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Abstract

Perception is biased by expectations and previous actions. Pre-stimulus brain
oscillations are a potential candidate for implementing biases in the brain. In two
EEG studies (43 and 39 participants) on somatosensory near-threshold detection,
we investigated the pre-stimulus neural correlates of an (implicit) previous choice
bias and an explicit bias. The explicit bias was introduced by informing participants
about stimulus probability on a single-trial level (volatile context) or block-wise
(stable context). Behavioural analysis confirmed adjustments in the decision criterion
and confidence ratings according to the cued probabilities and previous
choice-induced biases. Pre-stimulus beta power with distinct sources in sensory and
higher-order cortical areas predicted explicit and implicit biases, respectively, on a
single subject level and partially mediated the impact of previous choice and stimulus
probability on the detection response. We suggest pre-stimulus beta oscillations in
distinct brain areas as a neural correlate of explicit and implicit biases in

somatosensory perception.
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Introduction

Perception is biased by our knowledge of what is probable. This has been
successfully formalised in the Bayesian brain theory’, which assumes an integration
of prior beliefs and the sensory signal. According to this theory, the brain relies on
prior beliefs when sensory signals are “uncertain”, i.e., weak. Indeed, providing
human observers with information about stimulus probability has been shown to bias
perceptual reports of weak visual stimuli?. In such situations, participants adjust their

decision criterion while sensitivity to the sensory signal remains unaffected®.

Additionally, providing individuals with prior information about the probability of a
stimulus has been shown to impact confidence in a perceptual decision*. Besides
external and explicit information about the probability of upcoming stimuli, the
perceptual choice history also influences decision-making, with stronger choice
history biases in ambiguous perceptual decisions®. In the following, we define the
bias induced by choice history as implicit bias, as it arises from internal processes
that the experimenter does not explicitly control. It is important to note that the terms
implicit and explicit, as used throughout this manuscript, do not pertain to
participants' level of awareness. Rather, we classify the choice history bias as implicit
because it emerges in the absence of explicit information provided to the observer.
Although studies have demonstrated the adaptability of choice history biases to
participants' models of the environment®’, whether and how they interact with explicit

biases has not been investigated.

While a substantial body of research has established that explicit expectations and
choice history shape perception at the behavioural level, a notable gap remains in
our understanding of the distinct or shared neural processes?®'°. Gustatory
stimulation in rats in combination with computational modelling showed that stimulus
expectations modulated pre-stimulus metastable dynamics of neural activity"'. Using
MEG recordings in humans, Kok and colleagues™ reported that neural
representations of expected visual stimuli in pre-stimulus activity closely resembled
the evoked activity following the onset of expected stimuli, suggesting that the brain
generates stimulus templates in the sensory cortex to anticipate expected inputs.

Pre-stimulus activity has also been shown to reflect choice history biases™.
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Surprisingly, there have been no studies so far that investigated the effect of implicit

and explicit biases on pre-stimulus activity in the same paradigm.

EEG and MEG studies have emphasised the impact of pre-stimulus oscillations,
particularly in the alpha and beta frequency range, on perceptual decision-making.
Multiple studies have shown that pre-stimulus alpha/beta power in the
somatosensory cortex negatively correlates with detection rates for a subsequent
weak tactile stimulus™2°. According to the baseline sensory excitability model
(BSEM)?', pre-stimulus alpha power correlates positively with the participants'
decision criterion in detection tasks. Indeed, recent studies in the visual®® and the
somatosensory domain?®, confirmed a positive correlation between spontaneous
modulations of pre-stimulus alpha power and the participants’ criterion. So far, only
two studies have experimentally manipulated the decision criterion in humans. Both
studies employed a visual detection task, inducing criterion changes through reward
strategy** or priming®®. Kloosterman et al.?* incentivised either a liberal or
conservative criterion and showed a correlation between visual pre-stimulus alpha
power and the change in criterion. Zhou et al.®, however, did not find a significant
correlation between visual pre-stimulus alpha power and criterion changes that were
induced via priming. While pre-stimulus alpha power has been suggested as a
neural correlate of criterion changes, two experimental studies did not provide

consistent evidence supporting the role of alpha power.

Top-down predictions have also been related to modulations of beta power®?.
Consistent with this notion, the control of goal-directed sensory processing has been
linked to beta power and beta bursts?®. Beta power has also been proposed to be
related to the maintenance of cognitive states®®, with evidence pointing to beta power
not only maintaining but also reactivating cognitive states that are required for the
current task®*, which again supports the idea of a pre-stimulus template of

expectations as has been suggested by Kok and colleagues’.

In summary, previous research has proposed that pre-stimulus alpha and beta power
serve as neural correlates of stimulus expectations. However, there remains no
consensus on the specific roles of pre-stimulus alpha and beta power in shaping

decision biases and whether they are linked to explicit and implicit biases.
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To address this gap, we conducted two complementary EEG studies that differed in
the temporal context of stimulus occurrence®. We hypothesised that human
observers would use information about stimulus probability to adjust their detection
and confidence ratings and exhibit choice history biases. Based on previous findings
these biases should be reflected in pre-stimulus alpha and/or beta frequency

oscillations in sensory areas.

Methods

Participants

Forty-three healthy, young volunteers (22 women, 21 men, age: 26.7 £ 4.4 years,
[mean £ SD], range: 21 to 35 years) were recruited for the first study and forty for the
second study (23 women, 17 men, age: 25.7 + 3.9 years, range: 19 to 35 years) from
the database of the Max Planck Institute for Human Cognitive and Brain Sciences,
Leipzig, Germany. Gender was determined via participants' self-reports. We did not
collect data on race or ethnicity. All participants reported to be right-handed. Both
studies were approved by the Ethics Committee of the University of Leipzig’s
Medical Faculty (462/15-ek). All participants provided written informed consent and
were reimbursed 9.00 Euro per hour for their participation in the first study and, due
to a change of regulations, 12.00 Euro per hour in the second study. The study was

not preregistered.
Experimental setup

This study aimed to investigate how stimulus probability influences tactile perception
and confidence in humans. All data were acquired at the Max Planck Institute for
Human Cognitive and Brain Sciences, Leipzig. Electrical finger nerve stimulation was
performed with a constant-current stimulator (DS5 Isolated Bipolar Current
Stimulator (RRID:SCR_018001) using single square-wave pulses with a duration of
200 us. A waveform generator NI USB-6343 (National Instruments) and custom
MATLAB scripts using the Data Acquisition Toolbox (MATLAB (RRID:SCR_001622))
were used to control the stimulation device. Steel wire ring electrodes were placed

on the middle (anode) and the proximal (cathode) phalanx of the index finger on the
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left hand. The experimental procedure was controlled by custom MATLAB scripts
using the Psychophysics Toolbox (RRID:SCR_002881).

Experimental paradigm

At the beginning of the experimental session, we recorded five minutes of resting
state EEG with eyes open while participants were seated in a comfortable chair in
the EEG cabin and fixated on a grey cross on the screen. Next, participants were
familiarised with the electrical finger nerve stimulation. An automatic threshold
assessment was performed to determine the stimulus intensity corresponding to the
somatosensory detection threshold. The threshold assessment entailed an
up-and-down procedure (40 trials in the first run and 25 trials in subsequent runs)
which served as a prior for the following Bayesian approach (psi method; 45 trials in
the first run and 25 trials in subsequent runs) from the Palamedes Toolbox®?
(RRID:SCR_006521) and finished with a test block (5 trials without stimulation and
10 trials with stimulation intensity at the threshold estimate by psi method). Based on
the test block results for the psi method threshold estimate and weighting in the
results of the up-and-down procedure, the experimenter selected a near-threshold

intensity, approximately at a 60 % detection rate.
Stable environment

In each trial, participants were instructed to indicate whether they perceived a weak
somatosensory stimulus (Yes/No) and then to state their retrospective confidence in
this decision using a binary rating (Confident/Unconfident). Participants were
informed that they would receive cues about the probability of a stimulus on a given
trial throughout the experiment. In study 1, a cue appeared at the beginning of each
condition block for three seconds and was valid until the next probability cue
appeared (12 trials, the number of trials in a block was not explicitly mentioned). The
high stimulus probability condition (75 %) instructed participants that there was a 75
% chance of a stimulus on a given trial, whereas the low probability condition (25 %)
informed participants that there was a 25 % chance of a stimulus on a given ftrial.
Crucially, those cues were always valid, and participants were explicitly told about
those contingencies. To ensure motivation throughout the experiment, we provided

participants with feedback (percentage correct displayed for 2.5 seconds) at the end
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of each probability block. Each of the five blocks contained 144 trials with six
repetitions for each probability condition. Thus, half of the trials included a
near-threshold electrical pulse (mean intensity = 1.9 mA, range: 0.9 - 3.7 mA). The
stimulus intensity was adjusted after each experimental block if the detection rate
was no longer near-threshold. The other half of the trials did not contain a stimulus
(noise trials). The order of signal and catch trials and probability condition miniblocks
was pseudo-randomized for each experimental block and participant. Participants
responded with the right index finger on a two-button box. Before starting the main

experiment, participants completed a training block of 48 trials.
Volatile environment

In the second study, participants were instructed to indicate whether they perceived
a weak somatosensory stimulus (Yes/No) and then to state their retrospective
confidence in this decision using a binary rating (Confident/Unconfident) in each trial.
Participants were informed that they would receive cues about the probability of a
stimulus before each trial throughout the experiment. In the second study, either an
orange or blue circle appeared at the beginning of each trial for one second and
indicated either high or low stimulus probability (the colour assignment was
randomised across participants). The high stimulus probability condition (75 %)
instructed participants that there was a 75 % chance of a stimulus on a given trial,
whereas the low probability condition (25 %) informed participants that there was a
25 % chance of a stimulus on a given trial. Crucially, these cues were valid, and
participants were explicitly told about these contingencies. To motivate participants
throughout the experiment, we provided participants with feedback (percentage
correct displayed for 2.5 seconds) after 30 trials. Each of the five blocks contained
120 trials with an equal amount of high and low stimulus probability trials overall.
Thus, half of the trials contained a near-threshold electrical pulse (mean intensity =
2.1 mA, range: 1.1 - 3.6 mA). The other half of the trials did not contain a stimulus
(catch trials). The order of high and low probability trials and stimulus and noise trials
was pseudo-randomized within blocks using the Shuffle®® function in Matlab.
Participants responded with the right index finger on a two-button box. Before

starting the main experiment, participants completed a training block of 40 trials.
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Additionally, we asked participants about the colour-probability mapping after each

experimental block to ensure the probability cues were correctly remembered.
Behavioural data preprocessing
Stable environment (study 1)

Across all participants, we collected 30.816 trials from 43 participants. 35 trials were
rejected due to missing EEG triggers (EEG recording started too late). Next, we
removed 39 no-response trials (no button pressed within 2.5 s) and 45 trials with a
detection response time of less than 100 ms. We excluded eleven blocks that had a
hit rate greater than 90 % or less than 20 % and resulted from suboptimal threshold
estimation. These criteria were determined based on values that deviated more than
three times the standard deviation from the mean hit rate calculated across all blocks
and participants (mean hit rate: 58 %, standard deviation: 10 %). Additionally, for one
participant, one block was excluded based on a false alarm rate of more than 40 %.

After behavioural preprocessing, 28.977 trials remained.
Volatile environment (study 2)

We collected 24.000 trials from 40 participants. Data from one participant was
rejected due to technical issues with the somatosensory stimulation device. From the
remaining 39 participants, 12 trials were rejected due to missing EEG triggers (the
battery died, EEG recording started too late). Next, we removed 133 no-response
trials (no button pressed within 2.5 s) and 102 trials with a detection response time of
less than 100 ms. We excluded ten blocks that had a hit rate greater than 90 % or
less than 20 %. Additionally, two blocks were excluded based on a false alarm rate
of more than 40 %. One block was excluded because the false alarm rate was higher
than the hit rate. We used the same exclusion criteria as in the first study (mean hit
rate: 53 %, standard deviation: 12 %). After behavioural data cleaning, 21.593 trials

from 39 participants remained.
Signal Detection Theory Analysis

We employed Signal Detection Theory (SDT)* to examine the sensitivity (Dprime)

and response bias (criterion c) in this study. SDT allows us to distinguish between
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the ability to detect a signal (e.g., the presence of a stimulus) from a general

tendency to report either stimulus presence or absence.
Sensitivity (Dprime):

Sensitivity, also known as Dprime, quantifies the ability to discriminate between

signal and noise. It is calculated using the following formula:
d' = z(hitrate) — z(false alarmrate) (1)

where z(hit rate) represents the z-score of the hit rate (proportion of correct
responses when the signal is present), and z(false alarm rate) represents the z-score

of the false alarm rate (proportion of incorrect responses when the signal is absent).
Response Bias (criterion c)

Response bias, represented by criterion ¢, assesses the individual's tendency to
respond "yes" or "no" irrespective of the presence (or absence) of the stimulus. It is

calculated using the formula:
c = — 0.5 * [z(hitrate) + z(false alarmrate)] (2)

In our analysis, we computed d' and c for each participant to examine their sensitivity
to the stimuli and response bias. Higher values of d' indicate better sensitivity, while
a positive value of c reflects a bias towards responding "no" (conservative criterion).
The Hautus log-linear correction method* was employed to address zero false

alarm rates.
Statistical Analysis: Behaviour

Non-parametric Wilcoxon signed-rank tests were applied to compare the paired
samples in both studies. Tests for normality indicated non-normal distributions of
criterion and sensitivity in the first study. The Wilcoxon signed rank test is robust to
deviations from normality and assesses whether the median difference between
paired observations is significantly different from zero. All tests are two-sided if not

stated otherwise in the results section.
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Effect Size Calculation

We calculated Cohen’s d as a measure of effect size for the main behavioural
results. Cohen's d is a measure of standardized mean difference, commonly used to
assess the magnitude of effect in paired data. For each comparison, Cohen's d was

computed using the formula:
d = meanof paired dif ferences / standard deviation of paired dif ferences (3)

Following Cohen’s guidelines, effect sizes were interpreted as small (d = 0.2),
medium (d = 0.5), or large (d = 0.8).

Estimation of Signal Detection Theory Parameters using Generalized Linear
Mixed Effects Models

To investigate the influence of single-trial variables on Signal Detection Theory (SDT)
parameters®, we employed generalised linear mixed effects models (GLMMSs) using
the Ime4 package®® in R (version 4.3.3). We specified a GLMM with a Binomial
distribution and probit link function to account for the binary nature of the detection or
confidence response (signal present or absent response, high or low confidence). In
the simplest model, the intercept represents the overall criterion (c), and the
regressor that codes whether the trial contained a stimulus corresponds to Dprime®’
(regression formula based on Ime4 syntax: detection_response ~ stimulus +
(stimulus|subject)). Random intercepts were included in all models, random slopes
for the main effects and interaction effects only if the models did not show warnings
about singularity®®. To assess collinearity among the predictor variables in our
analysis, we utilised the 'check_collinearity' function from the 'performance' package
and to ensure convergence of the models the check converge function®® in R.
Variance inflation factor (VIF) values were computed for all models and parameters,
demonstrating low values (VIF < 3) and indicating the absence of substantial
multicollinearity for all SDT GLMMs. We used the emmeans (Estimated Marginal
Means) R package*® for FDR-corrected post-hoc tests on our fitted GLMMs. Model
summaries are based on the modelsummary package*' and interaction effects plots
are based on the plot_model() function provided by the sjPlot package*’. We
compared Akaike Information Criterion (AIC) measures of each model and

considered a difference greater than 10 as a meaningful difference in model fit**. As
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an independent source of model fit, we compared models using the anova() function
from the stats package (v. 3.6.2) in R, which compares nested models based on

likelihood ratio tests.
EEG Recordings

EEG was recorded from 62 scalp positions distributed over both hemispheres
according to the international 10-10 system, using a commercial EEG acquisition
system (Standard 64ch actiCap Snap, BrainAmp; Brain Products, Brain Products
(RRID:SCR_009443). The mid-frontal electrode (FCz) was used as the reference
and a mid-frontal electrode was placed on the middle part of the forehead (between
FP1 and FP2) as ground. One additional electrode was used to measure
electroocular activity (placed below the right eye) and ECG activity (placed below the
left clavicle), respectively. Electrode impedance was kept at < 10 kQ for all channels.
EEG was recorded with an online bandpass filter from 0.015 Hz to 1 kHz and
digitised with a sampling rate of 2.5 kHz for study 1 (stable environment) and 1 kHz

for study 2 (volatile environment).
EEG - preprocessing

We used custom Python scripts and the MNE python package (MNE software
(RRID:SCR_005972)* to analyse the EEG data of both datasets. We applied a
bandpass filter between 0.1 and 40 Hz to the raw EEG data with the following IR
filter parameters: Butterworth zero-phase (two-pass forward and reverse) non-causal
filter, filter order 16 (effective, after forward-backwards, cutoffs at 0.10, 40.00 Hz:
-6.02, -6.02 dB). Next, we linearly detrended and epoched the data between -1
second before stimulation onset and 1 second after stimulation onset. After
downsampling the data to 250 Hz, we used the RANSAC package* to detect bad
channels (channels interpolated study 1: mean = 1.0, max. = 4, study 2: mean = 0.7,
max. = 5). Next, we ran ICA on the 1Hz high-pass filtered, epoched data using the
extended infomax algorithm*. We correlated ICA components with EOG and ECG
activity and rejected components that correlated strongly with eye movements and
cardiac artefacts from the 0.1Hz filtered data (components rejected study 1: mean =
3.5, max. = 7, study 2: mean = 3.5, max. = 6). Finally, we re-referenced the data to

the common average of all EEG channels.
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Evoked potentials

Electrode CP4 was selected as the channel of interest (COl) based on the
post-stimulus contrast between signal and noise trials. To compare the experimental
conditions, we initially averaged the epochs of the defined condition for each
participant and ensured that the epoch counts were equalised across all conditions.
Subsequently, we calculated the average evoked data across all participants. We
used a baseline window of 100 ms before stimulation onset and subtracted the
averaged activity from the post-stimulus activity for each epoch. To determine the
channel of interest, we compared signal and noise trials in the post-stimulus window
and focused on the earliest somatosensory evoked potential, which was in our
paradigm and with our data preprocessing a positive evoked potential around 50ms

post-stimulation (which we refer to as P50 component in the following).
Time-frequency representation in the pre-stimulus window

We used the multitaper method*” to compute the time-frequency representation in
the frequency range of 3 to 34 Hz with a resolution of 1 Hz and a time-bandwidth of 4
Hz. The number of cycles for each frequency was defined as a frequency divided by
4 cycles (resulting in a temporal resolution of 125 ms). We mirrored the data on both
ends to minimise edge artefacts. The number of epochs was matched between
conditions using the minimum time difference method implemented in MNE Python.
For the contrast between high and low stimulus probability in the stable environment,
we calculated averaged time-frequency representations separately for previous hits
(previous yes response in previous signal trial), misses (previous no response in
previous signal trial) and correct rejections (previous no response in previous noise
trial) for the high and low stimulus probability conditions. Next, we subtracted the
respective contrasts, e.g. high previous hits vs. low previous hits. Finally, we
averaged the time-frequency representations of high vs. low stimulus probability
corrected for previous trial history. The design in the volatile environment allowed us
to average over high and low probability trials without controlling for previous trial
characteristics, as the previous trial history was randomised (suppl. fig. 1.4). To
specifically examine the influence of past choices on power modulations, we
restricted our analysis to trials occurring under high probability conditions and those

following a signal in the stable environment. In the volatile environment, our analysis
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targeted trials with identical probability cues in both the preceding and current trials

in the high probability condition.
Cluster-based permutation tests

For statistical comparisons of the time and frequency domain, we used
threshold-free cluster-based permutation testing implemented in MNE with a cluster
and statistical threshold of p = 0.05 and 10.000 permutations. The test statistic was a
two-tailed one-sample t-test, as we tested whether the difference between conditions
was significantly different from zero. Adjacency was defined over time (neighbouring
time points are considered as adjacent) and frequency (neighbouring frequencies
are considered as adjacent). We used a step size of 0.1 and an initial t-threshold of O
for threshold-free cluster enhancement*®. The MNE defaults for the cluster height (2)

and cluster extent (0.5) were used.
DICS source localization of pre-stimulus power

Source localization was performed using Dynamic Imaging of Coherent Sources
(DICS)** beamforming implemented in MNE. The source space encompassed a total
of 8196 individual sources (5mm spacing between sources). We used the MNE
standard BEM (5120-5120-5120) model based on the freesurfer average brain and
standard electrode positions. For each participant, source localization was computed
for the beta band frequency range where we observed the strongest modulations in
sensor space (15 - 25 Hz) in the pre-stimulus window, averaged over 600ms before
stimulation onset (700ms to 100ms before stimulation onset). Cross-spectral density
was computed for all epochs and separately for the high probability and low
probability epochs, and the previous yes and no previous no responses. To compute
source power, we estimated cross-spectral density for each epoch using Morlet
wavelets with the cycles linearly increasing per frequency (frequency/4 cycles). Next,
we averaged over all frequencies and computed a common spatial filter, before we
applied the filter to the data of each condition. The filter was computed for the
orientation that maximised power. Finally, we subtracted the source power of low
probability trials from the source power of high probability trials before we averaged
the contrast over participants. To visualise the contrast, we ran a permutation t-test

(10 000 permutations) for all sources, and we highlight the source with the highest
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t-values on the fsaverage template brain. We validated our beamformer on the beta
power desynchronisation for the post-stimulus contrast between signal and noise
trials, which showed — as expected - a source in the postcentral gyrus (suppl. fig.
2.4).

Pre-stimulus source power per trial

We created a mask based on the contrast for stimulus probability or previous
response to extract pre-stimulus power in source space. Voxels with the highest
t-values for each contrast were defined, and power for each trial was averaged over
those vertices. For the brain behaviour modelling, the source power was
log-transformed, z-scored and detrended over all trials and for each experimental
block. Trials with z-scored source power > 3 or < -3 were excluded from the analysis.
Pre-stimulus power was entered as a continuous regressor in our models and only

binned for visualisation.
Mediation analysis

We conducted mediation analysis using the 'mediation' package® in R. The
mediation analysis examined the mediating role of pre-stimulus power on the
relationship between stimulus probability (independent variable) and the detection
response (dependent variable). To conduct the mediation analysis, we set up a linear
mixed effects model with the mediator as the dependent variable (pre-stimulus
power) and the independent variable as the predictor (stimulus probability). Next, we
fitted a GLMM with the detection response as the outcome variable (dependent
variable) and the mediator (beta power) and the independent variables as predictors.
We included the stimulus on each trial as a covariate in our model. The same
mediation model was fit with the previous choice as an independent variable. Finally,
we computed the indirect effect, the total effect and the direct effect. The 95 %
confidence intervals of the regression weights were estimated using quasi-Bayesian

approximation with 1000 Monte-Carlo permutations.
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Results

Behavioural criterion shifts in correspondence to

stimulus probability

We tested the effect of stimulus probability on somatosensory near-threshold
detection in two separate studies (fig. 1A) The first study (n=43) informed
participants about stimulus probability at the beginning of each block consisting of 12
trials (stable environment, fig. 1B). The stimulus onset within a trial was cued by a
colour change of the fixation cross. The second study (n=39) provided information
about stimulus probability at the beginning of each trial (volatile environment, fig.
1C). In both studies, signal detection theoretic (SDT) analyses verified that
participants adjusted their criterion to report a stimulus based on the instructed
stimulus probability, i.e., the criterion was lower (more “liberal”) in the high probability
condition (mean criterion change high vs. low stimulus probability: A swape= --21, W
=172, p < .0001, Cohen’s d = .72, bootstrapped 95 % confidence interval of median
difference [-.258, -.109]; At voraite= --21, W = 91, p < .0001, Cohens’ d = .84, [-.286,
-.114], fig. 2A&Biv). Participants reported that they perceived a stimulus more often
in signal trials (mean hit rate (HR) change high minus low stimulus probability: Ayg
stavle= -07, W =151, p <.001, Cohen’s d = .67, [.021, .077]; AR volatie = -08, W =69, p
< .0001, Cohen’s d = .98, [.060, .111]) and noise trials (trials without a stimulus)
(mean false alarm rate (FAR) change high minus low stimulus probability: Arag stapie=
.06, W = 185, p <.001, Cohen’s d =.62, [.007, .055]; Arar. volatie = -03, W =169, p =
.002, Cohen’s d =.52, [.004, .038]) under the high as compared to the low probability
condition (fig. 2Ai & ii and fig. 2Bi & ii). Stimulus sensitivity (measured by the SDT
parameter Dprime) did not significantly differ between conditions in both studies
(mean Dprime change high minus low stimulus probability: Apyime stable = --06, W =
391, p = .329, Cohen’s d = .18, [-.186, -.020], Apyrime volatie = -02, W = 361, p = .686,
Cohen’s d = .07, [-.160, .174], fig. 2Aiii & fig. 2Biii). Analysis of confidence responses
further confirmed that participants utilised stimulus probability to inform their
decision-making process. Specifically, confidence ratings in correct trials were

compared based on the congruency between the probability cue and the response
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on each trial. We expected participants to be more confident in their yes decisions in
high stimulus probability trials and no responses in low stimulus probability trials
(congruent trials). Indeed, participants reported significantly higher confidence in
trials that were congruent with their response compared to incongruent trials (mean
confidence congruent minus incongruent correct trials: Aont stape= -08, W = 92, p <
.0001, Cohen’s d = .70, [.026, .079]; Acont. volatie =-04, W = 188, p = .005, Cohen’s d =
.51, [.003, 044], fig. 2Av & fig. 2Bv). Notably, the excluding three participants with
very high false alarm rates (> 40 %) in the high stimulus probability condition did not
change the statistical outcomes in the stable context (suppl. fig. 1.1). Participants
were explicitly informed about stimulus probability and trial randomisation. We
hypothesised that the previous choice would be more informative in a stable
environment, as participants only had to keep in mind the last few trials (12 trials)
compared to the whole experimental block (120 trials) in the volatile design (suppl.
fig. 1.2). We fitted separate signal detection theoretic generalised linear mixed
models (GLMMs) with a binomial outcome variable and a probit link function for each
stimulus probability environment. Each model investigated the relationship between
the explicit, stimulus probability-induced bias and the implicit, choice history bias.
The basic signal detection theoretic regression model predicts the detection
response (detected or undetected) on each trial based on the stimulus (signal or
noise) and the stimulus probability (high or low). The model incorporates an
interaction term between stimulus and stimulus probability, representing changes in
sensitivity resulting from the probability manipulation. The weight of the stimulus
probability regressor represents the influence of the stimulus probability cue on the

criterion c.

Response history bias interacts with stimulus probability in a

stable probability environment

To investigate how previous choices influence current choices, we included the
previous detection response as a regressor in our model, which improved the model
fit in both probability environments (Aac swpe= -229, X3(5) = 229.83, p < .001; Axc
watie= -80, X?(5) = 90.94, p < .001). Overall, participants showed a tendency to
repeat their previous choice (Bgupe= 117, p = .021, [.018, -.216]; Byouie= -177, p <

.001, [.092, .261]). Importantly, even after controlling for the effect of the previous
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choice, stimulus probability still accounted for a significant amount of variance in the
detection response (Bgune= -141, p = .010, [0.034, 0.248]; Bioaie= -180, p = .001,
[0.071, 0.298]). Finally, we fit a model that included the interaction between the
previous choice and stimulus probability, which improved the model fit in the stable
but not in the volatile context (Aac sape= -13, X?(1) = 14.91, p < .001; Axc stape= +2,
X2(1) = 0.08, p = .777). Specifically, the model fitted with the data from the stable
environment showed a significant interaction between the stimulus probability and
the previous choice regressor (Bgape = -163, p < .001, [.080, .245]). Post-hoc tests
showed a significant influence of the previous choice on the detection response both
in the high and low stimulus probability conditions, but a weaker effect in the low
probability condition (conditioned on low stimulus probability and previous yes
response: Bgane= -058, p = .021, [.002, .114]; high stimulus probability and previous
yes response: Bgane= 140, p < .001, [.092, .188], FDR corrected, suppl. fig. 1.3
visualises the model-free interaction effect of criterion (c) and previous choice, model

summaries in suppl. table 1 & 2).

A key feature of the stable environment is the difference in the previous response
distributions between the probability blocks. While in both environments the
instructed probability matched the actual stimulus probability (“valid cues”), the
randomisation of probability cues within the volatile environment effectively balanced

the distributions of previous "yes" and "no" responses (suppl. fig. 1.4).

Next, we fitted the interaction model from the stable environment separately for
signal and noise trials, to investigate whether the interaction effect was driven by the
unequal amount of signal and noise trials within the probability conditions. Both the
“signal trials only” model (B = .182, p =.004, [.059, .305]), as well as the “noise trials
only” model (B = .213, p = .027, [.024, .403]) showed a significant interaction
between the choice history induced bias and the stimulus probability induced bias.
The model fitted with trials that previously contained a signal confirmed an
interaction between stimulus probability and previous response (B = .149, p = .021,
[.022, .275]). Interestingly, the interaction effect was no longer statistically significant
for trials that followed noise (B =.029, p =.742, [-.146, .205]).
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Lower pre-stimulus beta power in distinct areas
associated with bias introduced by stimulus probability

and previous choice

After having confirmed the behavioural effects of the explicit stimulus probability
manipulation both on detection as well as confidence responses, we set out to
determine the neural correlates of both explicit and implicit biases on somatosensory
near-threshold detection. Our initial analysis in sensor space focused on
low-frequency oscillations in the pre-stimulus window. To determine the
somatosensory region of interest, we selected the EEG channel that showed the
strongest early somatosensory stimulus-evoked response (i.e., here assessed by the
P50 component at around 50 ms post-stimulus). In both studies, this was channel
CP4, which is located over centro-parietal areas contralateral to the somatosensory
stimulation site (suppl. fig. 2.1). Next, we computed time-frequency representations
in the pre-stimulus window in the frequency range from 3 to 35 Hz for both
environments. A threshold-free cluster-based permutation test in sensor space
showed no significant cluster for the contrast between high and low stimulus
probability trials (fig. 3Ai) in the stable environment (minimum cluster p-value: .087,
peak t-value: 2.035, Cohen’s d = .14,) but a significant cluster in the volatile
environment, most likely driven by lower power in the beta range in the high stimulus
probability condition (minimum cluster p-value: <.001, peak t-value: 5.312, Cohen’s d
= .11, fig. 3Bi, suppl. fig. 2.2 for a shorter pre-stimulus window). The t-values were
most negative in the beta frequency band, suggesting that beta band modulations
are forming the cluster. A cluster-based permutation test contrasting pre-stimulus
power in detected (hits) and undetected signal trials (misses) showed lower alpha
power immediately before detected trials in the stable environment, independent of
the probability condition. Lower beta power was only clearly present in the high
stimulus probability condition. In the low probability condition, beta (above 18Hz,
100ms before stimulation) showed no strong modulation (suppl. fig. 2.3 Ai, ii, stable
environment: high probability hit minus miss contrast: minimum cluster p-value <
.001, peak t-value: 9.139, Cohen’s d = .21, low probability hit minus miss contrast:
minimum cluster p-value < .001, peak t-value: 8.286, Cohen’s d = .18). In the volatile

environment, beta power decreased before hits in the high-probability condition.
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There was no significant cluster in the low probability condition (suppl. fig. 2.3 Bi, ii,
volatile environment high probability hit minus miss contrast: minimum cluster
p-value < .001, peak t-value: 3.435, Cohen’s d = .09, low probability hit minus miss
contrast: minimum cluster p-value = .063, peak t-value: 6.352, Cohen’s d = .16).
While these data should be interpreted cautiously, the finding of a decrease in beta
power (hits versus misses), especially in the high probability trials, supports the idea
that beta band power modulations are crucial for implementing explicitly induced
criterion changes (suppl. fig. 2.3 Bi, ii). Next, we reconstructed pre-stimulus beta
power using a beamforming approach. After having validated our beamformer on
post-stimulus data (suppl. fig. 2.4), we contrasted pre-stimulus beta [-700ms to
-100ms] power for high minus low stimulus probability (visualisation of t-values in
each vertex obtained by a permutation t-test) and located the strongest modulation in
the postcentral gyrus for both environments (fig. 3Ai & 3Bi). Next, we aimed to
identify the effect of previous choices in the same pre-stimulus window.
Threshold-free cluster-based permutation testing in the pre-stimulus window showed
a significant cluster for the previous response contrast in the stable environment
(minimum cluster p-value: .040, peak t-value: 7.766, Cohen’s d = .17, fig. 3Ai), but no
significant cluster in the volatile environment (minimum cluster p-value: .378, peak
t-value: .356, Cohen's d = .10, fig. 3Bii). The strongest power modulation for the
previous response contrast was in the secondary somatosensory cortex for the

stable environment and in the posterior parietal cortex for the volatile environment.

Pre-stimulus beta power predicts criterion change in
both environments and interacts with the previous

response in the stable environment

The analysis so far showed a modulation in the lower beta band power before
stimulation onset in distinct cortical areas. Next, we investigated how the
pre-stimulus beta power modulations related to the behavioural outcomes of the
stimulus probability manipulation. Therefore, we averaged pre-stimulus beta power
[15-25 Hz] in the pre-stimulus window (-700ms to -100ms) over voxels in source
space which were among the 10 % of voxels with the most negative t-values for the

probability contrast. Note that in both environments, the strongest beta modulation


https://doi.org/10.1101/2024.06.12.598458
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.12.598458; this version posted May 8, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

was in the postcentral gyrus. Behavioural modelling showed that the probability
manipulation led to a change in participants’ decision criteria in both studies, with an
interaction between the previous response and stimulus probability only in the stable
environment. If pre-stimulus beta power is a neural correlate of the experimental
manipulation of stimulus probabilities, i.e., reflecting the change in criterion, it should
also predict the change in detection rates (for signal and noise trials) in both studies
and mimic the interaction with the previous choice in the stable environment. For the
single-trial analysis, we calculated pre-stimulus beta power averaged over the most
discriminative voxels for the stimulus probability contrast. Brain-behaviour modelling
confirmed that stimulus probability could be decoded from pre-stimulus beta power in
somatosensory areas (Bstape = --030, p =.009, [-.052, -.008]; Byojaiic = --0480, p < .001,
[-.070, -.026]), with lower power predicting higher stimulus probability. Participants
responded more often that they detected a stimulus both in signal and noise trials
after lower pre-stimulus beta power, which suggests that pre-stimulus beta power is
a neural correlate of the criterion change (Bswne = -0.099, p = .001, [-.159, -.039];
Buowiie = =175, p < .001, [-.249, -.101]; fig. 4Ai). In the stable environment, the
best-fitting model included an interaction between the previous response and beta
power (Aac = -17.58, X?(2) = 21.578, p < .001). The interaction between beta power
and previous choices was such that for low beta power, the effect of the previous
choice on the detection response was reversed in comparison to the relationship for
high beta power (fig. 4Aii). The best fitting model in the volatile environment did not
include an interaction between previous choices and stimulus probability (Ayc= 2.65,
X2(2) = 1.35, p = .508), participants responded more often that they detected a
stimulus after low beta power and after previous yes responses (fig. 4 Bii, model

summaries in suppl. table 3 & 4).

Pre-stimulus beta power mirrors the congruency effect

on confidence ratings

To reinforce the significance of pre-stimulus beta power as a neural correlate of
stimulus expectations, we aimed to validate its ability to account for the congruency
effect on confidence ratings observed in the behavioural model. Congruency was

defined as the alignment between stimulus probability and the detection response.


https://doi.org/10.1101/2024.06.12.598458
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.12.598458; this version posted May 8, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

For example, a "yes" response in the high probability condition would be considered
a probability-congruent response. Participants were more confident in correct trials
after a no response and following a previous high confidence rating. Crucially,
pre-stimulus beta power mimicked the response congruency effect on confidence:
Participants were more confident in yes responses in the high probability condition
compared to the low probability condition (Bg.ne Probability*response = 0.673, p
<.001, [.456, .899]; B.yaiie Probability*response = .342, p < .001, [.177, .506]; fig. 5AI
& Bi) and analogously in trials with low pre-stimulus beta power (a feature of the high
probability condition) compared to trials with high pre-stimulus beta power (B
beta*response = -0.106, p = .002, [.174, .038]; B.oaiec beta*response = -.095, p =
.019, [.175, .016]; fig. SAii & Bii). The inverse behaviour was seen for No-responses
(suppl. table 5 & 6).

Distinct pre-stimulus beta power sources partially
mediate the effect of stimulus probability and the
previous response on somatosensory near-threshold

perception

Finally, a neural correlate of explicit and implicit biases should partially mediate the
effect of stimulus probability and choice-history biases on the detection response.
We used causal inference methods®'*? to determine the indirect effect of either
stimulus probability or previous choice on detection mediated by pre-stimulus beta
power (fig. 6A & B; ¢’ path). We used linear mixed-effects models to estimate the “a
path”, which represents the direct effect of either stimulus probability or previous
choice on pre-stimulus power. The “b path” is represented via the effect of
pre-stimulus beta power on the detection response. Pre-stimulus beta power in
probability discriminative areas partially mediated the effect of stimulus probability on
detection, with a less pronounced effect in the stable environment (Bgune Prop.
mediated = .009, p = .010, [.002, .020]; B.oiic Prop. mediated = .032, p < .001, [.008,
.040]; fig. 6Ai & Bi). The proportion mediated for the previous choice via beta power
was similar in both environments (Bs.,e Prop. mediated = .012, p < .001, [.005, .02];
Buowile Prop. mediated = .015, p = .004, [.001, .040]; fig. 6Aii & Bii, model summaries
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in suppl. table 7 & 8). In summary, the mediation analysis supports the role of
pre-stimulus beta power in implementing explicit and implicit biases in distinct

cortical areas.
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Discussion

Here, we investigated the neural mechanisms underlying biases in somatosensory
perception in a stable and volatile stimulus probability environment. By manipulating
the expectation of stimulus occurrence via visual cues in blocks or on a single trial
level in two separate studies, we show that participants adjust their perceptual
decision criterion and confidence ratings based on the cued stimulus probability.
Next to the explicit biases, participants also exhibited strong previous choice biases.
In EEG recordings, we identified pre-stimulus beta power in distinct brain areas as
neural correlates of explicit and implicit biases: Pre-stimulus beta power in the
postcentral gyrus predicted single-subject criterion changes and partially mediated
the effect of stimulus probability on the detection response. Pre-stimulus beta power
also reflected a key feature of the stable probability environment: an interaction with
the previous choice. Single-trial beta power modulations also mimicked the impact of
the explicit bias on confidence ratings in both environments. In the volatile probability
environment, the previous choice bias was reflected in pre-stimulus beta power in
posterior parietal areas. In the stable probability environment, the strongest previous
choice beta power modulation was localised in the secondary somatosensory cortex.
Both sources partially mediated the effect of the previous response on the current
response. In summary, we suggest that pre-stimulus beta power in distinct cortical

areas implements explicit and implicit biases.
Implicit and explicit priors

In the first experiment, participants were informed about stimulus probability in a
block-wise manner, which arguably is a more ecologically valid design. However,
since the probability cue was valid, the probability blocks contained an unequal
amount of signal and noise trials and thus the response distributions (and hence
previous choice frequencies) between the low and high probability conditions were
unbalanced; for this reason, in the second experiment, the probability cue was
provided before each trial resulting in a balanced previous choice distribution. In both
environments, the probability cues led to changes in criterion, as previously shown
for the visual domain*?*?% and the previous response significantly predicted the

detection response in the current trial. Those results support previous findings on
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response history biases even in designs where the stimulus order is randomized>3*,
Furthermore, in both environments, participants gave higher confidence ratings in
trials where their expectation matched their response®. A difference between the two
study designs is that in the stable environment, the last trial is more informative for
the current subjective belief about stimulus probability within the same block (suppl.
fig. 1.2). This difference was also reflected in our model-based analysis of the
participants’ behaviour: The best model for the stable environment included an
interaction term between the previous response and stimulus probability. Participants
only relied on their previous responses in the high probability blocks, where they
encountered mainly near-threshold signals with high uncertainty. In summary,
behavioural modelling confirmed that explicit and implicit biases shape
somatosensory near-threshold detection and interact in stable probability

environments.

Somatosensory pre-stimulus beta oscillations as a neural correlate of explicit

biases

After confirming the behavioural relevance of stimulus probability on somatosensory
detection and confidence in both environments, we examined how stimulus
probability and previous choice impacted neural activity before stimulation onset.
Time-frequency representations for the contrast of high minus low stimulus
probability in the pre-stimulus window showed a significant negative cluster, with the
most profound effect in the beta band for the volatile environment. In the stable
environment, participants had to remember the probability cue throughout 12 trials,
potentially leading to weaker effects of the cue in the pre-stimulus period.
Conversely, in the volatile environment, the probability cue before each trial appears
to “dominate” the pre-stimulus characteristics over the effect of the previous trial.
Contrasting hits and misses in the pre-stimulus window supported this idea. In the
stable and volatile environment, the contrast showed significantly lower beta power
immediately before stimulation onset when the expectation for stimulus occurrence
was high. There was no significant cluster for hits minus misses when the
expectation for stimulus occurrence was low. Importantly, the localised sources of
the strongest beta power modulation for the probability manipulation were in similar

locations within the postcentral gyrus.
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Our finding of beta modulation reflecting explicit probability bias is consistent with the
assumed role of beta for top-down modulation of perceptual decisions®® and more
generally as a neural correlate of top-down expectations®’®: For the somatosensory
domain, the study by van Ede et al. (2010) suggested pre-stimulus beta power as a
potential neural correlate of tactile expectations® with lower power before an
expected somatosensory stimulus. Ede and colleagues controlled for trial history and
showed that pre-stimulus beta power implements top-down expectations. This
finding is consistent with a study investigating painful stimuli by Nickel et al.®°. The
authors show decreases in alpha and beta power in the pre-stimulus window in trials
with a high expectation for a painful stimulus in somatosensory channels. Weisz et
al.®" identified a pre-stimulus alpha/beta modulation in the contralateral secondary
somatosensory cortex during a near-threshold somatosensory detection task. They
interpreted these modulations with a change in the starting point for perceptual
decisions. Importantly, this does not speak against the proposed mechanism for
criterion changes via shifts in baseline sensory excitability. Instead, we suggest that
pre-stimulus beta oscillations mediate stimulus probability on tactile detection,
potentially via changing baseline activity in sensory areas before stimulus onset. The
crucial difference to previous studies is the explicit manipulation of the criterion via
expectations in contrast to spontaneous modulations of the baseline, which were
mainly related to alpha power?'. Notably, lower beta power in somatosensory regions
has also been associated with increased detection rates™. We propose that
pre-stimulus beta power modulations are observed in tasks where top-down
influences dominate spontaneous baseline shifts**3°. Supporting this idea, beta
power modulations related to top-down processing have been observed in regions

typically dominated by alpha activity®2.

One possible explanation for the varying contributions of alpha and beta power in
somatosensory perception could be the dynamic reconfiguration of brain networks.
Recent work by Sharma and colleagues®® suggests a gradual shift from parietal to
frontal networks in the pre-stimulus window of a somatosensory detection task.
Based on those findings, we suggest that studies focused on localised brain
dynamics may only capture transient states within a broader, interconnected

network. Lower pre-stimulus alpha and beta power in sensory areas during trials with
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a reduced perceptual threshold may reflect efficient information routing within

different states of the same network.

We observed lower pre-stimulus beta power in trials with high stimulus probability,
which were behaviourally linked to a lower detection threshold. While previous
studies associate higher pre-stimulus beta power with predictable stimulus onsets®,
our findings cannot be explained by temporal prediction, as stimulus timing was
equally predictable across conditions. An alternative interpretation relates to the role
of beta oscillations in maintaining cognitive states. Though not designed to
investigate working memory, our results align with the idea that higher beta power
reflects a resistance to change?®, as trials with higher pre-stimulus beta were
associated with a more conservative detection threshold. Another perspective comes
from research on statistical learning. Bogarts et al. observed lower pre-stimulus beta
power within learned sequences compared to sequence transitions®. Our paradigm
prevented learned predictions through pseudo-randomisation of stimuli and
probability cues. The proposed role of beta power in encoding uncertainty is

intriguing, however, the current design

of this study does not allow for strong conclusions on their relationship. We
conducted two separate studies with two different samples of participants, which
allowed us to confirm the behavioural results in an independent sample. A follow-up
study could leverage a longitudinal design to explore the temporal stability of both
externally induced biases and implicit previous-choice biases. This would address
whether explicit and implicit biases are better characterised as traits® or states. We
localised the pre-stimulus beta power modulation in somatosensory areas in both
studies, but we refrain from concluding that this is evidence for a change in
subjective experience. It has been shown that a reproduction task is necessary to
distinguish between changes in subjective experience and decision-related

processes®’.

Our results show that beta power in the primary somatosensory cortex plays a key
role in implementing explicit biases; this leaves open how the previous choice bias is

implemented.
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Pre-stimulus posterior parietal and Sll beta oscillations as a neural correlate of

implicit biases

Time-frequency representations for the previous response contrast revealed a
significant cluster in the beta band for the stable environment with lower power after
previous yes responses. Source reconstruction of pre-stimulus beta power for the
previous response contrast highlighted the posterior parietal cortex as the source of
the strongest difference between previous responses in the volatile environment.
Neural correlates of previous choice biases in non-human primates have been
located in the frontal and posterior parietal cortex (PPC)®%° while a recent study in
humans suggested pre-stimulus gamma power in the parietal cortex as a neural
marker of previous choice biases®. Consistently, our findings emphasise the role of
posterior parietal brain areas mediating the effect of the previous choice on the

current choice via pre-stimulus beta power.

Interestingly, in the stable environment, the beta power source for the previous
response contrast highlighted another area, i.e., the secondary somatosensory
cortex (Sll). As outlined earlier the subjective relevance of the previous response
and thus the “cognitive process” underlying the previous choice is expected to be
different in the stable environment. A study by Romo et al.” in non-human primates
revealed that neurons in Sll encoded both past and present sensory information
during a frequency discrimination task. Primates had to remember the previous
stimulus to compare it with the current one. In our task, participants were instructed
to base their responses solely on the current stimulus while remembering the
stimulus probability. However, in a stable probability environment, human observers
are likely to keep track of recently encountered stimuli and base their decisions not
only on the current stimulus but also on past stimuli. We suggest that Sll integrates
information from past stimuli not only in discrimination tasks but also in detection
tasks with known stimulus probabilities. Future studies should directly test this idea
by comparing neural modulations in discrimination intervals with those observed in
inter-trial intervals. This idea is supported by findings from a rodent tactile working
memory task’’, which demonstrated that Sll enables task information to persist
across different behavioural states. Given the evidence from previous studies and

our findings on the roles of PPC and SlI, we tentatively conclude that both areas are
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involved in the neural implementation of previous choice biases, with each region's

role being more strongly emphasised in stable and volatile probability environments.

Pre-stimulus beta power predicts explicit and implicit biases, mimics the
congruency effect on confidence and mediates both stimulus probability and

previous response bias in distinct brain areas

To investigate the relationship between pre-stimulus power and behavioural
outcomes, we added pre-stimulus source power averaged over the most
discriminative voxel for either probability or previous responses in our perceptual
models. The results confirmed the role of pre-stimulus beta power in predicting
responses for signal and noise trials; pre-stimulus beta power also mimicked the
interaction of the previous response with the stimulus probability in the stable
environment. Finally, we showed that somatosensory beta power partially mediated
the effect of stimulus probability and previous choice on the detection response.
While the proportion mediated was small, the effect sizes are similar to previous
studies investigating brain-behaviour mediation models in perceptual decision
making and oscillations®**. A recent review indicates that beta oscillations,
particularly beta bursts, occur across various cortical regions?®. The authors suggest
that beta oscillations act as spatiotemporal filters, thereby controlling information flow
throughout the brain via brief periods of functional inhibition. We show distinct beta
sources for implicit and explicit biases in the pre-stimulus window that shape

somatosensory perception.

The observed effect of higher confidence in response-congruent trials could be
replicated by a model that included pre-stimulus beta power as a neural correlate of
stimulus probability. Those results illustrate the intricate interplay between
pre-stimulus power and confidence, as it is not the absolute level of beta power that
determines confidence. Both high and low beta power before a stimulus can lead to
a high confidence perceptual decision — it depends on the response and whether it
matches the expected stimulus. Earlier studies have emphasised a negative
association between pre-stimulus alpha power and confidence’*”. Extending this
perspective, Baumgarten et al.’”> demonstrated in a somatosensory discrimination
task that the correlation between pre-stimulus alpha power and confidence varies

depending on accuracy. The results of our study suggest that the relationship
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between pre-stimulus beta power and confidence depends on the congruency
between the response and the expectation, further supporting the idea that beta

oscillations are crucial for implementing top-down biases in sensory areas.
Limitations

The computational models used assume a linear relationship between pre-stimulus
power and the detection response’™. Consequently, non-linear effects between power
and behavioural outcomes cannot be detected by the models used in this study.
Finally, the electrical stimulation used in our study, although widely used in research,

is not a naturalistic stimulus.
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Figure legends

Fig. 1: Stimulus probability manipulation in a somatosensory perceptual
detection task. A: Signal detection theory model: According to SDT, valid
information about stimulus probabilities changes the decision criterion ¢ while
sensitivity Dprime should not be affected. B: Stable environment: Participants were
presented with a valid probability cue (low or high) at the beginning of each block.
Each block consisted of 12 trials, with the proportion of near-threshold and “catch”
(i.e., no stimulus) trials according to the probability cue. C: Volatile environment:
Participants were presented with a probability cue (orange or blue circle) at the

beginning of each trial. Abbreviations: S: Signal, N: Noise.

Fig. 2: Experimentally controlled stimulus expectations shift detection
thresholds in stable and volatile probability environments. A: Signal detection
theoretic analysis stable environment (A, n = 43 participants) and volatile
environment (B, n = 39 participants). Participants had a higher hit rate (i) as well
as a higher false alarm rate (ii) in the high expectation condition with no significant
difference in Dprime (iii). The criterion ¢ was significantly more conservative in the
high probability condition (iv). The mean of high confidence ratings in correct trials
was higher in trials in which the response matched the participants' expectations
(congruent trials) (v). Supplementary figures 1.1, 1.2, 1.3, 1.4. Box plots depict
median and interquartile range, while whiskers show minimum and maximum values.

Significance: *** p <.001, ** p < .01, * p < .05. Abbreviations: ns = not significant.

Fig. 3: Lower pre-stimulus beta power in high probability trials and after a
previous yes response in distinct cortical areas. Ai: In the stable environment (n
= 43 participants), a threshold-free cluster permutation test showed no significant
cluster for the difference between high and low stimulus probability in the
pre-stimulus window (minimum p-value: .087). A t-test on the source reconstructed
pre-stimulus beta power contrast locates the strongest modulation (most negative
t-values) in the postcentral gyrus. Bi: In the volatile environment (n = 39
participants), a threshold-free cluster permutation test detected a significant cluster.
The effect was most pronounced around stimulus onset in the beta band, with lower

power in the high stimulus probability condition (minimum p-value: = .001). The beta
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power source was localised in the postcentral gyrus. Aii: A significant cluster was
found in the pre-stimulus window for the contrast between previous yes - previous no
responses, which was most likely driven by lower beta power after a previous yes
response (minimum p-value: .040) and for which the strongest beta modulation
originated from the secondary somatosensory cortex (Sll). Bii: No significant cluster
for the contrast of previous choices was found in the volatile environment (minimum
p-value: .378). The strongest beta modulation originated from the posterior-parietal
cortex. The area marked in red highlights the postcentral gyrus. The 10 % most
negative t-values are highlighted in source space, with darker colours representing

more negative values. Suppl. fig. 3.1, 3.2, 3.3, 3.4.

Fig. 4: Pre-stimulus beta power predicts criterion change and interacts with
stimulus probability in the stable environment. Ai: the probability for a detection
response decreases with higher pre-stimulus beta power for both signal and noise
trials in the stable environment (n = 43 participants). Bi: the probability for a stimulus
report decreases with higher pre-stimulus beta power for both signal and noise trials
in the volatile environment (n = 39 participants). Aii: the effect of the previous
response depends on the stimulus probability condition in the stable environment
(significant interaction). Bii: participants respond more often that they detect a
stimulus after previous yes responses in both probability conditions (no significant
interaction) in the volatile environment. Aiii: in the stable environment, the previous
response interacts with pre-stimulus beta power regarding its relationship with the
probability of a yes response such that with a previous "no response” the probability
of a “yes response” decreases while there is no effect after a previous yes response.
Biii: The probability for a yes response decreases with increasing beta power
independent of the previous response. Significance levels: *** p <.001, ** p < .01, *

p < .05, shaded areas and error bars show the 95 % confidence interval.

Fig. 5: Pre-stimulus beta power predicts congruency effect on confidence
ratings. Ai: the congruency effect on confidence between response and stimulus
probability in the stable environment (n = 43 participants): participants are more
confident in no responses in the low probability condition and more confident in yes
responses in the high probability condition. Bi: the congruency effect on confidence

between response and stimulus probability in the volatile environment (n = 39
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participants): participants are more confident in no responses in the low probability
condition and more confident in yes responses in the high probability condition. Aii:
significant congruency effect on confidence between response and beta power in the
stable environment: beta power does predict the confidence for both yes and no
responses conditional on the probability condition. Bii: significant congruency effect
on confidence between response and beta power in the volatile environment for yes
responses: lower beta power increases confidence in yes responses. The error bars
show the 95 % confidence interval. Significance levels: *** p <.001, ** p<.01,*p
< .05.

Fig. 6: Distinct pre-stimulus beta power sources mediate the effect of stimulus
probability and previous choice on the detection response. A: Partial mediation
of probability (i) and previous response (ii) by distinct beta power sources on
detection in the stable environment (n = 43 participants). B: Partial mediation of
probability (i) and previous response (ii) by distinct beta power sources on detection
in the volatile environment (n = 39 participants). Significance levels: *** p <.001, **
p<.01,*p<.05.
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