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Abstract 16 

Metabolism serves as the pivotal interface connecting genotype and phenotype in various 17 

contexts, such as cancer reprogramming and immune metabolic reprogramming. Compared to the 18 

transcriptome, the development of the single-cell metabolome faces significant challenges. While 19 

various methods exist for predicting metabolite levels from transcriptome, their efficacy remains 20 

limited. We developed an efficient and adaptable algorithm known as Multiple Graph-based Flux 21 

Estimation Analysis (MGFEA). MGFEA enables rapid inference from million-level single-cell 22 

transcriptome datasets and achieves accuracy comparable to that of scFEA. Additionally, MGFEA 23 

can detect metabolite biomarkers in different cancer bulk RNA-seq datasets. As an attempt to 24 

integrate multi-omics dataset, MGFEA can further improve the accuracy of these inferences by 25 

leveraging additional metabolome. 26 

27 
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Introduction 28 

In the intricate realm of cellular biology, common cells diligently uphold metabolic 29 

homeostasis within their internal milieu, a crucial state that ensures the proper functioning of 30 

distinct functional proteins. Notably, the diverse nature of cells entails varied modes of sustaining 31 

metabolic equilibrium. For instance, neoplastic cells exhibit metabolic reprogramming, altering 32 

their metabolic profiles to adapt to their environment [1–5]. Similarly immune cells dynamically 33 

adjust to effectively adapt and respond to their microenvironment [6–8]. 34 

Over the last decade, there has been significant advancement in single-cell transcriptomics 35 

technology, leading to the accumulation of a substantial number of precise single-cell databases 36 

[9–12]. However, the advancement of single-cell metabolomics has lagged behind that of 37 

single-cell transcriptomics largely due to inherent technical bottlenecks [13,14]. Though progress 38 

has been slow, contemporary computational tools are now capable of characterizing metabolism 39 

through transcription. Enrichment-based methods have demonstrated significant impact in the 40 

field of functional genomics research, yet they are predominantly utilized for qualitative analysis 41 

[15–18]. Constraint-based models have shown significant promise by their ability to deduce the 42 

rate of metabolic reactions without the prerequisite detection of numerous kinetic parameters 43 

[18,19]. Consequently, novel computational models have emerged for predicting flux state at the 44 

single cell resolution. These include, but are not limited to, scFBA [20], scFEA [21], Compass 45 

[22], and METAFlux [23]. Despite their innovative nature, the efficiency of these models still falls 46 

short of optimal levels. 47 

Building upon the foundations established by scFEA and a series of constraint-based models, 48 

we introduce a novel modeling framework for inferring metabolic flux based on both metabolic 49 
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network guided gene interaction graph and spatial information graph (Fig. 1a). This framework 50 

aims to estimate the divergences in metabolic reactions among cells by utilizing the known 51 

gene-reaction relationships in the Genome Scale Metabolism model (GSMM) alongside 52 

single-cell transcriptomics dataset. The code implementation and relevant dataset are available on 53 

GitHub (https://github.com/Sunwenzhilab/MGFEA). 54 

 55 
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Fig. 1: An algorithmic framework to estimate metabolic states based on spatial and single cell 56 

transcriptomic dataset, and computational performance measurement. 57 

a, MGFEA algorithmic framework. VAE: variational autoencoder VGAE: variational graph 58 

autoencoder scRNAseq: single cell transcriptome dataset spRNAseq: spatial transcriptome dataset 59 

MALDI: Marix-Assisted Laser Desorption Ionization SMA: spatial multimodal analysis dataset. A 60 

paired spRNAseq and MALDI dataset.  61 

b, left: Comparison of peak memory usage between scFEA and MGFEA for different sized 62 

datasets three repeats each point. right: Comparison of time cost between scFEA and MGFEA for 63 

different sized datasets three repeats each point. scFEA reported out of memory error in the 4 large 64 

datasets, so there is no data point of scFEA in the figure. 65 

c, left: Comparison of peak memory usage between scFEA and MGFEA for different formats 66 

of stereo-seq dataset. Right: Comparison of computation time between scFEA and MGFEA for 67 

different formats of stereo-seq dataset. scFEA reported out of memory error in the 4 large datasets, 68 

so there is no data point for scFEA in the figure. 69 

70 
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Result 71 

Overview of MGFEA framework 72 

MGFEA pipeline combined the framework of representation learning and the metabolic flux 73 

constraint framework such as scFEA and adopts a suitable module for sparse matrix. MGFEA is a 74 

flexible framework which achieved the efficient and accurate metabolic inference for various 75 

types of datasets, such as single cell RNA seq dataset, spatial RNA seq dataset. MGFEA extracted 76 

cell embeddings from expression matrix and integrated gene co-expression information from 77 

expression matrix, spatial information from spatial RNAseq and expert knowledge from GSMM 78 

model into the gene embeddings. MGFEA used the dot product to combine the two types of 79 

embedding and used the dot product as weights to enhance the cell expression embedding. At the 80 

last layer, full connected layer transformed the enhanced cell expression embedding into the 81 

metabolic flux under the constraint of the metabolic flux loss. With the result of metabolic flux, 82 

MGFEA could infer all of the metabolites’ relative stock level in the single cell. 83 

Compared with scFEA, MGFEA demonstrated three innovations. First, our framework 84 

exhibits remarkable flexibility, featuring multiple modules that can accept inputs in various data 85 

formats, including single-cell transcriptome datasets, spatial transcriptome datasets, and spatial 86 

multimodal analysis (SMA) datasets [24]. MGFEA employed anndata format and sparse matrix 87 

module to achieve compatibility for large datasets. Second, MGFEA utilized representation 88 

learning to extract and integrate gene interaction information from expression matrix, spatial 89 

information from spatial RNAseq and expert knowledge from GSMM model. By leveraging 90 

Variational Graph Autoencoder (VGAE) or Variational Autoencoder (VAE), our framework 91 

extracts cellular embeddings from the transcriptome dataset. Additionally, another VGAE is 92 
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employed to extract inter-gene metabolic information derived from the knowledge-guided graph 93 

of GSMM, thereby generating gene embeddings. We then computed the dot product of these two 94 

distinct embedding types and applied a softmax transformation along the cell axis, to derive a 95 

weight matrix. This matrix was subsequently applied to enhance the original transcriptome matrix. 96 

Third, based on the premise which non-metabolic genes also affect metabolic flux, MGFEA used 97 

the same stoichiometry matrix from scFEA and other GSMM models to guided fully connected 98 

multiple layer perceptron (MLP) to transform the extracted cell embeddings into metabolic flux in 99 

the cell. 100 

To promote the development of metabolic prediction methods based on metabolic graph, we 101 

also provided three types of metabolic graphs for each species: the first from scFEA, the second 102 

from flux-estimator [42], and the third from the GSMM model Recon3D and IMM1865 [26,27]. 103 

Although flux-estimator [42] only subgraphs for user access, we integrated the majority of these 104 

into a single comprehensive graph to ensure a fair comparison. Graphs serve as an important role 105 

in the constraint based methods. In this article, when referencing the small graph, we will 106 

abbreviate the names of two models. For the large graph, we will append an "-L" suffix to the 107 

different models. Similarly, IMM1865 will be referenced to as "IMM." Subsequently, the 108 

improved matrix serves as input, enabling the neural network to autonomously learn without fixed 109 

gene-reaction relationships. Through unsupervised metabolic flux inference, our framework 110 

derives metabolic flux, facilitating the characterization of metabolite imbalance levels across 111 

different cells analogous to metabolomics analysis. Furthermore, owing to the flexibility of flux 112 

estimation analysis method, we also provided an additional reference module to leverage the 113 

metabolic information present in the SMA dataset thereby further optimizing the algorithm's 114 
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performance. Based on the existing contributions of scFEA [21], flux-estimator [42], Recon3D [26] 115 

and IMM1865 [27], we also offered three types of graph in h5ad format and the reference module 116 

can also be applied on the other constraint based methods. The above two items represent our 117 

modest contribution to the field of constraint-based inferences methods about metabolism. 118 

 119 

MGFEA outperformed in memory usage and time cost 120 

Based on the data preprocess pipeline which is suitable for the sparse matrix, MGFA showed 121 

high computational performance. Compared with scFEA, MGFEA demonstrated significant 122 

advantages in computational performance, particularly in its adaptability to the growing scale of 123 

single-cell datasets and its efficiency regarding memory usage and computational speed (Fig. 1b). 124 

In the same device, scFEA pipeline reported out of memory error in the large datasets, but 125 

MGFEA showed measurable performance. Considering the scalability of stereo-seq datasets [43], 126 

we selected five thresholds, resulting in the generation of five different datasets sizes, each with 127 

varying sizes and library depth of spots. According to stereo-seq datasets, MGFEA demonstrated 128 

better performance than scFEA in different resolution of stereo-seq datasets (Fig. 1c). According 129 

to the benchmark of the daily largest single cell RNAseq datasets, MGFEA exhibited improved 130 

performance in terms of computational resource utilization. 131 

 132 

Depmap dataset benchmark confirms framework efficiency and discovery of potential 133 

metabolites biomarker 134 

Metabolic reprogramming is the classical features of tumor. Tumor metabolic reprogramming 135 

is the important format of tumor rearranging tumor microenvironment and resisting the 136 
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chemotherapeutic agents [44]. We validated the performance of MGFEA in the public datasets 137 

which owns transcriptome and metabolome information of human cancer cell lines. To assess the 138 

effect of dataset size to model accuracy, we utilized a public dataset paired with metabolomics 139 

dataset from human cancer cell lines provided by the Cancer Dependency Map (DepMap) Project 140 

[36,37]. We selected all overlapped metabolites among the different metabolic graphs and the 141 

metabolomics dataset for comparable accuracy assessment across different metabolic graphs. Then 142 

we calculated the relative mean square error between the predictions and metabolomics result. We 143 

presented the results of the prediction from scFEA, scFEA-L, MGFEA, MGFEA-L and 144 

MGFEA-IMM. As the dataset size increased, the performance of two flux estimation analysis 145 

algorithms improved. The usage of flux estimation analysis algorithm on larger datasets showed 146 

higher inference accuracy and the performance of predicted results from MGFEA consistently 147 

outperformed that of scFEA (Fig. 2a). 148 

As a supplemental experiments, we cultured three types of cancer cell lines: Hela, U87 and 149 

SH-SY5Y for our in house paired transcriptome and metabolome dataset. Based on the targeted 150 

metabolomics detection, we confirmed that for the ten detected metabolites, the predictions from 151 

MGFEA-L and scFEA-L matched with the true concentration distribution in fumarate and Uridine 152 

Monophosphate across three cancer cell lines targeted metabolomics detection (Fig. 2b). But both 153 

MGFEA and scFEA show incorrect trends in other two significant differential metabolites: 154 

beta-alanine and deoxyadenosine. Two models reported the same predictions but not matched with 155 

the validation completely on succinate (Fig. S1c), we will discuss the phenomenon in the 156 

discussion section. 157 

MGFEA could be used in the discovery of tumor potential metabolic biomarkers. In an 158 
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application utilizing single-cell transcriptome dataset from gliomas sampled across different 159 

regions [45], we observed a significant difference in lactate levels between cells in the tumor core 160 

and those in the peripheral regions as predicted by our model (Fig. S1a). This finding is similar 161 

with the functional magnetic resonance imaging results [46]. Leveraging the abundant 162 

transcriptome datasets from TCGA [20], we tried to find the potential biomarker with the 163 

prediction from MGFEA. MGFEA classified of patients as two groups based on the median 164 

relative predicted metabolites level from MGFEA. For example, MGFEA identified four 165 

metabolites as the potential biomarkers that could distinguish patients with poor survival outcomes 166 

(Fig 2c). Citrulline is predicted as a biomarker associated with patients’ better prognosis (Fig 2c). 167 

Citrulline has been found as the products of nitric oxide(NO) synthase, which catalyzed the 168 

reaction which produce NO. Similar research supported our predictions that oral administration of 169 

L-arginine or hydroxyurea significantly increased brain tumor barrier permeability when 170 

compared with the nontreated control rat [47]. Thereby patients whose tumor owns higher 171 

citrulline level could be more sensitive to the chemotherapeutic agents. MGFEA predicted that 172 

fumarate is associated with patients’ bad prognosis. Fumarate has been validated that correlated 173 

with the inhibitory function of CD8 positive T cell [48]. Similar measured results about Glutamate 174 

can be found in a published metabolomics dataset [49] (Fig. S1b). Glutamate is found in higher 175 

concentrations in IDH wild-type gliomas but is lower in IDH-mutant gliomas. Our predictions are 176 

consistent with metabolomic findings, as IDH-mutant patients, who generally have better 177 

prognosis, show lower glutamate levels. Research has indicated that glioma release glutamate to 178 

improve their growth by utilizing its neurotoxicity [50,51]. MGFEA also predicted succinate 179 

correlated with the patients’ bad prognosis. Glioblastoma cells improved the succinate level to 180 
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accommodate the hypoxic environment which is similar with our predictions [52]. MGFEA 181 

showed comparable accuracy with scFEA in DepMap datasets and could be used for the 182 

identification of potential metabolites’ biomarkers in TCGA and more human datasets. 183 

 184 

Fig. 2: Comparison of prediction results from scFEA and MGFEA in DepMap dataset and 185 

predicted biomarker in TCGA glioma dataset. 186 

a, The relative mean square error comparison of metabolic predictions from scFEA, MGFEA, 187 
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scFEA-L, MGFEA-L and MGFEA-IMM on DepMap datasets. 188 

b, The prediction result from metabolomics, scFEA, scFEA-L, MGFEA and MGFEA-L at 189 

Fumarate and UMP. 190 

c, The prognosis of TCGA glioma patients is correlated with several predicted metabolites: 191 

citrulline, fumarate, succinate and glutamate. Red lines mean the statistics from patients with 192 

higher predicted metabolites. Blue lines mean the statistics from patients with lower predicted 193 

metabolites. 194 

 195 

Fig. S1: Comparison of MGFEA and scFEA in terms of cancer metabolites imbalance level. 196 

a, Predicted relative lactate levels of lactate in different glioma regions by MGFEA and 197 
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scFEA.  198 

b, Metabolomics result about glutamate in IDH wild type and IDH mutant type glioma 199 

samples from Wang et al. 200 

c, Inhouse datasets metabolomics results and prediction results from scFEA and MGFEA 201 

about succinate content in Hela, U87 and SHSY5Y cell lines. 202 

 203 

 204 

MGFEA integrated non metabolic genes and metabolomics into the whole framework 205 

With the spatial multimodal analysis (SMA) paired spatial RNAseq and Matrix-assisted laser 206 

desorption/ionization (MALDI) datasets, we could validate the performance of MGFEA and 207 

validate the true metabolic information integration module of MGFEA. For the SMA dataset, we 208 

selected one of the slices to compare the prediction results of different models against MALDI 209 

results (Fig. 3a-d). The finding indicated that MGFEA captured spatial similarity of different spots 210 

and showed significant better performance when using the raw matrix as input. In both models of 211 

MGFEA, imputation did not yield significant improvements in performance (Fig. 3a, c). 212 

Consistent with scFEA reports, MAGIC [31] improved its performance (Fig. 3b, d). STAGATE 213 

[32] which integrates spatial information demonstrated no improvement in scFEA and small 214 

improvement in scFEA-L. We compared three methods which select variable genes for MGFEA 215 

metabolic gene interaction graph construction: common highly variable genes (HVG) defined by 216 

normalized dispersion, spatial autocorrelation metrics Moran’s I (SRR) and spatial differential 217 

expressed genes (SDE). By leveraging HVG, MGFEA demonstrated better performance than the 218 

other methods without imputation. Although HVG methods did not demonstrate improvement 219 
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compared to the other two methods, they also did not result in decrement in performance. 220 

Therefore, we used HVG as the default parameter of MGFEA. With respect to the relative mean 221 

square error, MGFEA outperformed scFEA with different imputation preprocess (Fig. 3b, d). 222 

Given the paired nature of the SMA dataset, leveraging the metabolomics results as a 223 

reference for MGFEA predictions can improve performance (Fig. 3e). We observed improvements 224 

in accuracy and reductions in variance when using the MALDI reference, although statistical 225 

significance was not achieved (Fig. 3f). 226 
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 227 

Fig. 3: Comparison of prediction results from scFEA and MGFEA in SMA dataset and the 228 

reference module which integrates metabolomics and gene expression. 229 

a, c Relative mean square error between the prediction by MGFEA and MGFEA-L with 230 

different variable genes selection methods, highly variable genes, spatial correlated genes and 231 

spatial differential genes. 232 
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b, d Relative mean square error between the prediction by scFEA, MGFEA, scFEA-L, 233 

MGFEA-L in SMA dataset with the three different imputation methods, no imputation, MAGIC 234 

and STAGATE. 235 

e, Comparison of dopamine prediction basic MGFEA and referenced MGFEA with raw 236 

matrix and imputated matrix as input. 237 

f, Statistics of reference module contribution in MGFEA relative mean square error. 238 

Unpaired brain transcriptome and metabolome datasets confirmed efficiency of MGFEA 239 

Leveraging the unpaired metabolome and spatial transcriptome datasets, MGFEA showed 240 

efficient performance on differential metabolites identification. Based on the metabolomics dataset 241 

of different brain regions from Shao et al [53] and visium sagittal spatial RNAseq dataset, we 242 

present the results of the metabolome, the prediction from scFEA, MGFEA, MGFEA-IMM, 243 

scFEA-L and MGFEA-L (Fig. 4a). Compared to scFEA, MGFEA showed lower relative mean 244 

square error across all metabolic graphs. We provided several examples of prediction results (Fig. 245 

4b). MGFEA exhibited comparable prediction accuracy to scFEA in two types of metabolic graphs 246 

(Fig. 4c, d). Along with the significant differential metabolites identified through metabolomics, 247 

MGFEA demonstrated greater accuracy in classifying relative differences across various brain 248 

region (Fig. 4c). When considering the top-ranked predicted differential metabolites from each 249 

model, MGFEA exhibited outperformed scFEA (Fig. 4d). 250 
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 251 

 252 

Fig. 4: Comparison of prediction results from scFEA and MGFEA in unpaired visium sagittal 253 

dataset and Shao metabolomics dataset. 254 

a, Results of relative mean square error between Shao datasets and the prediction of scFEA, 255 

MGFEA, scFEA-L, MGFEA-L and MGFEA-IMM for the relative metabolite level of mouse 256 

brain.  257 

b, Detection of log fold change of residual metabolites from different brain region pairs using 258 

metabolome, scFEA and MGFEA. COR: cortex, HYT: hypothalamus, BST: brain stem, CBL: 259 

cerebellum, OB: olfactory bulb.  260 
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c, The ROC-AUC area of models in relative difference classification within significant 261 

differential metabolites from metabolome.  262 

d, The ROC-AUC area of models in relative difference classification within top differential 263 

predicted metabolites from models. 264 

 265 

266 
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Discussion 267 

MGFEA is designed for fast inference on large datasets and is particularly adept at inferring 268 

metabolic states in tumor samples, leveraging the rich transcriptomic public data resource. Our 269 

pipeline improved computational performance significantly and could be applied in the analysis of 270 

large datasets even million level datasets [54,55] and the future application on the insilico 271 

perturbation gene functional analysis which needs thousands repeats. 272 

Tumor heterogeneity is associated with the bad prognosis of patients [56]. In contrast to the 273 

metabolome, transcriptome enabled researchers to acquire single cell transcript information at an 274 

affordable price [57]. Thereby we used MGFEA in tumor samples for the discovery of biomarkers. 275 

To validate the efficiency of models, we prepared the in-housed dataset of three cancer cell lines. 276 

In the in-housed dataset, both MGFEA and scFEA predicted the correct distribution of fumarate 277 

and uridine monophosphate. Interestingly, scFEA and MGFEA reported the same prediction about 278 

succinate based on the transcriptome, but different from the targeted metabolomics detections. 279 

There are several possible reasons about the phenomena, for example, the correlation between 280 

metabolites and transcript is weak [24]. Enzyme catalyzed metabolites transformation, enzyme is 281 

translated from transcript, but the correlation between protein and transcript is even weak [58]. 282 

Although transcriptome and proteome can’t work as the proxy of each other [59], the question of 283 

which more accurately represents the actual functions performed by cells, the transcriptome or the 284 

proteome, should be rigorously assessed through experimental validation from multiple aspects. 285 

Metabolome quantified the metabolites’ relative level in the time points of samples collection. 286 

Although the algorithms computed the relative level of metabolites based on the key enzyme 287 

expression, the difference between the inferred and actual measurements becomes more noticeable 288 
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in the non-steady state scenario of culture media. Two models’ prediction approved the succinate 289 

of SH-SY5Y is higher than other two cell lines, the inconsistency of prediction and measurement 290 

could also bring new assumption: succinate is very important for the proliferation of SH-SY5Y or 291 

the related TCA cycle genes are reprogramed in SH-SY5Y. The deeper understanding may be 292 

proposed between the different result from theoretical model and experimental observation. The 293 

essence of the phenomenon is worthy to explore further for our metabolites-transcript consistency 294 

understanding. 295 

In an attempt to validate the potential of MGFEA on the further exploitation of public 296 

transcriptome datasets, we used MGFEA to discover novel validated metabolites from TCGA 297 

datasets and demonstrated the potential of our flexible and efficient framework. Of the four 298 

metabolites shown in figure 2c, most of them have been found to engage the progression of tumor 299 

[47,48,50,52]. 300 

For instance, we performed metabolite inference validation using the SMA dataset, which 301 

seamlessly integrates histologic data from various modalities within the MGFEA framework. 302 

Although our reference module demonstrated subtle improvement, but our attempt demonstrated 303 

constraint-based methods or flux estimation models such as scFEA [21], compass [22], 304 

METAFlux [23] and MGFEA which is compatible with high throughput single cell transcriptome 305 

datasets are also suitable for the integration of multi-omics datasets consists of MALDI, spatial 306 

RNAseq and spatial proteomics. Although the correlation between different modalities is weak, 307 

the integration of multiple modalities is also promising to produce novel knowledge and even 308 

novel research field in the future. 309 
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With the development of spatial metabolome technique [60–62], or the metabolites aptamer 310 

technique [63], it may be easier for the acquirement of the metabolic and transcript information of 311 

our interested samples, with the novel inference algorithm based on the genotype information, the 312 

understanding of interaction of genotype and phenotype could further develop and help with the 313 

human health. 314 

In summary, MGFEA demonstrates the ability to make fast and accurate inferences about the 315 

metabolic state of a sample based on its transcriptome. It provides an algorithmic framework that 316 

can easily integrate both transcriptional and metabolic modalities from the same samples, making 317 

it a valuable tool for multimodal data integration. The further development of MGFEA can 318 

provide inspiration for the emergence of a mature integration framework across multi-omics fields, 319 

such as transcriptomics, proteomics, and metabolomics. 320 

321 
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Methods 322 

MGFEA framework 323 

MGFEA framework (Fig. 1a) consists of data preprocess, metabolic graph integration, cell and 324 

gene embedding extraction, embedding augmentation layer and flux transformation layer. 325 

 : expression matrix, expression vector of kth cell  326 

 : matrix of spatial metabolomics matrix from spatial multimodal analysis (SMA) datasets [24]  327 

 : the extracted Eigen vector matrix in the gene and cell dimension of the expression matrix 328 

using Principal Component Analysis 329 

 : cell embedding, gene embedding 330 

 : metabolic network guided gene interaction graph, spatial information graph，331 

metabolic network guided gene interaction graph adjacent matrix, spatial information graph 332 

adjacent matrix 333 

 : cell variational graph autoencoder [25] VGAE encoder parameter, decoder parameter 334 

 : gene VGAE encoder parameter, decoder parameter 335 

 : Flux matrix of all cells in dataset 336 

 : flux vector of single cell  337 

 : stoichiometry matrix of GSMM model 338 

 339 

GSMM model preprocess 340 

We employed two published GSMM model, Recon3D [26] and IMM1865 [27], for MGFEA 341 

prediction of relative metabolites level. The original models have large numbers of metabolites 342 

consists of the same metabolites located in different organelles. In our modified models, we 343 
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removed duplicated metabolites and used function find_blocked_reaction from python package 344 

cobrapy [28] to remove most blocked reactions. 345 

 346 

MGFEA metabolic interaction graph preprocess 347 

According the metabolic stoichiometry matrix and gene co-expression relationship from 348 

expression matrix, we transformed all the information into a gene interaction graph. The graph 349 

incorporated metabolic relationships from the GSMM model, along with the intrinsic gene 350 

co-expression information in the expression matrix, as the edges between genes. For metabolic 351 

edges, we construct edges between genes connected by reaction or metabolite. For gene 352 

co-expression edges, we calculated the expression correlation of metabolic genes with highly 353 

variable genes (HVG). Edge connections are established between the top k highly variable genes 354 

and the metabolic genes with the highest correlation in their expression. To ensure the information 355 

density of HVG is comparable to that of metabolic genes, we compute the normalized dispersion 356 

of all metabolic genes. Then, the sum of normalized dispersion is used as the threshold value to 357 

select the top k HVG genes whose corresponding statistics equals to that of the metabolic genes. 358 

According to the above method, we construct a gene adjacency matrix . 359 

 360 

MGFEA embedding 361 

MGFEA takes a preprocessed expression matrix  and a preprocessed GSMM model as input. 362 

Inspired by the GLUE [29] framework, we employed two separate VGAEs to learn cell 363 

embeddings in the spatial transcriptomic dataset and gene embeddings in metabolic networks 364 

separately. For the cell embedding , the input consists of the expression matrix   and spatial 365 

coordinate information of spots . The obtained latent layer embedding  serves as the 366 

representation of different cells. 367 
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For single cell RNAseq dataset input, the training of VGAE satisfies the following loss function: 368 

 369 

For spatial RNAseq dataset input, the training of VGAE satisfies the following loss function: 370 

 371 

For gene embedding , Using the metabolic gene interaction graph as input, the VGAE learns the 372 

intrinsic relationships of genes and acquires gene embeddings to represent different genes. 373 

The loss function of VGAE which exported gene embeddings satisfies: 374 

 375 

The loss of two VGAE is the latent loss of MGFEA. 376 

 377 

The two VGAEs learned the representations of the transcriptional cell states  and gene 378 

representations  defined jointly by the metabolic network and co-expression information. The 379 

former represents a conventional cellular state and incorporates both the expression matrix and 380 

spatial coordinate information of spots of spatial transcriptomics. The latter means the gene 381 

representations defined by gene interaction graph. The gene representations mean the genes’ 382 

location in metabolic space. The dot product of two representations shares the same matrix form 383 

as the original expression matrix. The form is used for embedding enhancement. 384 

Taking into account the inherent projection nature of the dot product, we interpret the dot product 385 

of the two as a projection of the cellular state representation vector onto the metabolic space. For 386 

scRNAseq, by utilizing the difference between this projection and the original transcriptional 387 

expression matrix as a loss function, we enable VAE to rationalize the cell representations it learns. 388 
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For spRNAseq, VGAE learns to reconstruct the spatial coordinate graph and gene interaction 389 

graph to rationalize the obtained cell embeddings and gene embeddings. 390 

 391 

MGFEA embedding augmentation 392 

With the above framework, we are able to generate matrix containing both metabolic gene 393 

relationships and cell transcriptional states. Then we conducted softmax transformation between 394 

different genes within a cell based on the generated matrix. This transformation yields a matrix 395 

which contains genes’ weights in cells. Subsequently, we performed element-wise multiplication 396 

(Hadamard product) between weights matrix and the original expression matrix . Through this 397 

process, we enhance the cell specific metabolic features in the original matrix  to preserve the 398 

transcriptional states and the augmented matrix  improved the process of MGFEA 399 

flux-estimation. 400 

 401 

 402 

 403 

MGFEA-Flux estimation 404 

The balance of metabolites in reaction network is influenced by both influx and efflux. 405 

Considering that the efficiency of enzymes in metabolic networks is regulated by the regulatory 406 

genes, the transcriptional state of the cell plays a crucial role in influencing metabolic balance [30]. 407 

Building upon this premise, we utilized the transcriptional expression matrices of metabolic genes, 408 

along with a restricted set of highly variable genes, as input. We finally employed a Multilayer 409 

perceptron to estimate the fluxes of all metabolic modules (reactions). 410 
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 411 

 412 

 413 

Reference based framework 414 

We use transcriptome and metabolome paired dataset [24] to offer a reference for 415 

spatialGraphFEA learning. We modify flux loss and add a reference loss for our model. We add 416 

reciprocal of flux to prohibit maintained decrease of flux loss. We use metabolism quantitative 417 

information as a reference and use a mean square error formula to forced predicted metabolism 418 

quantification into reference result. 419 

 420 

 421 

 422 

Parameters 423 

The weights of flux loss should be confirmed based on the epoch size. We usually used 0.5 as a 424 

default weight of flux loss. As a semi-supervised framework, MGFEA’s best parameter should be 425 

confirmed manually. When the epoch size is too big, model appears overfitting and the results 426 

even appeared as an opposite direction to the truth, we used the weight of flux loss to make flux 427 

loss converge as the training ends. We can also increase the relative weights of flux direction. 428 

 429 

Dataset preprocess 430 
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Expression matrix  is loaded in h5ad format and is normalized and log transformed. We used 431 

MAGIC [31] and STAGATE [32] for imputation. Reactions without expression in the expression 432 

matrix are removed, and the modified reaction network was used for MGFEA reaction prediction. 433 

We used highly variable genes detected by scanpy [33], spatial differential genes from spatialDE 434 

[34] and spatial correlated genes by Moran’s I from squidpy [35] for the gene interaction graph 435 

construction. 436 

 437 

Relative mean square error 438 

In all instances where the relative mean square error was utilized, we first filtered out all 439 

nonoverlapping metabolites between the predicted results and the truth, we then scaled the 440 

metabolomics dataset and the metabolites’ stock level output from the model, calculating the 441 

relative mean squared error between the predicted results and the truth. For cases involving Shao 442 

metabolomics dataset, datasets from Dependency Map (DepMap) Project [36,37] and our inhouse 443 

dataset, since the vectors are not paired, so we first computed the mean metabolites level in 444 

different regions before calculating the relative mean square error for different metabolites. 445 

 446 

Receiver operating characteristic curve (ROC)-area under curve (AUC) 447 

We transformed the correct direction between the different brain region pairs into the binary label. 448 

Thereby we can employed ROC-AUC metrics to assess the capability on classifying correct 449 

relative level between different brain regions of the different models. We used the true log 450 

transformed fold change between pairs of brain region as true label and the models’ predicted 451 

mean of log transformed fold change as predicted value for the ROC-AUC calculation. 452 
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 453 

Memory usage and time consumption 454 

We utilized python package memory-profiler(https://github.com/pythonprofilers/memory_profiler) 455 

to measure memory usage and total time consumption of different models. 456 

 457 

Experimental validation of Cancer Cell lines 458 

We ordered cell lines from the vector center at Chinese institute brain research, obtaining 459 

U-87-MG (EK-Bioscience Cat.No: CC-Y1528) and HeLa (EK-Bioscience Cat.No: CC-Y1211). 460 

We acquired SH-SY5Y cell line (YC-D014) from Ubigene. We cultured cell in 90% DMEM and 461 

10% FBS. We passaged cells every two days. The cell lines were cultured with 10cm plates. We 462 

amplified cell lines to 3-4 plates. For each cell line, once the cells reached confluence, we first 463 

removed the culture medium. We digested the cells with 0.25% trypsin for 3-5 minutes and 464 

neutralized the trypsin with 90% DMEM and 10% FBS. We pipetted to detach the cells and 465 

collected all cell mix in one 15ml centrifuge tube. After centrifuging to collect the cells, we 466 

resuspended them in PBS. Following repeated washes, we counted the cells with Countstar(Alit 467 

Biotech) and diluted them to 10^6 cells/ml. Then we separated 1ml cell suspension into a 468 

centrifuge tube and centrifuged the cells. The supernatant was removed and the pellets are stored 469 

at -80 degrees. 470 

 471 

RNA sequencing 472 

The FastPure Cell/Tissue Total RNA Isolation Kit V2 (Vazyme RC112) was used to isolate total 473 

RNA from cell lines pellets. VAHTS Universal V6 RNA-seq Library Prep Kit (Vazyme NR604) 474 
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was employed to generate sequencing libraries from the isolated total RNA. MGI2000 was used 475 

for sequencing the libraries. Samples are multiplexed in each lane, which yielded targeted number 476 

of paired-end, 100bp reads for each sample. 477 

 478 

Bulk RNA-seq data preprocess 479 

We remove low quality reads with Trimmomatic [38], mapped reads with STAR [39] and generate 480 

counts matrix with featurecounts [40]. We used combat to remove batch effect between our 481 

in-house dataset and DepMap dataset [36,37]. The preprocessed dataset was used for subsequent 482 

flux estimation analysis. 483 

 484 

Metabolomics detection 485 

We used targeted metabolomic analysis, Metabolites from the cells were extracted with 80% 486 

Acetonitrile by vigorous vortex and centrifugation at 22 000g for 20 min at 4 °C. The supernatants 487 

were used for analysis. The mix is vortexed and centrifuged. We used suspension for analysis. 488 

Chromatographic separation was performed on a I Class ultra-high-performance liquid 489 

chromatography system (Waters, Milford, Massachusetts, USA), with an InfinityLab Poroshell 490 

120 HILIC-Z column (2.1 mm ×100 mm, 2.7 μm, agilent) and the following gradient: 0min, 491 

100%B; 4min 84%B; 11min 40%B; 12min 40%B; 13min 100%B; 17min 10%B. Mobile phase A 492 

was 10 mM ammonium acetate in water. Mobile phase B was 10 mM ammonium acetate in 90% 493 

acetonitrile. The flow rate was 0.4 mL/min. The column temperature was kept at 35 °C and the 494 

autosampler was kept at 8 °C. The injection volume was 5 μL. Mass data acquisition of the 495 

metabolites was performed using a Triple QuadTM 7500 mass spectrometer (SCIEX, Framingham, 496 
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MA) equipped with an electrospray ion source in multiple reaction monitoring (MRM) mode. The 497 

parameters of the electrospray ion source were: 498 

neg: A：10mM ammonium acetate，pH=8.5  B：10% 10mM ammonium acetate，pH=8.5，90% 499 

Acetonitrile 500 

pos: A：10mM ammonium formate，pH=3  B：10% 10mM ammonium formate，pH=3， 90% 501 

Acetonitrile 502 

The MRM transitions of all of the derivatized metabolites were shown in followed Table: 503 

 metabolites Q1 Q3 

Group 1 BETA-ALANINE 90.1 44.2 

Group 2 CITRULLINE 176 159 

Group 3 DEOXYADENOSINE 252 136 

Group 4 HYPOXANTHINE 137 110 

Group 5 NICOTINAMIDE 123.1 80 

Group 6 PROLINE 116.1 70.1 

Group 7 PUTRESCINE 89 72 

Group 8 URIDINE MONOPHOSPHATE 325 97 

Group 9 URACIL 113 70 

Group 10 FUMARATE 115 71 

Group 11 PYRUVATE 87 43 

Group 12 SUCCINATE 117 73 

 504 

Metabolomic data analysis 505 

SCIEX was used to process and integrate the components’ peaks and provide integrated extracted 506 

ion chromatograms for each metabolite component in all cell line samples and internal standard 507 

samples. The generated results are normalized to the internal standard samples and the normalized 508 

results are used for absolute quantification with the aid of the calibration curve. 509 

 510 

TCGA survival analysis 511 

We used easyTCGA (https://github.com/ayueme/easyTCGA) to download TCGA clinical dataset 512 
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and the expression matrix. We scaled the expression transcript per million (TPM) matrix using 513 

log2 transformation and utilized combat [41] to remove batch effects between glioma and GBM. 514 

After prediction of MGFEA, we divided all samples into two groups based on predicted 515 

metabolite levels and conducted Kastle–Meyer test to identify which predicted metabolite serves 516 

as a biomarker. 517 

 518 

 519 

520 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 2, 2025. ; https://doi.org/10.1101/2024.06.12.598759doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.12.598759
http://creativecommons.org/licenses/by-nc-nd/4.0/


Data availability 521 

All datasets used in this study have been published and can be obtained in h5ad format from 522 

https://cellxgene.cziscience.com/datasets. The raw sequencing data of cancer cell line datasets 523 

have been deposited at CNGBdb under the accession number CNP0007635. 524 

We used Recon3D and IMM1865 as human and mouse GSMM model. Our raw file and 525 

preprocess code can be obtained from our github site (https://github.com/Sunwenzhilab/MGFEA). 526 

Detailed message and URLs of datasets is recorded in Table 1 527 

Table 1 528 

datasets Source website 

4M brain dataset 
Cao et al. [54] 

https://cellxgene.cziscience.com/collections/c114c2

0f-1ef4-49a5-9c2e-d965787fb90c 

1M GBM dataset  Ruiz Moreno et al. 

[55] 

https://cellxgene.cziscience.com/collections/999f2a1

5-3d7e-440b-96ae-2c806799c08c 

200k brain dataset Siletti et al. [11] https://cellxgene.cziscience.com/collections/283d65

eb-dd53-496d-adb7-7570c7caa443 

50k brain dataset 
Smith et al. [64] 

https://cellxgene.cziscience.com/collections/e02201

d7-f49f-401f-baf0-1eb1406546c0 

10k brain dataset Siletti et al. [11] https://cellxgene.cziscience.com/collections/283d65

eb-dd53-496d-adb7-7570c7caa443 

Yu dataset 
Yu et al. [45] 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc

=GSE117891 

Stereo-seq dataset Stereo-seq http://116.6.21.110:8090/share/dd965cba-7c1f-40b2

-a275-0150890e005f 

SMA dataset Vicari et al. [24] https://data.mendeley.com/datasets/w7nw4km7xd/1 

Visium sagittal brain 

section 

10X Genomics https://www.10xgenomics.com/datasets/preservation

-method-comparison-on-visium-cytassist-fixed-froz

en-mouse-brain-sagittal-11-mm-capture-area-2-stan

dard 

Shao dataset 
Shao et al. [53] 

https://www.nature.com/articles/s41392-023-01552-

y 

DepMap 

transcriptome 
Ghandi et al. [36] 

https://depmap.org/portal/download/custom/ 

DepMap 

metabolome 
Li et al. [37] 

https://depmap.org/portal/download/custom/ 

529 
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Code availability 530 

The code and related dataset can be accessible from the following GitHub respiratory 531 

(https://github.com/Sunwenzhilab/MGFEA). 532 
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