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15

Abstract The humanmedial temporal lobe (MTL), a region implicated inmemory and high-level cognition, contains16

neurons that respond selectively to stimuli belonging to speci!c categories, such as individual people, landmarks, or17

objects. However, these neurons have been largely studied via static, isolated presentations of stimuli. Therefore, it18

is unclear how neurons in theMTL respond to rich stimuli such asmovies, and which dynamical stimulus features can19

be retrieved from neuronal population spiking activity. We studied single-unit responses from 2286 neurons recorded20

from the amygdala, hippocampus, entorhinal cortex, and parahippocampal cortex of 29 intracranially implanted pa-21

tients during the presentation of an 83-minute movie. We found only a few individual neurons that exhibited a classic22

selective response to semantic features. However, we successfully decoded the presence of characters, settings,23

and visual transitions from neuronal population activity. The information relevant for decoding varies across regions24

depending on the feature category, as visual transitions could be decoded from subsets of neurons with selective25

responses, whereas character and location features relied on distributed representations. Our results demonstrate26

an approach for reliably decoding movie features in the human MTL, and suggest that the brain uses a population27

code when representing character and location features.28

29
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Introduction30

The human medial temporal lobe (MTL) plays an integral role in the representation of semantic information. Single31

neurons in the MTL exhibit strong and highly selective tunings to categories, such as faces or locations1,2, and to spe-32

ci!c concepts, such as individual celebrities or objects3,4. These semantically tuned neurons relate to the processing33

of information at a conscious, declarative level, as their activity varies depending on perception5–7—when images are34

presented but unseen, these neurons exhibit reduced and delayed spiking compared to consciously seen images8.35

Such cells also support the formation of new memories9, and are involved in the retrieval of previously encoded36

experiences10,11.37

Studies investigating the representation of semantic information in the human MTL have mostly focused on char-38

acterizing these neurons individually, often without considering their population dynamics. Many of these studies39

have identi!ed semantically tuned cells by screening for stimulus-selective responses to static images depicting iso-40

lated persons or objects12,13. While this approach is e"ective for probing speci!c functional properties of individual41

neurons, it limits the generalizability of !ndings to more complex and dynamic contexts. Naturalistic and dynamic42

stimuli, such as movies, provide closer approximations to real-world environments, but also pose substantial chal-43

lenges, as they are presented continuously and depict complex evolving scenes. Several studies have used functional44

magnetic resonance imaging (fMRI) to study neural responses to natural movies. One line of work has focused on45

representations in early visual areas14,15 and across the cortex16,17. Another line of work has identi!ed synchrony46

in the brain states of separate individuals viewing a common movie18,19. Such states appear to be particularly well47

aligned in individual brains surrounding transition events within an ongoing continuous stimulus, as reported in fMRI48

studies20,21, intracranial !eld potentials along the human ventral visual pathway22, and in single neurons in the hu-49

manparahippocampal gyrus, hippocampus, and amygdala11. Most single neuron studies which usemovies as stimuli50

have been based on only short ’snippets’ of movies, and have so far largely examined representation on the level of51

the individual neuron23 with few having addressed frame-wise representations in longer movie sequences24. How-52

ever, it remains an open question of how populations of neurons in the MTL collectively respond to naturalistic visual53

stimuli, such as those encountered in real-world environments, and which features of population activity encode54

information about speci!c components of such stimuli.55

In this study, we investigate how information embedded in a naturalistic and dynamic stimulus is processed by56

neuronal populations in the human medial temporal lobe (MTL). Speci!cally, we asked the following questions: (1)57

Which aspects of a movie’s content can be decoded from neuronal activity in the MTL? (2) Which brain regions are58

informative for speci!c stimulus categories (e.g. visual transitions or characters)? (3) Is the relevant information59

distributed across the neuronal population? We recorded the activity of neurons from patients with intracranially60

implanted electrodes as eachwatched the full-length commercial movie “500 Days of Summer”. Our dataset is unique61

in both size and duration: we recorded a total of 2286 neurons across 29 patients during the complete presentation of62

the movie. To analyze the relationship between the neuronal activity and the !lm’s content, we labeled the presence63

ofmain characters, whether a scenewas indoors or outdoors, and visual transitions of themovie on a frame-by-frame64

basis.65

We introduce amachine learning-based decoding pipeline that decodes amovie’s visual content from population-66

level neuronal activity. At the single-unit level, individual neurons generally lacked reliable responses to the visual67

features, andwe observed consistent stimulus-related changes in !ring rates primarily during visual transitions. How-68

ever, at the population level, we achieved strong decoding performance across all visual features. For visual transi-69

tions, neurons exhibiting consistent changes in activity played a key role in population-level decoding. In contrast, no70

similar pattern emergedwhen decoding character identities. By analyzing the contributions of individual neurons, we71

identi!ed distinct subsets of neurons that in#uenced decoding performance, extending beyond the subsets identi-72

!ed by stimulus-aligned changes in !ring activity. Remarkably, we found that restricting the analysis to a substantially73

smaller subset of these key neurons was su$cient to replicate the full population-level decoding performance. Taken74

together, our !ndings show that information about dynamic stimuli can be decoded from neuronal population activ-75

ity, even in the absence of strong single-neuron selectivity.76
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Figure 1. Overview of dataset, features, and decoding approach a) Example of the recorded neuronal activity. Patients
watched the complete commercial !lm 500 Days of Summer while neuronal activity was recorded via depth electrodes. Top row:
example movie frames. Due to copyright, the original movie frames have been replaced with images generated using stable
di"usion25. Bottom row: spike trains from ten amygdala neurons of a single patient, where each row shows data from an
individual neuron (corresponding ID number given as a label). b) Spike density plot showing the waveforms of each neuron in a
(corresponding neuron ID given in top right). Neurons shown include both single- and multi-neurons. c) Distribution of labels
across the entire movie (runtime: 83minutes). Occurrences of character-related features are in magenta, visual transition events
in blue, and location events in yellow. d) Distribution of the 2286 neurons across the recorded regions (A: amygdala, H:
hippocampus, EC: entorhinal cortex, PHC: parahippocampal cortex, PIC: piriform cortex) for all 29 patients.

Results77

We recorded from 29 patients (17 female, ages 22→ 63) as each watched the movie 500 Days of Summer (83minutes)78

in its entirety (Fig. 1a). Patients were bilaterally implanted with depth electrodes for seizure monitoring, and spiking79

activity was recorded from a total of 2286 single- and multi-neurons across the amygdala (A; 580 neurons, 25.37%),80

hippocampus (H; 794, 34.73%), entorhinal cortex (EC; 440, 19.25%), parahippocampal cortex (PHC; 373, 16.32%), and81

piriform cortex (PIC; 99, 4.33%) (Fig. 1b). We pooled the neurons across patients (distribution shown in Supp. Fig. S1)82

and performed subsequent analyses on the resulting population. Due to the low number of neurons relative to the83

complete population, the PIC was excluded from subsequent region-wise analyses.84

To determine which features of the movie are represented in MTL activity, we obtained frame-wise annotations85

of character presence, indoor/outdoor setting, and the occurrence of a visual transition, i.e. camera cuts and scene86

cuts (similar to "soft" and "hard" boundaries11) (Fig. 1c). All annotations concern the visual occurrence of a given87

feature in the frame, and do not consider feature content of the movie’s audio. We used a mixture of manual and88

automated methods for obtaining these annotations (see Methods; sample frames in Supp. Fig. S2). For character-89

related content, we restricted the analysis to those characters most relevant to the movie’s narrative (Tom, Summer,90

McKenzie) as determined by screentime. For the analysis of location, we investigate indoor and outdoor settings.91

Note that these two features are mutually exclusive, and the annotation of both are combined into a single label.92
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Figure 2. Responsive single-neurons in the parahippocampal cortex a) Example peri-stimulus activity for representative
parahippocampal (PHC) neurons, for labels with a signi!cant PHC response. Upper plots: spike density plot showing the
waveforms a given responsive neuron (label name given as title). Middle plots: spike time rasters showing the neuron’s activity
surrounding the onset of the corresponding label throughout the movie. Note: onsets for Scene Cuts and Camera Cuts were
randomly subsampled to match the number of Summer appearances. Lower plots: average !ring rate across 100ms bins, for 1000
ms before and 1000ms after the onset or event. Solid lines show the mean across all neurons, within group, and the transparent
area shows the 95% con!dence interval. b) Region-wise single-neuron activity surrounding the onset of labeled entity. Number of
cells exhibiting a signi!cant response over the total number of PHC cells are given as the title, followed by the corresponding
percentage. Upper plots (heatmaps): averages of peri-stimulus spike rates per neuron (spikes per 100ms bin, z-scored across the
pseudotrial) for 1000ms before and 1000ms after label onset. Each row of the heatmap represents the average binned activity for
one neuron. Neurons are sorted in descending order by the p-value of the response—the dotted grey line shows the threshold for
responsive neurons (p → 0.001). Lower plots (line plots): average z-scored !ring rate across bins. Neurons are separated into
responsive (orange line) and non-responsive (black line). Solid lines show the mean for each group of neurons (responsive vs.
non-responsive) and the transparent area depicts the 95% con!dence interval. Signi!cant di"erences between the responsive and
non-responsive !ring rates are shown as solid black lines (*, p → 0.05, cluster permutation test).

Stimulus-aligned responsive neurons found primarily in parahippocampal cortex93

To investigate whether the visual features of the movie are encoded at the level of individual neurons, we analyzed94

stimulus-evoked changes in the !ring rate of neurons after the onset of characters, indoor and outdoor scenes, and95

visual transitions, for each MTL subregion separately (Fig. 2a, Supp. Fig. S3 - S5). We classi!ed each individual neu-96

ron as responsive or non-responsive according to a previously established criterion8 which compares the spiking97

activity after stimulus onset to that of a baseline period, adapted to the dynamic presentation. Speci!cally, for each98

annotated feature, we identi!ed all instances where the feature appeared following at least 1000ms of absence and99

remained continuously present for at least 1000 ms. We applied a cluster permutation test26 to !nd time-points in100

which the !ring rate between the sets of responsive and non-responsive neurons di"er (see Methods for additional101

details). We found individual neurons with signi!cant stimulus-evoked responses in all regions for visual transitions,102

Persons, and the characters Tom and Summer, including Face-only onsets (bin-wiseWilcoxon signed-rank test, Simes-103

corrected, ω = 0.001, see Supp. Table S1). Of these stimulus-evoked changes, neurons in the parahippocampal cortex104

responded to the largest set of stimulus features (Summer, Persons, Camera Cuts, Scene Cuts, Outdoor; p ↑ 0.001,105

cluster permutation test), as compared to the hippocampus (Tom, Camera Cuts, Outdoor), amygdala (Camera Cuts),106
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and entorhinal cortex (None). Over half of the parahippocampal neurons responded to Camera Cuts during the107

movie (193/373, 51.74%, bin-wiseWilcoxon signed-rank test, Simes-corrected, ω = 0.001) (Fig. 2b), and stimulus-evoked108

changes in !ring were consistent across the set of responsive neurons (p ↑ 0.001, cluster permutation test). For the109

remaining regions, stimulus-evoked modulations were less consistent across individual neurons (see Supp. Fig. S5a).110

Comparatively few parahippocampal neurons responded to Scene Cuts (25/373, 6.70%), although there was nonethe-111

less a consistent pattern of modulation across responsive neurons (p = 0.018, cluster permutation test) (Fig. 2b). A112

similar pattern was observed for the onset of Outdoor scenes in the parahippocampal cortex (4/373, 1.07%). No re-113

sponses were detected for the onset of indoor scenes. For characters, signi!cant stimulus-evoked modulation in the114

responsive neurons were only observed for Summer (PHC, p = 0.006, cluster permutation test) and, to a lesser extent,115

Tom (H, p = 0.022, cluster permutation test) (Fig. 2a, Supp. Fig. S3). Taken together, the parahippocampal cortex116

contained neuronal subsets that showed a consistent pattern of increased !ring after the onset of a visual transition117

(Camera or Scene Cut) within the movie. Characters and character faces evoked a clear change in !ring activity at118

the subpopulation-level in the parahippocampal cortex, and sparingly in the hippocampus, but not in other tested119

regions.120

Decoding of semantic content from population responses121

The observed pattern of responses in individual neurons aligned to feature onsets suggests that these cells primarily122

carry information relating to visual transitions, and, to a lesser degree, the characters Summer and Tom, and Persons.123

However, previous work suggests that theremay be di"erences in the coding capacity at the single-neuron and popu-124

lation level27. Could there be stimulus-related information represented at the population level that is not apparent in125

the responses of individual neurons? To explore this, we decoded character presence, location, and visual transitions126

from the aggregated activity of the entire neuronal population using a recurrent neural network designed to capture127

both within-neuron and between-neuron activity patterns.128

Decoding from neuronal activity129

We aligned the activity of neurons across patients using the movie frames as a common time reference, generating a130

single neuronal pseudo-population, as done in previous work decoding from populations of single neurons28,29. We131

!rst evaluated single-neuron decoding performance for the main character, Summer, by !ne-tuning a !ring activity132

threshold for each neuron. Using the total spike count around frame onset (spanning 800ms before and after onset),133

we optimized a threshold to the validation set from each cell and subsequently predicted Summer’s appearance in134

the test set. This established a performance baseline for decoding character presence solely from the !ring of indi-135

vidual neurons, without machine learning-based decoding algorithms. Decoding performances obtained by simply136

applying a threshold to single-neuron activity did not reliably predict the content, as the majority of neurons in the137

population performed near chance level (Fig. 3b). We then extended this analysis to a population-based approach,138

employing a Long Short-Term Memory (LSTM) network30, a deep neural network well-suited for processing dynamic139

sequential data (Fig. 3a). This population-based approach improved decoding performance for Summer, surpassing140

the performances achieved by individual neurons alone. Decoding performances for all tested labels signi!cantly141

exceeded chance level (zero for Cohen’s Kappa), as shown in Fig. 3c. The Persons label achieved the highest perfor-142

mance (mean ± standard error of the mean, SEM: 0.36± 0.05), followed by the location-related label Indoor/Outdoor143

(0.31 ± 0.06). Note that in contrast to the single unit analysis, there is no need to conduct two separate trainings for144

the Indoor/Outdoor label since the label combines both features and the network implicitly learns to di"erentiate145

between the two. Character-speci!c labels (Summer, Tom, McKenzie) showed comparable performances, ranging146

between 0.23 and 0.32. Labels related to visual transitions in the movie exhibited the lowest but nonetheless sig-147

ni!cant performances of 0.2 ± 0.03 and 0.18 ± 0.01, respectively. Decoding results were consistent across metrics148

(F1 Score, PR-AUC, and AUROC shown in Supp. Table S2). We evaluated the statistical signi!cance of our results by149

randomly permuting the test set labels (N = 1000), demonstrating that all decoding performances were signi!cantly150

above chance level at an alpha level of 0.001 (see Methods). To ensure that this signi!cance was not an artifact of151

the permutation procedure, we conducted an additional test by circularly shifting the neuronal data relative to the152

movie features (see Methods for more detail ). This approach preserved the temporal structure of each dataset while153

disrupting the relationship between the neuronal data and the stimulus. Results were consistent between random154

permutation and circular shifts (Supp. Fig. S11).155
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Figure 3. Categories of labels can be decoded from the neuronal population activity a) Overview of the neuronal decoding
pipeline. Spiking data (individual neurons shown as columns) was sectioned into 1600ms sequences, 800ms before and after a
frame onset (purple highlight; bins shown as horizontal lines, not to scale), and given as input to a two-layer Long Short-Term
Memory (LSTM) network. The output of the fully connected layer (FC) predicts the presence of a given label in a frame. b)
Assessment of individual-neuron decoding performance by classifying data samples into positive or negative predictions for the
label Summer based on the !ring activity of a neuron. c) Decoding performances on labels of the movie (reported performance
using Cohen’s Kappa, mean performance across !ve di"erent data splits, error bars indicate standard error of the mean). Labels
fall into one of three categories—characters (pink), visual transitions (blue), or location (yellow)—with a separate model for each
label. All performances were signi!cantly better than chance level with an alpha level of 0.001. Decoding performances for the
logistic regression model in lighter colors. d) Impact of temporal information in spike trains for recurrent neural networks. Trained
models were evaluated using temporally altered test data (sequence order shu%ed, repeated 100 times). Colored bars depict
performance without shu%ing, while grey bars represent shu%ed scenarios (reported performance using Cohen’s Kappa, results
show the mean performance across !ve di"erent data splits, variance given as standard error of the mean). e) Decoding
performance of the main movie character (Summer) for di"erent temporal gap sizes between samples of training, validation, and
test sets. Colored temporal gap of 32 s indicates the chosen gap size for all reported performances in this study.
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To further test the hypothesis that decoding is based on population activity rather than individual neurons, we156

also trained an LSTM network on individual neurons. From the 46 neurons identi!ed as responsive to Summer in the157

separate single neuron analysis, we selected a subset of neurons, ensuring an even distribution across both patients158

and regions. Similar to the threshold model, most models exhibited minimal prediction performances (see Fig. S6).159

In summary, our decoding network achieved consistent and statistically signi!cant decoding performance on the160

population level exceeding chance level for all labeled movie features.161

Choice of architecture162

Our pipeline uses a recurrent neural network (LSTM) to process spiking data as a time series of event counts. We163

binned spike counts into 80 ms intervals, covering 800 ms before and after label onset, creating sequences with a164

total length of 20 and a dimensionality of 2286 neurons. We trained a separate model for the prediction of each165

label, with individually optimized hyperparameters. Given the high degree of imbalance for some labels (i.e., the166

character McKenzie only appears in 10 % of themovie’s frames), we oversampled theminority class during training to167

mitigate the e"ects of the uneven distribution. We additionally employed a 5-fold nested cross-validation procedure168

and carefully selected samples to avoid correlations between samples, as discussed in more detail in the following169

section. See Methods for additional details regarding model training and architecture.170

We compared the LSTM’s decoding performance to a simpler logistic regression model, i.e. a linear method that171

does not consider the neuronal activity as a sequence of spike counts, and therefore ignores the temporal informa-172

tion and non-linear dynamics (Fig. 3c). Apart from this, the setup and data split for both pipelines were identical. The173

logistic regression model showed lower performances for the Scene and Camera Cut features (by 0.1 and 0.07, re-174

spectively), whereas no drop for character-related or location-related features was observed. To test our hypothesis175

that temporal information within spike sequences in#uences visual transition decoding, we assessed trained mod-176

els using temporally-modi!ed test data (sequence order of the spike trains was randomly shu%ed, see Methods for177

more details) (Fig. 3d). A pattern consistent with the LSTM decoding results emerged, with a noticeable decline in178

performance, especially for the visual transition labels.179

Avoiding spurious decoding performance by introducing temporal gaps180

Since each frame of the movie shares a high degree of similarity with neighboring frames, we controlled for the181

temporal correlations in the annotated features induced by the continuous nature of the stimulus. We divided the182

dataset into training, validation, and test sets, ensuring a gap of 32 s between samples from di"erent sets tominimize183

temporal correlations (split visualized in Supp. Fig. S7). We investigated the impact of these gaps by decoding the184

character Summer using varying gap lengths while keeping the number of samples comparable. We observed that185

smaller gaps result in substantially higher decoding performance on the test set, raising concerns about potential data186

leakage between training and test sets. For instance, a random split without any temporal gaps achieves an almost187

perfect score of 0.99± 0.0005. However, as temporal gap sizes increase to 32 s, the performance drops precipitously188

to 0.31 ± 0.06 (Fig. 3e; additional metrics in Supp. Fig. S9). This might explain the higher decoding performance189

for a comparable task in Zhang et al. 24, which did not report the use of temporal gaps for model evaluation. All190

subsequently reported results refer to the performance on the held-out test data using 5-fold cross-validation, with191

data splits incorporating the most conservative temporal gap of 32 s (see Methods). Our analysis underscores the192

importance of appropriate architecture selection and careful data preparation in complex datasets such as ours, as193

these choices can exert a signi!cant impact on the results.194

Patient-wise decoding performance195

The neuronal population analyzed thus far has been pooled from 29 patients, yielding a total of 2286 neurons. De-196

coding from a pooled population, rather than from individual patients, improves network stability by aggregating197

activity across a larger neuronal set and enhances the signal-to-noise ratio. However, using this pooled population198

(or "pseudo-brain") obscures the patient-wise contributions to decoding, which could vary due to the di"erence in199

neurons recorded per patient (units per patient range from 30 to 137) or due to di"erences in the semantic space200

of recorded neurons. To test for such di"erences, we assessed decoding performance on a per-patient basis, and201

analyzed each participant’s neuronal population to see if key decoding information is widely distributed or driven by202

a particular subset.203
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Figure 4. Patient-speci!c decoding performance Decoding
performances for the main character (Summer), visual transitions
(Scene Cuts), and location (Indoor/Outdoor) are reported using
Cohen’s Kappa and compared to the performance obtained from the
total population (pooled across all patients, dashed line). a) Decoding
performance based on the total population of 2286 units, with
neurons pooled across all patients. b-d) Patient-speci!c decoding
performances for Summer, Scene Cuts and Indoor/Outdoor.

Decoding performance was obtained for three204

label categories—Summer, Scene Cuts, and In-205

door/Outdoor—representing characters, visual tran-206

sitions, and locations. To minimize computational207

load, we retrained a simpler logistic regression208

model on each patient’s neurons, and achieved209

performance comparable to a more complex re-210

current neural network but with lower computa-211

tional costs. The results are illustrated in Fig. 4.212

Generally, decoding performance was lower at the213

individual patient level compared to the pooled214

neuronal population, with no single patient match-215

ing the performance of the aggregated data. For216

the Summer label, we observed substantial vari-217

ability in decoding performance across patients,218

with some patients showing near-zero accuracy.219

However, certain patients (speci!cally 7,10,15, and220

22) achieved decoding performances exceeding221

0.2, compared to the overall pooled performance222

of 0.28. This variability was less pronounced for223

the Scene Cuts and Indoor/Outdoor labels. For224

the Scene Cuts label, the already low pooled per-225

formance declined further in the per-patient anal-226

ysis, with patients 2,10,19, and 20 showing slightly227

better results, while most demonstrated minimal228

decoding accuracy. The Indoor/Outdoor label229

elicited a consistently higher accuracy across pa-230

tients, matching the overall higher decoding per-231

formance achieved with the pseudo-brain popu-232

lation. Notably, patients 2,13,20 and 25 achieved233

performances exceeding 0.2 (Cohen’s Kappa), com-234

pared to an overall pooled performance of 0.31,235

indicating robust neuronal responses in patient-236

speci!c subpopulations of neurons. Across all la-237

bels, the highest-performing patients vary, and no238

single patient showed consistently superior perfor-239

mance across all three.240

Parahippocampal cortex drives decoding241

of visual transitions and location242

Continuously presented stimuli o"er a rich array243

of features. Visual transitions, such as changes in244

!lming angle or scenery, are a commonly studied245

feature that demarcate the event structure of the246

dynamic stimulus. In movies, these transitions are247

relatively well-de!ned since they consist of iden-248

ti!able changes in pixel values between frames249

and are known to elicit time-locked changes in250

neural activity in fMRI20 , iEEG22, and single neu-251

rons11. We investigated two types of frame-wise252

visual transitions: Scene Cuts (changes in scenery)253
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and Camera Cuts (changes in !lming angle). As Scene Cuts consists of visual transitions between locations or points254

in time and demarcate narrative episodes within the movie, they are related to location but not exclusively. We255

compared this label to a more straightforward location-related feature, Indoor/Outdoor, which indicates whether a256

given frame depicts an indoor environment or not. Examples of Scene versus Camera Cuts as well as Indoor/Outdoor257

scenes are shown in Supp. Fig. S2.258

To investigate region-wise di"erences, we trained separate decoders for neurons in the amygdala (A), hippocam-259

pus (H), entorhinal cortex (EC), and parahippocampal cortex (PHC) of the MTL. We excluded the piriform cortex (PIC)260

due to its relatively lower number of recorded neurons (Fig. 1b). We observed a clear dominance of the parahip-261

pocampal cortex for both types of visual transitions. The decoding performances reached 0.21± 0.02 for Scene Cuts262

and 0.19 ± 0.03 for Camera Cuts, respectively, when restricting the decoding to the parahippocampal cortex as op-263

posed to 0.20 ± 0.03 and 0.18 ± 0.01 when decoding from the full population. The other regions showed a lower264

but above-chance decoding performance. Similarly, the parahippocampal cortex yielded the highest performance265

for predicting indoor versus outdoor content and reached a performance of 0.30 ± 0.06, comparable to the perfor-266

mance on the full population (0.31 ± 0.06). Hippocampus was the second strongest region with a high performance267

of 0.26 ± 0.04. For entorhinal cortex and amygdala, we observed lower performances of 0.15 ± 0.05 and 0.1 ± 0.03,268

respectively.269

In summary, the parahippocampal cortex consistently achieved the highest decoding performance for labels asso-270

ciatedwith visual transitions and location, in line with prior research on theMTL11. Given that both Scene and Camera271

Cuts are linked to sharp visual transitions, we anticipated that earlier processing stages in theMTL would show better272

decoding performances than later processing stages. However, despite the clear dominance of the parahippocampal273

cortex, our results show that other regions achieve lower, but nonetheless signi!cant performance when detecting274

event structure and setting information.275

Amygdala drives decoding of character presence276

TheMTL carries information about the identity of speci!c individuals, in addition to general person-related categories277

or attribute, primarily through the tuning of individual neurons31–33. Unlike visual transitions, character identities are278

a semantic feature which rely on both visual attributes and higher-level abstract representations. To investigate279

character-driven representations at the population level, we analyzed neuronal activity during the presence of the280

movie’s threemain characters, Summer, Tom, andMcKenzie, as well as themore general concept of any character ap-281

pearance (Persons, see example frames in Supp. Fig. S2). While Summer’s appearance throughout the movie frames282

is balanced (50/50), the remaining labels are highly imbalanced: Tom and Persons appear in the majority of frames283

(80/20 and 95/5), while McKenzie is predominantly absent (10/90) (Fig. 1c). Despite the imbalances, we observed sig-284

ni!cant decoding performances for all four character labels ranging between 0.23 and 0.36 (Fig. 3c). Notably, decoding285

performance for character identities—despite being abstract and variable—exceeded that of visual transitions (0.20286

and 0.18).287

Distribution of information across MTL regions288

To investigate whether characters were primarily processed in a speci!c MTL region or in all regions equally, we289

conducted a similar analysis as before by retraining on region-speci!c activity (Fig. 5a). Our results show that all four290

tested regions carry information about the character’s identities, enabling decoding at above-chance levels (p < 0.001,291

permutation test, see Methods). The amygdala and parahippocampal cortex showed the highest decoding perfor-292

mances for Summer and Tom, respectively, approaching levels similar to decoding from the full population. However,293

the distribution of information among the other regions was less consistent and varied across labels (Fig. 5a). The294

hippocampus had the lowest performance for Summer (0.09±0.04) and Tom (0.05±0.05), while the entorhinal cortex295

performed lowest for McKenzie (0.12 ± 0.02). For Persons, the parahippocampal cortex dominated with decoding296

performance comparable to the full population (0.36± 0.05), while other regions ranged between 0.14 and 0.21.297

Di"erences in character’s visual appearances298

Since the labels indicate the presence of a given feature within a natural scene rather than a single exemplar shown299

in isolation, the visual appearance of the labeled entity varied substantially during the movie.300
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Figure 5. Semantic information is distributed di"erently across MTL regions based on
category Decoding performances for semantic features, by MTL region. All performances were
signi!cantly better than chance level with an alpha level of 0.001 (reported performance using
Cohen’s Kappa, mean performance across !ve di"erent data splits, error bars indicate
standard error of the mean. a) Decoding performances for visual transitions and location
features. b) Character visibility could be decoded from the entire population of neurons, and
with variable performance when training only on individual MTL regions. c) Decoding
performances for face-speci!c character appearances and Presence features, by region.

To better control for vi-301

sual appearance and ex-302

aminedecoding di"erences303

across various levels of char-304

acter presence, we created305

the additional labels Sum-306

mer Faces, Tom Faces, and307

SummerPresence (seeMeth-308

ods for details on anno-309

tation creation). As with310

the character labels, we311

trained adecoding network312

on both the full neuronal313

population as well as the314

four individual regions (Fig. 5b).315

Face labels for both char-316

acters elicited a slight im-317

provement in performance318

compared to the full neu-319

ronal populations, with Sum-320

mer increasing from 0.31±321

0.06 to 0.33 ± 0.06 and322

Tom increasing from 0.23±323

0.06 to 0.27 ± 0.07. Re-324

gionally, the distribution325

remained consistent with326

the general character la-327

bels, except for Tom Faces,328

where the entorhinal cor-329

tex had the highest per-330

formance. The hippocam-331

pus performedweakest for332

both Summer Faces (0.08±333

0.04) and Tom Faces (0.11±334

0.03). The Summer Pres-335

ence label had an overall336

performance of 0.27± 0.04,337

slightly lower than the gen-338

eral Summer label, with339

the amygdala clearly dom-340

inating the regional distribution (0.26± 0.07). For face labels, distributions were more similar across regions than for341

the general character labels. The amygdala outperformedother regions in decoding the abstract presence of Summer342

but performed poorly for general person appearances, where the parahippocampal cortex performed best. These343

!ndings align with previous research showing that semantically-tuned cells in the human MTL can #exibly activate344

when their preferred conceptual category is indirectly invoked34.345

Responsive neurons drive decoding of visual transitions but not decoding of characters346

Although only a subset of neurons modulated !ring in response to the onset of a given movie feature, we neverthe-347

less observed signi!cant decoding performance from the full population. This e"ect could result from two scenarios:348

a) information is distributed throughout the neuronal population and decoding does not disproportionately rely on349

neurons with post-onset increases in !ring, or b) the subpopulation of responsive neurons informs the decoder while350
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non-responsive neurons are ignored. We tested each scenario by dividing the full population into two corresponding351

subsets—non-responsive and responsive neurons—and re-training a neural network on each subset. We analyzed352

the labels Summer and Camera Cuts, which represent the character-related and visual transition categories, respec-353

tively. We then compared the prediction performance of each re-trained model to that of the full population to354

determine if the decoding of a given label took the entire population into account (scenario a) or relied on responsive355

neurons (scenario b) (Fig. 6). The subsequent analysis evaluates these subsets both at the full population level and356

within the restricted context of MTL regions.357

Decoding with non-responsive versus responsive neurons358

First, we tested prediction performance using only the non-responsive neurons to determine if similar decoding could359

be obtained without neurons which signi!cantly modulated !ring after the onset of a feature. For this subpopula-360

tion (Non-responsive (only)), a separate LSTM was retrained and tested. Despite the exclusion of responsive neurons,361

these subpopulations yielded performances comparable to those of the complete population (Fig. 6a, Complete) for362

the character Summer. Minimal di"erences in performance were observed across MTL regions, with only the en-363

torhinal and parahippocampal cortex showing qualitative decreases. For comparison, we additionally retrained using364

only responsive neurons as input, and again tested the decoding performance (Responsive (only)). In contrast to the365

minimal di"erences observed in the Non-responsive (only) model, restricting to only responsive neurons produced366

a decrease in overall performance across the entire MTL and all regions. This general decrease suggests that the367

subset of individually responsive neurons is not the primary driver of the decoding performance observed in the full368

population model. Note that the total number of responsive neurons was less than the total non-responsive, so this369

e"ect may be in#uenced by an overall decrease in neuronal data. This di"erence in totals is directly addressed below370

by a size-matching procedure.371

A di"erent pattern emerged for the Camera Cuts feature, which exhibited the greatest performance drop when372

responsive neurons were excluded, for the entire MTL and for all subregions but the entorhinal cortex (Fig. 6b). This373

pattern was most pronounced for the parahippocampal cortex, indicating that responsive neurons carry valuable374

information for processing Camera Cuts in the movie. This hypothesis is further supported by the decoding perfor-375

mances obtained when restricting the decoding to only responsive neurons. Despite the restricted number of input376

neurons, the performance droppedmarginally, and remained comparable to that of the complete population for the377

entire MTL, as well as for the amygdala, hippocampus, and entorhinal cortex regions.378
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Figure 6. Responsive neurons drive performance for visual transitions, but not characters. To assess the contribution of the
responsive neurons on decoding (identi!ed in Stimulus-aligned responsive neurons found primarily in parahippocampal cortex), we
compared the decoding performance for subpopulations which did or did not contain these neurons. a) Illustration of neuronal
sets used in the decoding comparisons (triangles represent neurons). An example of the complete population is shown in the
left-most section, which depicts Non-responsive (only) and Responsive (only) cells, with a simulated example of a respective
peri-stimulus time histogram (onset raster, grey and magenta). A Non-responsive (size-matched) group (middle section) was
randomly subsampled from the total population to have a size-matched comparison to the total set of responsive neurons. The
Responsive (size-matched) set (right-most section) consisted of all responsive neurons padded with randomly selected
non-responsive neurons to match the total Non-responsive (only) population. b,c) Decoding performances for discussed
subpopulations for the character label Summer and Camera Cuts. Number of responsive neurons for the respective
subpopulation reported in parentheses.
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Size-matched neuronal populations: comparing responsive and non-responsive subsets379

Since the total number of responsive neurons was lower than that of non-responsive neurons, we tested the per-380

formance using size-matched versions of both non-responsive and responsive subpopulations. To match the size381

of the responsive neurons, we randomly selected an equivalent number of non-responsive neurons (Non-responsive382

(size-matched)) and trained and tested a separate neural network. This process was repeated three times with dif-383

ferent random selections, and we report the average performance. For both labels, Summer and Camera Cuts, the384

smaller size-matched non-responsive subpopulation showed an expected decrease in performance compared to the385

full non-responsive subpopulation. However, the results diverged when comparing the size-matched populations:386

For Summer, the size-matched non-responsive neurons performed comparably to the responsive neurons within387

individual MTL regions. Only for the complete population did the responsive neurons show a clear improvement.388

Conversely, for the Camera Cuts, restricting to only the responsive neurons improved performances, with decoding389

predictions of all but the amygdala surpassing those of the size-matched non-responsive set of neurons.390

A similar pattern emerged for a size-matched version of the responsive neurons (Responsive (size-matched)), which391

we formed within region by padding the set of responsive neurons with randomly selected non-responsive neurons.392

For Summer, decoding from this subpopulation consistently showed a performance drop compared to the total set393

of non-responsive neurons across all tested regions. In contrast, for Camera Cuts, the size-matched subpopulation of394

responsive neurons achieved similar or better performance than the non-responsive neurons across all regions, with395

the complete population and parahippocampal region showing a clear dominance of the subpopulation containing396

responsive neurons. We additionally evaluated performances for the labels Tom, Scene Cuts and Indoor/Outdoor,397

which matched the e"ects found for Summer and Camera Cuts (Supp. Fig. S10).398

399

In summary, our !ndings indicate that responsive neurons play distinct roles for di"erent features. Neurons respon-400

sive to visual transitions appeared to carry information not equally present in other neurons. On the contrary, for401

character- and location-related labels, individual responsive neurons contributed less to decoding, and information402

appeared to be distributed either across the entire population or a subset of neurons distinct from the previously403

identi!ed responsive neurons.404

Relevant information is carried by a smaller subpopulation of 500 neurons405

Weobserved that subsets of neuronswith stimulus-selective responses to characters did not account for the decoding406

performance of the same character. Previous research in sensory information processing suggests that relevant stim-407

ulus information is often encoded by only a subset of neurons within a population27,35,36. To explore this further, we408

adopted a more data-driven approach to de!ne neuronal subsets, ranking their importance using weights extracted409

from a trained logistic regression model and investigated the minimally su$cient number of neurons required for410

successful decoding.411

Ranking of neurons for the character label Summer412

The weights of a logistic regression model can be used to assess each neuron’s importance in decoding, allowing for413

the creation of a ranking across all neurons (seeMethods for more details). In contrast to an LSTM, logistic regression414

models are computationally less expensive to train and achieve comparable decoding results for all movie features,415

except for Scene Cuts and Camera Cuts, which exhibited reduced but above-chance decoding performance (Fig. 3c).416

For the character label "Summer," we generated a neuron ranking from the trained logistic regression model and417

de!ned subsets of neurons by selecting those with the highest rankings.418

The above LSTM and logistic regressionmodels were trained on population data using 5-fold cross-validation, with419

alternating test sets for each of the !ve splits. However, this approach precludes an independent ranking of neurons420

across splits, as test data from one split may overlap with training data from another. To address this, we expanded421

the !ve original splits to 20, where each subgroup of four splits shared a common test set but varied in the allocation422

of training and validation data. Any analysis relying on a subset of neurons derived from logistic regression weights423

was exclusively assessed using the four splits that produced the ranking and shared held-out test data (see more424

details in Methods, and Supp. Fig. S8).425
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Figure 7. 500 neurons are su#cient to reach peak decoding performance a) Decoding performances for the character
Summer for subpopulations of top-performing neurons, testing various sizes ranging from 1% to 100% of the full population
(absolute numbers of neurons are reported in parenthesis). Mean performance across di"erent splits is reported, and standard
error of the mean is visualized by the error bars. b) Number of overlapping neurons across rankings for di"erent sizes of
subpopulations of top-performing neurons (pink). As a baseline, we compare the number of overlapping neurons to the number
expected by chance (grey), and we observed a notably higher intersection of top-ranked neurons across the splits. Additionally,
the overlap between the intersection of top-ranked neurons and the previously de!ned responsive neurons is shown (black). c, d)
Overlapping neurons (in total 78) in subpopulations of 500 top-performing neurons for each ranking were distributed across
patients and MTL regions.

Training on pre-selections of top-ranked neurons426

We trained on progressively smaller subpopulations of top-ranked neurons for the character Summer (Fig. 7a) and427

observed an increase in performance when restricting the input activity to smaller populations (peak at 0.38 (Cohen’s428

Kappa) for 500 neurons, 21.9% of the total population). The decoding performance reported here for the entire429

population shows a slight variation from the previously reported value of 0.31 due to the modi!ed nested cross-430

validation procedure. Further reduction of the population lead to a decrease in performance, yet high decoding431

performance persisted even in small subpopulations of neurons.432

We observed that a ranking procedure which did not use a common test set was subject to potential cross-talk433

between data splits, which substantially impacted and distorted the results. Using a selection of neurons derived434

from non-independent training and test data led to a stark increase in performance, nearly doubling the original435

performance of the character Summer to 0.52 (Cohen’s Kappa) when restricting to a subpopulation of 150 top-ranked436

neurons. This again underscores the need to carefully prepare the data for paradigms such as ours, where data437
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samples are highly correlated, as ignoring dependencies between training and test data can greatly skew results (see438

Supp. Fig. S13).439

Top-ranked neurons and their distribution across patients and MTL regions440

As the selection process involved !ve distinct rankings of neurons, we investigated the consistency of the neuronal441

composition across rankings. The overlap of neurons within subpopulations of top-ranked neurons assessed across442

di"erent sizes is shown in Fig. 7b. Analyzing the top-performing 500 neurons from each of the !ve rankings revealed443

a common set of 78 neurons. We compared this observed overlap to that expected by chance with random subpop-444

ulation selections (see Methods), !nding a notably higher overlap. This suggests the presence of common neurons445

crucial for decoding the label Summer. Additionally, we also compared these selected neurons to those previously446

classi!ed as responsive. The overlap between the two groups of neurons was small, suggesting that the respon-447

sive neurons de!ned by onset-related changes in activity may not be the primary drivers of decoding performance in448

general, aligning with previous observations for character labels when the decoding pipeline was restricted to respon-449

sive neurons. As restricting to 500 neurons yielded the highest decoding performance, we subsequently analyzed the450

resulting intersection of 78 neurons across rankings. These 78 neurons were distributed across both patients and451

regions (Fig. 7c,d), with no single patient or area of the MTL driving the performance. Visualizations of the spiking ac-452

tivity surrounding the onset of Summer for these neurons do not reveal a clear pattern of stimulus-evoked increases453

in !ring (Supp. Fig. S12).454

Our !ndings reveal that a core subpopulation of approximately 500 neurons drives decoding performance, while455

additional neurons mainly contribute redundant or noisy information. These neurons are distributed across patients456

andMTL regions, presenting an important avenue for future research to investigate themechanisms underlying their457

organization and the speci!c functional roles they play in decoding processes.458
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Discussion459

We investigated how the human brain processes semantic and event structure in a naturalistic setting by analyzing460

the activity of neurons in the medial temporal lobe during the presentation of a full-length commercial movie. Al-461

though earlier work has established and characterized the role of MTL neurons in semantic representation, and the462

processing of dynamic stimuli via fMRI and intracranial electroencephalography, few studies have investigated how463

human single neurons process dynamic stimuli and none have addressed the relationship between representations464

on the single-neuron level and the population level.465

By analyzing changes in each neuron’s activity aligned with the onset of labeled movie features, we identi!ed466

groups of individual cells that adjust their !ring rates in response to speci!c features. The most pronounced re-467

sponses occurred following changes in camera angles and scenes, as these features induced activity changes in the468

largest number of cells. Outdoor scenes and the twomain characters also elicited consistent single-unit responses, al-469

beit in far fewer neurons. This lack of explicit single-neuron responses to characters, which might otherwise suggest470

selective and invariant representations such as those in concept neurons, could be explained by the study partici-471

pants’ lack of familiarity with the movie. Most participants had neither seen the movie before nor encountered the472

actors in other media prior to its presentation as part of this study. This interpretation aligns with previous research473

showing that neuronal selectivity to individuals varies with familiarity and personal relevance, as photos depicting474

personally known individuals are more likely to elicit selective responses in MTL neurons37.475

We anticipated that the decoding performance for each label would re#ect the pattern observed at the single-476

neuron level: Visual transitions would be the most accurately predicted feature, followed by setting, with character477

presence showing the lowest prediction accuracy. Although not every feature elicited explicit responses from a signif-478

icant portion of individual neurons, the network, which takes the collective population activity as input, successfully479

decoded all tested features with above-chance performance. Interestingly, the decoding performance varied across480

features and contradicted the pattern found in the individual neurons. Despite eliciting the highest proportion of481

responses at the single-unit level, visual transitions showed the lowest decoding accuracy out of all tested features.482

Conversely, characters showed the highest decoding accuracy despite there being few individually responsive neu-483

rons. Both approaches link neuronal responses to the movie content but di"er markedly in their focus, as the single-484

unit analysis targets the speci!c onset of features, emphasizing their initial activation, while the population approach485

processes data continuously, decoding both the onset and sustained presence of features. This methodological dif-486

ference may a"ect the results and contribute to the observed contradiction between them. To bridge these !ndings,487

we examined how individual responsive neurons contribute to the decoding network. We hypothesized that the de-488

coding performance for each label would be primarily driven by the subset of neurons that exhibit increased activity489

in response to that label. This hypothesis held true for the decoding of visual transitions, as the set of individually490

responsive neurons disproportionately contributed to the decoding performance when using the full population, and491

performance was strongly a"ected by their removal from the training population. In contrast, character decoding492

does not rely on individually responsive cells, as removing neurons that responded strongly to character onset had493

little impact on performance. When analyzing the network and its prediction behavior, we identi!ed a subset of units494

which contributedmost to the decoding of character information across models, and found that these units had little495

overlap with the set of neurons which increased !ring after character onset. Together, these !ndings suggest that496

character-related representations relied on a population code, while visual transitions were encoded by the activity497

of speci!c neurons.498

When training separately on di"erent regions of the MTL, we observed variations in decoding performance de-499

pending on the speci!c content being decoded. The parahippocampal cortex achieved the highest performance in500

detecting visual transitions, while the amygdala performed best in predicting character-related information. These501

results support previous !ndings which identi!ed that certain regions aremore likely to respond to certain categories502

of images in static screenings. For example, previous studies have shown that the amygdala preferentially responds503

to images containing faces1,32, and contains cells that selectively respond to whole faces as opposed to discrete facial504

features38. We extended this analysis to examine di"erent levels of character appearance, distinguishing between505

face visibility and the general presence of a character in a scene (regardless of face visibility). Although, the amygdala506

demonstrated strong performance in both cases, it most clearly drove the decoding for the general presence of a507

character, rather than speci!cally to face visibility. This e"ect could be due again to the unfamiliarity of the movie508
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and its actors, as face-speci!c responses have been shown to form as a function of exposure39.509

Previous work has found that the parahippocampal cortex is especially sensitive to scene information40, as op-510

posed to objects40,41, with a higher likelihood of neuronal activation when scenes feature stronger spatial layout cues,511

such as depth and a recognizable background42. Zheng et al. (2022) identi!ed generalized cells, termed “boundary512

cells”, in the parahippocampal gyrus, hippocampus, and amygdala which modulate their !ring after any visual tran-513

sition event. In our study, we observed signi!cant responses to camera cuts in these same regions, which we inter-514

pret as analogous to "soft boundaries"11. However, signi!cant responses to scene cuts were only observed in the515

parahippocampal cortex, whereas Zheng et al. reported responses to their analogous feature ("hard boundaries")516

in all measured MTL regions. In addition to their preference for scene-related images, parahippocampal neurons517

have been shown to respond more frequently to outdoor images compared to indoor ones42. In our dataset, a small518

subset of parahippocampal neurons increased !ring in response to the onset of outdoor scenes, whereas none519

showed increased activity for indoor scene onset. Despite their limited number, these responsive neurons achieved520

well above-chance decoding performance, albeit falling short of the performance achieved by the complete neuronal521

population. Further work is needed to more accurately determine if the activity of single scene-selective parahip-522

pocampal neurons in our dataset can be explained by the onset of location-related content.523

Visual transitions and character content additionally di"ered in their use of sequence information. Through a524

comparison between decoding architectures, we found that temporal information in the spike trains only mattered525

for the prediction of visual transitions, and that ignoring or even scrambling the sequence information had little e"ect526

on character and location features. Although using temporal dynamics improved decoding performance for visual527

transitions, the temporal dynamics in our data, particularly those inherent to the movie stimulus, also present a sig-528

ni!cant confounding factor. Both themovie and recorded neuronal activity are subject to a high degree of correlation529

in time and thus require extra consideration when formulating a pipeline to ensure that the training and test data did530

not contain adjacent, highly correlated samples. The correlation between training and test samples arti!cially in#ates531

decoding performance, and does not re#ect actual generalization to unseen data. In related research by Zhang et al.532

(2023), where temporal distance was not considered, high decoding performances were reported on a similar task.533

Based on our analyses, we anticipate that their reported decoding accuracy is overestimated, and would change if534

su$ciently large gaps were introduced.535

As our dataset consists of single-neuron activity pooled across 29 subjects, each with activity from an average of536

approximately 80 recorded neurons, the extent to which claims can be made about what an individual brain does537

is limited. In addition, the participants watched a full-length movie in an clinical setting, where neuronal activity is538

not solely focused on visual stimuli and likely processes additional information. Although we cannot know whether539

the neuronal population that we sampled is representative of the human MTL generally, it is one of the largest sam-540

ples collected to date, both in terms of neurons and patients and o"ers a unique opportunity to understand the541

processing and representation of information in the MTL population activity. Despite the inherent limitations, which542

preclude near-perfect performances in the decoding task, the presented approach demonstrates that movie con-543

tent can nevertheless be successfully decoded from such a sub-sampled population of neurons. Future work on this544

dataset could leverage more advanced network architectures to explicitly model between-neuron dynamics within545

each patient, which could better explain the gain in performance achieved moving from the single-neuron level to546

the population level. Additionally, in this work we focused speci!cally on the visual content of the movie. A clear next547

direction would be to integrate the auditory information of the movie, and possibly disentangle the contribution of548

visual versus audio information streams to the neuronal representation of movie features in the MTL.549
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Materials and Methods550

Participants and recording551

The study was approved by the Medical Institutional Review Board of the University of Bonn (accession number552

095/10 for single-unit recordings in humans in general and 243/11 for the current paradigm) and adhered to the553

guidelines of the Declaration of Helsinki. Each patient gave informed written consent for the implantation of micro-554

wires and for participation in the experiment.555

We recorded from 46 patients with pharmacologically intractable epilepsy (ages 19 - 62, median age 37; 26 fe-556

male patients). Patients were implanted with depth electrodes31 for locating the seizure onset zone for potential557

later resection. Micro-wire electrodes (AdTech, Racine, WI) were implanted inside the shaft of each depth electrode.558

Signal from the micro-wires was ampli!ed using a Neuralynx ATLAS system (Bozeman, MT), !ltered between 0.1 Hz559

and 9000 Hz, and sampled at a rate of 32 kHz. Spike sorting was performed via Combinato43 using the default pa-560

rameters and the removal of recording artifacts such as duplicated spikes and signal interference was performed via561

the Duplicate Event Removal package44. After all data were processed, neuronal signals, experimental variables, and562

movie annotations were uploaded to a tailored version of Epiphyte45 for analysis. Due to disruptions in the movie563

playback caused by clinical interruptions, 13 patient sessions were excluded from further analysis.564

Task and stimuli565

Patients were shown a German dubbing of the commercial movie 500 Days of Summer (2009) in its entirety (83 min-566

utes). This !lm was chosen because the actors portraying the main characters were relatively unfamiliar to a general567

German audience at the time of the initial recordings. Themovie was shown in an uncontrolled clinical setting, where568

neither gaze nor attention were directly monitored and was presented in letterbox format without subtitles on a lap-569

top using a modi!ed version of the open-source Linux package, FFmpeg 46, with a frame rate of 25 frames per second.570

Due to the length of the movie and the possibility of clinical interruptions, patients and sta" were allowed to freely571

pause the playback. Discontinuity in playback was controlled for within Epiphyte45. Pauses and skips in the movie572

playback were identi!ed through the output of the modi!ed FFmpeg program and used as a basis of exclusion for573

patients. Patients were excluded if they did not watch the entire movie, or watched the movie discontinuously.574

Movie annotations575

In order to relate the content of the movie to the recorded neuronal activity, we labeled various features on a frame-576

by-frame basis. These labels are binary and cover the following features:577

• Main characters: Summer, Tom, McKenzie578

Frames were labeled as positive if the character could be clearly distinguished by either appearance or context.579

Characters and persons were considered only on a visual basis (i.e., a frame in which Tom is speaking but not580

visible is labeled as not containing Tom).581

• Faces: Summer, Tom582

Instances of a character’s face. Positive samples are frames where the character’s face is shown, while negative583

samples are frames where the character’s face is not visible at all. All other frames are excluded.584

• Presence: Summer585

Indicates the character’s general presence in the scene, even if the character is not visible in the frame. For586

instance, frames are labeled as positive if the character is part of the scene but is not visible in that particular587

frame due to factors like the camera angle.588

• Visual transitions: Camera Cuts, Scene Cuts589

Marks visual transitions in the movie. Scene Cuts correspond to changes in scenery, while Camera Cuts are590

primarily based on changes in the visual stimuli.591

• Location: Inside/Outside592

Distinguishes between indoor and outdoor locations in the movie. Scenes that do not clearly !t into either593

category are excluded from the annotation.594

• Persons595

General appearance of any person(s)596
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Main character, Presence, Persons, Location, and Scene Cut labels were obtained manually using the open-source597

annotation program Advene47. For face labels of the characters, we developed a deep-learning pipeline for face detec-598

tion and classi!cation. As backbone we used a pre-trained neural network for face detection and feature extraction48.599

We extended the pipeline by a classi!cation network consisting of fully-connected layers combined with ReLU activa-600

tion functions. The classi!cation network was !ne-tuned on the movie frames to classify detected faces of the main601

characters, including a "not known" class for faces not belonging to the main characters. In the !ne-tuning process,602

we used the manually created character labels for the characters. Camera Cuts were labeled automatically using the603

open-source algorithm PySceneDetect 49, run with default parameters and manually reviewed. Camera Cuts mark a604

cut in the movie by labeling the !rst frame after cut onset as positive, resulting in cut events associated with a single605

frame. To adjust for the temporal latency in brain activity, cuts in the movie were associated with frames occurring606

within 520 ms of the cut onset. This adjustment smooths the cut labels, rendering them more comparable to what607

we anticipate in neuronal responses.608

Calculation of single-neuron response statistics609

The "baseline" period was de!ned as 1000 ms prior to the onset (e.g., the entry of a character into frame) and the610

"stimulus" period was 1000ms after the onset or appearance. Pseudo-trials with baseline periods containing frames611

depicting the label of interest were excluded. Responsive neurons were identi!ed using a modi!ed bin-wise signed-612

rank test8. The spiking activity across pseudo-trials was aligned to the stimulus onset. The baseline period was613

binned by 100 ms, and the normalized !ring rate of the baseline period was compared to nineteen overlapping 100614

ms bins de!ned across the stimulus period using a Wilcoxon signed-rank test (alpha = 0.01, SciPy wilcoxon50, Simes615

corrected51). Additionally, a neuron was required to have spiked during at least one third of the total pseudo-trials616

to be tested (otherwise, assigned p = 1).617

Cluster permutation test618

A cluster permutation test26 was used to test the di"erence in !ring rates between the responsive and non-responsive619

subsets of neurons. Using the calculated response statistics, neurons were divided into two conditions: responsive620

(p ↑ 0.01) and non-responsive (p > 0.01) for a given label. Activity for a neuron was averaged across bins, yielding a621

single vector of mean spike counts (spikes / 100 ms) spanning both baseline and stimulus periods for each neuron.622

This vector was then z-scored relative to its own mean and standard deviation. Mean spike count vectors were com-623

bined across conditions, yielding two datasets: Aresp and Anon, matrices containing the summarized, binned activity624

for all responsive and non-responsive neurons, respectively. A bin-wise comparison between Aresp and Anon was per-625

formed using a two-sided t-test for independent samples (ttest_ind, SciPy), producing a t-stat and p-value for each626

bin. Clusters were de!ned as temporally adjacent bins with p ↑ 0.005 and t-stats were summed within clusters. The627

procedure was adapted to allow testing of multiple clusters, so no clusters were excluded at this stage. One set of628

1000 permutations were performed by randomly assigning neurons to Aresp and Anon such that the total number of629

neurons in each group was conserved and the bin-wise testing procedure was performed on each permuted dataset.630

Each cluster was compared to the resulting histogram of permuted t-stats. P-values for each cluster were de!ned as631

the number of permutations with a higher summed t-stat relative to the total number of permutations, and a p-value632

less than 0.05 was considered signi!cant.633

Decoding from population responses634

For decoding, we used population responses (input) to predict the corresponding concept labels (output). We ex-635

cluded the credits from the dataset and focused solely on the narrative content. The movie was presented at a frame636

rate of 25 frames per second, with each frame lasting 40ms. In total, 125, 743 frames were shown. The spiking activity637

of the recorded neurons was binned using a bin size of 80ms, corresponding to the activity of two consecutive frames.638

Each bin was then labeled based on the !rst frame within that interval.639

We sampled activity of the neurons before and after the onset of each frame and found that using a window of 800640

ms before and 800ms after onset yielded the best decoding performance. This resulted in data samples comprising641

a binary label for the concept and a spike train of length 20 (10 bins before and after the onset of the frame). Given642

the full population of 2286 recorded neurons, each input data sample had a dimensionality of 2286.643
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Architecture644

To decode concepts from the sequence of neuronal activity, we used a long short-term memory (LSTM) network30,645

which is well-suited to process the dynamical structure of the dataset. The output of the LSTMwas fed into into several646

fully-connected layers with ReLU activation functions to obtain binary label predictions. We found that pre-processing647

the raw spiking datawith a linear layer of same size as the input, combinedwith a batch normalization layer, improved648

performance. We used the binary cross-entropy loss function, and optimized our network using Adam optimizer52 in649

Pytorch53 with default settings (!rst and second order moment equal to 0.9 and 0.999, respectively). We obtained the650

best results with a 2-layer LSTM, with hidden size of 32. We adapted other hyperparameters, e.g., number of linear651

layers, hidden sizes, batch size, learning rate, weight decay, and dropout rate, for each label.652

We trained each network for 700 epochs and used the validation set to estimate themodel’s ability to generalize to653

unseen data. As is common practice, we selected themodel with the best performance on the validation set and used654

this for evaluation on the unseen test data. Some labels were highly imbalanced and models trained on these labels655

were biased towards predicting the majority class. To ensure unbiased predictions and to optimize performance, it656

is common to force the batches of data samples presented in the training process to be balanced by oversampling657

the minority class. This oversampling technique was applied to all imbalanced labels, comprising all labels except the658

label for the main character Summer.659

Data split660

To ensure that the decoding performance was not a"ected by correlations between data samples, we carefully split661

the dataset into training, validation, and test sets. We used 5-fold nested cross-validation, and assigned 70% of the662

data to training, 15% to validation, and 15% to testing in each split. To avoid correlations between samples, we as-663

signed samples from consecutive segments of the movie to each set (train/val/test) and excluded 32 seconds of664

data between each set (see Fig. S7). The choice of excluding 32 s was based on the results for the main character665

Summer (Fig. 3c). The total dataset contained 45, 200 samples, resulting in sets of 30, 800/7, 200/7, 200 samples for666

training/validation/test. We trained a network using the training data, optimized its hyperparameters using the vali-667

dation set, and evaluated its performance on the corresponding test set. We report the !nal decoding performance668

as the average performance on all !ve test sets.669

Evaluation metrics670

For each semantic feature, we compared the model’s prediction against the binary class labels. While accuracy is a671

simple evaluationmetric, it is not suitable in our case due to the highly imbalanced distribution ofmost labels, making672

it challenging to compare accuracy metrics across di"erent labels. We report all decoding performances using the673

Cohen’s Kappa metric54 which measures the agreement between the ground-truth labels and the predictions of the674

network, where performance equal to zero is interpreted as chance-level and performance equal to one is interpreted675

as complete agreement. Cohen’s Kappa is de!ned as676

ε =
p0 → pe
1→ pe

(1)

where p0 de!nes the relative observed agreement and pe the hypothetical probability of chance agreement among677

prediction and labels. The Cohen’s Kappa metric can take negative values, too, implying that the predictions are678

worse than chance level. The common chance performance equal to zero makes the Cohen’s Kappa a useful metric679

to compare performances across all labels.680

Additionally, we report the F1 Score, Area under the Precision Recall Curve (PR-AUC) and Area Under the Receiver681

Operating Characteristic (AUROC) metric in the Supplementary for all experiments. We brie#y explain these metrics,682

including potential advantages and disadvantages for our analysis:683

F1 Score684

F1 Score is a metric combining precision and recall by calculating the harmonic mean between these two. Precision685

and recall are determined based on a classi!cation threshold of 0.5. Designed to performwell on imbalanced datasets,686

the F1 Score is particularly useful for evaluating our decoding tasks. However, the baseline for chance performance687

with this metric is not consistent and varies depending on the label distribution.688

21

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 11, 2025. ; https://doi.org/10.1101/2024.06.13.598791doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.13.598791
http://creativecommons.org/licenses/by-nc/4.0/


PR-AUC689

The PR-AUCmetric, representing the area under the precision-recall curve, extends the F1 Score by evaluating perfor-690

mance across di"erent threshold settings. Similarly to the F1 Score, it can be used for imbalanced datasets. However,691

as for the F1 Score, the PR-AUC metric is sensitive to changes in the class distributions, resulting in varying chance692

performance across labels. Being a reliable performance metric in general for our various classi!cation problems,693

one has to bear in mind that a comparison of performances across concepts can be misleading due to the di"erent694

chance baselines.695

AUROC696

The Receiver Operating Characteristics (ROC) curve represents the trade-o" between the true positive rate and false697

positive rate for various threshold settings. AUROC as the area under the ROC curve is a performance measure that698

is used in settings where one equally cares about positive and negative classes. Performances range in [0, 1] and it is699

insensitive to changes in the class distribution, which means chance performance is given by a value of 0.5. However,700

the metric is generally not used for highly imbalanced classi!cation problems and an evaluation of speci!c labels in701

our analysis such as McKenzie (class distribution is 90/10) should be taken with caution.702

Single-neuron decoding performance703

For a fair assessment of decoding from population responses compared to single-neuron activity, we evaluated the704

decoding performance of individual neurons under a setup comparable to that of the LSTM-based decoding network.705

Instead of relying on full-population responses, we established a performance based solely on the !ring rates of each706

single neuron. Employing the same data splits, cross-validation approach, and binning procedure used for the LSTM707

network, we summed the binned !ring rates of a neuron surrounding frame onset for the 1600 ms time window708

utilized by the decoding network. We then individually selected the best threshold for each neuron’s activity on709

the validation set, which was subsequently used to evaluate the neuron’s performance on the hold-out test set. We710

reported the !nal performance as the average of the !ve results obtained from the 5-fold cross-validation procedure.711

Permutation tests for decoding712

To determine if the reported decoding performances were signi!cantly better than chance, we performed two sets713

of permutation tests—!rst, we randomly shu%ed the labels of the held-out test set (Test Set Shu%e), and second,714

we shifted the labels while preserving the order of the test labels (Circular Shift). For both tests, the input to the715

decoding network remained unchanged from the non-permuted version. The only modi!cations made were to the716

corresponding feature label in the test set, which were changed in the ways outlined above, and then compared to717

the original network’s prediction scores. The dynamic nature of the visual stimuli implies not only a strong correla-718

tion within the neuronal activity but also suggests a temporal correlation for the feature labels. By modifying only the719

labels, we ensured that the temporal information embedded in the neuronal data remained una"ected by the per-720

mutation test. In the following, we test the signi!cance of both scenarios: one where the temporal correlation within721

the labels is disrupted (Test Set Shu%e), and another where the temporal correlation within the labels is maintained722

(Circular Shift).723

Test set shu%e724

The !rst type of permutation, and the one reported in themain text, consisted of randomly shu%ing labels in the test
set and evaluating the predictions of the models on those. We compared the performance of the model on the held-
out test set to a null distribution generated by evaluating the model on the test set with shu%ed labels (N = 1000).
We calculated the probability of our observed performance under the null distribution to obtain the p-value:

p =
k + 1
N + 1

where k is the number of performances onpermuteddata outperforming the ground-truth performance of themodel.725

This p-value provided the basis of comparison for describing signi!cant decoding results in our main analyses. By726

preserving the temporal structure during the model’s inference process and only disrupting temporal correlations727

within the concept labels used for evaluating the model’s predictions, we consider this assessment of signi!cance to728

be the most appropriate for our data setup.729
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Circular shift730

The second type of permutation was performed as a comparison for the above Test Set Shu!e, as it is a standard731

method in human single-neuron studies (see55, 56, 44). Circular shift permutations maintain both the temporal rela-732

tionship of neuronal data as well as that of the stimulus information, here the concept labels. Rather than randomly733

shu%ing the labels in the test set, we applied a circular shift of labels that maintained the intrinsic temporal structure.734

The shifting size was randomly chosen N = 1000 times to obtain a null distribution akin to the previous test. This735

distribution was then utilized to compute the probability of our ground-truth performance and derive the p-value736

for assessing signi!cance. For studies involving static stimulus presentation, wherein the stimulus is largely uncor-737

related with itself, this test provides a useful way to disentangle stimulus-related e"ects from those endemic to the738

time-series information. For a comparison between the permutation results, see Supplementary Materials, Fig. S11.739

Impact of temporal information on the decoding740

To assess the signi!cance of temporal information in neuronal activity sequences, we evaluated the trained models741

using temporally-altered test data. The input to the decoding network included neuronal activity from 800ms before742

to 800ms after the onset of the frame, divided into 20 bins. For the temporally-altered test data, we randomly shu%ed743

the sequence order of the 20 bins (applying a consistent permutation for all neurons and data samples) and evaluated744

the pre-trained models on the modi!ed test data. This procedure was repeated 100 times, and the performance was745

averaged. The !nal performancewas calculated by averaging the results across the !ve data splits, using the standard746

error of the mean (SEM) as the measure of variance.747

Logistic regression models and evaluation of neuron contribution to decoding748

We compared the decoding performance of the LSTM to that of a logistic regression model. The dataset used to749

train the logistic regression model was identical, barring one key change: the spike trains provided to the LSTM,750

initially of dimension (20, 2286), were reduced to a single bin representing the total number of spikes around a frame.751

The data then had a revised shape of (1, 2286), and no longer incorporated temporal information. We trained a752

logistic regression model using the liblinear solver implementation in Scikit-learn57. For training, we employed an753

L1 penalty and z-scored the neuronal activity per neuron using the mean and standard deviation of the training data.754

We utilized a nested 5-fold cross-validation, and separately optimized the regularization strength for each data split.755

The !nal decoding performance was calculated by averaging the performance across all !ve test sets.756

Logistic regression weights for evaluating individual neuron’s contribution757

Applying an L1 penalty during training enforced feature sparsity, which facilitated the interpretation of input feature758

importance through the model’s coe$cients. A ranking of neurons was generated by evaluating the coe$cients of759

the trained logistic regression models. Caution is needed when combining logistic regression weights from models760

trained on di"erent splits due to the alternating test sets in each split, which sometimes include data used for training761

in another split’s test data (see Fig. S7). To avoid any interference between training and test data across splits while still762

accounting for the temporal variation in our data, we furthermodi!ed the splits used for cross-validation. The original763

!ve splits were extended to 20 splits in the following way: each of the original !ve splits was further divided into four764

sub-splits which shared a common test set but alternated the division of training and validation data (see visualization765

in Fig. S8). Any analysis based on neuron selection using logistic regression weights was evaluated exclusively on the766

corresponding four splits that generated the ranking and shared held-out test data. Final decoding performances767

for such analyses were derived through a nested cross-validation procedure. This involved initially averaging the768

decoding performances ofmodels that shared a common test set (i.e. averaging across each set of four sub-splits) and769

then averaging the resulting !ve performances. In short, our training procedure for the logistic regression analysis770

consisted of training 5 ↓ 4 = 20 splits, and thus 20 models, where each group of 4 sub-splits shared a common test771

set.772

Neurons were ranked according to their logistic regression coe$cients across each set of four sub-splits. Given773

that there are a total of !ve such groups, this lead to !ve distinct rankings. To obtain each ranking, we combined the774

coe$cients of the four trained models using a two-step procedure:775

1. Partition the neurons into separate subsets, based on the number of models for which a neuron had a non-776

zero coe$cient (e.g. one group of neurons which had non-zero coe$cients on all four sub-splits, then all three777
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sub-splits, etc.).778

2. Within each subset of four models, use the average of the absolute coe$cients across the !ve splits to obtain779

a subset-speci!c ranking.780

By concatenating the partitions of ranked neurons, we obtained a comprehensive ranking of all neurons. The neuron781

ranked highest displayed non-zero coe$cients in all four models (corresponding to four sub-splits) and possessed782

the greatest average absolute coe$cient value among neurons activated in all four models.783

Intersection of top-performing neurons and chance-level overlap784

In our analysis, we restricted the decoding to subpopulations of neurons that were derived through a ranking of785

weights of a trained logistic regression model. To ensure that the selection of neurons was independent of the test786

data, the neuron selection procedure was based on !ve rankings derived from distinct data splits, each paired with787

!xed test data. We evaluated the intersection of neurons across subsets of top-ranked neurons from the !ve rankings,788

evaluated for varying subpopulation sizes (Fig. 7b). For instance, a comparison of the top-performing 500 neurons789

from each of the !ve rankings revealed a set of 78 common neurons.790

As a reference point for comparison, we report the average count of overlapping neurons anticipated when ran-791

domly selecting sets of 500 neurons !ve times from the entire population (denoted as chance level of overlapping792

neurons in Fig. 7). In the previously mentioned scenario involving subpopulation sizes of 500, the expected number793

of overlapping neurons is equivalent to one. Mathematically, this is computed as follows: the full population consists794

of N = 2286 neurons. We refer to the size of the subpopulation as k = 500 and the number of total rankings m = 5.795

For each neuron ni in the subpopulation, we de!ne a random variable Xi ,500 as follows:796

Xi ,500 =





1, if neuron ni lies in all !ve subpopulations

0, otherwise
(2)

We observe that P(Xi ,500 = 1) =
(

k
N

)m
=

(
500
2286

)5. The expected value of Xi ,500 is given by

E(Xi ,500) = 1 · P(Xi ,500 = 1) + 0 · P(Xi ,500 = 0) = P(Xi ,500 = 1)

Wede!neX500 =
∑N

i=1 Xi ,500 as the number of overlapping neurons across all !ve rankings. Since the randomvariables
are independently and identically distributed, this implies

E(X500) =
N∑

i=1

E(Xi ,500) =
N∑

i=1

P(Xi ,500 = 1) = 2286 ·
(

500
2286

)5

↔ 1.1443

Analogous calculations for k = 100, 350, 750, 1000 yield

E(X100) = 2286 ·
(

100
2286

)5

↔ 0.0004

E(X350) = 2286 ·
(

350
2286

)5

↔ 0.1923

E(X750) = 2286 ·
(

750
2286

)5

↔ 8.6896

E(X1000) = 2286 ·
(
1000
2286

)5

↔ 36.6180

Thus, we derive the chance baselines as 0, 0, 1, 9, and 37 for subpopulation sizes of 100, 350, 500, 750, and 1000, respec-797

tively.798

Decoding on regions of the MTL799

We compared the decoding performance when using the activity of all 2286 recorded neurons to the performance800

when only using activity from speci!c regions of theMTL. These regions are the amygdala (580 neurons), hippocampus801

(794), enthorinal cortex (440), and parahippocampal cortex (373). To use activity from a particular region, we limited802
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ourselves to the activity of neurons in that region and reduced the input dimension to match the number of neurons803

in the region. The network architecture and data splits remained the same as when using activity from the full pop-804

ulation, but the hyperparameters were optimized for the reduced dataset and given label. Training, validation, and805

test set sizes remained the same as the full dataset condition. In summary, decoding from di"erent regions di"ered806

from full population decoding primarily due to reduced input data dimensionality: from a spike train of length 20 and807

dimension 2286 to a spike train of the same length but with a dimension reduced according to the number of neurons808

in the speci!c region.809
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