

1 Inferring metabolite states from spatial transcriptomes using multiple graph neural

2 network

3 Jiaxu Luo¹, Daosheng Ai^{2,3*}, Wenzhi Sun^{1,3*}

⁴ ¹ School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China

⁵ ²Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China

6 ³Chinese Institute for Brain Research, Beijing 102206, China

7 * To whom the correspondence should be addressed:

8 Wenzhi Sun, Ph.D (Lead contact)

9 Email: sunwenzhi@cibr.ac.cn

10 Daosheng Ai, Ph.D

11 Email: aidaosheng@cibr.ac.cn

12 Keywords: spatial transcriptome, single cell transcriptome, graph neural network,

13 metabolic flux estimation

14

15

16 **Abstract**

17 Metabolism serves as the pivotal interface connecting genotype and phenotype in various
18 contexts, such as cancer reprogramming and immune metabolic reprogramming. Compared to the
19 transcriptome, the development of the single-cell metabolome faces significant challenges. While
20 various methods exist for predicting metabolite levels from transcriptome, their efficacy remains
21 limited. We developed an efficient and adaptable algorithm known as Multiple Graph-based Flux
22 Estimation Analysis (MGFEA). MGFEA enables rapid inference from million-level single-cell
23 transcriptome datasets and achieves accuracy comparable to that of scFEA. Additionally, MGFEA
24 can detect metabolite biomarkers in different cancer bulk RNA-seq datasets. As an attempt to
25 integrate multi-omics dataset, MGFEA can further improve the accuracy of these inferences by
26 leveraging additional metabolome.

27

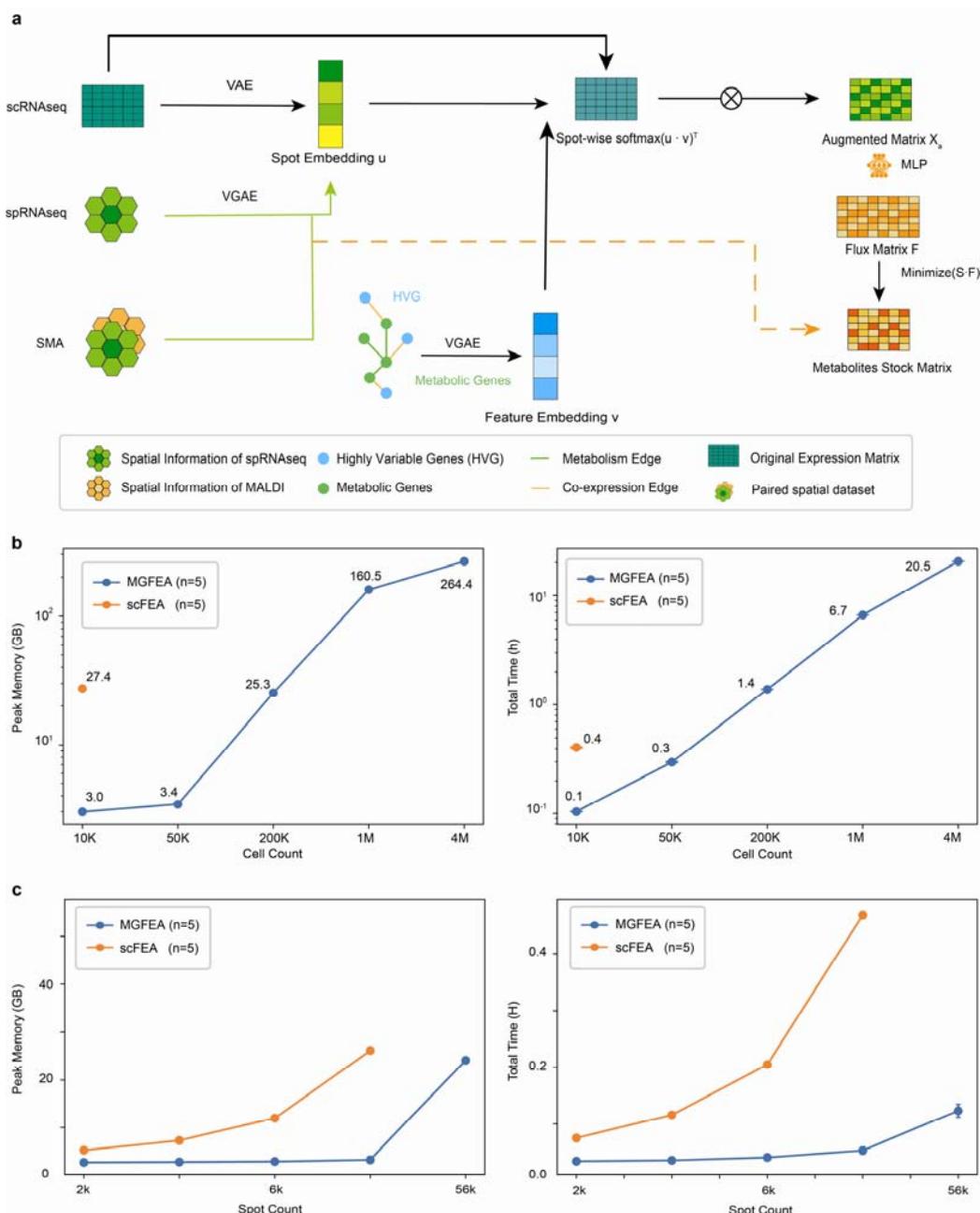
28 **Introduction**

29 In the intricate realm of cellular biology, common cells diligently uphold metabolic
30 homeostasis within their internal milieu, a crucial state that ensures the proper functioning of
31 distinct functional proteins. Notably, the diverse nature of cells entails varied modes of sustaining
32 metabolic equilibrium. For instance, neoplastic cells exhibit metabolic reprogramming, altering
33 their metabolic profiles to adapt to their environment [1–5]. Similarly immune cells dynamically
34 adjust to effectively adapt and respond to their microenvironment [6–8].

35 Over the last decade, there has been significant advancement in single-cell transcriptomics
36 technology, leading to the accumulation of a substantial number of precise single-cell databases
37 [9–12]. However, the advancement of single-cell metabolomics has lagged behind that of
38 single-cell transcriptomics largely due to inherent technical bottlenecks [13,14]. Though progress
39 has been slow, contemporary computational tools are now capable of characterizing metabolism
40 through transcription. Enrichment-based methods have demonstrated significant impact in the
41 field of functional genomics research, yet they are predominantly utilized for qualitative analysis
42 [15–18]. Constraint-based models have shown significant promise by their ability to deduce the
43 rate of metabolic reactions without the prerequisite detection of numerous kinetic parameters
44 [18,19]. Consequently, novel computational models have emerged for predicting flux state at the
45 single cell resolution. These include, but are not limited to, scFBA [20], scFEA [21], Compass
46 [22], and METAFlux [23]. Despite their innovative nature, the efficiency of these models still falls
47 short of optimal levels.

48 Building upon the foundations established by scFEA and a series of constraint-based models,
49 we introduce a novel modeling framework for inferring metabolic flux based on both metabolic

50 network guided gene interaction graph and spatial information graph (Fig. 1a). This framework
 51 aims to estimate the divergences in metabolic reactions among cells by utilizing the known
 52 gene-reaction relationships in the Genome Scale Metabolism model (GSMM) alongside
 53 single-cell transcriptomics dataset. The code implementation and relevant dataset are available on
 54 GitHub (<https://github.com/Sunwenzhilab/MGFEA>).



56 Fig. 1: An algorithmic framework to estimate metabolic states based on spatial and single cell
57 transcriptomic dataset, and computational performance measurement.

58 a, MGFEA algorithmic framework. VAE: variational autoencoder VGAE: variational graph
59 autoencoder scRNAseq: single cell transcriptome dataset spRNAseq: spatial transcriptome dataset
60 MALDI: Marix-Assisted Laser Desorption Ionization SMA: spatial multimodal analysis dataset. A
61 paired spRNAseq and MALDI dataset.

62 b, left: Comparison of peak memory usage between scFEA and MGFEA for different sized
63 datasets three repeats each point. right: Comparison of time cost between scFEA and MGFEA for
64 different sized datasets three repeats each point. scFEA reported out of memory error in the 4 large
65 datasets, so there is no data point of scFEA in the figure.

66 c, left: Comparison of peak memory usage between scFEA and MGFEA for different formats
67 of stereo-seq dataset. Right: Comparison of computation time between scFEA and MGFEA for
68 different formats of stereo-seq dataset. scFEA reported out of memory error in the 4 large datasets,
69 so there is no data point for scFEA in the figure.

70

71 **Result**

72 **Overview of MGFEA framework**

73 MGFEA pipeline combined the framework of representation learning and the metabolic flux
74 constraint framework such as scFEA and adopts a suitable module for sparse matrix. MGFEA is a
75 flexible framework which achieved the efficient and accurate metabolic inference for various
76 types of datasets, such as single cell RNA seq dataset, spatial RNA seq dataset. MGFEA extracted
77 cell embeddings from expression matrix and integrated gene co-expression information from
78 expression matrix, spatial information from spatial RNAseq and expert knowledge from GSMM
79 model into the gene embeddings. MGFEA used the dot product to combine the two types of
80 embedding and used the dot product as weights to enhance the cell expression embedding. At the
81 last layer, full connected layer transformed the enhanced cell expression embedding into the
82 metabolic flux under the constraint of the metabolic flux loss. With the result of metabolic flux,
83 MGFEA could infer all of the metabolites' relative stock level in the single cell.

84 Compared with scFEA, MGFEA demonstrated three innovations. First, our framework
85 exhibits remarkable flexibility, featuring multiple modules that can accept inputs in various data
86 formats, including single-cell transcriptome datasets, spatial transcriptome datasets, and spatial
87 multimodal analysis (SMA) datasets [24]. MGFEA employed anndata format and sparse matrix
88 module to achieve compatibility for large datasets. Second, MGFEA utilized representation
89 learning to extract and integrate gene interaction information from expression matrix, spatial
90 information from spatial RNAseq and expert knowledge from GSMM model. By leveraging
91 Variational Graph Autoencoder (VGAE) or Variational Autoencoder (VAE), our framework
92 extracts cellular embeddings from the transcriptome dataset. Additionally, another VGAE is

93 employed to extract inter-gene metabolic information derived from the knowledge-guided graph
94 of GSMM, thereby generating gene embeddings. We then computed the dot product of these two
95 distinct embedding types and applied a softmax transformation along the cell axis, to derive a
96 weight matrix. This matrix was subsequently applied to enhance the original transcriptome matrix.
97 Third, based on the premise which non-metabolic genes also affect metabolic flux, MGFEA used
98 the same stoichiometry matrix from scFEA and other GSMM models to guided fully connected
99 multiple layer perceptron (MLP) to transform the extracted cell embeddings into metabolic flux in
100 the cell.

101 To promote the development of metabolic prediction methods based on metabolic graph, we
102 also provided three types of metabolic graphs for each species: the first from scFEA, the second
103 from flux-estimator [42], and the third from the GSMM model Recon3D and IMM1865 [26,27].
104 Although flux-estimator [42] only subgraphs for user access, we integrated the majority of these
105 into a single comprehensive graph to ensure a fair comparison. Graphs serve as an important role
106 in the constraint based methods. In this article, when referencing the small graph, we will
107 abbreviate the names of two models. For the large graph, we will append an "-L" suffix to the
108 different models. Similarly, IMM1865 will be referenced to as "IMM." Subsequently, the
109 improved matrix serves as input, enabling the neural network to autonomously learn without fixed
110 gene-reaction relationships. Through unsupervised metabolic flux inference, our framework
111 derives metabolic flux, facilitating the characterization of metabolite imbalance levels across
112 different cells analogous to metabolomics analysis. Furthermore, owing to the flexibility of flux
113 estimation analysis method, we also provided an additional reference module to leverage the
114 metabolic information present in the SMA dataset thereby further optimizing the algorithm's

115 performance. Based on the existing contributions of scFEA [21], flux-estimator [42], Recon3D [26]
116 and IMM1865 [27], we also offered three types of graph in h5ad format and the reference module
117 can also be applied on the other constraint based methods. The above two items represent our
118 modest contribution to the field of constraint-based inferences methods about metabolism.

119

120 **MGFEA outperformed in memory usage and time cost**

121 Based on the data preprocess pipeline which is suitable for the sparse matrix, MGFA showed
122 high computational performance. Compared with scFEA, MGFEA demonstrated significant
123 advantages in computational performance, particularly in its adaptability to the growing scale of
124 single-cell datasets and its efficiency regarding memory usage and computational speed (Fig. 1b).

125 In the same device, scFEA pipeline reported out of memory error in the large datasets, but
126 MGFEA showed measurable performance. Considering the scalability of stereo-seq datasets [43],
127 we selected five thresholds, resulting in the generation of five different datasets sizes, each with
128 varying sizes and library depth of spots. According to stereo-seq datasets, MGFEA demonstrated
129 better performance than scFEA in different resolution of stereo-seq datasets (Fig. 1c). According
130 to the benchmark of the daily largest single cell RNAseq datasets, MGFEA exhibited improved
131 performance in terms of computational resource utilization.

132

133 **Depmap dataset benchmark confirms framework efficiency and discovery of potential
134 metabolites biomarker**

135 Metabolic reprogramming is the classical features of tumor. Tumor metabolic reprogramming
136 is the important format of tumor rearranging tumor microenvironment and resisting the

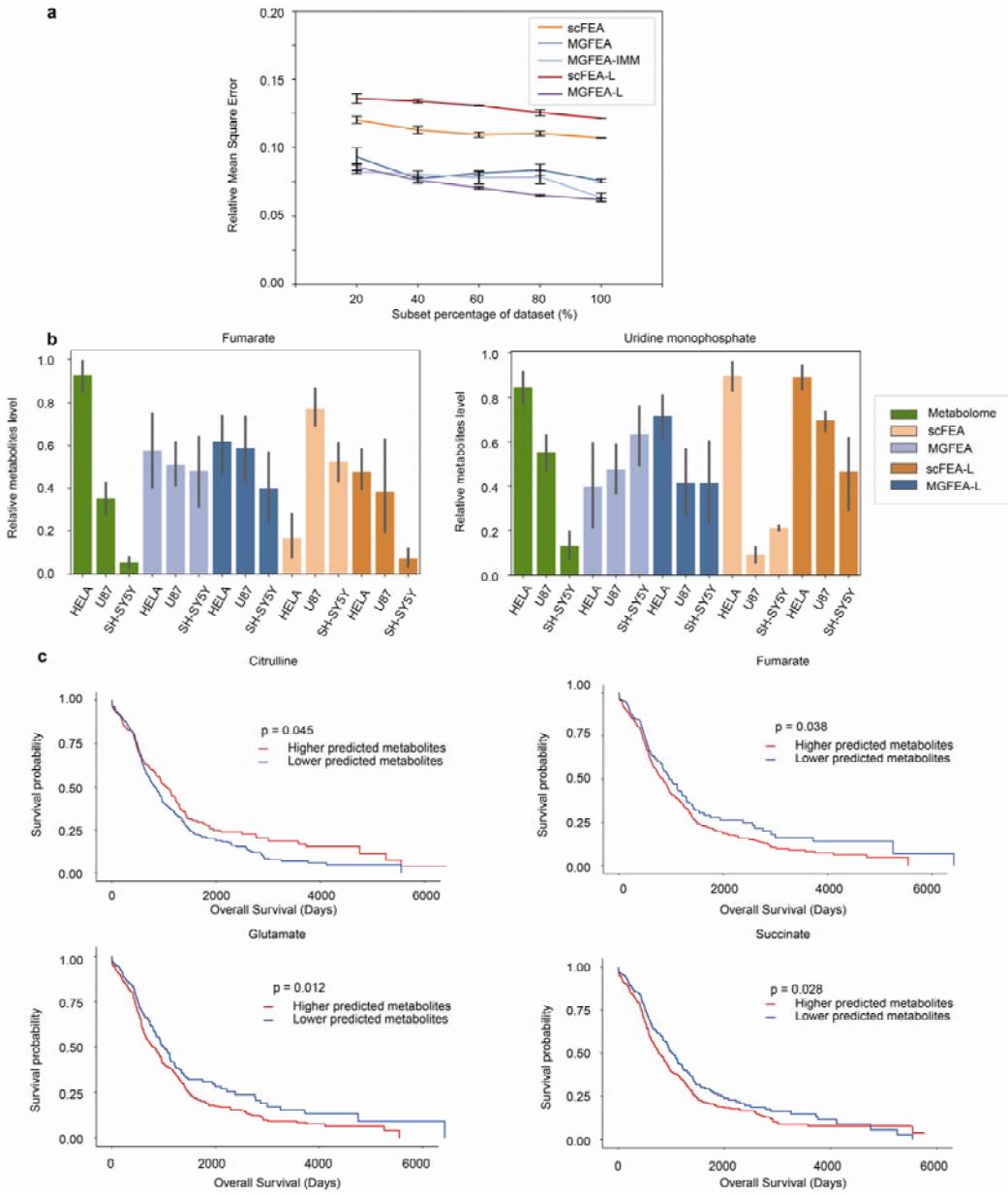
137 chemotherapeutic agents [44]. We validated the performance of MGFEA in the public datasets
138 which owns transcriptome and metabolome information of human cancer cell lines. To assess the
139 effect of dataset size to model accuracy, we utilized a public dataset paired with metabolomics
140 dataset from human cancer cell lines provided by the Cancer Dependency Map (DepMap) Project
141 [36,37]. We selected all overlapped metabolites among the different metabolic graphs and the
142 metabolomics dataset for comparable accuracy assessment across different metabolic graphs. Then
143 we calculated the relative mean square error between the predictions and metabolomics result. We
144 presented the results of the prediction from scFEA, scFEA-L, MGFEA, MGFEA-L and
145 MGFEA-IMM. As the dataset size increased, the performance of two flux estimation analysis
146 algorithms improved. The usage of flux estimation analysis algorithm on larger datasets showed
147 higher inference accuracy and the performance of predicted results from MGFEA consistently
148 outperformed that of scFEA (Fig. 2a).

149 As a supplemental experiments, we cultured three types of cancer cell lines: Hela, U87 and
150 SH-SY5Y for our in house paired transcriptome and metabolome dataset. Based on the targeted
151 metabolomics detection, we confirmed that for the ten detected metabolites, the predictions from
152 MGFEA-L and scFEA-L matched with the true concentration distribution in fumarate and Uridine
153 Monophosphate across three cancer cell lines targeted metabolomics detection (Fig. 2b). But both
154 MGFEA and scFEA show incorrect trends in other two significant differential metabolites:
155 beta-alanine and deoxyadenosine. Two models reported the same predictions but not matched with
156 the validation completely on succinate (Fig. S1c), we will discuss the phenomenon in the
157 discussion section.

158 MGFEA could be used in the discovery of tumor potential metabolic biomarkers. In an

159 application utilizing single-cell transcriptome dataset from gliomas sampled across different
160 regions [45], we observed a significant difference in lactate levels between cells in the tumor core
161 and those in the peripheral regions as predicted by our model (Fig. S1a). This finding is similar
162 with the functional magnetic resonance imaging results [46]. Leveraging the abundant
163 transcriptome datasets from TCGA [20], we tried to find the potential biomarker with the
164 prediction from MGFEA. MGFEA classified of patients as two groups based on the median
165 relative predicted metabolites level from MGFEA. For example, MGFEA identified four
166 metabolites as the potential biomarkers that could distinguish patients with poor survival outcomes
167 (Fig 2c). Citrulline is predicted as a biomarker associated with patients' better prognosis (Fig 2c).
168 Citrulline has been found as the products of nitric oxide(NO) synthase, which catalyzed the
169 reaction which produce NO. Similar research supported our predictions that oral administration of
170 L-arginine or hydroxyurea significantly increased brain tumor barrier permeability when
171 compared with the nontreated control rat [47]. Thereby patients whose tumor owns higher
172 citrulline level could be more sensitive to the chemotherapeutic agents. MGFEA predicted that
173 fumarate is associated with patients' bad prognosis. Fumarate has been validated that correlated
174 with the inhibitory function of CD8 positive T cell [48]. Similar measured results about Glutamate
175 can be found in a published metabolomics dataset [49] (Fig. S1b). Glutamate is found in higher
176 concentrations in IDH wild-type gliomas but is lower in IDH-mutant gliomas. Our predictions are
177 consistent with metabolomic findings, as IDH-mutant patients, who generally have better
178 prognosis, show lower glutamate levels. Research has indicated that glioma release glutamate to
179 improve their growth by utilizing its neurotoxicity [50,51]. MGFEA also predicted succinate
180 correlated with the patients' bad prognosis. Glioblastoma cells improved the succinate level to

181 accommodate the hypoxic environment which is similar with our predictions [52]. MGFEA
182 showed comparable accuracy with scFEA in DepMap datasets and could be used for the
183 identification of potential metabolites' biomarkers in TCGA and more human datasets.



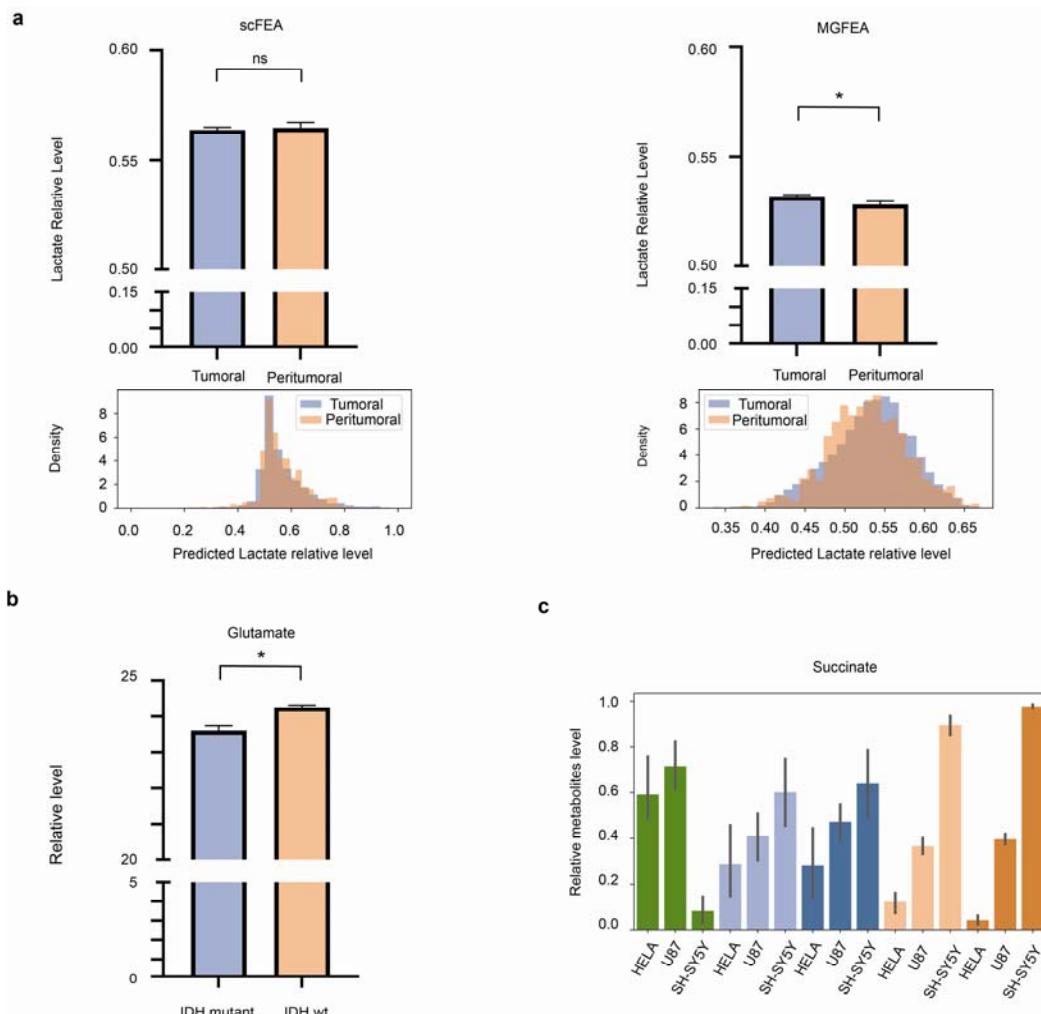
184
185 Fig. 2: Comparison of prediction results from scFEA and MGFEA in DepMap dataset and
186 predicted biomarker in TCGA glioma dataset.

187 a, The relative mean square error comparison of metabolic predictions from scFEA, MGFEA,

188 scFEA-L, MGFEA-L and MGFEA-IMM on DepMap datasets.

189 b, The prediction result from metabolomics, scFEA, scFEA-L, MGFEA and MGFEA-L at
190 Fumarate and UMP.

191 c, The prognosis of TCGA glioma patients is correlated with several predicted metabolites:
192 citrulline, fumarate, succinate and glutamate. Red lines mean the statistics from patients with
193 higher predicted metabolites. Blue lines mean the statistics from patients with lower predicted
194 metabolites.



195

196 Fig. S1: Comparison of MGFEA and scFEA in terms of cancer metabolites imbalance level.

197 a, Predicted relative lactate levels of lactate in different glioma regions by MGFEA and

198 scFEA.

199 b, Metabolomics result about glutamate in IDH wild type and IDH mutant type glioma
200 samples from Wang et al.

201 c, Inhouse datasets metabolomics results and prediction results from scFEA and MGFEA
202 about succinate content in Hela, U87 and SHSY5Y cell lines.

203

204

205 **MGFEA integrated non metabolic genes and metabolomics into the whole framework**

206 With the spatial multimodal analysis (SMA) paired spatial RNAseq and Matrix-assisted laser
207 desorption/ionization (MALDI) datasets, we could validate the performance of MGFEA and
208 validate the true metabolic information integration module of MGFEA. For the SMA dataset, we
209 selected one of the slices to compare the prediction results of different models against MALDI
210 results (Fig. 3a-d). The finding indicated that MGFEA captured spatial similarity of different spots
211 and showed significant better performance when using the raw matrix as input. In both models of
212 MGFEA, imputation did not yield significant improvements in performance (Fig. 3a, c).

213 Consistent with scFEA reports, MAGIC [31] improved its performance (Fig. 3b, d). STAGATE
214 [32] which integrates spatial information demonstrated no improvement in scFEA and small
215 improvement in scFEA-L. We compared three methods which select variable genes for MGFEA
216 metabolic gene interaction graph construction: common highly variable genes (HVG) defined by
217 normalized dispersion, spatial autocorrelation metrics Moran's I (SRR) and spatial differential
218 expressed genes (SDE). By leveraging HVG, MGFEA demonstrated better performance than the
219 other methods without imputation. Although HVG methods did not demonstrate improvement

220 compared to the other two methods, they also did not result in decrement in performance.

221 Therefore, we used HVG as the default parameter of MGFEA. With respect to the relative mean

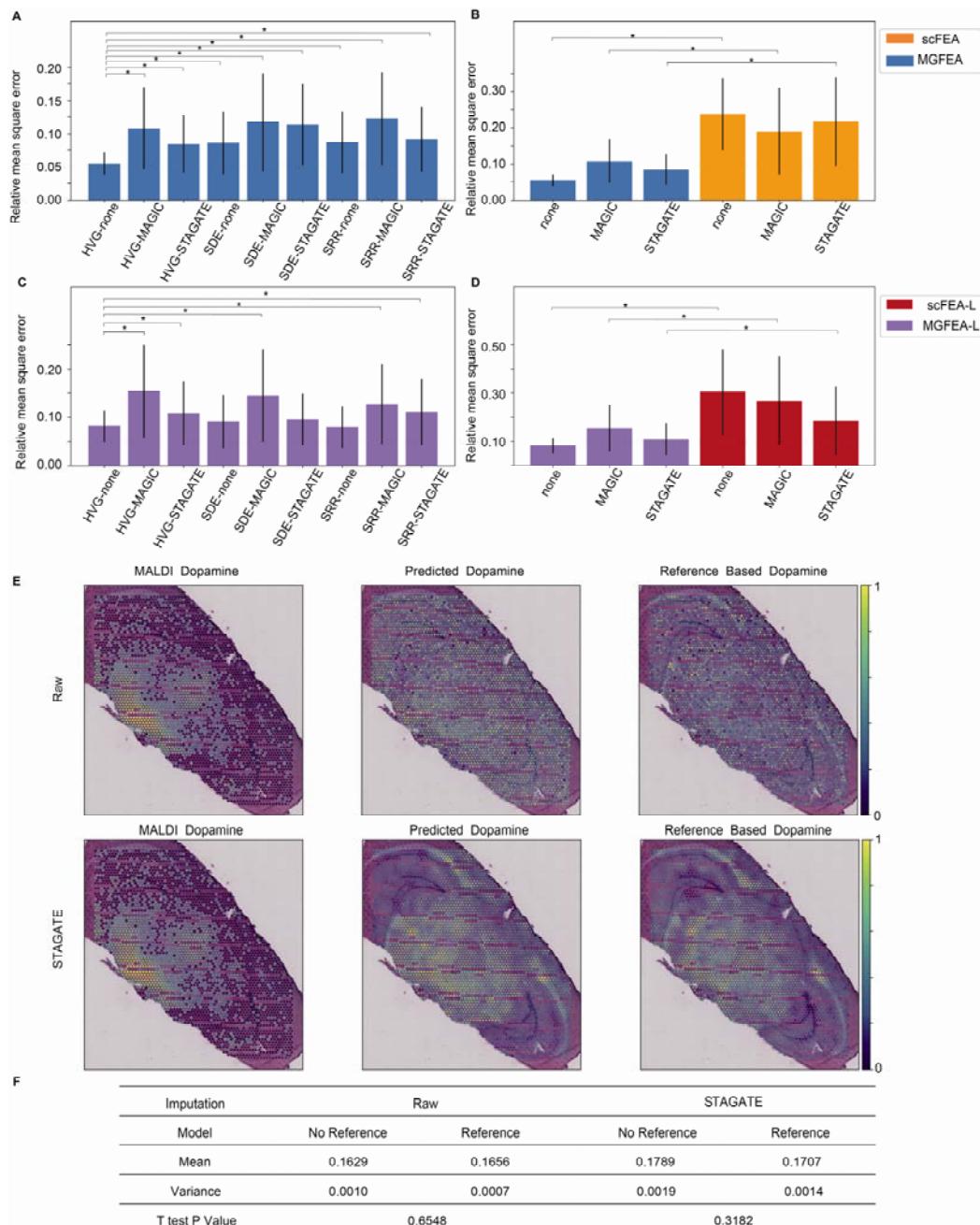
222 square error, MGFEA outperformed scFEA with different imputation preprocess (Fig. 3b, d).

223 Given the paired nature of the SMA dataset, leveraging the metabolomics results as a

224 reference for MGFEA predictions can improve performance (Fig. 3e). We observed improvements

225 in accuracy and reductions in variance when using the MALDI reference, although statistical

226 significance was not achieved (Fig. 3f).



227

228 Fig. 3: Comparison of prediction results from scFEA and MGFEA in SMA dataset and the
229 reference module which integrates metabolomics and gene expression.

230 a, c Relative mean square error between the prediction by MGFEA and MGFEA-L with
231 different variable genes selection methods, highly variable genes, spatial correlated genes and
232 spatial differential genes.

233 b, d Relative mean square error between the prediction by scFEA, MGFEA, scFEA-L,

234 MGFEA-L in SMA dataset with the three different imputation methods, no imputation, MAGIC

235 and STAGATE.

236 e, Comparison of dopamine prediction basic MGFEA and referenced MGFEA with raw

237 matrix and imputed matrix as input.

238 f, Statistics of reference module contribution in MGFEA relative mean square error.

239 **Unpaired brain transcriptome and metabolome datasets confirmed efficiency of MGFEA**

240 Leveraging the unpaired metabolome and spatial transcriptome datasets, MGFEA showed

241 efficient performance on differential metabolites identification. Based on the metabolomics dataset

242 of different brain regions from Shao et al [53] and visium sagittal spatial RNAseq dataset, we

243 present the results of the metabolome, the prediction from scFEA, MGFEA, MGFEA-IMM,

244 scFEA-L and MGFEA-L (Fig. 4a). Compared to scFEA, MGFEA showed lower relative mean

245 square error across all metabolic graphs. We provided several examples of prediction results (Fig.

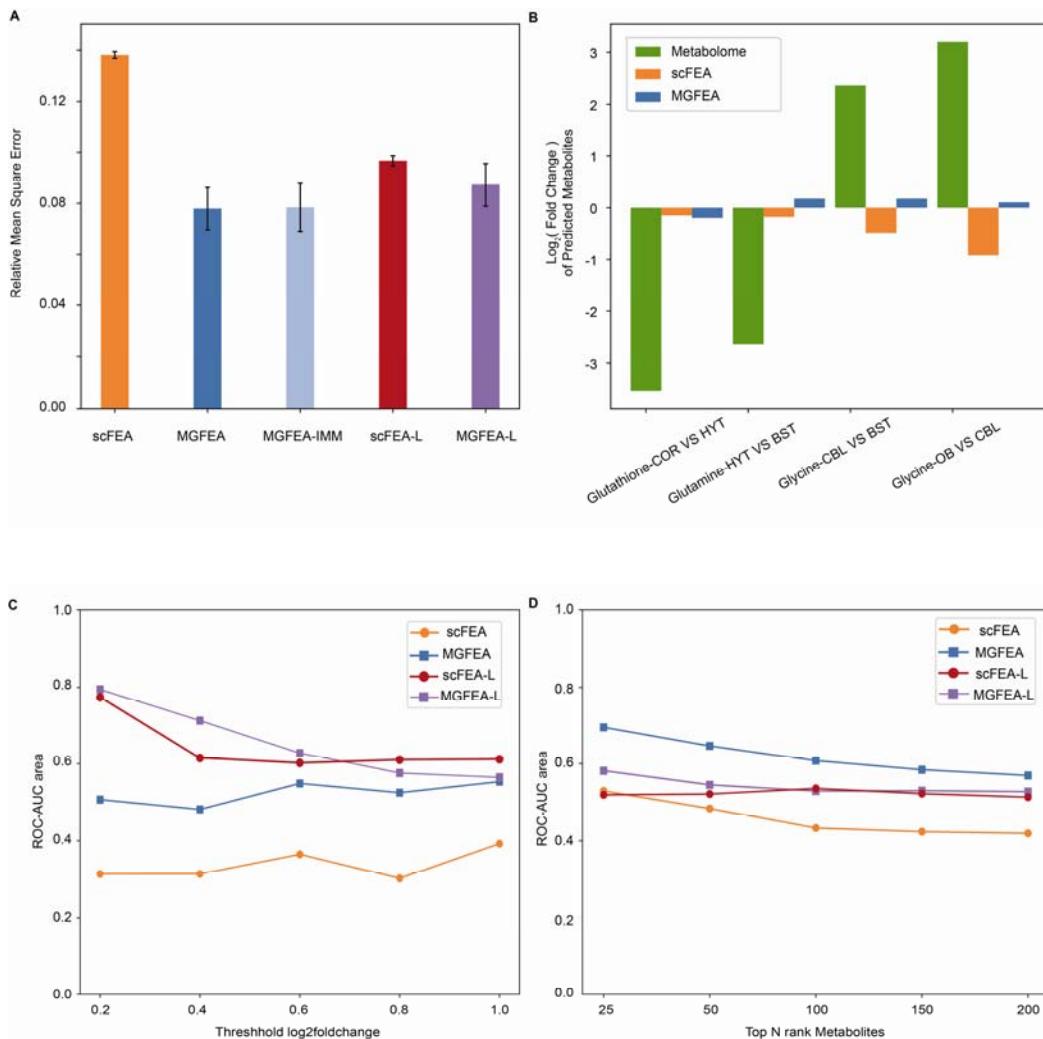
246 4b). MGFEA exhibited comparable prediction accuracy to scFEA in two types of metabolic graphs

247 (Fig. 4c, d). Along with the significant differential metabolites identified through metabolomics,

248 MGFEA demonstrated greater accuracy in classifying relative differences across various brain

249 region (Fig. 4c). When considering the top-ranked predicted differential metabolites from each

250 model, MGFEA exhibited outperformed scFEA (Fig. 4d).



251

252

253 Fig. 4: Comparison of prediction results from scFEA and MGFEA in unpaired visium sagittal
254 dataset and Shao metabolomics dataset.

255 a, Results of relative mean square error between Shao datasets and the prediction of scFEA,
256 MGFEA, scFEA-L, MGFEA-L and MGFEA-IMM for the relative metabolite level of mouse
257 brain.

258 b, Detection of log fold change of residual metabolites from different brain region pairs using
259 metabolome, scFEA and MGFEA. COR: cortex, HYT: hypothalamus, BST: brain stem, CBL:
260 cerebellum, OB: olfactory bulb.

261 c, The ROC-AUC area of models in relative difference classification within significant

262 differential metabolites from metabolome.

263 d, The ROC-AUC area of models in relative difference classification within top differential

264 predicted metabolites from models.

265

266

267 **Discussion**

268 MGFEA is designed for fast inference on large datasets and is particularly adept at inferring
269 metabolic states in tumor samples, leveraging the rich transcriptomic public data resource. Our
270 pipeline improved computational performance significantly and could be applied in the analysis of
271 large datasets even million level datasets [54,55] and the future application on the insilico
272 perturbation gene functional analysis which needs thousands repeats.

273 Tumor heterogeneity is associated with the bad prognosis of patients [56]. In contrast to the
274 metabolome, transcriptome enabled researchers to acquire single cell transcript information at an
275 affordable price [57]. Thereby we used MGFEA in tumor samples for the discovery of biomarkers.

276 To validate the efficiency of models, we prepared the in-housed dataset of three cancer cell lines.

277 In the in-housed dataset, both MGFEA and scFEA predicted the correct distribution of fumarate
278 and uridine monophosphate. Interestingly, scFEA and MGFEA reported the same prediction about
279 succinate based on the transcriptome, but different from the targeted metabolomics detections.

280 There are several possible reasons about the phenomena, for example, the correlation between
281 metabolites and transcript is weak [24]. Enzyme catalyzed metabolites transformation, enzyme is
282 translated from transcript, but the correlation between protein and transcript is even weak [58].

283 Although transcriptome and proteome can't work as the proxy of each other [59], the question of
284 which more accurately represents the actual functions performed by cells, the transcriptome or the
285 proteome, should be rigorously assessed through experimental validation from multiple aspects.

286 Metabolome quantified the metabolites' relative level in the time points of samples collection.

287 Although the algorithms computed the relative level of metabolites based on the key enzyme
288 expression, the difference between the inferred and actual measurements becomes more noticeable

289 in the non-steady state scenario of culture media. Two models' prediction approved the succinate
290 of SH-SY5Y is higher than other two cell lines, the inconsistency of prediction and measurement
291 could also bring new assumption: succinate is very important for the proliferation of SH-SY5Y or
292 the related TCA cycle genes are reprogramed in SH-SY5Y. The deeper understanding may be
293 proposed between the different result from theoretical model and experimental observation. The
294 essence of the phenomenon is worthy to explore further for our metabolites-transcript consistency
295 understanding.

296 In an attempt to validate the potential of MGFEA on the further exploitation of public
297 transcriptome datasets, we used MGFEA to discover novel validated metabolites from TCGA
298 datasets and demonstrated the potential of our flexible and efficient framework. Of the four
299 metabolites shown in figure 2c, most of them have been found to engage the progression of tumor
300 [47,48,50,52].

301 For instance, we performed metabolite inference validation using the SMA dataset, which
302 seamlessly integrates histologic data from various modalities within the MGFEA framework.
303 Although our reference module demonstrated subtle improvement, but our attempt demonstrated
304 constraint-based methods or flux estimation models such as scFEA [21], compass [22],
305 METAFlux [23] and MGFEA which is compatible with high throughput single cell transcriptome
306 datasets are also suitable for the integration of multi-omics datasets consists of MALDI, spatial
307 RNAseq and spatial proteomics. Although the correlation between different modalities is weak,
308 the integration of multiple modalities is also promising to produce novel knowledge and even
309 novel research field in the future.

310 With the development of spatial metabolome technique [60–62], or the metabolites aptamer
311 technique [63], it may be easier for the acquirement of the metabolic and transcript information of
312 our interested samples, with the novel inference algorithm based on the genotype information, the
313 understanding of interaction of genotype and phenotype could further develop and help with the
314 human health.

315 In summary, MGFEA demonstrates the ability to make fast and accurate inferences about the
316 metabolic state of a sample based on its transcriptome. It provides an algorithmic framework that
317 can easily integrate both transcriptional and metabolic modalities from the same samples, making
318 it a valuable tool for multimodal data integration. The further development of MGFEA can
319 provide inspiration for the emergence of a mature integration framework across multi-omics fields,
320 such as transcriptomics, proteomics, and metabolomics.

321

322 **Methods**

323 **MGFEA framework**

324 MGFEA framework (Fig. 1a) consists of data preprocess, metabolic graph integration, cell and
325 gene embedding extraction, embedding augmentation layer and flux transformation layer.

326 X, x_k : expression matrix, expression vector of kth cell

327 X_r : matrix of spatial metabolomics matrix from spatial multimodal analysis (SMA) datasets [24]

328 T^g, T^e : the extracted Eigen vector matrix in the gene and cell dimension of the expression matrix
329 using Principal Component Analysis

330 u, v : cell embedding, gene embedding

331 G^m, G^s, A^m, A^s : metabolic network guided gene interaction graph, spatial information graph ,
332 metabolic network guided gene interaction graph adjacent matrix, spatial information graph
333 adjacent matrix

334 φ_k, θ_k : cell variational graph autoencoder [25] VGAE encoder parameter, decoder parameter

335 φ_g, θ_g : gene VGAE encoder parameter, decoder parameter

336 F : Flux matrix of all cells in dataset

337 f : flux vector of single cell

338 S : stoichiometry matrix of GSMM model

339

340 **GSMM model preprocess**

341 We employed two published GSMM model, Recon3D [26] and IMM1865 [27], for MGFEA
342 prediction of relative metabolites level. The original models have large numbers of metabolites
343 consists of the same metabolites located in different organelles. In our modified models, we

344 removed duplicated metabolites and used function `find_blocked_reaction` from python package
345 `cobrapy` [28] to remove most blocked reactions.

346

347 **MGFEA metabolic interaction graph preprocess**

348 According the metabolic stoichiometry matrix and gene co-expression relationship from
349 expression matrix, we transformed all the information into a gene interaction graph. The graph
350 incorporated metabolic relationships from the GSMM model, along with the intrinsic gene
351 co-expression information in the expression matrix, as the edges between genes. For metabolic
352 edges, we construct edges between genes connected by reaction or metabolite. For gene
353 co-expression edges, we calculated the expression correlation of metabolic genes with highly
354 variable genes (HVG). Edge connections are established between the top k highly variable genes
355 and the metabolic genes with the highest correlation in their expression. To ensure the information
356 density of HVG is comparable to that of metabolic genes, we compute the normalized dispersion
357 of all metabolic genes. Then, the sum of normalized dispersion is used as the threshold value to
358 select the top k HVG genes whose corresponding statistics equals to that of the metabolic genes.

359 According to the above method, we construct a gene adjacency matrix A^m .

360

361 **MGFEA embedding**

362 MGFEA takes a preprocessed expression matrix X and a preprocessed GSMM model as input.
363 Inspired by the GLUE [29] framework, we employed two separate VGAEs to learn cell
364 embeddings in the spatial transcriptomic dataset and gene embeddings in metabolic networks
365 separately. For the cell embedding u , the input consists of the expression matrix X and spatial
366 coordinate information of spots A^s . The obtained latent layer embedding u serves as the
367 representation of different cells.

368 For single cell RNAseq dataset input, the training of VGAE satisfies the following loss function:

$$369 \quad L_{cell}(\varphi_k, \theta_k) = E_{x_k \sim p_{data}(x_k)} \left[E_{u \sim q(u|x_k; \varphi_k)} \log p(x_k | u; \theta_k) - KL(q(u | x_k; \varphi_k) \| p(u)) \right]$$

370 For spatial RNAseq dataset input, the training of VGAE satisfies the following loss function:

$$371 \quad L_{cell}(\varphi_k, \theta_k) = E_{i, j \sim A^s} \left[E_{u \sim q(u|x_k, A^s; \varphi_k)} \log p(A^s | u; \theta_k) - KL(q(u | x_k, A^s; \varphi_k) \| p(u)) \right]$$

372 For gene embedding v , Using the metabolic gene interaction graph as input, the VGAE learns the
373 intrinsic relationships of genes and acquires gene embeddings to represent different genes.

374 The loss function of VGAE which exported gene embeddings satisfies:

$$375 \quad L_{gene}(\varphi_G, \theta_G) = E_{i, j \sim A^m} \left[\log p(A^m | v, \theta_{G_m}) - KL[q(v | A^m, T^g, \varphi_{G_m}) \| p(v)] \right]$$

376 The loss of two VGAE is the latent loss of MGFEA.

$$377 \quad Ll(\varphi_{G_s}, \theta_{G_s}, \varphi_{G_m}, \theta_{G_m}) = \frac{1}{K} \sum_{k=1}^K L_{cell} + L_{gene}$$

378 The two VGAEs learned the representations of the transcriptional cell states u and gene

379 representations v defined jointly by the metabolic network and co-expression information. The

380 former represents a conventional cellular state and incorporates both the expression matrix and

381 spatial coordinate information of spots of spatial transcriptomics. The latter means the gene

382 representations defined by gene interaction graph. The gene representations mean the genes'

383 location in metabolic space. The dot product of two representations shares the same matrix form

384 as the original expression matrix. The form is used for embedding enhancement.

385 Taking into account the inherent projection nature of the dot product, we interpret the dot product

386 of the two as a projection of the cellular state representation vector onto the metabolic space. For

387 scRNAseq, by utilizing the difference between this projection and the original transcriptional

388 expression matrix as a loss function, we enable VAE to rationalize the cell representations it learns.

389 For spRNAsq, VGAE learns to reconstruct the spatial coordinate graph and gene interaction
390 graph to rationalize the obtained cell embeddings and gene embeddings.

391

392 **MGFEA embedding augmentation**

393 With the above framework, we are able to generate matrix containing both metabolic gene
394 relationships and cell transcriptional states. Then we conducted softmax transformation between
395 different genes within a cell based on the generated matrix. This transformation yields a matrix
396 which contains genes' weights in cells. Subsequently, we performed element-wise multiplication
397 (Hadamard product) between weights matrix and the original expression matrix \mathbf{X} . Through this
398 process, we enhance the cell specific metabolic features in the original matrix \mathbf{X} to preserve the
399 transcriptional states and the augmented matrix \mathbf{X}_a improved the process of MGFEA
400 flux-estimation.

$$\begin{aligned} 401 \quad \mathbf{X}_a &= \text{Softmax}_l(v^T u) \otimes \mathbf{X} \\ 402 \quad \mathbf{F} &= \text{MLP}(\mathbf{X}_a) \end{aligned}$$

403

404 **MGFEA-Flux estimation**

405 The balance of metabolites in reaction network is influenced by both influx and efflux.
406 Considering that the efficiency of enzymes in metabolic networks is regulated by the regulatory
407 genes, the transcriptional state of the cell plays a crucial role in influencing metabolic balance [30].
408 Building upon this premise, we utilized the transcriptional expression matrices of metabolic genes,
409 along with a restricted set of highly variable genes, as input. We finally employed a Multilayer
410 perceptron to estimate the fluxes of all metabolic modules (reactions).

411

$$L_{flux} = \sum_l \sum_j^{reactions \ metabolites} [|S \cdot f| + |f| - f + |sgn(f)| - sgn(f)]$$

412

$$L_{total} = \lambda_f L_{flux} + (1 - \lambda_f) L_l (\varphi_{G_s}, \theta_{G_s}, \varphi_{G_m}, \theta_{G_m})$$

413

414 **Reference based framework**

415 We use transcriptome and metabolome paired dataset [24] to offer a reference for
416 spatialGraphFEA learning. We modify flux loss and add a reference loss for our model. We add
417 reciprocal of flux to prohibit maintained decrease of flux loss. We use metabolism quantitative
418 information as a reference and use a mean square error formula to forced predicted metabolism
419 quantification into reference result.

420

$$L_{reference} = \frac{1}{K} mse(S \cdot f - X_r)$$

421

$$L_{total} = \lambda_f L_{flux} + \lambda_l L_l (\varphi_{G_s}, \theta_{G_s}, \varphi_{G_m}, \theta_{G_m}) + (1 - \lambda_f - \lambda_l) L_{reference}$$

422

423 **Parameters**

424 The weights of flux loss should be confirmed based on the epoch size. We usually used 0.5 as a
425 default weight of flux loss. As a semi-supervised framework, MGFEA's best parameter should be
426 confirmed manually. When the epoch size is too big, model appears overfitting and the results
427 even appeared as an opposite direction to the truth, we used the weight of flux loss to make flux
428 loss converge as the training ends. We can also increase the relative weights of flux direction.

429

430 **Dataset preprocess**

431 Expression matrix \mathbf{X} is loaded in h5ad format and is normalized and log transformed. We used
432 MAGIC [31] and STAGATE [32] for imputation. Reactions without expression in the expression
433 matrix are removed, and the modified reaction network was used for MGFEA reaction prediction.
434 We used highly variable genes detected by scanpy [33], spatial differential genes from spatialDE
435 [34] and spatial correlated genes by Moran's I from squidpy [35] for the gene interaction graph
436 construction.

437

438 **Relative mean square error**

439 In all instances where the relative mean square error was utilized, we first filtered out all
440 nonoverlapping metabolites between the predicted results and the truth, we then scaled the
441 metabolomics dataset and the metabolites' stock level output from the model, calculating the
442 relative mean squared error between the predicted results and the truth. For cases involving Shao
443 metabolomics dataset, datasets from Dependency Map (DepMap) Project [36,37] and our inhouse
444 dataset, since the vectors are not paired, so we first computed the mean metabolites level in
445 different regions before calculating the relative mean square error for different metabolites.

446

447 **Receiver operating characteristic curve (ROC)-area under curve (AUC)**

448 We transformed the correct direction between the different brain region pairs into the binary label.
449 Thereby we can employ ROC-AUC metrics to assess the capability on classifying correct
450 relative level between different brain regions of the different models. We used the true log
451 transformed fold change between pairs of brain region as true label and the models' predicted
452 mean of log transformed fold change as predicted value for the ROC-AUC calculation.

453

454 **Memory usage and time consumption**

455 We utilized python package memory-profiler(https://github.com/pythonprofilers/memory_profiler)

456 to measure memory usage and total time consumption of different models.

457

458 **Experimental validation of Cancer Cell lines**

459 We ordered cell lines from the vector center at Chinese institute brain research, obtaining

460 U-87-MG (EK-Bioscience Cat.No: CC-Y1528) and HeLa (EK-Bioscience Cat.No: CC-Y1211).

461 We acquired SH-SY5Y cell line (YC-D014) from Ubigene. We cultured cell in 90% DMEM and

462 10% FBS. We passaged cells every two days. The cell lines were cultured with 10cm plates. We

463 amplified cell lines to 3-4 plates. For each cell line, once the cells reached confluence, we first

464 removed the culture medium. We digested the cells with 0.25% trypsin for 3-5 minutes and

465 neutralized the trypsin with 90% DMEM and 10% FBS. We pipetted to detach the cells and

466 collected all cell mix in one 15ml centrifuge tube. After centrifuging to collect the cells, we

467 resuspended them in PBS. Following repeated washes, we counted the cells with Countstar(Alit

468 Biotech) and diluted them to 10^6 cells/ml. Then we separated 1ml cell suspension into a

469 centrifuge tube and centrifuged the cells. The supernatant was removed and the pellets are stored

470 at -80 degrees.

471

472 **RNA sequencing**

473 The FastPure Cell/Tissue Total RNA Isolation Kit V2 (Vazyme RC112) was used to isolate total

474 RNA from cell lines pellets. VAHTS Universal V6 RNA-seq Library Prep Kit (Vazyme NR604)

475 was employed to generate sequencing libraries from the isolated total RNA. MGI2000 was used
476 for sequencing the libraries. Samples are multiplexed in each lane, which yielded targeted number
477 of paired-end, 100bp reads for each sample.

478

479 **Bulk RNA-seq data preprocess**

480 We remove low quality reads with Trimmomatic [38], mapped reads with STAR [39] and generate
481 counts matrix with featurecounts [40]. We used combat to remove batch effect between our
482 in-house dataset and DepMap dataset [36,37]. The preprocessed dataset was used for subsequent
483 flux estimation analysis.

484

485 **Metabolomics detection**

486 We used targeted metabolomic analysis, Metabolites from the cells were extracted with 80%
487 Acetonitrile by vigorous vortex and centrifugation at 22 000g for 20 min at 4 °C. The supernatants
488 were used for analysis. The mix is vortexed and centrifuged. We used suspension for analysis.
489 Chromatographic separation was performed on a I Class ultra-high-performance liquid
490 chromatography system (Waters, Milford, Massachusetts, USA), with an InfinityLab Poroshell
491 120 HILIC-Z column (2.1 mm ×100 mm, 2.7 µm, agilent) and the following gradient: 0min,
492 100% B; 4min 84% B; 11min 40% B; 12min 40% B; 13min 100% B; 17min 10% B. Mobile phase A
493 was 10 mM ammonium acetate in water. Mobile phase B was 10 mM ammonium acetate in 90%
494 acetonitrile. The flow rate was 0.4 mL/min. The column temperature was kept at 35 °C and the
495 autosampler was kept at 8 °C. The injection volume was 5 µL. Mass data acquisition of the
496 metabolites was performed using a Triple QuadTM 7500 mass spectrometer (SCIEX, Framingham,

497 MA) equipped with an electrospray ion source in multiple reaction monitoring (MRM) mode. The

498 parameters of the electrospray ion source were:

499 neg: A : 10mM ammonium acetate , pH=8.5 B : 10% 10mM ammonium acetate , pH=8.5 , 90%

500 Acetonitrile

501 pos: A : 10mM ammonium formate , pH=3 B : 10% 10mM ammonium formate , pH=3 , 90%

502 Acetonitrile

503 The MRM transitions of all of the derivatized metabolites were shown in followed Table:

	metabolites	Q1	Q3
Group 1	BETA-ALANINE	90.1	44.2
Group 2	CITRULLINE	176	159
Group 3	DEOXYADENOSINE	252	136
Group 4	HYPOXANTHINE	137	110
Group 5	NICOTINAMIDE	123.1	80
Group 6	PROLINE	116.1	70.1
Group 7	PUTRESCINE	89	72
Group 8	URIDINE MONOPHOSPHATE	325	97
Group 9	URACIL	113	70
Group 10	FUMARATE	115	71
Group 11	PYRUVATE	87	43
Group 12	SUCCINATE	117	73

504

505 **Metabolomic data analysis**

506 SCIELEX was used to process and integrate the components' peaks and provide integrated extracted

507 ion chromatograms for each metabolite component in all cell line samples and internal standard

508 samples. The generated results are normalized to the internal standard samples and the normalized

509 results are used for absolute quantification with the aid of the calibration curve.

510

511 **TCGA survival analysis**

512 We used easyTCGA (<https://github.com/ayueme/easyTCGA>) to download TCGA clinical dataset

513 and the expression matrix. We scaled the expression transcript per million (TPM) matrix using

514 log2 transformation and utilized combat [41] to remove batch effects between glioma and GBM.

515 After prediction of MGFEA, we divided all samples into two groups based on predicted

516 metabolite levels and conducted Kastle–Meyer test to identify which predicted metabolite serves

517 as a biomarker.

518

519

520

521 **Data availability**

522 All datasets used in this study have been published and can be obtained in h5ad format from

523 <https://cellxgene.cziscience.com/datasets>. The raw sequencing data of cancer cell line datasets

524 have been deposited at CNGBdb under the accession number CNP0007635.

525 We used Recon3D and IMM1865 as human and mouse GSMM model. Our raw file and

526 preprocess code can be obtained from our github site (<https://github.com/Sunwenzhilab/MGFEA>).

527 Detailed message and URLs of datasets is recorded in Table 1

528 Table 1

datasets	Source	website
4M brain dataset	Cao et al. [54]	https://cellxgene.cziscience.com/collections/c114c20f-1ef4-49a5-9c2e-d965787fb90c
1M GBM dataset	Ruiz Moreno et al. [55]	https://cellxgene.cziscience.com/collections/999f2a15-3d7e-440b-96ae-2c806799c08c
200k brain dataset	Siletti et al. [11]	https://cellxgene.cziscience.com/collections/283d65eb-dd53-496d-adb7-7570c7caa443
50k brain dataset	Smith et al. [64]	https://cellxgene.cziscience.com/collections/e02201d7-f49f-401f-baf0-1eb1406546c0
10k brain dataset	Siletti et al. [11]	https://cellxgene.cziscience.com/collections/283d65eb-dd53-496d-adb7-7570c7caa443
Yu dataset	Yu et al. [45]	https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE117891
Stereo-seq dataset	Stereo-seq	http://116.6.21.110:8090/share/dd965cba-7c1f-40b2-a275-0150890e005f
SMA dataset	Vicari et al. [24]	https://data.mendeley.com/datasets/w7nw4km7xd/1
Visium sagittal brain section	10X Genomics	https://www.10xgenomics.com/datasets/preservation-method-comparison-on-visium-cytassist-fixed-frozen-mouse-brain-sagittal-11-mm-capture-area-2-standard
Shao dataset	Shao et al. [53]	https://www.nature.com/articles/s41392-023-01552-y
DepMap transcriptome	Ghandi et al. [36]	https://depmap.org/portal/download/custom/
DepMap metabolome	Li et al. [37]	https://depmap.org/portal/download/custom/

530 **Code availability**

531 The code and related dataset can be accessible from the following GitHub respiratory
532 (<https://github.com/Sunwenzhilab/MGFEA>).

533

534 **Author Contributions**

535 D.A and J.L. conceived the project. W.S. supervised the whole project. J.L. implemented all model
536 codes. J.L. and D.A. performed all data analysis. All authors reviewed and edited the manuscript.

537

538 **Acknowledgement**

539 We thank all the member of Sun Laboratory and other colleagues from CIBR for their feedback on
540 this work.

541 **Funding**

542 This project is financially supported by STI2030-Major Projects (2022ZD0204700) and CIBR
543 Internal Fund to W.S..

544

545 **References**

- 546 1. Finley LWS. What is cancer metabolism? *Cell* 2023; 0:
- 547 2. Martínez-Reyes I, Chandel NS. Cancer metabolism: looking forward. *Nat. Rev. Cancer* 2021; 21:669–680
- 549 3. Melone MAB, Valentino A, Margarucci S, et al. The carnitine system and cancer
- 550 metabolic plasticity. *Cell Death Dis.* 2018; 9:1–12
- 551 4. Bunse L, Pusch S, Bunse T, et al. Suppression of antitumor T cell immunity by the
- 552 oncometabolite (R)-2-hydroxyglutarate. *Nat. Med.* 2018; 24:1192–1203
- 553 5. Notarangelo G, Spinelli JB, Perez EM, et al. Oncometabolite d-2HG alters T cell
- 554 metabolism to impair CD8+ T cell function. *Science* 2022; 377:1519–1529
- 555 6. Panieri E, Santoro MM. ROS signaling and redox biology in endothelial cells. *Cell. Mol. Life Sci.* 2015; 72:3281–3303
- 557 7. Panieri E, Santoro MM. ROS homeostasis and metabolism: a dangerous liaison in
- 558 cancer cells. *Cell Death Dis.* 2016; 7:e2253–e2253
- 559 8. O'Neill LAJ, Kishton RJ, Rathmell J. A guide to immunometabolism for
- 560 immunologists. *Nat. Rev. Immunol.* 2016; 16:553–565
- 561 9. La Manno G, Siletti K, Furlan A, et al. Molecular architecture of the developing
- 562 mouse brain. *Nature* 2021; 596:92–96
- 563 10. Yao Z, van Velthoven CTJ, Kunst M, et al. A high-resolution transcriptomic and
- 564 spatial atlas of cell types in the whole mouse brain. *Nature* 2023; 624:317–332
- 565 11. Siletti K, Hodge R, Mossi Albiach A, et al. Transcriptomic diversity of cell types
- 566 across the adult human brain. *Science* 2023; 382:eadd7046
- 567 12. Chen X, Huang Y, Huang L, et al. A brain cell atlas integrating single-cell
- 568 transcriptomes across human brain regions. *Nat. Med.* 2024; 30:2679–2691
- 569 13. Lanekoff I, Sharma VV, Marques C. Single-cell metabolomics: where are we and
- 570 where are we going? *Curr. Opin. Biotechnol.* 2022; 75:102693
- 571 14. Guo S, Zhang C, Le A. The limitless applications of single-cell metabolomics.
- 572 *Curr. Opin. Biotechnol.* 2021; 71:115–122
- 573 15. Yu G, Wang L-G, Han Y, et al. clusterProfiler: an R package for comparing
- 574 biological themes among gene clusters. *Omics J. Integr. Biol.* 2012; 16:284–287
- 575 16. Xu S, Hu E, Cai Y, et al. Using clusterProfiler to characterize multiomics data.
- 576 *Nat. Protoc.* 2024; 19:3292–3320
- 577 17. Zhao K, Rhee SY. Interpreting omics data with pathway enrichment analysis.
- 578 *Trends Genet. TIG* 2023; 39:308–319
- 579 18. Hrovatin K, Fischer DS, Theis FJ. Toward modeling metabolic state from
- 580 single-cell transcriptomics. *Mol. Metab.* 2022; 57:101396
- 581 19. Orth JD, Thiele I, Palsson BØ. What is flux balance analysis? *Nat. Biotechnol.*
- 582 2010; 28:245–248
- 583 20. Damiani C, Maspero D, Filippo MD, et al. Integration of single-cell RNA-seq data
- 584 into population models to characterize cancer metabolism. *PLOS Comput. Biol.* 2019;
- 585 15:e1006733
- 586 21. Alghamdi N, Chang W, Dang P, et al. A graph neural network model to estimate
- 587 cell-wise metabolic flux using single-cell RNA-seq data. *Genome Res.* 2021;

588 gr.271205.120

589 22. Wagner A, Wang C, Fessler J, et al. Metabolic modeling of single Th17 cells
590 reveals regulators of autoimmunity. *Cell* 2021; 184:4168-4185.e21

591 23. Huang Y, Mohanty V, Dede M, et al. Characterizing cancer metabolism from bulk
592 and single-cell RNA-seq data using METAFlux. *Nat. Commun.* 2023; 14:4883

593 24. Vicari M, Mirzazadeh R, Nilsson A, et al. Spatial multimodal analysis of
594 transcriptomes and metabolomes in tissues. *Nat. Biotechnol.* 2023; 1-5

595 25. Kipf TN, Welling M. Variational Graph Auto-Encoders. 2016;

596 26. Brunk E, Sahoo S, Zielinski DC, et al. Recon3D enables a three-dimensional view
597 of gene variation in human metabolism. *Nat. Biotechnol.* 2018; 36:272-281

598 27. Khodaee S, Asgari Y, Totonchi M, et al. iMM1865: A New Reconstruction of
599 Mouse Genome-Scale Metabolic Model. *Sci. Rep.* 2020; 10:6177

600 28. Ebrahim A, Lerman JA, Palsson BO, et al. COBRApy: COnstraints-Based
601 Reconstruction and Analysis for Python. *BMC Syst. Biol.* 2013; 7:74

602 29. Cao Z-J, Gao G. Multi-omics single-cell data integration and regulatory inference
603 with graph-linked embedding. *Nat. Biotechnol.* 2022; 40:1458-1466

604 30. Kierans SJ, Taylor CT. Regulation of glycolysis by the hypoxia-inducible factor
605 (HIF): implications for cellular physiology. *J. Physiol.* 2021; 599:23-37

606 31. D van D, R S, J N, et al. Recovering Gene Interactions from Single-Cell Data
607 Using Data Diffusion. *Cell* 2018; 174:

608 32. K D, S Z. Deciphering spatial domains from spatially resolved transcriptomics
609 with an adaptive graph attention auto-encoder. *Nat. Commun.* 2022; 13:

610 33. Wolf FA, Angerer P, Theis FJ. SCANPY: large-scale single-cell gene expression
611 data analysis. *Genome Biol.* 2018; 19:15

612 34. Svensson V, Teichmann SA, Stegle O. SpatialDE: identification of spatially
613 variable genes. *Nat. Methods* 2018; 15:343-346

614 35. Palla G, Spitzer H, Klein M, et al. Squidpy: a scalable framework for spatial
615 omics analysis. *Nat. Methods* 2022; 19:171-178

616 36. Ghandi M, Huang FW, Jané-Valbuena J, et al. Next-generation characterization of
617 the Cancer Cell Line Encyclopedia. *Nature* 2019; 569:503-508

618 37. Li H, Ning S, Ghandi M, et al. The landscape of cancer cell line metabolism. *Nat.*
619 *Med.* 2019; 25:850-860

620 38. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina
621 sequence data. *Bioinformatics* 2014; 30:2114-2120

622 39. Dobin A, Davis CA, Schlesinger F, et al. STAR: ultrafast universal RNA-seq
623 aligner. *Bioinformatics* 2013; 29:15-21

624 40. Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program
625 for assigning sequence reads to genomic features. *Bioinformatics* 2014; 30:923-930

626 41. Leek JT, Johnson WE, Parker HS, et al. The sva package for removing batch
627 effects and other unwanted variation in high-throughput experiments. *Bioinformatics*
628 2012; 28:882-883

629 42. Zhang Z, Zhu H, Dang P, et al. FLUXestimator: a webserver for predicting
630 metabolic flux and variations using transcriptomics data. *Nucleic Acids Res.* 2023;
631 51:W180-W190

632 43. Chen A, Liao S, Cheng M, et al. Spatiotemporal transcriptomic atlas of mouse
633 organogenesis using DNA nanoball-patterned arrays. *Cell* 2022; 185:1777-1792.e21
634 44. Zhao Q, Zhang T, Yang H. ScRNA-seq identified the metabolic reprogramming
635 of human colonic immune cells in different locations and disease states. *Biochem.*
636 *Biophys. Res. Commun.* 2022; 604:96-103
637 45. Yu K, Hu Y, Wu F, et al. Surveying brain tumor heterogeneity by single-cell
638 RNA-sequencing of multi-sector biopsies. *Natl. Sci. Rev.* 2020; 7:1306-1318
639 46. Kubelt C, Peters S, Ahmeti H, et al. Intratumoral Distribution of Lactate and the
640 Monocarboxylate Transporters 1 and 4 in Human Glioblastoma Multiforme and Their
641 Relationships to Tumor Progression-Associated Markers. *Int. J. Mol. Sci.* 2020;
642 21:6254
643 47. Yin D, Wang X, Konda BM, et al. Increase in Brain Tumor Permeability in
644 Glioma-Bearing Rats with Nitric Oxide Donors. *Clin. Cancer Res.* 2008;
645 14:4002-4009
646 48. Cheng J, Yan J, Liu Y, et al. Cancer-cell-derived fumarate suppresses the
647 anti-tumor capacity of CD8+ T cells in the tumor microenvironment. *Cell Metab.*
648 2023; 35:961-978.e10
649 49. Wang L-B, Karpova A, Gritsenko MA, et al. Proteogenomic and metabolomic
650 characterization of human glioblastoma. *Cancer Cell* 2021; 39:509-528.e20
651 50. Takano T, Lin JH-C, Arcuino G, et al. Glutamate release promotes growth of
652 malignant gliomas. *Nat. Med.* 2001; 7:1010-1015
653 51. de Groot J, Sontheimer H. Glutamate and the Biology of Gliomas. *Glia* 2011;
654 59:1181-1189
655 52. Yang S, Zhan Q, Su D, et al. HIF1 α /ATF3 partake in PGK1 K191/K192
656 succinylation by modulating P4HA1/succinate signaling in glioblastoma.
657 *Neuro-Oncol.* 2024; 26:1405-1420
658 53. Shao Y, Fu Z, Wang Y, et al. A metabolome atlas of mouse brain on the global
659 metabolic signature dynamics following short-term fasting. *Signal Transduct. Target.*
660 *Ther.* 2023; 8:1-12
661 54. Cao J, O'Day DR, Pliner HA, et al. A human cell atlas of fetal gene expression.
662 *Science* 2020; 370:eaba7721
663 55. Ruiz-Moreno C, Salas SM, Samuelsson E, et al. Harmonized single-cell landscape,
664 intercellular crosstalk and tumor architecture of glioblastoma. 2022;
665 2022.08.27.505439
666 56. Dagogo-Jack I, Shaw AT. Tumour heterogeneity and resistance to cancer
667 therapies. *Nat. Rev. Clin. Oncol.* 2018; 15:81-94
668 57. Svensson V, Vento-Tormo R, Teichmann SA. Exponential scaling of single-cell
669 RNA-seq in the past decade. *Nat. Protoc.* 2018; 13:599-604
670 58. Fulcher JM, Markillie LM, Mitchell HD, et al. Parallel measurement of
671 transcriptomes and proteomes from same single cells using nanodroplet splitting. *Nat.*
672 *Commun.* 2024; 15:1-13
673 59. Wang D, Eraslan B, Wieland T, et al. A deep proteome and transcriptome
674 abundance atlas of 29 healthy human tissues. *Mol. Syst. Biol.* 2019; 15:e8503
675 60. Weigt D, Sammour DA, Ulrich T, et al. Automated analysis of lipid drug-response

676 markers by combined fast and high-resolution whole cell MALDI mass spectrometry
677 biotyping. *Sci. Rep.* 2018; 8:11260
678 61. Wang Y, Li S, Qian K. Nanoparticle-based applications by atmospheric pressure
679 matrix assisted desorption/ionization mass spectrometry. *Nanoscale Adv.* 2023;
680 5:6804–6818
681 62. Sun Z, Wang F, Liu Y, et al. Recent strategies for improving MALDI mass
682 spectrometry imaging performance towards low molecular weight compounds. *TrAC*
683 *Trends Anal. Chem.* 2024; 175:117727
684 63. Tan JH, Fraser AG. Quantifying metabolites using structure-switching aptamers
685 coupled to DNA sequencing. *Nat. Biotechnol.* 2025; 1–4
686 64. Smith RS, Florio M, Akula SK, et al. Early role for a Na⁺,K⁺-ATPase (ATP1A3)
687 in brain development. *Proc. Natl. Acad. Sci.* 2021; 118:e2023333118
688