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1 Abstract The human medial temporal lobe (MTL), a region implicated in memory and high-level cognition, contains
1z neurons that respond selectively to stimuli belonging to specific categories, such as individual people, landmarks, or
1s  Objects. However, these neurons have been largely studied via static, isolated presentations of stimuli. Therefore, it
10 isunclear how neurons in the MTL respond to rich stimuli such as movies, and which dynamical stimulus features can
20 beretrieved from neuronal population spiking activity. We studied single-unit responses from 2286 neurons recorded
2 from the amygdala, hippocampus, entorhinal cortex, and parahippocampal cortex of 29 intracranially implanted pa-
22 tients during the presentation of an 83-minute movie. We found only a few individual neurons that exhibited a classic
23 selective response to semantic features. However, we successfully decoded the presence of characters, settings,
2a and visual transitions from neuronal population activity. The information relevant for decoding varies across regions
2s depending on the feature category, as visual transitions could be decoded from subsets of neurons with selective
26 responses, whereas character and location features relied on distributed representations. Our results demonstrate
27 an approach for reliably decoding movie features in the human MTL, and suggest that the brain uses a population
2s code when representing character and location features.

29


https://doi.org/10.1101/2024.06.13.598791
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.13.598791; this version posted March 11, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

s Introduction

1 The human medial temporal lobe (MTL) plays an integral role in the representation of semantic information. Single
;2 neurons in the MTL exhibit strong and highly selective tunings to categories, such as faces or locations ', and to spe-
;s cific concepts, such as individual celebrities or objects®*. These semantically tuned neurons relate to the processing
s of information at a conscious, declarative level, as their activity varies depending on perception>’—when images are
ss  presented but unseen, these neurons exhibit reduced and delayed spiking compared to consciously seen images®.
36 Such cells also support the formation of new memories®, and are involved in the retrieval of previously encoded
sz experiences'0',

38 Studies investigating the representation of semantic information in the human MTL have mostly focused on char-
30 acterizing these neurons individually, often without considering their population dynamics. Many of these studies
20 have identified semantically tuned cells by screening for stimulus-selective responses to static images depicting iso-
a1 lated persons or objects'>'®. While this approach is effective for probing specific functional properties of individual
a2 neurons, it limits the generalizability of findings to more complex and dynamic contexts. Naturalistic and dynamic
a3 stimuli, such as movies, provide closer approximations to real-world environments, but also pose substantial chal-
4 lenges, as they are presented continuously and depict complex evolving scenes. Several studies have used functional
«s Mmagnetic resonance imaging (fMRI) to study neural responses to natural movies. One line of work has focused on
s representations in early visual areas''> and across the cortex'®'”. Another line of work has identified synchrony
az in the brain states of separate individuals viewing a common movie "', Such states appear to be particularly well
«s aligned in individual brains surrounding transition events within an ongoing continuous stimulus, as reported in fMRI
s studies®®?, intracranial field potentials along the human ventral visual pathway??, and in single neurons in the hu-
so man parahippocampal gyrus, hippocampus, and amygdala'. Most single neuron studies which use movies as stimuli
s1have been based on only short 'snippets’ of movies, and have so far largely examined representation on the level of
sz the individual neuron? with few having addressed frame-wise representations in longer movie sequences?*. How-
53 ever, itremains an open question of how populations of neurons in the MTL collectively respond to naturalistic visual
sa stimuli, such as those encountered in real-world environments, and which features of population activity encode
ss information about specific components of such stimuli.

56 In this study, we investigate how information embedded in a naturalistic and dynamic stimulus is processed by
sz neuronal populations in the human medial temporal lobe (MTL). Specifically, we asked the following questions: (1)
ss  Which aspects of a movie's content can be decoded from neuronal activity in the MTL? (2) Which brain regions are
so informative for specific stimulus categories (e.g. visual transitions or characters)? (3) Is the relevant information
eo distributed across the neuronal population? We recorded the activity of neurons from patients with intracranially
e1 implanted electrodes as each watched the full-length commercial movie “500 Days of Summer”. Our datasetis unique
62 in both size and duration: we recorded a total of 2286 neurons across 29 patients during the complete presentation of
e3 the movie. To analyze the relationship between the neuronal activity and the film's content, we labeled the presence
s« 0f main characters, whether a scene was indoors or outdoors, and visual transitions of the movie on a frame-by-frame
es basis.

66 We introduce a machine learning-based decoding pipeline that decodes a movie's visual content from population-
ez level neuronal activity. At the single-unit level, individual neurons generally lacked reliable responses to the visual
es features, and we observed consistent stimulus-related changes in firing rates primarily during visual transitions. How-
e ever, at the population level, we achieved strong decoding performance across all visual features. For visual transi-
70 tions, neurons exhibiting consistent changes in activity played a key role in population-level decoding. In contrast, no
7 similar pattern emerged when decoding character identities. By analyzing the contributions of individual neurons, we
72 identified distinct subsets of neurons that influenced decoding performance, extending beyond the subsets identi-
»»  fied by stimulus-aligned changes in firing activity. Remarkably, we found that restricting the analysis to a substantially
72 smaller subset of these key neurons was sufficient to replicate the full population-level decoding performance. Taken
7s together, our findings show that information about dynamic stimuli can be decoded from neuronal population activ-
7e ity, even in the absence of strong single-neuron selectivity.
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Figure 1. Overview of dataset, features, and decoding approach a) Example of the recorded neuronal activity. Patients
watched the complete commercial film 500 Days of Summer while neuronal activity was recorded via depth electrodes. Top row:
example movie frames. Due to copyright, the original movie frames have been replaced with images generated using stable
diffusion2>. Bottom row: spike trains from ten amygdala neurons of a single patient, where each row shows data from an
individual neuron (corresponding ID number given as a label). b) Spike density plot showing the waveforms of each neuronin a
(corresponding neuron ID given in top right). Neurons shown include both single- and multi-neurons. c) Distribution of labels
across the entire movie (runtime: 83 minutes). Occurrences of character-related features are in magenta, visual transition events
in blue, and location events in yellow. d) Distribution of the 2286 neurons across the recorded regions (A: amygdala, H:
hippocampus, EC: entorhinal cortex, PHC: parahippocampal cortex, PIC: piriform cortex) for all 29 patients.

Results

We recorded from 29 patients (17 female, ages 22 — 63) as each watched the movie 500 Days of Summer (83 minutes)
in its entirety (Fig. 1a). Patients were bilaterally implanted with depth electrodes for seizure monitoring, and spiking
activity was recorded from a total of 2286 single- and multi-neurons across the amygdala (A; 580 neurons, 25.37%),
hippocampus (H; 794, 34.73%), entorhinal cortex (EC; 440, 19.25%), parahippocampal cortex (PHC; 373, 16.32%), and
piriform cortex (PIC; 99, 4.33%) (Fig. 1b). We pooled the neurons across patients (distribution shown in Supp. Fig. S1)
and performed subsequent analyses on the resulting population. Due to the low number of neurons relative to the
complete population, the PIC was excluded from subsequent region-wise analyses.

To determine which features of the movie are represented in MTL activity, we obtained frame-wise annotations
of character presence, indoor/outdoor setting, and the occurrence of a visual transition, i.e. camera cuts and scene
cuts (similar to "soft" and "hard" boundaries') (Fig. 1c). All annotations concern the visual occurrence of a given
feature in the frame, and do not consider feature content of the movie’s audio. We used a mixture of manual and
automated methods for obtaining these annotations (see Methods; sample frames in Supp. Fig. S2). For character-
related content, we restricted the analysis to those characters most relevant to the movie's narrative (Tom, Summer,
McKenzie) as determined by screentime. For the analysis of location, we investigate indoor and outdoor settings.
Note that these two features are mutually exclusive, and the annotation of both are combined into a single label.
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Figure 2. Responsive single-neurons in the parahippocampal cortex a) Example peri-stimulus activity for representative
parahippocampal (PHC) neurons, for labels with a significant PHC response. Upper plots: spike density plot showing the
waveforms a given responsive neuron (label name given as title). Middle plots: spike time rasters showing the neuron'’s activity
surrounding the onset of the corresponding label throughout the movie. Note: onsets for Scene Cuts and Camera Cuts were
randomly subsampled to match the number of Summer appearances. Lower plots: average firing rate across 100 ms bins, for 1000
ms before and 1000 ms after the onset or event. Solid lines show the mean across all neurons, within group, and the transparent
area shows the 95% confidence interval. b) Region-wise single-neuron activity surrounding the onset of labeled entity. Number of
cells exhibiting a significant response over the total number of PHC cells are given as the title, followed by the corresponding
percentage. Upper plots (heatmaps): averages of peri-stimulus spike rates per neuron (spikes per 100 ms bin, z-scored across the
pseudotrial) for 1000 ms before and 1000 ms after label onset. Each row of the heatmap represents the average binned activity for
one neuron. Neurons are sorted in descending order by the p-value of the response—the dotted grey line shows the threshold for
responsive neurons (p < 0.001). Lower plots (line plots): average z-scored firing rate across bins. Neurons are separated into
responsive (orange line) and non-responsive (black line). Solid lines show the mean for each group of neurons (responsive vs.
non-responsive) and the transparent area depicts the 95% confidence interval. Significant differences between the responsive and
non-responsive firing rates are shown as solid black lines (*, p < 0.05, cluster permutation test).

Stimulus-aligned responsive neurons found primarily in parahippocampal cortex

To investigate whether the visual features of the movie are encoded at the level of individual neurons, we analyzed
stimulus-evoked changes in the firing rate of neurons after the onset of characters, indoor and outdoor scenes, and
visual transitions, for each MTL subregion separately (Fig. 2a, Supp. Fig. S3 - S5). We classified each individual neu-
ron as responsive or non-responsive according to a previously established criterion® which compares the spiking
activity after stimulus onset to that of a baseline period, adapted to the dynamic presentation. Specifically, for each
annotated feature, we identified all instances where the feature appeared following at least 1000 ms of absence and
remained continuously present for at least 1000 ms. We applied a cluster permutation test?® to find time-points in
which the firing rate between the sets of responsive and non-responsive neurons differ (see Methods for additional
details). We found individual neurons with significant stimulus-evoked responses in all regions for visual transitions,
Persons, and the characters Tom and Summer, including Face-only onsets (bin-wise Wilcoxon signed-rank test, Simes-
corrected, a = 0.001, see Supp. Table S1). Of these stimulus-evoked changes, neurons in the parahippocampal cortex
responded to the largest set of stimulus features (Summer, Persons, Camera Cuts, Scene Cuts, Outdoor; p < 0.001,
cluster permutation test), as compared to the hippocampus (Tom, Camera Cuts, Outdoor), amygdala (Camera Cuts),


https://doi.org/10.1101/2024.06.13.598791
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.13.598791; this version posted March 11, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

10z and entorhinal cortex (None). Over half of the parahippocampal neurons responded to Camera Cuts during the
18 Movie (193/373, 51.74%, bin-wise Wilcoxon signed-rank test, Simes-corrected, « = 0.001) (Fig. 2b), and stimulus-evoked
10 changes in firing were consistent across the set of responsive neurons (p < 0.001, cluster permutation test). For the
10 remaining regions, stimulus-evoked modulations were less consistent across individual neurons (see Supp. Fig. S5a).
in Comparatively few parahippocampal neurons responded to Scene Cuts (25/373, 6.70%), although there was nonethe-
112 less a consistent pattern of modulation across responsive neurons (p = 0.018, cluster permutation test) (Fig. 2b). A
s similar pattern was observed for the onset of Outdoor scenes in the parahippocampal cortex (4/373, 1.07%). No re-
114 sponses were detected for the onset of indoor scenes. For characters, significant stimulus-evoked modulation in the
s responsive neurons were only observed for Summer (PHC, p = 0.006, cluster permutation test) and, to a lesser extent,
16 Tom (H, p = 0.022, cluster permutation test) (Fig. 2a, Supp. Fig. S3). Taken together, the parahippocampal cortex
11z contained neuronal subsets that showed a consistent pattern of increased firing after the onset of a visual transition
s (Camera or Scene Cut) within the movie. Characters and character faces evoked a clear change in firing activity at
10 the subpopulation-level in the parahippocampal cortex, and sparingly in the hippocampus, but not in other tested
120 regions.

121 Decoding of semantic content from population responses

122 The observed pattern of responses in individual neurons aligned to feature onsets suggests that these cells primarily
123 carry information relating to visual transitions, and, to a lesser degree, the characters Summer and Tom, and Persons.
124 However, previous work suggests that there may be differences in the coding capacity at the single-neuron and popu-
125 lation level?. Could there be stimulus-related information represented at the population level that is not apparent in
126 the responses of individual neurons? To explore this, we decoded character presence, location, and visual transitions
12z from the aggregated activity of the entire neuronal population using a recurrent neural network designed to capture
128 both within-neuron and between-neuron activity patterns.

120 Decoding from neuronal activity

130 We aligned the activity of neurons across patients using the movie frames as a common time reference, generating a
11 single neuronal pseudo-population, as done in previous work decoding from populations of single neurons %%, We
132 first evaluated single-neuron decoding performance for the main character, Summer, by fine-tuning a firing activity
133 threshold for each neuron. Using the total spike count around frame onset (spanning 800 ms before and after onset),
132 We optimized a threshold to the validation set from each cell and subsequently predicted Summer's appearance in
135 the test set. This established a performance baseline for decoding character presence solely from the firing of indi-
13s  vidual neurons, without machine learning-based decoding algorithms. Decoding performances obtained by simply
137 applying a threshold to single-neuron activity did not reliably predict the content, as the majority of neurons in the
138 population performed near chance level (Fig. 3b). We then extended this analysis to a population-based approach,
13s  employing a Long Short-Term Memory (LSTM) network>’, a deep neural network well-suited for processing dynamic
10 Sequential data (Fig. 3a). This population-based approach improved decoding performance for Summer, surpassing
11 the performances achieved by individual neurons alone. Decoding performances for all tested labels significantly
142 exceeded chance level (zero for Cohen’s Kappa), as shown in Fig. 3c. The Persons label achieved the highest perfor-
13 mance (mean =+ standard error of the mean, SEM: 0.36 & 0.05), followed by the location-related label Indoor/Outdoor
12 (0.31 4+ 0.06). Note that in contrast to the single unit analysis, there is no need to conduct two separate trainings for
15 the Indoor/Outdoor label since the label combines both features and the network implicitly learns to differentiate
14s between the two. Character-specific labels (Summer, Tom, McKenzie) showed comparable performances, ranging
17 between 0.23 and 0.32. Labels related to visual transitions in the movie exhibited the lowest but nonetheless sig-
e nificant performances of 0.2 + 0.03 and 0.18 + 0.01, respectively. Decoding results were consistent across metrics
1o (F1 Score, PR-AUC, and AUROC shown in Supp. Table S2). We evaluated the statistical significance of our results by
150 randomly permuting the test set labels (N = 1000), demonstrating that all decoding performances were significantly
151 above chance level at an alpha level of 0.001 (see Methods). To ensure that this significance was not an artifact of
152 the permutation procedure, we conducted an additional test by circularly shifting the neuronal data relative to the
153 movie features (see Methods for more detail ). This approach preserved the temporal structure of each dataset while
12 disrupting the relationship between the neuronal data and the stimulus. Results were consistent between random
155 permutation and circular shifts (Supp. Fig. S11).
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Figure 3. Categories of labels can be decoded from the neuronal population activity a) Overview of the neuronal decoding
pipeline. Spiking data (individual neurons shown as columns) was sectioned into 1600 ms sequences, 800 ms before and after a
frame onset (purple highlight; bins shown as horizontal lines, not to scale), and given as input to a two-layer Long Short-Term
Memory (LSTM) network. The output of the fully connected layer (FC) predicts the presence of a given label in a frame. b)
Assessment of individual-neuron decoding performance by classifying data samples into positive or negative predictions for the
label Summer based on the firing activity of a neuron. ¢) Decoding performances on labels of the movie (reported performance
using Cohen'’s Kappa, mean performance across five different data splits, error bars indicate standard error of the mean). Labels
fall into one of three categories—characters (pink), visual transitions (blue), or location (yellow)—with a separate model for each
label. All performances were significantly better than chance level with an alpha level of 0.001. Decoding performances for the
logistic regression model in lighter colors. d) Impact of temporal information in spike trains for recurrent neural networks. Trained
models were evaluated using temporally altered test data (sequence order shuffled, repeated 100 times). Colored bars depict
performance without shuffling, while grey bars represent shuffled scenarios (reported performance using Cohen'’s Kappa, results
show the mean performance across five different data splits, variance given as standard error of the mean). e) Decoding
performance of the main movie character (Summer) for different temporal gap sizes between samples of training, validation, and
test sets. Colored temporal gap of 32 s indicates the chosen gap size for all reported performances in this study.
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156 To further test the hypothesis that decoding is based on population activity rather than individual neurons, we
157 also trained an LSTM network on individual neurons. From the 46 neurons identified as responsive to Summer in the
158 Sseparate single neuron analysis, we selected a subset of neurons, ensuring an even distribution across both patients
150 and regions. Similar to the threshold model, most models exhibited minimal prediction performances (see Fig. S6).
10 INn summary, our decoding network achieved consistent and statistically significant decoding performance on the
11 population level exceeding chance level for all labeled movie features.

1= Choice of architecture

163 Our pipeline uses a recurrent neural network (LSTM) to process spiking data as a time series of event counts. We
12 binned spike counts into 80 ms intervals, covering 800 ms before and after label onset, creating sequences with a
15 total length of 20 and a dimensionality of 2286 neurons. We trained a separate model for the prediction of each
166 label, with individually optimized hyperparameters. Given the high degree of imbalance for some labels (i.e., the
167 Character McKenzie only appears in 10 % of the movie's frames), we oversampled the minority class during training to
16 Mitigate the effects of the uneven distribution. We additionally employed a 5-fold nested cross-validation procedure
160 and carefully selected samples to avoid correlations between samples, as discussed in more detail in the following
170 section. See Methods for additional details regarding model training and architecture.

171 We compared the LSTM's decoding performance to a simpler logistic regression model, i.e. a linear method that
12 does not consider the neuronal activity as a sequence of spike counts, and therefore ignores the temporal informa-
173 tion and non-linear dynamics (Fig. 3c). Apart from this, the setup and data split for both pipelines were identical. The
17 logistic regression model showed lower performances for the Scene and Camera Cut features (by 0.1 and 0.07, re-
175 spectively), whereas no drop for character-related or location-related features was observed. To test our hypothesis
176 that temporal information within spike sequences influences visual transition decoding, we assessed trained mod-
177 els using temporally-modified test data (sequence order of the spike trains was randomly shuffled, see Methods for
1z more details) (Fig. 3d). A pattern consistent with the LSTM decoding results emerged, with a noticeable decline in
e performance, especially for the visual transition labels.

10 Avoiding spurious decoding performance by introducing temporal gaps

;1 Since each frame of the movie shares a high degree of similarity with neighboring frames, we controlled for the
1.2 temporal correlations in the annotated features induced by the continuous nature of the stimulus. We divided the
183 datasetinto training, validation, and test sets, ensuring a gap of 32 s between samples from different sets to minimize
1. temporal correlations (split visualized in Supp. Fig. S7). We investigated the impact of these gaps by decoding the
18 Character Summer using varying gap lengths while keeping the number of samples comparable. We observed that
18 smaller gaps resultin substantially higher decoding performance on the test set, raising concerns about potential data
1.7 leakage between training and test sets. For instance, a random split without any temporal gaps achieves an almost
1es  perfect score of 0.99 + 0.0005. However, as temporal gap sizes increase to 32 s, the performance drops precipitously
10 to 0.31 £ 0.06 (Fig. 3e; additional metrics in Supp. Fig. S9). This might explain the higher decoding performance
10 for a comparable task in Zhang et al.?*, which did not report the use of temporal gaps for model evaluation. All
11 subsequently reported results refer to the performance on the held-out test data using 5-fold cross-validation, with
192 data splits incorporating the most conservative temporal gap of 32 s (see Methods). Our analysis underscores the
103 importance of appropriate architecture selection and careful data preparation in complex datasets such as ours, as
102 these choices can exert a significant impact on the results.

10s Patient-wise decoding performance

196 The neuronal population analyzed thus far has been pooled from 29 patients, yielding a total of 2286 neurons. De-
107 coding from a pooled population, rather than from individual patients, improves network stability by aggregating
108 activity across a larger neuronal set and enhances the signal-to-noise ratio. However, using this pooled population
100 (Or "pseudo-brain") obscures the patient-wise contributions to decoding, which could vary due to the difference in
200 Neurons recorded per patient (units per patient range from 30 to 137) or due to differences in the semantic space
200 Of recorded neurons. To test for such differences, we assessed decoding performance on a per-patient basis, and
202 analyzed each participant’s neuronal population to see if key decoding information is widely distributed or driven by
203 @ particular subset.
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200 a Decoding performance was obtained for three
208 Y o4 label categories—Summer, Scene Cuts, and In-
206 %E_ door/Outdoor—representing characters, visual tran-
207 §§ 03 sitions, and locations. To minimize computational
208 E)_m load, we retrained a simpler logistic regression
c 0.2 . s
200 g model on each patient's neurons, and achieved
210 gg 01 performance comparable to a more complex re-
211 g current neural network but with lower computa-
212 0.0 tional costs. The results are illustrated in Fig. 4.
213 b Summer Scene Cuts Indoor/Qutdoor Generally, decoding performance was lower at the
214 ° individual patient level compared to the pooled
215 %E oy General performance neuronal population, with no single patient match-
216 €8 03 ing the performance of the aggregated data. For
<o
217 %ﬁ the Summer label, we observed substantial vari-
218 e 02 ability in decoding performance across patients,
210 gé o with some patients showing near-zero accuracy.
220 §‘~ ' However, certain patients (specifically 7,10,15, and
) | i i i
221 0.0 L R S e 22) achieved decoding performances exceeding
222 c 0.2, compared to the overall pooled performance
223 o of 0.28. This variability was less pronounced for
224 %g T General performance the Scene Cuts and Indoor/Outdoor labels. For
225 € § 03 the Scene Cuts label, the already low pooled per-
]
226 > ﬁ formance declined further in the per-patient anal-
227 55 02 ysis, with patients 2,10,19, and 20 showing slightly
228 S Sl better results, while most demonstrated minimal
o= .
220 9 decoding accuracy. The Indoor/Outdoor label
230 0 oolgfr g A Eien e R elicited a consistently higher accuracy across pa-
231 d tients, matching the overall higher decoding per-
232 ) formance achieved with the pseudo-brain popu-
o__o04f e General performance . X .
233 & S | lation. Notably, patients 2,13,20 and 25 achieved
234 g 5 03 performances exceeding 0.2 (Cohen'’s Kappa), com-
238 T pared to an overall pooled performance of 0.31,
QT . . .
236 mé 02 indicating robust neuronal responses in patient-
C
237 3 S o1 specific subpopulations of neurons. Across all la-
238 ] bels, the highest-performing patients vary, and no
) . ) . .
230 00T 3T ST T 11 13 15 17 10 21 23 25 27 29 single patient showed consistently superior perfor-
240 Patient ID mance across all three.
241 Figure 4. Patient-specific decoding performance Decoding Parahippocampal cortex drives decoding
22 performances for the main character (Summer), visual transitions of visual transitions and location

(Scene Cuts), and location (Indoor/Outdoor) are reported using
Cohen’s Kappa and compared to the performance obtained from the
total population (pooled across all patients, dashed line). a) Decoding

Continuously presented stimuli offer a rich array
of features. Visual transitions, such as changes in

245 performance based on the total population of 2286 units, with filming angle or scenery, are a commonly studied
2a6  Neurons pooled across all patients. b-d) Patient-specific decoding feature that demarcate the event structure of the
.47 Performances for Summer, Scene Cuts and Indoor/Outdoor. dynamic stimulus. In movies, these transitions are
248 relatively well-defined since they consist of iden-
240 tifiable changes in pixel values between frames
250 and are known to elicit time-locked changes in
251 neural activity in fMRI?® , iEEG??, and single neu-
252 rons'’. We investigated two types of frame-wise
253 visual transitions: Scene Cuts (changes in scenery)


https://doi.org/10.1101/2024.06.13.598791
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.13.598791; this version posted March 11, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

2sa and Camera Cuts (changes in filming angle). As Scene Cuts consists of visual transitions between locations or points
2ss  iNn time and demarcate narrative episodes within the movie, they are related to location but not exclusively. We
256 compared this label to a more straightforward location-related feature, Indoor/Outdoor, which indicates whether a
257  given frame depicts an indoor environment or not. Examples of Scene versus Camera Cuts as well as Indoor/Outdoor
288 Scenes are shown in Supp. Fig. S2.

250 To investigate region-wise differences, we trained separate decoders for neurons in the amygdala (A), hippocam-
260 puUs (H), entorhinal cortex (EC), and parahippocampal cortex (PHC) of the MTL. We excluded the piriform cortex (PIC)
261 due to its relatively lower number of recorded neurons (Fig. 1b). We observed a clear dominance of the parahip-
262 pocampal cortex for both types of visual transitions. The decoding performances reached 0.21 + 0.02 for Scene Cuts
263 and 0.19 + 0.03 for Camera Cuts, respectively, when restricting the decoding to the parahippocampal cortex as op-
262 posed to 0.20 &+ 0.03 and 0.18 £ 0.01 when decoding from the full population. The other regions showed a lower
26s but above-chance decoding performance. Similarly, the parahippocampal cortex yielded the highest performance
266 for predicting indoor versus outdoor content and reached a performance of 0.30 + 0.06, comparable to the perfor-
267 mance on the full population (0.31 + 0.06). Hippocampus was the second strongest region with a high performance
26 Of 0.26 & 0.04. For entorhinal cortex and amygdala, we observed lower performances of 0.15 + 0.05 and 0.1 + 0.03,
260 respectively.

270 In summary, the parahippocampal cortex consistently achieved the highest decoding performance for labels asso-
271 Ciated with visual transitions and location, in line with prior research on the MTL". Given that both Scene and Camera
272 Cuts are linked to sharp visual transitions, we anticipated that earlier processing stages in the MTL would show better
273 decoding performances than later processing stages. However, despite the clear dominance of the parahippocampal
274 Cortex, our results show that other regions achieve lower, but nonetheless significant performance when detecting
275 event structure and setting information.

27e  Amygdala drives decoding of character presence

27z The MTL carries information about the identity of specific individuals, in addition to general person-related categories
27s  OF attribute, primarily through the tuning of individual neurons>'-33. Unlike visual transitions, character identities are
270 @ semantic feature which rely on both visual attributes and higher-level abstract representations. To investigate
20 Character-driven representations at the population level, we analyzed neuronal activity during the presence of the
2e1  Movie's three main characters, Summer, Tom, and McKenzie, as well as the more general concept of any character ap-
282 pearance (Persons, see example frames in Supp. Fig. S2). While Summer’s appearance throughout the movie frames
283 IS balanced (50/50), the remaining labels are highly imbalanced: Tom and Persons appear in the majority of frames
282 (80/20 and 95/5), while McKenzie is predominantly absent (10/90) (Fig. 1c). Despite the imbalances, we observed sig-
2es  nificant decoding performances for all four character labels ranging between 0.23 and 0.36 (Fig. 3c). Notably, decoding
286 performance for character identities—despite being abstract and variable—exceeded that of visual transitions (0.20
287 and 0.18).

2ss  Distribution of information across MTL regions

280 T0 investigate whether characters were primarily processed in a specific MTL region or in all regions equally, we
200 conducted a similar analysis as before by retraining on region-specific activity (Fig. 5a). Our results show that all four
201 tested regions carry information about the character's identities, enabling decoding at above-chance levels (p < 0.001,
202 permutation test, see Methods). The amygdala and parahippocampal cortex showed the highest decoding perfor-
203 mances for Summer and Tom, respectively, approaching levels similar to decoding from the full population. However,
20« the distribution of information among the other regions was less consistent and varied across labels (Fig. 5a). The
205 hippocampus had the lowest performance for Summer (0.09 4 0.04) and Tom (0.05 + 0.05), while the entorhinal cortex
206 performed lowest for McKenzie (0.12 + 0.02). For Persons, the parahippocampal cortex dominated with decoding
207 performance comparable to the full population (0.36 & 0.05), while other regions ranged between 0.14 and 0.21.

208 Differences in character's visual appearances
200 Since the labels indicate the presence of a given feature within a natural scene rather than a single exemplar shown
300 inisolation, the visual appearance of the labeled entity varied substantially during the movie.

10


https://doi.org/10.1101/2024.06.13.598791
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.13.598791; this version posted March 11, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

301 To better control for vi-

302 sual appearance and ex- a

303 amine decoding differences — 0.6- e Al mmm A e H EC PHC
304 acrossvarious levels of char- ) 3

305 acter presence, we created = % §

306 the additional labels Sum- 'g £ v 0.4 021 oo 0.3
307 mer Faces, Tom Faces, and @ ~8 E 0.2 021 016 0.19 [
s Summer Presence (see Meth- = & S 021 o0 . I o1 0115

w0 0ds for details on anno- = 005 0.05 2 s

s10  tation creation). As with

w1 the character labels, we Scene Cuts Camera Cuts Indoor/Outdoor
312 trained a decoding network b

;13 on both the full neuronal .6.0-6' EmN Al EEm A EEE H = EC PHC
;12 population as well as the vg

s fourindividual regions (Fig.5b). £ 58

216 Face labels for both char- g g_é’

s17 - acters elicited a slight im- SE-GC)

;s provementin performance a8

310 compared to the full neu- -

>0 ronal populations, with Sum- Summer Tom McKenzie Persons
322 mer increasing from 0.31 + c

22 0.06 to 0.33 + 0.06 and

323 Tomincreasing from 0.23+ = 0.61

2« 0.06 to 0.27 + 0.07. Re- @§ §

a5 gionally, the distribution % Eﬁ 044 °*¥

326 remained consistent with S5«c

s2r the general character la- 8"5% 0.2 011 012 012
28 bels, except for Tom Faces, o )

320 Where the entorhinal cor-

o
<

330 tex had the highest per-
;1 formance. The hippocam-

332 pus performed weakest for Figure 5. Semantic information is distributed differently across MTL regions based on

333 both Summer Faces (0.08 + category Decoding performances for semantic features, by MTL region. All performances were
0.04) and Tom Faces (0.11 + significantly better than chance level with an alpha level of 0.001 (reported performance using
Cohen’s Kappa, mean performance across five different data splits, error bars indicate
standard error of the mean. a) Decoding performances for visual transitions and location

Summer Faces Tom Faces Summer Presence

38 0.03). The Summer Pres-

ass  ence label had an overall features. b) Character visibility could be decoded from the entire population of neurons, and
;37 performance of 0.27 & 0.04, with variable performance when training only on individual MTL regions. c) Decoding
s slightly lower than the gen- performances for face-specific character appearances and Presence features, by region.

330 eral Summer label, with

a0 the amygdala clearly dom-

sa1  inating the regional distribution (0.26 & 0.07). For face labels, distributions were more similar across regions than for
a2 the general character labels. The amygdala outperformed other regions in decoding the abstract presence of Summer
sa3 but performed poorly for general person appearances, where the parahippocampal cortex performed best. These
saa  findings align with previous research showing that semantically-tuned cells in the human MTL can flexibly activate
aas  When their preferred conceptual category is indirectly invoked>*.

s  Responsive neurons drive decoding of visual transitions but not decoding of characters

saz  Although only a subset of neurons modulated firing in response to the onset of a given movie feature, we neverthe-
s |ess observed significant decoding performance from the full population. This effect could result from two scenarios:
sa0 @) information is distributed throughout the neuronal population and decoding does not disproportionately rely on
ss0  Neurons with post-onsetincreases in firing, or b) the subpopulation of responsive neurons informs the decoder while

11
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;1 Non-responsive neurons are ignored. We tested each scenario by dividing the full population into two corresponding
2 subsets—non-responsive and responsive neurons—and re-training a neural network on each subset. We analyzed
ss3  the labels Summer and Camera Cuts, which represent the character-related and visual transition categories, respec-
s« tively. We then compared the prediction performance of each re-trained model to that of the full population to
sss  determine if the decoding of a given label took the entire population into account (scenario a) or relied on responsive
36 Neurons (scenario b) (Fig. 6). The subsequent analysis evaluates these subsets both at the full population level and
37 Within the restricted context of MTL regions.

s Decoding with non-responsive versus responsive neurons

30 First, we tested prediction performance using only the non-responsive neurons to determine if similar decoding could
se0 e obtained without neurons which significantly modulated firing after the onset of a feature. For this subpopula-
se1 tion (Non-responsive (only)), a separate LSTM was retrained and tested. Despite the exclusion of responsive neurons,
se2 these subpopulations yielded performances comparable to those of the complete population (Fig. 6a, Complete) for
ses  the character Summer. Minimal differences in performance were observed across MTL regions, with only the en-
se« torhinal and parahippocampal cortex showing qualitative decreases. For comparison, we additionally retrained using
ses  Only responsive neurons as input, and again tested the decoding performance (Responsive (only)). In contrast to the
ses Minimal differences observed in the Non-responsive (only) model, restricting to only responsive neurons produced
sz a decrease in overall performance across the entire MTL and all regions. This general decrease suggests that the
ses  Ssubset of individually responsive neurons is not the primary driver of the decoding performance observed in the full
seo population model. Note that the total number of responsive neurons was less than the total non-responsive, so this
370 effect may be influenced by an overall decrease in neuronal data. This difference in totals is directly addressed below
371 by a size-matching procedure.

372 A different pattern emerged for the Camera Cuts feature, which exhibited the greatest performance drop when
373 responsive neurons were excluded, for the entire MTL and for all subregions but the entorhinal cortex (Fig. 6b). This
72 pattern was most pronounced for the parahippocampal cortex, indicating that responsive neurons carry valuable
375 information for processing Camera Cuts in the movie. This hypothesis is further supported by the decoding perfor-
s7e Mances obtained when restricting the decoding to only responsive neurons. Despite the restricted number of input
377 neurons, the performance dropped marginally, and remained comparable to that of the complete population for the
378 entire MTL, as well as for the amygdala, hippocampus, and entorhinal cortex regions.

12


https://doi.org/10.1101/2024.06.13.598791
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.13.598791; this version posted March 11, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

a Non-Responsive Responsive
(only) (only) Non-Responsive (Size-Matched): Responsive (Size-Matched):
Set of non-responsive neurons Set of responsive neurons
iy downsampled to match the size of the with randomly-sampled non-responsive neurons
H é’é‘ responsive neuron population to match the size of the non-responsive population
-1000 "l|)s 1'000 -1000 "?5 1000
A A AAA AAA A A AAA
b 3
ummer
0.5
[}
9]
Cr— 4-
© 8 0 031 032 Il Complete
g o 028 %2 Non-responsive
o O o 3_ 0.28 - (on|y)
£ U 023 Non-responsive
&) _2 17 o9 0.16 017 (size-matched)
J 0.11 Responsive
g_qc) 0.2 1 o | (size-matched)
= O 0.09 011 Responsive
o] U 0.09
o> J (only)
S 0.1
a
0.0- ™
ALL A H EC PHC
(46) (12) (16) (10) (7)
Cc
Camera Cuts
o 0.37
9]
5©
g S oo Il Complete
o Non-responsive
S @ 0.21 T 0.16 016%7 L (only)
T X el I Non-responsive
(O] (size-matched)
[a e 0.1 0.11 .
o @ 0.09 a5 Responsive
c< 0.11 0.08 0.08%28 006  0.080.07 0.07 (Slze»maFched)
5 (o] gk o I 0.05 Bl 0.06 Responsive
[®] E' 0.03 oo 0.03 0.04 0.049,03 = (only)
: : i b
o 0.0 T T T + T
ALL A H EC PHC
(1025) (272) (309) (201) (193)

Subregion

Figure 6. Responsive neurons drive performance for visual transitions, but not characters. To assess the contribution of the
responsive neurons on decoding (identified in Stimulus-aligned responsive neurons found primarily in parahippocampal cortex), we
compared the decoding performance for subpopulations which did or did not contain these neurons. a) lllustration of neuronal
sets used in the decoding comparisons (triangles represent neurons). An example of the complete population is shown in the
left-most section, which depicts Non-responsive (only) and Responsive (only) cells, with a simulated example of a respective
peri-stimulus time histogram (onset raster, grey and magenta). A Non-responsive (size-matched) group (middle section) was
randomly subsampled from the total population to have a size-matched comparison to the total set of responsive neurons. The
Responsive (size-matched) set (right-most section) consisted of all responsive neurons padded with randomly selected
non-responsive neurons to match the total Non-responsive (only) population. b,c) Decoding performances for discussed
subpopulations for the character label Summer and Camera Cuts. Number of responsive neurons for the respective
subpopulation reported in parentheses.
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s7e  Size-matched neuronal populations: comparing responsive and non-responsive subsets

sso  Since the total number of responsive neurons was lower than that of non-responsive neurons, we tested the per-
s formance using size-matched versions of both non-responsive and responsive subpopulations. To match the size
ss2  Of the responsive neurons, we randomly selected an equivalent number of non-responsive neurons (Non-responsive
ses  (Size-matched)) and trained and tested a separate neural network. This process was repeated three times with dif-
ssa ferent random selections, and we report the average performance. For both labels, Summer and Camera Cuts, the
sss  smaller size-matched non-responsive subpopulation showed an expected decrease in performance compared to the
sss  full non-responsive subpopulation. However, the results diverged when comparing the size-matched populations:
sz For Summer, the size-matched non-responsive neurons performed comparably to the responsive neurons within
sss  individual MTL regions. Only for the complete population did the responsive neurons show a clear improvement.
s Conversely, for the Camera Cuts, restricting to only the responsive neurons improved performances, with decoding
300 predictions of all but the amygdala surpassing those of the size-matched non-responsive set of neurons.

301 Asimilar pattern emerged for a size-matched version of the responsive neurons (Responsive (size-matched)), which
302 we formed within region by padding the set of responsive neurons with randomly selected non-responsive neurons.
ses  For Summer, decoding from this subpopulation consistently showed a performance drop compared to the total set
sea  Of non-responsive neurons across all tested regions. In contrast, for Camera Cuts, the size-matched subpopulation of
35 responsive neurons achieved similar or better performance than the non-responsive neurons across all regions, with
06 the complete population and parahippocampal region showing a clear dominance of the subpopulation containing
37 responsive neurons. We additionally evaluated performances for the labels Tom, Scene Cuts and Indoor/Outdoor,
s0s  Which matched the effects found for Summer and Camera Cuts (Supp. Fig. S10).

w00 In summary, our findings indicate that responsive neurons play distinct roles for different features. Neurons respon-
w01 Sive to visual transitions appeared to carry information not equally present in other neurons. On the contrary, for
w02 Character- and location-related labels, individual responsive neurons contributed less to decoding, and information
203 appeared to be distributed either across the entire population or a subset of neurons distinct from the previously
s04 identified responsive neurons.

«s Relevant information is carried by a smaller subpopulation of 500 neurons

w06 We observed that subsets of neurons with stimulus-selective responses to characters did not account for the decoding
w07 performance of the same character. Previous research in sensory information processing suggests that relevant stim-
a0s ulus information is often encoded by only a subset of neurons within a population?2>3¢, To explore this further, we
100 adopted a more data-driven approach to define neuronal subsets, ranking their importance using weights extracted
a0 from a trained logistic regression model and investigated the minimally sufficient number of neurons required for
a1 successful decoding.

a2 Ranking of neurons for the character label Summer

a3 The weights of a logistic regression model can be used to assess each neuron’s importance in decoding, allowing for
a1a the creation of a ranking across all neurons (see Methods for more details). In contrast to an LSTM, logistic regression
a5 models are computationally less expensive to train and achieve comparable decoding results for all movie features,
a6 except for Scene Cuts and Camera Cuts, which exhibited reduced but above-chance decoding performance (Fig. 3c).
a1z For the character label "Summer," we generated a neuron ranking from the trained logistic regression model and
a1s defined subsets of neurons by selecting those with the highest rankings.

410 The above LSTM and logistic regression models were trained on population data using 5-fold cross-validation, with
s20 alternating test sets for each of the five splits. However, this approach precludes an independent ranking of neurons
421 ACross splits, as test data from one split may overlap with training data from another. To address this, we expanded
«22  the five original splits to 20, where each subgroup of four splits shared a common test set but varied in the allocation
423 Of training and validation data. Any analysis relying on a subset of neurons derived from logistic regression weights
424 Was exclusively assessed using the four splits that produced the ranking and shared held-out test data (see more
425 details in Methods, and Supp. Fig. S8).
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Figure 7. 500 neurons are sufficient to reach peak decoding performance a) Decoding performances for the character
Summer for subpopulations of top-performing neurons, testing various sizes ranging from 1% to 100% of the full population
(absolute numbers of neurons are reported in parenthesis). Mean performance across different splits is reported, and standard
error of the mean is visualized by the error bars. b) Number of overlapping neurons across rankings for different sizes of
subpopulations of top-performing neurons (pink). As a baseline, we compare the number of overlapping neurons to the number
expected by chance (grey), and we observed a notably higher intersection of top-ranked neurons across the splits. Additionally,
the overlap between the intersection of top-ranked neurons and the previously defined responsive neurons is shown (black). c, d)
Overlapping neurons (in total 78) in subpopulations of 500 top-performing neurons for each ranking were distributed across
patients and MTL regions.

426 Training on pre-selections of top-ranked neurons

sz We trained on progressively smaller subpopulations of top-ranked neurons for the character Summer (Fig. 7a) and
428 Observed an increase in performance when restricting the input activity to smaller populations (peak at 0.38 (Cohen'’s
s20 Kappa) for 500 neurons, 21.9% of the total population). The decoding performance reported here for the entire
430 population shows a slight variation from the previously reported value of 0.31 due to the modified nested cross-
41 validation procedure. Further reduction of the population lead to a decrease in performance, yet high decoding
432 performance persisted even in small subpopulations of neurons.

433 We observed that a ranking procedure which did not use a common test set was subject to potential cross-talk
43¢ between data splits, which substantially impacted and distorted the results. Using a selection of neurons derived
a5 from non-independent training and test data led to a stark increase in performance, nearly doubling the original
436 performance of the character Summer to 0.52 (Cohen’s Kappa) when restricting to a subpopulation of 150 top-ranked
a3z Neurons. This again underscores the need to carefully prepare the data for paradigms such as ours, where data
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.38 samples are highly correlated, as ignoring dependencies between training and test data can greatly skew results (see
430 Supp. Fig. S13).

w0 Top-ranked neurons and their distribution across patients and MTL regions

41 As the selection process involved five distinct rankings of neurons, we investigated the consistency of the neuronal
42 CcOmposition across rankings. The overlap of neurons within subpopulations of top-ranked neurons assessed across
w3 different sizes is shown in Fig. 7b. Analyzing the top-performing 500 neurons from each of the five rankings revealed
42 @ common set of 78 neurons. We compared this observed overlap to that expected by chance with random subpop-
a5 Ulation selections (see Methods), finding a notably higher overlap. This suggests the presence of common neurons
aae  crucial for decoding the label Summer. Additionally, we also compared these selected neurons to those previously
w7 classified as responsive. The overlap between the two groups of neurons was small, suggesting that the respon-
was  Sive neurons defined by onset-related changes in activity may not be the primary drivers of decoding performance in
40 general, aligning with previous observations for character labels when the decoding pipeline was restricted to respon-
40 Sive neurons. As restricting to 500 neurons yielded the highest decoding performance, we subsequently analyzed the
41 resulting intersection of 78 neurons across rankings. These 78 neurons were distributed across both patients and
a2 regions (Fig. 7¢,d), with no single patient or area of the MTL driving the performance. Visualizations of the spiking ac-
a3 tivity surrounding the onset of Summer for these neurons do not reveal a clear pattern of stimulus-evoked increases
asa i firing (Supp. Fig. S12).

455 Our findings reveal that a core subpopulation of approximately 500 neurons drives decoding performance, while
w6 additional neurons mainly contribute redundant or noisy information. These neurons are distributed across patients
7 and MTLregions, presenting an important avenue for future research to investigate the mechanisms underlying their
48 Organization and the specific functional roles they play in decoding processes.
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=0 Discussion

w0 We investigated how the human brain processes semantic and event structure in a naturalistic setting by analyzing
w1 the activity of neurons in the medial temporal lobe during the presentation of a full-length commercial movie. Al-
w2 though earlier work has established and characterized the role of MTL neurons in semantic representation, and the
w3 processing of dynamic stimuli via fMRI and intracranial electroencephalography, few studies have investigated how
sa human single neurons process dynamic stimuli and none have addressed the relationship between representations
a5 0on the single-neuron level and the population level.

466 By analyzing changes in each neuron'’s activity aligned with the onset of labeled movie features, we identified
w7 groups of individual cells that adjust their firing rates in response to specific features. The most pronounced re-
w8 sponses occurred following changes in camera angles and scenes, as these features induced activity changes in the
a9 largest number of cells. Outdoor scenes and the two main characters also elicited consistent single-unit responses, al-
470 beitin far fewer neurons. This lack of explicit single-neuron responses to characters, which might otherwise suggest
a1 Selective and invariant representations such as those in concept neurons, could be explained by the study partici-
472 pants’ lack of familiarity with the movie. Most participants had neither seen the movie before nor encountered the
473 actors in other media prior to its presentation as part of this study. This interpretation aligns with previous research
«7a  showing that neuronal selectivity to individuals varies with familiarity and personal relevance, as photos depicting
ars  personally known individuals are more likely to elicit selective responses in MTL neurons®’.

476 We anticipated that the decoding performance for each label would reflect the pattern observed at the single-
477 neuron level: Visual transitions would be the most accurately predicted feature, followed by setting, with character
478 presence showing the lowest prediction accuracy. Although not every feature elicited explicit responses from a signif-
470 icant portion of individual neurons, the network, which takes the collective population activity as input, successfully
a0 decoded all tested features with above-chance performance. Interestingly, the decoding performance varied across
s features and contradicted the pattern found in the individual neurons. Despite eliciting the highest proportion of
a2 responses at the single-unit level, visual transitions showed the lowest decoding accuracy out of all tested features.
a3 Conversely, characters showed the highest decoding accuracy despite there being few individually responsive neu-
ssa  rons. Both approaches link neuronal responses to the movie content but differ markedly in their focus, as the single-
4s5  UNit analysis targets the specific onset of features, emphasizing their initial activation, while the population approach
a6 processes data continuously, decoding both the onset and sustained presence of features. This methodological dif-
w7 ference may affect the results and contribute to the observed contradiction between them. To bridge these findings,
48 We examined how individual responsive neurons contribute to the decoding network. We hypothesized that the de-
a0 coding performance for each label would be primarily driven by the subset of neurons that exhibit increased activity
a0 iN response to that label. This hypothesis held true for the decoding of visual transitions, as the set of individually
w01 responsive neurons disproportionately contributed to the decoding performance when using the full population, and
w2 performance was strongly affected by their removal from the training population. In contrast, character decoding
+03 does not rely on individually responsive cells, as removing neurons that responded strongly to character onset had
w04 little impact on performance. When analyzing the network and its prediction behavior, we identified a subset of units
405 Which contributed most to the decoding of character information across models, and found that these units had little
a6 Overlap with the set of neurons which increased firing after character onset. Together, these findings suggest that
407 character-related representations relied on a population code, while visual transitions were encoded by the activity
ws  Of specific neurons.

490 When training separately on different regions of the MTL, we observed variations in decoding performance de-
soo pending on the specific content being decoded. The parahippocampal cortex achieved the highest performance in
so1 detecting visual transitions, while the amygdala performed best in predicting character-related information. These
so2 results support previous findings which identified that certain regions are more likely to respond to certain categories
sos  Of images in static screenings. For example, previous studies have shown that the amygdala preferentially responds
soa toimages containing faces 2, and contains cells that selectively respond to whole faces as opposed to discrete facial
sos features>®, We extended this analysis to examine different levels of character appearance, distinguishing between
sos face visibility and the general presence of a character in a scene (regardless of face visibility). Although, the amygdala
soz demonstrated strong performance in both cases, it most clearly drove the decoding for the general presence of a
sos  Character, rather than specifically to face visibility. This effect could be due again to the unfamiliarity of the movie
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soo and its actors, as face-specific responses have been shown to form as a function of exposure.

s10 Previous work has found that the parahippocampal cortex is especially sensitive to scene information®, as op-
su  posed to objects*®*, with a higher likelihood of neuronal activation when scenes feature stronger spatial layout cues,
si2 such as depth and a recognizable background?. Zheng et al. (2022) identified generalized cells, termed “boundary
s13  cells”, in the parahippocampal gyrus, hippocampus, and amygdala which modulate their firing after any visual tran-
s12  Sition event. In our study, we observed significant responses to camera cuts in these same regions, which we inter-
sis pret as analogous to "soft boundaries"'". However, significant responses to scene cuts were only observed in the
s1e parahippocampal cortex, whereas Zheng et al. reported responses to their analogous feature ("hard boundaries")
sz in all measured MTL regions. In addition to their preference for scene-related images, parahippocampal neurons
sie have been shown to respond more frequently to outdoor images compared to indoor ones“. In our dataset, a small
s10  subset of parahippocampal neurons increased firing in response to the onset of outdoor scenes, whereas none
s20  showed increased activity for indoor scene onset. Despite their limited number, these responsive neurons achieved
s22 well above-chance decoding performance, albeit falling short of the performance achieved by the complete neuronal
s22  population. Further work is needed to more accurately determine if the activity of single scene-selective parahip-
s23  pocampal neurons in our dataset can be explained by the onset of location-related content.

524 Visual transitions and character content additionally differed in their use of sequence information. Through a
s2s  comparison between decoding architectures, we found that temporal information in the spike trains only mattered
s26  for the prediction of visual transitions, and that ignoring or even scrambling the sequence information had little effect
sz on character and location features. Although using temporal dynamics improved decoding performance for visual
s2s  transitions, the temporal dynamics in our data, particularly those inherent to the movie stimulus, also present a sig-
s20  hificant confounding factor. Both the movie and recorded neuronal activity are subject to a high degree of correlation
s30  intime and thus require extra consideration when formulating a pipeline to ensure that the training and test data did
s31 notcontain adjacent, highly correlated samples. The correlation between training and test samples artificially inflates
s32 decoding performance, and does not reflect actual generalization to unseen data. In related research by Zhang et al.
s3s (2023), where temporal distance was not considered, high decoding performances were reported on a similar task.
ss2  Based on our analyses, we anticipate that their reported decoding accuracy is overestimated, and would change if
s3s  sufficiently large gaps were introduced.

536 As our dataset consists of single-neuron activity pooled across 29 subjects, each with activity from an average of
s37  approximately 80 recorded neurons, the extent to which claims can be made about what an individual brain does
s3s IS limited. In addition, the participants watched a full-length movie in an clinical setting, where neuronal activity is
s30  not solely focused on visual stimuli and likely processes additional information. Although we cannot know whether
ss0 the neuronal population that we sampled is representative of the human MTL generally, it is one of the largest sam-
sa1  ples collected to date, both in terms of neurons and patients and offers a unique opportunity to understand the
sa2  processing and representation of information in the MTL population activity. Despite the inherent limitations, which
sa3  preclude near-perfect performances in the decoding task, the presented approach demonstrates that movie con-
saa  tent can nevertheless be successfully decoded from such a sub-sampled population of neurons. Future work on this
sas  dataset could leverage more advanced network architectures to explicitly model between-neuron dynamics within
sas  €ach patient, which could better explain the gain in performance achieved moving from the single-neuron level to
saz  the population level. Additionally, in this work we focused specifically on the visual content of the movie. A clear next
sas  direction would be to integrate the auditory information of the movie, and possibly disentangle the contribution of
sa0  Visual versus audio information streams to the neuronal representation of movie features in the MTL.
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sso Materials and Methods

ss:  Participants and recording

ss2 The study was approved by the Medical Institutional Review Board of the University of Bonn (accession number
sss  095/10 for single-unit recordings in humans in general and 243/11 for the current paradigm) and adhered to the
ssa  guidelines of the Declaration of Helsinki. Each patient gave informed written consent for the implantation of micro-
sss  wires and for participation in the experiment.

556 We recorded from 46 patients with pharmacologically intractable epilepsy (ages 19 - 62, median age 37; 26 fe-
ssz  male patients). Patients were implanted with depth electrodes®' for locating the seizure onset zone for potential
sss later resection. Micro-wire electrodes (AdTech, Racine, WI) were implanted inside the shaft of each depth electrode.
sso  Signal from the micro-wires was amplified using a Neuralynx ATLAS system (Bozeman, MT), filtered between 0.1 Hz
seo and 9000 Hz, and sampled at a rate of 32 kHz. Spike sorting was performed via Combinato*® using the default pa-
ses rameters and the removal of recording artifacts such as duplicated spikes and signal interference was performed via
se2 the Duplicate Event Removal package**. After all data were processed, neuronal signals, experimental variables, and
ses Movie annotations were uploaded to a tailored version of Epiphyte* for analysis. Due to disruptions in the movie
sea playback caused by clinical interruptions, 13 patient sessions were excluded from further analysis.

ses Task and stimuli

ses Patients were shown a German dubbing of the commercial movie 500 Days of Summer (2009) in its entirety (83 min-
sez Utes). This film was chosen because the actors portraying the main characters were relatively unfamiliar to a general
sss German audience at the time of the initial recordings. The movie was shown in an uncontrolled clinical setting, where
seo Neither gaze nor attention were directly monitored and was presented in letterbox format without subtitles on a lap-
s7o  top using a modified version of the open-source Linux package, FFmpeg“®, with a frame rate of 25 frames per second.
sz1 Due to the length of the movie and the possibility of clinical interruptions, patients and staff were allowed to freely
sz pause the playback. Discontinuity in playback was controlled for within Epiphyte*®. Pauses and skips in the movie
s73 playback were identified through the output of the modified FFmpeg program and used as a basis of exclusion for
s7a  patients. Patients were excluded if they did not watch the entire movie, or watched the movie discontinuously.

s7s  Movie annotations
s76  In order to relate the content of the movie to the recorded neuronal activity, we labeled various features on a frame-
s77  by-frame basis. These labels are binary and cover the following features:

578 * Main characters: Summer, Tom, McKenzie

570 Frames were labeled as positive if the character could be clearly distinguished by either appearance or context.
580 Characters and persons were considered only on a visual basis (i.e., a frame in which Tom is speaking but not
581 visible is labeled as not containing Tom).

582 * Faces: Summer, Tom

583 Instances of a character’s face. Positive samples are frames where the character’s face is shown, while negative
584 samples are frames where the character’s face is not visible at all. All other frames are excluded.

585 * Presence: Summer

s86 Indicates the character’s general presence in the scene, even if the character is not visible in the frame. For
s87 instance, frames are labeled as positive if the character is part of the scene but is not visible in that particular
s88 frame due to factors like the camera angle.

589 + Visual transitions: Camera Cuts, Scene Cuts

500 Marks visual transitions in the movie. Scene Cuts correspond to changes in scenery, while Camera Cuts are
s01 primarily based on changes in the visual stimuli.

592 * Location: Inside/Outside

503 Distinguishes between indoor and outdoor locations in the movie. Scenes that do not clearly fit into either
504 category are excluded from the annotation.

505 * Persons

596 General appearance of any person(s)
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sez Main character, Presence, Persons, Location, and Scene Cut labels were obtained manually using the open-source
ses annotation program Advene®’. For face labels of the characters, we developed a deep-learning pipeline for face detec-
ses tion and classification. As backbone we used a pre-trained neural network for face detection and feature extraction.
sc0 We extended the pipeline by a classification network consisting of fully-connected layers combined with ReLU activa-
so1 tion functions. The classification network was fine-tuned on the movie frames to classify detected faces of the main
s02 Characters, including a "not known" class for faces not belonging to the main characters. In the fine-tuning process,
sz We used the manually created character labels for the characters. Camera Cuts were labeled automatically using the
s OpenN-source algorithm PySceneDetect*®, run with default parameters and manually reviewed. Camera Cuts mark a
sos CUtin the movie by labeling the first frame after cut onset as positive, resulting in cut events associated with a single
s0s frame. To adjust for the temporal latency in brain activity, cuts in the movie were associated with frames occurring
so7  Within 520 ms of the cut onset. This adjustment smooths the cut labels, rendering them more comparable to what
s0s We anticipate in neuronal responses.

«o Calculation of single-neuron response statistics

s10 The "baseline" period was defined as 1000 ms prior to the onset (e.g., the entry of a character into frame) and the
e1x  "stimulus" period was 1000 ms after the onset or appearance. Pseudo-trials with baseline periods containing frames
s12 depicting the label of interest were excluded. Responsive neurons were identified using a modified bin-wise signed-
e1s rank test®. The spiking activity across pseudo-trials was aligned to the stimulus onset. The baseline period was
s12 binned by 100 ms, and the normalized firing rate of the baseline period was compared to nineteen overlapping 100
e1s ms bins defined across the stimulus period using a Wilcoxon signed-rank test (alpha = 0.01, SciPy wilcoxon®?, Simes
ews corrected®'). Additionally, a neuron was required to have spiked during at least one third of the total pseudo-trials
e17 to be tested (otherwise, assigned p = 1).

e1s Cluster permutation test

e1s  Acluster permutation test?® was used to test the difference in firing rates between the responsive and non-responsive
s20 Subsets of neurons. Using the calculated response statistics, neurons were divided into two conditions: responsive
e21  (p < 0.01) and non-responsive (p > 0.01) for a given label. Activity for a neuron was averaged across bins, yielding a
e2z Single vector of mean spike counts (spikes / 100 ms) spanning both baseline and stimulus periods for each neuron.
e23  This vector was then z-scored relative to its own mean and standard deviation. Mean spike count vectors were com-
e2a bined across conditions, yielding two datasets: A, and Ano,, matrices containing the summarized, binned activity
e2s for all responsive and non-responsive neurons, respectively. A bin-wise comparison between A, and A,., was per-
s26 formed using a two-sided t-test for independent samples (ttest_ind, SciPy), producing a t-stat and p-value for each
e2z  bin. Clusters were defined as temporally adjacent bins with p < 0.005 and t-stats were summed within clusters. The
s2s procedure was adapted to allow testing of multiple clusters, so no clusters were excluded at this stage. One set of
s20 1000 permutations were performed by randomly assigning neurons to A, and Ao, such that the total number of
e30 Neuronsin each group was conserved and the bin-wise testing procedure was performed on each permuted dataset.
es1  Each cluster was compared to the resulting histogram of permuted t-stats. P-values for each cluster were defined as
s32 the number of permutations with a higher summed t-stat relative to the total number of permutations, and a p-value
e33 less than 0.05 was considered significant.

e« Decoding from population responses

e3s  For decoding, we used population responses (input) to predict the corresponding concept labels (output). We ex-
e3s Cluded the credits from the dataset and focused solely on the narrative content. The movie was presented at a frame
e37 rate of 25 frames per second, with each frame lasting 40 ms. In total, 125, 743 frames were shown. The spiking activity
e3s Of the recorded neurons was binned using a bin size of 80 ms, corresponding to the activity of two consecutive frames.
e30 Each bin was then labeled based on the first frame within that interval.

640 We sampled activity of the neurons before and after the onset of each frame and found that using a window of 800
sax  Ms before and 800 ms after onset yielded the best decoding performance. This resulted in data samples comprising
ss2 a binary label for the concept and a spike train of length 20 (10 bins before and after the onset of the frame). Given
saz  the full population of 2286 recorded neurons, each input data sample had a dimensionality of 2286.
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s« Architecture

ess To decode concepts from the sequence of neuronal activity, we used a long short-term memory (LSTM) network,
sss  Which is well-suited to process the dynamical structure of the dataset. The output of the LSTM was fed into into several
saz fully-connected layers with ReLU activation functions to obtain binary label predictions. We found that pre-processing
sas  theraw spiking data with a linear layer of same size as the input, combined with a batch normalization layer, improved
ess performance. We used the binary cross-entropy loss function, and optimized our network using Adam optimizer>? in
eso  Pytorch® with default settings (first and second order moment equal to 0.9 and 0.999, respectively). We obtained the
es1  best results with a 2-layer LSTM, with hidden size of 32. We adapted other hyperparameters, e.g., number of linear
es2 layers, hidden sizes, batch size, learning rate, weight decay, and dropout rate, for each label.

653 We trained each network for 700 epochs and used the validation set to estimate the model’s ability to generalize to
esa UNseen data. As is common practice, we selected the model with the best performance on the validation set and used
ess  this for evaluation on the unseen test data. Some labels were highly imbalanced and models trained on these labels
ess Were biased towards predicting the majority class. To ensure unbiased predictions and to optimize performance, it
es7 IS common to force the batches of data samples presented in the training process to be balanced by oversampling
ess the minority class. This oversampling technique was applied to all imbalanced labels, comprising all labels except the
eso |label for the main character Summer.

eo Data split

se1 TO ensure that the decoding performance was not affected by correlations between data samples, we carefully split
sz the dataset into training, validation, and test sets. We used 5-fold nested cross-validation, and assigned 70% of the
ses data to training, 15% to validation, and 15% to testing in each split. To avoid correlations between samples, we as-
ssa Signed samples from consecutive segments of the movie to each set (train/val/test) and excluded 32 seconds of
ees data between each set (see Fig. S7). The choice of excluding 32 s was based on the results for the main character
sss Summer (Fig. 3c). The total dataset contained 45, 200 samples, resulting in sets of 30, 800/7,200/7,200 samples for
es7 training/validation/test. We trained a network using the training data, optimized its hyperparameters using the vali-
ees dation set, and evaluated its performance on the corresponding test set. We report the final decoding performance
seo as the average performance on all five test sets.

s Evaluation metrics

e71  For each semantic feature, we compared the model's prediction against the binary class labels. While accuracy is a
ez simple evaluation metric, it is not suitable in our case due to the highly imbalanced distribution of most labels, making
e73 it challenging to compare accuracy metrics across different labels. We report all decoding performances using the
era Cohen's Kappa metric® which measures the agreement between the ground-truth labels and the predictions of the
ezs network, where performance equal to zero is interpreted as chance-level and performance equal to one is interpreted
e7s as complete agreement. Cohen'’s Kappa is defined as

- Po — Pe @)
1—pe

e7z  Where p defines the relative observed agreement and p. the hypothetical probability of chance agreement among
e7zs  prediction and labels. The Cohen’s Kappa metric can take negative values, too, implying that the predictions are
e7o Worse than chance level. The common chance performance equal to zero makes the Cohen’s Kappa a useful metric
es0 to compare performances across all labels.
es1 Additionally, we report the F1 Score, Area under the Precision Recall Curve (PR-AUC) and Area Under the Receiver
es2 Operating Characteristic (AUROC) metric in the Supplementary for all experiments. We briefly explain these metrics,
ess including potential advantages and disadvantages for our analysis:

esa F1 Score

ess F1 Score is a metric combining precision and recall by calculating the harmonic mean between these two. Precision
ess andrecall are determined based on a classification threshold of 0.5. Designed to perform well on imbalanced datasets,
es7 the F1 Score is particularly useful for evaluating our decoding tasks. However, the baseline for chance performance
ess  With this metric is not consistent and varies depending on the label distribution.
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ess  PR-AUC

es0 The PR-AUC metric, representing the area under the precision-recall curve, extends the F1 Score by evaluating perfor-
se1 Mance across different threshold settings. Similarly to the F1 Score, it can be used for imbalanced datasets. However,
eo2 as for the F1 Score, the PR-AUC metric is sensitive to changes in the class distributions, resulting in varying chance
ses performance across labels. Being a reliable performance metric in general for our various classification problems,
sea ONe has to bear in mind that a comparison of performances across concepts can be misleading due to the different
eos Chance baselines.

ess  AUROC

eor The Receiver Operating Characteristics (ROC) curve represents the trade-off between the true positive rate and false
e0s positive rate for various threshold settings. AUROC as the area under the ROC curve is a performance measure that
e00 IS Used in settings where one equally cares about positive and negative classes. Performances range in [0, 1] and it is
70 iNsensitive to changes in the class distribution, which means chance performance is given by a value of 0.5. However,
701 the metric is generally not used for highly imbalanced classification problems and an evaluation of specific labels in
702 our analysis such as McKenzie (class distribution is 90/10) should be taken with caution.

73 Single-neuron decoding performance

70a For a fair assessment of decoding from population responses compared to single-neuron activity, we evaluated the
70s decoding performance of individual neurons under a setup comparable to that of the LSTM-based decoding network.
706 Instead of relying on full-population responses, we established a performance based solely on the firing rates of each
707 single neuron. Employing the same data splits, cross-validation approach, and binning procedure used for the LSTM
708 network, we summed the binned firing rates of a neuron surrounding frame onset for the 1600 ms time window
700 Utilized by the decoding network. We then individually selected the best threshold for each neuron’s activity on
710 the validation set, which was subsequently used to evaluate the neuron’s performance on the hold-out test set. We
71 reported the final performance as the average of the five results obtained from the 5-fold cross-validation procedure.

=2 Permutation tests for decoding

713 To determine if the reported decoding performances were significantly better than chance, we performed two sets
na  Of permutation tests—first, we randomly shuffled the labels of the held-out test set (Test Set Shuffle), and second,
715 We shifted the labels while preserving the order of the test labels (Circular Shift). For both tests, the input to the
76 decoding network remained unchanged from the non-permuted version. The only modifications made were to the
71z corresponding feature label in the test set, which were changed in the ways outlined above, and then compared to
e the original network’s prediction scores. The dynamic nature of the visual stimuli implies not only a strong correla-
710 tion within the neuronal activity but also suggests a temporal correlation for the feature labels. By modifying only the
720 labels, we ensured that the temporal information embedded in the neuronal data remained unaffected by the per-
721 Mutation test. In the following, we test the significance of both scenarios: one where the temporal correlation within
722 the labels is disrupted (Test Set Shuffle), and another where the temporal correlation within the labels is maintained
723 (Circular Shift).

e Test set shuffle
The first type of permutation, and the one reported in the main text, consisted of randomly shuffling labels in the test
set and evaluating the predictions of the models on those. We compared the performance of the model on the held-
out test set to a null distribution generated by evaluating the model on the test set with shuffled labels (N = 1000).
We calculated the probability of our observed performance under the null distribution to obtain the p-value:

k+1
PENTI
725 Where k is the number of performances on permuted data outperforming the ground-truth performance of the model.
726 This p-value provided the basis of comparison for describing significant decoding results in our main analyses. By
727 preserving the temporal structure during the model's inference process and only disrupting temporal correlations
72s  Within the concept labels used for evaluating the model's predictions, we consider this assessment of significance to
720 be the most appropriate for our data setup.
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70 Circular shift

731 The second type of permutation was performed as a comparison for the above Test Set Shuffle, as it is a standard
=2 method in human single-neuron studies (see>®,%¢,%4). Circular shift permutations maintain both the temporal rela-
733 tionship of neuronal data as well as that of the stimulus information, here the concept labels. Rather than randomly
7sa  shuffling the labels in the test set, we applied a circular shift of labels that maintained the intrinsic temporal structure.
735 The shifting size was randomly chosen N = 1000 times to obtain a null distribution akin to the previous test. This
736 distribution was then utilized to compute the probability of our ground-truth performance and derive the p-value
737 for assessing significance. For studies involving static stimulus presentation, wherein the stimulus is largely uncor-
738 related with itself, this test provides a useful way to disentangle stimulus-related effects from those endemic to the
730 time-series information. For a comparison between the permutation results, see Supplementary Materials, Fig. S11.

=0 Impact of temporal information on the decoding

7a1  TO assess the significance of temporal information in neuronal activity sequences, we evaluated the trained models
7a2  Using temporally-altered test data. The input to the decoding network included neuronal activity from 800 ms before
7a3 10 800 ms after the onset of the frame, divided into 20 bins. For the temporally-altered test data, we randomly shuffled
7aa  the sequence order of the 20 bins (applying a consistent permutation for all neurons and data samples) and evaluated
7as  the pre-trained models on the modified test data. This procedure was repeated 100 times, and the performance was
726 averaged. The final performance was calculated by averaging the results across the five data splits, using the standard
77z error of the mean (SEM) as the measure of variance.

s Logistic regression models and evaluation of neuron contribution to decoding

720 We compared the decoding performance of the LSTM to that of a logistic regression model. The dataset used to
750 train the logistic regression model was identical, barring one key change: the spike trains provided to the LSTM,
71 initially of dimension (20, 2286), were reduced to a single bin representing the total number of spikes around a frame.
752 The data then had a revised shape of (1,2286), and no longer incorporated temporal information. We trained a
753 logistic regression model using the 1iblinear solver implementation in Scikit-learn®’. For training, we employed an
7« L1 penalty and z-scored the neuronal activity per neuron using the mean and standard deviation of the training data.
75 We utilized a nested 5-fold cross-validation, and separately optimized the regularization strength for each data split.
s The final decoding performance was calculated by averaging the performance across all five test sets.

=7 Logistic regression weights for evaluating individual neuron’s contribution

7ss  Applying an L1 penalty during training enforced feature sparsity, which facilitated the interpretation of input feature
750 importance through the model's coefficients. A ranking of neurons was generated by evaluating the coefficients of
760 the trained logistic regression models. Caution is needed when combining logistic regression weights from models
7e1 trained on different splits due to the alternating test sets in each split, which sometimes include data used for training
7z in another split's test data (see Fig. S7). To avoid any interference between training and test data across splits while still
763 accounting for the temporal variation in our data, we further modified the splits used for cross-validation. The original
7ea five splits were extended to 20 splits in the following way: each of the original five splits was further divided into four
7es  Sub-splits which shared a common test set but alternated the division of training and validation data (see visualization
7es in Fig. S8). Any analysis based on neuron selection using logistic regression weights was evaluated exclusively on the
76z corresponding four splits that generated the ranking and shared held-out test data. Final decoding performances
7es for such analyses were derived through a nested cross-validation procedure. This involved initially averaging the
760 decoding performances of models that shared a common test set (i.e. averaging across each set of four sub-splits) and
770 then averaging the resulting five performances. In short, our training procedure for the logistic regression analysis
7722 consisted of training 5 x 4 = 20 splits, and thus 20 models, where each group of 4 sub-splits shared a common test
772 set.

773 Neurons were ranked according to their logistic regression coefficients across each set of four sub-splits. Given
774 that there are a total of five such groups, this lead to five distinct rankings. To obtain each ranking, we combined the
775 coefficients of the four trained models using a two-step procedure:

776 1. Partition the neurons into separate subsets, based on the number of models for which a neuron had a non-
777 zero coefficient (e.g. one group of neurons which had non-zero coefficients on all four sub-splits, then all three
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778 sub-splits, etc.).
770 2. Within each subset of four models, use the average of the absolute coefficients across the five splits to obtain
780 a subset-specific ranking.

751 By concatenating the partitions of ranked neurons, we obtained a comprehensive ranking of all neurons. The neuron
752 ranked highest displayed non-zero coefficients in all four models (corresponding to four sub-splits) and possessed
7s3  the greatest average absolute coefficient value among neurons activated in all four models.

s Intersection of top-performing neurons and chance-level overlap

7es In our analysis, we restricted the decoding to subpopulations of neurons that were derived through a ranking of
756 Weights of a trained logistic regression model. To ensure that the selection of neurons was independent of the test
7s7 data, the neuron selection procedure was based on five rankings derived from distinct data splits, each paired with
7se  fixed test data. We evaluated the intersection of neurons across subsets of top-ranked neurons from the five rankings,
7s0 evaluated for varying subpopulation sizes (Fig. 7b). For instance, a comparison of the top-performing 500 neurons
70 from each of the five rankings revealed a set of 78 common neurons.

701 As a reference point for comparison, we report the average count of overlapping neurons anticipated when ran-
72 domly selecting sets of 500 neurons five times from the entire population (denoted as chance level of overlapping
73 neurons in Fig. 7). In the previously mentioned scenario involving subpopulation sizes of 500, the expected number
70a Of overlapping neurons is equivalent to one. Mathematically, this is computed as follows: the full population consists
75 Of N = 2286 neurons. We refer to the size of the subpopulation as k = 500 and the number of total rankings m = 5.
706 For each neuron n; in the subpopulation, we define a random variable X; sq0 as follows:

1, if neuron n; lies in all five subpopulations
Xis00 = . (2)
0, otherwise

We observe that P(Xiso0 = 1) = (£)" = (%)5 The expected value of X;soo is given by

E(Xis00) = 1-P(Xis00 = 1) + 0 P(Xis00 = 0) = P(Xi500 = 1)

We define Xsoo = 3.1V, Xis00 as the number of overlapping neurons across all five rankings. Since the random variables
are independently and identically distributed, this implies
u & 500 \°
E(Xs00) = ZE(Xf,soo) = ZP(X,-H)O =1)=2286- (%) ~ 1.1443

i=1 i=1

Analogous calculations for k = 100, 350, 750, 1000 yield

E(X100) = 2286 - (1—0)5 ~ 0.0004
2286

E(X350) = 2286 - (2%%)5 ~ 0.1923

E(Xs50) = 2286 - (%)5 ~ 8.6896

E(X1000) = 2286 - (%22)5 ~ 36.6180

7oz Thus, we derive the chance baselines as 0,0, 1,9, and 37 for subpopulation sizes of 100, 350, 500, 750, and 1000, respec-
798 tively.

e Decoding on regions of the MTL

soo We compared the decoding performance when using the activity of all 2286 recorded neurons to the performance
so1  When only using activity from specific regions of the MTL. These regions are the amygdala (580 neurons), hippocampus
soz  (794), enthorinal cortex (440), and parahippocampal cortex (373). To use activity from a particular region, we limited

24


https://doi.org/10.1101/2024.06.13.598791
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.13.598791; this version posted March 11, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

sz  ourselves to the activity of neurons in that region and reduced the input dimension to match the number of neurons
soa iN the region. The network architecture and data splits remained the same as when using activity from the full pop-
sos Ulation, but the hyperparameters were optimized for the reduced dataset and given label. Training, validation, and
sos  test set sizes remained the same as the full dataset condition. In summary, decoding from different regions differed
sz from full population decoding primarily due to reduced input data dimensionality: from a spike train of length 20 and
sos dimension 2286 to a spike train of the same length but with a dimension reduced according to the number of neurons
s0o  iN the specific region.
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