

1 **Brochosomes as an antireflective camouflage coating for leafhoppers**

2 Wei Wu^{1*}, Qianzhuo Mao¹, Zhuangxin Ye¹, Zhenfeng Liao², Hong-Wei Shan¹, Jun-Min Li¹,
3 Chuan-Xi Zhang¹, Jian-Ping Chen^{1*}

4

5 ¹State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of
6 Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture
7 and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China.

8 ²State Key Laboratory for Sustainable Control of Pest and Disease, Institute of Virology and
9 Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.

10

11 *Corresponding author. Email: jianpingchen@nbu.edu.cn (J.-P.C.);

12 wuwei_19861115@163.com (W.W.)

13

14 **Abstract:**

15 In nature, insects face immense predation pressure, where visual cues play a vital role in
16 predators locating them. To counter this threat, insects employ a variety of nano- and
17 microstructures on their cuticular layer to manipulate and interact with light, enhancing anti-
18 reflective properties and providing camouflage or reducing detectability by predators.
19 Leafhoppers have a unique extra-cuticular coating called brochosome, yet its anti-reflective
20 functions and protein composition remain unclear. Our study demonstrates strong anti-
21 reflective properties of brochosomes, effectively reducing reflectance on the cuticle surface,
22 especially in the ultraviolet spectrum, to improve evasion from visual predators. Furthermore,
23 we identify four novel structural proteins of the brochosome (BSM) for the first time. Inhibiting
24 their synthesis by RNAi alters brochosome morphology, impacting the optical properties of the
25 cuticle surface. Evolutionary origin analysis of BSM suggests that brochosomes likely
26 originated from a process involving duplication–divergence. Our study reveals that leafhoppers
27 employ a unique camouflage strategy by secreting brochosomes as anti-reflection nano-
28 coatings, enabling them to evade natural predators and contributing to their evolutionary
29 success.

30

31 **Keywords:**

32 Brochosome, Leafhopper, Camouflage, Antireflective, Predation, BSM

33

34 **Introduction:**

35 Predation exerts significant selective pressure on the evolution of various species, driving
36 the development of anti-predator strategies across the animal kingdom(Galloway et al., 2020;
37 Stevens & Ruxton, 2018). Camouflage is a widely employed strategy, allowing animals to blend
38 into their surroundings by adjusting their coloration and patterns to reduce detection by visual
39 predators(Hughes et al., 2019; Skelhorn & Rowe, 2016). Nevertheless, the presence of
40 predators with multispectral vision, capable of perceiving non-visible light spectra like infrared
41 and ultraviolet, can compromise traditional color and pattern-based camouflage(Galloway et al.,
42 2020; Jones et al., 2007; Stevens, 2007; Thery & Gomez, 2010), paralleling the challenges of
43 military camouflage under non-visible light(Xi et al., 2023). Consequently, achieving alignment
44 between an animal's surface optical characteristics and its surroundings becomes a crucial
45 requirement in visual camouflage strategies.

46 Insects, one of the most diverse animal groups on earth, contend with intense predation
47 pressure(Cinel et al., 2020; Sheikh et al., 2017). Many of their predators, including birds, reptiles,
48 and predatory arthropods, rely on visual cues, with some possessing highly developed
49 ultraviolet (UV) vision, where UV light plays a critical role in locating insect prey(Lim & Ben-
50 Yakir, 2020; Stobbe et al., 2008). Furthermore, the natural backgrounds where insects reside,
51 such as leaves, tree bark, and soil, exhibit minimal light reflection(Endler, 1997). Consequently,
52 light reflections originating from an insect's body significantly elevate its risk of exposure to
53 predators(Tovee, 1995). To counter this challenge, the various nano- and microstructural
54 features of the insect cuticle have excellent antireflective properties that affect insect body
55 coloration, reduce surface light reflection and aid camouflage(Vukusic & Sambles, 2003;
56 Watson et al., 2017). The first instances of anti-reflective structures were observed in the
57 compound eyes of moths, the corneas of which are covered by hexagonally arranged
58 protrusions that are approximately 200 nanometers apart (Bernhard, 1965; Blagodatski et al.,
59 2015; Clapham & Hutley, 1973). Subsequent research has revealed that anti-reflective
60 structures are widespread on insect body surfaces, primarily found on compound eyes and
61 wings(Blagodatski et al., 2015; Chotard et al., 2022; Ho et al., 2016; Monteiro et al., 2019;
62 Stavenga et al., 2005). These nano- and micro-structures on the cuticular layer are believed to
63 possess anti-reflective properties, effectively minimizing light reflections from their bodies and

64 thus preventing detection by predators(Blagodatski et al., 2015; Chotard et al., 2022; Ho et al.,
65 2016; Monteiro et al., 2019; Stavenga et al., 2005).

66 Leafhoppers (Cicadellidae), one of the largest insect families with over 22,000 species,
67 possess unique extra-cuticular coating known as brochosome. Brochosomes, typically hollow,
68 honeycomb-like spheres with a diameter ranging from 0.2 to 0.6 micrometers, are synthesized
69 in the Malpighian tubules, secreted through the hindgut, and applied as a coating on the fresh
70 cuticle following molting(Rakitov, 2000; Rakitov, 2009). Brochosomes primarily comprise lipids
71 and proteins, with protein content ranging from 45% to 75%, but the exact proteins responsible
72 for brochosome formation remain unknown(Li et al., 2022; Rakitov et al., 2018; Yuan et al.,
73 2023). Some have proposed that brochosomes may serve as a protective layer on the
74 leafhopper's cuticle surface, with a potential role in enhancing the hydrophobicity of their cuticle
75 surface, providing defense against pathogens and predators(Rakitov & Gorb, 2013a; Rakitov,
76 2009). Apart from these known function of hydrophobicity and the shedding of brochosomes in
77 helping leafhopper escape spider webs, there is currently no definitive biological evidence
78 supporting other hypothesized functions of brochosomes(Lin et al., 2021; Rakitov & Gorb,
79 2013a, 2013b). Furthermore, it has been suggested by certain researchers that the
80 brochosomes present on the surface of leafhoppers may play a role in their camouflage
81 abilities(Swain, 1936). In recent years, studies investigating bio-inspired materials that mimic
82 the structure of brochosomes have demonstrated remarkable antireflective properties(Lei et al.,
83 2020; Yang et al., 2017), and further elucidated the antireflective mechanisms based on the
84 brochosome geometry(Wang et al., 2024). These findings offer valuable insights, suggesting
85 that leafhoppers may employ a distinctive strategy, distinct from other insects, to achieve anti-
86 reflection properties on their surfaces. Consequently, we propose the hypothesis that
87 brochosomes may function as a camouflage coating on the leafhopper's cuticle surface, aiding
88 in the reduction of surface optical reflections and enabling the leafhopper to remain concealed,
89 thereby evading detection by visual predators and ultimately escaping predation.

90 In this study, we combined spectrophotometry, electron microscopy, transcriptome analysis,
91 proteome analysis, gene function validation, and leafhopper and jumping spider bioassays to
92 characterize the protein composition and the function of brochosome in leafhopper camouflage.
93 We focused our research on the rice green leafhopper, *Nephotettix cincticeps*, a well-known

94 agricultural pest with an extensive research history(Hibino, 1996; Wei et al., 2018; Yan et al.,
95 2021). Our results revealed the pronounced effectiveness of brochosome coverage in reducing
96 light reflection on leafhoppers *N. cincticeps*, especially within the scope of the ultraviolet
97 spectrum. By conducting RNAi experiments, we successfully identified four brochosome
98 structural protein for the first time. The suppression of their synthesis induced changes in
99 brochosome morphology, influencing the optical characteristics of the leafhopper's cuticle
100 surface. Furthermore, our analysis of the evolutionary origin of brochosomes indicates that they
101 likely originated through a process involving duplication–divergence. Our findings support
102 brochosomes as a unique camouflage coating that enables leafhoppers to evade visual
103 predators.

104

105 **Results**

106 **Brochosomes are a distinctive coating on the cuticle surface of leafhopper *N. cincticeps*.**

107 The cuticle surface of rice green leafhopper *N. cincticeps* is coated with brochosomes
108 (Figure 1A and B), which are approximately 350nm in diameter and featuring a hollow sphere
109 with a honeycomb-like structure (Figure 1C and D). The leafhopper *N. cincticeps* possesses
110 two pairs of Malpighian tubules, each consisting of a proximal, distal, and terminal segment
111 (Figure 1E). Brochosomes are synthesized in the distal segment of the Malpighian tubule, which
112 exhibits a swollen and rod-shaped appearance (Figure 1E). The epithelial cells in this segment
113 contain large spherical nuclei, an extensive rough endoplasmic reticulum, and multiple Golgi
114 regions (Figure 1E and F). Within the Golgi-derived vacuole, the brochosomes undergo
115 progressive development, transforming their initially spherical granules into a honeycomb-like
116 surface with closely spaced invaginations (Figure 1G-I). Mature brochosomes are stored in
117 secretory vacuoles at the boundaries of the cells and are subsequently secreted into the lumen
118 of the Malpighian tubules (Figure 1F).

119

120 **The optical properties of the leafhopper's cuticle surface are intricately connected to the 121 brochosome coating.**

122 To investigate the interplay between brochosome coverage and the optical features of *N.*
123 *cincticeps* cuticle surface, we observed the relationship for male and female adults at 5, 10, 15,

124 20, and 25 days post-eclosion. *N. cincticeps* exhibited a gradual shift in body color with
125 increasing eclosion time, manifesting clear distinctions between males and females (Figure 2A-
126 figure supplement 1A and B). Males transformed from light green to dark green, while females
127 progressively transitioned from light green to translucent, displaying an iridescence (Figure 2A-
128 figure supplement 1A and B). Furthermore, the brightness of the leafhopper cuticle surface
129 under UV light intensified with the extension of post-eclosion time, and the UV reflectance of
130 female cuticle surface was significantly higher than that of males after 15 days post-eclosion
131 (Figure 2B-figure supplement 1A and B).

132 To validate the correlation between brochosome coverage, body color, and UV light
133 reflectance, we examined the distribution of brochosomes on the cuticle surface of male and
134 female *N. cincticeps* at various post-eclosion intervals using scanning electron microscopy
135 (SEM). SEM results unveiled a gradual reduction in brochosome coverage on the cuticle
136 surface of both sexes as post-eclosion time progressed. Specifically, male coverage decreased
137 from 90% to approximately 40%, whereas female coverage descended from 90% to around 10%
138 (Figure 2C-figure supplement 1A-C). Microscopic analyses of the Malpighian tubule revealed
139 that, with prolonged post-eclosion time, the distal segment of the tubule underwent gradual
140 atrophy, particularly pronounced at 15 days post-eclosion. Notably, females exhibited a more
141 marked atrophy in the distal segment compared to males. By 25 days post-eclosion, the distal
142 segment of the Malpighian tubule in females became indistinguishable from other segments
143 (Figure 2D-figure supplement 1A and B). This denotes a progressive reduction in post-eclosion
144 brochosome synthesis, resulting in a corresponding decrease in brochosome coverage on the
145 cuticle surface. Furthermore, the distribution of brochosomes on the leafhopper cuticle surface
146 may be correlated with its optical characteristics. To substantiate this hypothesis, we analyzed
147 the light reflection characteristics of leafhopper forewings at various post-eclosion time points.
148 The findings revealed a positive correlation between brochosome coverage on the forewings
149 and light reflection values, underscoring the remarkable anti-reflective attributes of the
150 brochosome coating on leafhopper cuticle surface (Figure 2E-figure supplement 1D and E).
151 Brochosomal coverage was found to significantly decrease the reflectance of ultraviolet light
152 on the leafhopper's surface, reducing it from approximately 30% to 20%. Additionally, the
153 reflectance of visible and infrared light was also notably diminished, dropping from around 20%

154 to 10% (Figure 2E-figure supplement 1D and E). In summary, the presence of brochosomal
155 coverage resulted in an overall reduction of surface light reflection by approximately 30%,
156 highlighting its substantial antireflective properties.

157

158 **Preferential capture of leafhoppers with fewer brochosomes by jumping spiders**

159 Given that UV light serves as a crucial visual cue for arthropod predators, especially
160 common visual hunters like jumping spiders(Cronin & Bok, 2016; Li & Lim, 2005; Morehouse
161 et al., 2017; Silberglied, 1979; Zou et al., 2011), the function of the brochosome coating on
162 leafhoppers' cuticle surface could be to avoid predation by reduction of UV light reflectance.
163 This prompted us to investigate the effect of brochosome coatings on reducing predation risk
164 in leafhoppers. Predation experiments were conducted using *Plexippus paykulli* (Figure 2F-
165 figure supplement 2), a common jumping spider in rice fields known to prey on
166 leafhoppers(Yang et al., 2018). We observed the spiders' feeding behavior, noting the time of
167 the first attack and the targeted leafhopper, using these metrics to evaluate predation efficiency
168 (Taylor et al., 2014; Walker & Rypstra, 2002). In the experimental group comprising females
169 and males at 5 days post-eclosion, *P. paykulli* did not exhibit a clear predation preference
170 (Figure 2G). However, in the experimental group involving females and males at 25 days post-
171 eclosion, there was a higher probability of predation on female *N. cincticeps* compared to male
172 ones (Figure 2H). For male *N. cincticeps* in both the 5-day and 25-day post-eclosion
173 experimental groups, *P. paykulli* showed a stronger inclination towards preying on individuals
174 that were eclosed for 25 days, resulting in significantly shorter predation times compared to
175 those at 5 days post-eclosion (Figure 2I). These patterns were consistently observed for female
176 leafhoppers in both the 5-days and 25-days post-eclosion (Figure 2J). The cumulative findings
177 strongly suggest a distinct preference of the jumping spider *P. paykulli* for individuals with lower
178 brochosome coverage on the cuticle surface. Based on these experiments, we proposed the
179 hypothesis that the brochosome coating on the leafhopper cuticle surface may mitigate
180 predation risk by reducing surface light reflection, particularly in the UV spectrum.

181

182 **Identifying the major structural proteins of brochosomes.**

183 Despite the initial discovery of brochosomes in the early 1950s and the confirmation in the
184 1960s that they are protein-lipid particles(Gouranton & Maillet, 1967), the specific protein
185 composition of brochosomes remains unknown. Recent studies suggested that they are
186 primarily composed of brochosomins (BSM) and broosome-associated proteins (BSAP)(Li et
187 al., 2022; Rakitov et al., 2018). BSM, a novel class of secreted proteins with molecular weights
188 ranging from 21 to 40 kDa, is considered as the major structural component of
189 brochosomes(Rakitov et al., 2018). Proteomics studies have identified the proteins composing
190 Brochosomes, but the specific proteins involved in their formation remain unclear.

191 To further elucidate the essential protein components of brochosomes, transcriptomic and
192 proteomic data derived from broosome of *N. cincticeps* were comprehensively analyzed.
193 Based on our prior integrated analysis of the broosome transcriptome and proteome(Wu et
194 al., 2023), in conjunction with literature search results, we selected 50 candidate genes for
195 functional analysis using RNAi-mediated gene silencing. Through RNAi experiments, we
196 successfully identified four genes encoding broosome structural proteins that led to
197 morphological changes in brochosomes (Figure 3A). According to the coding sequence (CDS)
198 length of these genes, the four proteins were named as BSM-1 to BSM-4 (GenBank accession
199 number PP273097, PP273098, PP273099, PP273100) (Figure 3B). Homology analysis
200 suggested that BSM-coding genes might be paralogous (Figure supplement 3A). Although
201 BSM2 and BSM3 exhibited low sequence homology, their protein structures were highly
202 conserved (Figure supplement 3B-C). To validate the functions of these four BSM-coding genes,
203 we synthesized dsRNA from two non-overlapping regions of each gene to minimize off-target
204 effects (Figure supplement 4A). RT-qPCR revealed that both individual and mixed dsRNA
205 injections effectively suppressed the expression of the BSM-coding genes, with mixed
206 injections achieving higher efficiency (Figure 3C-F-figure supplement 4C-J). SEM observations
207 showed that both injection methods induced significant morphological changes in brochosomes,
208 characterized by increased diameters and deformed honeycomb-like structures (Figure 3A-
209 figure supplement 4B). Statistical analysis of SEM data from mixed dsRNA injections indicated
210 a 60-70% reduction in broosome distribution area and a 20% incidence of morphologically
211 abnormal brochosomes compared to dsGFP controls (Figure supplement 5A-B). Additionally,
212 temporal and spatial expression analyses demonstrated that the BSM-coding genes were

213 specifically expressed in the Malpighian tubules (Figure 3G-J) and exhibited relatively stable
214 expression during the early post-eclosion period, followed by a gradual decline after 10 days
215 (Figure 3K-N). By 25 days post-eclosion, the expression of BSM-coding genes declined to
216 around 10% in females and 30-40% in males, respectively (Figure 3K-N). This phenomenon is
217 consistent with our initial microscopic observations, suggesting that the gradual reduction in
218 brochosome synthesis contributes to the decrease of brochosome coverage on the cuticle
219 surface of *N. cincticeps* after adulthood.

220

221 **Brochosome coating diminishes light reflection and facilitates predator avoidance**

222 To further investigate the function of brochosomes in leafhopper cuticle surface associated
223 with light reflection and predator avoidance, we implemented RNAi to simultaneously suppress
224 the expression of all four BSM-coding genes with dsBSM mixture injection. RT-qPCR results
225 demonstrated a substantial downregulation in the expression of these genes compared to the
226 dsGFP control (Figure 4F). Notably, under ultraviolet light, both male and female leafhoppers
227 exhibited a significant increase in UV reflection on their cuticle surface following dsBSM
228 treatment (Figure 4A). Spectral data corroborated these findings, showing elevated emission
229 values in the ultraviolet spectrum on the leafhopper's cuticle surface (Figure 4G). Scanning
230 electron microscopy showed that dsBSM treatment significantly altered brochosome
231 morphology and distribution (Figure 4B and C-figure supplement 6A and B). The distribution
232 area decreased by 80%, and deformed brochosomes accumulated, contrasting with the
233 uniform distribution in the dsGFP treatment (Figure supplement 5A). Additionally, nearly 30%
234 of brochosomes exhibited significant morphological changes following dsBSM treatment
235 (Figure supplement 5B). Transmission electron microscopy of the Malpighian tubules indicated
236 numerous Golgi-derived vacuoles without brochosome distribution in epithelial cells after
237 dsBSM treatment (Figure 4D and E-figure supplement 6C and D). Predation experiments with
238 jumping spiders revealed an increased predation preference for leafhoppers treated with
239 dsBSM. For male leafhoppers, the proportion attacked of the predator was 70%, with a
240 significantly shorter predation time (71.3 s) compared to the dsGFP control (100.4 s) (Figure
241 4H). Similarly, for females, there was a higher predation rate (68.3%) and a significantly shorter

242 predation time (79.6 s) for *dsBSM* treated groups compared to the *dsGFP* ones (30% and 109.9
243 s, respectively) (Figure 4I).

244

245 **Normal structure of the brochosome correlates with its antireflective properties**

246 To further elucidate the correlation between brochosome morphology and its optical
247 performance, we collected brochosomes from the wings of leafhoppers treated with *dsGFP* and
248 *dsBSM*, respectively. Subsequently, these brochosomes were applied to the wings of brown
249 planthoppers and quartz slides. SEM observations revealed that the coverage of brochosomes
250 derived from both *dsGFP* and *dsBSM* treatments on the wings of brown planthoppers and
251 quartz slides were nearly identical (Figure supplement 7). Spectral measurements indicated
252 that the application of brochosomes from both *dsGFP* and *dsBSM* treatments effectively
253 reduced the reflectance of the brown planthopper wings and quartz slides. It should be noted
254 that brochosomes from the *dsGFP* treatment exhibited significantly higher anti-reflective
255 performance compared to those from the *dsBSM* treatment (Figure 4J and K). Additionally,
256 purified BSM proteins applied to quartz glass did not show improved anti-reflective performance
257 over purified GST protein (Figure supplement 8), indicating a strong correlation between
258 brochosome geometry and optical performance.

259

260 **Brochosomes as a camouflage coating for the leafhoppers in the family Cicadellidae**

261 Based on the forementioned findings, brochosomes of *N. cincticeps* can be considered as
262 an anti-reflective stealth coating against visual recognition by the predator *P. paykulli*. However,
263 it remains unknown whether brochosomes also serve as a stealth coating in other leafhopper
264 species. Therefore, we extended our investigation to include additional leafhopper species in
265 the family Cicadellidae, including *Recilia dorsalis*, *Empoasca onukii*, and *Psammotettix alienus*.
266 We carefully removed the brochosomes from the forewings of these leafhopper species using
267 acetone, and found a significant enhancement in UV reflectance on the forewings of the
268 leafhoppers (Figure 5A and B). In addition to *N. cincticeps*, we observed a considerably higher
269 brightness of acetone-treated forewings compared to the untreated ones under UV light for *R.*
270 *dorsalis*, *E. onukii*, and *P. alienus* (Figure 5A). This result suggests that brochosomes as an

271 anti-reflective stealth coating may be commonly existed in various species of the family
272 Cicadellidae.

273 Previous research indicated that the brochosome is a unique secretion in Cicadellidae
274 (Rakitov & Gorb, 2013b; Rakitov et al., 2018). To investigate the conservation of genes linked
275 to brochosome synthesis in Cicadellidae, we systematically screened these four BSM coding
276 genes across 116 other hemipteran insect species (Supplementary Table 2). Results of
277 homology analysis reveal that BSM coding genes are orphan genes restricted to the clade of
278 Membracoidea. However, there are variations in the species distribution of different BSM
279 coding genes. In Membracoidea species, homologous genes for BSM3 and 4 are observed,
280 while BSM2 is identified in Cicadellidae insects, and BSM1 in Deltcephalinae insects (Figure
281 5C). An intriguing observation is that in the majority of Cicadellidae species with confirmed
282 brochosome distribution, homologous gene distribution for BSM2 is detectable. In Cicadellidae
283 species without brochosome distribution and in the majority of Membracidae, BSM2 genes are
284 largely absent (Figure 5C). Since Membracidae evolved from Cicadellidae, we hypothesize that
285 BSM homologous gene duplication/loss may be a key factor in brochosome formation/loss. In
286 conclusion, our data suggest that in Cicadellidae, brochosome is synthesized by a conserved
287 group of BSM coding genes, making it a widely distributed anti-reflective camouflage coating
288 in Cicadellidae.

289

290 **Discussion**

291 Leafhoppers exhibit a distinctive grooming behavior, resulting in the deposition of a unique
292 extra-cuticular coating known as brochosome(Rakitov, 2009). However, the precise
293 characteristics and exact adaptive significance of this specialized coating remain largely
294 unknown. Although they are widely believed to confer hydrophobicity, protecting leafhoppers
295 from water and their own excreta(Rakitov & Gorb, 2013a), similar functionalities are attributed
296 to cuticular waxes on the external surfaces of various insects, including leafhoppers(Andersen,
297 1979; Bello et al., 2022). Consequently, the functionalities of brochosomes may extend beyond
298 this conventional understanding. In this study, we demonstrated that brochosomes exhibit
299 robust anti-reflective properties, decreasing the reflectance of the leafhopper cuticle surface,
300 particularly in the ultraviolet spectral range. This reduction may reduce visibility to visual

301 predators, contributing to the evasion and predation avoidance([Vukusic & Sambles, 2003](#);
302 [Watson et al., 2017](#)). Thus, brochosomes function as a natural camouflage coating on the
303 leafhopper cuticle surface, playing a pivotal role in reducing leafhoppers' visibility to visual
304 predators and offering a distinct advantage for their survival in predation scenarios as illustrated
305 in Fig. 6.

306 The present work has elucidated the function of brochosome as a natural anti-reflective
307 camouflage coating on leafhoppers' extra-cuticular, with its coverage directly influencing the
308 anti-reflective properties of the cuticle surface (Figure 2A-E and Figure 4A-G). Previous studies
309 suggested that arthropods employ various nanostructures formed by proteins, lipids, wax, or
310 adhesive substances on their cuticle surfaces to achieve anti-reflectivity ([Silberglied, 1979](#)).
311 These nanostructures, initially identified in the compound eyes of moths, have been
312 subsequently found to be widely distributed on the cuticle surfaces of insects ([Bernhard, 1965](#);
313 [Blagodatski et al., 2015](#); [Chotard et al., 2022](#); [Clapham & Hutley, 1973](#); [Ho et al., 2016](#); [Monteiro et al., 2019](#); [Stavenga et al., 2005](#)). The nano- and microstructures on insect cuticle surfaces
315 generate a gradual change in refractive index near the surface, leading to antireflectivity ([Raut et al., 2011](#)). The degree of reflection reduction depends on the shape of these nanostructures,
317 studies in *Drosophila melanogaster* have confirmed that modifying the morphology of
318 nanostructures in compound eyes directly impacts their optical performance ([Kryuchkov et al., 2020](#)). In this study, a thorough examination of the structural protein composition of
319 brochosome, coupled with RNAi-mediated suppression of BSM coding gene expression,
320 yielded brochosomes with regular structure (dsGFP treatment) and structurally abnormal
321 brochosomes (dsBSM treatment) (Figure 4B-E). Subsequent in vitro experiments provided
323 further evidence of the correlation between the normal structure of brochosome and its anti-
324 reflective performance (Figure 4J and K). This correlation is likely attributed to the fact that the
325 diameter of the hollow pits in brochosome structure (approximately 100nm) is considerably
326 smaller than most spectral wavelengths([Burks et al., 2022](#); [Rakitov, 2009](#)). As light passes
327 through these small pits, it undergoes diffraction, while light passing through the ridges of
328 brochosome induces scattering. The interference of diffracted and scattered light between
329 different pits and ridges contributes to the observed extinction features in brochosome([Raut et al., 2011](#)). Biomimetic material and mathematical modeling analyses have clarified the

331 relationship between the extinction features of brochosome and the spacing between hollow
332 pits(Banerjee et al., 2023; Lei et al., 2020; Wang et al., 2024; Yang et al., 2017). Therefore, the
333 regular morphology of brochosome is a robust guarantee for its excellent anti-reflective
334 performance.

335 Moreover, we noticed a distinct contrast in the anti-reflective capabilities when applying
336 brochosomes with regular and irregular structures onto different substrates (quartz glass and
337 brown planthopper wings), especially in the UV region (Figure 4J and K). This indicates that
338 the reduction in reflected light is not only related to the structure of brochosome but also to
339 other factors. SEM observations revealed that some brochosome is embedded in the grooves
340 of the leafhopper cuticle surface or brown planthopper wings, which is not observed on the
341 smooth surface of quartz glass (Figure 4B-figure supplement 6). When the wavelength of light
342 is higher than the size of the structure and the surface has a gradient refractive index, light
343 interacts entirely with the rough surface, causing the light to gradually bend(Raut et al., 2011).
344 Combined with the complex structure formed by brochosomes and nanostructures on the
345 cuticle surface, this result in multiple internal reflections of light within these structures,
346 increasing light absorption and significantly enhancing anti-reflective performance. Furthermore,
347 the aromatic ring structures, conjugated double bonds, and peptide bonds in the proteins of
348 both the cuticle and brochosomes may contribute to the absorption of ultraviolet light, providing
349 another potential reason for their anti-reflective capabilities in the ultraviolet spectral region.
350 Therefore, the anti-reflective performance of brochosome on the insect cuticle surface might
351 be a result of the combined effect of brochosome and cuticular nanostructures.

352 UV light serves as a crucial visual cue for various insect predators, enhancing foraging,
353 navigation, mating behavior, and prey identification (Cronin & Bok, 2016; Morehouse et al.,
354 2017; Silberglied, 1979). Predators such as birds, reptiles, and predatory arthropods often rely
355 on UV vision to detect prey (Church et al., 1998; Li & Lim, 2005; Zou et al., 2011). However,
356 UV reflectance from insect cuticles can disrupt camouflage, increasing the risk of detection and
357 predation, as natural backgrounds like leaves, bark, and soil typically reflect minimal UV light
358 (Endler, 1997; Li & Lim, 2005; Tovee, 1995). To mitigate this risk, insects often possess anti-
359 reflective cuticular structures that reduce UV and broad-spectrum light reflectance. This
360 strategy is widespread among insects, including cicadas, dragonflies, and butterflies, and has

361 been shown to decrease predator detection rates (Hooper et al., 2006; Siddique et al., 2015;
362 Zhang et al., 2006). For example, the compound eyes of moths feature hexagonal
363 protuberances that reduce UV reflectance, aiding nocturnal concealment (Blagodatski et al.,
364 2015; Stavenga et al., 2005). In butterflies, UV reflectance from eyespots on wings can attract
365 predators, but reducing UV reflectance or eyespot size can lower predation risk and enhance
366 camouflage (Chan et al., 2019; Lyytinen et al., 2004). Hence, the reflection of ultraviolet light
367 from the insect cuticle surface increases the risk of predation by disrupting camouflage (Tovee,
368 1995) . In this study, we utilized the jumping spider *P. paykulli* to explore the impact of the
369 brochosome coating on the leafhopper's camouflage against predation. Hunting spiders, such
370 as jumping spiders and wolf spiders, are primary predators of leafhoppers(Liu et al., 2015;
371 Oraze & Grigarick, 1989) and the wavelength of UV light plays a crucial role as a visual cue for
372 jumping spiders in identifying and locating their prey compare to the other wavelengths(Li &
373 Lim, 2005; Zou et al., 2011). Our results revealed that *P. paykulli* displayed a preference for
374 preying on *N. cincticeps* with a lower brochosome coverage on their cuticle surface (Figure 2G-
375 J and Figure 4H-I). Thus, we hypothesize that the combination of brochosome and leafhopper
376 cuticular microstructures exhibits superior anti-reflective performance in the UV region,
377 effectively reducing UV reflection from leafhopper bodies and consequently diminishing the
378 predator's ability to identify them. Additionally, spectral measurement data indicated that the
379 wing reflection spectrum of the brown planthopper (Figure 4J) closely resembled the body
380 spectrum of 25-day-old female *N. cincticeps* (Figure 2E). It is possible that, in the same living
381 environment, other Hemipteran insects would be more conspicuous to visual predators than
382 leafhoppers. Brochosome coating could provide an advantage for leafhoppers to evade visual
383 predators, thereby enhancing their survival rates in interspecific competition. This adaptation
384 could potentially favor the survival of Cicadellidae in environments with high predation pressure,
385 allowing them to thrive in a wider range of environments. Additionally, within the leafhopper
386 population, the brochosome coverage on the cuticle surface of older individuals was notably
387 lower than that of younger individuals, making elderly leafhoppers more susceptible to be
388 detected and captured by predators (Figure 2F-I-figure supplement 1). This may help to
389 eliminate older individuals who have lost their reproductive capacity in the population, thereby
390 ensuring the vitality and reproductive power of the population. Therefore, we consider

391 brochosome, as a form of anti-reflective camouflage coating on the leafhopper's cuticle surface,
392 represents a more advanced evolutionary strategy against visual predation.

393 We successfully identified four proteins essential for the structure of brochosomes for the
394 first time (Figure 3). These BSM-encoded genes exhibit typical orphan gene characteristics,
395 consistent with previous findings([Li et al., 2022](#); [Rakitov et al., 2018](#); [Yuan et al., 2023](#)). Orphan
396 genes originate from processes like de novo evolution, horizontal gene transfer (HGT), and
397 duplication–divergence([Light et al., 2014](#); [Tautz & Domazet-Lošo, 2011](#)). To elucidate the
398 evolutionary origin of the four identified BSM genes, we aligned them with all prokaryotic
399 genomes in NCBI and approximately 1000 arthropod genomes. Interestingly, the homologous
400 genes of these BSM genes were exclusively found in leafhopper genomes in the family
401 Cicadellidae, suggesting that the origin of these BSM genes might not be due to de novo
402 evolution or horizontal gene transfer. Combining the species distribution of the four identified
403 BSM genes (as well as their homology) (Figure 5C), we hypothesize that the BSMs were
404 potentially originated from a process involving duplication–divergence. In this scenario, a new
405 gene would be created through gene duplication or transposition, undergoing fast adaptive
406 evolution and losing similarity to the original gene([Light et al., 2014](#); [Tautz & Domazet-Lošo,](#)
407 [2011](#)). For instance, BSM4 is widely present in Membracoidea species and also has
408 homologous genes in *Clastoptera arizonana* of Cereopoidea, indicating that BSM4 may have
409 a common ancestral gene in Cicadomorpha. The specialization of the distal segment of the
410 Malpighian tubule is a characteristic shared by the three major lineages of the infraorder
411 Cicadomorpha: Cercopoidea(spittle-bugs), Cicadoidea(cicadas), and Membracoidea
412 (leafhoppers and treehoppers) ([Rakitov, 2002](#)). Cicadas coat the surface of their burrows with
413 secretions from the Malpighian tubules, spittlebug nymphs have their integuments covered with
414 foam synthesized by the Malpighian tubules, and leafhoppers coat their integuments with
415 brochosomes synthesized by the Malpighian tubules ([Chang et al., 2019](#); [Rakitov, 2002](#)). The
416 different demands for secretions from the Malpighian tubules among these insects may be the
417 main reason for the rapid adaptive evolution of BSM genes.

418 Among Auchenorrhyncha insects, most Cicadellidae (leafhoppers) secrete brochosomes,
419 while many Membracidae (treehoppers) exhibit grooming behavior but lack specialized setae
420 ([Rakitov, 1996](#)). Considering that Membracidae are derived from Cicadellidae ([Dietrich et al.,](#)

421 2001), the formation of the symbiotic relationship between treehoppers and ants might due to
422 the loss of brochosome synthesis capability. Ants create a protective environment around
423 treehoppers, deterring threats and reducing predation pressure, providing a relatively secure
424 living environment, leading to lower predation pressure compared to leafhoppers (Del-Claro &
425 Oliveira, 2000; Nelson & Mooney, 2022). Consequently, the need for the protective disguise
426 represented by brochosomes is likely diminished. We hypothesize that environmental changes
427 drive brochosome evolution, supported by the distribution of BSM2 and BSM3 paralogs in
428 Auchenorrhyncha. BSM3 homologs are widespread in Auchenorrhyncha, while BSM2 is
429 restricted to brochosome-secreting Cicadellidae and absent in most Membracidae. The high
430 structural homology between BSM2 and BSM3, despite low sequence similarity, suggests that
431 BSM2 arose from BSM3 duplication. We propose that gene duplication/loss events are the
432 primary factors underlying differences in brochosome synthesis between Cicadellidae and
433 Membracidae. Gene duplication/loss is a common mechanism for functional gain/loss in
434 eukaryotes, promoting protein diversity and redundancy (Wong & Belov, 2012). Thus, gene
435 duplication may be a key driver of brochosome formation and functional diversity in leafhoppers.

436 In summary, our research has underscored the indispensable role of brochosomes as an
437 essential anti-reflective camouflage coating for leafhoppers, conferring a significant advantage
438 in evading visually-oriented predators. We have identified four key BSM encoding genes, a
439 groundbreaking discovery in brochosome research, which suggests that gene duplication may
440 be involved in the formation of these adaptive structures. Our study not only deepens our
441 understanding of leafhoppers' anti-predator strategies but also sheds light on the distinct
442 evolutionary trajectories employed by these insects within their ecological niche. This
443 contributes to the development of biomimicry and the advancement of state-of-the-art
444 camouflage technologies. Furthermore, while our study has provided valuable insights into the
445 structure and function of brochosomes, there are still gaps in our knowledge regarding the
446 evolutionary origins of BSMs. Future research should aim to fill these gaps, as a more
447 comprehensive understanding of BSMs and their role in brochosome formation will enhance
448 our appreciation of the complex evolutionary processes that have shaped these unique
449 structures. Additionally, the analysis of BSMs in a broader range of leafhopper species will help
450 elucidate the relationship between BSM composition and the morphological and functional

451 diversity of brochosomes, further informing our understanding of the ecological and
452 evolutionary dynamics of this insect group.

453

454 **Materials and Methods**

455 **Insect**

456 The leafhopper *N. cincticeps* and *R. dorsalis* adults were collected from a rice field in Jiaxing,
457 Zhejiang Province, China in September 2020. *P. alienus* adults were collected from a wheat
458 field in Shenyang, Liaoning Province, China in May 2020. *E. onukii* adult were collected from a
459 tea-garden in Fuzhou, Fijian province, China in May 2020. The identity of the leafhopper
460 species was confirmed using stereomicroscopy and mitochondrial cytochrome oxidase subunit
461 1 (CO1) sequence analysis (Supplementary Table 1). Collected leafhopper *N. cincticeps* and
462 *R. dorsalis* are maintained in insect-proof greenhouses at $26 \pm 1^\circ\text{C}$ under a 16:8 h light:dark
463 photoperiod and $50 \pm 5\%$ relative humidity on rice variety TaiChung Native 1(TN1).

464 The jumping spider *P. paykulli* were collected from a rice field in Ningbo, Zhejiang Province,
465 China. Species identification was confirmed by assessing its morphological characteristics
466 using stereomicroscopy and CO1 sequence analysis (Supplementary Table 1). Jumping
467 spiders were fed about their own mass of leafhoppers *N. cincticeps* three times each week and
468 examined 14-52 days following collection, as previously reported (Taylor et al., 2014).

469

470 **Electron microscopy**

471 The Malpighian tubules of *N. cincticeps* were dissected using an astereomicroscope, serially
472 fixed overnight at 4°C with 2.5% glutaraldehyde in 0.1 mol/L PBS, and post-fixed for 2 hours at
473 room temperature with 1% OsO4. Following that, samples were dehydrated in a series of
474 ethanol solutions (50%, 70%, 80%, 90%, and 95%), then permeabilized with 100% ethanol and
475 100% acetone, followed by a series of epoxies in acetone (50%, 75%, and 100%). The pierced
476 tissue was then immersed in epoxy resin and baked for more than 24 hours at 70°C . Ultrathin
477 slices were cut and stained with uranyl acetate for 15 minutes and lead citrate for 5 minutes,
478 and examined by Hitachi H7800 microscope (Hitachi, Japan).

479 Scanning electron microscopy was used to observe the morphology of leafhopper
480 brochosomes. Samples were prepared as previously described(Rakitov & Gorb, 2013a).

481 Leafhopper forewings were obtained by dissection under the stereomicroscope and glued onto
482 SEM metal stubs with a double-sided carbon tape. The dried samples were coated with gold
483 for 1 min in a MC1000 Ion Sputter Coater (Hitachi, Japan) and viewed by a HITACHI Regulus
484 8100 SEM (Hitachi, Japan).

485

486 **Spider predation experiment**

487 Jumping spiders were starved for three days prior to the predation experiment to ensure
488 that participating spiders were hungry enough to attack leafhoppers in our predation preference
489 tests, but not so hungry that they would attack the first prey they encountered (without being
490 choosy)([Taylor et al., 2014](#)). For the jumping spiders to prey on, we placed two leafhoppers in
491 a 9 cm diameter test arena (the bottom of the dish was covered with filter paper). Before starting
492 the test, the spiders were placed in the arena for 15 minutes to adapt, and then they were
493 released and permitted to prey on the leafhoppers. We directly observed the feeding process
494 of the jumping spiders and recorded when the spiders attacked the first leafhopper and which
495 leafhopper they preyed on. The predation finishes when the first leafhopper is attacked or when
496 the jumping spider does not attack any leafhopper within 5 minutes. Each pair of jumping spider
497 predation tests were independently replicated more than 60 times.

498

499 **The distribution of cuticle surface brochosomes and the optical properties of male and** 500 **female insects at various periods post-eclosion**

501 To investigate the distribution of brochosomes on the cuticle surface of adult *N. cincticeps*
502 at various post-eclosion periods, we first collected female and male adult leafhoppers at 5-, 10-,
503 15-, 20-, and 25-days post-eclosion and dissected the forewings under a Nikon SMZ25
504 microscope (Nikon, Japan). The forewings were gold-sprayed and examined using HITACHI
505 Regulus 8100 SEM (Hitachi, Japan). At each time point, 30 samples were randomly selected
506 for SEM imaging. A 10 $\mu\text{m} \times 10 \mu\text{m}$ area within the SEM images was used to assess
507 brochosome coverage, and ImageJ was employed for analysis([Schneider et al., 2012](#)). Since
508 brochosomes are synthesized at the distal section of the Malpighian tubule and the morphology
509 of the Malpighian tubule in leafhoppers can also reflect brochosomes synthesis, we used Nikon

510 SMZ25 microscope (Nikon, Japan) to examine the morphology of the Malpighian tubule in
511 female and male adult leafhoppers at 5-, 10-, 15-, 20-, and 25-days post-eclosion.

512 To examine the optical properties of male and female insects at various periods post-
513 eclosion, we first collected female and male adult leafhoppers at 5-, 10-, 15-, 20-, and 25-days
514 post-eclosion, freeze-killed them and placed them under white or UV light for observation
515 through a Nikon SMZ25 microscope (Nikon, Japan). Following that, the forewings of the
516 leafhoppers were meticulously dissected, and the specular reflectance spectra of the forewings
517 (25 × 25 µm) were precisely measured utilizing a 20/30 PV UV-Vis-NIR
518 microspectrophotometer (CRAIC Technologies Inc., USA). UV-Vis-NIR reflectance spectra
519 (250 to 1000 nm) were obtained using a 10× UV-absorbing glass objective lens, with a minimum
520 of five replicates per sample.

521

522 **Identification of brochosome structural protein-coding genes**

523 Candidate brochosome structural protein-coding genes were identified through a combined
524 analysis of transcriptomic and proteomic data. To knock down the expression of these
525 candidates, RNAi was conducted by microinjecting double-stranded RNA (dsRNA) into the
526 abdomens of fifth instar nymphs. The dsRNAs targeting 500-1000 bp regions of Malpighian
527 tubule-specific expression genes or GFP were synthesized in vitro using the T7 RiboMAX
528 Express RNAi System (Promega, USA). The 50 fifth instar nymphs of *N. cincticeps* were
529 microinjected with 30 nl dsRNA (0.5 µg µl⁻¹) using the Nanoject II Auto-Nanoliter Injector
530 (Drummond, USA). Thereafter, they were transferred to healthy rice seedlings for recovery.
531 Forewings of treated leafhoppers were collected 7 days after microinjection (about 4-5 days
532 post-eclosion), sprayed with gold, and analyzed by HITACHI Regulus 8100 SEM (Hitachi,
533 Japan). Screening identified four brochosome structural protein-coding genes, and inhibiting
534 their expression resulted in significant changes in brochosome morphology. The full-length
535 sequence of these genes was obtained using by 5'-rapid amplification of cDNA ends (RACE)
536 and 3'-RACE using SMARTer RACE 5'/3' Kit (Clontech, USA).

537 To analyze the temporal expression profiles of four brochosome structural protein-coding
538 genes (GenBank accession number PP273097, PP273098, PP273099, PP273100), the whole
539 body, salivary gland, midgut, ovary, and testis were dissected from 200 adult insects, total RNA

540 in different tissue were extracted using TRIzol Reagent (Invitrogen, USA). The relative
541 expression of these genes in different tissues of *N. cincticeps* adults was detected by RT-qPCR
542 assay using a QuantStudio™ 5 Real-Time PCR system (Thermo Fisher Scientific, USA). The
543 detected transcript levels were normalized to the transcript level of the housekeeping gene
544 elongation factor 1 alpha (EF1 α) (GenBank accession number AB836665) and estimated by
545 the 2- $\Delta\Delta Ct$ (cycle threshold) method. Using the same procedure, the expression levels of
546 these brochosome structural protein-coding genes were evaluated in female and male adult
547 leafhoppers at 5-, 10-, 15-, 20-, and 25-days post-eclosion.

548 To investigate the effects of four BSM-encoding genes on brochosome morphology and
549 distribution, dsRNAs were designed to target two non-overlapping regions within the sequences
550 of these genes. These dsRNAs were microinjected into the abdomens of leafhoppers both
551 individually and in combination, with dsRNA targeting GFP serving as a negative control.
552 Following a seven-day incubation period post-injection, changes in BSM gene expression were
553 assessed in both control and treated groups via RT-qPCR. The morphology and distribution of
554 brochosomes on the leafhopper cuticle were examined and documented using SEM.
555 Additionally, ImageJ software was employed to quantify the proportion of morphologically
556 abnormal brochosomes and the distribution area of brochosomes on the cuticle surface after
557 injection of the dsRNA mixtures targeting the two non-overlapping regions of each BSM gene,
558 as well as after dsGFP treatment.

559

560 **Knocking down *in vivo* expression of BSM-coding genes in *N. cincticeps***

561 Following the prior procedure, dsRNA produced from four BSM-coding genes was injected
562 into the abdomen of fifth instar nymphs of *N. cincticeps* by microinjection, and a control group
563 injected with dsGFP was established. After a seven-day incubation post-injection, alterations
564 in the expression of the four BSM genes were monitored in the dsBSM and dsGFP treated
565 leafhoppers using RT-qPCR. The synthesis of brochosomes within the Malpighian tubules was
566 investigated through TEM analysis. The morphology and distribution of brochosomes on the
567 leafhopper cuticle were observed and imaged using SEM. To examine the optical properties,
568 the dsBSM and dsGFP treated leafhoppers, freeze-killed them and placed them under white or
569 UV light for observation through a Nikon SMZ25 microscope (Nikon, Japan). Subsequently, the

570 forewings of the leafhoppers were meticulously dissected, and the specular reflectance spectra
571 of the forewings (25 × 25 µm) were precisely measured utilizing a 20/30 PV UV-Vis-NIR
572 microspectrophotometer (CRAIC Technologies Inc., USA). UV-Vis-NIR reflectance spectra
573 (250 to 1000 nm) were obtained using a 10× UV-absorbing glass objective lens, with a minimum
574 of five replicates per sample. Finally, the predation preference of the jumping spiders on the
575 ds*BSM* and ds*GFP* treated leafhoppers was examined by a predation experiment.

576

577 **In vitro measurements were conducted to assess the relationship between brochosome
578 morphology and their optical performance.**

579 To collect approximately 500 *N. cincticeps* treated with ds*GFP* or ds*BSM*, dissect the
580 forewings of the leafhoppers and immerse them in acetone in a 50 mL centrifuge tube. Place
581 the centrifuge tubes on a room temperature orbital shaker at 50 rpm for 12 hours to separate
582 the forewings from the leafhoppers due to friction. Following this, centrifuge at 1000g for 10
583 minutes to separate the brochosomes. Resuspend the particles in fresh acetone, briefly
584 sonicate, then centrifuge at 1000g for 10 minutes. Repeat this process three times. Resuspend
585 the collected brochosomes from ds*GFP* and ds*BSM*-treated leafhopper forewings in acetone
586 and adjust the two suspension solutions to the same OD280 reading. Next, using a pipette,
587 carefully drop the brochosome solution onto quartz slides and brown planthopper wings. Allow
588 the acetone to completely evaporate at room temperature. At the same time, we also set up
589 quartz slides and brown planthopper wings that were treated with acetone alone as negative
590 controls. Prepared quartz slides and brown planthopper wings can be observed under SEM to
591 examine the distribution of brochosomes. Additionally, UV-Vis-NIR reflectance spectra (250 to
592 1000 nm) were obtained using a 20/30 PV UV-Vis-NIR microspectrophotometer (CRAIC
593 Technologies Inc., USA), with a minimum of five replicates per sample.

594 To investigate the correlation between BSM proteins and the optical characteristics of
595 brochosomes, the four genes encoding BSM proteins were separately cloned into pET-28a or
596 pGEX-4T2 vectors. Following induction, the expressed proteins were purified from cell lysates
597 via batch affinity chromatography using either glutathione (GSH) agarose or nickel-
598 nitrilotriacetic acid (Ni-NTA) agarose, depending on the fusion tag. GST protein was produced
599 following the identical protocol from cells harboring the empty pGEX-4T2 vector. The purified

600 BSM fusion proteins and GST protein were normalized to an equivalent OD280 value. These
601 protein solutions were then meticulously spotted onto quartz slides and permitted to dry
602 completely at ambient temperature. In parallel, quartz slides treated exclusively with PBS
603 served as negative controls. The quartz slides were subsequently analyzed to acquire UV-Vis-
604 NIR reflectance spectra (ranging from 250 to 1000 nm) using a 20/30 PV UV-Vis-NIR
605 microspectrophotometer (CRAIC Technologies Inc., USA), with a minimum of five technical
606 replicates conducted per sample.

607

608 **Removal of leafhopper forewing brochosome by acetone**

609 Previous research has shown that acetone may efficiently remove brochosomes from the
610 cuticle surface of leafhoppers([Rakitov et al., 2018](#)). We manually removed the brochosomes
611 from the forewings of leafhoppers using acetone and examined the imaging under white or UV
612 light for observation through a Nikon SMZ25 microscope (Nikon, Japan). UV-Vis-NIR
613 reflectance spectra (250 to 1000 nm) were obtained using a 20/30 PV UV-Vis-NIR
614 microspectrophotometer (CRAIC Technologies Inc., USA), with a minimum of five replicates
615 per sample.

616

617 **Bioinformatics analysis and phylogenetic tree**

618 The brochosome is a unique secretion produced by leafhoppers (Cicadellidae). In order to
619 determine the distribution of brochosome structural protein-coding genes in Hemiptera, the
620 brochosome structural protein-coding genes were used as queries to search for homologous
621 sequences in Hemiptera transcriptomes. We examined 116 Hemiptera species, encompassing
622 major families (Acanaloniidae, Achilidae, Aetalionidae, Aphrophoridae, Caliscelidae,
623 Cercopidae, Cicadellidae, Cicadidae, Cixiidae, Clastopteridae, Delphacidae, Derbidae,
624 Dictyopharidae, Epipygidae, Eurybrachidae, Flatidae, Fulgoridae, Issidae, Machaerotidae,
625 Melizoderidae, Membracidae, Myerslopiidae, Nogodinidae, Peloridiidae, Ricanidae,
626 Tettigarctidae, Tettigometridae, Theaceae, Tropiduchidae). Transcriptome data of 116
627 Hemiptera species were downloaded from the NCBI Sequence Read Archive (Supplementary
628 Table 2), and assembled using SOAPdenovo-Trans (version 1.01)([Xie et al., 2014](#)). The
629 resulting transcripts were filtered to remove potential contaminants. We compared four

630 identified BSM-encoded genes with these transcriptomes using the tblastn (E-value < 1.0e-5).
631 Heatmaps were generated using TBtools software([Chen et al., 2023](#)). At least one homologous
632 gene for the four BSM genes was identified in 66 species. A species phylogenetic tree for these
633 66 Hemiptera species was constructed following the methods outlined in previous
634 studies([Johnson et al., 2018](#)). OrthoFinder to identify orthogroups and infer the species tree,
635 obtaining 1683 single-copy orthologous genes after filtering ([Emms & Kelly, 2019](#)). MAFFT was
636 employed for sequence alignment, followed by trimming with trimAI ([Capella-Gutiérrez et al.,](#)
637 [2009; Katoh & Standley, 2013](#)). The best amino acid substitution model was selected using
638 ModelFinder based on the Bayesian Information Criterion (BIC) ([Kalyaanamoorthy et al., 2017](#)).
639 The maximum likelihood phylogenetic tree was constructed using IQ-TREE v1.6.8 with 1000
640 ultrafast bootstrap replicates ([Minh et al., 2020](#)). All analyses were conducted using PhyloSuite
641 v1.2.2, which integrates MAFFT, trimAI, ModelFinder, and IQ-TREE into a unified pipeline
642 ([Capella-Gutiérrez et al., 2009; Emms & Kelly, 2019; Kalyaanamoorthy et al., 2017; Katoh &](#)
643 [Standley, 2013; Minh et al., 2020; Zhang et al., 2020](#)).

644 The amino acid sequences of BSM2 and BSM3 were aligned using the Clustal W multiple
645 sequence alignment program([Larkin et al., 2007](#)). AlphaFold2 was employed to predict the
646 three-dimensional structures of BSM2 and BSM3, and structural alignments were conducted
647 using PyMOL([DeLano, 2002; Jumper et al., 2021](#)). In Membracoidea, the maximum likelihood
648 (ML) phylogenetic tree for BSM1-4 was constructed using MAFFT, trimAI, ModelFinder, and
649 IQ-TREE in PhyloSuite ([Capella-Gutiérrez et al., 2009; Emms & Kelly, 2019; Kalyaanamoorthy](#)
650 [et al., 2017; Katoh & Standley, 2013; Minh et al., 2020; Xiang et al., 2023; Zhang et al., 2020](#)).

651

652 **Statistical analyses**

653 All experiments were performed at least three independent replicates and statistical
654 analyses were performed with GraphPad Prism8.0 software. Statistical significance was
655 calculated by a two-tailed Student's t-test, one-way ANOVA, two-way ANOVA and/or unpaired
656 Student's t-test. P-values < 0.05 were considered statistically significant.

657

658 **Acknowledgments**

659 This work received support from the National Natural Science Foundation of China
660 (U23A6006, U20A2036, 32270150) and the Natural Science Foundation of Ningbo Municipality
661 (2023J112). The author acknowledges Dr. Yuan Cheng from the Instrumentation and Service
662 Center for Molecular Science (ISCMS) at Westlake University for assistance with optical
663 measurement and data interpretation. We are grateful for the support provided by the
664 Bioimaging Center of the Bioimaging Center, State Key Laboratory for Managing Biotic and
665 Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo
666 University, in TEM and SEM measurement and data interpretation. Additionally, we thank
667 Professor Shou-Wei Ding (University of California, Riverside, CA, United States) for his
668 valuable and constructive suggestions for manuscript improvement.

669

670 **Author contributions:**

671 W.W. J.-M.L., C.-X.Z., and J.-P.C. designed research; W.W. Q.M. Z.Y. Z.L. performed
672 research; W.W. and Z.Y. analyzed data; and W.W. H.-W.S., J.-M.L., C.-X.Z., and J.-P.C wrote
673 the paper. All authors gave final approval for publication. All authors have read and agreed to
674 the published version of the manuscript.

675

676 **Data availability**

677 All the data needed to understand and assess the conclusions of this research are available
678 in the article, Supplementary Materials, and GenBank (accession number PP273097,
679 PP273098, PP273099, PP273100). Any additional information required to reanalyse the data
680 reported in this paper is available from the lead contact upon request.

681

682 **Declaration of interests**

683 The authors declare no competing interests.

684

685 **References**

686 Andersen, S. O. (1979). Biochemistry of insect cuticle. *Annual review of entomology*, 24(1), 29-
687 59.

688 Banerjee, P., Burks, G. R., Bialik, S. B., Nassr, M., Bello, E., Alleyne, M., Freeman, B. D., Barrick,
689 J. E., Schroeder, C. M., & Milliron, D. J. (2023). Nanostructure - Derived Antireflectivity
690 in Leafhopper Brochosomes. *Advanced Photonics Research*, 4(7), 2200343.
691 <https://doi.org/10.1002/adpr.202200343>

692 Bello, E., Chen, Y., & Alleyne, M. (2022). Staying Dry and Clean: An Insect's Guide to
693 Hydrophobicity. *Insects*, 14(1), 42. <https://doi.org/10.3390/insects14010042>

694 Bernhard, C. G. (1965). The insect corneal nipple array. A biological, broad-band impedance
695 transformer that acts as an antireflection coating. *Acta physiol. scand.*, 63(243), 1-79.

696 Blagodatski, A., Sergeev, A., Kryuchkov, M., Lopatina, Y., & Katanaev, V. L. (2015). Diverse set
697 of Turing nanopatterns coat corneae across insect lineages. *Proceedings of the
698 National Academy of Sciences*, 112(34), 10750-10755.
699 <https://doi.org/10.1073/pnas.1505748112>

700 Burks, G. R., Yao, L., Kalutantirige, F. C., Gray, K. J., Bello, E., Rajagopalan, S., Bialik, S. B.,
701 Barrick, J. E., Alleyne, M., Chen, Q., & Schroeder, C. M. (2022). Electron Tomography
702 and Machine Learning for Understanding the Highly Ordered Structure of Leafhopper
703 Brochosomes. *Biomacromolecules*, 24(1), 190-200.
704 <https://doi.org/10.1021/acs.biomac.2c01035>

705 Capella-Gutiérrez, S., Silla-Martínez, J. M., & Gabaldón, T. (2009). trimAl: a tool for automated
706 alignment trimming in large-scale phylogenetic analyses. *Bioinformatics*, 25(15), 1972-
707 1973.

708 Chan, I. Z., Rafi, F. Z., & Monteiro, A. (2019). Interacting effects of eyespot number and
709 ultraviolet reflectivity on predation risk in *Bicyclus anynana* (Lepidoptera: Nymphalidae).
710 *Journal of Insect Science*, 19(6), 19.

711 Chang, S.-C., Shih, H.-T., & Lu, K.-H. (2019). Antifungal effect and chitinase activities of the
712 froth of spittlebug *Poophilus costalis* (Walker)(Hemiptera: Cercopoidea:
713 Aphrophoridae). *Journal of Asia-Pacific Entomology*, 22(1), 269-273.

714 Chen, C., Wu, Y., Li, J., Wang, X., Zeng, Z., Xu, J., Liu, Y., Feng, J., Chen, H., He, Y., & Xia, R.
715 (2023). TBtools-II: A “one for all, all for one” bioinformatics platform for biological big-
716 data mining. *Molecular plant*, 16(11), 1733-1742.
717 <https://doi.org/10.1016/j.molp.2023.09.010>

718 Chotard, A., Ledamoisel, J., Decamps, T., Herrel, A., Chaine, A. S., Llaurens, V., & Debat, V.
719 (2022). Evidence of attack deflection suggests adaptive evolution of wing tails in
720 butterflies. *Proceedings of the Royal Society B: Biological Sciences*, 289(1975),
721 20220562. <https://doi.org/10.1098/rspb.2022.0562>

722 Church, S. C., Bennett, A. T. D., Cuthill, I. C., & Partridge, J. C. (1998). Ultraviolet cues affect
723 the foraging behaviour of blue tits. *Proceedings of the Royal Society of London. Series
724 B: Biological Sciences*, 265(1405), 1509-1514. <https://doi.org/10.1098/rspb.1998.0465>

725 Cinel, S. D., Hahn, D. A., & Kawahara, A. Y. (2020). Predator-induced stress responses in
726 insects: A review. *Journal of insect physiology*, 122, 104039.
727 <https://doi.org/10.1016/j.jinsphys.2020.104039>

728 Clapham, P., & Hutley, M. (1973). Reduction of lens reflexion by the “Moth Eye” principle. *Nature*,
729 244(5414), 281-282.

730 Cronin, T. W., & Bok, M. J. (2016). Photoreception and vision in the ultraviolet. *Journal of*
731 *Experimental Biology*, 219(18), 2790-2801. <https://doi.org/10.1242/jeb.128769>

732 Del-Claro, K., & Oliveira, P. S. (2000). Conditional outcomes in a neotropical treehopper-ant
733 association: temporal and species-specific variation in ant protection and homopteran
734 fecundity. *Oecologia*, 124(2), 156-165. <https://doi.org/10.1007/s004420050002>

735 DeLano, W. L. (2002). Pymol: An open-source molecular graphics tool. *CCP4 Newslett. Protein*
736 *Crystallogr.*, 40(1), 82-92.

737 Dietrich, C., Rakitov, R., Holmes, J., & Black IV, W. (2001). Phylogeny of the major lineages of
738 Membracoidea (Insecta: Hemiptera: Cicadomorpha) based on 28S rDNA sequences.
739 *Molecular Phylogenetics and Evolution*, 18(2), 293-305.

740 Emms, D. M., & Kelly, S. (2019). OrthoFinder: phylogenetic orthology inference for comparative
741 genomics. *Genome biology*, 20, 1-14.

742 Endler, J. A. (1997). Some general comments on the evolution and design of animal
743 communication systems. *Philosophical Transactions of the Royal Society of London.*
744 *Series B: Biological Sciences*, 340(1292), 215-225.
745 <https://doi.org/10.1098/rstb.1993.0060>

746 Galloway, J. A. M., Green, S. D., Stevens, M., & Kelley, L. A. (2020). Finding a signal hidden
747 among noise: how can predators overcome camouflage strategies? *Philosophical*
748 *Transactions of the Royal Society B: Biological Sciences*, 375(1802), 20190478.
749 <https://doi.org/10.1098/rstb.2019.0478>

750 Gouranton, J., & Maillet, P.-L. (1967). Origine et structure des brochosomes. *Journal de*
751 *Microscopie*, 6, 53-64.

752 Hibino, H. (1996). Biology and Epidemiology of Rice Viruses. *Annual review of phytopathology*,
753 34(1), 249-274. <https://doi.org/10.1146/annurev.phyto.34.1.249>

754 Ho, S., Schachat, S. R., Piel, W. H., & Monteiro, A. (2016). Attack risk for butterflies changes
755 with eyespot number and size. *Royal Society open science*, 3(1), 150614.
756 <https://doi.org/10.1098/rsos.150614>

757 Hooper, I. R., Vukusic, P., & Wootton, R. J. (2006). Detailed optical study of the transparent
758 wing membranes of the dragonfly Aeshna cyanea. *Optics express*, 14(11), 4891-4897.
759 <https://doi.org/10.1364/oe.14.004891>

760 Hughes, A., Liggins, E., & Stevens, M. (2019). Imperfect camouflage: how to hide in a variable
761 world? *Proceedings of the Royal Society B: Biological Sciences*, 286(1902), 20190646.
762 <https://doi.org/10.1098/rspb.2019.0646>

763 Johnson, K. P., Dietrich, C. H., Friedrich, F., Beutel, R. G., Wipfler, B., Peters, R. S., Allen, J.
764 M., Petersen, M., Donath, A., Walden, K. K. O., Kozlov, A. M., Podsiadlowski, L., Mayer,
765 C., Meusemann, K., Vasilikopoulos, A., Waterhouse, R. M., Cameron, S. L., Weirauch,
766 C., Swanson, D. R.,...Yoshizawa, K. (2018). Phylogenomics and the evolution of
767 hemipteroid insects. *Proceedings of the National Academy of Sciences*, 115(50),
768 12775-12780. <https://doi.org/10.1073/pnas.1815820115>

769 Jones, M. P., Pierce, K. E., & Ward, D. (2007). Avian Vision: A Review of Form and Function
770 with Special Consideration to Birds of Prey. *Journal of exotic pet medicine*, 16(2), 69-
771 87. <https://doi.org/10.1053/j.jepm.2007.03.012>

772 Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool,
773 K., Bates, R., Žídek, A., & Potapenko, A. (2021). Highly accurate protein structure
774 prediction with AlphaFold. *Nature*, 596(7873), 583-589.

775 Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K., Von Haeseler, A., & Jermiin, L. S. (2017).
776 ModelFinder: fast model selection for accurate phylogenetic estimates. *Nature
777 methods*, 14(6), 587-589.

778 Katoh, K., & Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7:
779 improvements in performance and usability. *Molecular biology and evolution*, 30(4),
780 772-780.

781 Kryuchkov, M., Bilousov, O., Lehmann, J., Fiebig, M., & Katanaev, V. L. (2020). Reverse and
782 forward engineering of Drosophila corneal nanocoatings. *Nature*, 585(7825), 383-389.
783 <https://doi.org/10.1038/s41586-020-2707-9>

784 Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H.,
785 Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J., &
786 Higgins, D. G. (2007). Clustal W and Clustal X version 2.0. *Bioinformatics*, 23(21),
787 2947-2948. <https://doi.org/10.1093/bioinformatics/btm404>

788 Lei, C.-W., Chen, R.-Y., & Yang, H. (2020). Leafhopper Wing-Inspired Broadband
789 Omnidirectional Antireflective Embroidered Ball-Like Structure Arrays Using a
790 Nonlithography-Based Methodology. *Langmuir*, 36(19), 5296-5302.
791 <https://doi.org/10.1021/acs.langmuir.0c00634>

792 Li, D., & Lim, M. L. M. (2005). Ultraviolet cues affect the foraging behaviour of jumping spiders.
793 *Animal Behaviour*, 70(4), 771-776. <https://doi.org/10.1016/j.anbehav.2004.12.021>

794 Li, Z., Li, Y., Xue, A. Z., Dang, V., Holmes, V. R., Johnston, J. S., Barrick, J. E., Moran, N. A., &
795 Parsch, J. (2022). The Genomic Basis of Evolutionary Novelties in a Leafhopper.
796 *Molecular biology and evolution*, 39(9), msac184.
797 <https://doi.org/10.1093/molbev/msac184>

798 Light, S., Basile, W., & Elofsson, A. (2014). Orphans and new gene origination, a structural and
799 evolutionary perspective. *Current Opinion in Structural Biology*, 26, 73-83.
800 <https://doi.org/10.1016/j.sbi.2014.05.006>

801 Lim, U. T., & Ben-Yakir, D. (2020). Visual sensory systems of predatory and parasitic arthropods.
802 *Biocontrol Science and Technology*, 30(7), 728-739.
803 <https://doi.org/10.1080/09583157.2020.1752362>

804 Lin, M., Yang, G., Wang, Z., & You, M. (2021). Brochosome detachment facilitates Empoasca
805 onukii (Hemiptera: Cicadellidae) adults escaping from spider web. *Acta Entomol Sin*,
806 64, 213-222.

807 Liu, S., Li, Z., Sui, Y., Schaefer, D. A., Alele, P. O., Chen, J., & Yang, X. (2015). Spider foraging
808 strategies dominate pest suppression in organic tea plantations. *BioControl*, 60(6),
809 839-847. <https://doi.org/10.1007/s10526-015-9691-2>

810 Lyytinen, A., Brakefield, P. M., Lindström, L., & Mappes, J. (2004). Does predation maintain
811 eyespot plasticity in *Bicyclus anynana*? *Proceedings of the Royal Society of London.
812 Series B: Biological Sciences*, 271(1536), 279-283.

813 Minh, B. Q., Schmidt, H. A., Chernomor, O., Schrempf, D., Woodhams, M. D., Von Haeseler,
814 A., & Lanfear, R. (2020). IQ-TREE 2: new models and efficient methods for

815 phylogenetic inference in the genomic era. *Molecular biology and evolution*, 37(5),
816 1530-1534.

817 Monteiro, A., Rafi, F. Z., Chan, I. Z. W., & Fiedler, K. (2019). Interacting Effects of Eyespot
818 Number and Ultraviolet Reflectivity on Predation Risk in *Bicyclus anynana* (Lepidoptera:
819 Nymphalidae). *Journal of Insect Science*, 19(6). <https://doi.org/10.1093/jisesa/iez123>

820 Morehouse, N. I., Buschbeck, E. K., Zurek, D. B., Steck, M., & Porter, M. L. (2017). Molecular
821 Evolution of Spider Vision: New Opportunities, Familiar Players. *Biological Bulletin*,
822 233(1), 21-38. <https://doi.org/10.1086/693977>

823 Nelson, A. S., & Mooney, K. A. (2022). The Evolution and Ecology of Interactions Between Ants
824 and Honeydew-Producing Hemipteran Insects. *Annual Review of Ecology, Evolution,
825 and Systematics*, 53(1), 379-402. <https://doi.org/10.1146/annurev-ecolsys-102220-014840>

826 Oraze, M. J., & Grigarick, A. A. (1989). Biological control of aster leafhopper (Homoptera:
827 Cicadellidae) and midges (Diptera: Chironomidae) by *Pardosa ramulosa* (Araneae:
828 Lycosidae) in California rice fields. *Journal of Economic Entomology*, 82(3), 745-749.

829 Rakitov, R., & Gorb, S. N. (2013a). Brochosomal coats turn leafhopper (Insecta, Hemiptera,
830 Cicadellidae) integument to superhydrophobic state. *Proceedings of the Royal Society
831 B: Biological Sciences*, 280(1752), 20122391. <https://doi.org/10.1098/rspb.2012.2391>

832 Rakitov, R., & Gorb, S. N. (2013b). Brochosomes protect leafhoppers (Insecta, Hemiptera,
833 Cicadellidae) from sticky exudates. *Journal of the Royal Society Interface*, 10(87),
834 20130445. <https://doi.org/10.1098/rsif.2013.0445>

835 Rakitov, R., Moysa, A. A., Kopylov, A. T., Moshkovskii, S. A., Peters, R. S., Meusemann, K.,
836 Misof, B., Dietrich, C. H., Johnson, K. P., Podsiadlowski, L., & Walden, K. K. O. (2018).
837 Brochosomins and other novel proteins from brochosomes of leafhoppers (Insecta,
838 Hemiptera, Cicadellidae). *Insect biochemistry and molecular biology*, 94, 10-17.
839 <https://doi.org/10.1016/j.ibmb.2018.01.001>

840 Rakitov, R. A. (1996). Post-moult behaviour associated with Malpighian tubule secretions in
841 leafhoppers and treehoppers (Auchenorrhyncha: Membracoidea). *European Journal of
842 Entomology*, 93(2), 167-184. <Go to ISI>://WOS:A1996VB52200006

843 Rakitov, R. A. (2000). Secretion of brochosomes during the ontogenesis of a leafhopper,
844 *Oncometopia orbona* (F.) (Insecta, Homoptera, Cicadellidae). *Tissue and Cell*, 32(1),
845 28-39. <https://doi.org/10.1054/tice.1999.0084>

846 Rakitov, R. A. (2002). Structure and function of the Malpighian tubules, and related behaviors
847 in juvenile cicadas: evidence of homology with spittlebugs (Hemiptera: Cicadoidea &
848 Cercopoidea). *Zoologischer Anzeiger-A Journal of Comparative Zoology*, 241(2), 117-
849 130.

850 Rakitov, R. A. (2009). Brochosomal Coatings of the Integument of Leafhoppers (Hemiptera,
851 Cicadellidae). In S. N. Gorb (Ed.), *Functional Surfaces in Biology* (pp. 113-137).
852 Springer Netherlands. https://doi.org/10.1007/978-1-4020-6697-9_8

853 Raut, H. K., Ganesh, V. A., Nair, A. S., & Ramakrishna, S. (2011). Anti-reflective coatings: A
854 critical, in-depth review. *Energy & Environmental Science*, 4(10), 3779-3804.
855 <https://doi.org/10.1039/c1ee01297e>

856 Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of
857 image analysis. *Nature methods*, 9(7), 671-675.

858

859 Sheikh, A. A., Rehman, N., & Kumar, R. (2017). Diverse adaptations in insects: A review.
860 *Journal of entomology and zoology studies*, 5(2), 343-350.

861 Siddique, R. H., Gomard, G., & Hölscher, H. (2015). The role of random nanostructures for the
862 omnidirectional anti-reflection properties of the glasswing butterfly. *Nature
863 Communications*, 6(1), 6909. <https://doi.org/10.1038/ncomms7909>

864 Silberglied, R. E. (1979). Communication in the ultraviolet. *Annual Review of Ecology and
865 Systematics*, 10(1), 373-398.
<https://www.annualreviews.org/doi/abs/10.1146/annurev.es.10.110179.002105>

866 Skelhorn, J., & Rowe, C. (2016). Cognition and the evolution of camouflage. *Proceedings of
867 the Royal Society B: Biological Sciences*, 283(1825), 20152890.
<https://doi.org/10.1098/rspb.2015.2890>

869 Stavenga, D. G., Foletti, S., Palasantzas, G., & Arikawa, K. (2005). Light on the moth-eye
870 corneal nipple array of butterflies. *Proceedings of the Royal Society B: Biological
871 Sciences*, 273(1587), 661-667. <https://doi.org/10.1098/rspb.2005.3369>

872 Stevens, M. (2007). Predator perception and the interrelation between different forms of
873 protective coloration. *Proceedings of the Royal Society B: Biological Sciences*, 274(1617), 1457-1464. <https://doi.org/10.1098/rspb.2007.0220>

874 Stevens, M., & Ruxton, G. D. (2018). The key role of behaviour in animal camouflage. *Biological
875 Reviews*, 94(1), 116-134. <https://doi.org/10.1111/brv.12438>

876 Stobbe, N., Dimitrova, M., Merilaita, S., & Schaefer, H. M. (2008). Chromaticity in the UV/blue
877 range facilitates the search for achromatically background-matching prey in birds.
Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1516),
878 511-517. <https://doi.org/10.1098/rstb.2008.0248>

879 Swain, R. (1936). Notes on the oviposition and life-history of the leaf-hopper *Oncometopia*
880 *undata* Fabr. (Homoptera: Cicadellidae).

881 Tautz, D., & Domazet-Lošo, T. (2011). The evolutionary origin of orphan genes. *Nature Reviews
882 Genetics*, 12(10), 692-702. <https://doi.org/10.1038/nrg3053>

883 Taylor, L. A., Maier, E. B., Byrne, K. J., Amin, Z., & Morehouse, N. I. (2014). Colour use by tiny
884 predators: jumping spiders show colour biases during foraging. *Animal Behaviour*, 90,
885 149-157. <https://doi.org/10.1016/j.anbehav.2014.01.025>

886 Thery, M., & Gomez, D. (2010). Insect colours and visual appearance in the eyes of their
887 predators. *Advances in insect physiology*, 38, 267-353.

888 Tovee, M. (1995). Ultra-violet photoreceptors in the animal kingdom: their distribution and
889 function. *Trends in ecology & evolution*, 10(11), 455-460.
[https://doi.org/10.1016/s0169-5347\(00\)89179-x](https://doi.org/10.1016/s0169-5347(00)89179-x)

890 Vukusic, P., & Sambles, J. R. (2003). Photonic structures in biology. *Nature*, 424(6950), 852-
891 855. <https://doi.org/10.1038/nature01941>

892 Walker, S. E., & Rypstra, A. L. (2002). Sexual dimorphism in trophic morphology and feeding
893 behavior of wolf spiders (Araneae: Lycosidae) as a result of differences in reproductive
894 roles. *Canadian Journal of Zoology*, 80(4), 679-688. <https://doi.org/10.1139/z02-037>

895 Wang, L., Li, Z., Shen, S., & Wong, T.-S. (2024). Geometric design of antireflective leafhopper
896 brochosomes. *Proceedings of the National Academy of Sciences*, 121(14),
897 e2312700121.

902 Watson, G. S., Watson, J. A., & Cribb, B. W. (2017). Diversity of Cuticular Micro- and
903 Nanostructures on Insects: Properties, Functions, and Potential Applications. *Annual
904 Review of Entomology*, Vol 62, 62, 185-205. <https://doi.org/10.1146/annurev-ento-031616-035020>

905 Wei, J., Jia, D., Mao, Q., Zhang, X., Chen, Q., Wu, W., Chen, H., & Wei, T. (2018). Complex
906 interactions between insect-borne rice viruses and their vectors. *Current opinion in
907 virology*, 33, 18-23. <https://doi.org/10.1016/j.coviro.2018.07.005>

908 Wong, E. S. W., & Belov, K. (2012). Venom evolution through gene duplications. *Gene*, 496(1),
909 1-7. <https://doi.org/10.1016/j.gene.2012.01.009>

910 Wu, W., Ye, Z., Mao, Q., Shan, H.-W., Li, J.-M., & Chen, J.-P. (2023). Combined Transcriptome
911 and Proteome Analysis of the Protein Composition of the Brochosomes of the
912 Leafhopper *Nephrotettix cincticeps*. *Insects*, 14(10), 784.
913 <https://doi.org/10.3390/insects14100784>

914 Xi, W., Lee, Y.-J., Yu, S., Chen, Z., Shiomi, J., Kim, S.-K., & Hu, R. (2023). Ultrahigh-efficient
915 material informatics inverse design of thermal metamaterials for visible-infrared-
916 compatible camouflage. *Nature Communications*, 14(1), 4694.
917 <https://doi.org/10.1038/s41467-023-40350-6>

918 Xiang, C. Y., Gao, F., Jakovlić, I., Lei, H. P., Hu, Y., Zhang, H., Zou, H., Wang, G. T., & Zhang,
919 D. (2023). Using PhyloSuite for molecular phylogeny and tree - based analyses. *iMeta*,
920 2(1), e87.

921 Xie, Y., Wu, G., Tang, J., Luo, R., Patterson, J., Liu, S., Huang, W., He, G., Gu, S., Li, S., Zhou,
922 X., Lam, T.-W., Li, Y., Xu, X., Wong, G. K.-S., & Wang, J. (2014). SOAPdenovo-Trans:
923 de novo transcriptome assembly with short RNA-Seq reads. *Bioinformatics*, 30(12),
924 1660-1666. <https://doi.org/10.1093/bioinformatics/btu077>

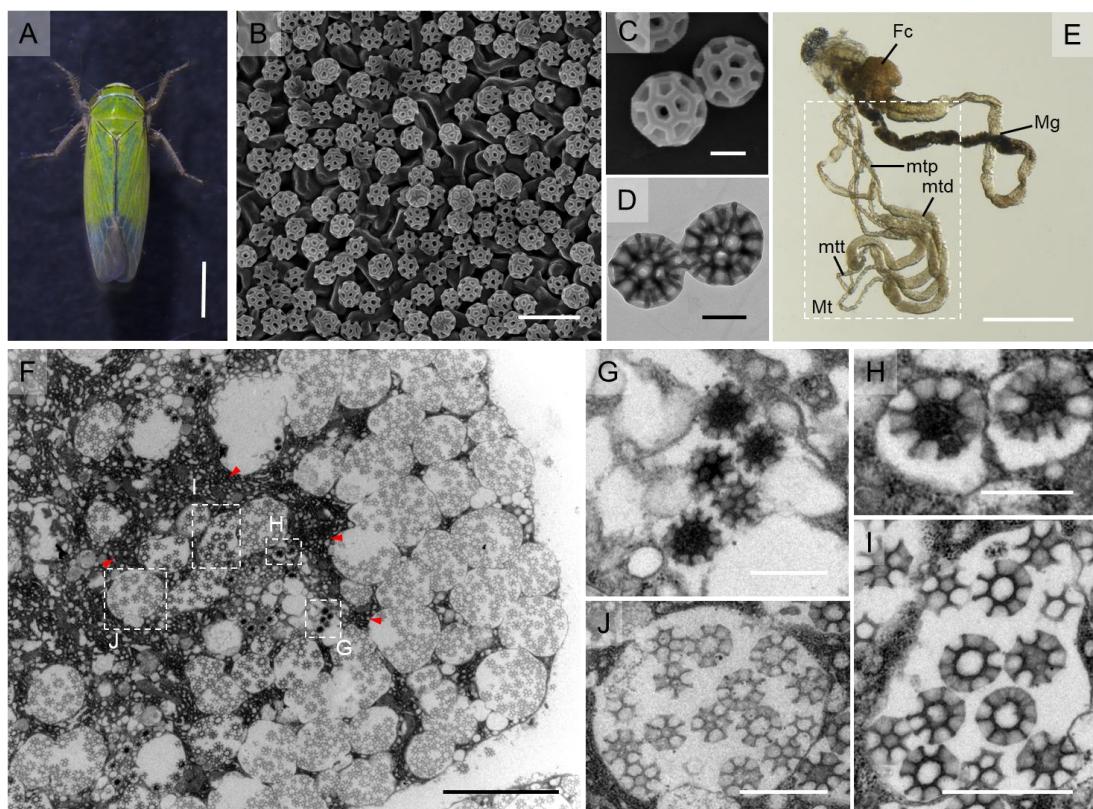
925 Yan, B., Yu, X., Dai, R., Li, Z., & Yang, M. (2021). Chromosome-level genome assembly of
926 *Nephrotettix cincticeps* (Uhler, 1896)(Hemiptera: Cicadellidae: Deltocephalinae).
927 *Genome Biology and Evolution*, 13(11), evab236.

928 Yang, H., Peng, Y., Tian, J., Wang, J., Wei, B., Xie, C., & Wang, Z. (2018). Rice Field Spiders
929 in China: A Review of the Literature. *Journal of Economic Entomology*, 111(1), 53-64.
930 <https://doi.org/10.1093/jee/tox319>

931 Yang, S. K., Sun, N., Stogin, B. B., Wang, J., Huang, Y., & Wong, T. S. (2017). Ultra-
932 antireflective synthetic brochosomes. *Nature Communications*, 8(1), 1285.
933 <https://doi.org/10.1038/s41467-017-01404-8>

934 Yuan, F., Su, M., Li, T., Zhang, Y., Dietrich, C. H., Webb, M. D., & Wei, C. (2023). Functional
935 and evolutionary implications of protein and metal content of leafhopper brochosomes.
936 *Insect biochemistry and molecular biology*, 157, 103962.
937 <https://doi.org/10.1016/j.ibmb.2023.103962>

938 Zhang, D., Gao, F., Jakovlić, I., Zou, H., Zhang, J., Li, W. X., & Wang, G. T. (2020). PhyloSuite:
939 An integrated and scalable desktop platform for streamlined molecular sequence data
940 management and evolutionary phylogenetics studies. *Molecular ecology resources*,
941 20(1), 348-355.

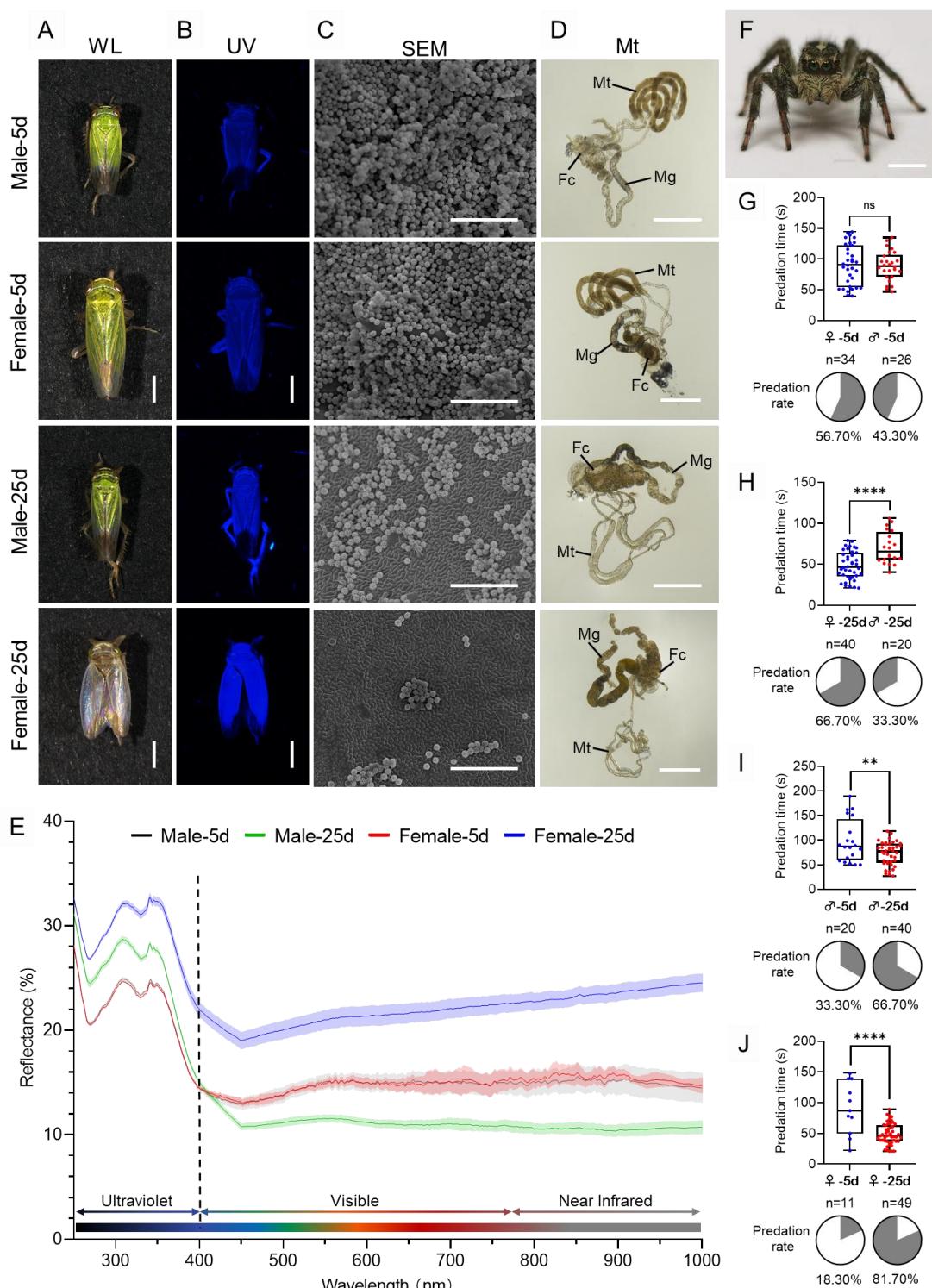

942 Zhang, G., Zhang, J., Xie, G., Liu, Z., & Shao, H. (2006). Cicada Wings: A Stamp from Nature
943 for Nanoimprint Lithography. *Small*, 2(12), 1440-1443.
944 <https://doi.org/10.1002/smll.200600255>

945

946 Zou, Y., Araujo, D. P., Lim, M. L. M., & Li, D. (2011). Ultraviolet is a more important cue than
947 reflection in other wavelengths for a jumping spider to locate its spider prey. *Animal*
948 *Behaviour*, 82(6), 1457-1463. <https://doi.org/10.1016/j.anbehav.2011.09.031>

949

950


951

952 **Figure 1. Brochosomes are a distinctive coating on the cuticle surface of leafhopper.**

953 (A) Male adult of the green rice leafhopper *N. cincticeps*. Bar, 1 mm. (B) Brochosomes on the
954 surface of the forewing of *N. cincticeps*. Bar, 1 μm. (C, D) The morphologies of brochosomes
955 by SEM (C) and TEM (D). Bar, 200 nm. (E) Alimentary tract and the Malpighian tubules of *N.*
956 *cincticeps*. The leafhopper *N. cincticeps* have two pairs of Malpighian tubules, each divided into
957 proximal segment, distal segment, and terminal segment. The brochosomes are synthesized
958 in the distal segment, which is dilated and rod-shaped. Bar, 1 mm. (F) The distal segment
959 epithelial cell displays an extensive rough endoplasmic reticulum and multiple Golgi regions
960 (red arrow) containing developing brochosomes in its basal portion, as well as a number of
961 secretory vacuoles with mature brochosomes near the cell border. Bar, 5 μm. (G) The initial
962 stage of the development of brochosome. Bar, 500 nm. (H) The two brochosomes that are
963 developing inside the primary vesicles are shown in close-up. Regular invaginations appear on
964 the surface of the growing brochosome at the same time that its matrix separates into a looser
965 core and a denser wall. Bar, 500 nm. (I) Larger vesicles containing numerous BS, formed by
966 the fusion of multiple primary vesicles. The surface of the brochosomes has regular cell-like
967 invaginations, and it is surrounded by amorphous flocculent material with a moderate electron

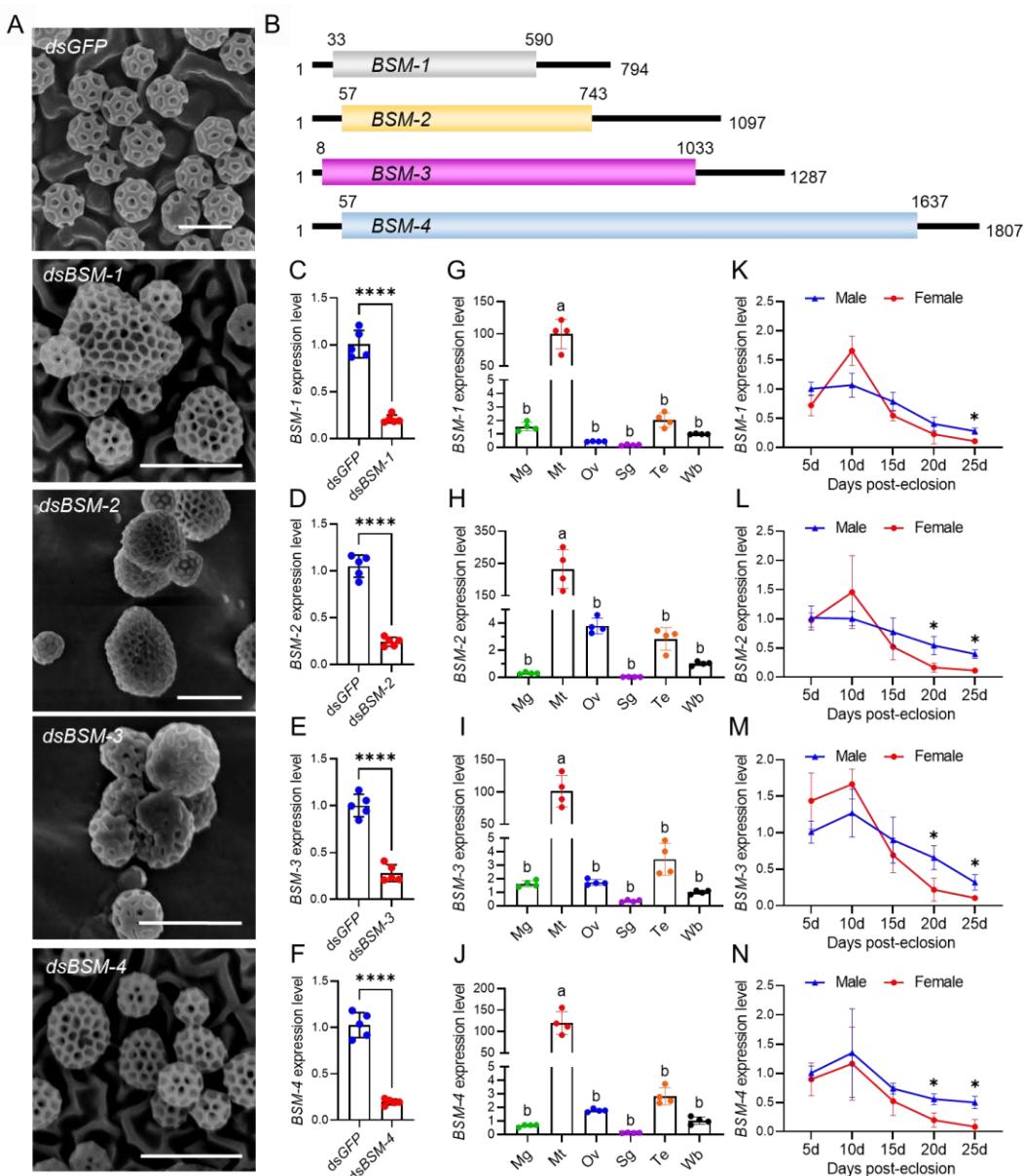
968 density. Bar, 1 μ m. (J) A vesicle filled with mature brochosomes, each mature brochosome has
969 a spherical inner cavity and a well-swollen outer margin of the septa. Bar, 1 μ m. E, F, G, H are
970 the enlargement of boxed area in D. Fc, filter chamber; Mg, midgut; Mt, Malpighian tubules;
971 mtd, distal segment of the Malpighian tubule; mtp, proximal segment of the Malpighian tubule;
972 mtt, terminal segment of the Malpighian tubule. All images are representative of at least three
973 replicates.

974

975

976 **Figure 2. The distribution of brochosomes on the cuticle surface of leafhopper *N.***

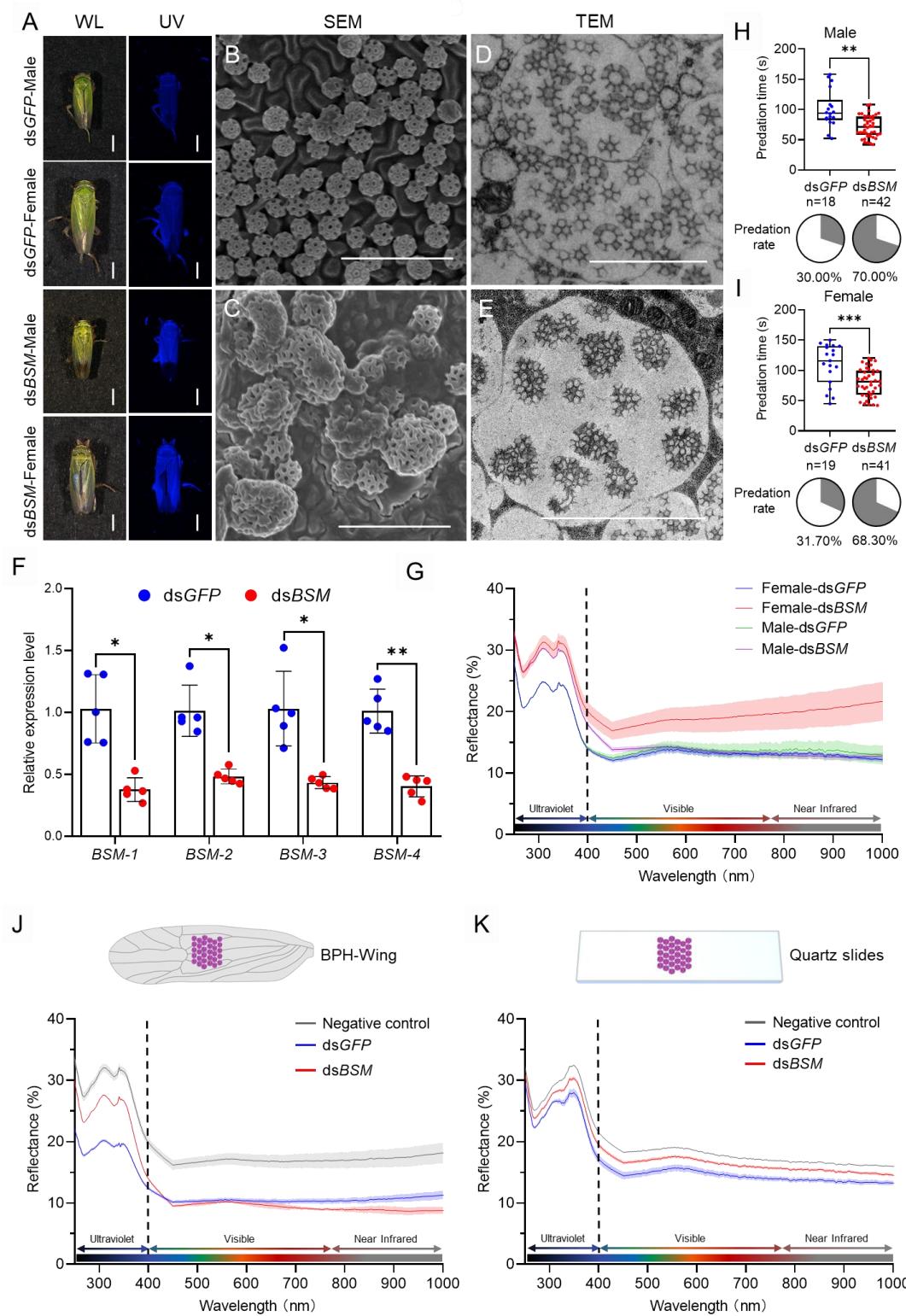
977 ***cincticeps* are associated with predation by jumping spiders.**


978 (A, B) Images of leafhopper *N. cincticeps* males and females in white (A) and ultraviolet light

979 (B) at 5 and 25 days post-eclosion, respectively. Bar, 1 mm. (C, D) The distribution of

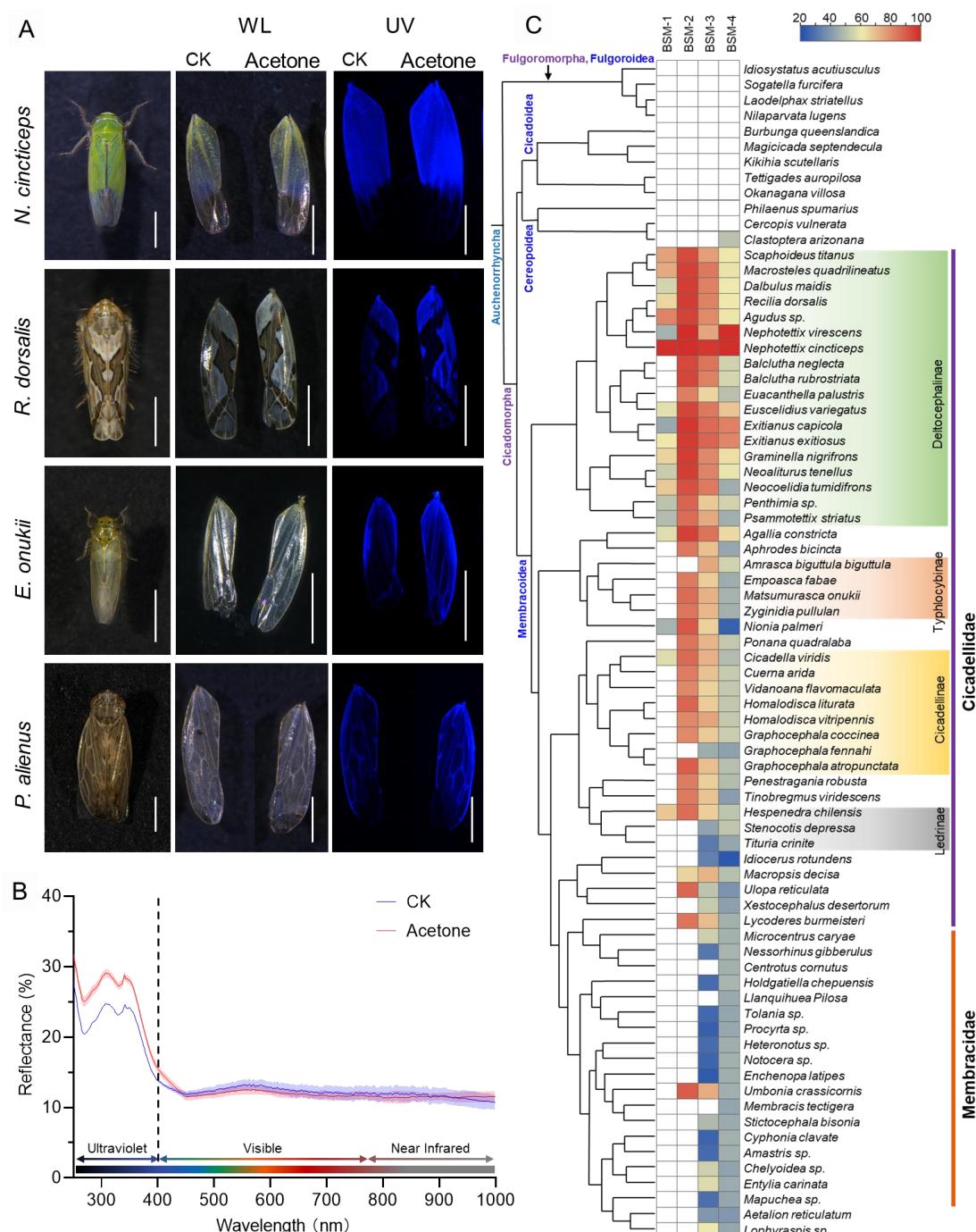
980 brochosomes on the surface of a forewing (C) and morphological changes of the Malpighian

981 tubules (D) of *N. cincticeps* males and females at 5 and 25 days post-eclosion. Bar, 5 μ m in
982 C; Bar, 1 mm in D. (E) Reflectance spectra of female and male forewing of *N. cincticeps* at 5
983 and 25 days post-eclosion. (F) Images of the jumping spider *P. paykulli*. Bar, 2 mm. (G-J)
984 Jumping spiders prefer leafhoppers with little brochosome covering as food. In predation
985 experiment, jumping spiders offered *N. cincticeps* male and female at 5 days post-eclosion
986 (G), male and female at 25 days post-eclosion (H), males at 5 and 25 days post-eclosion (I),
987 and females at 5 and 25 days post-eclosion (J). Data on predation times are displayed using
988 the traditional box and whisker shapes. All box plots with whiskers represent the data
989 distribution based on five number summary statistics (maximum, third quartile, median, first
990 quartile, minimum), each dot in box plot represents an independent experiment. **P < 0.01,
991 ****P < 0.0001, ns no significance, Statistical significance was determined by unpaired t test
992 with Welch's correction method. Predation preference is shown in the pie chart. All images
993 are representative of at least three replicates.


994

995

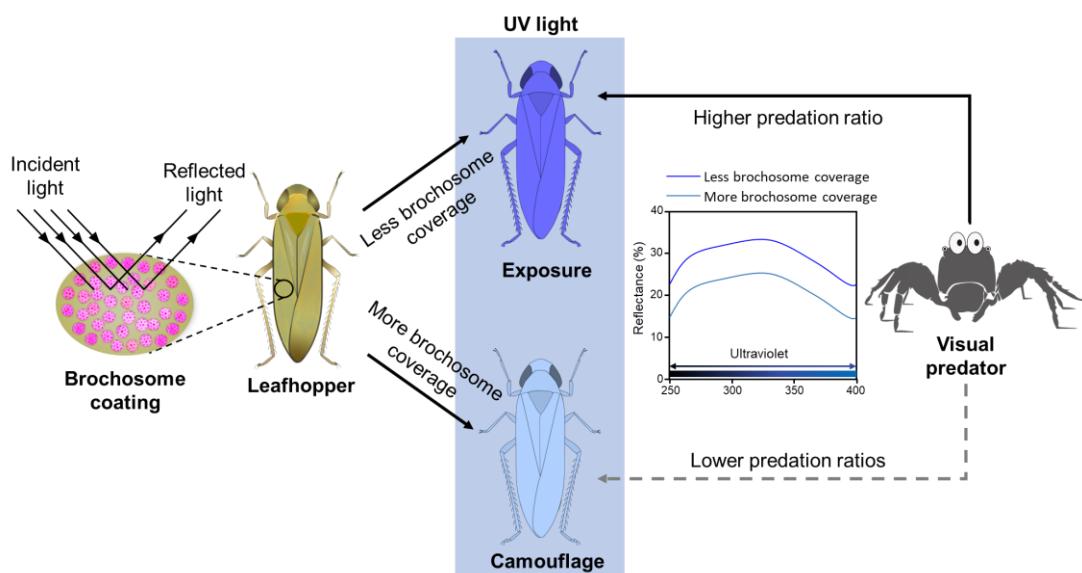
996 **Figure 3. Identification of brochosome structural proteins.** (A) Morphology of brochosomes
 997 on the forewing of leafhopper *N. cincticeps* at 7 days post-microinjection with dsRNA mix
 998 targeting two non-overlapping regions of each BSM gene. Bar, 500 nm. (B) Gene structures of
 999 *BSM-1*, *BSM-2*, *BSM-3* and *BSM-4*. (C-F) Transcription levels of *BSM-1* (C), *BSM-2* (D), *BSM-*
 1000 3 (E), and *BSM-4* (F) at 7 days post-microinjection with dsRNA mix targeting two non-
 1001 overlapping regions of each BSM gene. Each data point represents the result of one
 1002 independent experiment. (G-J) The abundance of BSM transcripts in different tissues and
 1003 whole bodies of *N. cincticeps* was determined by RT-qPCR. Notably, *BSM-1* (G), *BSM-2* (H),
 1004 *BSM-3* (I), and *BSM-4* (J) exhibited specific expression in the Malpighian tubules. Each data
 1005 point represents the result of one independent experiment. (K-N) The expression patterns of


1006 *BSM-1* (K), *BSM-2* (L), *BSM-3* (M) and *BSM-4* (N) transcripts were examined in male and
1007 female leafhopper at 5, 10, 15, 20, and 25 days post-eclosion. Results were obtained from 3
1008 independent experiments. For C-N, data shown are mean \pm SD values. *P < 0.05; **P < 0.01;
1009 ***P < 0.001; ****P < 0.0001; ns no significance (C-F, two tailed Student's t-test; G-J, one-way
1010 ANOVA; K-N, two-way ANOVA). All images are representative of at least three replicates.
1011

1012

1013 **Figure 4. RNAi inhibits brochosome synthesis, alters brochosome morphology, and**
 1014 **influences predation in jumping spiders.** (A) Images of leafhopper *N. cincticeps* males and
 1015 females in white and ultraviolet light after dsGFP or dsBSM treatment, respectively. Bar, 1 mm.
 1016 (B, C) Morphology of the brochosome on the forewings of leafhoppers after dsGFP (B) and

1017 ds*BSM* (C) treatment. Bar, 2 μ m. (D, E) Morphology of the brochosome in the distal segment
1018 epithelial cells of Malpighian tubules after ds*GFP* (D) and ds*BSM* (E) treatment. Bar, 2 μ m. (F)
1019 The transcript levels of *BSM-1*, *BSM-2*, *BSM-3* and *BSM-4* at 7 days after ds*GFP* and ds*BSM*
1020 treatment. Each data point represents the outcome of an individual independent experiment.
1021 The presented data are expressed as mean \pm SD values. Statistical significance is denoted as
1022 *P < 0.05 and **P < 0.01, determined by two-way ANOVA. (G) Reflectance spectra of female
1023 and male forewing of *N. cincticeps* at 7 days after ds*GFP* and ds*BSM* treatment. (H and I)
1024 Jumping spiders prefer to prey on ds*BSM*-treated leafhoppers. Predation efficiency and
1025 preference of jumping spiders on males (H) and females (I) *N. cincticeps* after ds*GFP* and
1026 ds*BSM* treatment in the predation experiment. Data on predation times are displayed using the
1027 traditional box and whisker shapes. All box plots with whiskers represent the data distribution
1028 based on five number summary statistics (maximum, third quartile, median, first quartile,
1029 minimum), each dot in box plot represents an independent experiment. **P < 0.01, ***P < 0.001,
1030 Statistical significance was determined by unpaired t test with Welch's correction method.
1031 Predation preference is shown in the pie chart. (J, K) The morphology of brochosomes is related
1032 to their optical performance. Collect brochosomes treated with ds*GFP* and ds*BSM* separately,
1033 apply them to brown planthopper wings (J) and quartz slides (K), and set up quartz slides or
1034 brown planthopper wings treated solely with acetone as negative controls. All images are
1035 representative of at least three replicates.
1036



1037

1038 **Figure 5. Brochosome coating on Cicadellidae cuticle surface is essential for their**
 1039 **optical qualities. (A) Images of forewings of four leafhopper species before and after acetone**
 1040 **treatment in white and ultraviolet light. Bar, 1mm. (B) Reflection spectra of the forewings of the**
 1041 ***N. cincticeps* before and after acetone treatment. (C) Phylogenetic associations between the**
 1042 **BSM and phylogeny of Hemipteran lineages. The left column describes the phylogeny of 76**
 1043 **representative species of Hemiptera with BSM proteins. In the right column, the presence of**
 1044 **BSM- encoded genes in different Hemiptera species is illustrated along with their homology**

1045 analysis with *N. cincticeps*. White indicates the absence of related genes; the color gradient
1046 represents the degree of nucleotide sequence similarity. All images are representative of at
1047 least three replicates.

1048

1049
1050 **Fig. 6. Brochosomes serve as an anti-reflective camouflage coating on the cuticle**
1051 **surface of leafhoppers.** Brochosomes effectively reduce the reflection of various wavelengths
1052 of light, particularly in the UV region. UV light is a crucial visual cue for numerous visual
1053 predators to identify and locate prey. Brochosomes efficiently decrease the UV light reflection
1054 on the surface of leafhoppers, thereby reducing their exposure risk to visual predators and
1055 facilitating evasion of visual predation.