

1 **Genomic and morphological characterization of *Trichuris incognita n. sp.*, a Human-
2 Infecting *Trichuris* species**

3 **Max Alexander Bär^{1,2}, Nadège Akissi Kouamé^{3,4}, Sadikou Touré⁴, Jean Tenena
4 Coulibaly^{1,2,3,4}, Pierre Henri Hermann Schneeberger^{† 1,2}, Jennifer Keiser^{† 1,2}**

5 [†] These authors contributed equally as senior authors

6 ¹ Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health
7 Institute, Allschwil, Switzerland

8 ² University of Basel, Basel, Switzerland

9 ³ Unité de Formation et de Recherche Biosciences, Université Félix Houphouët-Boigny,
10 Abidjan, Côte d'Ivoire

11 ⁴ Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire

12 **Abstract**

13 **Background:** Trichuriasis is a neglected tropical disease that affects as many as 500 million
14 individuals and can cause significant morbidity. For decades, it was thought to be caused by
15 one species of whipworm, *Trichuris trichiura*. Significant differences in response rates to the
16 best available anthelmintic treatment for trichuriasis — a combination of albendazole and
17 ivermectin — exist across clinical trial reports yet the underlying reasons are unclear.

18 **Methods:** Combining long- and short- read sequencing approaches, we assembled a high-
19 quality reference genome of *T. incognita n. sp.* isolated in an interventional study conducted
20 in Côte d'Ivoire. The species tree of the *Trichuris* genus was constructed using 12434
21 orthologous groups. We sequenced a total of 747 individual worms which were used to confirm
22 the phylogenetic placement and investigate patterns of adaptation through comparative
23 genomic analysis.

24 **Findings:** Here, we present and characterize a human-infecting *Trichuris* species that we
25 named *Trichuris incognita n. sp.* Comparative genomic analysis of genes suspected to confer
26 resistance to either albendazole or ivermectin in helminths revealed a high number of beta-
27 tubulin (TBB) orthologs, present in the whole population of *T. incognita n. sp.*, compared to
28 the canonical *T. trichiura* species, but these genes were not associated to a resistant
29 phenotype. We conducted a genome wide association study (GWAS) comparing 179
30 albendazole-ivermectin sensitive to 542 drug non-sensitive worms, which did not conclusively
31 show an adaptation to drug pressure within the same species.

32 **Interpretation:** Our results demonstrate that trichuriasis can be caused by multiple species of
33 whipworm and that the differences in response rates, may be a result of species responding
34 differently to drug treatment, as opposed to an establishment of resistance. This discovery,
35 coupled with the high tolerability of *T. incognita n. sp.* to albendazole-ivermectin marks a
36 significant shift in how we understand and approach whipworm infections.

37 **Funding:** European Research Council (ERC) Nr. 101019223.

38

39 **Research in context Panel:**

40 **Evidence before this study**

41 The recommended treatment with the benzimidazoles albendazole or mebendazole shows
42 consistently low efficacy against *T. trichiura*, and therefore combination chemotherapy of
43 benzimidazoles and ivermectin has been recommended. Recent clinical trials with
44 albendazole-ivermectin, showed especially low cure rates against what was presumed to be
45 *T. trichiura* in Côte d'Ivoire, in contrast to higher efficacy observed in Laos and Pemba,
46 Tanzania. Amplicon sequencing data pointed towards underlying genomic differences and
47 potentially a new species of human infecting *Trichuris* in Côte d'Ivoire.

48 **Added value of this study**

49 We identified and described a morphologically indistinguishable, novel causative agent of
50 trichuriasis that doesn't respond to conventional drug treatment: *Trichuris incognita* n. sp. We
51 provide a high-quality reference genome of this novel species and sequencing data of 747
52 individual isolates. A genome wide association study did not conclusively show adaptation to
53 drug pressure. This study demonstrates that trichuriasis can be caused by multiple species of
54 whipworm and that the differences in response rates, may be a result of species responding
55 differently to drug treatment, as opposed to an establishment of resistance.

56 **Implications of all the available evidence**

57 The current whole body of evidence calls for new effective treatments against *T. incognita* n.
58 sp. Due to the morphological indistinguishability, molecular diagnostic tools need to be
59 implemented to identify species level differences as opposed to the traditional Kato Katz
60 method. The geographical distribution of *T. incognita* as well as longitudinal changes of
61 species distributions will need to be mapped, in addition to better understanding of the new
62 species pathology and transmission dynamics.

63 **Introduction**

64 Soil-transmitted helminthiasis is the most prevalent neglected tropical disease (NTD)
65 worldwide. Over one billion people, particularly in impoverished nations, may develop
66 debilitating chronic infections due to one of the five most common soil-transmitted helminths
67 (STHs): *Ascaris lumbricoides*, *Trichuris trichiura*, the two hookworm species, *Necator*
68 *americanus* and *Ancylostoma duodenale*, and *Strongyloides stercoralis*.⁽¹⁾ Despite their
69 genetic diversity, the first four parasites are classified under the umbrella of STHs by the World
70 Health Organization (WHO) and are treated with benzimidazoles, the cornerstone of large-
71 scale deworming efforts through preventative chemotherapy (PC) since 1984 or ivermectin for
72 strongyloidiasis.⁽²⁻⁵⁾

73 With more than 3.3 billion tablets of albendazole donated and distributed up until August 2020
74 and 5 billion treatments of ivermectin for onchocerciasis until January 2025, concern regarding
75 anthelmintic resistance extending to humans, is rising. Reports of decreased efficacy and
76 documented resistance to the same drugs within other helminths in livestock support
77 projections suggesting the emergence of resistance within the next decade.^(6, 7) However,
78 no molecular evidence of resistance has yet been presented in human STHs. Notably,
79 albendazole and ivermectin monotherapies show consistently low efficacy against *T. trichiura*,
80 possibly due to differences in cuticle structure, mucosal embedding, or drug efflux, though
81 these remain unproven.⁽⁸⁾

82 To circumvent potential resistance and improve efficacy against *T. trichiura*, the use of a
83 combination therapy of albendazole and ivermectin has been taken forward. Recent clinical
84 trials with albendazole-ivermectin, revealed especially low cure rates against what was
85 presumed to be *T. trichiura* in Côte d'Ivoire, in contrast to higher efficacy observed in Laos
86 and Pemba, Tanzania.⁽⁹⁾ Amplicon sequencing data, normally not recorded in clinical trials,

87 pointed towards underlying genomic differences and potentially a new species of human
88 infecting *Trichuris* in Côte d'Ivoire, which may have been observed previously by S. Nissen et
89 al. already in 2012.(10, 11)

90 Despite the clinical relevance of these findings in addition to harboring information on potential
91 immunotherapeutics,(12) genomic resources for whipworms and molecular adaptation to
92 anthelmintic pressure in *Trichuris* remain limited.(12-14) Currently, only the genomes of three
93 *Trichuris* species are publicly available on WormBase ParaSite, *T. suis*,(15) *T. muris*(16) and
94 *T. trichiura*(16).

95 We present a new species of *Trichuris*, *Trichuris incognita* n. sp., naturally infecting humans
96 in Côte d'Ivoire. *T. incognita* n. sp. occurs where drug treatment fails and is characterized by
97 a high number of TBB orthologs. Phylogenetic analysis based on the species tree of 12434
98 orthologous groups of genes, places the isolated worms within a new, monophyletic clade
99 which is genetically closer to *T. suis* than to *T. trichiura*. We elucidate the genome of this new
100 species, leveraging whole-genome-sequencing (WGS) data to produce a high quality
101 reference genome of this species. Finally, we provide the first ever dataset of human infecting
102 helminths comparing pre- and post-treatment WGS data. We investigate the whole genome
103 sequencing data of 747 isolates in context of resistance by looking at duplication events across
104 the species tree and conducting a GWAS.

105 **Methods**

106 **Expulsion study design fieldwork**

107 This trial was conducted in the Dabou and Jacqueville districts of Côte d'Ivoire. This area was
108 selected, because communities with high endemicity were identified as part of a previous trial
109 on *T. trichiura*.(9) All community members aged 6-12 who were positive for *T. trichiura* in
110 duplicate Kato-Katz smears, with an infection intensity of at least 200 eggs per gram of stool
111 (EPG), were eligible for trial inclusion. Excluded from the trial were individuals with reported
112 major systemic illnesses or chronic disease, known allergy to study medications and having
113 received anthelmintic treatment with ivermectin in the past two weeks.

114 This trial was conducted in accordance with the protocol, International Conference on
115 Harmonization Good Clinical Practice E6 (R2) (ICH-GCP) and the current version of the
116 Helsinki Declaration. Parents or guardians of participating children provided written informed
117 consent. Children provided written assent. All authors take responsibility for the accuracy and
118 completeness of the data and the fidelity of the trial to the protocol, which is available together
119 with the statistical analysis plan in appendix 1. The protocol was approved by independent
120 ethics committees in Côte d'Ivoire (reference numbers 156-22/MSHPCM/CNESVS-kp and
121 ECCI00918) and Switzerland (reference number AO_2022_00028).

122 **Treatment and sample collection from humans**

123 Guardians/caregivers were invited to participate in an information session. The research team
124 explained the purpose and procedures of the study, as well as potential benefits and risks of
125 participation. The timeline of the procedures is summarized in Figure 1a. For initial diagnosis,
126 participants were asked to provide one stool sample from which duplicate Kato-Katz thick
127 smears using 41.7 mg of stool were prepared and assessed under a light microscope for the
128 identification of *T. trichiura*, *A. lumbricoides*, and hookworm ova by laboratory technicians.
129 10% of all Kato-Katz slides were randomly chosen for subsequent quality control by picking
130 every tenth slide of all slides read by each laboratory technician on the respective day. All
131 eligible participants were treated with albendazole-ivermectin at day 0. Albendazole, the product
132 of Glaxo Smith Kline (Zentel®), was a single tablet of 400 mg. Ivermectin, the product

133 of Merck (Stromectol®), was given at a dose of 200 µg/kg. On day 8 a single oral dose of 20
134 mg/kg of oxantel pamoate was administered. Oxantel pamoate tablets (500 mg) were provided
135 by the University of Basel.

136 From day 1 or 2 and 8 onwards, 24h-stool was collected, based on previously reported
137 expulsion dynamics and weighed for 2-3 days.(17, 18) Expelled worms were counted, washed
138 twice with distilled water, once with sterile PBS and then stored in pure ethanol at 4°C. A
139 picture of each worm in ethanol was taken and is provided on online (<https://github.com/max-baer>).
140

141 **Sample collection from pigs**

142 To obtain *T. suis* worms, a list of all pig keepers was drawn by the help of local village chief.
143 Pig keepers were gathered in formal meetings where the purpose of the study was explained.
144 Pig keepers were asked to give written informed consent to participate in the study. Fecal
145 samples were then collected directly from the rectum using gloves lubricated with glycerin, by
146 a veterinarian. The samples were analyzed using the Mini Flotac technique.(19) 2 pigs that
147 tested positive for *T. suis* roaming freely in Tiagba were sacrificed and worms were collected
148 directly from the cecum and stored in either pure ethanol at 4 °C or mashed and stored in
149 RNA-later at -20 °C.

150 **Defining a holotype for *T. incognita* n. sp. and depositing a sample at the natural history 151 museum in Basel**

152 A female specimen of *T. incognita* n. sp. isolated from *Homo sapiens* in the town of Tiagba in
153 the district des lagunes in Côte d'Ivoire has been chosen as the holotype and was archived at
154 the natural history museum in Basel under the number NMB-79 a in absolute ethanol together
155 with a male paratype. All authors of this publication have been registered as the discoverers
156 of this new species. This work and the nomenclatural acts it contains for the new species have
157 been registered in ZooBank: LSID: 34409100-BF94-4A0D-9088-D28215D231F6.

158 **DNA extraction and high-throughput sequencing**

159 Worms stored in absolute ethanol were photographed and used for sequencing experiments.
160 The posterior end of the worms was severed and DNA was extracted using a DNeasy Blood
161 & Tissue Kit (Qiagen, Cat: 69504) according to the manufacturer's protocol from the anterior
162 part of the worm. Sequencing libraries for illumina were prepared using the NEBNext® Ultra™
163 II FS DNA Library Prep Kit (New England Biolabs, Cat: E7805L) according to the
164 manufacturer's protocol after which DNA concentration and library size was determined (HS
165 NGS Fragment Analyzer). Libraries were sequenced using 150 bp paired-end chemistry at an
166 average 20X coverage on an Illumina NovaSeq6000 platform with an S4 flow cell at the
167 Genomics Facility Basel as part of the Department of Biosystems Science and Engineering.
168 Sequencing libraries for Nanopore were prepared using the Native Barcoding Kit 24 V14
169 (Oxford Nanopore Technologies, Cat: SQK-NBD114.2) from a single whole female worm and
170 sequenced on a PromethION flow cell and PromethION 2 device.

171 **PCR and Nanopore sequencing experiment of the TBB gene**

172 Two primers were selected surrounding the regions containing known mutations (Phe168,
173 Glu198, Phe200), observed variable position (Ser194) and predicted truncation site. The
174 primer sequences were AAAGAGACCGGACATTCGC for the forward primer and
175 TGAATTGCCTGGTTCTAGAATG for the reverse primer and the amplified region was 402
176 base pairs. Genomic DNA from one sequenced worm was used as input and the OneTaq®
177 One-Step RT-PCR Kit was used to amplify the region during 40 cycles with an annealing

178 temperature of 56°C for 30 seconds and an extension temperature of 68°C for 1 minute
179 Sequencing libraries for Nanopore were prepared using the native barcoding kit 24 V14
180 (Oxford Nanopore Technologies, Cat: SQK-NBD114.2), and sequenced on a Flongle flow cell
181 and the MinION Mk1c device. The dorado basecaller (version 0.7.2, model
182 400bps_hac@v5.0.0) was used for duplex basecalling. Reads were filtered by alignment
183 score (AS>600) and length (>390 BP) and aligned using minimap2 to the reference TBB
184 sequence. Variants were called using bcftools and coverage plots were created in R.

185 **Pipeline for raw read processing and mitochondrial genome assembly**

186 For all sequencing, assembly and annotation pipelines Nextflow (version 23.04.1 build 5866)
187 was used with Java (version 11.0.3).(20). Raw reads were first processed using Trimmomatic
188 (version 0.39).(21) for PE reads, adapters were removed and N-bases trimmed. Next, reads
189 were channeled to getorganelle (version 1.7.7.0) to reconstruct the mitochondrial genome.(22)
190 Runs which resulted in a complete mitochondrial genome were further processed by flipping
191 in cases where the reverse complement was generated and adjustment to COX1 as starting
192 gene. Reference and newly constructed mitochondrial genomes were annotated and
193 visualized using MitoZ (version 3.6).(23) Coding genes were then extracted and aligned as
194 amino acid and nucleic acid sequences using MAFFT (version 7.490).(24) All reconstructed
195 mitochondrial genomes and the aligned MAFFT files used as input for phylogenetic inference
196 are provided online.

197 **Phylogenetic analysis**

198 BEAST2 (version 2.7.5) was used for all phylogenetic inference with a pure birth process (Yule
199 process).(25) Aligned concatenated nucleic acid sequences from all assembled and reference
200 mitochondrial genomes were treated as homochronous. The JC69 substitution model with
201 gamma-distributed rate heterogeneity was used (JC69 + Γ_4) and a strict molecular clock was
202 assumed. Trees and clock models were linked and all model parameters were estimated
203 jointly. A Markov Chain Monte Carlo was run for each analysis. Tracer (version 1.7.2) was
204 used to assess convergence and effective sample size. The percentage of samples discarded
205 as burn-in was at least 10%. For the amino acid inferred species tree, 2 assembled sequences
206 of each subclade clade with a posterior distribution over 0.95 were selected at random. The
207 mito REV substitution model was used and all genes were partitioned separately, allowing for
208 different rates for each gene. Effective sample size (ESS) was at least 900 for each of the
209 inferred parameters. The intraspecies phylogeny was inferred using a TN96 + Γ_4 model. Each
210 gene was partitioned separately and codon positions 1 and 2 were partitioned separately to 3.
211 The mean mutation rates of the genes and there codon positions are provided in the
212 supporting information and show a faster mutation rate for codon position 3 in all cases.

213 **Pipeline for Hybrid-genome assembly and gene prediction**

214 Nextflow (version 23.04.1 build 5866) was used with Java (version 11.0.3). Nanopore raw
215 reads from a single worm were channeled into chopper (version 0.6.0) where reads below 5kb
216 and low quality reads were filtered out and adapters trimmed.(26, 27) Trimmed reads were
217 channeled into Kraken2 (version 2.1.1) and reads with a contamination ratio >0.5 were filtered
218 out with a custom R (version 4.3.0) script, resulting in a 50X coverage.(28) Illumina reads of
219 the same worm at a 65X coverage were channeled into Kraken2 where reads of impurities
220 were identified and filtered out. Illumina and Nanopore channels were combined to run a hybrid
221 de-novo genome assembly using MaSuRCA (version 4.0.9) which allowed for paired end
222 illumina reads and nanopore reads.(29) A total of 1564 contigs were assembled and the raw
223 assembly is provided on github. The BUSCO showed a completeness of 64.3% of complete
224 BUSCOs, 11.2% fragmented and 24.5% missing and the N50 was 0.26 Mb. The outputted

225 contigs were channeled into RagTag (version 2.1.0) for correction and scaffolding using the
226 *T. trichiura* (PRJEB535) reference genome.(30) The corrected scaffolds were then assigned
227 to one of three linkage groups from *T. muris* using Liftoff (version 1.6.3),(31) as described in
228 literature.(32) The genome was frozen for quality assessment using BUSCO (version 5.1.2
229 with Metazoa_obd10 database)(33) and QUAST (version 5.0.2).(34) At this point all available
230 reference whole genomes of *Trichuris* species and *Trichinella spiralis* were channeled into the
231 pipeline to run a de-novo gene prediction on all reference genomes and reduce
232 methodological bias from gene prediction software. Repeat regions were masked using
233 RepeatMasker (version 4.1.4) before channeling the genome to BRAKER (version 3.0.6,
234 Braker2 pipeline using the Metazoa protein database from OrthoDB 11).(35, 36) Gene
235 prediction statistics including exon and intron count, mean length and median length were
236 gathered using a custom bash script.

237 **Phylogenetic orthology inference, species tree, orthologous group functional
238 annotation and GO term enrichment analysis**

239 Orthofinder (version 2.5.5) was used to infer orthology and the species tree of the braker2
240 predicted genes.(37) 81425 out of 92202 (88.3%) genes were classified into 12434
241 orthologous groups with a mean group size of 6.5 and median group size of 5. Gene ontology
242 of orthologous groups of interest was inferred using InterProScan (version 5.63-95.0). A list of
243 resistance associated genes was downloaded from WormBase and blasted against all
244 orthologous groups using an E-value threshold of $1e^{-50}$ to identify orthologous groups of
245 resistance associated genes. In SI Table 4 a list of all genes with matching orthologous groups
246 and Gene IDs from WormBase ParaSite is provided. Species tree with heat map was
247 visualized using iTOL (version 6.8.1).(38) Duplicated, gained, lost and retained genes across
248 the species tree were inferred using OMA standalone (version 2.6.0) and pyHam (version
249 1.1.11).(39, 40) Massively expanded gene families were defined as ≥ 7 copies in *Trichuris*
250 *incognita* n. sp. and ≤ 4 in all other species and a list is provided in the supporting information
251 together with the functional annotation. The orthology of predicted transcripts was inferred
252 analogously. A custom R-script was used to visualize the Venn diagram and identify
253 transcripts shared by *T. incognita* n. sp., *T. trichiura* and *T. muris*. SI Table 3, a list of these
254 transcripts with their functional annotation is provided. Protein structures were predicted using
255 AlphaFold (version 2.2.0, template date cutoff was set to 2021-09-01) and visualized with
256 PyMOL (version 2.5). GO terms were extracted from the InterProScan annotated genes file of
257 *T. incognita* n. sp. (background GO terms) and of *T. incognita* n. sp. genes shared with *T.*
258 *trichiura* but not with *T. suis* or *T. muris* (GO terms of interest). A fishers exact test was
259 performed on the GO term counts of each GO term in the intersection compared to the
260 background GO terms. All gene lists of *T. incognita* n. sp. and the InterProScan annotations
261 are provided on github.

262 **Pipeline for variant calling**

263 Nextflow (version 23.04.1 build 5866) was used with Java (version 11.0.3). Variants were
264 called by adapting the analytical pipeline in by Doyle et al. into Nextflow .(32) Raw reads were
265 first processed using Trimmomatic (version 0.39).(21) BWA (version 0.7.17) and SAMtools
266 (version 1.14) were used to index the assembled reference genome, and align, sort and filter
267 raw reads.(41) Flagstat and Kraken2 (version 2.1.1) were used as QC tools. The coverage
268 ratio was used to classify the gender of each worm by analyzing the coverage ratio of the
269 largest X-chromosome scaffold to the largest scaffold on chromosome 2. Next, the standard
270 GATK (version 4.2.6.1) pipeline was followed for variant calling, base quality score
271 recalibration (BQSR) and genotyping. First, duplicates were marked using the
272 MarkDuplicatesSpark option in GATK. Basecalling was done in a first round to obtain a subset

273 of very likely SNPs for base quality score recalibration. Plots were generated for QUAL, DP,
274 QD, FS, MQ, MQRankSum, SQR, ReadPosRankSum. Heterozygosity was set to 0.015 and
275 indel heterozygosity to 0.01.(32) Initial hard filtering of the variants for BQSR was done in a
276 way to exclude 5% of SNVs with the following lowest quality metrics: QUAL < 194 || QD < 10.3
277 || MQ < 43.61 || FS > 9.9 || SOR > 2.30 || MQRankSum < -1.269 || ReadPosRankSum < -
278 1.174 for SNPs and QUAL < 101 || QD < 5.3 || FS > 11.4 || ReadPosRankSum < -1.336 for
279 indels. Next, BQSR was conducted before generating a merged gVCF which was used for
280 genotyping and then filtered for SNVs using the following hard filter expression: QUAL < 35 ||
281 QD < 1.3 || MQ < 28.76 || FS > 50.5 || SOR > 2.30 || MQRankSum < -4.261 ||
282 ReadPosRankSum < -1.421 for SNPs and QUAL < 32 || QD < 0.5 || FS > 30.1 ||
283 ReadPosRankSum < -1.836 for indels. Indels were filtered out and the variants were further
284 filtered using the genotype filter expression DP < 3 and a minor allele frequency of 0.02 which
285 resulted in a total of 6'282'017 SNPs. Next, genes in the VCF file were annotated using
286 BCFtools (version 1.15) and BEDTools (version 2.30.0) and the braker2 produced gff file
287 containing all genes of *T. incognita* n. sp.. Using SnpEff (version 5.2c) a total of 111'994
288 missense SNPs leading to a different amino acid on the genes of *T. incognita* n. sp. . This set
289 of SNPs as well as the non-filtered set was used as an input in the GWAS.

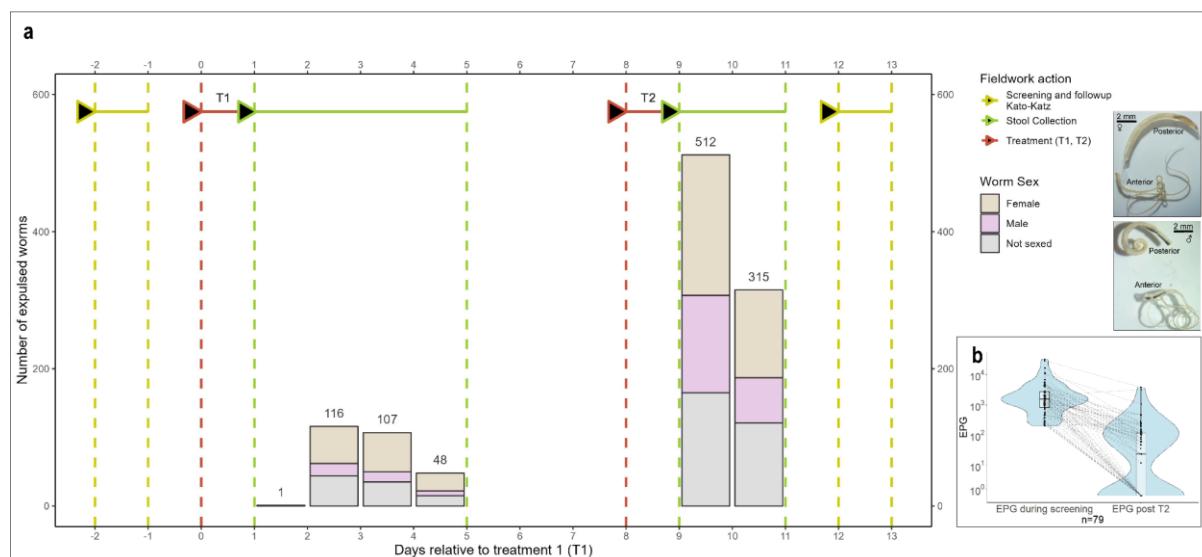
290 **Pipeline for genome wide association study**

291 Plink (version 1.9) was used to conduct the genome wide association study.(42) First, the
292 principal components were analyzed, as presented in SI Figure ? to assess population
293 stratification and correct any falsely assigned sexes. Next, the phenotype data (SI Table 8) on
294 treatment one (T1) or treatment 2 (T2) was added using the “--pheno” option as well as the
295 worm sex using the “--update-sex” option. Next, the complete set of variants, as well as the
296 subset of variants leading to missense mutations on predicted genes were filtered using a
297 minor allele frequency of 0.05, a missing genotype frequency of 0.05, and a deviation from the
298 Hardy-Weinberg Equilibrium at a significance level of p=0.001 resulting in 1254247 variants
299 over all, and 56273 missense variants on predicted genes, which were used for association
300 testing. The GWAS was performed a total of 24 times and the results of each run are presented
301 to be as unbiased as possible. Each GWAS for both variant sets was performed once for both
302 sexes together, and once for each sex individually, to account for variation associated to worm
303 sex. Next, each GWAS was performed once with population stratification and once without
304 population stratification as the PC1 and PC2 did not show any significant association to
305 treatment, however, did show association to some villages in both male and female
306 populations. Finally, the GWAS was ran once with a logistical model and once with a linear
307 model resulting in 24 runs of the GWAS. The GWAS’ were ran using linear and logistic models
308 with the “--assoc” or “--logistic” option respectively, with both sexes, only females and only
309 males. Next, a principal component analysis was conducted to account for population
310 stratification. The option “--pca” was used on the file containing all filtered variants. As an
311 example for the subset of variants on coding genes, which is representative for all runs, the
312 analysis of the principal components revealed an eigenvalue of 52.7 for the first principal
313 component and 3.1 for the second, indicating that the consideration of only the first principal
314 component will account for most population stratification. Next, the logistic and linear models
315 were run again under consideration of the first principal component by using the options “--
316 covar” and “--covar-number 1” and the “--linear” or “--logistic” option for the linear or logistic
317 model respectively for both sexes, only females and only males respectively on both sets of
318 variants. To visualize the results and generate the QQ-plots the R package qqman (version
319 0.1.9) was used.

320 **Data availability**

321 Raw sequencing data of 747 samples together with the associated metadata and the whole
322 genome of *T. incognita* (TaxID: 3388467) is available under the Sequencing Read Archive,
323 BioProject “PRJNA1282940”. 551 assembled mitochondrial genomes including *T. incognita* n.
324 sp. and *T. suis*, as well as reference mitochondrial genomes and the *de novo* assembled
325 *Trichuris incognita* n. sp. reference genome are available under the BioProject number and
326 on GitHub <https://github.com/max-baer>. The publicly available mitochondrial genomes used
327 for comparative analysis are available from ENA and NCBI. There are no restrictions on data
328 availability.

329 **Code availability**

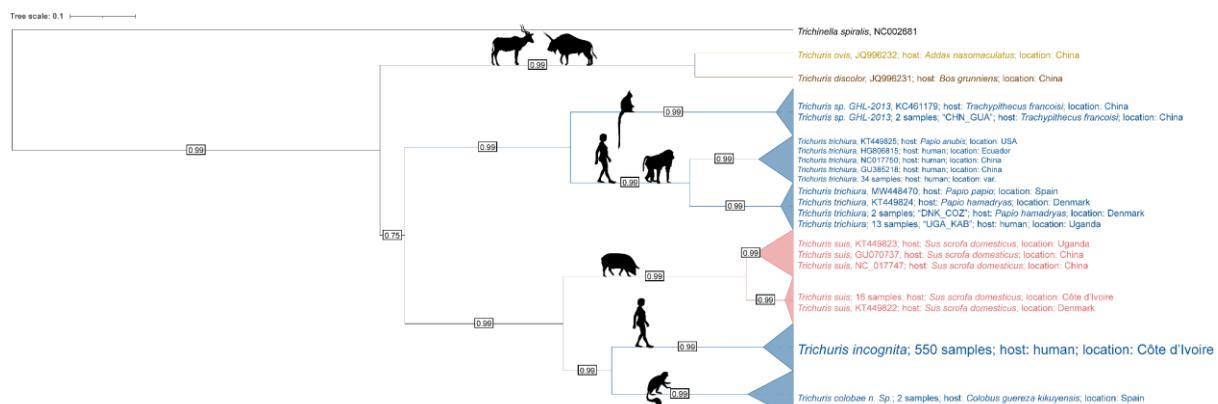

330 Custom code to analyze data and reproduce the figures presented is available at
331 <https://github.com/max-baer>. Where available, all input scripts and log files are provided
332 including nextflow log files documenting a complete run, BEAST2 XML input and log files.

333 **Results**

334 ***Trichuris* expulsion study confirms a new species of whipworm infecting humans,
335 responding poorly to conventional albendazole-ivermectin treatment**

336 We screened 670 children in 7 villages, namely Akakro, Ahouya, N'Doumikro, Tiagba, Bekpou
337 and Teffredji in southern Côte d'Ivoire for trichuriasis. 243 participants were enrolled in the
338 study and received a single dose albendazole-ivermectin combination treatment (T1) after
339 which stool was collected daily and screened for worms for up to four days. Subsequently, 8
340 days after T1, the same individuals received a single oral dose of the trichuricidal drug oxantel-
341 pamoate (T2) after which stool was collected for 2 consecutive days, as presented in Figure
342 1a. We isolated 271 worms after T1, indicating partial efficacy of the combination treatment,
343 with an expulsion peak on days 2 and 3 and 827 worms after T2 with expulsion peaking on
344 day 1 and 2 after treatment. A total of 1098 *Trichuris* worms were collected, of which 747
345 provided enough DNA for genomic analyses. The female to male ratio of the worm sex was
346 3.42:1 and 1.6:1 during T1 and T2 respectively. A significant correlation ($R^2 = 0.34$; $P = 0.0061$,
347 SI Figure 1) was observed between the number of expelled worms and the mean egg count
348 per day, yielding a fecundity of 14307 eggs per female worm per day, as presented in SI Figure
349 1. Figure 1b shows near complete expulsion of all worms as the median EPG dropped from
350 1524 to 24 at the follow-up time point on day 12. To assess the genetic relatedness of human
351 worms with *T. suis*, 25 individual worms from 2 swine hosts were collected directly from the
352 caecum. A picture of each worm which was used to identify the worm sex is provided on
353 github.

354 **Figure 1: Timeline of expulsion study including the number of expelled worms and the
355 female/male distribution of the sequenced worms**



356

357 **a** Timeline of expulsion study including the number of expelled worms and the female/male distribution.
358 T1: albendazole-ivermectin combination treatment, standard-of-care. T2: Oxantel-pamoate treatment.
359 Representative pictures of an expelled female and male worm are provided on the top right and bottom
360 right respectively. Further morphological data is provided in Figure 3. **b** EPG before T1 and after T2.

361 To phylogenetically place these new isolates of whole worms from humans into context of the
362 *Trichuris* genus, an analysis on the mitogenome was conducted as presented in Figure 2. The
363 phylogenetic analysis was done using the coding regions of the mitochondrial genomes of 535
364 individual worms that yielded a complete mitogenome and is presented in SI Figure 2. The
365 reconstructed mitogenomes contained 13 protein coding genes (*cox1-3*, *nad1-6*, *nad4L*, *atp6*,
366 *atp8* and *coB*). Concatenated nucleic acid sequences from all assembled and reference
367 mitochondrial genomes showed that the *Trichuris* species encountered in Côte d'Ivoire forms
368 a separate clade from the canonical human infective *T. trichiura*, closer to *T. suis*, while the
369 phylogenetic placement of the 16 sequenced *T. suis* fall within the expected clade of *T. suis*
370 reference mitochondrial genomes. Previously reported sequences of a *Trichuris* species,
371 isolated from a colobus monkey in Spain by Rivero et al.,{Rivero, 2020 #19} show the closest
372 genomic relationship with the species from Côte d'Ivoire. Finally, the phylogenetic tree of the
373 *T. incognita* n. sp. clade was plotted in SI Figure 3 to see if any of the clades within the species
374 correlates to treatment, worm sex, host sex, host, coinfection with other worms, however no
375 correlation could be identified. This species was named *Trichuris incognita* n. sp.

376 **Figure 2: Phylogenetic placement of expelled *Trichuris* worms from Côte d'Ivoire**
377

378

379 Bayesian inferred phylogenetic tree based on the amino acid sequences of genes in the mitochondrial
380 genomes of 535 *Trichuris incognita* n. sp. worms and available reference mitochondrial sequences,
381 using *Trichinella spiralis* as an outgroup. Timescale indicates numbers of substitutions per site.

382 **Morphological description of *T. incognita* n. sp.**

383 This parasite has a threadlike structure, filiform. Both female and male can be divided into a
384 thin hair-like anterior part and broader handle-like posterior section. The posterior section of
385 the female worms is slightly ventrally incurved compared to the strong ventral incurvature of
386 the male, adopting a Fibonacci spiral-like structure. The overall length of the worms (displayed
387 in Figure 1a) is 45 mm and 49 mm and the ratio of anterior to posterior is 2.5 and 3.1 for female
388 and male worms respectively. An analysis of a subset of five male and five female worms are
389 within literature reported min-max values for *T. trichiura* lengths as shown in SI Table 1.(43)
390 The main organs of the male posterior end are the intestine, testis and ejaculatory duct, which
391 run in parallel along the long axis of the body (Figure 3a). At the height of the ending of the
392 testis, the ejaculatory duct and intestine join, forming the cloaca, which opens at the posterior
393 end of the male body. The distal cloacal tube contains the spicule. The spicule is surrounded
394 by a shiny spicule sheath (Figure 3b, 3c) with a granular surface structure. The female
395 posterior starts at the esophagus-intestinal junction, where the vulva is located (Figure 3d).
396 The vagina shows thick walls, which connect back into the oviduct (Figure 3e). The cuticle of
397 the anterior structure shows two patterns, one, which is striated with transverse grooves on
398 one side and the other, a tuberculate band (Figure 3g). Within the anterior part is the
399 stichosome, comprised of a row of stichocytes surrounding the esophagus which starts at the
400 mouth (Figure 3i), and continues to the posterior part of the worm merging into the intestine
401 (Figure 3d) and marking the division between anterior and posterior section. The ova present
402 in the oviduct contained two polar plugs, were 68 μ M long and 29 μ M wide (Figure 3f) placing
403 them closer to a larger observed egg population of two distinct ova groups of *T. trichiura* in
404 literature.(44)

405 **Figure 3: Morphology of *T. incognita* n. sp.**

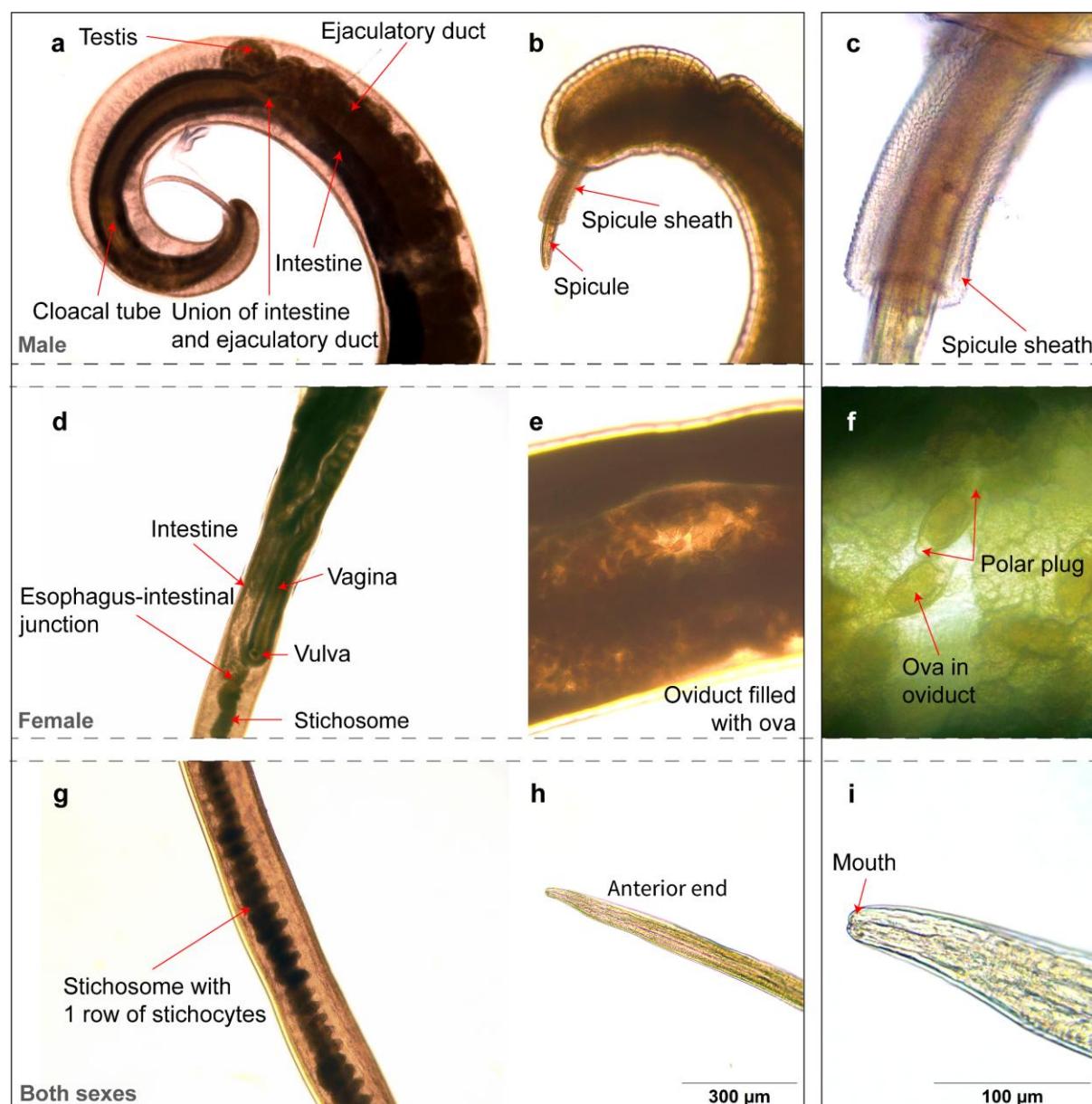


Figure 3: Morphology of *T. incognita* n. sp. The same scale was used for a,b,d,e,g and h, and a different one for c, f and i and is provided in the bottom right corner. **a** Posterior end showing male organs including testis, ejaculatory duct, intestine, union of intestine and ejaculatory duct, cloacal tube and spicule with a ruptured sheath. **b** Male spicule with an intact sheath partially covering the spicule. **c** 40X magnification of the shiny spicular sheath showing a surface structure. **d** Morphology showing female reproductive organs at the intersection between anterior and posterior part of the worm including stichosome, esophagus-intestinal junction, intestine, vagina and vulva. **e** Enlarged oviduct filled with *T. incognita* n. sp. ova. **f** 40X magnification on ova showing polar plugs. The ova are 68 μM long and 29 μM wide in this image. **g** Anterior showing one row of stichocytes and 2 types of cuticle patterns. The left side showing transverse grooves and the right side the tuberculate band. **h** Anterior ending leading up to the mouth. **i** 40X magnification of the mouth.

***T. incognita* n. sp. hybrid *de novo* whole genome assembly and comparative genomic analyses**

The *de novo* assembled genome of *T. incognita* n. sp., sequenced at a coverage of 50X Nanopore and 65X Illumina reads, resulted in a length of 84.26 Mb, compared to 80.57 Mb of *T. trichiura*, 63.84 Mb, 73.46 Mb and 70.45 Mb of *T. suis* and 111.83 Mb of *T. muris*. The *T.*

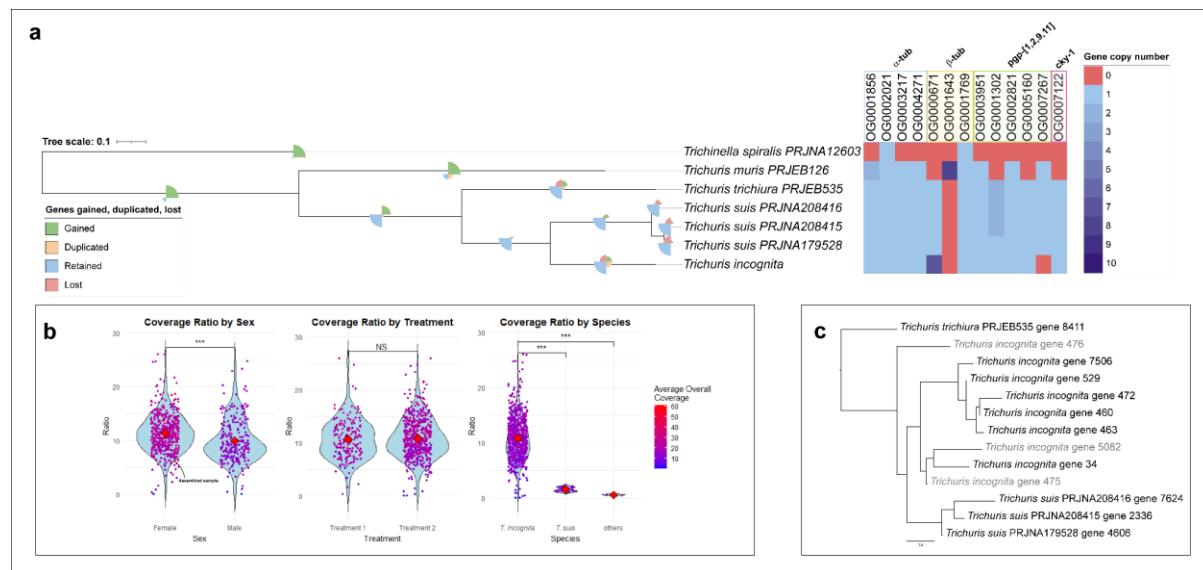
423 *incognita* n. sp. genome consisting of 387 contigs with an N50 of 11.78 Mb is presented in
424 Table 1. The genome completeness amounted to 75.4% of whole, duplicated, and fragmented
425 single copy orthologues as determined by BUSCO. GC content was 43%. Genes were
426 predicted *de novo* for all available reference whole genomes using the braker2 pipeline and
427 the metazoa database, resulting in the prediction of 13739 genes for *T. incognita* n. sp. An
428 exploratory analysis of these genes in context to the *in silico* predicted genes of *T. trichiura*,
429 *T. suis* and *T. muris* presented in SI Table 2 and SI Table 5 identified one family of each
430 serpins (OG0000305) and chymotrypsin-like serine proteases (OG0010319) that are shared
431 only by *T. trichiura* and *T. incognita* n. sp. (SI Figure 4) additionally to a family of tetraspanins
432 (OG0009162) also shared by *T. muris*.(45, 46)

433 **Table 1: Whole genome assembly metrics**

	<i>Trichuris incognita</i> n. sp.	<i>Trichuris trichiura</i>	<i>Trichuris suis</i>	<i>Trichuris suis</i>	<i>Trichuris suis</i>	<i>Trichuris muris</i>	<i>Trichinella spiralis</i>
Accession	NA	PRJEB535	PRJNA208416	PRJNA208415	PRJNA179528	PRJEB126	PRJNA12603
Genome Size [Mb]	84.26	80.57	70.45	73.46	63.84	111.83	63.51
Number of contigs	387	113	1131	1470	306	803	6819
N50 [Mb]	11.78	11.3	0.45	0.5	1.32	28.94	6.37
GC percentage [%]	42.8	42.3	43.5	43.6	43.31	44.6	33.9
Complete single BUSCOs [%]	61.3	64.3	65.6	65.4	65.2	61.5	64.8
Duplicated BUSCOs [%]	2.7	1.8	0.4	0.7	0.4	3.9	3.8
Fragmented BUSCOs [%]	11.4	10	10	9.7	9.9	10.3	7
Missing BUSCOs [%]	24.6	23.9	24	24.2	24.5	24.3	24.4
Number of genes	13739	11809	11224	11884	9755	20537	13254
Total exon number	82285	71304	69897	71543	66000	93618	103944
Mean exon length [bp]	255	240	235	239	222	281	193
Median exon length [bp]	152	150	150	151	148	164	136
Total intron number	67462	58645	58015	58973	55584	71798	88078
Mean intron length [bp]	267	291	274	278	277	315	187
Median intron length [bp]	57	57	56	57	56	57	74
Total coding sequence [Mb]	20.98	17.14	16.45	17.07	14.63	26.23	20.03
Sequencing technique	Illumina + Nanopore	Pacbio	Illumina	Illumina	Pacbio	Pacbio + Illumina	Whole genome shotgun*

434 *bacterial artificial chromosome (BAC)

435 **The species tree confirms the existence of a new species of *Trichuris*, and reveals**
436 **highly duplicated genes associated to microtubule dynamics and mitotic processes**


437 The species tree of the *Trichuris* genus presented in Figure 4a was inferred using species tree
438 inference from all genes (STAG)(47, 48) with 12434 orthologous groups of the braker2
439 predicted genes in the publicly available whole genomes of *Trichuris* species, *T. incognita* n.
440 sp. and *Trichinella spiralis*. The species tree shows the same topology as for the mitogenome
441 inferred phylogeny.

442 We further inferred the gene orthology of all genes predicted in the publicly available whole
443 genomes of *Trichuris* species, *T. incognita* n. sp. and *Trichinella spiralis* to identify duplication
444 events of genes that have been associated with resistance to either albendazole or ivermectin
445 in helminths. These resistance-associated genes include TBB for albendazole or glutamate-
446 gated chloride channel subunits (*glc-1*, *glc-2*, *glc-3*, *avr-14*, *avr-15*), voltage gated chloride ion
447 channels (*clh-3*), sodium:potassium:chloride symporter (*nkcc-1*), bestrophin chloride channel
448 (*best-19*), p-glycoprotein ABC transporters (*pgp-1*, *pgp-2*, *pgp-9*, *pgp-11*), and transcription
449 factor *cky-1*, for ivermectin respectively.(14, 49) Amongst these genes, one orthologous
450 group (OG0000671) of the TBB gene showed 9 orthologs of beta tubulin gene in *T. incognita*
451 n. sp. and only 1 ortholog in all *T. suis* and *T. trichiura* reference species as presented in
452 Figure 4a. One gene was fragmented into 2 sections, g475 and g476, and g5082 was also

453 found to be fragmented. Intriguingly, the α -tubulin gene was only present as a single ortholog.
454 SI Figure 5 shows the 7 predicted TBB genes from the braker 2 pipeline. None of the genes
455 show previously encountered Phe168, Glu198 or Phe200 mutations. Position 194, showed
456 the existence of 3 different variants carrying either Ile, Met or a polar Asn. Reference
457 sequences of *T. trichiura*, and *T. suis* also show different variants at this position. *In silico*, a
458 truncation was predicted in 3 of the 7 TBB genes as shown in SI Figure 5, which warrants
459 further transcriptomic verification. To further investigate, if the variants at position 194 were
460 reproducible in an independent Nanopore sequencing experiment of a single isolate, a region
461 was amplified that was present in all genes and contained the predicted variants (primer
462 sequences are provided in SI Figure 6). As shown in SI Figure 6, the different variants at
463 position 194 were confirmed and the coverage ratio from the IGV software indicated that 8%
464 of all reads carried an Asn, 37% carried an Ile, and 55% a Met, indicating that out of all
465 orthologs of the TBB gene, one ortholog is present in the Asn form. Notably, these variants
466 are very close to the predicted binding site of albendazole and are at variable sites compared
467 to reference sequences.

468 The gene tree of the orthologous group of TBB, OG0000671, shown in Figure 4c gives insight
469 into the history of these duplication events. The gene tree shows a similar distance in number
470 of substitutions per site from *T. suis* gene 4606 to *T. incognita* n. sp. gene 34, compared to
471 the distance from *T. incognita* n. sp. gene 472 to *T. incognita* n. sp. gene 34. This indicates
472 that interspecies genetic variation is similar to intraspecies genetic variation for at least 2
473 clades of TBB genes. Clade one, including gene 7506, 529, 472, 460, 463, and clade two,
474 including gene 34. Genes 475, 476, and 5082 were not considered, as they were found to be
475 fragmented.

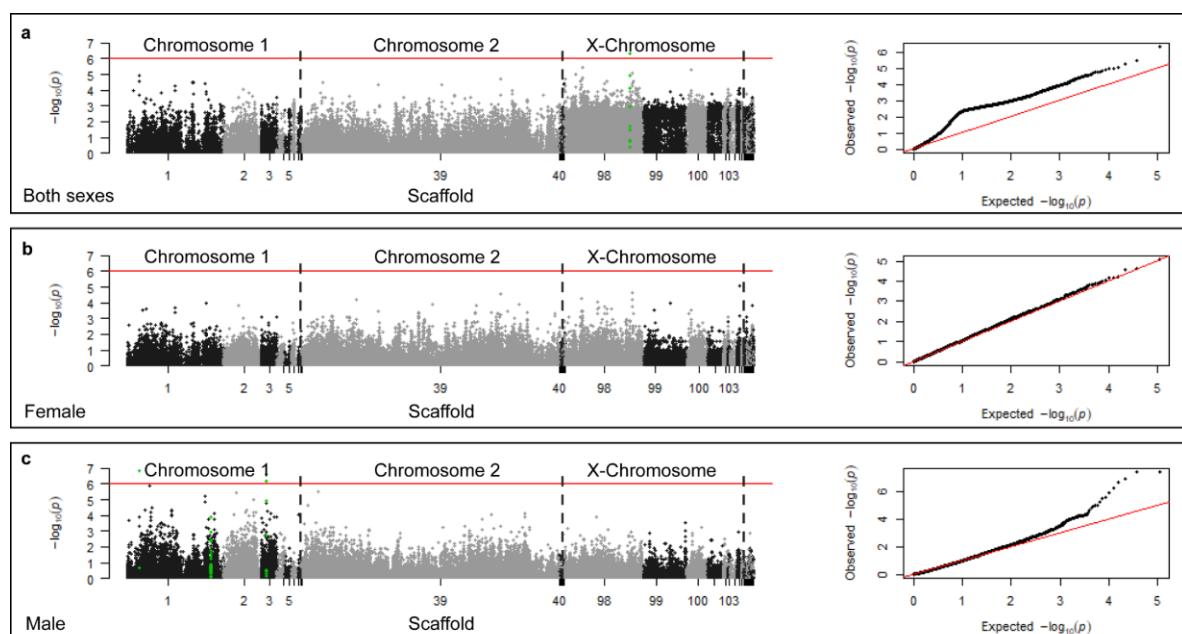
476 **Figure 4: Duplications across the species tree show a high number of β -tubulin gene orthologs.**
477

478 **a** Species tree indicating gene duplication, gains, losses and retention as pie charts across the tree.
479 Heat map of ortholog numbers for all genes present in orthologous groups of genes, which have
480 previously been associated to resistance and the α -tubulin gene. **b** Coverage ratio compared between
481 worm sex (n=747), treatment (n=747) and from *T. incognita* n. sp. (n=747) to *T. suis* (n=26) from Côte
482 d'Ivoire and other species. Three *T. suis* genomes and one *T. trichiura* genome were used to calculate
483 the average coverage in the species containing only one gene in OG0000671. *** signifies a p-value <
484 0.001 from a two tailed t-test. **c** TBB gene tree of OG0000671, timescale indicates numbers of
485 substitutions per site.
486

488 We then sought to conduct an unbiased investigation of gene families which are as expanded
489 or more expanded compared to the β -tubulin gene in *T. incognita* n. sp. and identified gene
490 families associated with microtubule function and mitotic processes. Massively expanded
491 gene families as in ≥ 7 copies per gene in *T. incognita* n. sp. and ≤ 4 in all other species were
492 investigated and a list of gene families and their annotation is provided in the supporting
493 information (SI Table 6). From 81 gene families, 68 could be associated to DNA transposable
494 elements and retrotransposons, 6 remained unknown and without blast hits and 7 could be
495 assigned a functionality. Apart from the TBB gene, other genes related to microtubule function
496 and flexibility were found within these 7 assignable orthologous groups. Amongst these highly
497 duplicated genes is the motor protein kinesin and MAP65/Ase1, which promotes microtubule
498 flexibility and prevents microtubule severing by cross-linking.(50, 51) Finally, Condensin,
499 Transcription factor (TF) IIIC, and a haspin like kinase, were identified and are involved in
500 chromatid condensation, organization and cohesion respectively.

501 To extrapolate the TBB duplication events from the assembled genome of one single worm to
502 the population, we leveraged the ratio of the average coverage of illumina reads of the
503 amplified TBB region compared to the longest autosomal contig present in the genome of all
504 747 worms as shown in Figure 4b. Intriguingly, the gene ortholog count was reflected in the
505 average overall coverage showing a significant difference between worm sex (p-value <
506 0.001) but not showing any significance with regard to treatment. On average 11 copies were
507 present in female worms and 8 copies in male worms. To compare the coverage ratios against
508 species, where only one ortholog was identified, the raw sequencing data of 26 *T. suis* worms
509 isolated in Côte d'Ivoire was used as a comparison, where, intriguingly, only 1-2 copies of the
510 TBB was present. Thus, one unique feature about *T. incognita* n. sp. is the high number of the
511 TBB gene orthologs. The coverage ratios were further compared to coverage ratios from
512 publicly available raw sequencing data that was downloaded for *T. suis* (PRJNA20815,
513 PRJNA20816, PRJNA179528) and *T. trichiura* (PRJNA304165), the same region of TBB was
514 used and the coverage ratio was calculated again from the amplified TBB region to the
515 autosomal region indicating one ortholog of the TBB gene.

516 This work and the nomenclatural acts it contains for the new species have been registered in
517 ZooBank: LSID: 34409100-BF94-4A0D-9088-D28215D231F6. Furthermore, a female
518 holotype has been archived at the natural history museum in Basel under the number NMB-
519 79 a.


520 **Genome wide association study does not provide substantial evidence of adaptation to
521 drug treatment**

522 To investigate potential SNPs associated with resistance, a genome wide association study
523 (GWAS) was conducted with sequencing data of 747 individual worms, 721 of which passed
524 the filtering, comparing the populations isolated after T1 and T2 respectively comprising of
525 179 drug sensitive (T1) and 542 drug non-sensitive (T2) isolates. Investigation of the PCA
526 presented in SI Figure 7, showed that worm-sex contributed the most to population
527 stratification. As a result, the GWAS was conducted once for both sexes pooled, and for male
528 and female worms separately. In the PCA of the subpopulation, significant population
529 stratification was associated with the village of isolation. However, no association was found
530 to T1 or T2 in the subpopulation, justifying the consideration of population stratification only
531 on a worm sex level. Both a logistical and linear model was used to investigate 1254246
532 overall mutations and a subset of 56273 missense mutations on *in-silico* predicted genes and
533 a genome wide significance level of 3.99E-8 and 8.89E-7 respectively using the Bonferroni
534 correction at $\alpha=0.05$ on the combined sample cohort of male and female worms and on each
535 sex individually resulting in a total of 24 different runs presented in Figure 5 and SI Figures 8-

536 15. QQ-plots showed consistent artificial inflation when using combined data of male and
537 female worms, as seen in Figure 5a (right half of the panel). Furthermore, population
538 stratification occasionally resulted in increased deviations from expected and observed
539 values, for the probability of association to treatment outcome. When running only male or
540 female isolates, the artificial inflation was mitigated (Figure 5b, 5c on the right). In total, 29
541 SNPs were identified with genome wide significance in all the 24 GWAS' combined and are
542 presented with their sequence in SI Table 7. Using a linear model without population
543 stratification on missense mutations on coding genes (Figure 5), a total of 3 genes carried
544 SNPs with genome wide significance in the male population: g207, a muscle M-line assembly
545 protein unc-89 homolog; g1478, a FSA C domain containing protein; and g2562, an integrase
546 catalytic domain-containing protein. The GWAS with a linear model without population
547 stratification on all SNPs yielded 22 hits on 10 genes, including a voltage-gated chloride ion
548 channel.. No further missense SNPs were identified with a genome wide significance. The
549 QQ-plots were most consistent in the logistic model without population stratification as shown
550 in SI Figure 10. Using this model, no SNPs with genome wide significance were identified.

551 SNPs on expanded gene families were also investigated. However, no genome wide
552 significant SNPs were found in any of the 24 GWAS'. The strongest association of a missense
553 SNP associated to drug treatment on the TBB gene was the Asn194Ile mutation with a p-value
554 of $p = 0.12$ which is far below the genome wide significance level.

555 **Figure 5: Genome wide association study of worms expelled after albendazole-ivermectin**
556 **treatment (T1) versus worms expelled after oxantel-pamoate treatment (T2).**

557
558 GWAS displaying p-values of missense SNPs associated to treatment outcome (T1 vs T2) using a
559 linear model without population stratification in PLINK. PCA is provided in the SI. A total of 24 GWAS'
560 were performed as described in the methodology section, the results of all of them are provided in the
561 SI. The linear model without population stratification yielded the most hits while maintaining stable QQ
562 plots for both sexes individually. Variants were filtered at a minor allele frequency of 0.05, a missing
563 genotype frequency of 0.05, and a deviation from the Hardy-Weinberg Equilibrium at a significance
564 level of $p=0.001$. The red line indicates the Bonferroni corrected significance of 8.89E-7 at $\alpha=0.05$ and
565 56273 mutations. The scaffolds are separated by black/grey colors. The green dots indicate all SNPs
566 found on the specific gene of interest carrying a SNP with genome wide significance. **a** Data of both
567 sexes. 247 males, 471 females, and 3 ambiguous 542 cases as in drug non-sensitive and 179 controls.
568 **b** Only female SNPs. 0 males, 471 females, 333 cases as in drug non-sensitive and 138 controls. **c**

569 Only male SNPs. 247 males, 0 females, 208 cases as in drug non-sensitive and 39 controls. All GWAS
570 hits, from each of the 24 analyses, the sequence, the best blast hit, the location and functional
571 annotation, where possible, is provided in the SI Table 7 "hits_gwas_all.xlsx"

572 **Discussion:**

573 Our study presents an in-depth characterization of *T. incognita* n. sp. found to be less
574 susceptible to albendazole-ivermectin treatment and morphologically indistinguishable to *T.*
575 *trichiura*. A genome wide association study and the investigation of genes previously
576 associated with resistance, did not conclusively show adaptation to drug pressure within the
577 same species of *Trichuris*.

578 The existence of a species of *Trichuris*, phylogenetically distinct from the canonical human-
579 infective species, has been proposed in recent studies involving amplicon sequencing by
580 Rahman *et al.*, Venkatesan *et al.*, and already in 2012 by Nissen *et al.*(11, 52, 53) Adopting
581 the genetic species concept, our data confirm the existence of this species at the whole
582 genome level, using the species tree constructed from 12434 orthologous groups, and 535
583 mitogenomes of 747 individually isolated and sequenced worms, all falling into the same
584 clade. The whole-genome assembly metrics align with established *Trichuris* genomes,
585 underscoring the robustness of our dataset.(15, 16, 32) However, structural variations might
586 be missed, as the *T. muris* genome was used as a reference for scaffolding, similar to what
587 was done in literature.(16) The prediction of genes in the publicly available *T. trichiura*, *T. suis*,
588 *T. muris* and *Trichinella spiralis* genomes, and the newly assemble *T. incognita* n. sp. genome,
589 using the same reference database, allowed the exploration of orthologous gene groups and
590 duplication events across the species tree. The identification of a family of serpins and
591 chymotrypsin-like serine proteases uniquely present in human infecting *Trichuris* may be of
592 particular interest, as these proteins, which were identified to be upregulated in the stichosome
593 of *T. suis*, have gained particular interest in the field of immunomodulatory diseases in general
594 and vaccine development for *T. spiralis*.(15, 54, 55)

595 Our investigation of duplication events across the species tree revealed a unique characteristic
596 of *T. incognita* n. sp.: A high number of TBB gene orthologs. Duplication events are
597 encountered across the tree of life and constitute an important mechanism to provide new
598 genetic material. In eukaryotes, including *C. elegans*, gene duplication rates are estimated to
599 be as frequent as single-nucleotide polymorphisms. However, they have never been
600 investigated within the *Trichuris* genus.(56, 57) Drawing upon previous studies linking gene
601 duplication to drug adaptation across diverse parasitic organisms, and deducing modes of
602 action of drugs from observations of duplication events, we sought to investigate gene
603 duplication events in connection to drug insensitivity.(58, 59) In total, 7 variants of the β -tubulin
604 gene were identified in the whole genome, providing substantial redundancy that may allow
605 for adaptation through sub-functionalization and increased gene expression. This contrasts
606 with the low number of TBB orthologs in *T. trichiura*. It is of note that *T. trichiura* does not
607 respond well to single benzimidazole treatment. Leveraging coverage ratios, duplication
608 events could be confirmed in the whole population for each individual worm. Notably, while β -
609 tubulin exhibited significant duplication, α -tubulin did not. Furthermore, massively expanded
610 gene families are associated with microtubule dynamics and mitotic processes. Kinesin acts
611 as intracellular shuttle and can de-polymerize microtubules. It has been shown to bind to
612 negatively charged residues E410, D417 and E421 on the β -tubulin subunit.(60) MAP65/Ase1,
613 a microtubule-associated protein is reported to promote microtubule flexibility and prevent
614 microtubule severing by cross-linking.(50, 51) These findings suggest that the duplications
615 observed are associated to repairing and protecting microtubule functionality which is
616 intriguing considering the mode of action of albendazole, inhibiting microtubule formation.(61,

617 62) Further, highly duplicated genes including Condensin, Transcription factor (TF) IIIC and a
618 haspin like kinase were associated to chromatid condensation, organization and cohesion
619 respectively. While these genes have not been associated to benzimidazole resistance, they
620 are linked to mitotic processes which in turn are connected to microtubule function with
621 regards to the mitotic spindle.(63-65) *T. muris* is the only other organism with a high number
622 of TBB orthologs and it has been shown that albendazole or mebendazole had an IC₅₀ > 200
623 µg/mL in *T. muris*.(66) However, comparing the number of TBB orthologs of the population
624 obtained after T1 to the population obtained after T2, showed no significant difference
625 indicating that duplications are not the result of a recent adaptation nor an adaptation to drug
626 pressure. Assuming an average mutation rate of 2×10^{-8} point mutations per gene per
627 generation in *C. elegans* as an estimate, the duplication events would be dated back several
628 centuries. These findings support the hypothesis that the observed lower cure rates in Côte
629 d'Ivoire are not a result of resistance establishment, but potentially a result of different
630 response rates of different *Trichuris* species. Finally, the functional significance of different
631 TBB genes remains unknown and is subject for future studies.

632 Patterns of gene duplication, gain, and loss of function events in *T. incognita* n. sp. compared
633 to within *T. suis* suggest a more ancient and divergent evolutionary lineage. Despite the close
634 genetic relationship of *T. incognita* n. sp. to *T. suis*, our phylogenetic analysis demonstrates
635 clear separation between *T. incognita* n. sp. and *T. suis* isolates from swine hosts in Côte
636 d'Ivoire. While zoonosis events of trichuriasis from *T. suis* to *T. incognita* n. sp. have been
637 reported,(67) these findings suggest that there may have been a zoonotic event sometime in
638 the past between the human and swine host that was successful, but could not be observed
639 currently. However, the occurrence of closely related *Trichuris* isolates from the colobus
640 monkeys (*Colobus guereza kikuyensis*) raises the question, if these might belong to the same
641 species of *Trichuris* and have zoonotic potential similar to *T. trichiura* species, which are found
642 both within primates and humans.(32) Furthermore, J. Rivero *et al.* identified *Trichuris* species,
643 which were closely related to the one found in the colobus monkey and may be the same
644 species as *T. incognita* n. sp. based on ITS sequences or *cox1* and *cob* genes.(43) If *T.*
645 *incognita* n. sp. were able to infect non-human hosts, which is the case for *T. trichiura*, this
646 would provide a refugia from drug pressure, which might prevent the establishment of
647 anthelmintic resistance.(68)

648 With the unique experimental setup of the expulsion study, we were able to categorize
649 helminths into drug sensitive and non-sensitive and thus enabling a genome wide association
650 study (GWAS) to investigate the potential establishment of resistance to albendazole-
651 ivermectin. MDA has been ongoing in Côte d'Ivoire for multiple decades,(4) which is well within
652 the timeframe of a possible resistance establishment in STH through PC.(7) The most
653 surprising finding of the GWAS may be, that there is no conclusive evidence to show a clear
654 adaptation to drug treatment by comparing drug sensitive and non-sensitive *T. incognita*
655 worms. Depending on the set of SNPs analyzed, regression model chosen for the GWAS,
656 logistic vs linear, and the inclusion of principal components to account for population
657 stratification or not, SNPs of genome wide significance with acceptable QQ-plots were only
658 observed using a linear model in the male population without considering population
659 stratification. Two hits are worth mentioning, as they can be found on genes that are to some
660 extent in context of the mode of action of albendazole or ivermectin: a homolog of the muscle
661 M-line assembly protein unc-89 found in *C. elegans* and a voltage gated chloride ion channel.
662 The first one is a structural component of the muscle M line which regulates Ca²⁺ signaling
663 and is involved in preventing the degradation of microtubule severing protein mei-1 by binding
664 mel-26, which may be interesting regarding albendazoles mode of action.(69) The latter is
665 interesting regarding the glutamate gated chloride ion channel binding activity of ivermectin,

666 leading to increased hyperpolarization in the neuromuscular junction. (70) However, while
667 these hits will be subject of future investigation, there is no clear indication of resistance
668 establishment in the analysis conducted. This is in contrast to reported quantitative trait loci
669 (QTL) associated with ivermectin resistance in *H. contortus* and *C. elegans* found on the cky-
670 1 gene,(14) and transmembrane proteins such as the chloride ion channel avr-15,(71) all of
671 which did not show an association with genome wide significance in this study. Importantly,
672 our experimental design also has limitations, such as the potential failure of capturing of multi-
673 loci resistance mechanisms against a combination treatment, or gene expression related
674 mechanisms, which might be visible in transcriptomic experiments.

675 The expulsion study also allowed us to gain insights into the fecundity and expulsion dynamics
676 of *T. incognita*. Following the administration of albendazole and ivermectin during T1, only 271
677 out of 1098 worms were expelled, which is in-line with previously observed low cure rates in
678 Côte d'Ivoire.(9, 72) The female to male ratio is comparable to recent reports for *T.*
679 *trichiura*.(17) The fecundity of around 14,300 eggs per female per day of *T. incognita* n. sp.
680 matches literature reported values of approximately 16,700 for *T. trichiura*.(17) Overall, these
681 results suggest that the biology of *T. incognita* n. sp. in terms of fecundity is comparable to *T.*
682 *trichiura*. Also morphologically, *T. incognita* n. sp. and *T. trichiura* were comparable. The
683 presented morphological characteristics of *T. incognita* n. sp. do not enable a morphological
684 distinction to *T. trichiura* indicating the limits of the morphological species concept for the
685 *Trichuris* genus.(43) The morphological indistinguishability of *T. incognita* n. sp., *T. trichiura*
686 and *T. suis* worms may be the reason why this species has remained undescribed for many
687 decades and emphasizes the need of diagnostic tools able to differentiate between these
688 worms to gain further insight into the transmission dynamics and prevalence of this new
689 species, as it responds differently to drug treatment. Intriguingly in a study from Rahman *et*
690 *al.*, analyzing a sample cohort from 2019 in similar regions, both *T. trichiura* and *T. incognita*
691 were detected, where in our study exclusively *T. incognita* was observed in 2022.(53)
692 Longitudinal studies investigating a potential connection between species distribution and
693 drug efficacies will be of particular interest.

694 This study demonstrates that human trichuriasis can be caused by multiple species of
695 whipworm, and that the differences in response rates may be a result of species responding
696 differently to drug treatment, as opposed to an establishment of resistance. While the current
697 WHO guideline for treatment of *T. trichiura* (combination therapy with (ALB/IVM) should still
698 stand the current findings show the necessity to incorporate molecular diagnostics into clinical
699 trials and to develop a new treatment against *T. incognita* n. sp.

700

701

702 Acknowledgements

703 We would like to acknowledge Dr. John Gilleard and Dr. Abhinaya Venkatesan from the
704 Faculty of Veterinary Medicine, Host-Parasite Interactions Program, University of Calgary, AB
705 T2N1N4, Canada for the fruitful discussions on *Trichuris* phylogeny. We are grateful to the
706 European Research Council for financial support (Nr. 101019223).

707 References:

708 1. James SL, Abate D, Abate KH, Abay SM, Abbafati C, Abbasi N, et al. Global, regional,
709 and national incidence, prevalence, and years lived with disability for 354 diseases and injuries
710 for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of
711 Disease Study 2017. *The Lancet*. 2018;392(10159):1789-858.

712 2. Montresor A, Mupfasoni D, Mikhailov A, Mwinzi P, Lucianez A, Jamsheed M, et al. The
713 global progress of soil-transmitted helminthiases control in 2020 and World Health
714 Organization targets for 2030. *PLoS Negl Trop Dis.* 2020;14(8):e0008505.

715 3. World Health O, Onchocerciasis Control Programme in the Volta River Basin A. Drug
716 development. Ouagadougou: Onchocerciasis Control Programme in the Volta River Basin
717 Area; 1976 1976. Contract No.: OCP/STAC/4.2.

718 4. Bland J, Viedma C, Davies P, Ozorio P. This wormy world [full issue]. World health.
719 1984(March 1984):2-31.

720 5. Ogoussan KT, Hopkins A. Mectizan((R)) procurement and delivery for onchocerciasis
721 mass drug administration programmes. *Acta Trop.* 2011;120 Suppl 1:S173-6.

722 6. Rose Vineer H, Morgan ER, Hertzberg H, Bartley DJ, Bosco A, Charlier J, et al. Increasing
723 importance of anthelmintic resistance in European livestock: creation and meta-
724 analysis of an open database. *Parasite.* 2020;27:69.

725 7. Coffeng LE, Stolk WA, de Vlas SJ. Predicting the risk and speed of drug resistance
726 emerging in soil-transmitted helminths during preventive chemotherapy. *Nat Commun.*
727 2024;15(1):1099.

728 8. Hansen TV, Nejsum P, Friis C, Olsen A, Thamsborg SM. *Trichuris suis* and
729 *Oesophagostomum dentatum* show different sensitivity and accumulation of fenbendazole,
730 albendazole and levamisole in vitro. *PLoS Negl Trop Dis.* 2014;8(4):e2752.

731 9. Hürlimann E, Keller L, Patel C, Welsche S, Hattendorf J, Ali SM, et al. Efficacy and
732 safety of co-administered ivermectin and albendazole in school-aged children and adults
733 infected with *Trichuris trichiura* in Côte d'Ivoire, Laos, and Pemba Island, Tanzania: a double-
734 blind, parallel-group, phase 3, randomised controlled trial. *The Lancet Infectious Diseases.*
735 2022;22(1):123-35.

736 10. Venkatesan A, Chen R, Bar M, Schneeberger PHH, Reimer B, Hurlimann E, et al. Trichuriasis in Human Patients from Côte d'Ivoire Caused by Novel *Trichuris incognita* Species with Low Sensitivity to Albendazole/Ivermectin Combination Treatment. *Emerg Infect Dis.* 2025;31(1):104-14.

737 11. Nissen S, Al-Jubury A, Hansen TV, Olsen A, Christensen H, Thamsborg SM, et al. Genetic analysis of *Trichuris suis* and *Trichuris trichiura* recovered from humans and pigs in a sympatric setting in Uganda. *Vet Parasitol.* 2012;188(1-2):68-77.

738 12. Ghedin E. Panning for molecular gold in whipworm genomes. *Nat Genet.* 2014;46(7):661-3.

739 13. Doyle SR. Improving helminth genome resources in the post-genomic era. *Trends Parasitol.* 2022;38(10):831-40.

740 14. Doyle SR, Laing R, Bartley D, Morrison A, Holroyd N, Maitland K, et al. Genomic landscape of drug response reveals novel mediators of anthelmintic resistance. Preprint. 2022.

741 15. Jex AR, Nejsum P, Schwarz EM, Hu L, Young ND, Hall RS, et al. Genome and transcriptome of the porcine whipworm *Trichuris suis*. *Nat Genet.* 2014;46(7):701-6.

742 16. Foth BJ, Tsai IJ, Reid AJ, Bancroft AJ, Nichol S, Tracey A, et al. Whipworm genome and dual-species transcriptome analyses provide molecular insights into an intimate host-parasite interaction. *Nat Genet.* 2014;46(7):693-700.

743 17. Hansen EP, Tejedor AM, Thamsborg SM, Alstrup Hansen TV, Dahlerup JF, Nejsum P. Faecal egg counts and expulsion dynamics of the whipworm, *Trichuris trichiura* following self-infection. *J Helminthol.* 2016;90(3):298-302.

744 18. Bundy DA, Thompson DE, Cooper ES, Blanchard J. Rate of expulsion of *Trichuris trichiura* with multiple and single dose regimens of albendazole. *Trans R Soc Trop Med Hyg.* 1985;79(5):641-4.

745 19. Cringoli G, Maurelli MP, Levecke B, Bosco A, Vercruyse J, Utzinger J, et al. The Mini-FLOTAC technique for the diagnosis of helminth and protozoan infections in humans and animals. *Nat Protoc.* 2017;12(9):1723-32.

746 20. Di Tommaso P, Chatzou M, Floden EW, Barja PP, Palumbo E, Notredame C. Nextflow enables reproducible computational workflows. *Nat Biotechnol.* 2017;35(4):316-9.

766 21. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence
767 data. *Bioinformatics*. 2014;30(15):2114-20.

768 22. Jin JJ, Yu WB, Yang JB, Song Y, dePamphilis CW, Yi TS, et al. GetOrganelle: a fast
769 and versatile toolkit for accurate de novo assembly of organelle genomes. *Genome Biol*.
770 2020;21(1):241.

771 23. Meng G, Li Y, Yang C, Liu S. MitoZ: a toolkit for animal mitochondrial genome
772 assembly, annotation and visualization. *Nucleic Acids Res*. 2019;47(11):e63.

773 24. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7:
774 improvements in performance and usability. *Mol Biol Evol*. 2013;30(4):772-80.

775 25. Bouckaert R, Vaughan TG, Barido-Sottani J, Duchene S, Fourment M, Gavryushkina
776 A, et al. BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. *PLoS*
777 *Comput Biol*. 2019;15(4):e1006650.

778 26. De Coster W, Rademakers R. NanoPack2: population-scale evaluation of long-read
779 sequencing data. *Bioinformatics*. 2023;39(5).

780 27. Sun J, Li R, Chen C, Sigwart JD, Kocot KM. Benchmarking Oxford Nanopore read
781 assemblers for high-quality molluscan genomes. *Philos Trans R Soc Lond B Biol Sci*.
782 2021;376(1825):20200160.

783 28. Wood DE, Lu J, Langmead B. Improved metagenomic analysis with Kraken 2. *Genome*
784 *Biol*. 2019;20(1):257.

785 29. Zimin AV, Marcais G, Puiu D, Roberts M, Salzberg SL, Yorke JA. The MaSuRCA
786 genome assembler. *Bioinformatics*. 2013;29(21):2669-77.

787 30. Alonge M, Lebeigle L, Kirsche M, Jenike K, Ou S, Aganezov S, et al. Automated
788 assembly scaffolding using RagTag elevates a new tomato system for high-throughput
789 genome editing. *Genome Biol*. 2022;23(1):258.

790 31. Shumate A, Salzberg SL. Liftoff: accurate mapping of gene annotations.
791 *Bioinformatics*. 2021;37(12):1639-43.

792 32. Doyle SR, Søe MJ, Nejsum P, Betson M, Cooper PJ, Peng L, et al. Population
793 genomics of ancient and modern *Trichuris trichiura*. Preprint. 2021.

794 33. Manni M, Berkeley MR, Seppey M, Simao FA, Zdobnov EM. BUSCO Update: Novel
795 and Streamlined Workflows along with Broader and Deeper Phylogenetic Coverage for
796 Scoring of Eukaryotic, Prokaryotic, and Viral Genomes. *Mol Biol Evol*. 2021;38(10):4647-54.

797 34. Mikheenko A, Prjibelski A, Saveliev V, Antipov D, Gurevich A. Versatile genome
798 assembly evaluation with QUAST-LG. *Bioinformatics*. 2018;34(13):i142-i50.

799 35. Kuznetsov D, Tegenfeldt F, Manni M, Seppey M, Berkeley M, Kriventseva EV, et al.
800 OrthoDB v11: annotation of orthologs in the widest sampling of organismal diversity. *Nucleic*
801 *Acids Res*. 2023;51(D1):D445-D51.

802 36. Bruna T, Hoff KJ, Lomsadze A, Stanke M, Borodovsky M. BRAKER2: automatic
803 eukaryotic genome annotation with GeneMark-EP+ and AUGUSTUS supported by a protein
804 database. *NAR Genom Bioinform*. 2021;3(1):lqaa108.

805 37. Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative
806 genomics. *Genome Biol*. 2019;20(1):238.

807 38. Letunic I, Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree
808 display and annotation. *Nucleic Acids Res*. 2021;49(W1):W293-W6.

809 39. Altenhoff AM, Levy J, Zarowiecki M, Tomiczek B, Warwick Vesztrocy A, Dalquen DA,
810 et al. OMA standalone: orthology inference among public and custom genomes and
811 transcriptomes. *Genome Res*. 2019;29(7):1152-63.

812 40. Train CM, Pignatelli M, Altenhoff A, Dessimoz C. iHam and pyHam: visualizing and
813 processing hierarchical orthologous groups. *Bioinformatics*. 2019;35(14):2504-6.

814 41. Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler
815 transform. *Bioinformatics*. 2010;26(5):589-95.

816 42. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a
817 tool set for whole-genome association and population-based linkage analyses. *Am J Hum*
818 *Genet*. 2007;81(3):559-75.

819 43. Rivero J, Cutillas C, Callejon R. *Trichuris trichiura* (Linnaeus, 1771) From Human and
820 Non-human Primates: Morphology, Biometry, Host Specificity, Molecular Characterization,
821 and Phylogeny. *Front Vet Sci.* 2020;7:626120.

822 44. Yoshikawa H, Yamada M, Matsumoto Y, Yoshida Y. Variations in egg size of *Trichuris*
823 *trichiura*. *Parasitology Research.* 1989;75(8):649-54.

824 45. Tran MH, Pearson MS, Bethony JM, Smyth DJ, Jones MK, Duke M, et al. Tetraspanins
825 on the surface of *Schistosoma mansoni* are protective antigens against schistosomiasis. *Nat*
826 *Med.* 2006;12(7):835-40.

827 46. Susa KJ, Kruse AC, Blacklow SC. Tetraspanins: structure, dynamics, and principles of
828 partner-protein recognition. *Trends Cell Biol.* 2023.

829 47. Emms DM, Kelly S. STAG: Species Tree Inference from All Genes. 2018.

830 48. Emms DM, Kelly S. STRIDE: Species Tree Root Inference from Gene Duplication
831 Events. *Molecular Biology and Evolution.* 2017;34(12):3267-78.

832 49. Laing R, Doyle SR, McIntyre J, Maitland K, Morrison A, Bartley DJ, et al. Transcriptomic
833 analyses implicate neuronal plasticity and chloride homeostasis in ivermectin
834 resistance and response to treatment in a parasitic nematode. *PLoS Pathog.*
835 2022;18(6):e1010545.

836 50. Burkart GM, Dixit R. Microtubule bundling by MAP65-1 protects against severing by
837 inhibiting the binding of katanin. *Mol Biol Cell.* 2019;30(13):1587-97.

838 51. Portran D, Zoccoler M, Gaillard J, Stoppin-Mellet V, Neumann E, Arnal I, et al. MAP65/Ase1
839 promote microtubule flexibility. *Mol Biol Cell.* 2013;24(12):1964-73.

840 52. Venkatesan A, Chen R, Baer M, Schneeberger PHH, Reimer B, Hürlimann E, et al.
841 2024.

842 53. Rahman N, Bär MA, Dommann J, Hürlimann E, Coulibaly JT, Ali S, et al. Nanopore-
843 based analysis unravels the genetic landscape and phylogenetic placement of human-
844 infecting Trichuris species in Côte d'Ivoire, Tanzania, Uganda, and Laos.
845 *bioRxiv.* 2024:2024.07.31.605962.

846 54. Mkaouar H, Mariaule V, Rhimi S, Hernandez J, Kriaa A, Jableoui A, et al. Gut
847 Serpinome: Emerging Evidence in IBD. *Int J Mol Sci.* 2021;22(11).

848 55. Xu J, Bai X, Wang LB, Shi HN, van der Giessen JWB, Boireau P, et al. Influence of
849 adjuvant formulation on inducing immune response in mice immunized with a recombinant
850 serpin from *Trichinella spiralis*. *Parasite Immunol.* 2017;39(7).

851 56. Lynch M, Conery JS. The Evolutionary Fate and Consequences of Duplicate Genes.
852 *Science.* 2000;290(5494):1151-5.

853 57. Kuzmin E, Taylor JS, Boone C. Retention of duplicated genes in evolution. *Trends*
854 *Genet.* 2022;38(1):59-72.

855 58. Kondrashov FA. Gene duplication as a mechanism of genomic adaptation to a
856 changing environment. *Proc Biol Sci.* 2012;279(1749):5048-57.

857 59. Zajac N, Zoller S, Seppala K, Moi D, Dessimoz C, Jokela J, et al. Gene Duplication
858 and Gain in the Trematode *Atriophalophorus winterbourni* Contributes to Adaptation to
859 Parasitism. *Genome Biol Evol.* 2021;13(3).

860 60. Cushion TD, Leca I, Keays DA. MAPping tubulin mutations. *Front Cell Dev Biol.*
861 2023;11:1136699.

862 61. Enos A, Coles GC. Effect of benzimidazole drugs on tubulin in benzimidazole resistant
863 and susceptible strains of *Caenorhabditis elegans*. *Int J Parasitol.* 1990;20(2):161-7.

864 62. Dawson PJ, Gutteridge WE, Gull K. A comparison of the interaction of anthelmintic
865 benzimidazoles with tubulin isolated from mammalian tissue and the parasitic nematode
866 *Ascaridia galli*. *Biochem Pharmacol.* 1984;33(7):1069-74.

867 63. Hagstrom KA, Meyer BJ. Condensin and cohesin: more than chromosome compactor
868 and glue. *Nat Rev Genet.* 2003;4(7):520-34.

869 64. Stutzman AV, Liang AS, Beilinson V, Ikegami K. Transcription-independent TFIIC-
870 bound sites cluster near heterochromatin boundaries within lamina-associated domains in *C.*
871 *elegans*. *Epigenetics Chromatin.* 2020;13(1):1.

872 65. Dai J, Kateneva AV, Higgins JM. Studies of haspin-depleted cells reveal that spindle-
873 pole integrity in mitosis requires chromosome cohesion. *J Cell Sci.* 2009;122(Pt 22):4168-76.

874 66. Keiser J, Tritten L, Adelfio R, Vargas M. Effect of combinations of marketed human
875 antihelminthic drugs against *Trichuris muris* in vitro and in vivo. *Parasites & Vectors*.
876 2012;5(1):292.

877 67. Nejsum P, Betson M, Bendall RP, Thamsborg SM, Stothard JR. Assessing the
878 zoonotic potential of *Ascaris suum* and *Trichuris suis*: looking to the future from an analysis of
879 the past. *J Helminthol*. 2012;86(2):148-55.

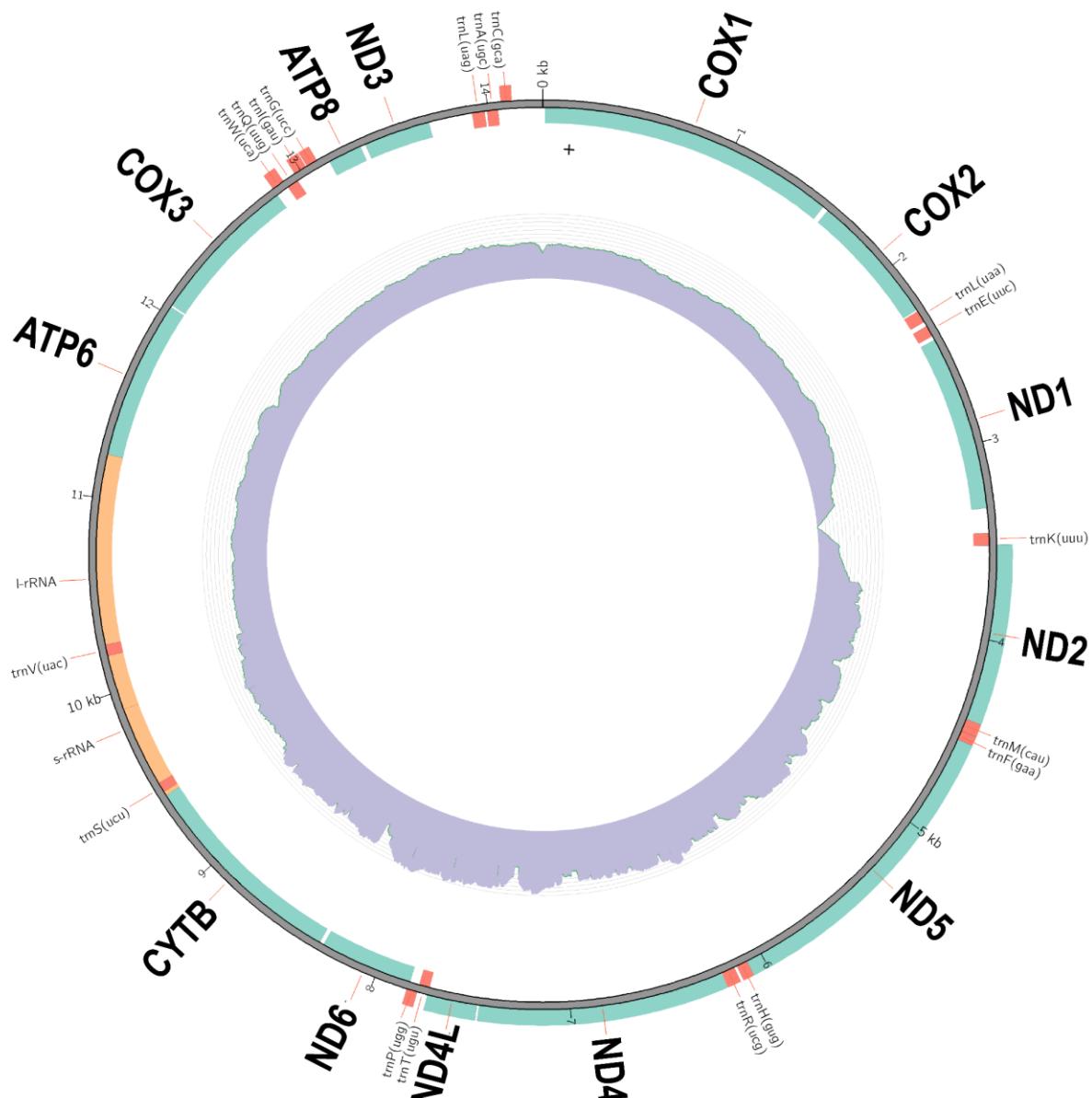
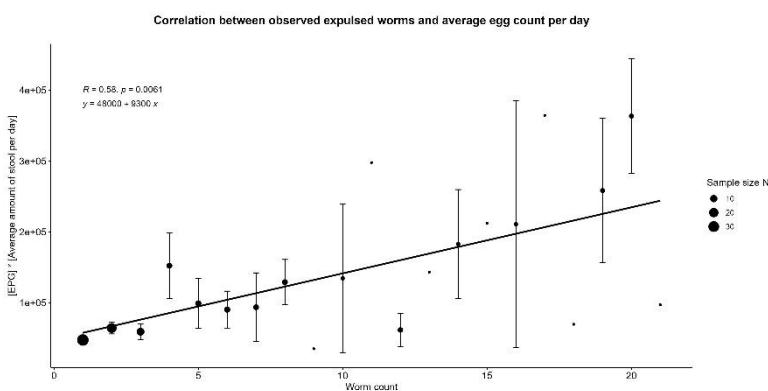
880 68. Vercruyse J, Albonico M, Behnke JM, Kotze AC, Prichard RK, McCarthy JS, et al. Is
881 antihelminthic resistance a concern for the control of human soil-transmitted helminths? *Int J*
882 *Parasitol Drugs Drug Resist*. 2011;1(1):14-27.

883 69. Wilson KJ, Qadota H, Mains PE, Benian GM. UNC-89 (obscurin) binds to MEL-26, a
884 BTB-domain protein, and affects the function of MEI-1 (katanin) in striated muscle of
885 *Caenorhabditis elegans*. *Mol Biol Cell*. 2012;23(14):2623-34.

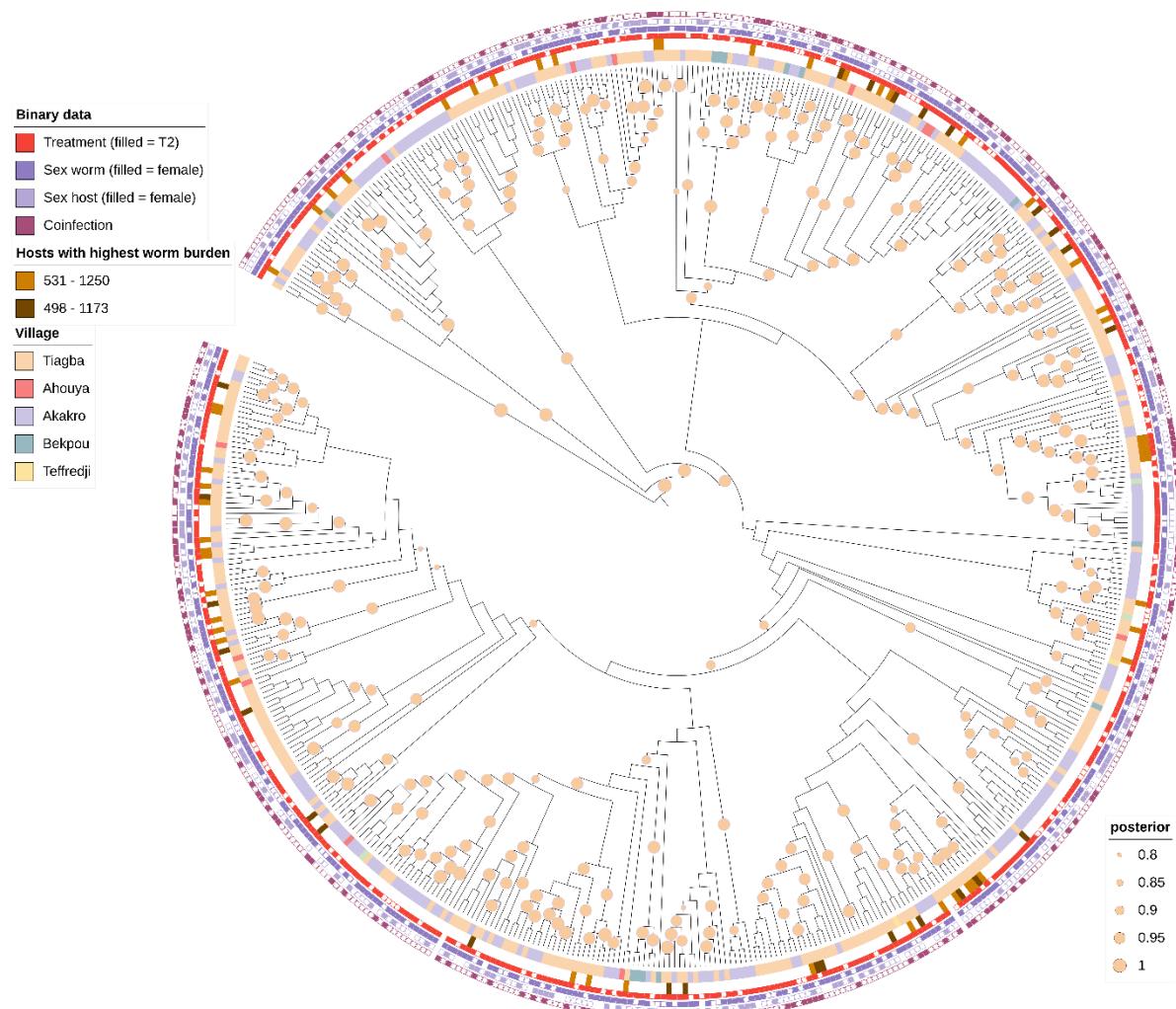
886 70. El-Saber Batiha G, Alqahtani A, Ilesanmi OB, Saati AA, El-Mleeh A, Hetta HF, et al.
887 *Avermectin Derivatives, Pharmacokinetics, Therapeutic and Toxic Dosages, Mechanism of*
888 *Action, and Their Biological Effects*. *Pharmaceuticals (Basel)*. 2020;13(8).

889 71. Dent JA, Smith MM, Vassilatis DK, Avery L. The genetics of ivermectin resistance in
890 *Caenorhabditis elegans*. *Proceedings of the National Academy of Sciences*. 2000;97(6):2674-
891 9.

892 72. Sprecher VP, Coulibaly JT, Hurlimann E, Hattendorf J, Keiser J. Efficacy and Safety of
893 *Moxidectin-Albendazole and Ivermectin-Albendazole Combination Therapy Compared to*
894 *Albendazole Monotherapy in Adolescents and Adults Infected with Trichuris trichiura: A*
895 *Randomized, Controlled Superiority Trial*. *Clin Infect Dis*. 2023;77(9):1294-302.

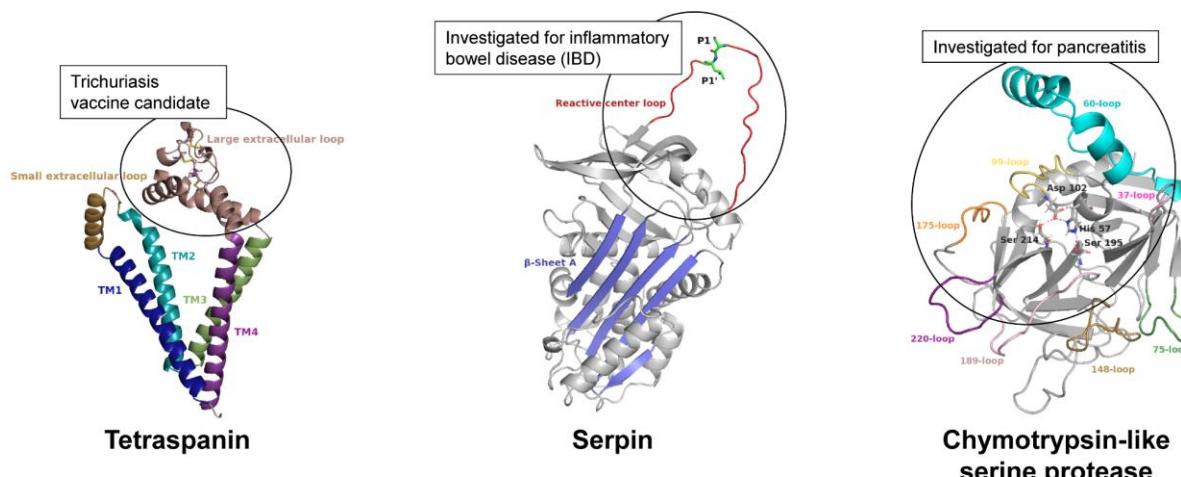


896

897

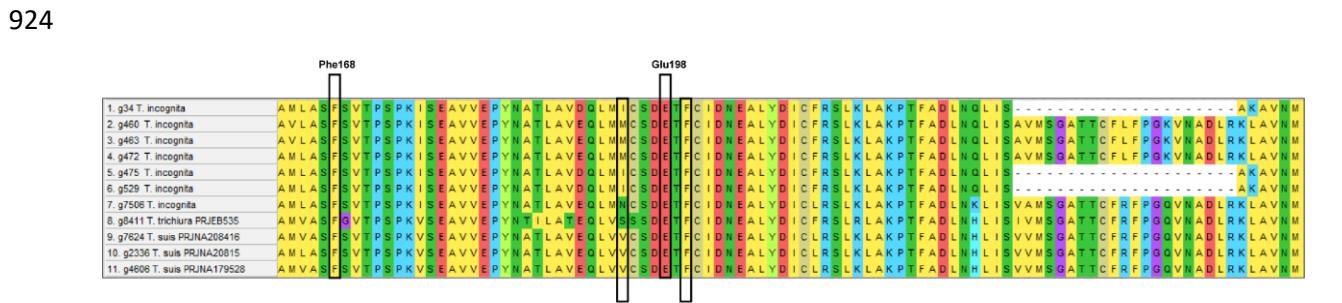

898

899 **Supporting Information**

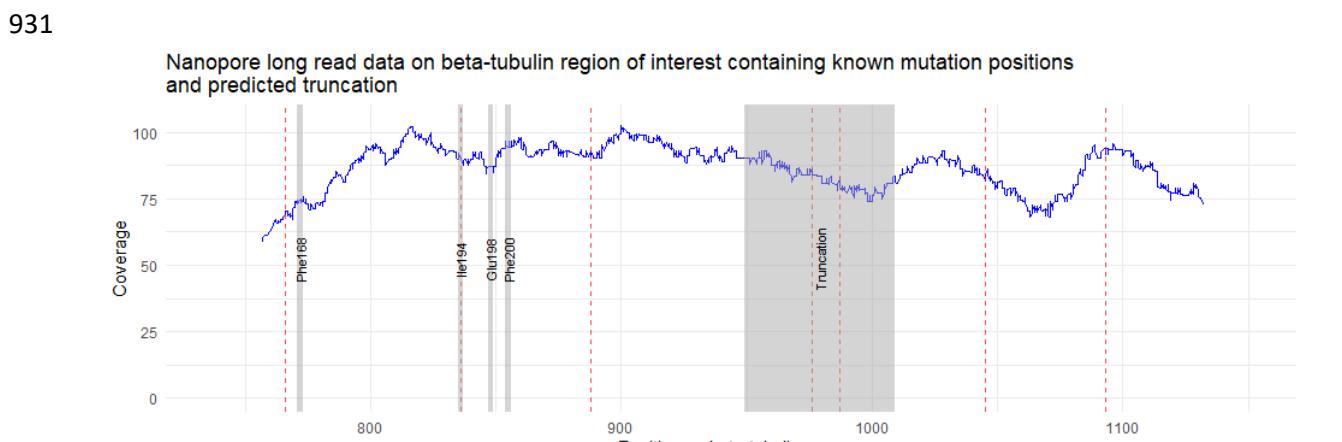
900 **Figures**



905 SI Figure 2: Representative image of a reconstructed mitochondrial genome containing 13
906 protein coding genes: *cox1-3*, *nad1-6*, *nad4L*, *atp6*, *atp8* and *coB*. Turquois represents the
907 coding sequence of genes, the inner ring represents the normalized coverage, light orange
908 represents s- and l-rRNA


909
910 SI Figure 3: Phylogenetic tree based on mitochondrial sequences from 535 isolated *T.*
911 *incognita* n. sp. worms from human hosts. The circle on branches indicates the posterior
912 distribution. The outmost 4 rings represent binary metadata. A filled red tile indicates that the
913 worm was isolated after T2 where the empty tile indicates isolation after T1. The dark violet
914 tile indicates the worm sex and the light violet tile the host sex while purple indicates if a
915 coinfection with other worms was observed. The middle ring indicates two hosts: A host with
916 the ID number "531 – 1250" in light brown and a host with the ID number "498 – 1173" in dark
917 brown, showing that the worms isolated from the two different hosts are scattered throughout
918 the phylogenetic tree. The inner circle indicates the village from which the worm was isolated.

919


920

921 SI Figure 4: Tetraspanin, Serpin and Chymotrypsin-like serine protease from analyzing
 922 orthologous groups in Venn diagram sections shared by *T. incognita* n. sp., *T. trichiura* (Serpin
 923 and Chymotrypsin-like serine protease) and *T. muris* (Tetraspanin).

925

926 SI Figure 5: Beta tubulin genes found in *T. incognita* n. sp. compared to *T. suis* and *T. trichiura*,
 927 predicted from the braker2 pipeline. Black indicates positions carrying known mutations
 928 (Phe168, Glu198, Phe200), observed variable position (Ile194). A truncation was predicted *in*
 929 *silico* on 3 of the 7 genes. Gene IDs from top to bottom: g34, g460, g463, g472, g475, g529
 930 and g7506.

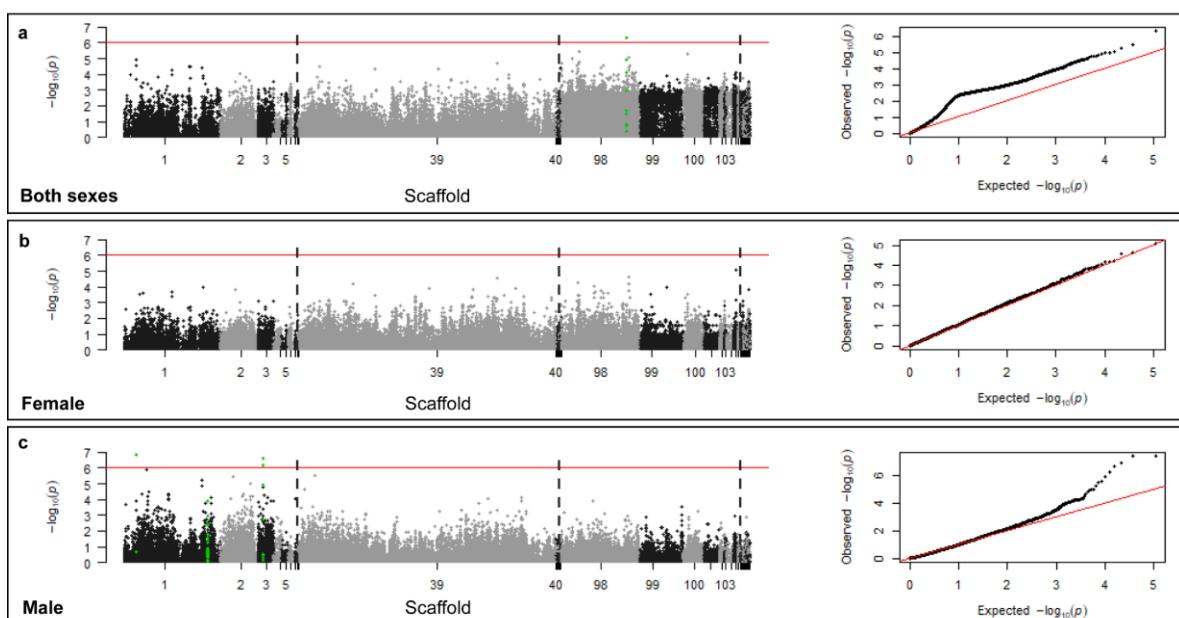
932

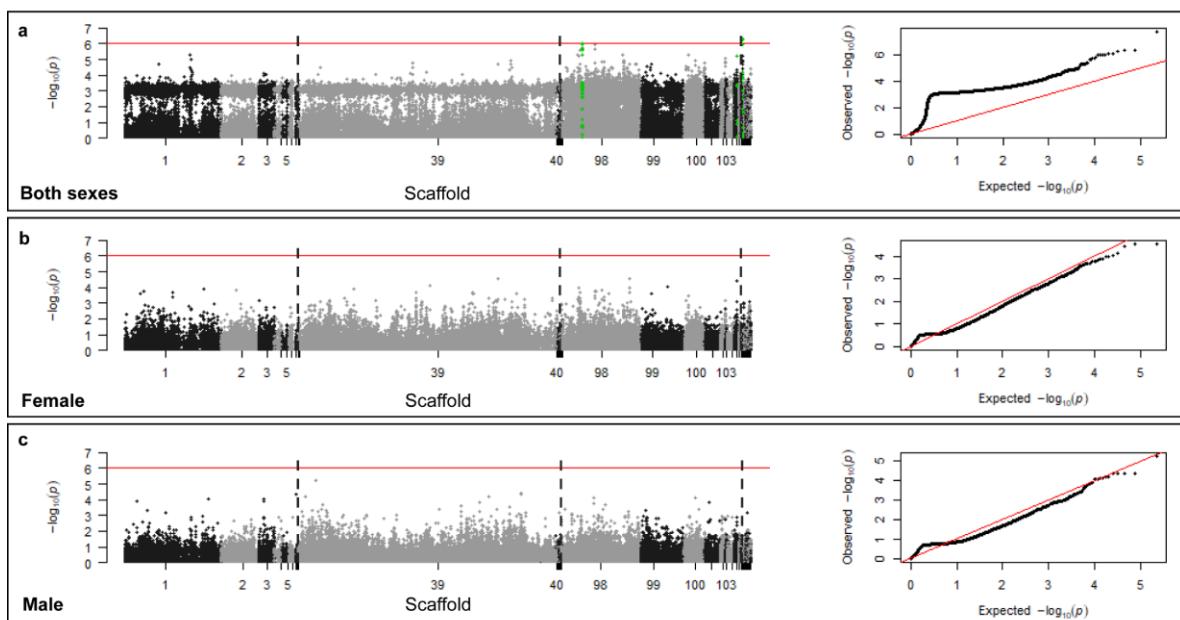
933 SI Figure 6: Coverage and variants from an independent PCR and Nanopore genome
 934 sequencing experiment of the regions containing known mutations of TBB and the *in silico*
 935 predicted truncation. Blue line indicates coverage, red lines the called variants using bcftools.
 936 Gray indicating positions carrying known mutations (Phe168, Glu198, Phe200), observed

937 variable position (Ile194) and predicted truncation indicating that the truncation was not
 938 observed from the amplified genomic sequence.

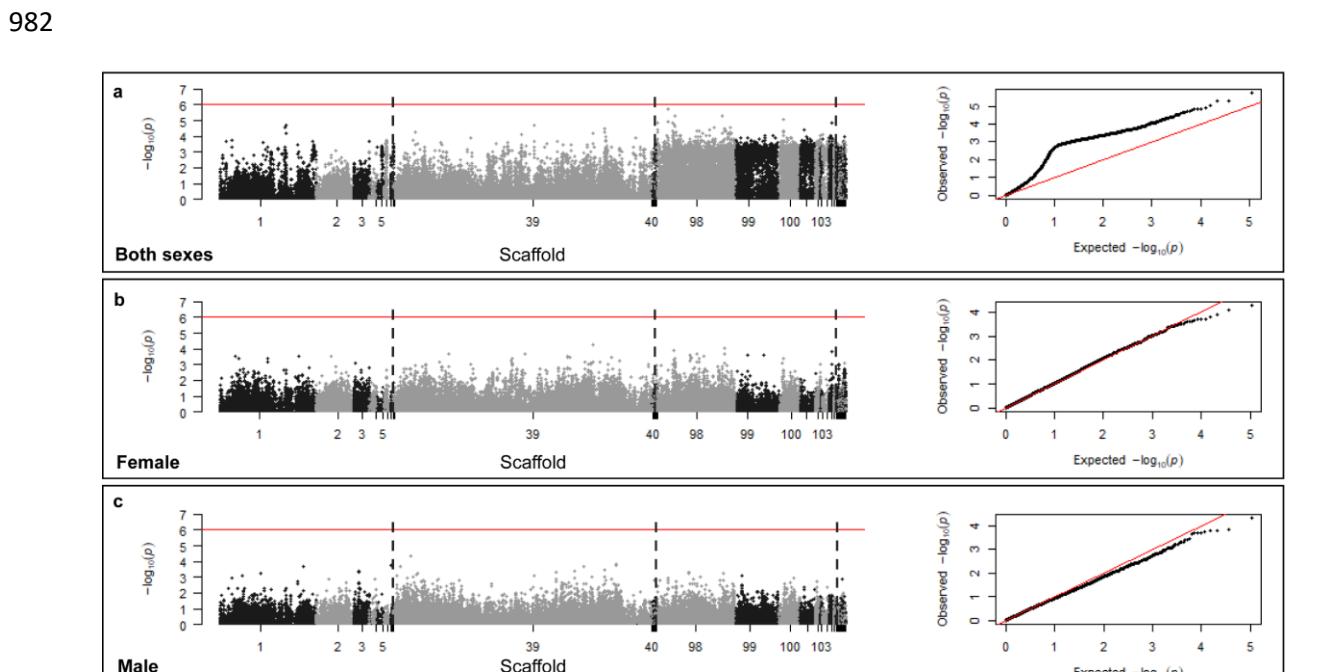
939 Forward primer sequence: AAAGAGACCGGACATTCGC.

940 Reversed primer sequence: TGAATTGCCTGGTTCTAGAATG.

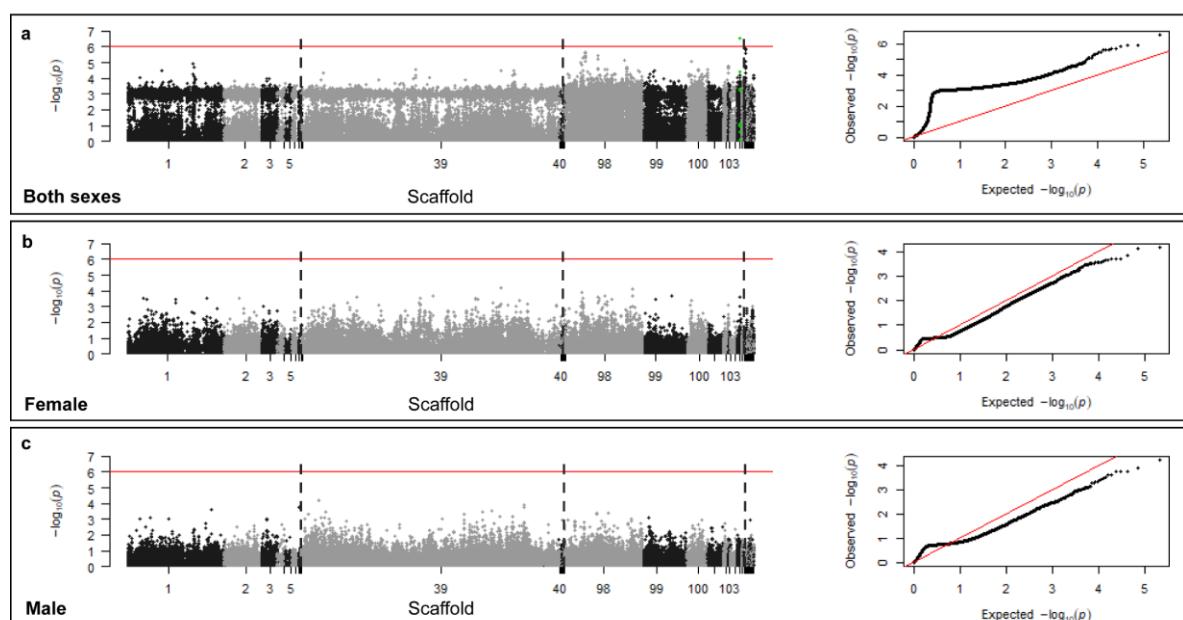

941


942

943 SI Figure 7: Summary of the PCA of all missense mutations on coding genes for the GWAS
 944 showing no population structure associated to treatment. a-c PCA plots of all missense
 945 mutations showing that worm sex has the biggest impact on population stratification. d-i PCA
 946 plots of only male worms showed significant population stratification by Tukey multiple
 947 comparisons of means in PC1 between the villages Tiagba-Akakro ($p=4.96 \times 10^{-14}$) and Bekpou-

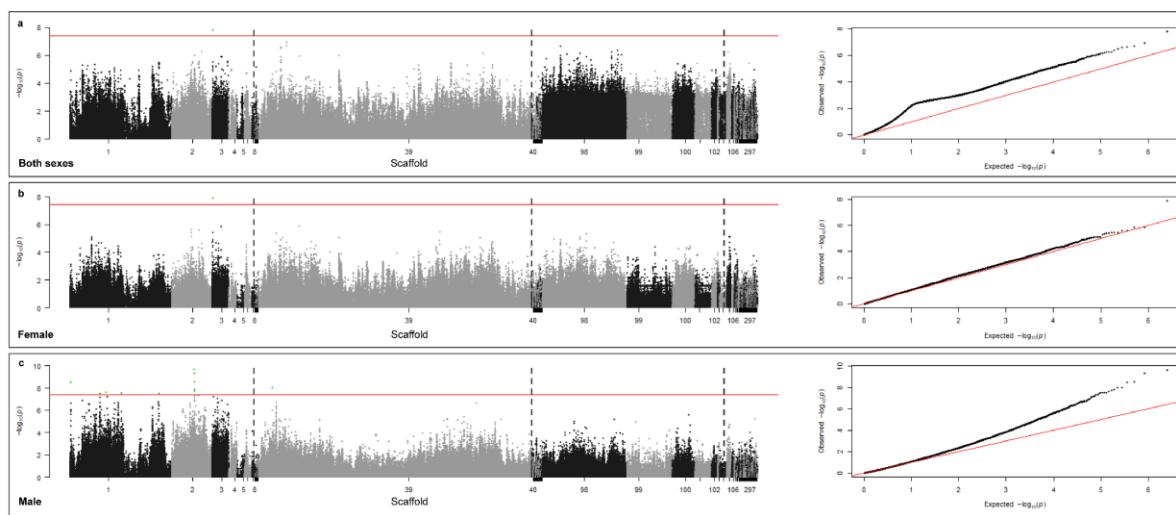

948 Akakro ($p=2.79 \times 10^{-5}$) and in PC2 between the villages Tiagba-Akakro ($p=0.0032$). No
949 association to the treatment (ANOVA $p > 0.05$) was found in PC1 or PC2. j-o PCA plots of
950 only female worms showed significant population stratification by Tukey multiple comparisons
951 of means in PC1 between the villages Tiagba-Ahouya ($p=0.0009$) and Ahouya-Akakro
952 ($p=0.0006$) and in PC2 between the villages Ahouya-Akakro ($p=0.027$). No association to the
953 treatment (ANOVA $p > 0.05$) was found in PC1 or PC2.

954
955 SI Figure 8: GWAS displaying p-values of missense SNPs on predicted genes associated to
956 treatment outcome (T1 vs T1) using a linear model without population stratification in PLINK.
957 Variants were filtered at a minor allele frequency of 0.05, a missing genotype frequency of
958 0.05, and a deviation from the Hardy-Weinberg Equilibrium at a significance level of $p=0.001$.
959 The red line indicates the Bonferroni corrected significance of 8.89×10^{-7} at $\alpha=0.05$ and 56273
960 mutations. The scaffolds are separated by black/grey colors. The green dots indicate all SNPs
961 found on the specific gene of interest carrying a SNP with genome wide significance. a Data
962 of both sexes. 247 males, 471 females, and 3 ambiguous 542 cases as in drug non-sensitive
963 and 179 controls. b Only female SNPs. 0 males, 471 females, 333 cases as in drug non-
964 sensitive and 138 controls. c Only male SNPs. 247 males, 0 females, 208 cases as in drug
965 non-sensitive and 39 controls. All GWAS hits, from each analysis, the sequence, the best blast
966 hit, the location and functional annotation, where possible, is provided in the SI Table 7
967 "hits_gwas_all.xlsx"


968
969 SI Figure 9: GWAS displaying p-values of missense SNPs on predicted genes associated to
970 treatment outcome (T1 vs T1) using a linear model with population stratification in PLINK.
971 Variants were filtered at a minor allele frequency of 0.05, a missing genotype frequency of
972 0.05, and a deviation from the Hardy-Weinberg Equilibrium at a significance level of $p=0.001$.
973 The red line indicates the Bonferroni corrected significance of 8.89E-7 at $\alpha=0.05$ and 56273
974 mutations. The scaffolds are separated by black/grey colors. The green dots indicate all SNPs
975 found on the specific gene of interest carrying a SNP with genome wide significance. **a** Data
976 of both sexes. 247 males, 471 females, and 3 ambiguous 542 cases as in drug non-sensitive
977 and 179 controls. **b** Only female SNPs. 0 males, 471 females, 333 cases as in drug non-
978 sensitive and 138 controls. **c** Only male SNPs. 247 males, 0 females, 208 cases as in drug
979 non-sensitive and 39 controls. All GWAS hits, from each analysis, the sequence, the best blast
980 hit, the location and functional annotation, where possible, is provided in the SI Table 7
981 "hits_gwas_all.xlsx"

983

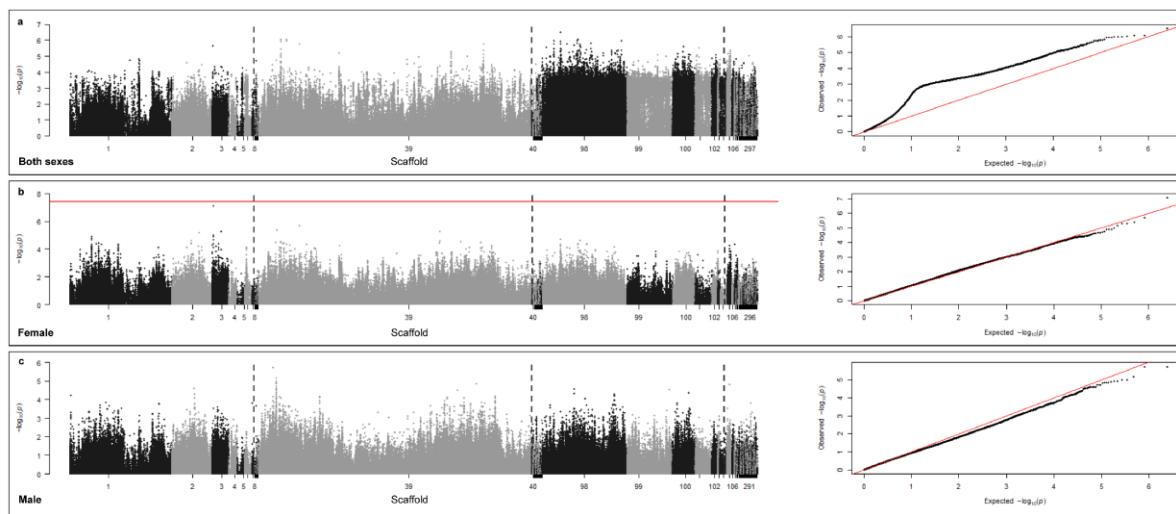
984 SI Figure 10: GWAS displaying p-values of missense SNPs on predicted genes associated to
985 treatment outcome (T1 vs T1) using a logistic model without population stratification in PLINK.
986 Variants were filtered at a minor allele frequency of 0.05, a missing genotype frequency of
987 0.05, and a deviation from the Hardy-Weinberg Equilibrium at a significance level of $p=0.001$.
988 The red line indicates the Bonferroni corrected significance of 8.89E-7 at $\alpha=0.05$ and 56273
989 mutations. The scaffolds are separated by black/grey colors. The green dots indicate all SNPs
990 found on the specific gene of interest carrying a SNP with genome wide significance. **a** Data
991 of both sexes. 247 males, 471 females, and 3 ambiguous 542 cases as in drug non-sensitive
992 and 179 controls. **b** Only female SNPs. 0 males, 471 females, 333 cases as in drug non-
993 sensitive and 138 controls. **c** Only male SNPs. 247 males, 0 females, 208 cases as in drug
994 non-sensitive and 39 controls. All GWAS hits, from each analysis, the sequence, the best blast
995 hit, the location and functional annotation, where possible, is provided in the SI Table 7
996 "hits_gwas_all.xlsx"


997

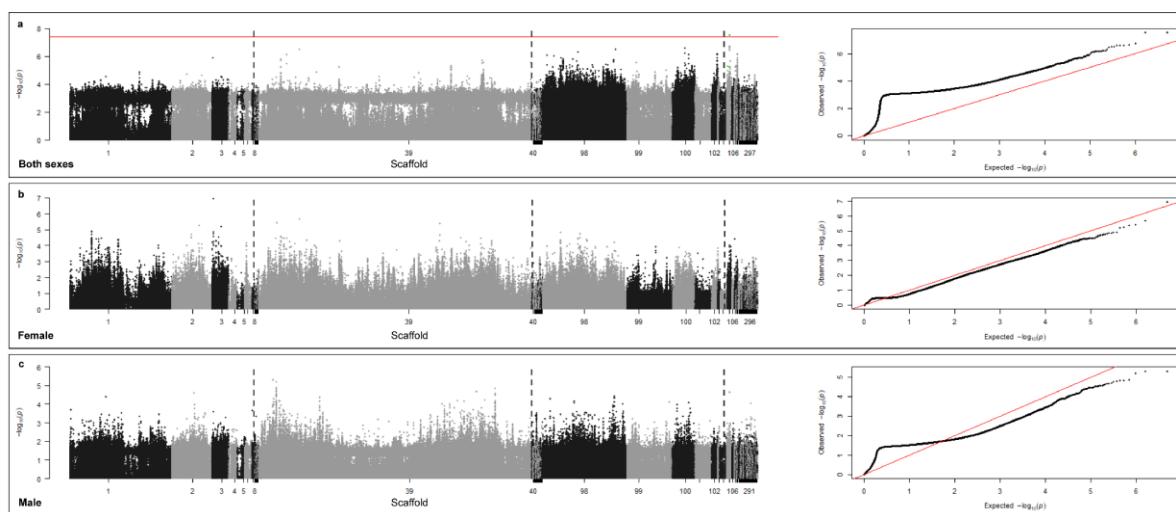
998

999 SI Figure 11: GWAS displaying p-values of missense SNPs on predicted genes associated to
1000 treatment outcome (T1 vs T1) using a logistic model with population stratification in PLINK.
1001 Variants were filtered at a minor allele frequency of 0.05, a missing genotype frequency of
1002 0.05, and a deviation from the Hardy-Weinberg Equilibrium at a significance level of $p=0.001$.
1003 The red line indicates the Bonferroni corrected significance of 8.89E-7 at $\alpha=0.05$ and 56273
1004 mutations. The scaffolds are separated by black/grey colors. The green dots indicate all SNPs
1005 found on the specific gene of interest carrying a SNP with genome wide significance. **a** Data
1006 of both sexes. 247 males, 471 females, and 3 ambiguous 542 cases as in drug non-sensitive
1007 and 179 controls. **b** Only female SNPs. 0 males, 471 females, 333 cases as in drug non-
1008 sensitive and 138 controls. **c** Only male SNPs. 247 males, 0 females, 208 cases as in drug
1009 non-sensitive and 39 controls. All GWAS hits, from each analysis, the sequence, the best blast
1010 hit, the location and functional annotation, where possible, is provided in the SI Table 7
1011 "hits_gwas_all.xlsx"

1012



1013
1014 SI Figure 12: GWAS displaying p-values of all SNPs associated to treatment outcome (T1 vs
1015 T1) using a linear model without population stratification in PLINK. Variants were filtered at a
1016 minor allele frequency of 0.05, a missing genotype frequency of 0.05, and a deviation from the
1017 Hardy-Weinberg Equilibrium at a significance level of $p=0.001$. The red line indicates the
1018 Bonferroni corrected significance of 3.99 E-8 at $\alpha=0.05$ and 1254247 mutations. The scaffolds
1019 are separated by black/grey colors. The green dots indicate all SNPs found on the specific
1020 gene of interest carrying a SNP with genome wide significance. **a** Data of both sexes. 247
1021 males, 471 females, and 3 ambiguous 542 cases as in drug non-sensitive and 179 controls.
1022 **b** Only female SNPs. 0 males, 471 females, 333 cases as in drug non-sensitive and 138
1023 controls. **c** Only male SNPs. 247 males, 0 females, 208 cases as in drug non-sensitive and
1024 39 controls. All GWAS hits, from each analysis, the sequence, the best blast hit, the location
1025 and functional annotation, where possible, is provided in the SI Table 7 "hits_gwas_all.xlsx"


1026
1027 SI Figure 13: GWAS displaying p-values of all SNPs associated to treatment outcome (T1 vs
1028 T1) using a linear model with population stratification in PLINK. Variants were filtered at a
1029 minor allele frequency of 0.05, a missing genotype frequency of 0.05, and a deviation from the
1030 Hardy-Weinberg Equilibrium at a significance level of $p=0.001$. The red line indicates the
1031 Bonferroni corrected significance of 3.99 E-8 at $\alpha=0.05$ and 1254247 mutations. The scaffolds
1032 are separated by black/grey colors. The green dots indicate all SNPs found on the specific
1033 gene of interest carrying a SNP with genome wide significance. **a** Data of both sexes. 247
1034 males, 471 females, and 3 ambiguous 542 cases as in drug non-sensitive and 179 controls.
1035 **b** Only female SNPs. 0 males, 471 females, 333 cases as in drug non-sensitive and 138

1036 controls. **c** Only male SNPs. 247 males, 0 females, 208 cases as in drug non-sensitive and
1037 39 controls. All GWAS hits, from each analysis, the sequence, the best blast hit, the location
1038 and functional annotation, where possible, is provided in the SI Table 7 “hits_gwas_all.xlsx”

1039
1040 SI Figure 14: GWAS displaying p-values of all SNPs associated to treatment outcome (T1 vs
1041 T1) using a logistic model without population stratification in PLINK. Variants were filtered at
1042 a minor allele frequency of 0.05, a missing genotype frequency of 0.05, and a deviation from
1043 the Hardy-Weinberg Equilibrium at a significance level of $p=0.001$. The red line indicates the
1044 Bonferroni corrected significance of 3.99 E-8 at $\alpha=0.05$ and 1254247 mutations. The scaffolds
1045 are separated by black/grey colors. The green dots indicate all SNPs found on the specific
1046 gene of interest carrying a SNP with genome wide significance. **a** Data of both sexes. 247
1047 males, 471 females, and 3 ambiguous 542 cases as in drug non-sensitive and 179 controls.
1048 **b** Only female SNPs. 0 males, 471 females, 333 cases as in drug non-sensitive and 138
1049 controls. **c** Only male SNPs. 247 males, 0 females, 208 cases as in drug non-sensitive and
1050 39 controls. All GWAS hits, from each analysis, the sequence, the best blast hit, the location
1051 and functional annotation, where possible, is provided in the SI Table 7 “hits_gwas_all.xlsx”

1052

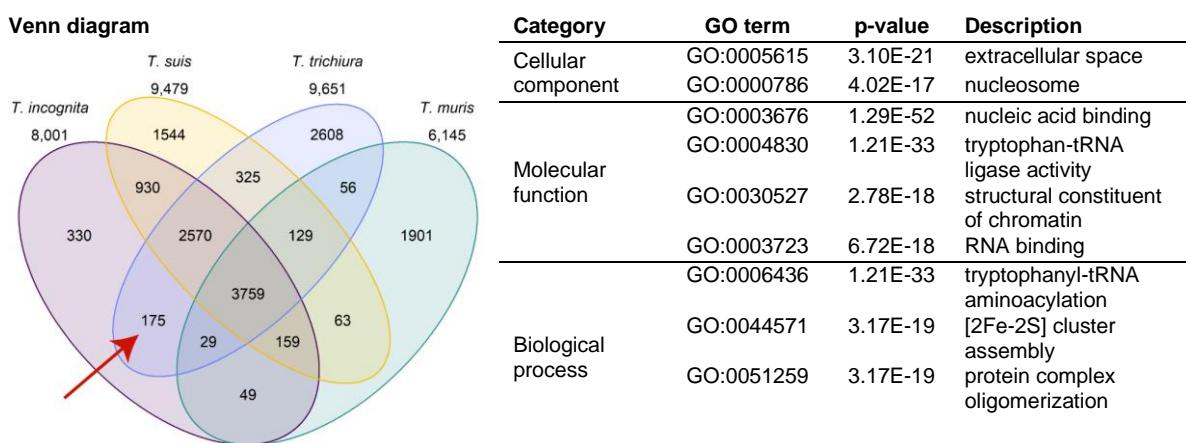
1053
1054 SI Figure 15: GWAS displaying p-values of all SNPs associated to treatment outcome (T1 vs
1055 T1) using a logistic model with population stratification in PLINK. Variants were filtered at a
1056 minor allele frequency of 0.05, a missing genotype frequency of 0.05, and a deviation from the
1057 Hardy-Weinberg Equilibrium at a significance level of $p=0.001$. The red line indicates the

1058 Bonferroni corrected significance of 3.99 E-8 at $\alpha=0.05$ and 1254247 mutations. The scaffolds
1059 are separated by black/grey colors. The green dots indicate all SNPs found on the specific
1060 gene of interest carrying a SNP with genome wide significance. **a** and **b** Data of both sexes.
1061 247 males, 471 females, and 3 ambiguous 542 cases as in drug non-sensitive and 179
1062 controls. **c** and **d** Only female SNPs. 0 males, 471 females, 333 cases as in drug non-sensitive
1063 and 138 controls. **e** and **f** Only male SNPs. 247 males, 0 females, 208 cases as in drug non-
1064 sensitive and 39 controls. All GWAS hits, from each analysis, the sequence, the best blast hit,
1065 the location and functional annotation, where possible, is provided in the SI Table 7
1066 "hits_gwas_all.xlsx"

1067

1068 Tables

Sample ID	Sex	Total length	Posterior length	Posterior width	Anterior length	Anterior width
995	F	36	12	1.2	24	0.09
787	F	48	15	0.8	33	0.15
66	F	44	13	0.6	31	0.12
618	F	45	11	0.7	34	0.15
368	F	40	12	0.6	28	0.11
Mean		42.39	12.53	0.75	29.77	0.12
SD		4.67	1.52	0.25	4.06	0.03
Sample ID	Sex					
9	M	36	11	1	25	0.2
965	M	40	17	1.1	23	0.25
960	M	41	14	0.5	27	0.15
271	M	38	13	0.6	25	0.07
17	M	41	18	0.5	23	0.1
Mean		39.15	14.37	0.70	24.55	0.14
SD		2.17	2.88	0.29	1.67	0.07


1069

Females	Total length (Min-Max)	Posterior length (Min-Max)	Posterior width (Min-Max)	Anterior length (Min-Max)	Anterior width (Min-Max)
<i>T. incognita</i> n. sp. (Present study)	36-45	11-15	0.6-1.2	24-34	0.09-0.15
<i>T. trichiura</i> from J. Rivero et al.	20-49	6-16	0.38-0.9	13-33	0.09-0.2
Males	Total length (Min-Max)	Posterior length (Min-Max)	Posterior width (Min-Max)	Anterior length (Min-Max)	Anterior width (Min-Max)
<i>T. incognita</i> n. sp. (Present study)	36-41	11-15	0.5-1	23-27	0.07-0.25
<i>T. trichiura</i> from J. Rivero et al.	25-49	7-20	0.4-0.7	18-29	0.09-0.31

1070

1071 SI Table 1: Five randomly sampled male and female worms (top) and literature reported values
1072 (bottom). Total length, posterior length, posterior width, anterior length and anterior width are
1073 provided, including the geometrical mean and standard deviation (top) or Min-Max values
1074 (bottom).

1075

1076

1077 SI Table 2. Venn diagram of orthologous groups from predicted transcripts, where 175 were
1078 exclusively shared between *T. incognita* n. sp. and *T. trichiura* and their GO enrichment
1079 analysis. Availability of a *Trichuris* genome, closely related to *T. suis* but from a species
1080 naturally infecting humans, poses a unique opportunity to conduct an exploratory analysis of
1081 genes that might be crucial for the adaptation to a human host. We looked into the occurrence
1082 of orthologous groups throughout the genomes of *T. incognita* n. sp., *T. suis*, *T. trichiura* and
1083 *T. muris* as shown in Table 2. Leveraging the close genetic relationship with *T. suis*, predicted
1084 transcripts were investigated that are shared with *T. trichiura* but do not occur in *T. suis* or *T.*
1085 *muris*. A GO term enrichment analysis was performed on this subset of genes using the
1086 predicted genes in *T. incognita* n. sp. as a background gene set and the full list of significant
1087 terms is provided in SI Table 3. A list of GO enriched terms provided in Table 2 indicate
1088 extracellular space to be the most significantly enriched term in the category of cellular
1089 components along with the nucleosome. Nucleic acid binding, tryptophanyl-tRNA ligase activity,
1090 structural constituent of chromatin and RNA binding were the most significant in molecular
1091 functions and finally tryptophanyl-tRNA aminoacylation, [2Fe-2S] cluster assembly and protein
1092 complex oligomerization in biological process. Finally, considering that the anterior section is
1093 in a most intimate relationship with the host, we searched for genes within this gene-set which
1094 Jex *et. al* identified to be upregulated in the stichosome and potentially have
1095 immunomodulatory effects like galactins, serpins, venom allergen-like proteins, apyrase or
1096 calreticulin and chymotrypsin-like serine proteases.(15) We identified one family of each
1097 serpins (OG0000305) and chymotrypsin-like serine proteases (OG0010319) that are shared
1098 only by *T. trichiura* and *T. incognita* n. sp. (SI Figure 4). Additionally, we identified, a family of
1099 tetraspanins (OG0009162) which are investigated as vaccine candidates in
1100 schistosomiasis.(45, 46)

1101 "Gene_list_venn_intersection.xlsx"

1102 SI Table 3. Gene list of cross section in Venn diagram.

1103 "Gene_list_resistance_associated_literature.xlsx"

1104 SI Table 4. Gene list of resistance associated genes towards albendazole or ivermectin in
1105 helminths.

1106 "Orthologous_group_list_duplications.xlsx"

1107 SI Table 5. GO term enrichment analysis results

1108 "GO-Term_enrichment_analysis.xlsx"

1109 SI Table 6. Highly duplicated genes.
1110 "hits_gwas_all.xlsx"
1111 SI Table 7
1112 "Main_Phenotype_File_sex.txt"
1113 SI Table 8. Worm ID's with sex for PLINK input and phenotype of drug sensitive or non
1114 sensitive: Sex code ('1' = male, '2' = female, '0' = unknown), Phenotype value ('1' = control, '2'
1115 = case, '-9'/'0'/non-numeric = missing data if case/control)
1116