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16 Abstract

17 Metabolism serves as the pivotal interface connecting genotype and phenotype in various
18  contexts, such as cancer reprogramming and immune metabolic reprogramming. Compared to the
19  transcriptome, the development of the single-cell metabolome faces significant challenges. While
20  various methods exist for predicting metabolite levels from transcriptome, their efficacy remains
21 limited. We developed an efficient and adaptable algorithm known as Multiple Graph-based Flux
22  Edtimation Analysis (MGFEA). MGFEA enables rapid inference from million-level single-cell
23  transcriptome datasets and achieves accuracy comparable to that of scFEA. Additionaly, MGFEA
24 can detect metabolite biomarkers in different cancer bulk RNA-seq datasets. As an attempt to
25  integrate multi-omics dataset, MGFEA can further improve the accuracy of these inferences by
26  leveraging additional metabolome.
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28 Introduction

29 In the intricate realm of cellular biology, common cells diligently uphold metabolic

30  homeostasis within their internal milieu, a crucial state that ensures the proper functioning of

31  distinct functional proteins. Notably, the diverse nature of cells entails varied modes of sustaining

32  metabolic equilibrium. For instance, neoplastic cells exhibit metabolic reprogramming, altering

33  their metabolic profiles to adapt to their environment [1-5]. Similarly immune cells dynamically

34  adjust to effectively adapt and respond to their microenvironment [6-8].

35 Over the last decade, there has been significant advancement in single-cell transcriptomics

36  technology, leading to the accumulation of a substantial number of precise single-cell databases

37  [9-12]. However, the advancement of single-cell metabolomics has lagged behind that of

38  single-cel transcriptomics largely due to inherent technical bottlenecks [13,14]. Though progress

39  has been slow, contemporary computational tools are now capable of characterizing metabolism

40  through transcription. Enrichment-based methods have demonstrated significant impact in the

41 fidld of functional genomics research, yet they are predominantly utilized for qualitative analysis

42  [15-18]. Constraint-based models have shown significant promise by their ability to deduce the

43  rate of metabolic reactions without the prerequisite detection of numerous kinetic parameters

44  [18,19]. Consequently, novel computational models have emerged for predicting flux state at the

45  single cell resolution. These include, but are not limited to, scFBA [20], scFEA [21], Compass

46  [22], and METAFlux [23]. Despite their innovative nature, the efficiency of these models ill falls

47  short of optimal levels.

48 Building upon the foundations established by scFEA and a series of constraint-based models,

49  we introduce a novel modeling framework for inferring metabolic flux based on both metabolic
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50  network guided gene interaction graph and spatial information graph (Fig. 1&). This framework
51 ams to edimate the divergences in metabolic reactions among cells by utilizing the known
52  genereaction relationships in the Genome Scale Metabolism model (GSMM) aongside
53  single-cdll transcriptomics dataset. The code implementation and relevant dataset are available on

54 GitHub (https.//github.com/Sunwenzhilab/M GFEA).
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56  Fig. 1: An agorithmic framework to estimate metabolic states based on spatial and single cell

57  transcriptomic dataset, and computational performance measurement.

58 a, MGFEA dgorithmic framework. VAE: variational autoencoder VGAE: variational graph

59  autoencoder sScRNAseq: single cell transcriptome dataset poRNAseq: spatia transcriptome dataset

60 MALDI: Marix-Assisted Laser Desorption lonization SMA: spatial multimodal analysis dataset. A

61 paired spRNAseq and MALDI dataset.

62 b, left: Comparison of peak memory usage between scFEA and MGFEA for different sized

63  datasets three repeats each point. right: Comparison of time cost between scFEA and MGFEA for

64  different sized datasets three repeats each point. scFEA reported out of memory error in the 4 large

65  datasets, so thereis no data point of scFEA in the figure.

66 ¢, left: Comparison of peak memory usage between scFEA and MGFEA for different formats

67  of gereo-seq dataset. Right: Comparison of computation time between scFEA and MGFEA for

68  different formats of stereo-seq dataset. scCFEA reported out of memory error in the 4 large datasets,

69  sothereisno datapoint for scFEA in the figure.

70
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71 Result

72 Overview of M GFEA framewor k

73 MGFEA pipeline combined the framework of representation learning and the metabolic flux

74  constraint framework such as scFEA and adopts a suitable module for sparse matrix. MGFEA is a

75 flexible framework which achieved the efficient and accurate metabolic inference for various

76  typesof datasets, such as single cell RNA seq dataset, spatial RNA seq dataset. MGFEA extracted

77  cell embeddings from expression matrix and integrated gene co-expression information from

78  expression matrix, spatia information from spatial RNAseq and expert knowledge from GSMM

79  mode into the gene embeddings. MGFEA used the dot product to combine the two types of

80  embedding and used the dot product as weights to enhance the cell expression embedding. At the

81 lagt layer, full connected layer transformed the enhanced cell expresson embedding into the

82 metabolic flux under the constraint of the metabolic flux loss. With the result of metabolic flux,

83  MGFEA could infer all of the metabolites' relative stock level in the single cell.

84 Compared with scFEA, MGFEA demonstrated three innovations. First, our framework

85  exhibits remarkable flexibility, featuring multiple modules that can accept inputs in various data

86  formats, including single-cell transcriptome datasets, spatial transcriptome datasets, and spatial

87  multimodal analysis (SMA) datasets [24]. MGFEA employed anndata format and sparse matrix

88 module to achieve compatibility for large datasets. Second, MGFEA utilized representation

89 learning to extract and integrate gene interaction information from expression matrix, spatial

90 information from spatid RNAseg and expert knowledge from GSMM model. By leveraging

9 Variational Graph Autoencoder (VGAE) or Variational Autoencoder (VAE), our framework

92  extracts cellular embeddings from the transcriptome dataset. Additionally, another VGAE is
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93 employed to extract inter-gene metabolic information derived from the knowledge-guided graph

94  of GSMM, thereby generating gene embeddings. We then computed the dot product of these two

95  distinct embedding types and applied a softmax transformation along the cell axis, to derive a

96  weight matrix. This matrix was subsequently applied to enhance the original transcriptome matrix.

97  Third, based on the premise which non-metabolic genes also affect metabolic flux, MGFEA used

98  the same stoichiometry matrix from scFEA and other GSMM models to guided fully connected

99  multiple layer perceptron (MLP) to transform the extracted cell embeddings into metabolic flux in

100  thecell.

101 To promote the development of metabolic prediction methods based on metabolic graph, we

102  aso provided three types of metabolic graphs for each species: the first from scFEA, the second

103  from flux-estimator [42], and the third from the GSMM model Recon3D and IMM 1865 [26,27].

104  Although flux-estimator [42] only subgraphs for user access, we integrated the magjority of these

105  into a single comprehensive graph to ensure a fair comparison. Graphs serve as an important role

106 in the constraint based methods. In this article, when referencing the small graph, we will

107  abbreviate the names of two models. For the large graph, we will append an "-L" suffix to the

108  different models. Similarly, IMM1865 will be referenced to as "IMM." Subsequently, the

109  improved matrix serves as input, enabling the neural network to autonomously learn without fixed

110  genereaction relationships. Through unsupervised metabolic flux inference, our framework

111 derives metabolic flux, facilitating the characterization of metabolite imbalance levels across

112 different cells analogous to metabolomics analysis. Furthermore, owing to the flexibility of flux

113  estimation analysis method, we also provided an additiona reference module to leverage the

114  metabolic information present in the SMA dataset thereby further optimizing the algorithm's
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115  performance. Based on the existing contributions of scFEA [21], flux-estimator [42], Recon3D [26]

116  and IMM1865 [27], we also offered three types of graph in h5ad format and the reference module

117  can dso be applied on the other constraint based methods. The above two items represent our

118 modest contribution to the field of constraint-based inferences methods about metabolism.

119

120 MGFEA outperformed in memory usage and time cost

121 Based on the data preprocess pipeline which is suitable for the sparse matrix, MGFA showed

122 high computational performance. Compared with scFEA, MGFEA demondrated significant

123  advantages in computational performance, particularly in its adaptability to the growing scale of

124  single-cell datasets and its efficiency regarding memory usage and computational speed (Fig. 1b).

125  In the same device, scFEA pipeline reported out of memory error in the large datasets, but

126  MGFEA showed measurable performance. Considering the scalability of stereo-seq datasets [43],

127  we slected five thresholds, resulting in the generation of five different datasets sizes, each with

128  varying sizes and library depth of spots. According to stereo-seq datasets, MGFEA demonstrated

129  better performance than scFEA in different resolution of stereo-seq datasets (Fig. 1c¢). According

130  to the benchmark of the daily largest single cell RNAseq datasets, MGFEA exhibited improved

131 performance in terms of computational resource utilization.

132

133 Depmap dataset benchmark confirms framework efficiency and discovery of potential

134 metabolites biomarker

135 Metabolic reprogramming is the classical features of tumor. Tumor metabolic reprogramming

136 is the important format of tumor rearranging tumor microenvironment and resisting the
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137  chemotherapeutic agents [44]. We validated the performance of MGFEA in the public datasets

138  which owns transcriptome and metabolome information of human cancer cell lines. To assess the

139  effect of dataset size to model accuracy, we utilized a public dataset paired with metabolomics

140  dataset from human cancer cell lines provided by the Cancer Dependency Map (DepMap) Project

141 [36,37]. We selected all overlapped metabolites among the different metabolic graphs and the

142  metabolomics dataset for comparable accuracy assessment across different metabolic graphs. Then

143  we calculated the relative mean square error between the predictions and metabolomics result. We

144  presented the results of the prediction from scFEA, scFEA-L, MGFEA, MGFEA-L and

145  MGFEA-IMM. As the dataset Sze increased, the performance of two flux estimation anaysis

146  agorithms improved. The usage of flux estimation analysis algorithm on larger datasets showed

147  higher inference accuracy and the performance of predicted results from MGFEA consistently

148  outperformed that of scFEA (Fig. 2a).

149 As a supplemental experiments, we cultured three types of cancer cell lines: Hela, U87 and

150  SH-SY5Y for our in house paired transcriptome and metabolome dataset. Based on the targeted

151 metabolomics detection, we confirmed that for the ten detected metabolites, the predictions from

152 MGFEA-L and scFEA-L matched with the true concentration distribution in fumarate and Uridine

153  Monophosphate across three cancer cell lines targeted metabolomics detection (Fig. 2b). But both

154  MGFEA and scFEA show incorrect trends in other two significant differential metabolites:

155  beta-aanine and deoxyadenosine. Two models reported the same predictions but not matched with

156  the validation completely on succinate (Fig. Slc), we will discuss the phenomenon in the

157 discussion section.

158 MGFEA could be used in the discovery of tumor potential metabolic biomarkers. In an
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159  application utilizing single-cell transcriptome dataset from gliomas sampled across different

160  regions [45], we observed a significant difference in lactate levels between cells in the tumor core

161 and those in the peripheral regions as predicted by our model (Fig. S1a). This finding is similar

162  with the functional magnetic resonance imaging results [46]. Leveraging the abundant

163  transcriptome datasets from TCGA [20], we tried to find the potential biomarker with the

164  prediction from MGFEA. MGFEA classified of patients as two groups based on the median

165  relative predicted metabolites level from MGFEA. For example, MGFEA identified four

166  metabolites as the potential biomarkersthat could distinguish patients with poor survival outcomes

167  (Fig 2c). Citrulline is predicted as a biomarker associated with patients better prognosis (Fig 2c).

168  Citrulline has been found as the products of nitric oxide(NO) synthase, which catalyzed the

169  reaction which produce NO. Similar research supported our predictions that oral administration of

170  L-arginine or hydroxyurea significantly increased brain tumor barrier permeability when

171 compared with the nontreated control rat [47]. Thereby patients whose tumor owns higher

172  citrulline level could be more sensitive to the chemotherapeutic agents. MGFEA predicted that

173  fumarate is associated with patients’ bad prognosis. Fumarate has been validated that correlated

174 with the inhibitory function of CD8 positive T cell [48]. Similar measured results about Glutamate

175  can be found in a published metabolomics dataset [49] (Fig. S1b). Glutamate is found in higher

176  concentrationsin IDH wild-type gliomas but is lower in IDH-mutant gliomas. Our predictions are

177  consigent with metabolomic findings, as IDH-mutant patients, who generally have better

178  prognosis, show lower glutamate levels. Research has indicated that glioma release glutamate to

179  improve their growth by utilizing its neurotoxicity [50,51]. MGFEA aso predicted succinate

180  correlated with the patients bad prognosis. Glioblastoma cells improved the succinate level to
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181  accommodate the hypoxic environment which is similar with our predictions [52]. MGFEA
182  showed comparable accuracy with scFEA in DepMap datasets and could be used for the

183  identification of potential metabolites biomarkersin TCGA and more human datasets.
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185  Fig. 2: Comparison of prediction results from scFEA and MGFEA in DepMap dataset and

186  predicted biomarker in TCGA glioma dataset.

187 a, Therelative mean square error comparison of metabolic predictions from scFEA, MGFEA,
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188  scFEA-L, MGFEA-L and MGFEA-IMM on DepMap datasets.

189 b, The prediction result from metabolomics, scFEA, scFEA-L, MGFEA and MGFEA-L at
190  Fumarate and UMP.

191 ¢, The prognosis of TCGA glioma patients is correlated with several predicted metabolites:
192  citrulling, fumarate, succinate and glutamate. Red lines mean the statistics from patients with
193  higher predicted metabolites. Blue lines mean the statistics from patients with lower predicted

194 metabolites.
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196  Fig. S1: Comparison of MGFEA and scFEA in terms of cancer metabolites imbalance level.

197 a, Predicted relative lactate levels of lactate in different glioma regions by MGFEA and
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198  scFEA.

199 b, Metabolomics result about glutamate in IDH wild type and IDH mutant type glioma

200  samplesfrom Wang et al.

201 ¢, Inhouse datasets metabolomics results and prediction results from scFEA and MGFEA

202 about succinate content in Hela, U87 and SHSY 5Y cell lines.

203

204

205 MGFEA integrated non metabolic genes and metabolomicsinto the whole framework

206 With the spatial multimodal analysis (SMA) paired spatial RNAseq and Matrix-assisted laser

207  desorption/ionization (MALDI) datasets, we could validate the performance of MGFEA and

208  validate the true metabolic information integration module of MGFEA. For the SMA dataset, we

209  selected one of the dices to compare the prediction results of different models againg MALDI

210  results (Fig. 3a-d). The finding indicated that MGFEA captured spatial similarity of different spots

211 and showed significant better performance when using the raw matrix as input. In both models of

212  MGFEA, imputation did not yield significant improvements in performance (Fig. 3a, c).

213  Consistent with scFEA reports, MAGIC [31] improved its performance (Fig. 3b, d). STAGATE

214 [32] which integrates spatial information demonstrated no improvement in scFEA and small

215  improvement in scFEA-L. We compared three methods which select variable genes for MGFEA

216 metabolic gene interaction graph construction: common highly variable genes (HVG) defined by

217  normalized dispersion, spatial autocorrelation metrics Moran's | (SRR) and spatial differential

218  expressed genes (SDE). By leveraging HVG, MGFEA demonstrated better performance than the

219  other methods without imputation. Although HVG methods did not demonstrate improvement
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compared to the other two methods, they also did not result in decrement in performance.
Therefore, we used HVG as the default parameter of MGFEA. With respect to the relative mean
square error, MGFEA outperformed scFEA with different imputation preprocess (Fig. 3b, d).
Given the paired nature of the SMA dataset, leveraging the metabolomics results as a
reference for MGFEA predictions can improve performance (Fig. 3e). We observed improvements
in accuracy and reductions in variance when using the MALDI reference, athough datistical

significance was not achieved (Fig. 3f).
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228  Fig. 3: Comparison of prediction results from scFEA and MGFEA in SMA dataset and the

229  reference module which integrates metabolomics and gene expression.

230 a, ¢ Relative mean sguare error between the prediction by MGFEA and MGFEA-L with

231 different variable genes selection methods, highly variable genes, spatial correlated genes and

232  gpatial differentia genes.
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b, d Relative mean square error between the prediction by scFEA, MGFEA, scFEA-L,

MGFEA-L in SMA dataset with the three different imputation methods, no imputation, MAGIC

and STAGATE.

e, Comparison of dopamine prediction basic MGFEA and referenced MGFEA with raw

matrix and imputated matrix as input.

f, Statistics of reference module contribution in MGFEA relative mean square error.

Unpaired brain transcriptome and metabolome datasets confirmed efficiency of MGFEA

Leveraging the unpaired metabolome and spatial transcriptome datasets, MGFEA showed

efficient performance on differential metabolites identification. Based on the metabolomics dataset

of different brain regions from Shao et a [53] and visium sagittal spatidl RNAseq dataset, we

present the results of the metabolome, the prediction from scFEA, MGFEA, MGFEA-IMM,

scFEA-L and MGFEA-L (Fig. 48). Compared to scFEA, MGFEA showed lower relative mean

sguare error across all metabolic graphs. We provided several examples of prediction results (Fig.

4b). MGFEA exhibited comparable prediction accuracy to scFEA in two types of metabolic graphs

(Fig. 4c, d). Along with the significant differential metabolites identified through metabolomics,

MGFEA demonstrated greater accuracy in classifying relative differences across various brain

region (Fig. 4c). When considering the top-ranked predicted differential metabolites from each

model, MGFEA exhibited outperformed scFEA (Fig. 4d).
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253 Fig. 4: Comparison of prediction results from scFEA and MGFEA in unpaired visium sagittal

254  dataset and Shao metabolomics dataset.

255 a, Reaults of relative mean square error between Shao datasets and the prediction of scFEA,
256  MGFEA, scFEA-L, MGFEA-L and MGFEA-IMM for the relative metabolite level of mouse
257  brain.

258 b, Detection of log fold change of residual metabolites from different brain region pairs using
259  metabolome, scFEA and MGFEA. COR: cortex, HYT: hypothalamus, BST: brain stem, CBL:

260  cerebellum, OB: olfactory bulb.
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261 ¢, The ROC-AUC area of models in relative difference classification within significant
262  differential metabolites from metabolome.

263 d, The ROC-AUC area of models in relative difference classification within top differential
264  predicted metabolites from models.

265

266
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267 Discussion

268 MGFEA is designed for fast inference on large datasets and is particularly adept at inferring

269  metabolic states in tumor samples, leveraging the rich transcriptomic public data resource. Our

270  pipeline improved computational performance significantly and could be applied in the analysis of

271 large datasets even million level datasets [54,55] and the future application on the insilico

272  perturbation gene functional analysis which needs thousands repeats.

273 Tumor heterogeneity is associated with the bad prognosis of patients [56]. In contrast to the

274  metabolome, transcriptome enabled researchers to acquire single cell transcript information at an

275  afordable price [57]. Thereby we used MGFEA in tumor samples for the discovery of biomarkers.

276  To validate the efficiency of models, we prepared the in-housed dataset of three cancer cell lines.

277  In the in-housed dataset, both MGFEA and scFEA predicted the correct distribution of fumarate

278  and uridine monophosphate. Interestingly, scFEA and MGFEA reported the same prediction about

279  succinate based on the transcriptome, but different from the targeted metabolomics detections.

280  There are several possible reasons about the phenomena, for example, the correlation between

281 metabolites and transcript is weak [24]. Enzyme catalyzed metabolites transformation, enzyme is

282  trandated from transcript, but the correlation between protein and transcript is even weak [58].

283  Although transcriptome and proteome can't work as the proxy of each other [59], the question of

284  which more accurately represents the actual functions performed by cells, the transcriptome or the

285  proteome, should be rigorously assessed through experimental validation from multiple aspects.

286  Metabolome quantified the metabolites relative level in the time points of samples collection.

287  Although the algorithms computed the relative level of metabolites based on the key enzyme

288  expression, the difference between the inferred and actual measurements becomes more noticeable
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289  inthe non-steady state scenario of culture media. Two models prediction approved the succinate

290  of SH-SY5Y is higher than other two cell lines, the inconsistency of prediction and measurement

291 could also bring new assumption: succinate is very important for the proliferation of SH-SY5Y or

292  the related TCA cycle genes are reprogramed in SH-SY5Y. The deeper understanding may be

293  proposed between the different result from theoretical model and experimental observation. The

294  essence of the phenomenon is worthy to explore further for our metabolites-transcript consistency

295  understanding.

296 In an attempt to validate the potential of MGFEA on the further exploitation of public

297  transcriptome datasets, we used MGFEA to discover novel validated metabolites from TCGA

298  datasets and demonstrated the potential of our flexible and efficient framework. Of the four

299  metabolites shown in figure 2c, most of them have been found to engage the progression of tumor

300  [47,48,50,52).

301 For instance, we performed metabolite inference validation using the SMA dataset, which

302  seamlessly integrates histologic data from various modalities within the MGFEA framework.

303  Although our reference module demonstrated subtle improvement, but our attempt demonstrated

304  congraint-based methods or flux estimation models such as scFEA [21], compass [22],

305 METAFux [23] and MGFEA which is compatible with high throughput single cell transcriptome

306  datasets are also suitable for the integration of multi-omics datasets consists of MALDI, spatial

307 RNAseq and spatial proteomics. Although the correlation between different modalities is weak,

308 the integration of multiple modalities is also promising to produce novel knowledge and even

309 novel research field in the future.
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310 With the development of spatial metabolome technique [60—62], or the metabolites aptamer

31 technique [63], it may be easier for the acquirement of the metabolic and transcript information of

312  our interested samples, with the novel inference algorithm based on the genotype information, the

313  understanding of interaction of genotype and phenotype could further develop and help with the

314 human health.

315 In summary, MGFEA demonstrates the ability to make fast and accurate inferences about the

316  metabolic state of a sample based on its transcriptome. It provides an algorithmic framework that

317  can easily integrate both transcriptional and metabolic modalities from the same samples, making

318 it a valuable tool for multimoda data integration. The further development of MGFEA can

319  provideinspiration for the emergence of a mature integration framework across multi-omicsfields,

320  such astranscriptomics, proteomics, and metabolomics.

321
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Methods

M GFEA framewor k

MGFEA framework (Fig. 1a) consists of data preprocess, metabolic graph integration, cell and
gene embedding extraction, embedding augmentation layer and flux transformation layer.

X, x5 : expression matrix, expression vector of kth cell

X, :matrix of spatial metabolomics matrix from spatial multimodal analysis (SMA) datasets [24]
T# T° : the extracted Eigen vector matrix in the gene and cell dimension of the expression matrix
using Principal Component Analysis

u, v : cell enbedding, gene embedding

G™ G°,A™, 4° : metabolic network guided gene interaction graph, spatial information graph ,
metabolic network guided gene interaction graph adjacent matrix, spatial information graph
adjacent matrix

@, @ : cell variational graph autoencoder [25] VGAE encoder parameter, decoder parameter

@ 8¢  gene VGAE encoder parameter, decoder parameter

F : Flux matrix of all cellsin dataset

f : flux vector of single cell

S : stoichiometry matrix of GSMM model

GSMM model preprocess
We employed two published GSMM model, Recon3D [26] and IMM1865 [27], for MGFEA
prediction of relative metabolites level. The original models have large numbers of metabolites

consists of the same metabolites located in different organelles. In our modified models, we
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344  removed duplicated metabolites and used function find_blocked reaction from python package
345  cobrapy [28] to remove most blocked reactions.

346
347  MGFEA metabolic interaction graph preprocess

348  According the metabolic stoichiometry matrix and gene co-expression relationship from
349  expression matrix, we transformed al the information into a gene interaction graph. The graph
350  incorporated metabolic relationships from the GSMM model, aong with the intrinsic gene
351 co-expression information in the expresson matrix, as the edges between genes. For metabolic
352  edges, we congtruct edges between genes connected by reaction or metabolite. For gene
353  co-expression edges, we calculated the expression correlation of metabolic genes with highly
354  variable genes (HVG). Edge connections are established between the top k highly variable genes
355  and the metabolic genes with the highest correlation in their expression. To ensure the information
356  density of HVG is comparable to that of metabolic genes, we compute the normalized dispersion
357  of al metabolic genes. Then, the sum of normalized dispersion is used as the threshold value to
358  sdect the top k HVG genes whose corresponding statistics equals to that of the metabolic genes.

359  According to the above method, we construct a gene adjacency matrix 4™.

360
361 MGFEA embedding

362  MGFEA takes a preprocessed expresson matrix X and a preprocessed GSMM modd as input.
363  Inspired by the GLUE [29] framework, we employed two separate VGAEs to learn cell
364  embeddings in the spatial transcriptomic dataset and gene embeddings in metabolic networks
365  separately. For the cell embedding u, the input consists of the expresson matrix X and spatial
366  coordinate information of spots A°. The obtained latent layer embedding u serves as the

367  representation of different cells.
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368  For single cell RNAseq dataset input, the training of VGAE satisfies the following loss function:

266 Leett(€04085) = Expp () [qu(mmmmgp(xk | u; 8) = KL (q(u |2, ) | p(u))]

370  For spatial RNAseq dataset input, the training of VGAE sdtisfies the following loss function:

. Lwn(‘;ﬂk, 3_%;) = Eju [Ew(ulxk As;w)fogp(f | u:6;) — KL (q(u | x;, A% qak) I p(u))]

372  For gene embedding v, Using the metabolic gene interaction graph as input, the VGAE learns the

373  intrinsic relationships of genes and acquires gene embeddings to represent different genes.

374  Thelossfunction of VGAE which exported gene embeddings satisfies:

e Loens(#6,0¢) = Eyjoam [logp(4™ 1 v,86,) = KL[q(v | A™,T9, 5, ) I p(v)]]

376  Thelossof two VGAE isthe latent loss of MGFEA.

1
377 LE(‘?GSJ Bc.. P, QGm) = EZE—lLa@H + Lgene

378 The two VGAEs learned the representations of the transcriptional cell states u and gene
379  representations v defined jointly by the metabolic network and co-expression information. The
380 former represents a conventional cellular state and incorporates both the expression matrix and
381 gpatial coordinate information of spots of spatial transcriptomics. The latter means the gene
382  representations defined by gene interaction graph. The gene representations mean the genes
383  location in metabolic space. The dot product of two representations shares the same matrix form
384  astheorigina expression matrix. The form is used for embedding enhancement.

385  Taking into account the inherent projection nature of the dot product, we interpret the dot product
386  of the two as a projection of the cellular state representation vector onto the metabolic space. For
387  scRNAseq, by utilizing the difference between this projection and the origina transcriptional

388  expression matrix as aloss function, we enable VAE to rationalize the cell representations it learns.
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389 For pRNAseq, VGAE learns to reconstruct the spatial coordinate graph and gene interaction

390  graph to rationalize the obtained cell embeddings and gene embeddings.

391

392 MGFEA embedding augmentation

393  With the above framework, we are able to generate matrix containing both metabolic gene

394  relationships and cell transcriptional states. Then we conducted softmax transformation between

395  different genes within a cell based on the generated matrix. This transformation yields a matrix

396  which contains genes weights in cells. Subsequently, we performed element-wise multiplication

397  (Hadamard product) between weights matrix and the origina expression matrix X. Through this

398  process, we enhance the cell specific metabolic features in the original matrix X to preserve the

399  transcriptional states and the augmented matrix X, improved the process of MGFEA

400 flux-estimation.

401 X = Softmax;(vu) @ X
402 F=MLP(X;)
403

404 M GFEA-Flux esimation

405 The baance of metabolites in reaction network is influenced by both influx and efflux.

406  Considering that the efficiency of enzymes in metabolic networks is regulated by the regulatory

407  genes, the transcriptional state of the cell playsa crucial role in influencing metabolic balance [30].

408  Building upon this premise, we utilized the transcriptional expression matrices of metabolic genes,

409  dong with a restricted set of highly variable genes, as input. We finally employed a Multilayer

410  perceptron to estimate the fluxes of al metabolic modules (reactions).
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reactions metabolites

L= Y. . [S-fl+Ifl=f +|sgn(f)| - sgn (F)]
411 i /

412 Leprar = AgLfp + (1 - ﬂf)lf; (f&?g:; 8. %m,t?gm)

413

414  Referencebased framework

415 We use transcriptome and metabolome paired dataset [24] to offer a reference for
416  spatialGraphFEA learning. We modify flux loss and add a reference loss for our model. We add
417  reciprocal of flux to prohibit maintained decrease of flux loss. We use metabolism quantitative
418  information as a reference and use a mean sguare error formula to forced predicted metabolism

419  quantification into reference resullt.

1
Lr‘efe‘r'erwe =— mse(S- f - X’r)
420 K

421 Legtar = A}"Lﬁw& + AL (‘P.g;s: QGS: Pg, Qﬁm) + (1 - Af‘ - AE)LT@)"@PQM@

422

423  Parameters

424  The weights of flux loss should be confirmed based on the epoch size. We usually used 0.5 as a
425  default weight of flux loss. As a semi-supervised framework, MGFEA's best parameter should be
426  confirmed manually. When the epoch size is too big, model appears overfitting and the results
427  even appeared as an opposite direction to the truth, we used the weight of flux loss to make flux
428  loss converge as the training ends. We can also increase the relative weights of flux direction.

429

430 Dataset preprocess
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431 Expression matrix X is loaded in h5ad format and is normalized and log transformed. We used

432  MAGIC [31] and STAGATE [32] for imputation. Reactions without expression in the expression

433  matrix are removed, and the modified reaction network was used for MGFEA reaction prediction.

434  We used highly variable genes detected by scanpy [33], spatia differential genes from spatialDE

435  [34] and spatial correlated genes by Moran’s | from squidpy [35] for the gene interaction graph

436 construction.

437

438 Relative mean squareerror

439 In al instances where the relative mean square error was utilized, we first filtered out all

440  nonoverlapping metabolites between the predicted results and the truth, we then scaled the

441 metabolomics dataset and the metabolites’ stock level output from the model, calculating the

442  relative mean sgquared error between the predicted results and the truth. For cases involving Shao

443  metabolomics dataset, datasets from Dependency Map (DepMap) Project [36,37] and our inhouse

444  dataset, since the vectors are not paired, so we first computed the mean metabolites level in

445  different regions before calculating the relative mean square error for different metabolites.

446

447  Receiver operating characteristic curve (ROC)-area under curve (AUC)

448  We transformed the correct direction between the different brain region pairs into the binary label.

449  Thereby we can employed ROC-AUC metrics to assess the capability on classifying correct

450 relative level between different brain regions of the different models. We used the true log

451 transformed fold change between pairs of brain region as true label and the models predicted

452  mean of log transformed fold change as predicted value for the ROC-AUC calculation.
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453

454  Memory usage and time consumption

455  We utilized python package memory-profiler(https://github.com/pythonprofilerssmemory_profiler)

456  to measure memory usage and total time consumption of different models.

457

458  Experimental validation of Cancer Cell lines

459  We ordered cell lines from the vector center at Chinese institute brain research, obtaining

460 U-87-MG (EK-Bioscience Cat.No: CC-Y1528) and Hel.a (EK-Bioscience Cat.No: CC-Y 1211).

461  We acquired SH-SY5Y cell line (YC-D014) from Ubigene. We cultured cell in 90% DMEM and

462  10% FBS. We passaged cells every two days. The cell lines were cultured with 10cm plates. We

463  amplified cell lines to 3-4 plates. For each cell line, once the cells reached confluence, we first

464  removed the culture medium. We digested the cells with 0.25% trypsin for 3-5 minutes and

465  neutralized the trypsin with 90% DMEM and 10% FBS. We pipetted to detach the cells and

466  collected al cell mix in one 15ml centrifuge tube. After centrifuging to collect the cells, we

467  resuspended them in PBS. Following repeated washes, we counted the cells with Countstar(Alit

468  Biotech) and diluted them to 106 cellml. Then we separated 1ml cell suspension into a

469  centrifuge tube and centrifuged the cells. The supernatant was removed and the pellets are stored

470  at -80 degrees.

471

472  RNA sequencing

473  The FastPure Cell/Tissue Total RNA Isolation Kit V2 (Vazyme RC112) was used to isolate total

474  RNA from cell lines pellets. VAHTS Universal V6 RNA-seq Library Prep Kit (Vazyme NR604)
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475  was employed to generate sequencing libraries from the isolated total RNA. MGI2000 was used

476  for sequencing the libraries. Samples are multiplexed in each lane, which yielded targeted number

477  of paired-end, 100bp reads for each sample.

478

479  Bulk RNA-seq data preprocess

480  Weremove low quality reads with Trimmomatic [38], mapped reads with STAR [39] and generate

481 counts matrix with featurecounts [40]. We used combat to remove batch effect between our

482  in-house dataset and DepMap dataset [36,37]. The preprocessed dataset was used for subsequent

483  flux estimation analysis.

484

485 M etabolomics detection

486  We used targeted metabolomic analysis, Metabolites from the cells were extracted with 80%

487  Acetonitrile by vigorous vortex and centrifugation at 22 000g for 20 min at 4 °C. The supernatants

488  were used for analysis. The mix is vortexed and centrifuged. We used suspension for analysis.

489  Chromatographic separation was performed on a | Class ultra-high-performance liquid

490  chromatography system (Waters, Milford, Massachusetts, USA), with an InfinityLab Poroshell

491 120 HILIC-Z column (2.1 mm x100 mm, 2.7 um, agilent) and the following gradient: Omin,

492 100%B; 4min 84%B; 11min 40%B; 12min 40%B; 13min 100%B; 17min 10%B. Mobile phase A

493  was 10 mM ammonium acetate in water. Mobile phase B was 10 mM ammonium acetate in 90%

494  acetonitrile. The flow rate was 0.4 mL/min. The column temperature was kept at 35 °C and the

495  autosampler was kept a 8 °C. The injection volume was 5 pL. Mass data acquisition of the

496  metabolites was performed using a Triple QuadTM 7500 mass spectrometer (SCIEX, Framingham,
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497  MA) equipped with an electrospray ion source in multiple reaction monitoring (MRM) mode. The
498  parameters of the electrospray ion source were;

499  neg: A : 10mM ammonium acetate , pH=8.5 B :10% 10mM ammonium acetate , pH=8.5 , 90%
500  Acetonitrile

501 pos: A : 10mM ammonium formate , pH=3 B : 10% 10mM ammonium formate , pH=3 , 90%
502  Acetonitrile

503 The MRM transitions of all of the derivatized metabolites were shown in followed Table:

metabolites Q1 Q3
Group 1 BETA-ALANINE 90.1 44.2
Group 2 CITRULLINE 176 159
Group 3 DEOXYADENOSINE 252 136
Group 4 HYPOXANTHINE 137 110
Group 5 NICOTINAMIDE 123.1 80
Group 6 PROLINE 116.1 70.1
Group 7 PUTRESCINE 89 72
Group 8 URIDINE MONOPHOSPHATE 325 97
Group 9 URACIL 113 70
Group 10 FUMARATE 115 71
Group11 PYRUVATE 87 43
Group 12 SUCCINATE 117 73

504

505  Metabolomic data analysis

506  SCIEX was used to process and integrate the components peaks and provide integrated extracted

507  ion chromatograms for each metabolite component in all cell line samples and internal standard

508  samples. The generated results are normalized to the internal standard samples and the normalized

509 results are used for absolute quantification with the aid of the calibration curve.

510

511 TCGA survival analysis

512  We used easyTCGA (https://github.com/ayueme/easyTCGA) to download TCGA clinical dataset
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and the expression matrix. We scaled the expression transcript per million (TPM) matrix using

log2 transformation and utilized combat [41] to remove batch effects between glioma and GBM.

After prediction of MGFEA, we divided all samples into two groups based on predicted

metabolite levels and conducted Kastle-Meyer test to identify which predicted metabolite serves

as a biomarker.


https://doi.org/10.1101/2024.06.12.598759
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.12.598759; this version posted July 2, 2025. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

521

522

523

524

525

526

527

528

529

available under aCC-BY-NC-ND 4.0 International license.

Data availability

All datasets used in this study have been published and can be obtained in h5ad format from
https.//cellxgene.cziscience.com/datasets. The raw sequencing data of cancer cell line datasets
have been deposited at CNGBdb under the access on number CNP0O007635.

We used Recon3D and IMM1865 as human and mouse GSMM model. Our raw file and
preprocess code can be obtained from our github site (https://github.com/Sunwenzhilab/M GFEA).

Detailed message and URLs of datasetsisrecorded in Table 1

Tablel
datasets Source website
4AM brain dataset https.//cellxgene.cziscience.com/collections/c114c2

Caoetd. [54] 0f-1ef4-49a5-9c2e-d965787fb90c

1M GBM dataset Ruiz Moreno et a. https:.//cellxgene.cziscience.com/collections/999f2al
5-3d7e-440b-96ae-2c806799c08c

[59]
200Kk brain dataset Siletti et al. [11] https:.//cellxgene.cziscience.com/collections/283d65
eb-dd53-496d-adb7-7570c7casd43
50k brain dataset . https://cellxgene.cziscience.com/collections/e02201
Smith et al. [64] (17-49¢-401f-bafO-1eh 14065460
10k brain dataset Siletti et al. [11] https.//cellxgene.cziscience.com/collections/283d65
eb-dd53-496d-adb7-7570c7caad43
Yu dataset Yuetal. [45] https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi ?acc
=GSE117891
Stereo-seq dataset Stereo-seq http://116.6.21.110:8090/share/dd965cha-7c1f-40b2
-a275-0150890e005f
SMA dataset Vicari et al. [24] https.//data.mendel ey.com/datasets/w7nwakm7xd/1
Visium sagittal brain 10X Genomics https.//www. 10xgenomics.com/datasets/preservation
section -method-comparison-on-vis um-cytass st-fixed-froz
en-mouse-brain-sagittal-11-mm-capture-area-2-stan
dard
Shao dataset https.//www.nature.com/articles/s41392-023-01552-
Shao et d. [63]
DepMz_;\p Ghandi et . [36] https://depmap.org/portal/downl oad/custom/
transcriptome
DepMap https.//depmap.org/portal/downl oad/custom/

metabolome Lietd. [37]
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530 Codeavailability

531 The code and related dataset can be accessible from the following GitHub respiratory

532  (https://github.com/Sunwenzhilab/MGFEA).
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