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Abstract 

Antimicrobial resistance (AMR) is one of the most concerning modern threats as it places a 

greater burden on health systems than HIV and malaria combined. Current surveillance 

strategies for tracking antimicrobial resistance (AMR) rely on genomic comparisons and 

depend on sequence alignment with strict similarity cutoffs of greater than 95%. Therefore, 

these methods have high false-negative error rates due to a lack of reference sequences with a 

representative coverage of AMR protein diversity. Deep learning (DL) has been used as an 

alternative to sequence alignment, as artificial neural networks (ANNs) can extract abstract 

features from data and therefore limit the need for sequence comparisons. Here, a 

convolutional neural network (CNN) was trained to differentiate antimicrobial resistance 

proteins from nonresistance proteins and functionally annotate them in nine resistance 

classes. Our model demonstrated higher recall values (>0.9) than the alignment-based 

approach for all protein classes tested. Additionally, our CNN architecture allowed us to 

investigate internal states and explain the model classification regarding protein domain 

feature importance related to antimicrobial molecule inactivation. Finally, we built an 

open-source bioinformatic tool that can be used to annotate antimicrobial resistance proteins 

and provide information on protein domains without sequence alignment. 
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Background  

Penicillin discovery (Fleming, 1929) enabled the treatment of harsh bacterial 

infections such as syphilis. This approach ensures the safety of patients through invasive or 

immunosuppressive procedures, which promotes a substantial increase in human life 

expectancy (Yoshikawa, 2002). However, either producing or resisting antimicrobials are 

competitive mechanisms in microorganisms' evolution  (Skinnider et al., 2020), and the 

overuse and misuse of these drugs have been selecting bacterial variants with genotypes that 

confer resistance. This increasing-dosage increasing-resistance dynamics initiated the 

Antibiotic Crisis (Neu, 1992; Rossolini et al., 2014; Wright, 2015), a Red Queen race (Leigh 

Van Valen, 1973)  - a term borrowed from Alice Through the Looking-Glass to represent 

positive feedback loops - that resulted in 1.27 million deaths directly caused by antimicrobial 

resistance (AMR) in 2019 (Murray et al., 2022). 

Given the aforementioned, there is a need to develop new drugs to fight resistant 

bacteria and, most importantly, surveillance strategies to track AMR (Djordjevic et al., 2023). 

The current approach is based on sequence alignment to identify resistance genes and 

proteins. In the alignment-based model, candidate and reference sequences are considered 

homologous if the sequence similarity exceeds a given threshold. Dedicated databases and 

tools based on antimicrobial susceptibility tests (ASTs) (Hasman et al., 2014) have different 

cutoffs to annotate query sequences as resistant proteins. For instance, Resistance Gene 

Identifier (RGI) (Alcock et al., 2020) uses curated bitscore values of each reference protein 

stored in its database, whereas AMRFinderPlus  (Feldgarden et al., 2019) and ResFinder 

(Florensa et al., 2022) use raw similarity and coverage values.  
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​ The dependency on reference sequences for alignment-based models constrains 

surveillance to rediscover the same proteins/genes and to have a high number of false 

negatives (resistant proteins classified as nonresistant) (Arango-Argoty et al., 2018), as most 

tools use strict cutoffs above 80% (Florensa et al., 2022) or 95% (Pal et al., 2016) of 

similarity to annotate a protein as resistant. Deep learning-based models have emerged as a 

solution to this issue, as neural networks can learn complex and nonlinear rules from data and 

use them to annotate proteins without direct sequence alignment to known references 

(Bileschi et al., 2022). In this regard, the pioneers DeepARG (Arango-Argoty et al., 2018) 

and HMD-ARG (Li et al., 2021) achieved remarkable results in multiclass task classification 

of resistance proteins with lower false negative rates than alignment-based alternatives. 

However, these tools either need protein alignment in some stages of their workflow or need 

a complex approach to make the output explainable.  

​ In this work, we present a study on the ability of the convolutional neural network 

(CNN) to annotate resistance proteins. Our CNN model had an equivalent performance to the 

cutting-edge protein language model from the Evolutionary Scale® 

(https://www.evolutionaryscale.ai/) and outperformed the alignment-based approach. The 

CNN was able to classify proteins across nine classes and differentiate them from 

nonresistance proteins with recall (true positives / relevant elements) values above 0.95. We 

also presented an algorithm to process CNN's neurons firing partners that explain the CNN 

decision-making. Finally, we wrap the model and the algorithm in a command-line interface 

tool to provide insightful outputs for users with a biological background.  
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Methods 

Database construction 

For model training, hyperparameter optimization, and evaluation, we selected the 

Non-redundant Comprehensive Database (NCRD) (Mao et al., 2023a). The NCRD was built 

to provide more reference sequences for alignment-based annotation of antimicrobial 

proteins. The NCRD developers collected consolidated resistance proteins from the 

Antibiotic Resistance Genes Database (ARDB) (Liu and Pop, 2009), Comprehensive 

Antibiotic Resistance Database (CARD) (Alcock et al., 2020), and Structured Antibiotic 

Resistance Genes (SARG) (Yin et al., 2018) and expanded the database using DIAMOND 

(with the parameters E-value ≤ 1×10-5, Query Coverage HSP ≥ 90%, and Percentage of 

Positive Positions ≥ 90%) to find homologous proteins from Non-redundant Protein Database 

(https://www.ncbi.nlm.nih.gov/refseq/about/nonredundantproteins/) and Protein Bank 

Database (https://www.rcsb.org/). For this work, we selected the NCRD95, a database version 

in which the sequence similarity was limited to 95% by CD-HIT (Li and Godzik, 2006). 

The NCRD95 was converted from FASTA to table format via SeqKit 2.8.1 (Shen et 

al., 2024), and the FASTA identifiers were inspected to retrieve information on the content of 

antimicrobial resistance protein classes. Cumulative class curves were employed to (i) 

determine the optimal number of protein resistance classes that minimize data imbalance 

while maximizing the database size and (ii) eliminate less representative protein subclasses 

within each class.  

To build the non-resistance class (NonR), we downloaded reviewed proteins 

(SwissProt proteins) that are not associated with antimicrobial resistance (Arango-Argoty et 
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al., 2018; Li et al., 2021; Wu et al., 2023) with the command (taxonomy_id:2) NOT 

(keyword: KW-0046) on the Uniprot website and applied CD-HIT to limit protein similarity 

to 95%. Finally, DIAMOND  (Buchfink et al., 2015) (with coverage > 80%, E-value ≤ 

1×10-3, and max-target-seqs = 1) was used to align SwissProt against NCRD95 proteins. The 

number of proteins that significantly aligned despite not being associated with antimicrobial 

resistance, according to SwissProt (approximately 4600), was kept and used to randomly 

sample the proteins that were not aligned to NCRD95. Therefore, the NonR class is 

composed of proteins with no relevant sequence identity to antimicrobial resistance proteins 

in our dataset. 

Model architecture, training, and evaluation 

We used the train_test_split function from scikit-learn 1.4.2 to split the final dataset 

into training and holdout test sets at an 80/20 ratio, stratified according to the original protein 

class distribution. The training set was used for hyperparameter (Table 1) optimization with 

the Keras Hyperband (https://keras.io/keras_tuner/api/tuners/hyperband/) heuristic algorithm 

and 5-fold cross-validation (five random stratified split points). The hold-out test was used 

for model evaluation and benchmarking. For reproducibility, the random_state (seed) 

parameter was set to 42 for all split steps performed in this work.     

​ To establish a baseline for benchmarking, we used Transformers 4.49 (Wolf et al., 

2020) and PyTorch 2.6 (Paszke et al., 2019) to fine-tune an Evolutionary Scale Model 2 

(ESM2) (Lin et al., 2023) from a protein language model of general-purpose to an 

antimicrobial resistance protein classifier.  Additionally, RGI and AMRFinderPlus outputs 

were manually inspected and mapped from antimicrobial molecule names to broader classes, 

and results below their respective thresholds were considered nonresistant proteins. 
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Table 1. Hyperparameter space  

Hyperparameter Options Step 

Embedding dimension output from 50 to 200 dimensions 50 

Conv1D Kernels from 128 to 1024 kernels 56 

Conv1D Kernel Size from 3 to 9 2 

Learning rate 1e-3 and 1e-5 - 

 

​ We used TensorFlow 2.15 and Keras 2.15 to design an end-to-end convolutional 

neural network model that received input batches of raw amino acid sequences instead of 

multiple sequence alignment files. Our architecture contains 3 blocks: (i) a data processing 

block that contains a text2vec as the input layer and a subsequent embedding layer, (ii) a 

feature extraction block: composed of four 1D convolutional layers interpolated with dropout 

layers used for regularization, and (iii) a classification block with global average pooling and 

dense layers.  

​ Reference proteins from the same classes were retrieved from the reference catalog of 

the National Database of Antibiotic-Resistant Organisms (NDARO) and used to evaluate our 

model on an independent dataset. The DIAMOND (E-value ≤ 1×10-3, and max-target-seqs = 

1 and coverage == 100%) was used to align them against your training set to reveal the 

distribution.  
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Feature extraction 

Algorithm 1 describes how we access the matrices within our CNN and process them 

(Additional File 1; Supplementary Figure 1). First of all, a protein sequence is converted to 

tensor format to fit input requirements (line 2), and then the CNN model is applied (line 4) to 

create a probability distribution from which the most probable class index is retrieved (line 

6). The dense layer contains weight vectors to calculate logits before probability distribution, 

and the TensorFlow/Keras frameworks allow access to these vectors. Therefore, in lines 8 

and 9, the algorithm retrieves the weights vector for the class predicted by the model. In line 

11, a submodel is temporarily created by removing the global average pooling and dense 

layers from our CNN. This new model’s output is a matrix with features extracted by 

convolution. The protein sequence is used by the submodel to obtain and retrieve the feature 

matrix (lines 13 and 14). Finally, the feature matrix and the weights vector are multiplied 

(line 16) to highlight the most important features in a normalized (line 18) vector with the 

same length as the imputed protein.  

To check if the final weight vector matches the biological properties of the resistance 

proteins, we combined Algorithm 1 and multiple sequence alignments of enzymes from your 

holdout test set. For visual clarity, we first clustered your enzymes by sequence similarity (up 

to 90% ) and minimal coverage equal to 90%, and the largest cluster of each protein class was 

selected to be aligned via MAFFT 7.5 (Kuraku et al., 2013). To highlight protein regions of 

greater weights, we represent the multiple sequence alignments as matrices where the 

proteins are replaced by their corresponding vectors and plotted as heatmaps. The gaps were 

filled with zeros. Finally, InterproScan 5.0 (Blum et al., 2021; Jones et al., 2014) was applied 

to annotate important protein motifs, and Shannon entropy was calculated for each position to 
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reveal conserved regions. For motif analyses, we chose the proteins used as a cluster 

reference by CD-HIT. 

 

 

CNN cluster ability  

To assess cluster ability, we leveraged the information embedded in the global average 

pooling layer. As this layer works as a bridge between feature extraction and the final 

classification made by the dense layer, its internal state represents each protein imputed as a 

multidimensional vector with summarized features extracted upstream. Therefore, we 

designed an algorithm (Algorithm 2) that removes the dense layer and makes the model 

output the global average pooling vectors. 
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Algorithm 2 was applied on the holdout test set since the model has no knowledge of these 

proteins and the resulting vectors (Additional File 1; Supplementary Figure 1). The resulting 

vectors were then concatenated into a matrix and subsequently reduced to two dimensions 

through t-distributed stochastic neighbor (t-SNE) from scikit-learn 1.4.2 with the following 

parameters: t-SNE learning rate set to auto, iterations = 1000, and perplexity = 50. The 

original index order from the holdout test was kept. Thus, the reduced matrix contained the 

respective classes of the protein. 

Evaluation metrics 

To address biases stemming from uneven data, we incorporated class weights to avoid 

errors in model performance assessment linked to an imbalance in protein class sizes. The 

calculation of precision (Equation 1), recall (Equation 2), the f-score (Equation 3), and the 

categorical cross-entropy error (Equation 4) incorporates the weight of each protein class 

during training.  
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Class weights calculation 

The class weights (Additional File 2; Supplementary Table 1) were computed using 

scikit-learn’s compute_class_weight 1.4.2 (Equation 5), which assigns weights inversely 

proportional to class frequencies in the dataset to address imbalance.    
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Results 

Dataset curation and the lack of reference sequences  

CARD and National Database of Antibiotic-Resistant Organisms (NDARO) are the 

two largest public databases used as sources of reference sequences for functional annotation 

of antimicrobial resistance proteins. Since the  CARD requires experimental validation, it has 

been widely used in several studies. (Arango-Argoty et al., 2018; Li et al., 2021; Mao et al., 

2023b; Z. Wang et al., 2021; Wu et al., 2023). Even part of the NDARO database is 

composed of CARD. However, since a protein can be annotated only if it is highly similar to 

a reference in the CARD, researchers are constantly rediscovering variations of the same 

resistance proteins.  

We investigated the CARD database updates (Additional File 1; Supplementary 

Figure 2A) to check the rate at which novel reference proteins were added over the last few 

years. Our findings revealed that, as expected, the total number of proteins reached a plateau, 

while antimicrobial resistance has been increasing (Murray et al., 2022) and making infection 

treatment ineffective (Liu et al., 2016). The NCRD95 database extended CARD content using 

homology search and was, therefore, selected for this work.  

 Originally, NCRD95 contained 29 antimicrobial resistance protein classes 

(Additional File 1; Supplementary Figure 1B) from 10603 (multidrug efflux pumps) to 2 

(diaminopyrimidine) examples. This high degree of imbalance compromises training, as 

classes with few examples may not provide enough information for generalization (B. Wang 

et al., 2021). Therefore, we plotted a cumulative curve (Additional File 1; Supplementary 

Figure 1C) and selected the 10 most abundant classes  (Additional File 1; Supplementary 

Figure 1D), as beyond this point, more classes did not substantially increase the total number 

11 

 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 16, 2025. ; https://doi.org/10.1101/2024.06.11.598242doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?0iotzY
https://www.zotero.org/google-docs/?0iotzY
https://www.zotero.org/google-docs/?Tzl2FP
https://www.zotero.org/google-docs/?Tzl2FP
https://doi.org/10.1101/2024.06.11.598242
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

of proteins. For instance, increasing protein classes from 10 to 15 would add only 1103 

proteins (a 3% increase) to our final database. We also performed the same process for each 

class individually to eliminate less representative subclasses and ensure internal homogeneity. 

​ Data leakage among classes (i.e., classes that share information) that involve 

multidrug resistance proteins has also been addressed. This class consists mainly of efflux 

pumps that extrude different antimicrobial molecules from bacterial cells, which means that 

the same protein may be classified into two classes depending on the experimental design. 

For example, we found RND efflux pumps in the multidrug, beta-lactam, and macrolide 

classes. Therefore, we removed the multidrug class and all efflux pumps found in our dataset, 

regardless of the protein class. Finally, we constructed a homology-based dataset composed 

of nine antimicrobial resistance proteins plus one class of nonresistance proteins  (Additional 

File 1; Supplementary Figure 1D).  

Deep learning model evaluation 

​ The Keras Hyperband algorithm took 83 rounds of heuristic search to optimize the set 

of hyperparameters, which yielded a CNN model with the lowest loss value possible 

(Additional file 2; Supplementary Table 2). However, low loss values must be taken 

cautiously in deep learning research since neural networks can learn the intrinsic noise of the 

training set rather than the meaningful signal. In the protein research field, this may occur 

when there are copies of proteins shared by training and test sets, so the model would 

recognize idiosyncratic features instead of general features. We mitigated the risk of 

overfitting resulting from data leakage by restricting the sequence similarity between the 

training and test sets to a maximum of 95% 
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Another precaution taken was the split point that created the training set. Although 

randomized, the process may lead to a biased model if the proportion of classes between 

training and test is not respected.  We addressed this issue by cross-validating our model with 

5 stratified sub-splits of our training set. The convergence curves of cross-validation 

(Additional File 1; Supplementary Figure 3A), final model training (Additional File 1; 

Supplementary Figure 3C and 3D), and evaluation metrics (Table 2) on the holdout test set 

showed no clear trends of overfitting regardless of the training subset.     

 
Table 2. Cross-Validation Results 

Class Mean precision Mean recall Mean  F1-score 

MLS 0.96  0.05 ± 0.95  0.02 ± 0.95  0.02 ±

NonR 0.83  0.02 ± 0.97  0.02 ± 0.89  0.01 ±

Aminoglycoside 0.96  0.03 ± 0.95  0.01 ± 0.96  0.02 ±

Beta-lactam 0.99  0.01 ± 0.96  0.01 ± 0.97  0.01 ±

Chloramphenicol 0.99  0.01 ± 0.98  0.01 ± 0.99   0.01 ±

Glycopeptide 0.99  0.01 ± 0.99  0.04 ± 0.99  0.002 ±

Macrolide 0.98  0.01 ± 0.87  0.07 ± 0.92  0.04 ±

Phosphonic Acid 1.0  0 ± 0.99  0.03 ± 0.99  0.015 ±

Rifamycin 0.99  0.01 ± 0.98  0.01 ± 0.99  0.003 ±

Tetracycline 0.98  0.03 ± 0.98  0.01 ± 0.98  0.01 ±

 

​ We use the holdout test set to compare deep learning and protein alignment on 

antimicrobial resistance protein annotation. To represent the alignment-based approach, the 

state-of-the-art tools Resistance Gene Identifier (RGI) 6.0.3 (Alcock et al., 2020) and 

AMRFinderPlus  4.0.19 (Feldgarden et al., 2019) were selected. On the deep learning 
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approach, our CNN and the fine-tuned ESM2. To equalize the number of classes, proteins not 

classified as resistant by RGI or AMRFinderPlus were considered nonresistant.  

The deep-learning-based approach (Figures 1A and 1B) presented high values of 

recall (>0.95) across antimicrobial resistance protein classes, although their performance 

slightly decreased in the precision of the nonresistance classes. On the other hand, 

alignment-based tools (Figure 1C and Figure 1D) only achieved comparable values of 

precision and recall in cases where there are sequences that serve as references for annotating 

proteins.  

Confusion matrices showed in detail the misclassifications of each tool in our 

benchmarking. CNN and ESM2 (Figure 2A and Figure 2B) presented a few antimicrobial 

resistance proteins annotated as nonresistance proteins. RGI and AMR-FinderPlus (Figure 2C 

and Figure 2D), on the other hand, presented more false negative results, mostly in the 

glycopeptide class.   

 

   

​  
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Figure 1. Classification reports. Benchmarking of CNN (A), ESM2 (B), RGI (C), and AMR-Finder (D) on the 

holdout test set. The metrics were calculated with class weight values to avoid bias due to class imbalance.  
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Figure 2. Confusion matrices of  CNN (A), ESM2 (B), RGI (C), and AMR-Finder (D) on the holdout 

test set. The red-dashed squares highlight the false negative results of each benchmarked tool.  
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Generalization in out-of-distribution data  

Antimicrobial resistance proteins are limited in number due to the sequence alignment 

drawbacks mentioned earlier. For instance, CTX-M beta-lactamases share 94% of amino acid 

identity (ur Rahman et al., 2018). Such a lack of diversity may impose biases into deep 

learning models, which would perform well only on proteins identical to their training set but 

poorly on dissimilar proteins (Bernett et al., 2024). Therefore, we investigated the limits of 

generalization of our CNN regarding the sequence similarity using our holdout test set and 

the NDARO.  

DIAMOND alignments showed that approximately 68% (2292 out of 3352 proteins) 

of the holdout test set aligned to the training set with an identity range of 29% to 95%. This 

indicates that our CNN is not limited to identical variants of the training set; otherwise, the 

model would demonstrate a significant decrease in its performance. CNN's performance on 

the remaining 32% (1060 proteins) corroborates this hypothesis, as the values of precision, 

recall, and f1-score remained high (Additional File 1; Supplementary Figure 4A). In fact, for 

chloramphenicol and phosphonic acid, they remained equal to one. The decrease observed in 

the precision of non-resistant proteins resulted from the few false negatives from the other 

classes.  

Our CNN yielded similar results on NDARO proteins. From the 5959 resistant 

proteins, 5726 aligned to the training set, and 5654 were correctly classified (Additional File 

1; Supplementary Figure 4B). From the set of proteins that did not align to our training set, 

DeepSEA misclassified 42 proteins from beta-lactam  (Additional File 1; Supplementary 

Figure 4C). A manual inspection revealed that the majorly of these 42 proteins are subclasses 

absent in our training set, such as VEB (n=11), CFX (n=12), and MUN (n=6) beta-lactamases 

(Additional File 1; Supplementary Figure 4D). Indeed, only the subclass OXA (n=1) contains 

examples in our training and was wrongly assigned as nonresistant. Together, these results 

provided evidence of true generalization as our CNN annotated out-of-identity-distribution 

proteins, as long as there are examples in the training set.  
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Model explainability  

​ The results exposed above led us to investigate the latent space produced by the 

feature extraction block to reveal which protein features the CNN learned to yield such high 

performance. The global average pooling layer summarizes the features extracted by the 

convolutional layers. Therefore, we applied Algorithm 2 to make the model return these 

vectors instead of classifying proteins and reducing them with t-SNE.  Our CNN separated 

the holdout test set according to protein classes (Figure 3) with a few misclassifications, 

indicating that the model successfully differentiated sets of weights for each protein class, 

which shows the model’s ability to distinguish resistant from nonresistant proteins and predict 

the correct resistance classes.  

As these results indicate that there are diagnostic features learnt from each protein 

class, we searched for them in the feature matrices produced by the convolutional layers, and 

investigated if they could be associated with biological functions. Briefly, Algorithm 1 

highlights important features by dot-producting the weights from the dense layer and the 

feature matrix for a given imputed protein. Pairing the resulting vector with the original 

protein sequence reveals residues of importance. Also, we overlapped the feature vectors and 

protein domains annotated by InterproScan 5 to add biological meaning.  
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Figure 3. CNN class clusters. The t-SNE plot is made of the reduced weight matrix retrieved from the global 

average pooling layer as described in Algorithm 2 (see Methods). 

Our results showed that CNN selected conserved regions (determined from multiple 

sequence alignments) as information hotspots for classification. For instance, class-A 

beta-lactamases (Figure 4A) alignment presented three main regions where CNN neurons 

fired to predict that class of enzymes, all of which are within the large beta-lactamase 

signature (IPR000871). The first hotspot contains the class-A active site (IPR023650) where 

the catalytic residues (S--K) are located (Ghuysen, 1991; Joris et al., 1988a). The last hotspot 
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includes the binding site GTK, another conserved and diagnostic subdomain of class-A 

beta-lactamases.  

​ The aminoglycoside-modifying enzyme AadA alignment (Figure 4B) also has three 

important conserved regions that belong to the adenylyltransferase AadA/Aad9 domain 

(IPR024172). The last hotspot is in the adenylyltransferase AadA, C-terminal domain 

(IPR025184), and the first belongs to the nucleotidyltransferase domain from the superfamily 

of proteins in which adenylyltransferases are included. Fosfomycin thiol transferase (FosA), 

the example of the phosphonic acid (or fosfomycin) class (Figure 4C), has two hotspots in 

conserved domains related to fosfomycin resistance: fosfomycin resistance protein 

(IPR051332), glyoxalase/fosfomycin resistance/dioxygenase domain (IPR004360) and 

glyoxalase/bleomycin resistance protein/dihydroxybiphenyl dioxygenase (IPR029068).  
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Figure 4. CNN neurons firing patterns for resistance proteins from the beta-lactam (A), aminoglycoside (B), and 

phosphonic acid (C) classes. Each plot is divided into a bar plot with Shannon entropy values, a line plot with 

protein domain extensions found by Interproscan 5, and the CNN weights spread over a multiple sequence 

alignment of a cluster of proteins selected by CD-HIT (see Methods). The black-dashed squares highlight the 

most important regions (hotspots) for classification. 

Given these results, we enquired whether our model captured information from 

protein regions related to antimicrobial molecule inactivation in the cases of aminoglycoside 

and fosfomycin-resistant proteins. To investigate this, we selected enzymes in complex with 

antimicrobials from the Protein Data Bank PDB (Table 3), applied the same feature extraction 

method, and compared our results with PDB functional annotations. CTX-M15 

beta-lactamase (PDB: 7TI0) (Figure 5A) hotspots contain residues annotated as binding sites. 

Specifically, the residues S--K in which the serine (S45) residue nucleophilically attacks the 

lactam ring and initiates the structural modification that leads to beta-lactam molecule 

inactivation (Biswal et al., 2023; Ghuysen, 1991; Judge et al., 2023; Majiduddin et al., 2002). 

Additionally, the last hotspot contains the residues K209, T210, and G211, which bind and 

place the beta-lactam molecule in the catalytic pocket (Majiduddin et al., 2002).  
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Figure 5. CNN model interpretability.  PDB 3D structures of a CTX-M beta-lactamase (A), a fosfomycin thiol 

transferase (B), and an aminoglycoside nucleotidyltransferase (C) colored according to CNN neuron firing 

patterns. The green-highlighted residues on the structures and the black-highlighted above heatmaps are 
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annotated as binding sites to antimicrobial molecules. The grey structure on B is the other fosfomycin thiol 

transferase monomer. 

For the FosA (PDB: 1NKI) protein (Figure 5B), our model highlighted two hotspots 

that build the catalyst site where the residues H64, Y100, and E110 bind the fosfomycin 

molecule and Y62, which bridges the active site and the dimer interface loop (Klontz et al., 

2017). Similarly, the aminoglycoside (3'') (9) adenylyltransferase (PDB: 7UY4) (Figure 5C) 

presented residues D43, D45, Q104, E107, W108, and D181 annotated as binding sites for 

spectinomycin antimicrobial (Kanchugal P and Selmer, 2020). These results confirmed that 

our model learned biological features from proteins without reference sequences or sequence 

alignment comparisons.  

Table 3. Proteins from PDB and subsequences of high importance for classification. 

Protein Class PDB ID Hotspots 

FosA Phosphonic acid 1NKI 1:GGPAADYTHYAFGIAAAD 

2:GDSFYFLDPDGHRLE 

ANT3,9 Aminoglycoside 7UY4 

 

1: GGLKPHSDIDLLV 

2: PWRYPAKRELQFGEWQR 

3: NVVLTLSRIWYSAV 

CTX-M-15 Beta-lactam 7TI0 1: ILYRADERFAMCSTSKVMA 

2: DSQRAQLVTWM 

3: AASIQAGLPASWVVGDKTG 

 

​ We checked our model misclassifications and found evidence of misannotated 

proteins in the NCRD95 dataset that were correctly classified by our CNN. In our test, the 

protein NR_MCR0138297.1 is labeled as aminoglycoside resistance and was classified as 
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beta-lactam. BLASTP revealed that NR_MCR0138297.1 is 86.6% identical to a PAC-1 

(NR_ABP88743.1) beta-lactamase in our training set. The same was observed for 

NR_WP_193096997.1, a member of the aminoglycoside resistance class that is 52.1% 

similar to Arr-1 (NR_PRC48666.1), a rifamycin-resistant protein.  

A third example of misannotation from NCRD95 is the oleD protein, a 

glycosyltransferase that confers resistance only to macrolide antimicrobials (Bolam et al., 

2007; Quirós et al., 2000). In this case, the protein NR_WP_166002910.1 in the training set 

and the NR_PZH16762.1 protein in the test set were both labeled as MLS resistance class and 

shared 82.8% of protein identity. However, our CNN classified NR_WP_166002910.1 as a 

macrolide-resistant protein.  

     

DeepSEA tool  

​ To make our model available for the scientific community, the CNN was wrapped in a 

command-line interface tool available on 

https://github.com/computational-chemical-biology/DeepSEA-project. There are two usage 

options for DeepSEA, for resistance classification the user can provide a raw FASTA file as 

input and obtain a table format file with model predictions and their respective probabilities, 

or for motif detection, a multisequence alignment FASTA file can be analyzed by DeepSEA, 

returning a heatmap with the hotspots for each aligned sequence. 

Discussion  

In this work, we developed an alignment-free tool that functionally annotates proteins 

across multiple antimicrobial resistance classes and distinguishes resistance from 

nonresistance proteins without protein alignment. The DeepSEA model was trained to 

recognize motifs (hotspots) from resistance proteins and therefore provides an explanation for 
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its predictions, which helps users from biological backgrounds to interpret the results. 

Benchmarking revealed that DeepSEA is superior to protein alignment when it comes to 

identifying fewer false negatives.  

The protein alignment model uses homology inference (Pearson, 2013) as a shortcut 

from sequence to function in the classical sequence-structure-function paradigm (Koehler 

Leman et al., 2023).  However, even homologous groups, such as serine beta-lactamases, can 

vary considerably outside their active sites (Joris et al., 1988b), forcing the databases to have 

reference sequences for variants, otherwise leading to high rates of false negative results 

(Arango-Argoty et al., 2018).  

The lower recall values of RGI and AMRFinder demonstrated that the lack of proper 

reference sequences in their databases led to several misclassifications of resistant proteins as 

non-resistant proteins. For instance, RGI and ARMFinder classified 88% and 79% of the 

proteins that resist glycopeptides as non-resistant proteins, respectively. Moreover, both 

alignment-based tools presented misleading results for proteins related to resistance to 

beta-lactam antimicrobials. DeepSEA, on the other hand, had only 8 beta-lactam resistance 

proteins misclassified as nonresistance. 

DeepSEA performance matched ESM2 even though the ESM2 model is composed of 

a transformer-based architecture pre-trained on the approximately 60 million proteins from 

the UniRef database (September 2021 version). Moreover, the CNN-based architecture 

allowed DeepSEA’s output interpretability without data perturbation. For example, to explain 

HMD-ARG (Li et al., 2021) results, the author had to investigate the effect of in silico 

mutations in protein sites on model performance. This need for checking protein variations is 

computationally expensive and infeasible in most cases.  The pioneer DeepARG 
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(Arango-Argoty et al., 2018) used a multilayer perceptron model, which can not offer 

explainability, and also needs to prefilter resistance-like proteins via DIAMOND (Buchfink et 

al., 2015) before model prediction itself.   

During the benchmarking experiments, the DeepSEA precision value was lower for 

nonresistance than for other classes. This was expected due to the miscellaneous composition 

of the nonresistance class, which contains proteins with a plethora of functions. This lack of 

homogeneity of the nonresistance class forces the CNN neurons to fire at patterns restricted 

to the other classes. We extracted this information directly from the model and converted it to 

a human-readable format, contextualizing DeepSEA’s output to information provided by 

multisequence alignment. This feature could be used in future research to combine 3D 

structure prediction with functional annotations.   

DeepSEA was designed to address a key issue in antimicrobial resistance protein 

annotation: the false negative rates. We focused on pushing the frontiers of protein annotation 

made by sequence similarity. Therefore, DeepSEA does not contain genome assemblers and 

open reading frame predictors. Also, since genomic research pipelines often use annotation 

tools of a general purpose such as Prokka (Seemann, 2014), DeepSEA can be employed to 

reannotate proteins previously assigned as hypothetical and increase the knowledge on the 

diversity of proteins produced by bacteria or to screen large datasets of unannotated protein 

sequences predicted by other tools. DeepSEA was designed to find signatures of proteins for 

broad resistance classes. For instance, future work will address more specific questions and 

split the beta-lactam class according to the type of beta-lactam antimicrobial (i.e., 

cephalosporin, penem, to cite a few).  

 

27 

 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 16, 2025. ; https://doi.org/10.1101/2024.06.11.598242doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?xzTgbS
https://www.zotero.org/google-docs/?LxAaEX
https://www.zotero.org/google-docs/?LxAaEX
https://www.zotero.org/google-docs/?e3pt2B
https://doi.org/10.1101/2024.06.11.598242
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Conclusion  

In this work, we addressed the high rates of false negatives in antimicrobial resistance 

protein annotation by sequence alignment. It was demonstrated that a single CNN model, 

trained directly on protein sequences instead of MSA, achieved higher performance than 

alignment-based methods and produced only a few false negatives for every protein class in 

the training set without detectable overfitting. Moreover, we proposed an algorithm to extract 

and transform information from the CNN into meaningful human-readable insights about the 

model's decision-making that help users from different backgrounds interpret the results. 

Future works could use multimodal data to expand these explanatory features from proteins 

to complex metabolic pathways of resistant bacteria to reveal protein-protein interactions that 

contribute to the resistant phenotype.  
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MSA - Multiple Sequence Alignment 

CNN - Convolutional Neural Network 

RGI - Resistance Gene Identifiers 
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