMRI are yet to be established, the
330 development of a regression-based temporal filtering model was accompanied by an in-depth
331 study of the effect that various types of deconfounding regressors may have on data
332 characteristics, thereby promoting a better understanding of signal properties. We started
333 with an identification of sources for prominent artefacts in the fetal fMRI data and split them
334 into 3 coherent classes. We then selected candidate deconfounding regressors for each class
335 and defined an order in which they were incorporated into a temporal filtering model. After
336 temporal filtering, the data underwent quality assessment, identifying cases suitable for
337 group-level analysis. Finally, we performed a post-hoc study of the unique effects that each
338 set of deconfounding regressors had on the data metrics. For the latter, we used TSNR and
339 seed-to-brain correlations, with the left and right thalamus as seeds.

340

341 We define 3 broad classes of artefacts. The first class pertains to factors that may affect
342 spatial similarity of the volumes across time. Broadly speaking, here we deal with the effect of
343 imperfections in spatial corrections on the evolution of the signal in the temporal domain.
344 Potential artefacts attributed to this class are: a) poor motion correction in the presence of
345 large fetal motion; b) signal leakages not fully suppressed during MB-SENSE reconstruction; c)
346 residuals of dynamic distortion correction; d). low-frequency temporal drifts in signal
347 intensity, related to gradient system instabilities.

348

349 The second class of artefacts constitute motion-induced changes in the temporal evolution of
350 the signal, potentially causing biology-unrelated covariance structure. Within this group,
351 particular attention is required for spin history artefacts. Their manifestation is likely to take
352 the form of spatially non-stationary image intensity changes (*travelling waves*) (Ferrazzi et al.,
353 2014), which are particularly difficult to address using traditional spatial ICA denoising (which
354 presumes spatial invariance of the signal source).

355

356 The third class pertains to the sequential MB data sampling scheme used in the dHCP which
357 induces variable temporal gaps between the acquisition of two spatially adjacent slices. In all
358 cases except for the first and last slices from two adjacent MB stacks, this gap corresponds to
359 the time in between two consecutive RF excitations. In contrast, the temporal gap is on the
360 order of the repetition time (TR) for the slices at the edges of the MB stacks, which can result
361 in abrupt signal changes between them.

362

363 These broad classes of potential artefacts lead to the usage of three groups of temporal
364 deconfounding regressors, specific to each class.

365

366 2.6.1. Group 1. Temporal regressors for spatial inconsistency artefacts

367 This group consisted of detrending regressors, volume censoring (“scrubbing”) regressors
368 (Power et al., 2012) and two novel types of voxelwise regressors, which we call folding and
369 density maps respectively. Together they constitute a minimal set of denoising regressors
370 which were used both in combination with other regressors to define more complex

371 denoising models and on their own to residualise the data prior to obtaining data-derived
372 regressors using spatial ICA (see below, Group 2 regressors).

373
374 **Detrending regressors.** These were formed by the first 10 columns of the discrete cosine
375 transform matrix, which for the current data corresponded to a high-pass filter with cut-off at
376 0.0067Hz (150 secs).

377
378 **Volume censoring (“scrubbing”) regressors.** This was implemented by spike regressors
379 (Lemieux et al., 2007; Satterthwaite et al., 2013), which in effect equates a censored volume
380 to a temporal average. The criterion for censoring was based on the spatial similarity of a
381 volume to that average. As a metric for the latter, we utilised the root mean square
382 difference (RMSD) measured in terms of the ratio to the grand average of data intensity.
383 More precisely,

384

$$d_t = \sqrt{\frac{1}{n} \sum_{i=1}^n \left(\frac{f_{t,i} - M_i}{M} \right)^2}$$

385 where $f_{t,i}$ is the image intensity in voxel location i , $i = 1, 2, \dots, n$, and volume t , M_i is the
386 temporal median of $f_{t,i}$, and M is the spatial mean of M_i .

387
388 A volume t was censored if $d_t - \text{median}(d_t) > .05$. The threshold was determined
389 empirically in order to capture not only global perturbations in image characteristics due to
390 excessive motion but also identifying the volumes with strong local artefacts, caused either by
391 incomplete volume sampling or strong leakage artefacts. The volumes that immediately
392 followed an above-threshold volume were also censored, due to higher likelihood of spin-
393 history impacting the integrity and motion parameter estimates of the next volume (Friston et
394 al., 1996).

395
396
397 **Folding maps.** We utilised the timecourses of the voxels that were simultaneously acquired
398 with a target voxel as deconfounding regressors for potential leakage artefacts in that voxel.
399 For this, we applied a positional shift to the fMRI timecourses, such that the timecourse of a
400 voxel simultaneously acquired with the timecourse of a target voxel was assigned to the latter
401 voxel’s location. Given $MB = 3$, two 4D maps of this type were formed, which we called
402 folding maps.

403
404 As noted previously, there is a distinction between acquisition and anatomically consistent
405 spaces (as in Figure 1). For this reason, distortion and motion correction operators must be
406 applied to the folding maps in order to bring them from the acquisition space into the
407 anatomically consistent space. As a result, voxels in the resultant folding maps represent
408 weighted averages of the original maps in accordance with the transformations and
409 interpolation schema applied to the data.

410
411 **Density maps.** These were designed to remove temporal dependencies potentially induced
412 by the distortion correction procedure. Specifically, in addition to spatial coordinate
413 transformations, the distortion correction involves a Jacobian modulation which compensates
414 for the compression/spread of the signal in the phase encoding direction. Modulation is a

415 voxel-wise multiplicative factor which corrects image intensities and should not, in principle,
416 be correlated with the temporal evolution of the signal after correction; if this is the case it
417 can be assumed that it is likely to be artefactual. To generate the denoising map that carries
418 this information, we created a 4D image of uniform intensity with geometry matched to the
419 geometry of the data in the acquisition space. We then applied distortion- and motion-
420 correction transformations to simultaneously bring the image into the anatomically
421 consistent space and scale it with the applied modulation.

422

423 2.6.2. Group 2. Temporal regressors for motion-induced signal changes

424 This group included two types of regressors: 1) time-courses of non-grey-matter (GM) tissues
425 (WM and CSF), derived in a data-driven manner and 2) 4D voxel-wise maps representing the
426 evolution of motion parameters over time.

427

428 **Data-derived regressors.** Data-derived non-GM maps regressors (e.g., Behzadi et al., 2007)
429 were obtained by performing probabilistic ICA (FSL MELODIC) analysis (Beckmann & Smith,
430 2004) on the data within regions combining subarachnoid and ventricular CSF and WM that
431 were residualised with respect to Group 1 regressors. The mask combining these tissues was
432 eroded by one voxel to reduce partial voluming. For cases in which the dHCP anatomical data
433 failed the quality control assessment, missing segmented WM and CSF masks were generated
434 by projecting the segmentations of age-matched subjects into the native functional space of
435 that particular case and averaging them to produce an approximate map. Depending on the
436 particular denoising model (as described below), the ICA dimensionality was set to 6, 24, or
437 automatically determined using FSL MELODIC implementation of the Minka algorithm (Minka,
438 2000)/capped at 90 components (whichever was smaller).

439

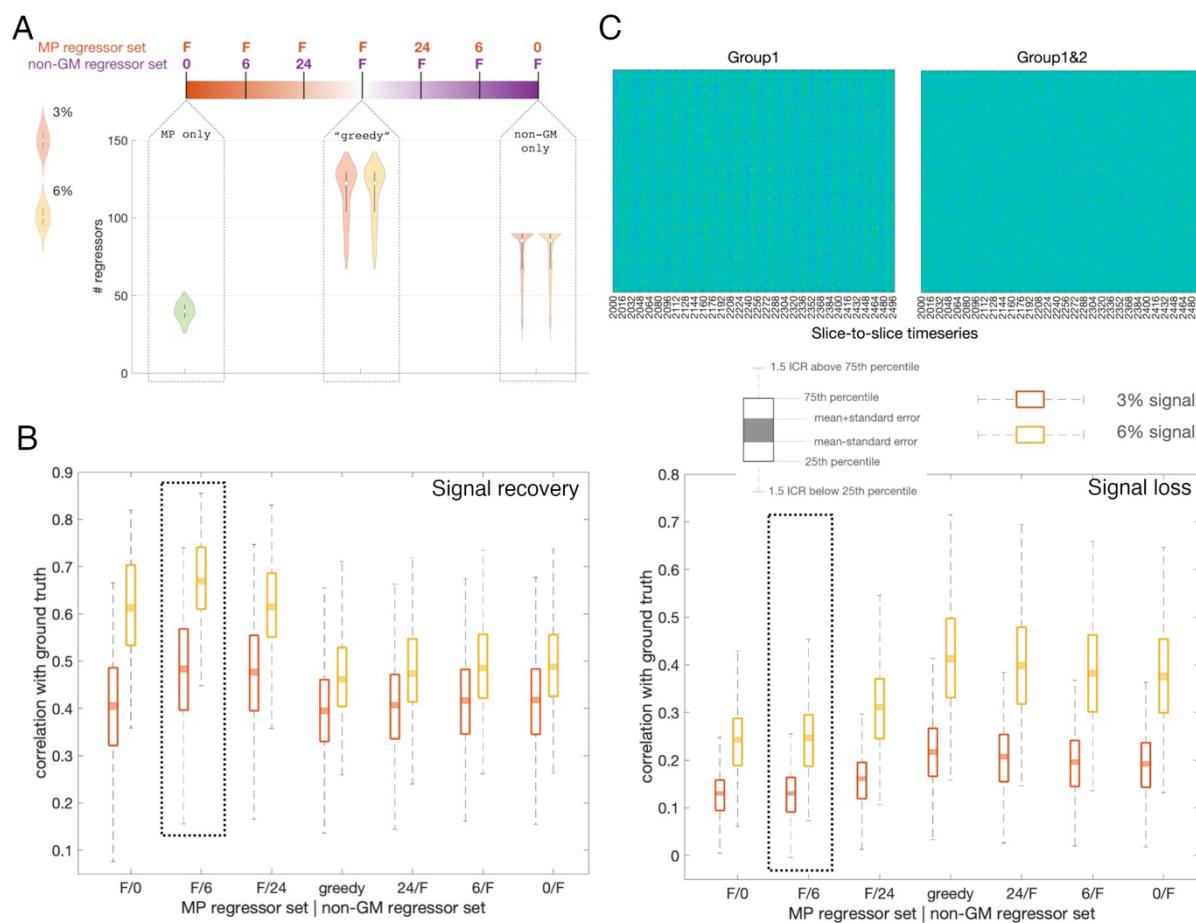
440 **Motion parameter (MP)-based voxelwise maps.** Following slice-to-volume motion
441 correction, each of the 16 MB excitations (i.e., 48 slices / MB factor of 3) in a volume obtains
442 its own set of 6 motion re-alignment parameters. The utility of this information on the motion
443 evolution is compromised by the fact that they describe transformations applied to the slices
444 of the volumes residing in the acquisition space. In other words, each parameter is specific
445 here for a set of 3 slices, but not voxel-specific. To account for this, we created 4D maps for
446 each parameter, where all voxels within slices belonging to a particular MB group were
447 assigned the MP that was used to map them into the anatomically consistent space. After
448 that, the motion-correction operations were applied to these maps to bring them into the
449 anatomically consistent space. The resultant denoising map no longer contains identical
450 values within a slice, since the value for each voxel is derived from interpolation.

451

452 12 maps of this type were created. The first 6 corresponded to 3 rotation angles and 3
453 translation values and the other 6 represented corresponding differentials in the slice
454 direction. The slice differentials were calculated as a difference $S_{t+1} - S_t$, obtained by
455 rearranging the MP timeseries in the anatomically consistent space, V_1, V_2, \dots, V_{350} (where
456 any V_k is a $n \times 1$ vector, n is the number of voxels, and 350 is the number of timepoints),
457 into the simultaneously excited slices-to-slices timeseries $S_1, S_2, \dots, S_{350 \times 16}$ (where any S_k is
458 a $n/16 \times 1$ vector, with 16 the number of excitations in the acquisition of a volume, i.e.,
459 they comprise slices in the same MB excitation). The reason for creating maps of
460 simultaneously excited slices' differentials was to enrich MP-based regressors with dynamics
461 in the intrinsic dimension for spin-history effects.

462
463 The above maps were used to create a broader set of MP-based regressors, unique for each
464 voxel. By defining the temporal evolution of the set of 6 MP and their differentials in the slice
465 direction at a voxel in location i as M_6^i and $\Delta^s M_6^i$, respectively, and first- and second-order
466 differentials in volume-to-volume direction as Δ^v and Δ_2^v , respectively, the complete set of 60
467 regressors for each voxel was defined as $\text{cat} \left\{ M_6^i, (M_6^i)^2, \Delta^v M_6^i, (\Delta^v M_6^i)^2, \Delta_2^v M_6^i, (\Delta_2^v M_6^i)^2, \right.$
468 $\Delta^s M_6^i, (\Delta^s M_6^i)^2, \Delta^v (\Delta^s M_6^i), (\Delta^v (\Delta^s M_6^i))^2 \right\}$, where $\text{cat} \{\cdot\}$ denotes column-wise
469 concatenation. This set was transformed first by z-scoring each column and then by using
470 principal component analysis, considering only non-censored volumes, with the number of
471 components retained to account for 99% of variance in the regressor set.
472
473 ***Selection of Group 2 regressors – signal implanting test.*** Having a broad choice of Group 2
474 regressors potentially creates an overfitting problem, especially when considering that the
475 temporal filtering model can combine both MP-based and data-derived regressors. Overly
476 aggressive temporal filtering can inadvertently remove the biologically relevant signal
477 fluctuations of interest, which could seriously hamper further analysis given the inherently
478 low SNR of fetal fMRI data, especially at the single-subject level.
479
480 To guide the selection of the best performing denoising models, we designed a surrogate test,
481 which we call the signal implanting test. This test is based on injecting a biologically-plausible
482 signal into the data, and observe which composition of temporal regressors allows for: 1)
483 most accurate recovery of this signal and 2) maximally preventing signal loss. For this, we
484 utilised the neonatal group-level maps (Fitzgibbon et al., 2020) and their timecourses,
485 estimated by regressing the group maps against individual data in the neonatal subjects from
486 the dHCP neonatal cohort, aged between 37 and 43 weeks. The timecourses were paired at
487 random with the fetal subjects and the group maps were projected into the fetal native
488 functional spaces. The product of the timecourses and the group maps was then scaled to
489 either 3% or 6% of the temporal standard deviation of the real data for each particular
490 subject and added to the data, constituting an “implanted signal”. The data were then
491 residualised with respect to a candidate set of denoising regressors, and the spatial maps
492 were regressed against the denoised data to obtain estimates of their timecourses; the
493 correlation between their vectorised product and vectorised implanted signal were taken as a
494 single measure of the quality of signal recovery. Similarly, the same procedure was applied to
495 the timecourses that were removed from the data with implanted signal during denoising. A
496 high correlation between removed and implanted signal would indicate that the model
497 inadvertently removes signal from the data. We will refer to the latter measure as signal loss
498 statistics.
499
500 We tested several models that differed in the number of data-derived and MP-based
501 regressors (Figure 5A). All candidate models were complemented with Group 1 regressors.
502 Figure 5B shows the results of the test. Overall, the analysis indicates that MP-based
503 denoising models with a limited number of non-GM data-derived regressors performed best
504 with respect to the signal recovery statistics. Considering both signal recovery and signal loss
505 statistics, the MP-based model with 6 non-GM regressors (highlighted) performed the best.
506 Firstly, it performed better than the others with respect to signal recovery statistics. Secondly,
507 the model also showed a similar performance to the model with 0 non-GM regressors with

508 respect to signal loss statistics whereas the model with 24 non-GM regressors showed
509 significant losses.
510
511 In three cases, the application of the best-performing model to the real data resulted in a
512 numerical overflow. These cases were of a very poor quality and had a large number (> 210)
513 of volumes to censor; for this reason, no attempt was made to correct the issue
514 retrospectively. Consequently, the fully processed dHCP dataset consists of 263 sessions (247
515 unique individual subjects, 132 male, 113 female, 2 unrecorded).
516
517 Visual inspection of the filtered data reveals a notable reduction of the travelling waves
518 pattern, indicating that MP-based voxel-wise regressors are effective in ameliorating the spin-
519 history effects. Quantification of this phenomenon is not straightforward, but it can be
520 observed qualitatively when temporally demeaned data are rearranged into slices-to-slices
521 timeseries (Figure 5C).
522



523
524 *Figure 5. Group 2 regressors. A) Scope of temporal denoising models assessed using the signal implanting test. "F" stands for*
525 *the "full" set for a particular (MP-based or data-derived) type of regressors. Correspondingly, the "F/0" model includes full*
526 *set of MP-based and no data-derived regressors, the "0/F" model includes the full set of data-derived and no MP-based*
527 *regressors, with intermediate models in between. The "greedy" model includes maximal number of regressors of both the*
528 *MP-based and data-derived type. The sample distributions for the number of regressors in the extreme and greedy (F/F)*
529 *models are plotted underneath, calculated for 266 scan sessions that passed the function-to-structure alignment. As the full*
530 *set of data-derived regressors is estimated from the data, implanting different volumes of signal (3% or 6%) may change the*
531 *output of the Minka algorithm/capping at 90. The sample distribution of MP-based regressors is calculated from the spatial*
532 *means, given that .99 variance may be represented by a different number of components across voxels. B) Results of the*
533 *signal implanting test. Model ordering as in A. Left - signal recovery statistics. Right - same for the signal loss statistics. The*
534 *best performing model is highlighted. C) Segment of slices-to-slices timeseries before (Group1 regressors only) and after*

535 application of Group 2 regressors. Ticks along x-axis mark TRs, i.e., 16 slices. Note the vertical stripes, repeating at the rate
536 of approximately 2-3 TRs and likely to be caused by mother's breathing cycle, that are significantly reduced after application
537 of Group 2 regressors.

538

539 2.6.3. Group 3. Temporal regressors for sampling scheme artefacts

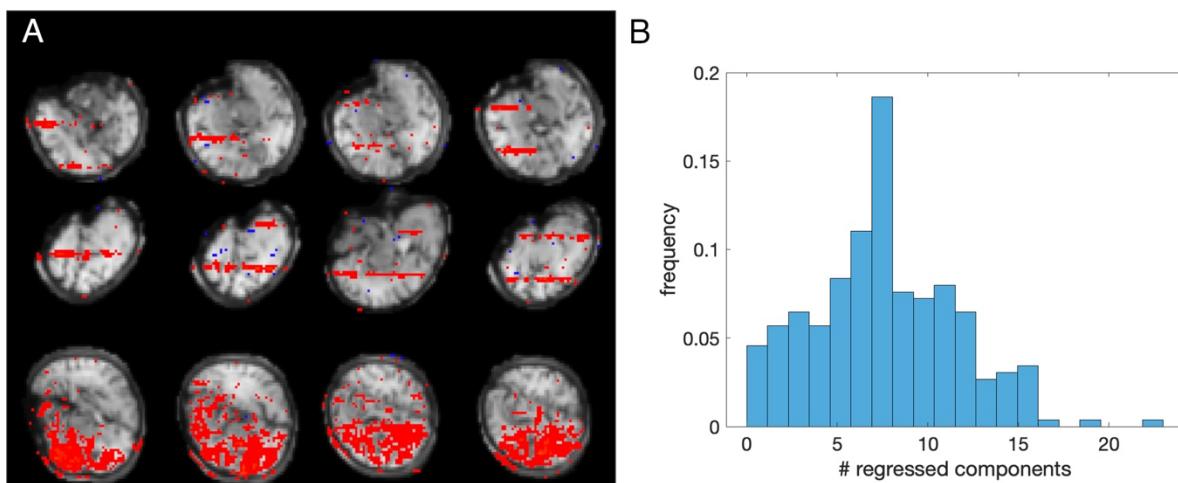
540

541 A set of regressors addressing artefacts related to the difference in temporal separation
542 between first and last slice of adjacent MB stacks compared to other neighbouring slices were
543 derived using single-subject spatial ICA with dimensionality set to 30 components run on the
544 timeseries following their residualisation with respect to the model that included Group 1 and
545 (best performing) Group 2 regressor sets. Prior to this, the data were slightly smoothed using
546 a FWHM=1 mm 3D Gaussian filter. Here we sought to identify slab-like spatial patterns
547 repeating roughly across the MB stacks width (i.e., 16 slices). Two observers (VRK and DB)
548 independently performed the rating of spatial component maps, with three scores allowed:
549 'to remove', or 'to be equivocal', or 'to keep'. One observer started the rating from the first
550 subject in the subject list, and the other started the rating from the middle subject. To ensure
551 that similar subjective criteria were applied across the cohort, each observer used the rating
552 of the first 20 subjects to get accustomed to the task. The ratings for these subjects were
553 reviewed again after the observer completed the rating of the whole dataset. The criterion
554 for consensus to regress out component timecourses was defined as either 'to remove' by
555 both raters or 'to remove' by one and 'to be equivocal' by the other.

556

557 Figure 6A shows examples of components that were rated by consensus as representing a
558 sampling artefact. The average number of such components per subject was 7.6, $sd = 3.96$
559 (Figure 6B). Residualisation of the data with respect to the timecourses of these components
560 was performed on top of residualisation with respect to Group 1 and Group 2 regressors.
561 Because the timecourses of the independent components are not constrained to be
562 orthogonal, the regression coefficients for the timecourses to regress out were estimated in
563 combination with other components' timecourses. This procedure generated the most
564 thoroughly processed data in the release.

565



566

567 Figure 6. Group 3 regressors. Images are in radiological orientation (right is left). A) Examples of components with double-
568 slab-like spatial structure in an exemplary subject; B) Distribution of the number of components rated to be removed per
569 subject

570

571 2.6.4. Quality control and data selection for group-level analyses

572

573 To rate the quality of individual pre-processed data and select cases suitable for group-level
574 analyses, we used both visual assessment and parametric measures.

575

576 For visual assessment, the timeseries were rated by an observer (VRK) using a 5-point scale, 0
577 – fail, 1 – bad quality (seemingly unusable), 2 – seemingly usable, 3 – reasonably good, 4 –
578 good. This was complemented with the two parametric measures, mean (over voxels) *tsnr*
579 and *dvars*, disregarding censored volumes. Specifically, mean-over-voxels *tsnr* was defined as:

580

$$581 \quad tsnr = \frac{1}{n} \sum_{i=1}^n \frac{M_i}{SD_i}$$

582 where:

$$583 \quad M_i = \frac{1}{T} \sum_t f_{t,i}$$

$$584 \quad SD_i = \sqrt{\frac{1}{T} \sum_t (f_{t,i} - M_i)^2} \\ 585 \quad t \in R^T$$

586

587 and

$$588 \quad dvars = \frac{1}{N} \sum_t \sqrt{\frac{1}{n} \sum_{i=1}^n (f_{t,i} - f_{t-1,i})^2} \\ 589 \quad t, t-1 \in R^T$$

590

591 where t is the order number of a volume, R^T is the set of T uncensored volumes, N is the
592 number of consecutive pairs of uncensored volumes, $t, t-1 \in R^T$, and n is the number of
593 voxels. Both measures were calculated in the functional native space, within a binarised
594 anatomical segmentation image, which provides a tight mask by excluding non-brain tissues
595 (e.g., subarachnoid CSF).

596

597 The decision rule was as follows: all cases rated >1 (high score) were considered as suitable
598 for analysis EXCEPT when they were EITHER positive *dvars* outliers OR negative *tsnr* outliers
599 with respect to all cases rated > 1 . Specifically, the outlier O_{dvars} for *dvars* and O_{tsnr} for *tsnr*
600 were defined as:

$$601 \quad O_{dvars} > P_{75} + 1.5IQR \\ 602 \quad O_{tsnr} < P_{25} - 1.5IQR$$

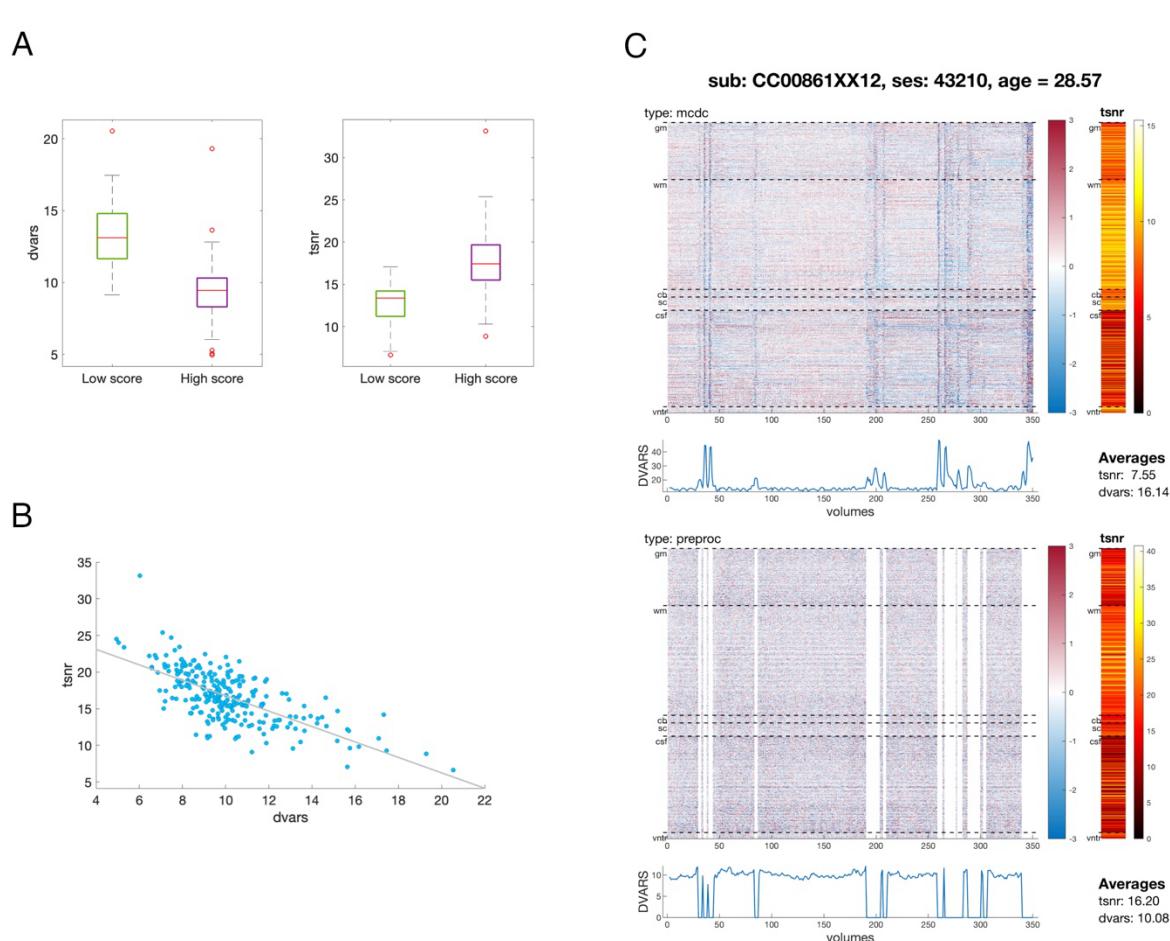
603 where P_{25} and P_{75} are 25th and 75th percentiles of the cases rated > 1 , and IQR is their
604 interquartile range.

605

606 Furthermore, all cases rated $<=1$ (low score) were also considered as suitable for an analysis,
607 if BOTH their *dvars* AND *tsnr* were, respectively, $< P_{75}$ AND $> P_{25}$ of cases rated > 1 . All
608 ratings as well as their *dvars* and *tsnr* measures are available at Data and code availability,
609 Resource 3.

610

611 Figure 7A-B shows that visual assessment of the pre-processed data, *dvars* and *tsnr* were all in
612 reasonable agreement. Based on the predetermined criteria, 217 out of 263 scans passed the
613 QC (114 male, 101 female, 2 unrecorded). Figure 7C demonstrates an example of the QC
614 report, available for each individual subject (Data and code availability, Resource 3).
615



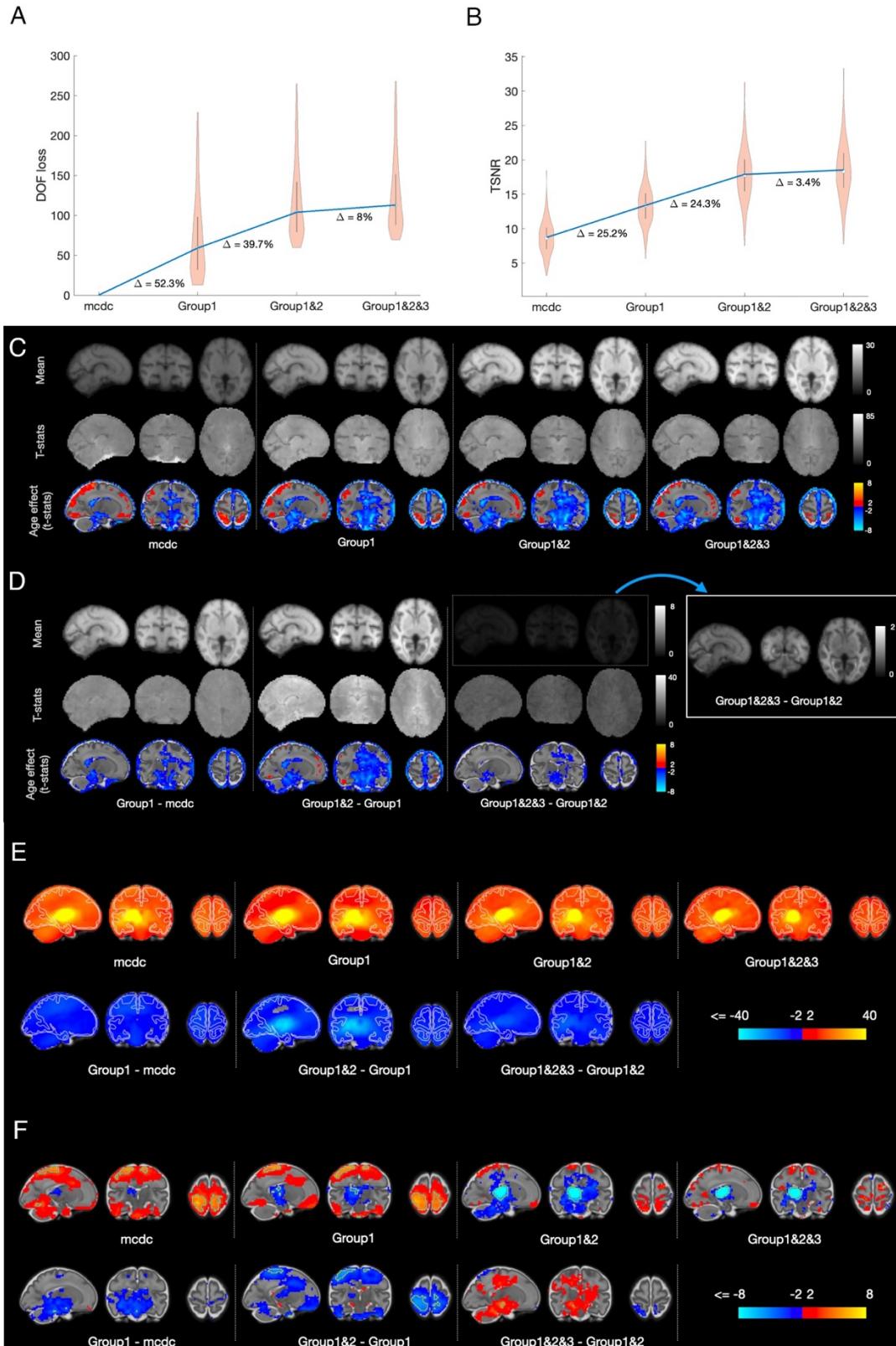
616
617 *Figure 7. Quality assessment. A)* Average *dvars* and *tsnr* for high (> 1) and low (<=1) scores in visual quality assessment. *B)*
618 Relationship between average *tsnr* and *dvars*; *C)* QC report for an exemplar subject, showing carpet plots of *z*-scored
619 intensity, spatial profiles of *TSNR* and temporal evolution of *dvars* for the data after motion and distortion correction (type:
620 *mcddc*, without censoring) and for the fully processed data (type: *preproc*, including censoring).

621 2.6.5. Group-level statistics of deconfounding regressor groups

622
623 Figure 8 shows the summary statistics of all 263 fully pre-processed cases for the temporal
624 filtering regressor groups with respect to the loss of the effective degrees-of-freedom (DOFs,
625 = number of regressors, Figure 8A) and TSNR (Figure 8B). On average, the fully pre-processed
626 data lose approximately 32% of effective DOFs, and gain more than 2 times TSNR, compared
627 to the data that underwent spatial distortion and slice-to-volume motion correction only. The
628 loss in DOFs is significantly higher than reported in adult imaging (e.g., approx. 15% for
629 minimally pre-processed data in the Human Connectome Project (HCP) - Smith et al., 2013),
630 but much of it occurs via volume censoring, which has no analogy in HCP.

631
632 In order to evaluate the local effects of the temporal filtering models, we utilise the dataset
633 capacity for group-level analyses, afforded by the released registration infrastructure,
634 projecting TSNR maps (smoothed with a FWHM = 3 mm Gaussian kernel in the native space)
635 into the fMRI-optimised group space. The aligned maps were then modelled with linear

636 regression, with demeaned age as a co-variate, providing estimates of average TSNR
637 characteristics in the sample and their association with age.
638
639 The mean TSNR maps (Figure 8C) and the maps of the TSNR differences (Figure 8D) between
640 temporal filtering models help appreciate the effect of each regressor group. The patterns are
641 presented in terms of fitted beta coefficients for intercept and after conversion into t-
642 statistics for both intercept and age effect. In terms of beta coefficients, both the average
643 TSNR and its gain from application of the more complex denoising model was the highest in
644 WM, which reflects the fact that mean intensity (i.e., numerator in the TSNR formula) is
645 higher in the WM than in the GM and CSF. This points to the multiplicative effect of noise,
646 supported by the observation that WM TSNR is no longer greater than GM TSNR when
647 converted into t-statistic values, taking into account across-subject variability.
648
649 As TSNR is not informative with respect to the effects of deconfounding regressors on
650 estimates of brain functional connectivity, we investigated the latter in the context of seed-
651 to-brain correlation maps, using the left and right thalamus as seeds. The analysis was
652 performed in the sample of individuals GA > 24.5, which passed quality control criteria. This
653 comprised 201 subjects (106 male, 93 female, 2 unrecorded). Individual correlation maps
654 were computed for the left and right thalamus separately in the native functional space
655 (following FWHM = 3 mm smoothing) and projected into left-right symmetrised space (Data
656 and code availability, Resource 3) for group-level analysis. To enable computing of the left-
657 right subject's average maps, the maps of the left thalamus connectivity were left-right
658 flipped. We then modelled the average maps using linear regression with demeaned age as a
659 covariate.
660
661 Figure 8E-F shows the results for the fitting. In summary, using a more complex denoising
662 model results in a decrease of correlations throughout the brain. However, perhaps with
663 exception for Group 1 regressors (spatial correlation -0.20 between "mcdc" and "Group1-
664 mcdc" maps in Figure 8E), this decrease was proportionally scaled, i.e., more prominent in
665 areas showing a stronger correlation to the seed timecourse prior to model application
666 (spatial correlation -0.95 between "Group1" and "Group1&2-Group1" maps and -0.73
667 between "Group1&2" and "Group1&2&3-Group1&2" maps). A similar proportional effect was
668 observed for the age effect (Figure 8F; spatial correlations = -0.04, -0.92 and -0.62,
669 respectively). The most profound decrease for both intercept and age-effect was observed
670 when including Group 2 regressors.
671
672
673



674
675
676
677
678
679
680
681
682

Figure 8. Statistics for different temporal filtering models. Images are in radiological orientation (right is left). A) The loss in effective DOFs. "mcdc" signifies a null model, i.e., motion and distortion corrected data, without temporal filtering. The average per model is represented by its median. Differences in percentages are calculated with respect to the average for Group1&2&3 model. B) The gain in average TSNR. The average per model is represented by its mean. C) Spatial maps of TSNR and estimates of the age effect; Right is left. D) Spatial maps of differences in TSNR between different denoising models. E) T-statistics for the intercept of seed-to-brain thalamic correlation maps (top row) and the maps representing the difference in correlations after applying different denoising models (bottom row); hemisphere on the left is uni-lateral to the location of the seed; F) same as E) for the age effect.

683 2.7. Group-ICA analysis.

684

685 To demonstrate the dataset capacity for multi-variate network analysis, we performed
686 estimation of functional modes (“networks”) in the same sample as in the analysis of thalamic
687 connectivity. All individual data were smoothed in native space using a FWHM=3 mm
688 Gaussian kernel. To account for heterogeneity inherent to a sample with large maturational
689 differences, we first concatenated the timeseries of age-matched individuals (as defined for
690 age-matched template registration) and compressed them to 1400 principal components for
691 each age. After transforming within-component (across voxels) values by z-scoring, the
692 components were concatenated with similarly defined components from other age groups
693 and compressed to a sample-average set of 1400 principal components which was then fed
694 into FSL melodic ICA to obtain whole-sample decomposition into 25 components. In other
695 words, the procedure ensured a balanced contribution of each age to the final factorisation,
696 whereas z-scoring of values within each component ensures that factorisation attends to
697 common patterns irrespective of their absolute scale, thereby implicitly taking into account
698 that these patterns may have different prominence across ages.

699

700 Figure 9A shows functional modes obtained in these data, which predominantly comprise of
701 components localised to one brain region (hereafter - dominant node). Despite this, there
702 was a notable prevalence of component pairs (7 pairs, grouped together in the figure), where
703 dominant nodes are a left-right reflection of each other. Out of these 7 pairs, 3 pairs (ICs 14 vs
704 21, 10 vs 16, and 6 vs 19) showed symmetry not only in the location of a dominant node, but
705 also in the location of secondary non-negligible nodes. Another notable observation is that 3
706 components (ICs 15, 20, and 24, highlighted in bold green in Figure 9A) were characterised by
707 a node pair, one dominant and another smaller, located in the homologous regions of the two
708 hemispheres, and another (IC 3) showed one medial component with approximately equal
709 bilateral representation.

710

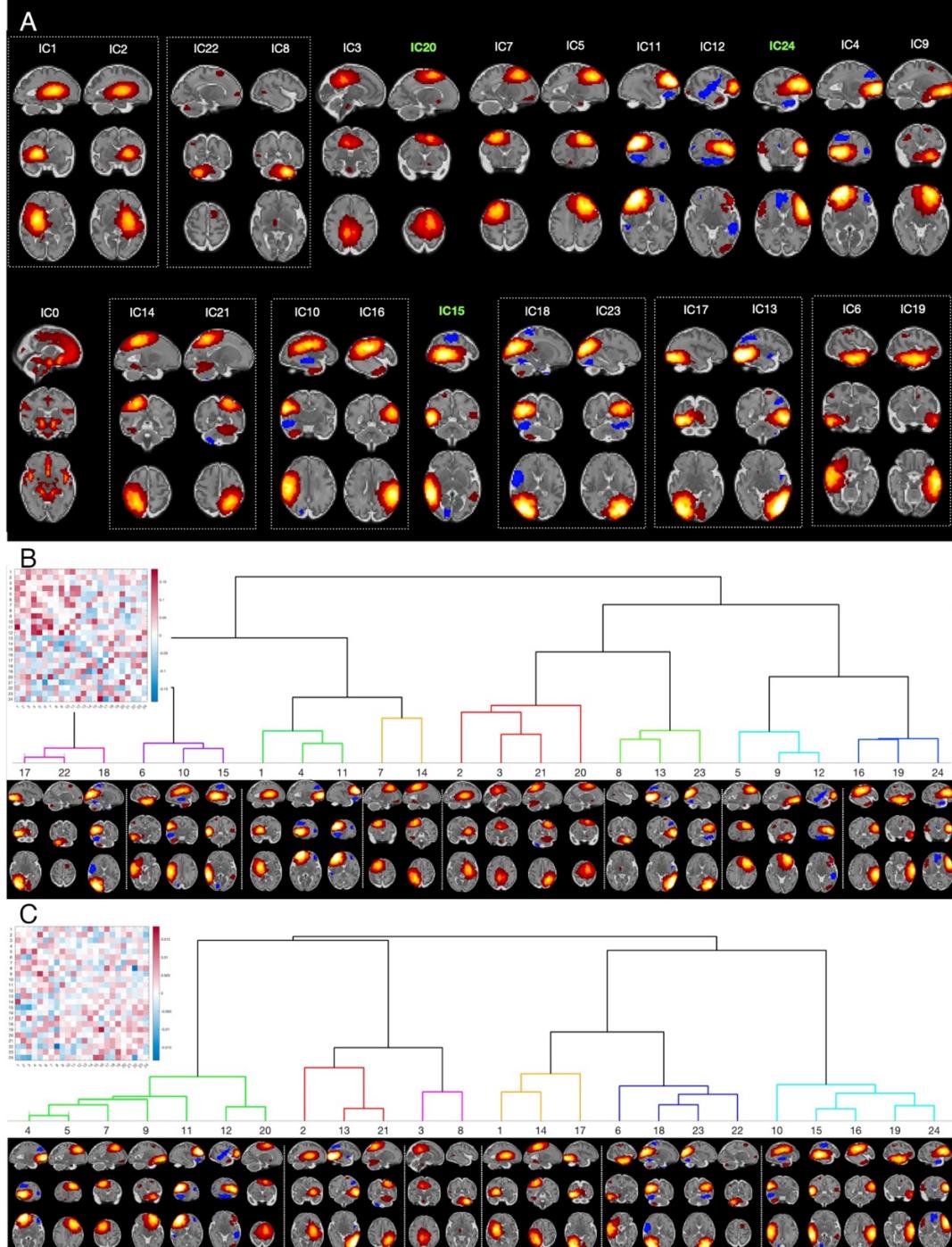
711 To evaluate the structure of whole-brain functional architecture, we derived the temporal
712 time courses of the obtained 25 ICs by spatial regression (Beckmann et al., 2009) against
713 individual fMRI data in native functional space. For each subject individually, we computed
714 the correlation matrix between component timecourses, excluding timecourses of ICO which
715 is of a distinctively vascular origin. We then combined matrices from all subjects in order to fit
716 each element with linear regression, using demeaned age as a covariate. The procedure
717 resulted in two matrices, one containing estimates of an average strength of association
718 between each pair of components’ timecourses and the other providing estimates of their
719 age-related changes. The elements of these two matrices were converted into t-values,
720 thereby accounting for between-subject variability. Normalised Laplacian embedding of each
721 matrix (positively thresholded to make this estimable) was then used to represent the
722 relationships between components in terms of a Euclidean distance between their
723 coordinates in the embedded space. We then applied hierarchical clustering using the Ward
724 method (Ward, 1963), based on the coordinates in the first 3 non-null dimensions.

725

726 The results of clustering (Figure 9B) demonstrate a weakness of association between
727 contralateral nodes in terms of average strength of their correlation; the overall tendency for
728 this metric was to form clusters of unilateral nodes, sometimes representing a symmetrical
729 image of each other (e.g., ICs 17,22,18 vs ICs 8,13,23 and ICs 6,10 vs ICs 16,19) and/or

730 representing coherent functional systems, such as right dorsal fronto-parietal (ICs 7,14), left-
731 dominated sensori-motor (ICs 2,3,20,21), left (ICs 5,9,12) and right (ICs 1,4,11) frontal.

732
733 Clusters that mix both uni- and contralateral components are more evident in the analysis of
734 age-related changes (Figure 9C). Of particular interest is a cluster (ICs 10, 15, 16, 19, 24) that
735 combines areas belonging to semantic and language processing. Notably, it includes only a
736 left but not right anterior temporal node, which aligns well with a previous report on
737 connectivity of these areas in the adult brain (Hurley et al., 2015).



738
739 *Figure 9. Modes of covariation (fetal "resting-state networks"). Images are in radiological orientation (right is left). A)*
740 *Spatial maps grouped by their anatomical location. The dotted-line boxes show pairs of maps showing a distinctive*
741 *interhemispheric symmetry. Components with non-negligible bilateral homotopic representation are highlighted in bold*
742 *green. B) Full (lower triangle)- partial (upper triangle) correlation matrix and hierarchical clustering based on full*
743 *correlations transformed into t-statistics. C) Same as B) for the age-related changes in correlations.*

744 3. Discussion

745
746 Despite its rapid progress (De Asis-Cruz et al., 2021; Ferrazzi et al., 2014; Jakab et al., 2014; Ji
747 et al., 2022; Karolis et al., 2023; Schöpf et al., 2012, 2014; Seshamani et al., 2016; Sobotka et
748 al., 2022; Taymourtash et al., 2021, 2023; Thomason et al., 2015; van den Heuvel et al., 2018),
749 fetal fMRI remains a relatively novel field, where pre-processing standards are yet to be
750 established and which until now lacked an open-access resource available to researchers. In
751 this paper, we introduce an open-access fetal fMRI data repository and present a systematic
752 approach for pre-processing, spanning stages from image reconstruction to group-level
753 analysis. We implemented state-of-the-art methods for the spatial reconstruction and
754 correction of the data, including MB-SENSE reconstruction, dynamic distortion and slice-to-
755 volume corrections, and a tailored temporal filtering model with attention to the prominent
756 sources of structured noise. The final dataset consists of 263 fully processed cases, with 217
757 cases determined to be suitable for the connectivity analyses. We thereby provide both a
758 resource and a high-quality template to facilitate further development and benchmarking of
759 methods for fetal fMRI. In the remainder of the discussion, we focus on the potential areas
760 for improvement.

761
762 Studying fetal samples using fMRI is perhaps an exemplary case where the age of a subject
763 simultaneously represents the most important variable-of-interest and the most prominent
764 confound. The latter manifestations encompass, to name a few, signal-altering differences
765 resulting from rapidly changing tissue properties, drastically different morphology, and three-
766 fold differences in effective resolution. These factors entail various challenges for the
767 progress of the fetal fMRI field. Firstly, they create obstacles for reproducible experiments.
768 The standard practice of scanning one participant repeatedly (Duff et al., 2022; Noble et al.,
769 2017; Shah et al., 2016; Shehzad et al., 2009) in fetal imaging settings is practically
770 complicated and ethically dubious, as this approach can render meaningful results only if
771 there is no significant temporal gap between scanning sessions. Secondly, they entail
772 difficulties in defining sound quantitative metrics, appropriate for the entire age range, that
773 would enable comparative testing between various processing approaches. Thirdly, they may
774 entail differences in magnitudes of distortion and motion, thereby affecting data quality in an
775 age-related manner. The released data, that includes outputs from different processing
776 stages and information on motion and dynamic field mapping, represents therefore a
777 valuable asset for investigating motion patterns at different gestation ages and dynamic
778 distortion and motion relationship. Finally, they also complicate the inter-subject data fusion
779 for group-level analysis and defining ground truths that could guide pre-processing
780 approaches in order to harmonise data quality across ages and fit a broad range of potential
781 goals for a study. As an example, the immature fetal WM is thought to contain its own
782 functional units within temporary developmental structures such as the subplate and
783 constitutes a metabolically active area, especially at younger ages (Colonnese & Phillips, 2018;
784 Tolner et al., 2012). Consequently, studying the WM BOLD signal at younger ages may require
785 a different approach to the temporal filtering problem.

786
787 Our approach to the temporal filtering follows the trend that was set by the seminal work by
788 (Power et al., 2012) and (Satterthwaite et al., 2013), evaluating the effect of motion on
789 resting-state connectivity in adults. This work demonstrated an improved precision of
790 connectivity estimates following application of sophisticated denoising models enriched with

791 motion-related or data-derived deconfounding regressors (Power et al., 2014; Pruim et al.,
792 2015; Satterthwaite et al., 2013; Yan et al., 2013). Here, by virtue of using the recovery of an
793 artificially implanted cortical signal as a metric to assess efficiency of temporal filtering
794 models, we sought to optimise the data for the analysis of cortical networks. We were
795 conscious of the possibility that the usage of complex models may inadvertently remove
796 relevant signal information, i.e., that selectivity may be prioritised at the expense of
797 sensitivity, which may be suboptimal in the fetal fMRI low-SNR setting. Namely, we found that
798 the data-derived regressors (obtained using ICA on non-GM timeseries), which represent a
799 popular choice for *ex utero* data (Kiviniemi et al., 2003; Kochiyama et al., 2005; Salimi-
800 Khorshidi et al., 2014) including paediatric data (Fitzgibbon et al., 2020), are particularly prone
801 to undesired implanted signal removal in the fetal fMRI.

802 Correspondingly, our approach to temporal filtering relied on a rich set of MP-based
803 regressors, helping us to achieve a notable reduction of artefacts, including difficult-to-tackle
804 spin-history artefacts. In spite of taking these measures, we observed proportionally scaled
805 decreases in TSNR and estimates of thalamic connectivity following the application of
806 complex MP-enriched models. These appear to suggest that in real data signal and noise do
807 not fully comply to the additivity assumption of the signal implanting test. The proportional-
808 like decrease in the strength of the age effect following application of MP-based and data-
809 derived regressors points to the same possibility. A case in point here is the age-related
810 changes in connectivity between the thalamus and sensorimotor and parietal areas. On the
811 one hand, age-related increases in these functional connections are expected based on
812 current knowledge of prenatal brain development from post-mortem studies (Kostović et al.,
813 2019; Kostović & Judaš, 2010). On the other hand, these changes are best detectable in the
814 data before any temporal filtering, indicating contribution of age-related structured noise to
815 this contrast. Taken together, these findings suggest several far-reaching implications. Firstly,
816 they suggest that magnitude of the structured noise may scale with age and therefore the
817 strength of the age effect cannot be accepted as a sole criterion for optimisation of the model
818 for temporal filtering. Secondly, in the absence of a ground truth, the intricate entanglement
819 of signal and noise complicates the determination of the temporal filtering complexity for a
820 right sensitivity-selectivity trade-off. Thirdly, more sophisticated motion modelling could be
821 required to increase selectivity of temporal regressors to structured noise.

822
823 We therefore invite dataset users to develop temporal filtering models that could better fit
824 the requirements of their analyses and/or investigate the ways to boost their statistical
825 power, including alternatives not considered in this paper, such as more aggressive spatial
826 smoothing and lowpass temporal filtering. To facilitate this, we release a rich set of
827 complementary data in the form of denoising maps and provide Python code that can be
828 used with the regressors in the released database or adapted to include new ones (Data
829 availability statement, Resource 3). We also remark that the implementation of data
830 reconstruction and spatial corrections was developed to be compatible with proprietary
831 format of raw data collected by the scanner used in the dHCP, considered not only fetal fMRI
832 but many other MRI scanning domains, and was optimized for the local computing hardware
833 infrastructure. Therefore, we have decided not to provide a ready-to-use code release for
834 data reconstruction and spatial corrections to be run externally but we release the code for
835 dynamic correction (Data and code availability, Resource 5).

836
837

838 Another area for improvement relates to incorporation of deep learning models for improving
839 brain extraction, spatial corrections and temporal denoising in the proposed pipeline, with
840 recent approaches mature enough, in particular, for the brain extraction problem (e.g.,
841 (Rutherford et al., 2022)). A particularly challenging scenario is encountered in scans where
842 the brain's orientation varies significantly in time. In the current implementation, such
843 differences could result in an orientation flip in some volumes of the reconstructed
844 timeseries, which had to be censored for downstream processing. The extreme situation
845 where a fetus may turn upside-down within an fMRI scan is far from being manageable with
846 current analysis techniques, which exemplifies that data rejection criteria and quality control
847 also merit future efforts for improvement and standardisation across studies.
848

849 Finally, detailed investigations are also needed to determine how the large age-dependent
850 variability in brain characteristics can analytically be incorporated into building group-level
851 normative models of functional brain development. Fetal fMRI data reveals idiosyncratic
852 properties (Karolis et al., 2023), apparent in various forms, including when results of group-
853 level ICA factorisation between fetal and neonatal samples are contrasted. Analysis in the
854 fetal brain typically reveals a dominance of a single-node functional modes and a paucity of
855 spatially distributed patterns (Ji et al., 2022; Karolis et al., 2023), whereas in the neonatal
856 brain the latter are not uncommon, especially those left-right symmetrically organised (Eyre
857 et al., 2021; Fitzgibbon et al., 2020; Gao et al., 2015). This may reflect a genuine property of
858 the fetal brain's functional organisation, its immaturity and perhaps the functional state of
859 the brain while *in utero*, but may also simply be a reflection of a lower signal-to-noise ratio or
860 may suggest that the method, that implicates estimation of a group-level 'mean' model in a
861 developmentally heterogeneous sample, is not appropriate for these data (Karolis et al.,
862 2023). In this paper we adopted pre-processing steps in group-ICA analysis that aimed to
863 ameliorate the challenges of data fusion across ages. The obtained results were more prone
864 to revealing signatures of distributed spatial patterns than previously reported (e.g., Ji et al.,
865 2022; Karolis et al., 2023). Furthermore, they reveal a range of symmetrically located
866 network pairs, tentatively pointing to an emergence of a bilaterally organised functional
867 architecture (Thomason et al., 2013). However, despite these elements of qualitative
868 convergence with the neonatal data, harmonisation of in- and ex-*utero* cohorts for a
869 combined analysis remains a task for future research.
870

871 In conclusion, research into functional brain development *in utero* is strongly motivated by a
872 large body of evidence that shows the fetal period has critical importance for individual
873 development. This information can be obtained non-invasively using fetal fMRI, but much
874 work is required in order to establish the standards of data acquisition, pre-processing and
875 analysis in this challenging domain. The current dataset represents a unique resource that
876 aims to provide a firm foundation for advancing fetal fMRI from its current status as a niche
877 research field to its deserved and timely place at the forefront of the community-wide efforts
878 to build a life-long connectome of the human brain.
879
880
881
882
883
884

885 **Data and code availability.**

886 The data and code presented in this paper are available in the following locations:

- 887 1. dHCP fetal release: https://nda.nih.gov/edit_collection.html?id=3955
- 888 2. The dHCP volumetric template can be accessed at: https://gin.g-node.org/kcl_cdb/fetal_brain_mri_atlas. Folder “structural” contains T2-weighted spatiotemporal atlas, folder “composite_warps” contains fsl-style warps between different ages of template; folder “composite_warps_fetal2neonatal” contains mappings between fetal template and the 2 neonatal templates spaces. Folder “cnn_cortex_probability” contains quasi-probability maps of cortical segmentations.
- 889 3. Materials associated with this paper, such as sample demographics, naming convention, supplementary data, QC reports, the script to perform registration of native T2 images to age-adjacent templates, and the python code used for performing temporal filtering, are available at: https://gin.g-node.org/kcl_cdb/dHCP_fetal_fMRI_release_paper.
- 890 4. The neonatal templates and mappings between different ages are available at: <https://git.fmrib.ox.ac.uk/seanf/dhcp-resources>
- 891 5. The code for distortion correction is available at: <https://github.com/mriphysics/fetalPhaseEPI/releases/tag/1.0.0>. Enquiries about sharing the existing code for image reconstruction and motion corrections and guidance on its application should be directed to co-author LCG.

905

906 **Ethics**

907 The study was approved by the UK National Research Ethics Authority (14/LO/1169). Written
908 informed consent was obtained from all participating families prior to imaging.

909

910 **Conflict of interests**

911 The authors declare no conflict of interests.

912

913 **Author contributions**

914 Conceptualisation – V.R.K., L.C.G., A.D.E., T.A., S.M.S., E.D., J.H.
915 Writing - Original Draft - V.R.K., L.C.G.
916 Investigation - E.H., A.P., M.A.R.
917 Software – V.R.K., L.C.G., A.U., D.P., M.D., A.M.
918 Data curation – V.R.K., L.C.G., V.K., N.H., D.P., D.B.
919 Methodology – V.R.K., L.C.G., S.P.F., A.U., J.W.M., S.W., D.C., M.P., M.D., L.Z.J.W., E.C.R., A.M.,
920 S.R.F., J.O.M.
921 Formal analysis – V.R.K., L.C.G., V.K., A.U.
922 Visualisation – V.R.K.
923 Validation – V.K.R., L.C.G.
924 Funding acquisition - D.R., A.D.E., T.A., S.M.S., J.H.
925 Resources – A.D.E., S.M.S., J.H.
926 Project administration – T.A., J.H.
927 Supervision – T.A., S.M.S., E.D., J.H.
928 Writing - Review & Editing – V.R.K., L.C.G., J.W.M., S.W., D.C., M.D., L.Z.J.W., E.C.R., S.R.F.,
929 T.A., E.D., J.H.
930
931

932 **Acknowledgments**

933

934 The Developing Human Connectome Project was funded by the European Research Council
935 under the European Union Seventh Framework Programme (FP/20072013)/ERC Grant
936 Agreement no. 319456. The Wellcome centre for Integrative Neuroimaging is supported by
937 core funding from the Wellcome Trust [203139/Z/16/Z]. The authors also acknowledge
938 support in part from the Wellcome Engineering and Physical Sciences Research Council
939 (EPSRC) Centre for Medical Engineering at King's College London [WT 203148/Z/16/Z], the
940 Medical Research Council (MRC) Centre for Neurodevelopmental Disorders [MR/N026063/1],
941 and the Department of Health through an NIHR Comprehensive Biomedical Research Centre
942 Award (to Guy's and St. Thomas' National Health Service (NHS) Foundation Trust in
943 partnership with King's College London and King's College Hospital NHS Foundation Trust).
944 VRK and TA were supported by a MRC translation support award [MR/V036874/1]. TA was
945 also supported by an MRC Clinician Scientist Fellowship [MR/P008712/1] and a MRC Senior
946 Clinical Fellowship [MR/Y009665/1]. JOM is supported by a Sir Henry Dale Fellowship jointly
947 funded by the Wellcome Trust and the Royal Society [206675/Z/17/Z]. LCG acknowledges
948 funding from MCIN/AEI/10.13039/501100011033/FEDER, EU under Project PID2021-
949 129022OA-I00 as well as Universidad Politécnica de Madrid for providing computing
950 resources on Magerit Supercomputer. SRF's research is supported by the Royal Academy of
951 Engineering under the Research Fellowship programme [RF2122-21-310]. JWM was
952 supported by PhD funding from the UK Medical Research Council [MR/P502108/1].

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979 **References:**

980

981 Avants, B. B., Tustison, N. J., Song, G., Cook, P. A., Klein, A., & Gee, J. C. (2011). A
982 reproducible evaluation of ANTs similarity metric performance in brain image
983 registration. *NeuroImage*, 54(3), 2033–2044.
984 <https://doi.org/10.1016/j.neuroimage.2010.09.025>

985 Beckmann, C. F., & Smith, S. M. (2004). Probabilistic independent component analysis for
986 functional magnetic resonance imaging | IEEE Journals & Magazine | IEEE Xplore.
987 *IEEE Transactions on Medical Imaging*, 23(2), 137–152.
988 <https://doi.org/10.1109/TMI.2003.822821>

989 Beckmann, C., Mackay, C., Filippini, N., & Smith, S. (2009). Group comparison of resting-
990 state fMRI data using multi-subject ICA and dual regression. *NeuroImage*, 47, S148.
991 [https://doi.org/10.1016/S1053-8119\(09\)71511-3](https://doi.org/10.1016/S1053-8119(09)71511-3)

992 Behzadi, Y., Restom, K., Liau, J., & Liu, T. T. (2007). A component based noise correction
993 method (CompCor) for BOLD and perfusion based fMRI. *NeuroImage*, 37(1), 90–
994 101. <https://doi.org/10.1016/j.neuroimage.2007.04.042>

995 Bergman, K., Sarkar, P., O'Connor, T. G., Modi, N., & Glover, V. (2007). Maternal Stress
996 During Pregnancy Predicts Cognitive Ability and Fearfulness in Infancy. *Journal of*
997 *the American Academy of Child & Adolescent Psychiatry*, 46(11), 1454–1463.
998 <https://doi.org/10.1097/chi.0b013e31814a62f6>

999 Boukhris, T., Sheehy, O., Mottron, L., & Bérard, A. (2016). Antidepressant Use During
1000 Pregnancy and the Risk of Autism Spectrum Disorder in Children. *JAMA Pediatrics*,
1001 170(2), 117. <https://doi.org/10.1001/jamapediatrics.2015.3356>

1002 Brown, A. S., Susser, E. S., Lin, S. P., Neugebauer, R., & Gorman, J. M. (1995). Increased
1003 Risk of Affective Disorders in Males after Second Trimester Prenatal Exposure to the

1004 Dutch Hunger Winter of 1944–45. *British Journal of Psychiatry*, 166(5), 601–606.

1005 <https://doi.org/10.1192/bjp.166.5.601>

1006 Colonnese, M. T., & Phillips, M. A. (2018). Thalamocortical function in developing sensory

1007 circuits. *Current Opinion in Neurobiology*, 52, 72–79.

1008 <https://doi.org/10.1016/j.conb.2018.04.019>

1009 Cordero Grande, L., Price, A., Ferrazzi, G., Hutter, J., Christiaens, D., Hughes, E., & Hajnal,

1010 J. (2018). Spin And Field Echo (SAFE) dynamic field correction in 3T fetal EPI.

1011 *Proceedings of International Society for Magnetic Resonance Imaging*, 26, 208.

1012 <https://archive.ismrm.org/2018/0208.html>

1013 Cordero-Grande, L., Hughes, E. J., Hutter, J., Price, A. N., & Hajnal, J. V. (2018). Three-

1014 dimensional motion corrected sensitivity encoding reconstruction for multi-shot multi-

1015 slice MRI: Application to neonatal brain imaging: Aligned Multi-Shot Multi-Slice

1016 MRI. *Magnetic Resonance in Medicine*, 79(3), 1365–1376.

1017 <https://doi.org/10.1002/mrm.26796>

1018 Cordero-Grande, L., Vegas-Sánchez-Ferrero, G., Casaseca-de-la-Higuera, P., Alberto San-

1019 Román-Calvar, J., Revilla-Orodea, A., Martín-Fernández, M., & Alberola-López, C.

1020 (2011). Unsupervised 4D myocardium segmentation with a Markov Random Field

1021 based deformable model. *Medical Image Analysis*, 15(3), 283–301.

1022 <https://doi.org/10.1016/j.media.2011.01.002>

1023 De Asis-Cruz, J., Andersen, N., Kapse, K., Khrisnamurthy, D., Quistorff, J., Lopez, C.,

1024 Vezina, G., & Limperopoulos, C. (2021). Global Network Organization of the Fetal

1025 Functional Connectome. *Cerebral Cortex*, 31(6), 3034–3046.

1026 <https://doi.org/10.1093/cercor/bhaa410>

1027 Doria, V., Beckmann, C. F., Arichi, T., Merchant, N., Groppo, M., Turkheimer, F. E.,

1028 Counsell, S. J., Murgasova, M., Aljabar, P., Nunes, R. G., Larkman, D. J., Rees, G., &

1029 Edwards, A. D. (2010). Emergence of resting state networks in the preterm human
1030 brain. *Proceedings of the National Academy of Sciences*, 107(46), 20015–20020.
1031 <https://doi.org/10.1073/pnas.1007921107>

1032 Duff, E., Zelaya, F., Almagro, F. A., Miller, K. L., Martin, N., Nichols, T. E., Taschler, B.,
1033 Griffanti, L., Arthofer, C., Douaud, G., Wang, C., Okell, T. W., Bethlehem, R. A. I.,
1034 Eickel, K., Günther, M., Menon, D. K., Williams, G., Facer, B., Lythgoe, D. J., ...
1035 Consortium, on behalf of the C.-C. (2022). Reliability of multi-site UK Biobank MRI
1036 brain phenotypes for the assessment of neuropsychiatric complications of SARS-CoV-
1037 2 infection: The COVID-CNS travelling heads study. *PLOS ONE*, 17(9), e0273704.
1038 <https://doi.org/10.1371/journal.pone.0273704>

1039 Eyre, M., Fitzgibbon, S. P., Ciarrusta, J., Cordero-Grande, L., Price, A. N., Poppe, T., Schuh,
1040 A., Hughes, E., O’Keeffe, C., Brandon, J., Cromb, D., Vecchiato, K., Andersson, J.,
1041 Duff, E. P., Counsell, S. J., Smith, S. M., Rueckert, D., Hajnal, J. V., Arichi, T., ...
1042 Edwards, A. D. (2021). The Developing Human Connectome Project: Typical and
1043 disrupted perinatal functional connectivity. *Brain*, 144(7), 2199–2213.
1044 <https://doi.org/10.1093/brain/awab118>

1045 Ferrazzi, G., Kuklisova Murgasova, M., Arichi, T., Malamateniou, C., Fox, M. J.,
1046 Makropoulos, A., Allsop, J., Rutherford, M., Malik, S., Aljabar, P., & Hajnal, J. V.
1047 (2014). Resting State fMRI in the moving fetus: A robust framework for motion, bias
1048 field and spin history correction. *NeuroImage*, 101, 555–568.
1049 <https://doi.org/10.1016/j.neuroimage.2014.06.074>

1050 Fitzgibbon, S. P., Harrison, S. J., Jenkinson, M., Baxter, L., Robinson, E. C., Bastiani, M.,
1051 Bozek, J., Karolis, V., Cordero Grande, L., Price, A. N., Hughes, E., Makropoulos, A.,
1052 Passerat-Palmbach, J., Schuh, A., Gao, J., Farahibozorg, S.-R., O’Muircheartaigh, J.,
1053 Ciarrusta, J., O’Keeffe, C., ... Andersson, J. (2020). The developing Human

1054 Connectome Project (dHCP) automated resting-state functional processing framework

1055 for newborn infants. *NeuroImage*, 223, 117303.

1056 <https://doi.org/10.1016/j.neuroimage.2020.117303>

1057 Friston, K. J., Williams, S., Howard, R., Frackowiak, R. S. J., & Turner, R. (1996).

1058 Movement-Related effects in fMRI time-series. *Magnetic Resonance in Medicine*,

1059 35(3), 346–355. <https://doi.org/10.1002/mrm.1910350312>

1060 Fuderer, M., van den Brink, J., & Jurrisen, M. (2004). SENSE reconstruction using feed

1061 forward regularization. *Proc Int Soc Magn Reson Med*, 11.

1062 Gao, W., Alcauter, S., Smith, J. K., Gilmore, J. H., & Lin, W. (2015). Development of human

1063 brain cortical network architecture during infancy. *Brain Structure and Function*,

1064 220(2), 1173–1186. <https://doi.org/10.1007/s00429-014-0710-3>

1065 Ghiglia, D. C., & Romero, L. A. (1994). Robust two-dimensional weighted and unweighted

1066 phase unwrapping that uses fast transforms and iterative methods. *JOSA A*, 11(1),

1067 107–117. <https://doi.org/10.1364/JOSAA.11.000107>

1068 Griffanti, L., Salimi-Khorshidi, G., Beckmann, C. F., Auerbach, E. J., Douaud, G., Sexton, C.

1069 E., Zsoldos, E., Ebmeier, K. P., Filippini, N., Mackay, C. E., Moeller, S., Xu, J.,

1070 Yacoub, E., Baselli, G., Ugurbil, K., Miller, K. L., & Smith, S. M. (2014). ICA-based

1071 artefact removal and accelerated fMRI acquisition for improved resting state network

1072 imaging. *NeuroImage*, 95, 232–247. <https://doi.org/10.1016/j.neuroimage.2014.03.034>

1073 Hurley, R. S., Bonakdarpour, B., Wang, X., & Mesulam, M.-M. (2015). Asymmetric

1074 Connectivity between the Anterior Temporal Lobe and the Language Network.

1075 *Journal of Cognitive Neuroscience*, 27(3), 464–473.

1076 https://doi.org/10.1162/jocn_a_00722

1077 Hutter, J., Christiaens, D. J., Schneider, T., Cordero-Grande, L., Slator, P. J., Deprez, M.,

1078 Price, A. N., Tournier, J.-D., Rutherford, M., & Hajnal, J. V. (2018). Slice-level

1079 diffusion encoding for motion and distortion correction. *Medical Image Analysis*, 48,

1080 214–229. <https://doi.org/10.1016/j.media.2018.06.008>

1081 Jakab, A., Schwartz, E., Kasprian, G., Gruber, G. M., Prayer, D., Schäffler, V., & Langs, G.

1082 (2014). Fetal functional imaging portrays heterogeneous development of emerging

1083 human brain networks. *Frontiers in Human Neuroscience*, 8.

1084 <https://doi.org/10.3389/fnhum.2014.00852>

1085 Jenkinson, M., Bannister, P., Brady, M., & Smith, S. (2002). Improved Optimization for the

1086 Robust and Accurate Linear Registration and Motion Correction of Brain Images.

1087 *NeuroImage*, 17(2), 825–841. <https://doi.org/10.1006/nimg.2002.1132>

1088 Ji, L., Hendrix, C. L., & Thomason, M. E. (2022). Empirical evaluation of human fetal fMRI

1089 preprocessing steps. *Network Neuroscience*, 6(3), 702–721.

1090 https://doi.org/10.1162/netn_a_00254

1091 Karolis, V., Fitzgibbon, S., Cordero-Grande, L., Farahibozorg, S., Price, A., Hughes, E., Fetit,

1092 A., Kyriakopoulou, V., Pietsch, M., Rutherford, M., Rueckert, D., Hajnal, J., Edwards,

1093 A., O’Muircheartaigh, J., Duff, E., & Arichi, T. (2022). *Maturation of fetal*

1094 *brain activity* [Preprint]. Neuroscience. <https://doi.org/10.1101/2022.06.14.495883>

1095 Karolis, V. R., Fitzgibbon, S. P., Cordero-Grande, L., Farahibozorg, S.-R., Price, A. N.,

1096 Hughes, E. J., Fetit, A. E., Kyriakopoulou, V., Pietsch, M., Rutherford, M. A.,

1097 Rueckert, D., Hajnal, J. V., Edwards, A. D., O’Muircheartaigh, J., Duff, E. P., &

1098 Arichi, T. (2023). Maturation of fetal brain activity reveal emerging

1099 connectivity patterns prior to ex-utero exposure. *Communications Biology*, 6(1), 661.

1100 <https://doi.org/10.1038/s42003-023-04969-x>

1101 Kiviniemi, V., Kantola, J.-H., Jauhainen, J., Hyvärinen, A., & Tervonen, O. (2003).

1102 Independent component analysis of nondeterministic fMRI signal sources.

1103 *NeuroImage*, 19(2), 253–260. [https://doi.org/10.1016/S1053-8119\(03\)00097-1](https://doi.org/10.1016/S1053-8119(03)00097-1)

1104 Klein, A., Andersson, J., Ardekani, B. A., Ashburner, J., Avants, B., Chiang, M.-C.,

1105 Christensen, G. E., Collins, D. L., Gee, J., Hellier, P., Song, J. H., Jenkinson, M.,

1106 Lepage, C., Rueckert, D., Thompson, P., Vercauteren, T., Woods, R. P., Mann, J. J., &

1107 Parsey, R. V. (2009). Evaluation of 14 nonlinear deformation algorithms applied to

1108 human brain MRI registration. *NeuroImage*, 46(3), 786–802.

1109 <https://doi.org/10.1016/j.neuroimage.2008.12.037>

1110 Kochiyama, T., Morita, T., Okada, T., Yonekura, Y., Matsumura, M., & Sadato, N. (2005).

1111 Removing the effects of task-related motion using independent-component analysis.

1112 *NeuroImage*, 25(3), 802–814. <https://doi.org/10.1016/j.neuroimage.2004.12.027>

1113 Kostović, I., & Judaš, M. (2010). The development of the subplate and thalamocortical

1114 connections in the human foetal brain: Human foetal cortical circuitry. *Acta*

1115 *Paediatrica*, 99(8), 1119–1127. <https://doi.org/10.1111/j.1651-2227.2010.01811.x>

1116 Kostović, I., Sedmak, G., & Judaš, M. (2019). Neural histology and neurogenesis of the

1117 human fetal and infant brain. *NeuroImage*, 188, 743–773.

1118 <https://doi.org/10.1016/j.neuroimage.2018.12.043>

1119 Kuklisova-Murgasova, M., Lockwood Estrin, G., Nunes, R. G., Malik, S. J., Rutherford, M.

1120 A., Rueckert, D., & Hajnal, J. V. (2018). Distortion Correction in Fetal EPI Using

1121 Non-Rigid Registration With a Laplacian Constraint. *IEEE Transactions on Medical*

1122 *Imaging*, 37(1), 12–19. IEEE Transactions on Medical Imaging.

1123 <https://doi.org/10.1109/TMI.2017.2667227>

1124 Laplante, D. P., Brunet, A., Schmitz, N., Ciampi, A., & King, S. (2008). Project Ice Storm:

1125 Prenatal Maternal Stress Affects Cognitive and Linguistic Functioning in 5½-Year-

1126 Old Children. *Journal of the American Academy of Child & Adolescent Psychiatry*,

1127 47(9), 1063–1072. <https://doi.org/10.1097/CHI.0b013e31817eec80>

1128 Lemieux, L., Salek-Haddadi, A., Lund, T. E., Laufs, H., & Carmichael, D. (2007). Modelling
1129 large motion events in fMRI studies of patients with epilepsy. *Magnetic Resonance*
1130 *Imaging*, 25(6), 894–901. <https://doi.org/10.1016/j.mri.2007.03.009>

1131 Minka, T. (2000). Automatic Choice of Dimensionality for PCA. *Advances in Neural*
1132 *Information Processing Systems*, 13.
1133 <https://proceedings.neurips.cc/paper/2000/hash/7503cfacd12053d309b6bed5c89de212>
1134 -Abstract.html

1135 Noble, S., Spann, M. N., Tokoglu, F., Shen, X., Constable, R. T., & Scheinost, D. (2017).
1136 Influences on the Test–Retest Reliability of Functional Connectivity MRI and its
1137 Relationship with Behavioral Utility. *Cerebral Cortex*, 27(11), 5415–5429.
1138 <https://doi.org/10.1093/cercor/bhx230>

1139 O'Donnell, K., O'Connor, T. G., & Glover, V. (2009). Prenatal Stress and Neurodevelopment
1140 of the Child: Focus on the HPA Axis and Role of the Placenta. *Developmental*
1141 *Neuroscience*, 31(4), 285–292. <https://doi.org/10.1159/000216539>

1142 Oubel, E., Koob, M., Studholme, C., Dietemann, J.-L., & Rousseau, F. (2012).
1143 Reconstruction of scattered data in fetal diffusion MRI. *Medical Image Analysis*,
1144 16(1), 28–37. <https://doi.org/10.1016/j.media.2011.04.004>

1145 Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. (2012).
1146 Spurious but systematic correlations in functional connectivity MRI networks arise
1147 from subject motion. *NeuroImage*, 59(3), 2142–2154.
1148 <https://doi.org/10.1016/j.neuroimage.2011.10.018>

1149 Power, J. D., Mitra, A., Laumann, T. O., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E.
1150 (2014). Methods to detect, characterize, and remove motion artifact in resting state
1151 fMRI. *NeuroImage*, 84, 320–341. <https://doi.org/10.1016/j.neuroimage.2013.08.048>

1152 Price, A. (2019). The developing Human Connectome Project (dHCP): Fetal acquisition
1153 protocol. *Proceedings of the 27th Annual Meeting of the Organisation for Human*
1154 *Brain Mapping*, 2479.

1155 Pruijm, R. H. R., Mennes, M., van Rooij, D., Llera, A., Buitelaar, J. K., & Beckmann, C. F.
1156 (2015). ICA-AROMA: A robust ICA-based strategy for removing motion artifacts
1157 from fMRI data. *NeuroImage*, 112, 267–277.
1158 <https://doi.org/10.1016/j.neuroimage.2015.02.064>

1159 Rakers, F., Rupprecht, S., Dreiling, M., Bergmeier, C., Witte, O. W., & Schwab, M. (2020).
1160 Transfer of maternal psychosocial stress to the fetus. *Neuroscience & Biobehavioral*
1161 *Reviews*, 117, 185–197. <https://doi.org/10.1016/j.neubiorev.2017.02.019>

1162 Rutherford, S., Sturmels, P., Angstadt, M., Hect, J., Wiens, J., van den Heuvel, M. I.,
1163 Scheinost, D., Sripada, C., & Thomason, M. (2022). Automated Brain Masking of
1164 Fetal Functional MRI with Open Data. *Neuroinformatics*, 20(1), 173–185.
1165 <https://doi.org/10.1007/s12021-021-09528-5>

1166 Salimi-Khorshidi, G., Douaud, G., Beckmann, C. F., Glasser, M. F., Griffanti, L., & Smith, S.
1167 M. (2014). Automatic denoising of functional MRI data: Combining independent
1168 component analysis and hierarchical fusion of classifiers. *NeuroImage*, 90, 449–468.
1169 <https://doi.org/10.1016/j.neuroimage.2013.11.046>

1170 Sandman, C. A., Davis, E. P., Buss, C., & Glynn, L. M. (2012). Exposure to Prenatal
1171 Psychobiological Stress Exerts Programming Influences on the Mother and Her Fetus.
1172 *Neuroendocrinology*, 95(1), 8–21. <https://doi.org/10.1159/000327017>

1173 Satterthwaite, T. D., Elliott, M. A., Gerraty, R. T., Ruparel, K., Loughead, J., Calkins, M. E.,
1174 Eickhoff, S. B., Hakonarson, H., Gur, R. C., Gur, R. E., & Wolf, D. H. (2013). An
1175 improved framework for confound regression and filtering for control of motion

1176 artifact in the preprocessing of resting-state functional connectivity data. *NeuroImage*,
1177 64, 240–256. <https://doi.org/10.1016/j.neuroimage.2012.08.052>

1178 Schöpf, V., Kasprian, G., Brugger, P. C., & Prayer, D. (2012). Watching the fetal brain at
1179 ‘rest’. *International Journal of Developmental Neuroscience*, 30(1), 11–17.
1180 <https://doi.org/10.1016/j.ijdevneu.2011.10.006>

1181 Schöpf, V., Schlegl, T., Jakab, A., Kasprian, G., Woitek, R., Prayer, D., & Langs, G. (2014).
1182 The relationship between eye movement and vision develops before birth. *Frontiers in
1183 Human Neuroscience*, 8. <https://doi.org/10.3389/fnhum.2014.00775>

1184 Serag, A., Aljabar, P., Ball, G., Counsell, S. J., Boardman, J. P., Rutherford, M. A., Edwards,
1185 A. D., Hajnal, J. V., & Rueckert, D. (2012). Construction of a consistent high-
1186 definition spatio-temporal atlas of the developing brain using adaptive kernel
1187 regression. *NeuroImage*, 59(3), 2255–2265.
1188 <https://doi.org/10.1016/j.neuroimage.2011.09.062>

1189 Seshamani, S., Blazejewska, A. I., Mckown, S., Caucutt, J., Dighe, M., Gatenby, C., &
1190 Studholme, C. (2016). Detecting default mode networks in utero by integrated 4D
1191 fMRI reconstruction and analysis. *Human Brain Mapping*, 37(11), 4158–4178.
1192 <https://doi.org/10.1002/hbm.23303>

1193 Shah, L. M., Cramer, J. A., Ferguson, M. A., Birn, R. M., & Anderson, J. S. (2016).
1194 Reliability and reproducibility of individual differences in functional connectivity
1195 acquired during task and resting state. *Brain and Behavior*, 6(5), e00456.
1196 <https://doi.org/10.1002/brb3.456>

1197 Shehzad, Z., Kelly, A. M. C., Reiss, P. T., Gee, D. G., Gotimer, K., Uddin, L. Q., Lee, S. H.,
1198 Margulies, D. S., Roy, A. K., Biswal, B. B., Petkova, E., Castellanos, F. X., &
1199 Milham, M. P. (2009). The Resting Brain: Unconstrained yet Reliable. *Cerebral
1200 Cortex*, 19(10), 2209–2229. <https://doi.org/10.1093/cercor/bhn256>

1201 Skranes, J., & Løhaugen, G. (2022). Prenatal illicit drug and polysubstance exposure and
1202 impact on developmental outcome. In *Handbook of Substance Misuse and Addictions: From Biology to Public Health*. (pp. 2833–2861). Springer International Publishing.

1203

1204 Smith, S. M., Beckmann, C. F., Andersson, J., Auerbach, E. J., Bijsterbosch, J., Douaud, G.,
1205 Duff, E., Feinberg, D. A., Griffanti, L., Harms, M. P., Kelly, M., Laumann, T., Miller,
1206 K. L., Moeller, S., Petersen, S., Power, J., Salimi-Khorshidi, G., Snyder, A. Z., Vu, A.
1207 T., ... Glasser, M. F. (2013). Resting-state fMRI in the Human Connectome Project.
1208 *NeuroImage*, 80, 144–168. <https://doi.org/10.1016/j.neuroimage.2013.05.039>

1209 Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T. E. J., Johansen-
1210 Berg, H., Bannister, P. R., De Luca, M., Drobniak, I., Flitney, D. E., Niazy, R. K.,
1211 Saunders, J., Vickers, J., Zhang, Y., De Stefano, N., Brady, J. M., & Matthews, P. M.
1212 (2004). Advances in functional and structural MR image analysis and implementation
1213 as FSL. *NeuroImage*, 23, S208–S219.
1214 <https://doi.org/10.1016/j.neuroimage.2004.07.051>

1215 Sobotka, D., Ebner, M., Schwartz, E., Nenning, K.-H., Taymourtash, A., Vercauteren, T.,
1216 Ourselin, S., Kasprian, G., Prayer, D., Langs, G., & Licandro, R. (2022). Motion
1217 correction and volumetric reconstruction for fetal functional magnetic resonance
1218 imaging data. *NeuroImage*, 255, 119213.
1219 <https://doi.org/10.1016/j.neuroimage.2022.119213>

1220 Taymourtash, A., Kebiri, H., Tourbier, S., Schwartz, E., Nenning, K.-H., Licandro, R.,
1221 Sobotka, D., Lajous, H., de Dumast, P., Cuadra, M. B., & Langs, G. (2021). *4D
1222 iterative reconstruction of brain fMRI in the moving fetus*.
1223 <https://doi.org/10.48550/ARXIV.2111.11394>

1224 Taymourtash, A., Schwartz, E., Nenning, K.-H., Sobotka, D., Diogo, M., Kasprian, G.,
1225 Prayer, D., & Langs, G. (2019). Quantifying Residual Motion Artifacts in Fetal fMRI

1226 Data. In Q. Wang, A. Gomez, J. Hutter, K. McLeod, V. Zimmer, O. Zettinig, R.
1227 Licandro, E. Robinson, D. Christiaens, E. A. Turk, & A. Melbourne (Eds.), *Smart*
1228 *Ultrasound Imaging and Perinatal, Preterm and Paediatric Image Analysis* (pp. 171–
1229 180). Springer International Publishing. https://doi.org/10.1007/978-3-030-32875-7_19

1230 Taymourtash, A., Schwartz, E., Nenning, K.-H., Sobotka, D., Licandro, R., Glatter, S., Diogo,
1231 M. C., Golland, P., Grant, E., Prayer, D., Kasprian, G., & Langs, G. (2023). Fetal
1232 development of functional thalamocortical and cortico–cortical connectivity. *Cerebral*
1233 *Cortex*, 33(9), 5613–5624. <https://doi.org/10.1093/cercor/bhac446>

1234 Thomason, M. E., Dassanayake, M. T., Shen, S., Katkuri, Y., Alexis, M., Anderson, A. L.,
1235 Yeo, L., Mody, S., Hernandez-Andrade, E., Hassan, S. S., Studholme, C., Jeong, J.-
1236 W., & Romero, R. (2013). Cross-Hemispheric Functional Connectivity in the Human
1237 Fetal Brain. *Science Translational Medicine*, 5(173).
1238 <https://doi.org/10.1126/scitranslmed.3004978>

1239 Thomason, M. E., Grove, L. E., Lozon, T. A., Vila, A. M., Ye, Y., Nye, M. J., Manning, J. H.,
1240 Pappas, A., Hernandez-Andrade, E., Yeo, L., Mody, S., Berman, S., Hassan, S. S., &
1241 Romero, R. (2015). Age-related increases in long-range connectivity in fetal
1242 functional neural connectivity networks in utero. *Developmental Cognitive*
1243 *Neuroscience*, 11, 96–104. <https://doi.org/10.1016/j.dcn.2014.09.001>

1244 Tolner, E. A., Sheikh, A., Yukin, A. Y., Kaila, K., & Kanold, P. O. (2012). Subplate Neurons
1245 Promote Spindle Bursts and Thalamocortical Patterning in the Neonatal Rat
1246 Somatosensory Cortex. *The Journal of Neuroscience*, 32(2), 692–702.
1247 <https://doi.org/10.1523/JNEUROSCI.1538-11.2012>

1248 Uecker, M., Lai, P., Murphy, M. J., Virtue, P., Elad, M., Pauly, J. M., Vasanawala, S. S., &
1249 Lustig, M. (2014). ESPIRiT—an eigenvalue approach to autocalibrating parallel MRI:
1250

1251 Where SENSE meets GRAPPA. *Magnetic Resonance in Medicine*, 71(3), 990–1001.

1252 <https://doi.org/10.1002/mrm.24751>

1253 Uus, A., Kyriakopoulou, V., Cordero Grande, L., Christiaens, D., Pietsch, M., Price, A.,

1254 Wilson, S., Patkee, P., Karolis, V., Schuh, A., Gartner, A., Williams, L., Hughes, E.,

1255 Arichi, T., O’Muircheartaigh, J., Hutter, J., Robinson, E., Tournier, J.-D., Rueckert,

1256 D., ... Edwards, A. D. (n.d.). *Multi-channel spatio-temporal MRI atlas of the normal*

1257 *fetal brain development from the developing Human Connectome Project*. [Dataset].

1258 G-Node. <https://doi.org/10.12751/g-node.ysgsy1>

1259 Uus, A. U., Kyriakopoulou, V., Makropoulos, A., Fukami-Gartner, A., Cromb, D., Davidson,

1260 A., Cordero-Grande, L., Price, A. N., Grigorescu, I., Williams, L. Z. J., Robinson, E.

1261 C., Lloyd, D., Pushparajah, K., Story, L., Hutter, J., Counsell, S. J., Edwards, A. D.,

1262 Rutherford, M. A., Hajnal, J. V., & Deprez, M. (2023). BOUNTI: Brain vOlumetry

1263 and aUtomated parcellatioN for 3D feTal MRI. *eLife*, 12.

1264 <https://doi.org/10.7554/eLife.88818.1>

1265 van den Heuvel, M. I., Turk, E., Manning, J. H., Hect, J., Hernandez-Andrade, E., Hassan, S.

1266 S., Romero, R., van den Heuvel, M. P., & Thomason, M. E. (2018). Hubs in the

1267 human fetal brain network. *Developmental Cognitive Neuroscience*, 30, 108–115.

1268 <https://doi.org/10.1016/j.dcn.2018.02.001>

1269 Ward Jr., J. H. (1963). Hierarchical Grouping to Optimize an Objective Function. *Journal of*

1270 *the American Statistical Association*, 58(301), 236–244.

1271 <https://doi.org/10.1080/01621459.1963.10500845>

1272 Wu, Z., Nunes, R. G., Malik, S. J., Estrin, G. L., Hughes, E. J., Malamateneou, C., Counsell,

1273 S. J., Rutherford, M. A., & Hajnal, J. V. (n.d.). *Fetal imaging with EPI – FOV, SNR*

1274 *and distortion correction*.

1275 Yan, C.-G., Cheung, B., Kelly, C., Colcombe, S., Craddock, R. C., Di Martino, A., Li, Q.,

1276 Zuo, X.-N., Castellanos, F. X., & Milham, M. P. (2013). A comprehensive assessment

1277 of regional variation in the impact of head micromovements on functional

1278 connectomics. *NeuroImage*, 76, 183–201.

1279 <https://doi.org/10.1016/j.neuroimage.2013.03.004>

1280 Zerbo, O., Qian, Y., Yoshida, C., Grether, J. K., Van De Water, J., & Croen, L. A. (2015).

1281 Maternal Infection During Pregnancy and Autism Spectrum Disorders. *Journal of*

1282 *Autism and Developmental Disorders*, 45(12), 4015–4025.

1283 <https://doi.org/10.1007/s10803-013-2016-3>

1284