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Abstract 

Perception is biased by expectations and previous actions. Pre-stimulus brain 

oscillations are a potential candidate for implementing biases in the brain. In two 

EEG studies (43 and 39 participants) on somatosensory near-threshold detection, 

we investigated the pre-stimulus neural correlates of an (implicit) previous choice 

bias and an explicit bias. The explicit bias was introduced by informing participants 

about stimulus probability on a single-trial level (volatile context) or block-wise 

(stable context). Behavioural analysis confirmed adjustments in the decision criterion 

and confidence ratings according to the cued probabilities and previous 

choice-induced biases. Pre-stimulus beta power with distinct sources in sensory and 

higher-order cortical areas predicted explicit and implicit biases, respectively, on a 

single subject level and partially mediated the impact of previous choice and stimulus 

probability on the detection response. We suggest pre-stimulus beta oscillations in 

distinct brain areas as a neural correlate of explicit and implicit biases in 

somatosensory perception. 
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Introduction 

Perception is biased by our knowledge of what is probable. This has been 

successfully formalised in the Bayesian brain theory1, which assumes an integration 

of prior beliefs and the sensory signal. According to this theory, the brain relies on 

prior beliefs when sensory signals are “uncertain”, i.e., weak. Indeed, providing 

human observers with information about stimulus probability has been shown to bias 

perceptual reports of weak visual stimuli2. In such situations, participants adjust their 

decision criterion while sensitivity to the sensory signal remains unaffected3. 

Additionally, providing individuals with prior information about the probability of a 

stimulus has been shown to impact confidence in a perceptual decision4. Besides 

external and explicit information about the probability of upcoming stimuli, the 

perceptual choice history also influences decision-making, with stronger choice 

history biases in ambiguous perceptual decisions5. In the following, we define the 

bias induced by choice history as implicit bias, as it arises from internal processes 

that the experimenter does not explicitly control. It is important to note that the terms 

implicit and explicit, as used throughout this manuscript, do not pertain to 

participants' level of awareness. Rather, we classify the choice history bias as implicit 

because it emerges in the absence of explicit information provided to the observer. 

Although studies have demonstrated the adaptability of choice history biases to 

participants' models of the environment6,7, whether and how they interact with explicit 

biases has not been investigated. 

While a substantial body of research has established that explicit expectations and 

choice history shape perception at the behavioural level, a notable gap remains in 

our understanding of the distinct or shared neural processes2,8–10. Gustatory 

stimulation in rats in combination with computational modelling showed that stimulus 

expectations modulated pre-stimulus metastable dynamics of neural activity11. Using 

MEG recordings in humans, Kok and colleagues12 reported that neural 

representations of expected visual stimuli in pre-stimulus activity closely resembled 

the evoked activity following the onset of expected stimuli, suggesting that the brain 

generates stimulus templates in the sensory cortex to anticipate expected inputs. 

Pre-stimulus activity has also been shown to reflect choice history biases13,14. 
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Surprisingly, there have been no studies so far that investigated the effect of implicit 

and explicit biases on pre-stimulus activity in the same paradigm. 

EEG and MEG studies have emphasised the impact of pre-stimulus oscillations, 

particularly in the alpha and beta frequency range, on perceptual decision-making. 

Multiple studies have shown that pre-stimulus alpha/beta power in the 

somatosensory cortex negatively correlates with detection rates for a subsequent 

weak tactile stimulus15–20. According to the baseline sensory excitability model 

(BSEM)21, pre-stimulus alpha power correlates positively with the participants' 

decision criterion in detection tasks. Indeed, recent studies in the visual22 and the 

somatosensory domain23, confirmed a positive correlation between spontaneous 

modulations of pre-stimulus alpha power and the participants’ criterion. So far, only 

two studies have experimentally manipulated the decision criterion in humans. Both 

studies employed a visual detection task, inducing criterion changes through reward 

strategy24 or priming25. Kloosterman et al.24 incentivised either a liberal or 

conservative criterion and showed a correlation between visual pre-stimulus alpha 

power and the change in criterion. Zhou et al.25, however, did not find a significant 

correlation between visual pre-stimulus alpha power and criterion changes that were 

induced via priming. While pre-stimulus alpha power has been suggested as a 

neural correlate of criterion changes, two experimental studies did not provide 

consistent evidence supporting the role of alpha power. 

Top-down predictions have also been related to modulations of beta power26,27. 

Consistent with this notion, the control of goal-directed sensory processing has been 

linked to beta power and beta bursts28. Beta power has also been proposed to be 

related to the maintenance of cognitive states29, with evidence pointing to beta power 

not only maintaining but also reactivating cognitive states that are required for the 

current task30, which again supports the idea of a pre-stimulus template of 

expectations as has been suggested by Kok and colleagues12. 

In summary, previous research has proposed that pre-stimulus alpha and beta power 

serve as neural correlates of stimulus expectations. However, there remains no 

consensus on the specific roles of pre-stimulus alpha and beta power in shaping 

decision biases and whether they are linked to explicit and implicit biases. 
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To address this gap, we conducted two complementary EEG studies that differed in 

the temporal context of stimulus occurrence31. We hypothesised that human 

observers would use information about stimulus probability to adjust their detection 

and confidence ratings and exhibit choice history biases. Based on previous findings 

these biases should be reflected in pre-stimulus alpha and/or beta frequency 

oscillations in sensory areas. 

Methods 
Participants 

Forty-three healthy, young volunteers (22 women, 21 men, age: 26.7 ± 4.4 years, 

[mean ± SD], range: 21 to 35 years) were recruited for the first study and forty for the 

second study (23 women, 17 men, age: 25.7 ± 3.9 years, range: 19 to 35 years) from 

the database of the Max Planck Institute for Human Cognitive and Brain Sciences, 

Leipzig, Germany. Gender was determined via participants' self-reports. We did not 

collect data on race or ethnicity. All participants reported to be right-handed. Both 

studies were approved by the Ethics Committee of the University of Leipzig’s 

Medical Faculty (462/15-ek). All participants provided written informed consent and 

were reimbursed 9.00 Euro per hour for their participation in the first study and, due 

to a change of regulations, 12.00 Euro per hour in the second study. The study was 

not preregistered. 

Experimental setup 

This study aimed to investigate how stimulus probability influences tactile perception 

and confidence in humans. All data were acquired at the Max Planck Institute for 

Human Cognitive and Brain Sciences, Leipzig. Electrical finger nerve stimulation was 

performed with a constant-current stimulator (DS5 Isolated Bipolar Current 

Stimulator (RRID:SCR_018001) using single square-wave pulses with a duration of 

200 μs. A waveform generator NI USB-6343 (National Instruments) and custom 

MATLAB scripts using the Data Acquisition Toolbox (MATLAB (RRID:SCR_001622)) 

were used to control the stimulation device. Steel wire ring electrodes were placed 

on the middle (anode) and the proximal (cathode) phalanx of the index finger on the 
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left hand. The experimental procedure was controlled by custom MATLAB scripts 

using the Psychophysics Toolbox (RRID:SCR_002881). 

Experimental paradigm 

At the beginning of the experimental session, we recorded five minutes of resting 

state EEG with eyes open while participants were seated in a comfortable chair in 

the EEG cabin and fixated on a grey cross on the screen. Next, participants were 

familiarised with the electrical finger nerve stimulation. An automatic threshold 

assessment was performed to determine the stimulus intensity corresponding to the 

somatosensory detection threshold. The threshold assessment entailed an 

up-and-down procedure (40 trials in the first run and 25 trials in subsequent runs) 

which served as a prior for the following Bayesian approach (psi method; 45 trials in 

the first run and 25 trials in subsequent runs) from the Palamedes Toolbox32 

(RRID:SCR_006521) and finished with a test block (5 trials without stimulation and 

10 trials with stimulation intensity at the threshold estimate by psi method). Based on 

the test block results for the psi method threshold estimate and weighting in the 

results of the up-and-down procedure, the experimenter selected a near-threshold 

intensity, approximately at a 60 % detection rate. 

Stable environment 

In each trial, participants were instructed to indicate whether they perceived a weak 

somatosensory stimulus (Yes/No) and then to state their retrospective confidence in 

this decision using a binary rating (Confident/Unconfident). Participants were 

informed that they would receive cues about the probability of a stimulus on a given 

trial throughout the experiment. In study 1, a cue appeared at the beginning of each 

condition block for three seconds and was valid until the next probability cue 

appeared (12 trials, the number of trials in a block was not explicitly mentioned). The 

high stimulus probability condition (75 %) instructed participants that there was a 75 

% chance of a stimulus on a given trial, whereas the low probability condition (25 %) 

informed participants that there was a 25 % chance of a stimulus on a given trial. 

Crucially, those cues were always valid, and participants were explicitly told about 

those contingencies. To ensure motivation throughout the experiment, we provided 

participants with feedback (percentage correct displayed for 2.5 seconds) at the end 
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of each probability block. Each of the five blocks contained 144 trials with six 

repetitions for each probability condition. Thus, half of the trials included a 

near-threshold electrical pulse (mean intensity = 1.9 mA, range: 0.9 - 3.7 mA). The 

stimulus intensity was adjusted after each experimental block if the detection rate 

was no longer near-threshold. The other half of the trials did not contain a stimulus 

(noise trials). The order of signal and catch trials and probability condition miniblocks 

was pseudo-randomized for each experimental block and participant. Participants 

responded with the right index finger on a two-button box. Before starting the main 

experiment, participants completed a training block of 48 trials. 

Volatile environment 

In the second study, participants were instructed to indicate whether they perceived 

a weak somatosensory stimulus (Yes/No) and then to state their retrospective 

confidence in this decision using a binary rating (Confident/Unconfident) in each trial. 

Participants were informed that they would receive cues about the probability of a 

stimulus before each trial throughout the experiment. In the second study, either an 

orange or blue circle appeared at the beginning of each trial for one second and 

indicated either high or low stimulus probability (the colour assignment was 

randomised across participants). The high stimulus probability condition (75 %) 

instructed participants that there was a 75 % chance of a stimulus on a given trial, 

whereas the low probability condition (25 %) informed participants that there was a 

25 % chance of a stimulus on a given trial. Crucially, these cues were valid, and 

participants were explicitly told about these contingencies. To motivate participants 

throughout the experiment, we provided participants with feedback (percentage 

correct displayed for 2.5 seconds) after 30 trials. Each of the five blocks contained 

120 trials with an equal amount of high and low stimulus probability trials overall. 

Thus, half of the trials contained a near-threshold electrical pulse (mean intensity = 

2.1 mA, range: 1.1 - 3.6 mA). The other half of the trials did not contain a stimulus 

(catch trials). The order of high and low probability trials and stimulus and noise trials 

was pseudo-randomized within blocks using the Shuffle56 function in Matlab. 

Participants responded with the right index finger on a two-button box. Before 

starting the main experiment, participants completed a training block of 40 trials. 
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Additionally, we asked participants about the colour-probability mapping after each 

experimental block to ensure the probability cues were correctly remembered. 

Behavioural data preprocessing 

Stable environment (study 1) 

Across all participants, we collected 30.816 trials from 43 participants. 35 trials were 

rejected due to missing EEG triggers (EEG recording started too late). Next, we 

removed 39 no-response trials (no button pressed within 2.5 s) and 45 trials with a 

detection response time of less than 100 ms. We excluded eleven blocks that had a 

hit rate greater than 90 % or less than 20 % and resulted from suboptimal threshold 

estimation. These criteria were determined based on values that deviated more than 

three times the standard deviation from the mean hit rate calculated across all blocks 

and participants (mean hit rate: 58 %, standard deviation: 10 %). Additionally, for one 

participant, one block was excluded based on a false alarm rate of more than 40 %. 

After behavioural preprocessing, 28.977 trials remained. 

Volatile environment (study 2) 

We collected 24.000 trials from 40 participants. Data from one participant was 

rejected due to technical issues with the somatosensory stimulation device. From the 

remaining 39 participants, 12 trials were rejected due to missing EEG triggers (the 

battery died, EEG recording started too late). Next, we removed 133 no-response 

trials (no button pressed within 2.5 s) and 102 trials with a detection response time of 

less than 100 ms. We excluded ten blocks that had a hit rate greater than 90 % or 

less than 20 %. Additionally, two blocks were excluded based on a false alarm rate 

of more than 40 %. One block was excluded because the false alarm rate was higher 

than the hit rate.  We used the same exclusion criteria as in the first study (mean hit 

rate: 53 %, standard deviation: 12 %). After behavioural data cleaning, 21.593 trials 

from 39 participants remained. 

Signal Detection Theory Analysis 

We employed Signal Detection Theory (SDT)33 to examine the sensitivity (Dprime) 

and response bias (criterion c) in this study. SDT allows us to distinguish between 
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the ability to detect a signal (e.g., the presence of a stimulus) from a general 

tendency to report either stimulus presence or absence. 

Sensitivity (Dprime): 

Sensitivity, also known as Dprime, quantifies the ability to discriminate between 

signal and noise. It is calculated using the following formula: 

 (1) 𝑑' =  𝑧(ℎ𝑖𝑡 𝑟𝑎𝑡𝑒) −  𝑧(𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚 𝑟𝑎𝑡𝑒)

where z(hit rate) represents the z-score of the hit rate (proportion of correct 

responses when the signal is present), and z(false alarm rate) represents the z-score 

of the false alarm rate (proportion of incorrect responses when the signal is absent). 

Response Bias (criterion c) 

Response bias, represented by criterion c, assesses the individual's tendency to 

respond "yes" or "no" irrespective of the presence (or absence) of the stimulus. It is 

calculated using the formula: 

 (2) 𝑐 =  − 0. 5 *  [𝑧(ℎ𝑖𝑡 𝑟𝑎𝑡𝑒) +  𝑧(𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚 𝑟𝑎𝑡𝑒)]

In our analysis, we computed d' and c for each participant to examine their sensitivity 

to the stimuli and response bias. Higher values of d' indicate better sensitivity, while 

a positive value of c reflects a bias towards responding "no" (conservative criterion). 

The Hautus log-linear correction method34  was employed to address zero false 

alarm rates. 

Statistical Analysis: Behaviour 

Non-parametric Wilcoxon signed-rank tests were applied to compare the paired 

samples in both studies. Tests for normality indicated non-normal distributions of 

criterion and sensitivity in the first study. The Wilcoxon signed rank test is robust to 

deviations from normality and assesses whether the median difference between 

paired observations is significantly different from zero. All tests are two-sided if not 

stated otherwise in the results section. 
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Effect Size Calculation​
 We calculated Cohen’s d as a measure of effect size for the main behavioural 

results. Cohen's d is a measure of standardized mean difference, commonly used to 

assess the magnitude of effect in paired data. For each comparison, Cohen's d was 

computed using the formula: 

(3) 𝑑 =  𝑚𝑒𝑎𝑛 𝑜𝑓 𝑝𝑎𝑖𝑟𝑒𝑑 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠 / 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑝𝑎𝑖𝑟𝑒𝑑 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠 

Following Cohen’s guidelines, effect sizes were interpreted as small (d = 0.2), 

medium (d = 0.5), or large (d = 0.8). 

Estimation of Signal Detection Theory Parameters using Generalized Linear 
Mixed Effects Models 

To investigate the influence of single-trial variables on Signal Detection Theory (SDT) 

parameters35, we employed generalised linear mixed effects models (GLMMs) using 

the lme4 package36 in R (version 4.3.3). We specified a GLMM with a Binomial 

distribution and probit link function to account for the binary nature of the detection or 

confidence response (signal present or absent response, high or low confidence). In 

the simplest model, the intercept represents the overall criterion (c), and the 

regressor that codes whether the trial contained a stimulus corresponds to Dprime37 

(regression formula based on lme4 syntax: detection_response ~ stimulus + 

(stimulus|subject)).  Random intercepts were included in all models, random slopes 

for the main effects and interaction effects only if the models did not show warnings 

about singularity38. To assess collinearity among the predictor variables in our 

analysis, we utilised the 'check_collinearity' function from the 'performance' package 

and to ensure convergence of the models the check_converge function39 in R. 

Variance inflation factor (VIF) values were computed for all models and parameters, 

demonstrating low values (VIF < 3) and indicating the absence of substantial 

multicollinearity for all SDT GLMMs. We used the emmeans (Estimated Marginal 

Means) R package40 for FDR-corrected post-hoc tests on our fitted GLMMs. Model 

summaries are based on the modelsummary package41 and interaction effects plots 

are based on the plot_model() function provided by the sjPlot package42. We 

compared Akaike Information Criterion (AIC) measures of each model and 

considered a difference greater than 10 as a meaningful difference in model fit43. As 
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an independent source of model fit, we compared models using the anova() function 

from the stats package (v. 3.6.2) in R, which compares nested models based on 

likelihood ratio tests. 

EEG Recordings 

EEG was recorded from 62 scalp positions distributed over both hemispheres 

according to the international 10–10 system, using a commercial EEG acquisition 

system (Standard 64ch actiCap Snap, BrainAmp; Brain Products, Brain Products 

(RRID:SCR_009443). The mid-frontal electrode (FCz) was used as the reference 

and a mid-frontal electrode was placed on the middle part of the forehead (between 

FP1 and FP2) as ground. One additional electrode was used to measure 

electroocular activity (placed below the right eye) and ECG activity (placed below the 

left clavicle), respectively. Electrode impedance was kept at ≤ 10 kΩ for all channels. 

EEG was recorded with an online bandpass filter from 0.015 Hz to 1 kHz and 

digitised with a sampling rate of 2.5 kHz for study 1 (stable environment) and 1 kHz 

for study 2 (volatile environment). 

EEG - preprocessing 

We used custom Python scripts and the MNE python package (MNE software 

(RRID:SCR_005972)44 to analyse the EEG data of both datasets. We applied a 

bandpass filter between 0.1 and 40 Hz to the raw EEG data with the following IIR 

filter parameters: Butterworth zero-phase (two-pass forward and reverse) non-causal 

filter, filter order 16 (effective, after forward-backwards, cutoffs at 0.10, 40.00 Hz: 

-6.02, -6.02 dB). Next, we linearly detrended and epoched the data between -1 

second before stimulation onset and 1 second after stimulation onset. After 

downsampling the data to 250 Hz, we used the RANSAC package45 to detect bad 

channels (channels interpolated study 1: mean = 1.0, max. = 4, study 2: mean = 0.7, 

max. = 5). Next, we ran ICA on the 1Hz high-pass filtered, epoched data using the 

extended infomax algorithm46. We correlated ICA components with EOG and ECG 

activity and rejected components that correlated strongly with eye movements and 

cardiac artefacts from the 0.1Hz filtered data (components rejected study 1: mean = 

3.5, max. = 7, study 2: mean = 3.5, max. = 6). Finally, we re-referenced the data to 

the common average of all EEG channels. 
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Evoked potentials 

Electrode CP4 was selected as the channel of interest (COI) based on the 

post-stimulus contrast between signal and noise trials. To compare the experimental 

conditions, we initially averaged the epochs of the defined condition for each 

participant and ensured that the epoch counts were equalised across all conditions. 

Subsequently, we calculated the average evoked data across all participants. We 

used a baseline window of 100 ms before stimulation onset and subtracted the 

averaged activity from the post-stimulus activity for each epoch. To determine the 

channel of interest, we compared signal and noise trials in the post-stimulus window 

and focused on the earliest somatosensory evoked potential, which was in our 

paradigm and with our data preprocessing a positive evoked potential around 50ms 

post-stimulation (which we refer to as P50 component in the following). 

Time-frequency representation in the pre-stimulus window 

We used the multitaper method47 to compute the time-frequency representation in 

the frequency range of 3 to 34 Hz with a resolution of 1 Hz and a time-bandwidth of 4 

Hz. The number of cycles for each frequency was defined as a frequency divided by 

4 cycles (resulting in a temporal resolution of 125 ms). We mirrored the data on both 

ends to minimise edge artefacts. The number of epochs was matched between 

conditions using the minimum time difference method implemented in MNE Python. 

For the contrast between high and low stimulus probability in the stable environment, 

we calculated averaged time-frequency representations separately for previous hits 

(previous yes response in previous signal trial), misses (previous no response in 

previous signal trial) and correct rejections (previous no response in previous noise 

trial) for the high and low stimulus probability conditions. Next, we subtracted the 

respective contrasts, e.g. high previous hits vs. low previous hits. Finally, we 

averaged the time-frequency representations of high vs. low stimulus probability 

corrected for previous trial history. The design in the volatile environment allowed us 

to average over high and low probability trials without controlling for previous trial 

characteristics, as the previous trial history was randomised (suppl. fig. 1.4). To 

specifically examine the influence of past choices on power modulations, we 

restricted our analysis to trials occurring under high probability conditions and those 

following a signal in the stable environment. In the volatile environment, our analysis 
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targeted trials with identical probability cues in both the preceding and current trials 

in the high probability condition. 

Cluster-based permutation tests 

For statistical comparisons of the time and frequency domain, we used 

threshold-free cluster-based permutation testing implemented in MNE with a cluster 

and statistical threshold of p = 0.05 and 10.000 permutations. The test statistic was a 

two-tailed one-sample t-test, as we tested whether the difference between conditions 

was significantly different from zero. Adjacency was defined over time (neighbouring 

time points are considered as adjacent) and frequency (neighbouring frequencies 

are considered as adjacent). We used a step size of 0.1 and an initial t-threshold of 0 

for threshold-free cluster enhancement48. The MNE defaults for the cluster height (2) 

and cluster extent (0.5) were used. 

DICS source localization of pre-stimulus power 

Source localization was performed using Dynamic Imaging of Coherent Sources 

(DICS)49 beamforming implemented in MNE. The source space encompassed a total 

of 8196 individual sources (5mm spacing between sources). We used the MNE 

standard BEM (5120-5120-5120) model based on the freesurfer average brain and 

standard electrode positions. For each participant, source localization was computed 

for the beta band frequency range where we observed the strongest modulations in 

sensor space (15 - 25 Hz) in the pre-stimulus window, averaged over 600ms before 

stimulation onset (700ms to 100ms before stimulation onset). Cross-spectral density 

was computed for all epochs and separately for the high probability and low 

probability epochs, and the previous yes and no previous no responses. To compute 

source power, we estimated cross-spectral density for each epoch using Morlet 

wavelets with the cycles linearly increasing per frequency (frequency/4 cycles). Next, 

we averaged over all frequencies and computed a common spatial filter, before we 

applied the filter to the data of each condition. The filter was computed for the 

orientation that maximised power. Finally, we subtracted the source power of low 

probability trials from the source power of high probability trials before we averaged 

the contrast over participants. To visualise the contrast, we ran a permutation t-test 

(10 000 permutations) for all sources, and we highlight the source with the highest 
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t-values on the fsaverage template brain. We validated our beamformer on the beta 

power desynchronisation for the post-stimulus contrast between signal and noise 

trials, which showed – as expected - a source in the postcentral gyrus (suppl. fig. 

2.4). 

Pre-stimulus source power per trial 

We created a mask based on the contrast for stimulus probability or previous 

response to extract pre-stimulus power in source space. Voxels with the highest 

t-values for each contrast were defined, and power for each trial was averaged over 

those vertices. For the brain behaviour modelling, the source power was 

log-transformed, z-scored and detrended over all trials and for each experimental 

block. Trials with z-scored source power > 3 or < -3 were excluded from the analysis. 

Pre-stimulus power was entered as a continuous regressor in our models and only 

binned for visualisation. 

Mediation analysis 

We conducted mediation analysis using the 'mediation' package50 in R. The 

mediation analysis examined the mediating role of pre-stimulus power on the 

relationship between stimulus probability (independent variable) and the detection 

response (dependent variable). To conduct the mediation analysis, we set up a linear 

mixed effects model with the mediator as the dependent variable (pre-stimulus 

power) and the independent variable as the predictor (stimulus probability). Next, we 

fitted a GLMM with the detection response as the outcome variable (dependent 

variable) and the mediator (beta power) and the independent variables as predictors. 

We included the stimulus on each trial as a covariate in our model. The same 

mediation model was fit with the previous choice as an independent variable. Finally, 

we computed the indirect effect, the total effect and the direct effect. The 95 % 

confidence intervals of the regression weights were estimated using quasi-Bayesian 

approximation with 1000 Monte-Carlo permutations. 
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Results 

Behavioural criterion shifts in correspondence to 
stimulus probability 

We tested the effect of stimulus probability on somatosensory near-threshold 

detection in two separate studies (fig. 1A) The first study (n=43) informed 

participants about stimulus probability at the beginning of each block consisting of 12 

trials (stable environment, fig. 1B). The stimulus onset within a trial was cued by a 

colour change of the fixation cross. The second study (n=39) provided information 

about stimulus probability at the beginning of each trial (volatile environment, fig. 

1C). In both studies, signal detection theoretic (SDT) analyses verified that 

participants adjusted their criterion to report a stimulus based on the instructed 

stimulus probability, i.e., the criterion was lower (more “liberal”) in the high probability 

condition (mean criterion change high vs. low stimulus probability: Δcrit. stable= -.21, W 

= 172, p < .0001, Cohen’s d = .72, bootstrapped 95 % confidence interval of median 

difference [-.258, -.109]; Δcrit. volatile= -.21, W = 91, p < .0001, Cohens’ d = .84,  [-.286, 

-.114], fig. 2A&Biv). Participants reported that they perceived a stimulus more often 

in signal trials (mean hit rate (HR) change high minus low stimulus probability: ΔHR 

stable= .07, W = 151, p < .001, Cohen’s d = .67, [.021, .077]; ΔHR volatile = .08, W = 69, p 

< .0001, Cohen’s d = .98, [.060, .111]) and noise trials (trials without a stimulus) 

(mean false alarm rate (FAR) change high minus low stimulus probability: ΔFAR stable= 

.06, W = 185, p < .001, Cohen’s d =.62, [.007, .055]; ΔFAR. volatile = .03, W = 169, p = 

.002, Cohen’s d =.52, [.004, .038]) under the high as compared to the low probability 

condition (fig. 2Ai & ii and fig. 2Bi & ii). Stimulus sensitivity (measured by the SDT 

parameter Dprime) did not significantly differ between conditions in both studies 

(mean Dprime change high minus low stimulus probability: ΔDprime stable = -.06, W = 

391, p = .329, Cohen’s d = .18, [-.186, -.020], ΔDprime volatile = .02, W = 361, p = .686, 

Cohen’s d = .07, [-.160, .174], fig. 2Aiii & fig. 2Biii). Analysis of confidence responses 

further confirmed that participants utilised stimulus probability to inform their 

decision-making process. Specifically, confidence ratings in correct trials were 

compared based on the congruency between the probability cue and the response 
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on each trial. We expected participants to be more confident in their yes decisions in 

high stimulus probability trials and no responses in low stimulus probability trials 

(congruent trials). Indeed, participants reported significantly higher confidence in 

trials that were congruent with their response compared to incongruent trials (mean 

confidence congruent minus incongruent correct trials: Δconf. stable= .08, W = 92, p < 

.0001, Cohen’s d = .70, [.026, .079]; Δconf. volatile =.04, W = 188, p = .005, Cohen’s d = 

.51, [.003, 044], fig. 2Av & fig. 2Bv). Notably, the excluding three participants with 

very high false alarm rates (> 40 %) in the high stimulus probability condition did not 

change the statistical outcomes in the stable context (suppl. fig. 1.1). Participants 

were explicitly informed about stimulus probability and trial randomisation. We 

hypothesised that the previous choice would be more informative in a stable 

environment, as participants only had to keep in mind the last few trials (12 trials) 

compared to the whole experimental block (120 trials) in the volatile design (suppl. 

fig. 1.2). We fitted separate signal detection theoretic generalised linear mixed 

models (GLMMs) with a binomial outcome variable and a probit link function for each 

stimulus probability environment. Each model investigated the relationship between 

the explicit, stimulus probability-induced bias and the implicit, choice history bias. 

The basic signal detection theoretic regression model predicts the detection 

response (detected or undetected) on each trial based on the stimulus (signal or 

noise) and the stimulus probability (high or low). The model incorporates an 

interaction term between stimulus and stimulus probability, representing changes in 

sensitivity resulting from the probability manipulation. The weight of the stimulus 

probability regressor represents the influence of the stimulus probability cue on the 

criterion c. 

Response history bias interacts with stimulus probability in a 
stable probability environment 

To investigate how previous choices influence current choices, we included the 

previous detection response as a regressor in our model, which improved the model 

fit in both probability environments (ΔAIC stable= -229, 𝚾2(5) = 229.83, p < .001; ΔAIC 

volatile= -80, 𝚾2(5) = 90.94, p < .001). Overall, participants showed a tendency to 

repeat their previous choice (βstable= .117, p = .021, [.018, -.216]; βvolatile= .177, p < 

.001, [.092, .261]). Importantly, even after controlling for the effect of the previous 
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choice, stimulus probability still accounted for a significant amount of variance in the 

detection response (βstable= .141, p = .010, [0.034, 0.248]; βvolatile= .180, p = .001, 

[0.071, 0.298]). Finally, we fit a model that included the interaction between the 

previous choice and stimulus probability, which improved the model fit in the stable 

but not in the volatile context (ΔAIC stable= -13, 𝚾2(1) = 14.91, p < .001; ΔAIC stable= +2, 

𝚾2(1) = 0.08, p = .777). Specifically, the model fitted with the data from the stable 

environment showed a significant interaction between the stimulus probability and 

the previous choice regressor (βstable = .163, p < .001, [.080, .245]). Post-hoc tests 

showed a significant influence of the previous choice on the detection response both 

in the high and low stimulus probability conditions, but a weaker effect in the low 

probability condition (conditioned on low stimulus probability and previous yes 

response: βstable= .058, p = .021, [.002, .114]; high stimulus probability and previous 

yes response: βstable= .140, p < .001, [.092, .188], FDR corrected, suppl. fig. 1.3 

visualises the model-free interaction effect of criterion (c) and previous choice, model 

summaries in suppl. table 1 & 2). 

A key feature of the stable environment is the difference in the previous response 

distributions between the probability blocks. While in both environments the 

instructed probability matched the actual stimulus probability (“valid cues”), the 

randomisation of probability cues within the volatile environment effectively balanced 

the distributions of previous "yes" and "no" responses (suppl. fig. 1.4). 

Next, we fitted the interaction model from the stable environment separately for 

signal and noise trials, to investigate whether the interaction effect was driven by the 

unequal amount of signal and noise trials within the probability conditions. Both the 

“signal trials only” model (β = .182, p = .004, [.059, .305]), as well as the “noise trials 

only” model (β = .213, p = .027, [.024, .403]) showed a significant interaction 

between the choice history induced bias and the stimulus probability induced bias. 

The model fitted with trials that previously contained a signal confirmed an 

interaction between stimulus probability and previous response (β = .149, p = .021, 

[.022, .275]). Interestingly, the interaction effect was no longer statistically significant 

for trials that followed noise (β = .029, p = .742, [-.146, .205]). 
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Lower pre-stimulus beta power in distinct areas 
associated with bias introduced by stimulus probability 
and previous choice 

After having confirmed the behavioural effects of the explicit stimulus probability 

manipulation both on detection as well as confidence responses, we set out to 

determine the neural correlates of both explicit and implicit biases on somatosensory 

near-threshold detection. Our initial analysis in sensor space focused on 

low-frequency oscillations in the pre-stimulus window. To determine the 

somatosensory region of interest, we selected the EEG channel that showed the 

strongest early somatosensory stimulus-evoked response (i.e., here assessed by the 

P50 component at around 50 ms post-stimulus). In both studies, this was channel 

CP4, which is located over centro-parietal areas contralateral to the somatosensory 

stimulation site (suppl. fig. 2.1). Next, we computed time-frequency representations 

in the pre-stimulus window in the frequency range from 3 to 35 Hz for both 

environments. A threshold-free cluster-based permutation test in sensor space 

showed no significant cluster for the contrast between high and low stimulus 

probability trials (fig. 3Ai) in the stable environment (minimum cluster p-value: .087, 

peak t-value: 2.035, Cohen’s d = .14,) but a significant cluster in the volatile 

environment, most likely driven by lower power in the beta range in the high stimulus 

probability condition (minimum cluster p-value: <.001, peak t-value: 5.312, Cohen’s d 

= .11, fig. 3Bi, suppl. fig. 2.2 for a shorter pre-stimulus window). The t-values were 

most negative in the beta frequency band, suggesting that beta band modulations 

are forming the cluster. A cluster-based permutation test contrasting pre-stimulus 

power in detected (hits) and undetected signal trials (misses) showed lower alpha 

power immediately before detected trials in the stable environment, independent of 

the probability condition. Lower beta power was only clearly present in the high 

stimulus probability condition. In the low probability condition, beta (above 18Hz, 

100ms before stimulation) showed no strong modulation (suppl. fig. 2.3 Ai, ii, stable 

environment: high probability hit minus miss contrast: minimum cluster p-value < 

.001, peak t-value: 9.139, Cohen’s d = .21, low probability hit minus miss contrast: 

minimum cluster p-value < .001, peak t-value: 8.286, Cohen’s d = .18). In the volatile 

environment, beta power decreased before hits in the high-probability condition. 
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There was no significant cluster in the low probability condition (suppl. fig. 2.3 Bi, ii, 

volatile environment high probability hit minus miss contrast: minimum cluster 

p-value < .001, peak t-value: 3.435, Cohen’s d = .09, low probability hit minus miss 

contrast: minimum cluster p-value = .063, peak t-value: 6.352, Cohen’s d = .16). 

While these data should be interpreted cautiously, the finding of a decrease in beta 

power (hits versus misses), especially in the high probability trials, supports the idea 

that beta band power modulations are crucial for implementing explicitly induced 

criterion changes (suppl. fig. 2.3 Bi, ii). Next, we reconstructed pre-stimulus beta 

power using a beamforming approach. After having validated our beamformer on 

post-stimulus data (suppl. fig. 2.4), we contrasted pre-stimulus beta [-700ms to 

-100ms] power for high minus low stimulus probability (visualisation of t-values in 

each vertex obtained by a permutation t-test) and located the strongest modulation in 

the postcentral gyrus for both environments (fig. 3Ai & 3Bi). Next, we aimed to 

identify the effect of previous choices in the same pre-stimulus window. 

Threshold-free cluster-based permutation testing in the pre-stimulus window showed 

a significant cluster for the previous response contrast in the stable environment 

(minimum cluster p-value: .040, peak t-value: 7.766, Cohen’s d = .17, fig. 3Ai), but no 

significant cluster in the volatile environment (minimum cluster p-value: .378, peak 

t-value: .356, Cohen's d = .10, fig. 3Bii). The strongest power modulation for the 

previous response contrast was in the secondary somatosensory cortex for the 

stable environment and in the posterior parietal cortex for the volatile environment. 

Pre-stimulus beta power predicts criterion change in 
both environments and interacts with the previous 
response in the stable environment 

The analysis so far showed a modulation in the lower beta band power before 

stimulation onset in distinct cortical areas. Next, we investigated how the 

pre-stimulus beta power modulations related to the behavioural outcomes of the 

stimulus probability manipulation. Therefore, we averaged pre-stimulus beta power 

[15-25 Hz] in the pre-stimulus window (-700ms to -100ms) over voxels in source 

space which were among the 10 % of voxels with the most negative t-values for the 

probability contrast. Note that in both environments, the strongest beta modulation 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 8, 2025. ; https://doi.org/10.1101/2024.06.12.598458doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.12.598458
http://creativecommons.org/licenses/by/4.0/


was in the postcentral gyrus. Behavioural modelling showed that the probability 

manipulation led to a change in participants’ decision criteria in both studies, with an 

interaction between the previous response and stimulus probability only in the stable 

environment. If pre-stimulus beta power is a neural correlate of the experimental 

manipulation of stimulus probabilities, i.e., reflecting the change in criterion, it should 

also predict the change in detection rates (for signal and noise trials) in both studies 

and mimic the interaction with the previous choice in the stable environment. For the 

single-trial analysis, we calculated pre-stimulus beta power averaged over the most 

discriminative voxels for the stimulus probability contrast. Brain-behaviour modelling 

confirmed that stimulus probability could be decoded from pre-stimulus beta power in 

somatosensory areas (βstable = -.030, p = .009, [-.052, -.008]; βvolatile = -.0480, p < .001, 

[-.070, -.026]), with lower power predicting higher stimulus probability. Participants 

responded more often that they detected a stimulus both in signal and noise trials 

after lower pre-stimulus beta power, which suggests that pre-stimulus beta power is 

a neural correlate of the criterion change (βstable = -0.099, p = .001, [-.159, -.039]; 

βvolatile = -.175, p < .001, [-.249, -.101]; fig. 4Ai). In the stable environment, the 

best-fitting model included an interaction between the previous response and beta 

power (ΔAIC = -17.58, 𝚾2(2) = 21.578, p < .001). The interaction between beta power 

and previous choices was such that for low beta power, the effect of the previous 

choice on the detection response was reversed in comparison to the relationship for 

high beta power (fig. 4Aii). The best fitting model in the volatile environment did not 

include an interaction between previous choices and stimulus probability (ΔAIC= 2.65, 

𝚾2(2) = 1.35, p = .508), participants responded more often that they detected a 

stimulus after low beta power and after previous yes responses (fig. 4 Bii, model 

summaries in suppl. table 3 & 4). 

Pre-stimulus beta power mirrors the congruency effect 
on confidence ratings 

To reinforce the significance of pre-stimulus beta power as a neural correlate of 

stimulus expectations, we aimed to validate its ability to account for the congruency 

effect on confidence ratings observed in the behavioural model. Congruency was 

defined as the alignment between stimulus probability and the detection response. 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 8, 2025. ; https://doi.org/10.1101/2024.06.12.598458doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.12.598458
http://creativecommons.org/licenses/by/4.0/


For example, a "yes" response in the high probability condition would be considered 

a probability-congruent response. Participants were more confident in correct trials 

after a no response and following a previous high confidence rating. Crucially, 

pre-stimulus beta power mimicked the response congruency effect on confidence: 

Participants were more confident in yes responses in the high probability condition 

compared to the low probability condition (βstable probability*response = 0.673, p 

<.001, [.456, .899]; βvolatile probability*response = .342, p < .001, [.177, .506]; fig. 5Ai 

& Bi) and analogously in trials with low pre-stimulus beta power (a feature of the high 

probability condition) compared to trials with high pre-stimulus beta power (βstable 

beta*response = -0.106, p = .002, [.174, .038]; βvolatile beta*response = -.095, p = 

.019, [.175, .016]; fig. 5Aii & Bii). The inverse behaviour was seen for No-responses 

(suppl. table 5 & 6). 

Distinct pre-stimulus beta power sources partially 
mediate the effect of stimulus probability and the 
previous response on somatosensory near-threshold 
perception 

Finally, a neural correlate of explicit and implicit biases should partially mediate the 

effect of stimulus probability and choice-history biases on the detection response. 

We used causal inference methods51,52 to determine the indirect effect of either 

stimulus probability or previous choice on detection mediated by pre-stimulus beta 

power (fig. 6A & B; c’ path). We used linear mixed-effects models to estimate the “a 

path”, which represents the direct effect of either stimulus probability or previous 

choice on pre-stimulus power. The “b path” is represented via the effect of 

pre-stimulus beta power on the detection response. Pre-stimulus beta power in 

probability discriminative areas partially mediated the effect of stimulus probability on 

detection, with a less pronounced effect in the stable environment (βstable prop. 

mediated = .009, p = .010, [.002, .020]; βvolatile prop. mediated = .032, p < .001, [.008, 

.040]; fig. 6Ai & Bi). The proportion mediated for the previous choice via beta power 

was similar in both environments (βstable prop. mediated = .012, p < .001, [.005, .02]; 

βvolatile prop. mediated = .015, p = .004, [.001, .040]; fig. 6Aii & Bii, model summaries 
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in suppl. table 7 & 8). In summary, the mediation analysis supports the role of 

pre-stimulus beta power in implementing explicit and implicit biases in distinct 

cortical areas. 
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Discussion  

Here, we investigated the neural mechanisms underlying biases in somatosensory 

perception in a stable and volatile stimulus probability environment. By manipulating 

the expectation of stimulus occurrence via visual cues in blocks or on a single trial 

level in two separate studies, we show that participants adjust their perceptual 

decision criterion and confidence ratings based on the cued stimulus probability. 

Next to the explicit biases, participants also exhibited strong previous choice biases. 

In EEG recordings, we identified pre-stimulus beta power in distinct brain areas as 

neural correlates of explicit and implicit biases: Pre-stimulus beta power in the 

postcentral gyrus predicted single-subject criterion changes and partially mediated 

the effect of stimulus probability on the detection response. Pre-stimulus beta power 

also reflected a key feature of the stable probability environment: an interaction with 

the previous choice. Single-trial beta power modulations also mimicked the impact of 

the explicit bias on confidence ratings in both environments. In the volatile probability 

environment, the previous choice bias was reflected in pre-stimulus beta power in 

posterior parietal areas. In the stable probability environment, the strongest previous 

choice beta power modulation was localised in the secondary somatosensory cortex. 

Both sources partially mediated the effect of the previous response on the current 

response. In summary, we suggest that pre-stimulus beta power in distinct cortical 

areas implements explicit and implicit biases. 

Implicit and explicit priors 

In the first experiment, participants were informed about stimulus probability in a 

block-wise manner, which arguably is a more ecologically valid design. However, 

since the probability cue was valid, the probability blocks contained an unequal 

amount of signal and noise trials and thus the response distributions (and hence 

previous choice frequencies) between the low and high probability conditions were 

unbalanced; for this reason, in the second experiment, the probability cue was 

provided before each trial resulting in a balanced previous choice distribution. In both 

environments, the probability cues led to changes in criterion, as previously shown 

for the visual domain4,24,25, and the previous response significantly predicted the 

detection response in the current trial. Those results support previous findings on 
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response history biases even in designs where the stimulus order is randomized53,54. 

Furthermore, in both environments, participants gave higher confidence ratings in 

trials where their expectation matched their response55. A difference between the two 

study designs is that in the stable environment, the last trial is more informative for 

the current subjective belief about stimulus probability within the same block (suppl. 

fig. 1.2). This difference was also reflected in our model-based analysis of the 

participants’ behaviour: The best model for the stable environment included an 

interaction term between the previous response and stimulus probability. Participants 

only relied on their previous responses in the high probability blocks, where they 

encountered mainly near-threshold signals with high uncertainty. In summary, 

behavioural modelling confirmed that explicit and implicit biases shape 

somatosensory near-threshold detection and interact in stable probability 

environments. 

Somatosensory pre-stimulus beta oscillations as a neural correlate of explicit 
biases 

After confirming the behavioural relevance of stimulus probability on somatosensory 

detection and confidence in both environments, we examined how stimulus 

probability and previous choice impacted neural activity before stimulation onset. 

Time-frequency representations for the contrast of high minus low stimulus 

probability in the pre-stimulus window showed a significant negative cluster, with the 

most profound effect in the beta band for the volatile environment. In the stable 

environment, participants had to remember the probability cue throughout 12 trials, 

potentially leading to weaker effects of the cue in the pre-stimulus period. 

Conversely, in the volatile environment, the probability cue before each trial appears 

to “dominate” the pre-stimulus characteristics over the effect of the previous trial. 

Contrasting hits and misses in the pre-stimulus window supported this idea. In the 

stable and volatile environment, the contrast showed significantly lower beta power 

immediately before stimulation onset when the expectation for stimulus occurrence 

was high. There was no significant cluster for hits minus misses when the 

expectation for stimulus occurrence was low. Importantly, the localised sources of 

the strongest beta power modulation for the probability manipulation were in similar 

locations within the postcentral gyrus. 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 8, 2025. ; https://doi.org/10.1101/2024.06.12.598458doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.12.598458
http://creativecommons.org/licenses/by/4.0/


Our finding of beta modulation reflecting explicit probability bias is consistent with the 

assumed role of beta for top-down modulation of perceptual decisions56 and more 

generally as a neural correlate of top-down expectations57,58: For the somatosensory 

domain, the study by van Ede et al. (2010) suggested pre-stimulus beta power as a 

potential neural correlate of tactile expectations59 with lower power before an 

expected somatosensory stimulus. Ede and colleagues controlled for trial history and 

showed that pre-stimulus beta power implements top-down expectations. This 

finding is consistent with a study investigating painful stimuli by Nickel et al.60. The 

authors show decreases in alpha and beta power in the pre-stimulus window in trials 

with a high expectation for a painful stimulus in somatosensory channels. Weisz et 

al.61 identified a pre-stimulus alpha/beta modulation in the contralateral secondary 

somatosensory cortex during a near-threshold somatosensory detection task. They 

interpreted these modulations with a change in the starting point for perceptual 

decisions. Importantly, this does not speak against the proposed mechanism for 

criterion changes via shifts in baseline sensory excitability. Instead, we suggest that 

pre-stimulus beta oscillations mediate stimulus probability on tactile detection, 

potentially via changing baseline activity in sensory areas before stimulus onset. The 

crucial difference to previous studies is the explicit manipulation of the criterion via 

expectations in contrast to spontaneous modulations of the baseline, which were 

mainly related to alpha power21. Notably, lower beta power in somatosensory regions 

has also been associated with increased detection rates18. We propose that 

pre-stimulus beta power modulations are observed in tasks where top-down 

influences dominate spontaneous baseline shifts29,30. Supporting this idea, beta 

power modulations related to top-down processing have been observed in regions 

typically dominated by alpha activity62. 

One possible explanation for the varying contributions of alpha and beta power in 

somatosensory perception could be the dynamic reconfiguration of brain networks. 

Recent work by Sharma and colleagues63 suggests a gradual shift from parietal to 

frontal networks in the pre-stimulus window of a somatosensory detection task. 

Based on those findings, we suggest that studies focused on localised brain 

dynamics may only capture transient states within a broader, interconnected 

network. Lower pre-stimulus alpha and beta power in sensory areas during trials with 
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a reduced perceptual threshold may reflect efficient information routing within 

different states of the same network. 

We observed lower pre-stimulus beta power in trials with high stimulus probability, 

which were behaviourally linked to a lower detection threshold. While previous 

studies associate higher pre-stimulus beta power with predictable stimulus onsets64, 

our findings cannot be explained by temporal prediction, as stimulus timing was 

equally predictable across conditions. An alternative interpretation relates to the role 

of beta oscillations in maintaining cognitive states. Though not designed to 

investigate working memory, our results align with the idea that higher beta power 

reflects a resistance to change29, as trials with higher pre-stimulus beta were 

associated with a more conservative detection threshold. Another perspective comes 

from research on statistical learning. Bogarts et al. observed lower pre-stimulus beta 

power within learned sequences compared to sequence transitions65. Our paradigm 

prevented learned predictions through pseudo-randomisation of stimuli and 

probability cues. The proposed role of beta power in encoding uncertainty is 

intriguing, however, the current design 

of this study does not allow for strong conclusions on their relationship. We 

conducted two separate studies with two different samples of participants, which 

allowed us to confirm the behavioural results in an independent sample. A follow-up 

study could leverage a longitudinal design to explore the temporal stability of both 

externally induced biases and implicit previous-choice biases. This would address 

whether explicit and implicit biases are better characterised as traits66 or states. We 

localised the pre-stimulus beta power modulation in somatosensory areas in both 

studies, but we refrain from concluding that this is evidence for a change in 

subjective experience. It has been shown that a reproduction task is necessary to 

distinguish between changes in subjective experience and decision-related 

processes67. 

Our results show that beta power in the primary somatosensory cortex plays a key 

role in implementing explicit biases; this leaves open how the previous choice bias is 

implemented. 
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Pre-stimulus posterior parietal and SII beta oscillations as a neural correlate of 
implicit biases 

Time-frequency representations for the previous response contrast revealed a 

significant cluster in the beta band for the stable environment with lower power after 

previous yes responses. Source reconstruction of pre-stimulus beta power for the 

previous response contrast highlighted the posterior parietal cortex as the source of 

the strongest difference between previous responses in the volatile environment. 

Neural correlates of previous choice biases in non-human primates have been 

located in the frontal and posterior parietal cortex (PPC)68,69, while a recent study in 

humans suggested pre-stimulus gamma power in the parietal cortex as a neural 

marker of previous choice biases54. Consistently, our findings emphasise the role of 

posterior parietal brain areas mediating the effect of the previous choice on the 

current choice via pre-stimulus beta power. 

Interestingly, in the stable environment, the beta power source for the previous 

response contrast highlighted another area, i.e., the secondary somatosensory 

cortex (SII). As outlined earlier the subjective relevance of the previous response 

and thus the “cognitive process” underlying the previous choice is expected to be 

different in the stable environment. A study by Romo et al.70 in non-human primates 

revealed that neurons in SII encoded both past and present sensory information 

during a frequency discrimination task. Primates had to remember the previous 

stimulus to compare it with the current one. In our task, participants were instructed 

to base their responses solely on the current stimulus while remembering the 

stimulus probability. However, in a stable probability environment, human observers 

are likely to keep track of recently encountered stimuli and base their decisions not 

only on the current stimulus but also on past stimuli. We suggest that SII integrates 

information from past stimuli not only in discrimination tasks but also in detection 

tasks with known stimulus probabilities. Future studies should directly test this idea 

by comparing neural modulations in discrimination intervals with those observed in 

inter-trial intervals. This idea is supported by findings from a rodent tactile working 

memory task71, which demonstrated that SII enables task information to persist 

across different behavioural states. Given the evidence from previous studies and 

our findings on the roles of PPC and SII, we tentatively conclude that both areas are 
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involved in the neural implementation of previous choice biases, with each region's 

role being more strongly emphasised in stable and volatile probability environments. 

Pre-stimulus beta power predicts explicit and implicit biases, mimics the 
congruency effect on confidence and mediates both stimulus probability and 
previous response bias in distinct brain areas 

To investigate the relationship between pre-stimulus power and behavioural 

outcomes, we added pre-stimulus source power averaged over the most 

discriminative voxel for either probability or previous responses in our perceptual 

models. The results confirmed the role of pre-stimulus beta power in predicting 

responses for signal and noise trials; pre-stimulus beta power also mimicked the 

interaction of the previous response with the stimulus probability in the stable 

environment. Finally, we showed that somatosensory beta power partially mediated 

the effect of stimulus probability and previous choice on the detection response. 

While the proportion mediated was small, the effect sizes are similar to previous 

studies investigating brain-behaviour mediation models in perceptual decision 

making and oscillations23,54. A recent review indicates that beta oscillations, 

particularly beta bursts, occur across various cortical regions28. The authors suggest 

that beta oscillations act as spatiotemporal filters, thereby controlling information flow 

throughout the brain via brief periods of functional inhibition. We show distinct beta 

sources for implicit and explicit biases in the pre-stimulus window that shape 

somatosensory perception. 

The observed effect of higher confidence in response-congruent trials could be 

replicated by a model that included pre-stimulus beta power as a neural correlate of 

stimulus probability. Those results illustrate the intricate interplay between 

pre-stimulus power and confidence, as it is not the absolute level of beta power that 

determines confidence. Both high and low beta power before a stimulus can lead to 

a high confidence perceptual decision – it depends on the response and whether it 

matches the expected stimulus. Earlier studies have emphasised a negative 

association between pre-stimulus alpha power and confidence72,73. Extending this 

perspective, Baumgarten et al.15 demonstrated in a somatosensory discrimination 

task that the correlation between pre-stimulus alpha power and confidence varies 

depending on accuracy. The results of our study suggest that the relationship 
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between pre-stimulus beta power and confidence depends on the congruency 

between the response and the expectation, further supporting the idea that beta 

oscillations are crucial for implementing top-down biases in sensory areas. 

Limitations 

The computational models used assume a linear relationship between pre-stimulus 

power and the detection response74. Consequently, non-linear effects between power 

and behavioural outcomes cannot be detected by the models used in this study. 

Finally, the electrical stimulation used in our study, although widely used in research, 

is not a naturalistic stimulus. 
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Figure legends 
Fig. 1: Stimulus probability manipulation in a somatosensory perceptual 
detection task. A: Signal detection theory model: According to SDT, valid 

information about stimulus probabilities changes the decision criterion c while 

sensitivity Dprime should not be affected. B: Stable environment: Participants were 

presented with a valid probability cue (low or high) at the beginning of each block. 

Each block consisted of 12 trials, with the proportion of near-threshold and “catch” 

(i.e., no stimulus) trials according to the probability cue. C: Volatile environment: 

Participants were presented with a probability cue (orange or blue circle) at the 

beginning of each trial. Abbreviations: S: Signal, N: Noise. 

Fig. 2: Experimentally controlled stimulus expectations shift detection 
thresholds in stable and volatile probability environments. A: Signal detection 
theoretic analysis stable environment (A, n = 43 participants) and volatile 
environment (B, n = 39 participants). Participants had a higher hit rate (i) as well 

as a higher false alarm rate (ii) in the high expectation condition with no significant 

difference in Dprime (iii). The criterion c was significantly more conservative in the 

high probability condition (iv). The mean of high confidence ratings in correct trials 

was higher in trials in which the response matched the participants' expectations 

(congruent trials) (v). Supplementary figures 1.1, 1.2, 1.3, 1.4. Box plots depict 

median and interquartile range, while whiskers show minimum and maximum values. 

Significance: *** p < .001, ** p < .01, * p < .05. Abbreviations: ns = not significant. 

Fig. 3: Lower pre-stimulus beta power in high probability trials and after a 
previous yes response in distinct cortical areas. Ai: In the stable environment (n 

= 43 participants), a threshold-free cluster permutation test showed no significant 

cluster for the difference between high and low stimulus probability in the 

pre-stimulus window (minimum p-value: .087). A t-test on the source reconstructed 

pre-stimulus beta power contrast locates the strongest modulation (most negative 

t-values) in the postcentral gyrus. Bi: In the volatile environment (n = 39 

participants), a threshold-free cluster permutation test detected a significant cluster. 

The effect was most pronounced around stimulus onset in the beta band, with lower 

power in the high stimulus probability condition (minimum p-value: = .001). The beta 
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power source was localised in the postcentral gyrus. Aii: A significant cluster was 

found in the pre-stimulus window for the contrast between previous yes - previous no 

responses, which was most likely driven by lower beta power after a previous yes 

response (minimum p-value: .040) and for which the strongest beta modulation 

originated from the secondary somatosensory cortex (SII). Bii: No significant cluster 

for the contrast of previous choices was found in the volatile environment (minimum 

p-value: .378). The strongest beta modulation originated from the posterior-parietal 

cortex. The area marked in red highlights the postcentral gyrus. The 10 % most 

negative t-values are highlighted in source space, with darker colours representing 

more negative values. Suppl. fig. 3.1, 3.2, 3.3., 3.4. 

Fig. 4: Pre-stimulus beta power predicts criterion change and interacts with 
stimulus probability in the stable environment. Ai: the probability for a detection 

response decreases with higher pre-stimulus beta power for both signal and noise 

trials in the stable environment (n = 43 participants). Bi: the probability for a stimulus 

report decreases with higher pre-stimulus beta power for both signal and noise trials 

in the volatile environment (n = 39 participants).  Aii: the effect of the previous 

response depends on the stimulus probability condition in the stable environment 

(significant interaction). Bii: participants respond more often that they detect a 

stimulus after previous yes responses in both probability conditions (no significant 

interaction) in the volatile environment. Aiii: in the stable environment, the previous 

response interacts with pre-stimulus beta power regarding its relationship with the 

probability of a yes response such that with a previous "no response” the probability 

of a “yes response” decreases while there is no effect after a previous yes response. 

Biii: The probability for a yes response decreases with increasing beta power 

independent of the previous response. Significance levels: *** p < .001, ** p < .01, * 

p < .05, shaded areas and error bars show the 95 % confidence interval. 

Fig. 5: Pre-stimulus beta power predicts congruency effect on confidence 
ratings. Ai: the congruency effect on confidence between response and stimulus 

probability in the stable environment (n = 43 participants): participants are more 

confident in no responses in the low probability condition and more confident in yes 

responses in the high probability condition. Bi: the congruency effect on confidence 

between response and stimulus probability in the volatile environment (n = 39 
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participants): participants are more confident in no responses in the low probability 

condition and more confident in yes responses in the high probability condition. Aii: 
significant congruency effect on confidence between response and beta power in the 

stable environment: beta power does predict the confidence for both yes and no 

responses conditional on the probability condition. Bii: significant congruency effect 

on confidence between response and beta power in the volatile environment for yes 

responses: lower beta power increases confidence in yes responses. The error bars 

show the 95 % confidence interval. Significance levels: *** p < .001, ** p < .01, * p 

< .05. 

Fig. 6: Distinct pre-stimulus beta power sources mediate the effect of stimulus 
probability and previous choice on the detection response. A: Partial mediation 

of probability (i) and previous response (ii) by distinct beta power sources on 

detection in the stable environment (n = 43 participants).  B: Partial mediation of 

probability (i) and previous response (ii) by distinct beta power sources on detection 

in the volatile environment (n = 39 participants). Significance levels: *** p < .001, ** 

p < .01, * p < .05. 
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