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Abstract

Antimicrobial resistance (AMR) is one of the most concerning modern threats as it places a
greater burden on health systems than HIV and malaria combined. Current surveillance
strategies for tracking antimicrobial resistance (AMR) rely on genomic comparisons and
depend on sequence alignment with strict similarity cutoffs of greater than 95%. Therefore,
these methods have high false-negative error rates due to a lack of reference sequences with a
representative coverage of AMR protein diversity. Deep learning (DL) has been used as an
alternative to sequence alignment, as artificial neural networks (ANNs) can extract abstract
features from data and therefore limit the need for sequence comparisons. Here, a
convolutional neural network (CNN) was trained to differentiate antimicrobial resistance
proteins from nonresistance proteins and functionally annotate them in nine resistance
classes. Our model demonstrated higher recall values (>0.9) than the alignment-based
approach for all protein classes tested. Additionally, our CNN architecture allowed us to
investigate internal states and explain the model classification regarding protein domain
feature importance related to antimicrobial molecule inactivation. Finally, we built an
open-source bioinformatic tool that can be used to annotate antimicrobial resistance proteins

and provide information on protein domains without sequence alignment.
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Background

Penicillin discovery (Fleming, 1929) enabled the treatment of harsh bacterial
infections such as syphilis. This approach ensures the safety of patients through invasive or
immunosuppressive procedures, which promotes a substantial increase in human life
expectancy (Yoshikawa, 2002). However, either producing or resisting antimicrobials are
competitive mechanisms in microorganisms' evolution (Skinnider et al., 2020), and the
overuse and misuse of these drugs have been selecting bacterial variants with genotypes that
confer resistance. This increasing-dosage increasing-resistance dynamics initiated the
Antibiotic Crisis (Neu, 1992; Rossolini et al., 2014; Wright, 2015), a Red Queen race (Leigh
Van Valen, 1973) - a term borrowed from Alice Through the Looking-Glass to represent
positive feedback loops - that resulted in 1.27 million deaths directly caused by antimicrobial

resistance (AMR) in 2019 (Murray et al., 2022).

Given the aforementioned, there is a need to develop new drugs to fight resistant
bacteria and, most importantly, surveillance strategies to track AMR (Djordjevic et al., 2023).
The current approach is based on sequence alignment to identify resistance genes and
proteins. In the alignment-based model, candidate and reference sequences are considered
homologous if the sequence similarity exceeds a given threshold. Dedicated databases and
tools based on antimicrobial susceptibility tests (ASTs) (Hasman et al., 2014) have different
cutoffs to annotate query sequences as resistant proteins. For instance, Resistance Gene
Identifier (RGI) (Alcock et al., 2020) uses curated bitscore values of each reference protein
stored in its database, whereas AMRFinderPlus (Feldgarden et al., 2019) and ResFinder

(Florensa et al., 2022) use raw similarity and coverage values.
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The dependency on reference sequences for alignment-based models constrains
surveillance to rediscover the same proteins/genes and to have a high number of false
negatives (resistant proteins classified as nonresistant) (Arango-Argoty et al., 2018), as most
tools use strict cutoffs above 80% (Florensa et al., 2022) or 95% (Pal et al., 2016) of
similarity to annotate a protein as resistant. Deep learning-based models have emerged as a
solution to this issue, as neural networks can learn complex and nonlinear rules from data and
use them to annotate proteins without direct sequence alignment to known references
(Bileschi et al., 2022). In this regard, the pioneers DeepARG (Arango-Argoty et al., 2018)
and HMD-ARG (Li et al., 2021) achieved remarkable results in multiclass task classification
of resistance proteins with lower false negative rates than alignment-based alternatives.
However, these tools either need protein alignment in some stages of their workflow or need

a complex approach to make the output explainable.

In this work, we present a study on the ability of the convolutional neural network
(CNN) to annotate resistance proteins. Our CNN model had an equivalent performance to the
cutting-edge protein  language  model from  the Evolutionary Scale®

(https://www.evolutionaryscale.ai/) and outperformed the alignment-based approach. The

CNN was able to classify proteins across nine classes and differentiate them from
nonresistance proteins with recall (true positives / relevant elements) values above 0.95. We
also presented an algorithm to process CNN's neurons firing partners that explain the CNN
decision-making. Finally, we wrap the model and the algorithm in a command-line interface

tool to provide insightful outputs for users with a biological background.
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Methods

Database construction

For model training, hyperparameter optimization, and evaluation, we selected the
Non-redundant Comprehensive Database (NCRD) (Mao et al., 2023a). The NCRD was built
to provide more reference sequences for alignment-based annotation of antimicrobial
proteins. The NCRD developers collected consolidated resistance proteins from the
Antibiotic Resistance Genes Database (ARDB) (Liu and Pop, 2009), Comprehensive
Antibiotic Resistance Database (CARD) (Alcock et al., 2020), and Structured Antibiotic
Resistance Genes (SARG) (Yin et al., 2018) and expanded the database using DIAMOND
(with the parameters E-value < 1x10-5, Query Coverage HSP > 90%, and Percentage of
Positive Positions > 90%) to find homologous proteins from Non-redundant Protein Database
(https://www.ncbi.nlm.nih.gov/refseg/about/nonredundantproteins/) and Protein  Bank
Database (https://www.rcsb.org/). For this work, we selected the NCRD95, a database version

in which the sequence similarity was limited to 95% by CD-HIT (Li and Godzik, 2006).

The NCRD95 was converted from FASTA to table format via SeqKit 2.8.1 (Shen et
al., 2024), and the FASTA identifiers were inspected to retrieve information on the content of
antimicrobial resistance protein classes. Cumulative class curves were employed to (i)
determine the optimal number of protein resistance classes that minimize data imbalance
while maximizing the database size and (ii) eliminate less representative protein subclasses

within each class.

To build the non-resistance class (NonR), we downloaded reviewed proteins

(SwissProt proteins) that are not associated with antimicrobial resistance (Arango-Argoty et
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al., 2018; Li et al., 2021; Wu et al.,, 2023) with the command (taxonomy id:2) NOT
(keyword: KW-0046) on the Uniprot website and applied CD-HIT to limit protein similarity
to 95%. Finally, DIAMOND (Buchfink et al., 2015) (with coverage > 80%, E-value <
1x10-3, and max-target-seqs = 1) was used to align SwissProt against NCRD95 proteins. The
number of proteins that significantly aligned despite not being associated with antimicrobial
resistance, according to SwissProt (approximately 4600), was kept and used to randomly
sample the proteins that were not aligned to NCRD95. Therefore, the NonR class is
composed of proteins with no relevant sequence identity to antimicrobial resistance proteins

1n our dataset.

Model architecture, training, and evaluation

We used the train test split function from scikit-learn 1.4.2 to split the final dataset
into training and holdout test sets at an 80/20 ratio, stratified according to the original protein
class distribution. The training set was used for hyperparameter (Table 1) optimization with
the Keras Hyperband (https://keras.io/keras_tuner/api/tuners/hyperband/) heuristic algorithm
and 5-fold cross-validation (five random stratified split points). The hold-out test was used
for model evaluation and benchmarking. For reproducibility, the random state (seed)

parameter was set to 42 for all split steps performed in this work.

To establish a baseline for benchmarking, we used Transformers 4.49 (Wolf et al.,
2020) and PyTorch 2.6 (Paszke et al., 2019) to fine-tune an Evolutionary Scale Model 2
(ESM2) (Lin et al., 2023) from a protein language model of general-purpose to an
antimicrobial resistance protein classifier. Additionally, RGI and AMRFinderPlus outputs
were manually inspected and mapped from antimicrobial molecule names to broader classes,

and results below their respective thresholds were considered nonresistant proteins.
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Table 1. Hyperparameter space

Hyperparameter Options Step
Embedding dimension output from 50 to 200 dimensions 50
Conv1D Kernels from 128 to 1024 kernels 56
Conv1D Kernel Size from 3 to 9 2
Learning rate le?and 1¢? -

We used TensorFlow 2.15 and Keras 2.15 to design an end-to-end convolutional
neural network model that received input batches of raw amino acid sequences instead of
multiple sequence alignment files. Our architecture contains 3 blocks: (i) a data processing
block that contains a text2vec as the input layer and a subsequent embedding layer, (ii) a
feature extraction block: composed of four 1D convolutional layers interpolated with dropout
layers used for regularization, and (iii) a classification block with global average pooling and

dense layers.

Reference proteins from the same classes were retrieved from the reference catalog of
the National Database of Antibiotic-Resistant Organisms (NDARO) and used to evaluate our
model on an independent dataset. The DIAMOND (E-value < 1x10-3, and max-target-seqs =
1 and coverage == 100%) was used to align them against your training set to reveal the

distribution.
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Feature extraction

Algorithm 1 describes how we access the matrices within our CNN and process them
(Additional File 1; Supplementary Figure 1). First of all, a protein sequence is converted to
tensor format to fit input requirements (line 2), and then the CNN model is applied (line 4) to
create a probability distribution from which the most probable class index is retrieved (line
6). The dense layer contains weight vectors to calculate logits before probability distribution,
and the TensorFlow/Keras frameworks allow access to these vectors. Therefore, in lines 8
and 9, the algorithm retrieves the weights vector for the class predicted by the model. In line
11, a submodel is temporarily created by removing the global average pooling and dense
layers from our CNN. This new model’s output is a matrix with features extracted by
convolution. The protein sequence is used by the submodel to obtain and retrieve the feature
matrix (lines 13 and 14). Finally, the feature matrix and the weights vector are multiplied
(line 16) to highlight the most important features in a normalized (line 18) vector with the

same length as the imputed protein.

To check if the final weight vector matches the biological properties of the resistance
proteins, we combined Algorithm 1 and multiple sequence alignments of enzymes from your
holdout test set. For visual clarity, we first clustered your enzymes by sequence similarity (up
to 90% ) and minimal coverage equal to 90%, and the largest cluster of each protein class was
selected to be aligned via MAFFT 7.5 (Kuraku et al., 2013). To highlight protein regions of
greater weights, we represent the multiple sequence alignments as matrices where the
proteins are replaced by their corresponding vectors and plotted as heatmaps. The gaps were
filled with zeros. Finally, InterproScan 5.0 (Blum et al., 2021; Jones et al., 2014) was applied

to annotate important protein motifs, and Shannon entropy was calculated for each position to
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reveal conserved regions. For motif analyses, we chose the proteins used as a cluster

reference by CD-HIT.

Algorithm 1 Extract weights

Require: Sequence Segq, trained model model, convolutional layer name conwv
Ensure: Final weights FinalWeights, predicted class PredClass

1: Convert Seq to a tensor:
2:  TensorSeq + tf.convert_to_tensor ([’ ”.join(list(Seq))])
3: Predict using the model:
4:  Model Pred + model.predict(TensorSeq, verbose = 0)
5: Get the predicted class:
6:  PredClass < np.argmax(Model Pred)
7: Extract the softmax weights for the predicted class:
8 SoftmaxWeights + model.layers[—1].get_weights()[0]
9:  SofitmaxWeightsClass < SoftmaxW eights[:, PredClass]
10: Create a sub-model to extract the convolutional layer outputs:
11:  ConvlD « Lf.keras.Model(model.input, model.get _layer(conv).oulput)
12: Compute the convolutional layer outputs:
13:  ConvlDWeights < ConvlD.predict(TensorSeq, verbose = 0)
14:  ConvlDWeights < np.squeeze(Convl DWeights)
15: Compute the final weights:
16:  FinalWeights + np.dot(ConvlDW eights, SoftmaxzWeightsClass)
17: Normalize the final weights:
18:  FinalWeights <+ [mu( b1m;E:'{;E::;ﬁﬂ&ffi;ﬂW(w ey Jor @ in Fz‘naiWrzights]
19: return FinalWeights, PredClass
CNN cluster ability

To assess cluster ability, we leveraged the information embedded in the global average

pooling layer. As this layer works as a bridge between feature extraction and the final

classification made by the dense layer, its internal state represents each protein imputed as a

multidimensional vector with summarized features extracted upstream. Therefore, we

designed an algorithm (Algorithm 2) that removes the dense layer and makes the model

output the global average pooling vectors.
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Algorithm 2 Dimension reduction

Require: A list of proteins P = [vy, vs,...,0,]
Require: A deep learning model: Model
Ensure: 2D projection for each protein in P

1: SplitModel « Model — DenseLayer

2: ModelResults < SplitModel(P)

3: ReducedDala + tSNE(Model Results)

4: return ReducedDala

Algorithm 2 was applied on the holdout test set since the model has no knowledge of these
proteins and the resulting vectors (Additional File 1; Supplementary Figure 1). The resulting
vectors were then concatenated into a matrix and subsequently reduced to two dimensions
through t-distributed stochastic neighbor (t-SNE) from scikit-learn 1.4.2 with the following
parameters: t-SNE learning rate set to aufo, iterations = 1000, and perplexity = 50. The
original index order from the holdout test was kept. Thus, the reduced matrix contained the

respective classes of the protein.

Evaluation metrics

To address biases stemming from uneven data, we incorporated class weights to avoid
errors in model performance assessment linked to an imbalance in protein class sizes. The
calculation of precision (Equation 1), recall (Equation 2), the f-score (Equation 3), and the
categorical cross-entropy error (Equation 4) incorporates the weight of each protein class

during training.
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.. P
Precision = ———, (1)
I'P +FP
P
Recall = —————| (2)
TP + FN
Precision - Recall

Fl-score =2 - 3

BEOLC Precision + Recall’ (3)
C

Weighted Categorical Cross-Entropy = — Z We * Yie - log(fie), (4)
c=1

where:

e T'P is the number of true positives,

e F'P is the number of false positives,

e T'N is the number of true negatives,

e F'N if the number of false negatives,

e (' is the number of classes,

e w, is the weight for class ¢,

® y; . is the indicator if class ¢ is the correct label for sample ¢,

® ;. is the predicted probability by the neural network that sample ¢ be-
longs to class c.

Class weights calculation

The class weights (Additional File 2; Supplementary Table 1) were computed using
scikit-learn’s compute class weight 1.4.2 (Equation 5), which assigns weights inversely

proportional to class frequencies in the dataset to address imbalance.

NS
~ NC x NS (3)

We
Where:

e NS: Total number of samples in the dataset
e NC: Number of unique classes

e NS_i: Number of samples in class 1

10
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Results

Dataset curation and the lack of reference sequences

CARD and National Database of Antibiotic-Resistant Organisms (NDARO) are the
two largest public databases used as sources of reference sequences for functional annotation
of antimicrobial resistance proteins. Since the CARD requires experimental validation, it has
been widely used in several studies. (Arango-Argoty et al., 2018; Li et al., 2021; Mao et al.,
2023b; Z. Wang et al., 2021; Wu et al., 2023). Even part of the NDARO database is
composed of CARD. However, since a protein can be annotated only if it is highly similar to
a reference in the CARD, researchers are constantly rediscovering variations of the same

resistance proteins.

We investigated the CARD database updates (Additional File 1; Supplementary
Figure 2A) to check the rate at which novel reference proteins were added over the last few
years. Our findings revealed that, as expected, the total number of proteins reached a plateau,
while antimicrobial resistance has been increasing (Murray et al., 2022) and making infection
treatment ineffective (Liu et al., 2016). The NCRD95 database extended CARD content using

homology search and was, therefore, selected for this work.

Originally, NCRD95 contained 29 antimicrobial resistance protein classes
(Additional File 1; Supplementary Figure 1B) from 10603 (multidrug efflux pumps) to 2
(diaminopyrimidine) examples. This high degree of imbalance compromises training, as
classes with few examples may not provide enough information for generalization (B. Wang
et al., 2021). Therefore, we plotted a cumulative curve (Additional File 1; Supplementary
Figure 1C) and selected the 10 most abundant classes (Additional File 1; Supplementary

Figure 1D), as beyond this point, more classes did not substantially increase the total number

11
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of proteins. For instance, increasing protein classes from 10 to 15 would add only 1103
proteins (a 3% increase) to our final database. We also performed the same process for each

class individually to eliminate less representative subclasses and ensure internal homogeneity.

Data leakage among classes (i.e., classes that share information) that involve
multidrug resistance proteins has also been addressed. This class consists mainly of efflux
pumps that extrude different antimicrobial molecules from bacterial cells, which means that
the same protein may be classified into two classes depending on the experimental design.
For example, we found RND efflux pumps in the multidrug, beta-lactam, and macrolide
classes. Therefore, we removed the multidrug class and all efflux pumps found in our dataset,
regardless of the protein class. Finally, we constructed a homology-based dataset composed
of nine antimicrobial resistance proteins plus one class of nonresistance proteins (Additional

File 1; Supplementary Figure 1D).

Deep learning model evaluation

The Keras Hyperband algorithm took 83 rounds of heuristic search to optimize the set
of hyperparameters, which yielded a CNN model with the lowest loss value possible
(Additional file 2; Supplementary Table 2). However, low loss values must be taken
cautiously in deep learning research since neural networks can learn the intrinsic noise of the
training set rather than the meaningful signal. In the protein research field, this may occur
when there are copies of proteins shared by training and test sets, so the model would
recognize idiosyncratic features instead of general features. We mitigated the risk of
overfitting resulting from data leakage by restricting the sequence similarity between the

training and test sets to a maximum of 95%

12
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Another precaution taken was the split point that created the training set. Although
randomized, the process may lead to a biased model if the proportion of classes between
training and test is not respected. We addressed this issue by cross-validating our model with
5 stratified sub-splits of our training set. The convergence curves of cross-validation
(Additional File 1; Supplementary Figure 3A), final model training (Additional File 1;
Supplementary Figure 3C and 3D), and evaluation metrics (Table 2) on the holdout test set

showed no clear trends of overfitting regardless of the training subset.

Table 2. Cross-Validation Results

Class Mean precision Mean recall Mean F1-score
MLS 0.96 + 0.05 0.95 £ 0.02 0.95 £0.02
NonR 0.83 +0.02 0.97 £0.02 0.89 £ 0.01
Aminoglycoside 0.96 £0.03 0.95+0.01 0.96 + 0.02
Beta-lactam 0.99 £+ 0.01 0.96 £+ 0.01 0.97 £ 0.01
Chloramphenicol 0.99 £ 0.01 0.98 £ 0.01 0.99+ 0.01
Glycopeptide 0.99 + 0.01 0.99 £ 0.04 0.99 £ 0.002
Macrolide 0.98 £ 0.01 0.87 £ 0.07 0.92 £ 0.04
Phosphonic Acid 1.0+0 0.99 + 0.03 0.99 £ 0.015
Rifamycin 0.99 £ 0.01 0.98 £ 0.01 0.99 + 0.003
Tetracycline 0.98 +£0.03 0.98 £ 0.01 0.98 £ 0.01

We use the holdout test set to compare deep learning and protein alignment on

antimicrobial resistance protein annotation. To represent the alignment-based approach, the

state-of-the-art tools Resistance Gene Identifier (RGI) 6.0.3 (Alcock et al., 2020) and

AMRFinderPlus

4.0.19 (Feldgarden et al., 2019) were selected. On the deep learning
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approach, our CNN and the fine-tuned ESM2. To equalize the number of classes, proteins not

classified as resistant by RGI or AMRFinderPlus were considered nonresistant.

The deep-learning-based approach (Figures 1A and 1B) presented high values of
recall (>0.95) across antimicrobial resistance protein classes, although their performance
slightly decreased in the precision of the nonresistance classes. On the other hand,
alignment-based tools (Figure 1C and Figure 1D) only achieved comparable values of
precision and recall in cases where there are sequences that serve as references for annotating

proteins.

Confusion matrices showed in detail the misclassifications of each tool in our
benchmarking. CNN and ESM2 (Figure 2A and Figure 2B) presented a few antimicrobial
resistance proteins annotated as nonresistance proteins. RGI and AMR-FinderPlus (Figure 2C
and Figure 2D), on the other hand, presented more false negative results, mostly in the

glycopeptide class.

14


https://doi.org/10.1101/2024.06.11.598242
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.11.598242; this version posted June 16, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

made available under aCC-BY-NC-ND 4.0 International license.

CNN

A

MLS

NonR
aminoglycoside
beta-lactam
chloramphenicol
glycopeptide
macrolide
phosphonic acid
rifamycin

tetracycline

precision recall  fl-score
C RGlI
MLS 0.31 0.47
NonR 0.27
aminoglycoside 0.54
beta-lactam 0.42 0.59

chloramphenicol
glycopeptide
macrolide

phosphonic acid

rifamycin

tetracycline 0.37

precision recall fl-score

ESM2

aminoglycoside -
beta-lactam -
chloramphenicol -
glycopeptide -

macrolide -

phosphonic acid -

rifamycin -
tetracycline - - 0.6
preclision reclall f1-sEore
D AMR-Finder
MLS 0.72
NonR 0.36 04

0.76

aminoglycoside
beta-lactam
chloramphenicol
glycopeptide
0.69 0.74

macrolide - 0.71

phosphonic acid

0.36

rifamycin

tetracycline 0.29 0.45

recall fl-score

precision

Figure 1. Classification reports. Benchmarking of CNN (A), ESM2 (B), RGI (C), and AMR-Finder (D) on the

holdout test set. The metrics were calculated with class weight values to avoid bias due to class imbalance.
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Figure 2. Confusion matrices of CNN (A), ESM2 (B), RGI (C), and AMR-Finder (D) on the holdout

test set. The red-dashed squares highlight the false negative results of each benchmarked tool.
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Generalization in out-of-distribution data

Antimicrobial resistance proteins are limited in number due to the sequence alignment
drawbacks mentioned earlier. For instance, CTX-M beta-lactamases share 94% of amino acid
identity (ur Rahman et al., 2018). Such a lack of diversity may impose biases into deep
learning models, which would perform well only on proteins identical to their training set but
poorly on dissimilar proteins (Bernett et al., 2024). Therefore, we investigated the limits of
generalization of our CNN regarding the sequence similarity using our holdout test set and

the NDARO.

DIAMOND alignments showed that approximately 68% (2292 out of 3352 proteins)
of the holdout test set aligned to the training set with an identity range of 29% to 95%. This
indicates that our CNN is not limited to identical variants of the training set; otherwise, the
model would demonstrate a significant decrease in its performance. CNN's performance on
the remaining 32% (1060 proteins) corroborates this hypothesis, as the values of precision,
recall, and f1-score remained high (Additional File 1; Supplementary Figure 4A). In fact, for
chloramphenicol and phosphonic acid, they remained equal to one. The decrease observed in
the precision of non-resistant proteins resulted from the few false negatives from the other

classes.

Our CNN vyielded similar results on NDARO proteins. From the 5959 resistant
proteins, 5726 aligned to the training set, and 5654 were correctly classified (Additional File
1; Supplementary Figure 4B). From the set of proteins that did not align to our training set,
DeepSEA misclassified 42 proteins from beta-lactam (Additional File 1; Supplementary
Figure 4C). A manual inspection revealed that the majorly of these 42 proteins are subclasses
absent in our training set, such as VEB (n=11), CFX (n=12), and MUN (n=6) beta-lactamases
(Additional File 1; Supplementary Figure 4D). Indeed, only the subclass OXA (n=1) contains
examples in our training and was wrongly assigned as nonresistant. Together, these results
provided evidence of true generalization as our CNN annotated out-of-identity-distribution

proteins, as long as there are examples in the training set.
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Model explainability

The results exposed above led us to investigate the latent space produced by the
feature extraction block to reveal which protein features the CNN learned to yield such high
performance. The global average pooling layer summarizes the features extracted by the
convolutional layers. Therefore, we applied Algorithm 2 to make the model return these
vectors instead of classifying proteins and reducing them with t-SNE. Our CNN separated
the holdout test set according to protein classes (Figure 3) with a few misclassifications,
indicating that the model successfully differentiated sets of weights for each protein class,
which shows the model’s ability to distinguish resistant from nonresistant proteins and predict

the correct resistance classes.

As these results indicate that there are diagnostic features learnt from each protein
class, we searched for them in the feature matrices produced by the convolutional layers, and
investigated if they could be associated with biological functions. Briefly, Algorithm I
highlights important features by dot-producting the weights from the dense layer and the
feature matrix for a given imputed protein. Pairing the resulting vector with the original
protein sequence reveals residues of importance. Also, we overlapped the feature vectors and

protein domains annotated by InterproScan 5 to add biological meaning.
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Figure 3. CNN class clusters. The t-SNE plot is made of the reduced weight matrix retrieved from the global

average pooling layer as described in Algorithm 2 (see Methods).

Our results showed that CNN selected conserved regions (determined from multiple
sequence alignments) as information hotspots for classification. For instance, class-A
beta-lactamases (Figure 4A) alignment presented three main regions where CNN neurons
fired to predict that class of enzymes, all of which are within the large beta-lactamase
signature (IPR0O00871). The first hotspot contains the class-A active site (IPR023650) where

the catalytic residues (S--K) are located (Ghuysen, 1991; Joris et al., 1988a). The last hotspot
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includes the binding site GTK, another conserved and diagnostic subdomain of class-A

beta-lactamases.

The aminoglycoside-modifying enzyme AadA alignment (Figure 4B) also has three
important conserved regions that belong to the adenylyltransferase AadA/Aad9 domain
(IPR024172). The last hotspot is in the adenylyltransferase AadA, C-terminal domain
(IPR025184), and the first belongs to the nucleotidyltransferase domain from the superfamily
of proteins in which adenylyltransferases are included. Fosfomycin thiol transferase (FosA),
the example of the phosphonic acid (or fosfomycin) class (Figure 4C), has two hotspots in
conserved domains related to fosfomycin resistance: fosfomycin resistance protein
(IPR051332), glyoxalase/fosfomycin resistance/dioxygenase domain (IPR004360) and

glyoxalase/bleomycin resistance protein/dihydroxybiphenyl dioxygenase (IPR029068).
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Figure 4. CNN neurons firing patterns for resistance proteins from the beta-lactam (A), aminoglycoside (B), and
phosphonic acid (C) classes. Each plot is divided into a bar plot with Shannon entropy values, a line plot with
protein domain extensions found by Interproscan 5, and the CNN weights spread over a multiple sequence
alignment of a cluster of proteins selected by CD-HIT (see Methods). The black-dashed squares highlight the

most important regions (hotspots) for classification.

Given these results, we enquired whether our model captured information from
protein regions related to antimicrobial molecule inactivation in the cases of aminoglycoside
and fosfomycin-resistant proteins. To investigate this, we selected enzymes in complex with
antimicrobials from the Protein Data Bank PDB (Table 3), applied the same feature extraction
method, and compared our results with PDB functional annotations. CTX-MI15
beta-lactamase (PDB: 7TI0) (Figure 5A) hotspots contain residues annotated as binding sites.
Specifically, the residues S--K in which the serine (S45) residue nucleophilically attacks the
lactam ring and initiates the structural modification that leads to beta-lactam molecule
inactivation (Biswal et al., 2023; Ghuysen, 1991; Judge et al., 2023; Majiduddin et al., 2002).
Additionally, the last hotspot contains the residues K209, T210, and G211, which bind and

place the beta-lactam molecule in the catalytic pocket (Majiduddin et al., 2002).
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Figure 5. CNN model interpretability. PDB 3D structures of a CTX-M beta-lactamase (A), a fosfomycin thiol
transferase (B), and an aminoglycoside nucleotidyltransferase (C) colored according to CNN neuron firing

patterns. The green-highlighted residues on the structures and the black-highlighted above heatmaps are
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annotated as binding sites to antimicrobial molecules. The grey structure on B is the other fosfomycin thiol

transferase monomer.

For the FosA (PDB: 1NKI) protein (Figure 5B), our model highlighted two hotspots
that build the catalyst site where the residues H64, Y100, and E110 bind the fosfomycin
molecule and Y62, which bridges the active site and the dimer interface loop (Klontz et al.,
2017). Similarly, the aminoglycoside (3") (9) adenylyltransferase (PDB: 7UY4) (Figure 5C)
presented residues D43, D45, Q104, E107, W108, and D181 annotated as binding sites for
spectinomycin antimicrobial (Kanchugal P and Selmer, 2020). These results confirmed that
our model learned biological features from proteins without reference sequences or sequence

alignment comparisons.

Table 3. Proteins from PDB and subsequences of high importance for classification.

Protein Class PDB ID Hotspots

FosA Phosphonic acid INKI 1:GGPAADYTHYAFGIAAAD

2:GDSFYFLDPDGHRLE

ANT3,9 Aminoglycoside 7UY4 1: GGLKPHSDIDLLV
2: PWRYPAKRELQFGEWQR

3: NVVLTLSRIWYSAV

CTX-M-15 Beta-lactam 7TIO 1: ILYRADERFAMCSTSKVMA
2: DSQRAQLVTWM

3: AASIQAGLPASWVVGDKTG

We checked our model misclassifications and found evidence of misannotated
proteins in the NCRD95 dataset that were correctly classified by our CNN. In our test, the
protein NR_MCRO0138297.1 is labeled as aminoglycoside resistance and was classified as
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beta-lactam. BLASTP revealed that NR_MCRO0138297.1 is 86.6% identical to a PAC-1
(NR_ABP88743.1) beta-lactamase in our training set. The same was observed for
NR_WP_193096997.1, a member of the aminoglycoside resistance class that is 52.1%
similar to Arr-1 (NR_PRC48666.1), a rifamycin-resistant protein.

A third example of misannotation from NCRD95 is the oleD protein, a
glycosyltransferase that confers resistance only to macrolide antimicrobials (Bolam et al.,
2007; Quiros et al., 2000). In this case, the protein NR_WP_166002910.1 in the training set
and the NR_PZH16762.1 protein in the test set were both labeled as MLS resistance class and
shared 82.8% of protein identity. However, our CNN classified NR_WP 166002910.1 as a

macrolide-resistant protein.

DeepSEA tool

To make our model available for the scientific community, the CNN was wrapped in a
command-line interface tool available on
https://github.com/computational-chemical-biology/DeepSEA-project. There are two usage
options for DeepSEA, for resistance classification the user can provide a raw FASTA file as
input and obtain a table format file with model predictions and their respective probabilities,
or for motif detection, a multisequence alignment FASTA file can be analyzed by DeepSEA,

returning a heatmap with the hotspots for each aligned sequence.

Discussion

In this work, we developed an alignment-free tool that functionally annotates proteins
across multiple antimicrobial resistance classes and distinguishes resistance from
nonresistance proteins without protein alignment. The DeepSEA model was trained to

recognize motifs (hotspots) from resistance proteins and therefore provides an explanation for

25


https://www.zotero.org/google-docs/?aOa2Vn
https://www.zotero.org/google-docs/?aOa2Vn
https://github.com/computational-chemical-biology/DeepSEA-project
https://doi.org/10.1101/2024.06.11.598242
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.11.598242; this version posted June 16, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

its predictions, which helps users from biological backgrounds to interpret the results.
Benchmarking revealed that DeepSEA is superior to protein alignment when it comes to

identifying fewer false negatives.

The protein alignment model uses homology inference (Pearson, 2013) as a shortcut
from sequence to function in the classical sequence-structure-function paradigm (Koehler
Leman et al., 2023). However, even homologous groups, such as serine beta-lactamases, can
vary considerably outside their active sites (Joris et al., 1988b), forcing the databases to have
reference sequences for variants, otherwise leading to high rates of false negative results

(Arango-Argoty et al., 2018).

The lower recall values of RGI and AMRFinder demonstrated that the lack of proper
reference sequences in their databases led to several misclassifications of resistant proteins as
non-resistant proteins. For instance, RGI and ARMFinder classified 88% and 79% of the
proteins that resist glycopeptides as non-resistant proteins, respectively. Moreover, both
alignment-based tools presented misleading results for proteins related to resistance to
beta-lactam antimicrobials. DeepSEA, on the other hand, had only 8 beta-lactam resistance

proteins misclassified as nonresistance.

DeepSEA performance matched ESM2 even though the ESM2 model is composed of
a transformer-based architecture pre-trained on the approximately 60 million proteins from
the UniRef database (September 2021 version). Moreover, the CNN-based architecture
allowed DeepSEA’s output interpretability without data perturbation. For example, to explain
HMD-ARG (Li et al., 2021) results, the author had to investigate the effect of in silico
mutations in protein sites on model performance. This need for checking protein variations is

computationally expensive and infeasible in most cases. The pioneer DeepARG
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(Arango-Argoty et al., 2018) used a multilayer perceptron model, which can not offer
explainability, and also needs to prefilter resistance-like proteins via DIAMOND (Buchfink et

al., 2015) before model prediction itself.

During the benchmarking experiments, the DeepSEA precision value was lower for
nonresistance than for other classes. This was expected due to the miscellaneous composition
of the nonresistance class, which contains proteins with a plethora of functions. This lack of
homogeneity of the nonresistance class forces the CNN neurons to fire at patterns restricted
to the other classes. We extracted this information directly from the model and converted it to
a human-readable format, contextualizing DeepSEA’s output to information provided by
multisequence alignment. This feature could be used in future research to combine 3D
structure prediction with functional annotations.

DeepSEA was designed to address a key issue in antimicrobial resistance protein
annotation: the false negative rates. We focused on pushing the frontiers of protein annotation
made by sequence similarity. Therefore, DeepSEA does not contain genome assemblers and
open reading frame predictors. Also, since genomic research pipelines often use annotation
tools of a general purpose such as Prokka (Seemann, 2014), DeepSEA can be employed to
reannotate proteins previously assigned as hypothetical and increase the knowledge on the
diversity of proteins produced by bacteria or to screen large datasets of unannotated protein
sequences predicted by other tools. DeepSEA was designed to find signatures of proteins for
broad resistance classes. For instance, future work will address more specific questions and
split the beta-lactam class according to the type of beta-lactam antimicrobial (i.e.,

cephalosporin, penem, to cite a few).
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Conclusion

In this work, we addressed the high rates of false negatives in antimicrobial resistance
protein annotation by sequence alignment. It was demonstrated that a single CNN model,
trained directly on protein sequences instead of MSA, achieved higher performance than
alignment-based methods and produced only a few false negatives for every protein class in
the training set without detectable overfitting. Moreover, we proposed an algorithm to extract
and transform information from the CNN into meaningful human-readable insights about the
model's decision-making that help users from different backgrounds interpret the results.
Future works could use multimodal data to expand these explanatory features from proteins
to complex metabolic pathways of resistant bacteria to reveal protein-protein interactions that

contribute to the resistant phenotype.
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