

Genetic analysis of *Mycobacterium abscessus* reveals genomic diversity linked to global plasmid distribution

1 Kensuke Ohse¹, Atsushi Yoshida^{2,3,4}, Keisuke Kamada^{3,5}, Hironobu Kitazawa^{6,7}, Yusuke Ito⁸, Takayo Shoji⁹,
2 Kenichiro Watanabe¹⁰, Hiroshi Koganemaru², Ken Kikuchi³ and Masashi Toyoda^{1,11,*}

3 ¹Research Team for aging science (Vascular Medicine), Tokyo Metropolitan Institute for Geriatrics and Gerontology (TMIG),
4 Tokyo, Japan

5 ²Department of Infectious Diseases, TMIG, Tokyo, Japan

6 ³Department of Infectious Diseases, Tokyo Women's Medical University, Tokyo, Japan

7 ⁴Department of Genetic Diagnosis and Laboratory Medicine, Dokkyo Medical University, Tochigi, Japan

8 ⁵Department of Mycobacterium Reference and Research, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis
9 Association, Tokyo, Japan

10 ⁶Department of Pediatrics, Nagoya University Graduate School of Medicine, Aichi, Japan

11 ⁷Department of Hematology and Oncology, Children's Medical Center, Japanese Red Cross Aichi Medical Center Nagoya First
12 Hospital, Aichi, Japan

13 ⁸Department of Pediatric Infectious Diseases, Hyogo Prefectural Amagasaki General Medical Center, Hyogo, Japan

14 ⁹Department of Infectious Diseases, Shizuoka Children's Hospital, Shizuoka, Japan

15 ¹⁰Department of Hematology and Oncology, Shizuoka Children's Hospital, Shizuoka, Japan

16 ¹¹Lead contact

17 *Correspondence: mtoyoda@tmig.or.jp

18

19 SUMMARY

20 Genetic epidemiological analysis of mobile genetic elements, such as plasmids, has rarely been carried out
21 in *Mycobacterium abscessus*, regardless of its usefulness in speculating the past contact between bacteria.
22 In this study, through whole genome sequencing analysis of clinical isolates of *M. abscessus* sequentially
23 collected from the same patient, we identified a single nucleotide variant that could cause antibiotic
24 resistance, and three plasmids (pMAB625-1, pMAB625-2 and pMAB625-3) not found in the type strain. We
25 investigated the distribution of plasmids previously identified in *M. abscessus*, including pMAB625 plasmids,
26 in 462 clinical isolates worldwide *in silico*. pMAB625-3 was detected in the largest number of isolates.
27 Furthermore, phylogenetic tree analysis revealed that these plasmids transferred beyond regions and
28 subspecies and acquired unique mutations. These results indicate that transmission of plasmids increases
29 the genomic diversity in *M. abscessus*, and plasmid epidemiology is useful for estimating the past contact
30 between bacteria.

31

32 KEYWORDS

33 *Mycobacterium abscessus*; Whole genome sequencing; Plasmid; Horizontal gene transfer

34

35 **INTRODUCTION**

36 In recent years, the threat of antimicrobial-resistant bacteria has been increasing worldwide, and they could
37 be responsible for 1.91 million deaths per year by 2050¹. Hence, research into the mechanisms and routes
38 of transmission is becoming increasingly important to develop effective countermeasures against
39 antimicrobial-resistant bacteria. The global incidence of non-tuberculous mycobacterial infections has been
40 on the rise, presenting a significant challenge due to their increasing prevalence and innate drug resistance,
41 particularly in *Mycobacterium abscessus* infections². *M. abscessus* is not limited to pulmonary infections
42 but also serves as the causative agent for various extrapulmonary infections, including bloodstream, skin,
43 soft tissue, surgical site, and peritoneal dialysis-related infections³. Furthermore, it demonstrates resistance
44 to a wide range of antimicrobial agents.

45 The route of infection of *M. abscessus* remains controversial. It has been assumed that *M. abscessus* is
46 transmitted from the environment, such as soil and water systems, and person-to-person transmission does
47 not occur. However, a few cases of suspected person-to-person transmission have been reported⁴⁻⁶. In
48 addition, the existence of “dominant clones”, which were isolated in almost all regions and phylogenetically
49 close^{6,7}, makes the source and transmission routes of the bacteria mysterious⁸.

50
51 Whole genome sequencing (WGS) analysis and phylogenetic tree analysis of the core genome, which is
52 the genomic region shared by all isolates, are often conducted to predict the origin and transmission route
53 of the isolates⁹. However, the accessory genome, which is shared by a certain percentage but not all of the
54 isolates such as plasmids, prophage, and genomic islands, is made up of approximately 30% of the typical
55 number of all genes of *M. abscessus*¹⁰. Therefore, the analysis of the pan-genome, which includes both the
56 core genome and accessory genome, was performed to compare the genetic relation of all gene sets of *M.*
57 *abscessus*^{8,11}. Although the pan-genome analysis has the advantage of comparing whole bacterial
58 genomes, it has the disadvantage of analyzing accessory genomes as gene units, resulting in the loss of
59 information on the units of mobile genetic elements. Therefore, epidemiological analysis of mobile genetic
60 element units, such as individual plasmids, may more accurately predict the origin and route of infection of
61 bacteria.
62

63 In this study, we performed the WGS analysis of the clinical isolates that acquired elevated minimum
64 inhibitory concentrations (MICs) for carbapenem antibiotics in a case of disseminated infection caused by
65 *M. abscessus* subsp. *abscessus* (ABS) during antimicrobial therapy. We detected one mutation potentially
66 responsible for antimicrobial resistance (AMR) and identified three plasmids (pMAB625-1, pMAB625-2 and
67 pMAB625-3) that type strain did not harbor. Therefore, we analyzed the distribution of plasmids identified
68 in *M. abscessus* before, including pMAB625 plasmids and found that pMAB625-3 was the most widely
69 spreading plasmid among the clinical isolates of *M. abscessus* worldwide. Thus, we investigated whether
70 predicting the past contact between isolates is possible by analyzing single nucleotide variants (SNVs) and
71 structural variants (SVs) of the plasmids.
72

73 **RESULTS**

74 ***The clinical isolates had decreased susceptibility to carbapenem antibiotics compared to the type***
strain

75 We sequentially isolated five ABS strains from one patient who had osteomyelitis over six months (Table
76 1). We first compared the growth rate and antimicrobial susceptibility of these clinical isolates with the type
77 strain (ATCC 19977). The growth rates of Isolate57625 and Isolate57626 were significantly slower than the
78 type strain (Figure S1). Antimicrobial susceptibility testing showed that the MIC of Isolate57626 against IPM,
79 which binds the penicillin-binding proteins (PBPs) and inhibits the bacterial cell wall synthesis, was higher
80 than that of the type strain (Table 1). The MICs of Isolate57625 and Isolate57626 against meropenem
81 (MEPM), which has the same mechanism of action as IPM and improved stability, were higher than that of
82 the type strain (Table 1). However, there were no differences in MIC between ATCC 19977 and two isolates
83 against the other antibiotics. These results indicated the decreased susceptibility of the isolates to
84 carbapenem antibiotics compared to the type strain.
85

87

88 **WGS of the clinical isolates**

89 To explore the factors determining the difference in growth rate and antimicrobial susceptibility between the
90 type strain and the clinical isolates, we performed WGS using short-read sequencer and Nanopore long-
91 read sequencer. We analyzed the *de novo* assembled chromosome sequences and found that two large
92 insertions (13 kbp and 8 kbp) and a deletion (16 kbp) existed in the sequence of Isolate57625 (Figure S2A,
93 B). The coding sequences of phage integrase and transposase were present near the three large SVs
94 (Figure S3), indicating that these regions were prophage and transposon. We also analyzed the SNVs in
95 the chromosome (Table S3), however, we could not identify the cause of the phenotypic differences.
96 Phylogenetic analysis showed that the isolates were genetically close to the type strain (Figure S2C).
97 Furthermore, to analyze the difference in the chromosome sequence between five clinical isolates, we
98 analyzed SVs and SNVs between the isolates (Figure S4). This analysis suggested one mutation located
99 at the putative *PbpA*, which was associated with the synthesis of the bacterial cell wall¹² and the target of
100 carbapenem antibiotics¹³, may be responsible for the reduced susceptibility of Isolate57626 to IPM
101 compared to Isolate57625.

102

103 ***The isolates had three plasmids that encode various virulence factors***

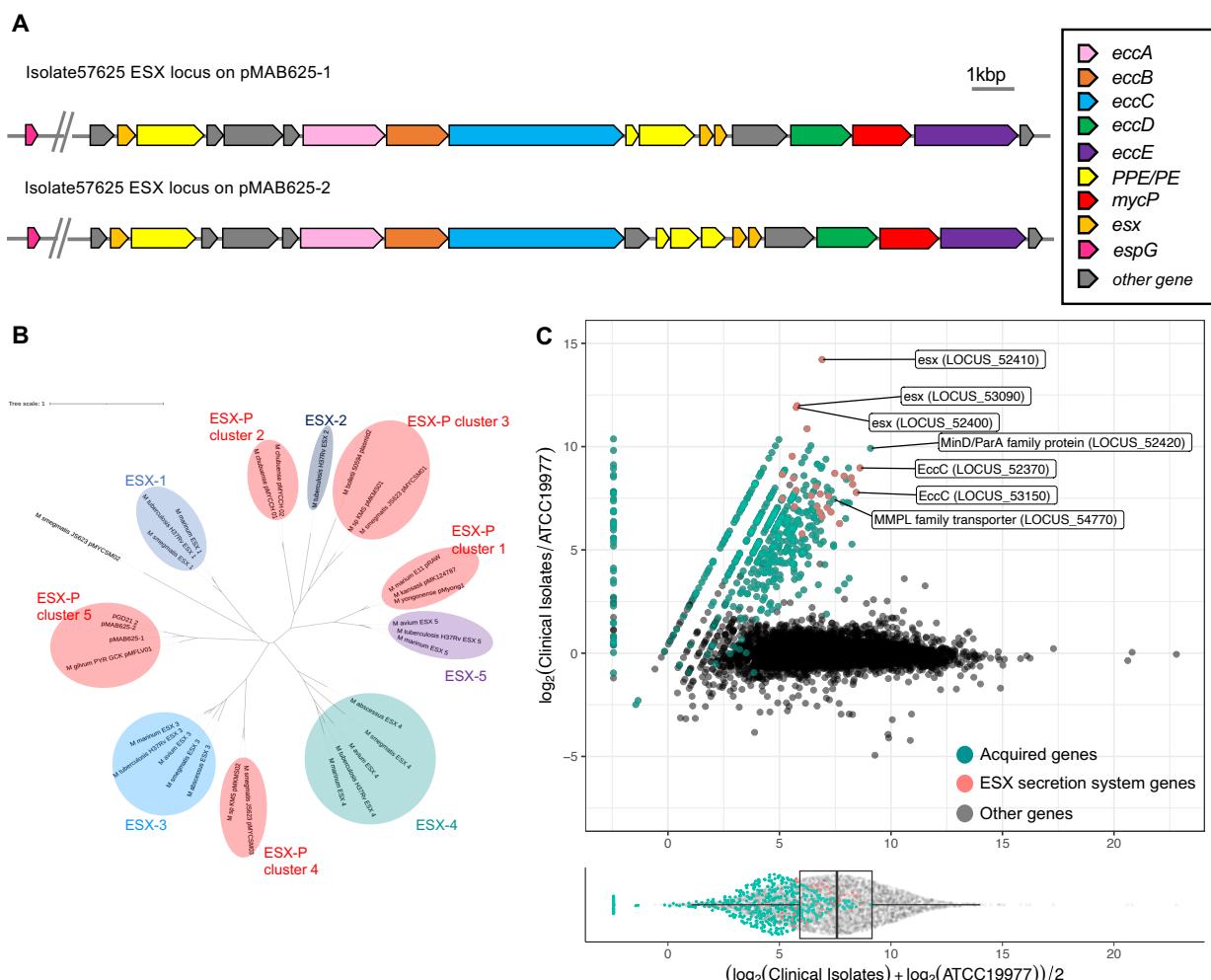
104 WGS analysis also revealed that the clinical isolates have three plasmids not found in the type strain
105 (named pMAB625-1, pMAB625-2 and pMAB625-3, respectively) (Table 2). Thus, we next focused on the
106 pMAB625 plasmids and compared the pMAB625 plasmid sequences with other plasmids registered to
107 PLSDB¹⁴ previously (Table 3). A taxonomic keyword search for “*abscessus*” returned 20 plasmids. To
108 investigate the homology between these plasmids, we calculated ANI between them and pMAB625. No
109 plasmid had a high ANI for pMAB625-1, however, the ANI between pMAB625-2 and pGD21-2 was 97.4%
110 with some SVs. Furthermore, the ANI for pMAB625-3 against pGD69A-1 and pGD42-1 was 100%. These
111 results indicated that pMAB625-2 and pMAB625-3 were retained in the other clinical isolates of *M.*
112 *abscessus*. Next, we performed qPCR using primers specific to each plasmid to verify the copy numbers
113 of pMAB625 plasmids in the clinical isolates. This analysis showed that the copy number of pMAB625-1
114 and pMAB625-2 was less than one per bacterium, and that of pMAB625-3 was more than five per bacterium
115 in the isolates (Figure S5). Therefore, the clinical isolates were considered to be a heterogeneous
116 population in terms of plasmid possession.

117

118 We then investigated the function of the genes encoded on pMAB625 plasmids using homology search.
119 Plasmids encode various factors that influence host characteristics. Therefore, we listed the lost and
120 acquired genes in Isolate57625 compared to the type strain to investigate the factors affecting antimicrobial
121 susceptibility (Table S4). Of note, 480 candidate open reading frames (ORFs) were acquired and 37
122 candidate ORFs were lost in Isolate57625 compared to the type strain. We then searched the AMR genes
123 from several databases using Blast+ based on the amino acid sequences of the acquired candidate ORFs.
124 This analysis showed that the coding sequence (CDS) named Isolate57625_54550 had a similarity to *qacA*,
125 a subunit of the *qac* multidrug efflux pump¹⁵, (identity, 31 %; e-value, 1.69e-10; coverage, 16.1%) and that
126 the CDS named Isolate57625_54800 had a similarity to *MexL*, a specific repressor of *MexJK* multidrug
127 efflux system¹⁶ (identity, 33%; e-value, 5.54e-4; coverage, 34.4%). However, the identity and coverage
128 were not sufficiently high.

129

130 To gain further insight into the effect of gene acquisition, we searched the homology of the acquired
131 candidate ORFs using the mycobacterial gene database of Mycobrowser¹⁷. This analysis detected 37
132 mycobacterial proteins with amino acid homology to candidate ORFs of the isolates (identity > 30 %, e-
133 value < 1e-50) (Table S5). Notably, genes associated with the ESX secretion system were highly enriched


134 (10/37, 27%). ESX secretion systems are encoded in various bacteria on their chromosomes and plasmids.
135 It has been reported that the ESX secretion system (also known as the type VII secretion system) is involved
136 in bacterial virulence through several mechanisms, including evasion of the host immune system^{18,19}, and
137 biofilm formation²⁰. We further searched whether other ORFs of the components of the ESX secretion system
138 were encoded near the loci of the detected ORFs of the components of the ESX secretion system
139 using blast+. We detected several components of the ESX secretion system in pMAB625-1 and pMAB625-
140 2 (Figure 1A). Core genes that construct membrane pores (*eccB*, *eccC*, *eccD*, *mycP*, and *eccE*) were
141 present in these gene clusters. The type strain and clinical isolates have ESX-3 and ESX-4 loci on their
142 chromosomes; therefore, the isolates acquired two additional ESX loci by the plasmid acquisition. To predict
143 the function of these genes, we performed phylogenetic tree analysis using known amino acid sequences
144 of the ESX secretion system components in chromosomes and plasmids. It was previously reported that
145 plasmid-encoded ESX loci can be classified into 4 major clusters²¹. Importantly, our analysis revealed that
146 plasmid-encoded ESX loci were classified into 5 major clusters (ESX-P cluster 1-5) (Figure 1B). Notably,
147 the newly classified ESX-P cluster 5 contained the ESX loci of pMAB625-1 and pMAB625-2. As shown in
148 the results of the plasmid homology search (Table 3), the ESX loci of pGD21-2 and pMAB625-2 were
149 genetically close. The ESX loci of pMAB625-1 were genetically close to that of pMFLV01, which was
150 harboured by *Mycobacterium gilvum* PYR GCK. It was previously reported that pMFLV01 was enriched in
151 biofilm formed in household water purifiers by metagenomic analysis²². Biofilm formation is one of the drug
152 resistance mechanisms in mycobacterium and acts as a barrier against antibiotics. We also detected the
153 toxin-antitoxin (TA) system components, YefM/YoeB and VapB5/VapC5 in pMAB625-1. The TA system is
154 present in various bacteria and archaea and encoded on their chromosomes and plasmids. It contributes
155 to plasmid persistence, inhibiting bacteriophage propagation, and increases antimicrobial tolerance by
156 inducing dormancy²³. These results indicated that the clinical isolates acquired factors that could contribute
157 to bacterial virulence through plasmid transfer.

158

159 **Gene expression analysis on the pMAB625 plasmids in the clinical isolates**

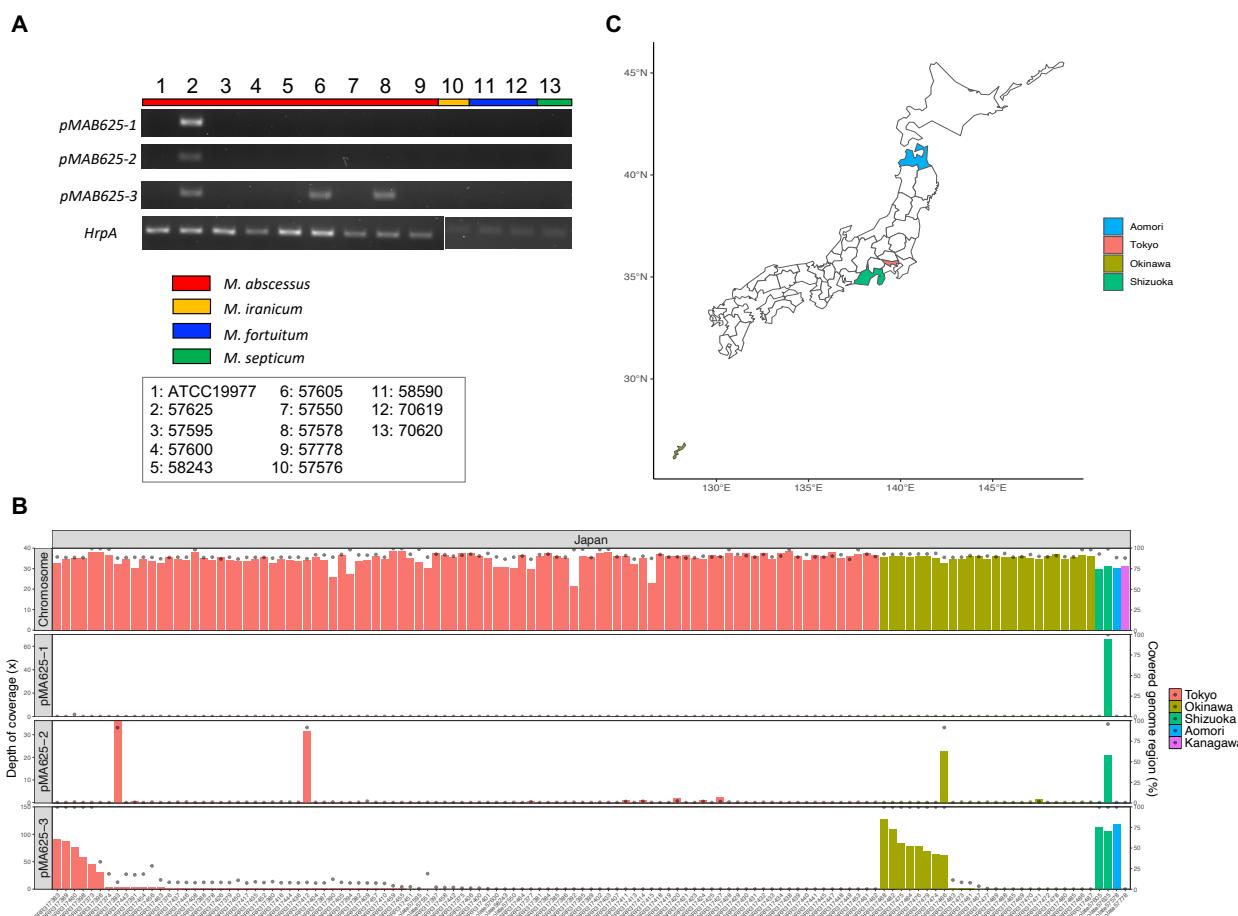
160 We found that the various genes associated with bacterial virulence were encoded on the pMAB625
161 plasmid. However, it was unclear whether genes encoded on these plasmids were expressed in the isolates
162 and to what extent gene expression on the plasmids influenced the expression of genes on the
163 chromosome. To address this question, we analyzed the global gene expression in the type strain and the
164 isolates using RNA-seq analysis (Figure 1C and Table S6). The expression levels of the genes on plasmids
165 were low to moderate (below the 75th percentile of the distribution of expression levels of all genes that
166 were expressed in the isolates and the type strain). Notably, the expression levels of the most genes (19/27
167 genes) associated with the ESX secretion system, which were encoded on the pMAB625-1 and pMAB625-
168 2, were moderate (below the 75th percentile and above the 25th percentile) (Figure 1C). In addition, the
169 genes associated with the TA system and the mycobacterial membrane protein large (MMPL) family
170 transporter, which were also encoded on the pMAB625-1 and pMAB625-3, respectively, were expressed
171 at moderate levels. These results indicated that the numerous genes associated with bacterial virulence
172 encoded on the plasmids were expressed at moderate levels in the clinical isolates, despite the low number
173 of copies per bacterium for the pMAB625-1 and pMAB625-2. Next, in the clinical isolates, 393 genes were
174 highly expressed and 29 genes were low expressed compared to the type strain. Of these differentially
175 expressed genes, 87.2% of genes (368 highly expressed genes) were acquired genes by SVs or plasmids,
176 and 12.8% of the genes (25 highly expressed genes and 29 low expressed genes) were present on the
177 chromosomes of both the isolates and the type strain (Figure 1C). These results indicated that the gene
178 expression on the plasmid could directly or indirectly affect the expression on the chromosome but to a
179 lesser extent.

180

181

Figure 1. Phylogenetic and gene expression analysis of the genes related to the ESX secretion system

(A) The loci of the ESX secretion system are encoded on pMAB625-1 and pMAB625-2. CDSs of the ESX secretion system were searched using Blast+. The core components that construct membrane pore (*eccB*, *eccC*, *eccD*, *mycP*, and *eccE*) are contained in this operon.


(B) Phylogenetic tree analysis of various ESX loci encoded on chromosomes and plasmids. The amino acid sequence of the genes that construct the membrane pore were concatenated and the phylogenetic tree was created by NGphylogeny.fr²⁴ using the PhyML+SMS inference method. The classification of each cluster was followed as previously reported²¹.

(C) RNA-seq analysis of the type strain and the isolates. The x-axis represents the mean log expression levels, and the y-axis of the top plot represents the log fold change. The bottom dot plot and box plot represent the distribution of the expression levels of each gene. The green dots represent the data of genes that the isolates acquired by SVs and plasmid acquisition. The red dots represent the data of ESX secretion system genes encoded on the plasmids.

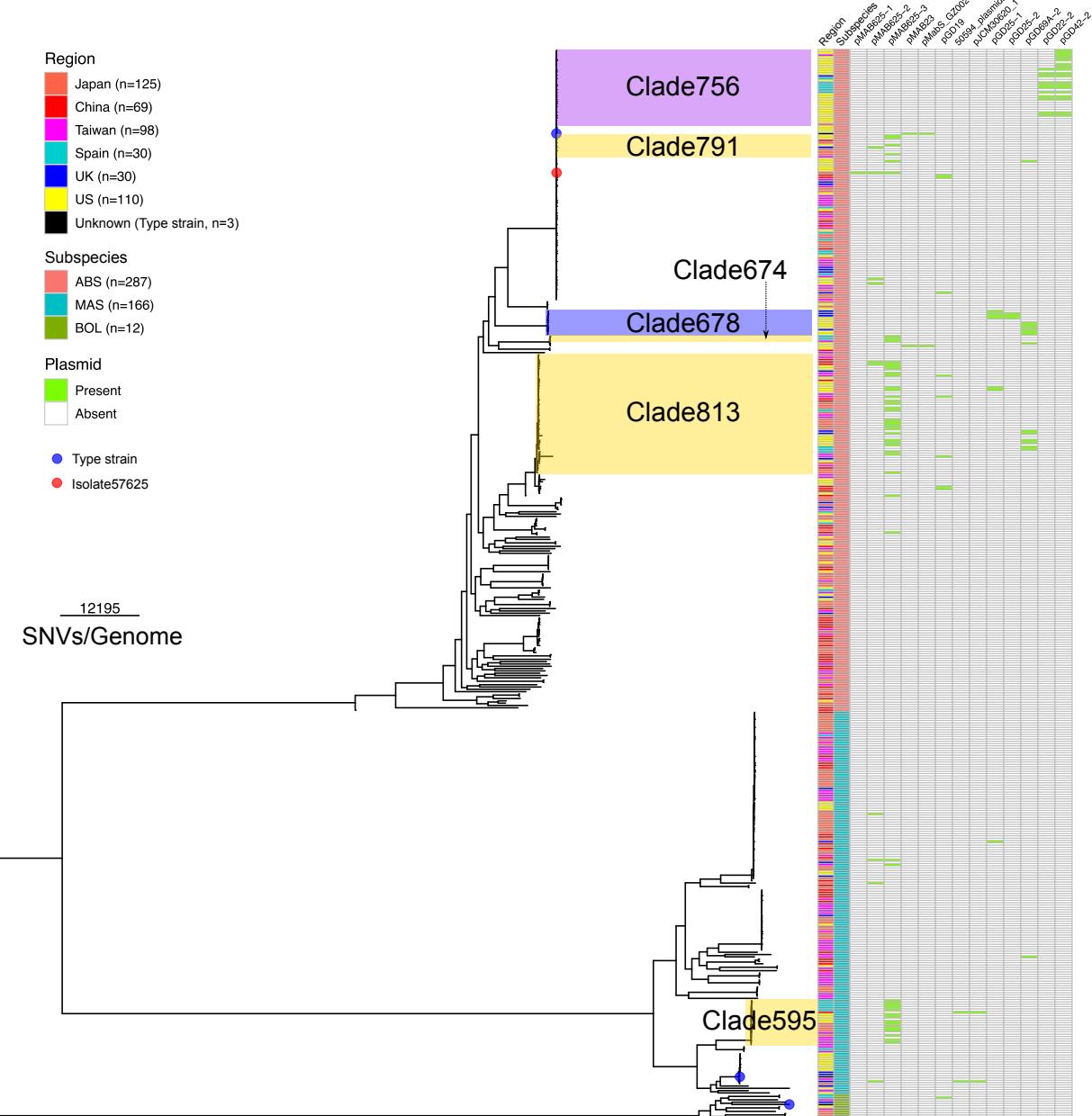
pMAB625 plasmids were globally distributed in the clinical isolates of *M. abscessus*

So far, we have found that the isolates carried three plasmids that the type strain did not, that these plasmids encoded the genes that could contribute to bacterial virulence, and that these genes also expressed in the

200 isolates. However, we had analyzed the strains sequentially isolated from only one patient and it was
201 uncertain whether the plasmid acquisition occurred extensively in clinical isolates of mycobacterium. We
202 therefore investigated whether other clinical isolates of mycobacterium carry the pMAB625 plasmids. We
203 first performed PCR using the genomic DNA of the clinical isolates collected in Japan²⁵ with primers specific
204 to each pMAB625 plasmid. We detected pMAB625-3 in two isolates other than Isolate57625, although we
205 did not detect pMAB625-1 and pMAB625-2 in any isolates other than Isolate57625 (Figure 2A). Both the
206 isolates in which pMAB625-3 was detected were *M. abscessus*. We then verified the plasmid possession
207 by mapping the read data from the short-read sequencer to the pMAB625 plasmid sequences. We used
208 the read data of *M. abscessus* clinical isolates in Japan⁷ obtained from the NCBI database in addition to
209 our original data. Out of 125 clinical isolates, pMAB625-2 was detected in four isolates (3.2%) and
210 pMAB625-3 was detected in 16 isolates (12.8%) (Figure 2B). These isolates were collected from the four
211 prefectures in Japan (Tokyo, Shizuoka, Aomori, and Okinawa) (Figure 2C). We also mapped the read data
212 of the other mycobacterium species (three of *Mycobacterium iranicum*, 20 of *Mycobacterium fortuitum*, and
213 25 of *Mycobacterium chelonae*), however, no pMAB625 plasmid was detected in these isolates (data not
214 shown).

215

216 **Figure 2. The distribution of pMAB625 plasmid in the clinical isolates in Japan**


217 (A) PCR analysis of the possession of pMAB625 plasmid in the clinical isolates which our group isolated
218 in Japan. PCR was performed using the primers specific to each plasmid and *HrpA*. The color bar
219 represents the species of each isolate. The primer sets of *HrpA* were different depending on the species.

220 (B) Mapping the read data of the clinical isolates in Japan to Isolate57625 genome sequence. The bar
221 plot represents the depth of coverage to chromosome and each plasmid and the dot plot represents the
222 percentage of covered genome region.
223 (C) Geographical map of Japan. The prefectures in which the pMAB625 plasmids were detected are
224 represented by color.
225

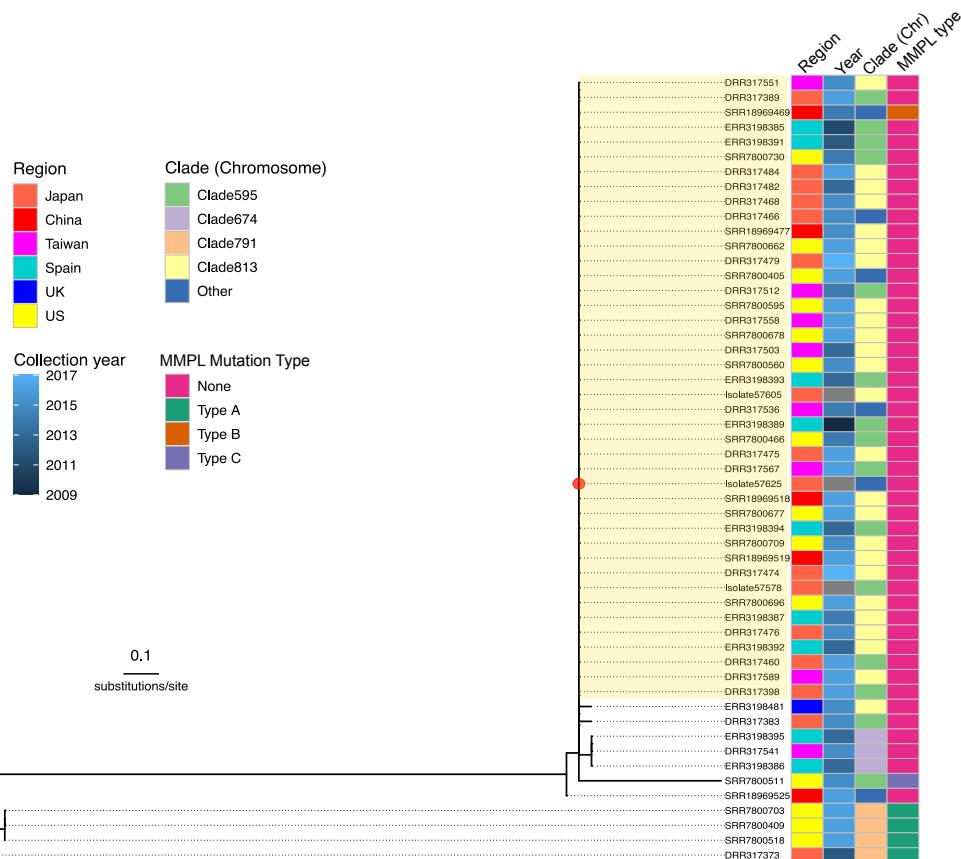
226
227 Moreover, to investigate whether clinical isolates in other areas of East Asia possess pMAB625 plasmids,
228 we mapped the available read data about the clinical isolates from Taiwan⁷ and China²⁶. pMAB625-2 was
229 detected in the isolates from China (2/69, 2.9%) and pMAB625-3 was detected in the isolates from Taiwan
230 (8/98, 8.2%), and China (5/69, 7.2%) (Figure S6). Two plasmids were detected in ABS and *M. abscessus*
231 subsp. *massiliense* (MAS) but not in *M. abscessus* subsp. *bolletii* (BOL). In addition, we analyzed the clinical
232 isolates in Spain, the UK, and the US to determine whether these isolates carried the pMAB625 plasmids
233 (Table 4). pMAB625-2 plasmid was detected in isolates from the UK (2/30, 6.7%), and the US (2/110, 1.8%).
234 pMAB625-3 plasmid was detected in the isolates from Spain (9/30, 30%), the UK (1/30, 3.3%), and the US
235 (14/110, 12.7%). Overall, pMAB625-1 was detected in one isolate (1/462, 0.2%), pMAB625-2 was detected
236 in 10 isolates (10/462, 2.2%), and pMAB625-3 was detected in 53 isolates (53/462, 11.5%).

237
238 As previous analyses have shown that the pMAB625 plasmids are retained in many clinical isolates, we
239 investigated to what extent other plasmids are retained in the clinical isolates. First, we searched the
240 plasmid sequence in PLSDB as the taxonomic name for "abscessus" and got 20 plasmid sequences (Table
241 3). We removed three plasmids (pGD42-1, pGD69A-1 and FDAARGOS_1640_plasmid) because they were
242 identical to other plasmids with no SV. We selected 20 plasmids shown in Table 3 as "TRUE" for "USE for
243 Reference" together with three pMAB625 plasmids. Then, we mapped the read data of the clinical isolates
244 to these plasmid sequences. Except for the pMAB625 plasmid, three plasmids (pGD69A-2, pGD22-2, and
245 pGD42-2) were detected in more than 10 isolates (Table 4). Seven plasmids (pGD21-1, pGD21-2, pGD22-
246 1, pGD25-3, pJCM30620_2, BRA100 and 50594_plasmid1) were not detected in our dataset. Statistical
247 analysis showed regional differences in the frequency of appearance of these plasmids (Table 4). pGD69A-
248 2 was detected more frequently in the US (9/110, 8.2%) than in Japan (0/125, $p=0.014$). pGD22-2 was
249 detected more frequently in Spain (3/40, 13.3%) than in Japan (0/125, $p=0.018$) and Taiwan (0/98, $p=0.036$).
250 pGD42-2 was detected more frequently in Spain (4/30, 13.3%) than in Japan (0/125, $p=0.017$). pGD42-2
251 was also detected more frequently in the US (12/110, 10.9%) than in Japan (0/125, $p=0.001$), China (0/69,
252 $p=0.045$), and Taiwan (1/98, 1.0%, $p=0.041$). pGD25-1 was detected more frequently in the UK (4/30,
253 13.3%) than in Japan (0/125, $p=0.018$) and in Taiwan (0/98, $p=0.036$). Moreover, we performed a
254 phylogenetic tree analysis of the chromosomes to determine whether these plasmids are horizontally
255 transferred or whether the same strains harboring the plasmids are spreading (Figure 3). The phylogenetic
256 tree analysis showed that pGD22-2 and pGD42-2 were only detected in the isolates belonging to Clade756.
257 In contrast, pMAB625-3 was detected mainly in the isolates belonging to the four clades (Clade595, 674,
258 791 and 813). pGD25-1 and pGD69A-2 were detected mainly in the isolates belonging to Clade678 and
259 Clade813. pMAB625-2 and pGD19 were also detected in the isolates belonging to several clades. These
260 results indicated that some plasmids, such as pMAB625-3, were spread across clades and others were
261 restricted to the specific clade.

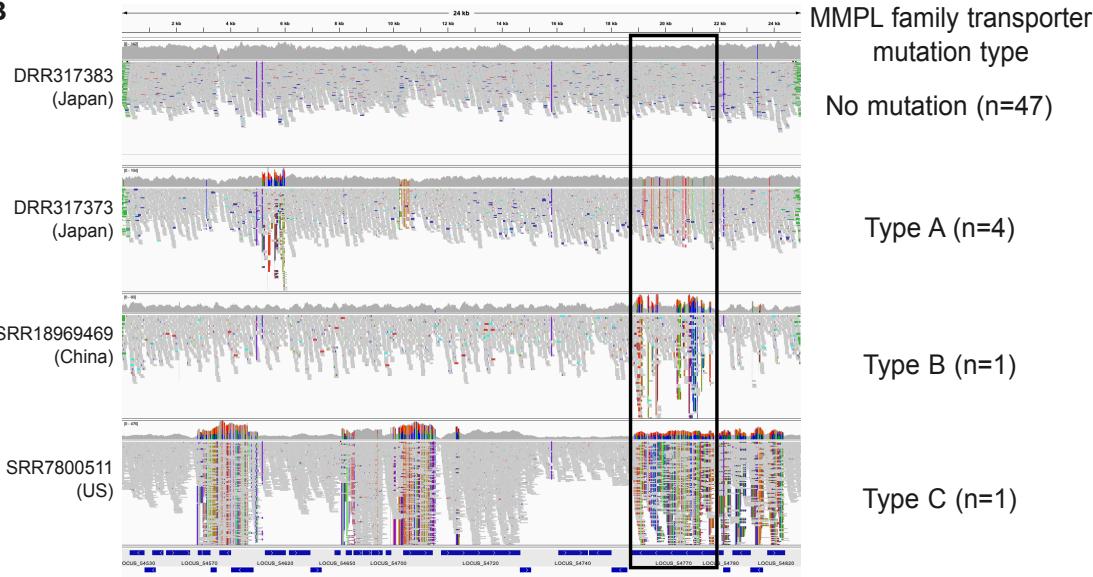
262

264 **Figure 3. The relation between the phylogenetic distance of host bacterial chromosomes and**
265 **plasmid distribution in clinical isolates worldwide**

266 The phylogenetic tree was created by Gubbins²⁷ using chromosome sequences and visualized by
267 ggtree²⁸. The read data of the clinical isolates collected worldwide were mapped to pMAB625 and known
268 plasmid sequences to verify the plasmid distribution. Tree-scale represents the number of SNVs per
269 genome.


270

271 **Phylogenetic and structural variant analysis of pMAB625 plasmids enabled the strict classification**
272 **of isolates and prediction of past inter-subspecies contact**


273 So far, we acquired the sequence information for pMAB625-3, which is retained in 53 different clinical
274 isolates, and for pMAB625-2, which is retained in 10 different clinical isolates. Therefore, we examined the
275 genetic relation between the plasmids and investigated whether it could predict host origin and route of
276 transmission. At first, we performed a phylogenetic tree analysis of 53 sequences of pMAB625-3 (Figure
277 4A). Forty-two sequences (covered by a yellow box in Figure 4A) belonged to the same clade of the
278 sequence of pMAB625-3 in Isolate57625. However, 11 sequences belonged to the different clades. In
279 particular, the pMAB625-3 sequence of SRR7800511 (US, Clade595) was genetically distant from other
280 pMAB625-3 sequences in the isolates belonging to Clade595. The pMAB625-3 sequence of DRR317373
281 (Japan, Clade791) was also genetically distant from other pMAB625-3 sequences in the isolates belonging
282 to Clade791. These results suggested that plasmid epidemiology, when combined with core-genome
283 analysis, could accurately predict the classification of clinical isolates. In addition, the verification of the
284 mapping results also showed that pMAB625-3 sequences in the six isolates (DRR317373, Japan;
285 SRR18969469, China; SRR7800518, US; SRR7800703, US; SRR7800409, US; SRR7800511, US) were
286 heterogeneous because the unmutated reads and mutated ones were mixed (Figure 4B). Thus, we ran
287 freebays with the parameter “--ploidy 2” to detect SNVs in these mixed reads. Interestingly, the variant
288 hotspot region was located at the CDS of the MMPL family transporter, which was the most reliably highly
289 expressed gene in Isolate57625 and the other four isolates in the RNA-seq analysis. The variant pattern in
290 the MMPL family transporter was classified into three types (Figure 4B). Four sequences (DRR317373,
291 Japan; SRR7800518, US; SRR7800703, US; SRR7800409 US) were classified as Type A and one
292 sequence each was classified as Type B (SRR18969469, China) and Type C (SRR7800511, US), the other
293 47 sequences had no mutation. There were three missense mutations and 14 or 15 silent mutations in Type
294 A, 20 missense mutations and 43 silent mutations in Type B, and 47 missense mutations and 126 silent
295 mutations in Type C (Table S7). Surprisingly, despite many mutations, no mutation was responsible for the
296 frameshift and nonsense mutations. It was therefore speculated that the mutant MMPL family transporters
297 were being translated into full-length proteins in these isolates. Thus, these data indicated that pMAB625-
298 3 was spread across strains and regions, each acquiring unique mutations and some clinical isolates
299 retaining pMAB625-3 expressed mutated MMPL family transporters.

300

A

B

301

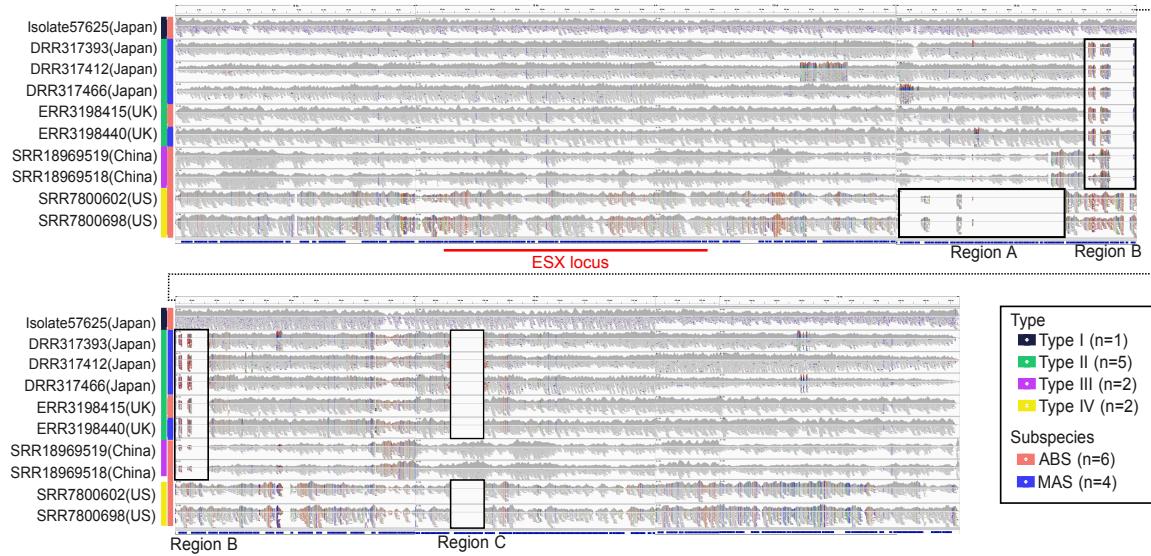
302 **Figure 4 Phylogenetic tree and SNVs analysis of pMAB625-3**

303 (A) Phylogenetic tree of the sequences of pMAB625-3 detected in the 53 isolates. The phylogenetic tree
 304 was created using the maximum-likelihood method using iQ-TREE2 based on the core-SNVs data. The
 305 sequences belonging to the clade covered by yellow color were identical, although the sequence of
 306 SRR18969469 was heterogeneous. The classification of "Clade (Chromosome)" is based on the clade in

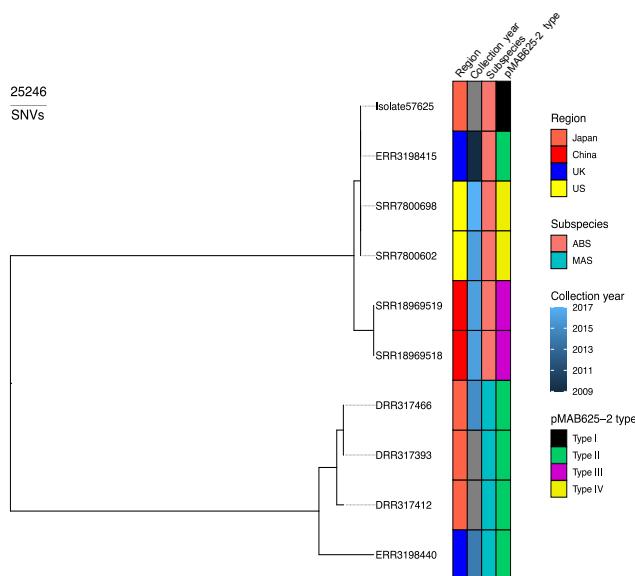
307 the phylogenetic tree indicated in Figure 3. pMAB625-3 sequences of the isolates covered by yellow box
308 were identical except for SRR18969469, whose sequence of MMPL family transporter was mixed.

309 (B) The classification of the pMAB625 sequences based on the SNVs. The mapping results of the reads
310 data from each isolate to pMAB625-3 were also visualized by IGV. The mutation hotspot was located at
311 the MMPL family transporter (surrounded by a black line square). The mutation types of the MMPL
312 transporters were classified into three types, and all mutations at this region were missense or silent.

313


314 Then, we classified pMAB625-2 sequences in terms of SVs. The sequences of pMAB625-2 were classified
315 into four types (Figure 5A). Assuming that Type I, which was the sequence of pMAB625-2 in Isolate57625,
316 was the base sequence, Type II and III had the large SVs at Region B, and Type II but not Type III had at
317 Region C. In contrast, Type IV had large SVs at Region A and C but not at Region B. Type I, Type III, and
318 Type IV were detected in ABS, and Type II was detected in MAS, except for ERR3198514. In addition,
319 Type III was detected only in the isolates collected in China, and Type IV was detected only in the isolates
320 collected in the US. All pMAB625-2 sequences retained the ESX locus. These results indicated that
321 pMAB625-2 had been horizontally transferred between subspecies and had acquired the SVs unique to
322 each subspecies and region. Next, we analyzed the relation between the phylogenetic distance of hosts'
323 chromosome sequences and pMAB625-2 type (Figure 5B). The distribution of the pMAB625-2 type was
324 almost consistent with the phylogenetic relation of hosts' chromosomes. However, the pMAB625-2 type of
325 Isolate57625 and ERR3198415 were different from those of the other isolates belonging to the same clade
326 of phylogenetic tree of hosts' chromosomes. Interestingly, Type II was detected in four MAS isolates but
327 also in ERR3198415 whose subspecies was ABS. This result indicated the possibility of direct or indirect
328 contact between ERR3198415 and the other four MAS isolates in the past, especially with ERR3198440
329 isolated from the same region.

330


331 Finally, we investigated the distribution in our dataset regarding the plasmids identified in other NTMs
332 except for *M. abscessus* to verify whether plasmids transferred between *M. abscessus* and other NTM
333 species. Recently, Wetzstein *et al.* reported clinical and genomic features in Europe about *Mycobacterium*
334 *avium* complex (MAC)²⁹, the most frequently detected NTM globally^{30,31}. In the report, they investigated the
335 distribution of the known 152 plasmids registered in PLSDB and showed that plasmids identified in *M.*
336 *abscessus*, including pGD69B-1 (identical to pGD69A-1) and pGD42-1, which were identical to pMAB625-
337 3, were not detected in their dataset. Therefore, we investigated the distribution of these 152 plasmids in
338 our dataset using our methods in this study. As a result, we detected the same plasmids indicated in Table
339 3 but did not other plasmids identified in other NTM except for pMN23 (accession number: NC_010604.1)
340 and pMFLV03 (accession number: NC_009341.1) in two and one isolates, respectively (Table S8). pMN23
341 was almost identical to pMAB23 (ANI: 99.9%), so pMN23 was detected redundantly in ATCC 19977 and
342 SRR7800408, which had pMAB23. Interestingly, pMFLV03 was detected in ERR3198408 (covered
343 genome region: 78.7%, depth of coverage: 73.1x). pMN23 had originally identified in *Mycobacterium*
344 *marinum*³² and pMFLV03 had identified in *M. gilvum* PYR-GCK (according to the GenBank registry
345 information), indicating that these plasmids could be present across NTM species. These results suggested
346 that plasmid distribution is strictly different from *M. abscessus* and other NTMs except for very few cases.

347

A

B

348

349 **Figure 5. Classification of pMAB625-2 by structural variants and relation with the phylogenetic**
350 **distance of host bacterial chromosomes**

351 (A) The mapping results of the reads data from each isolate to pMAB625-2 were visualized using IGV.
352 Each sequence was classified into 4 types by the pattern of structural variants (surrounded by black line
353 squares).

354 (B) Relation between the phylogenetic distance and pMAB625-2 distribution.

355

356 **DISCUSSION**

357 Plasmids are mobile genetic elements that can move between different bacterial strains and alter host
358 characteristics, such as virulence, and antimicrobial susceptibility. Plasmids are horizontally transferable
359 among bacteria by transformation and conjugation. Thus, plasmid epidemiology, in conjunction with core-

360 genome analysis, may help to infer past contact between bacteria. In this study, we showed that the
361 multidrug-resistant clinical isolates of ABS isolated from a patient with osteomyelitis had three plasmids
362 (pMAB625-1, pMAB625-2 and pMAB625-3) that the type strain did not harbor. Additionally, analysis of the
363 clinical isolates of *M. abscessus* identified worldwide indicated that pMAB625 plasmids were horizontally
364 transferred between regions and subspecies and that it is sometimes possible to predict past contact
365 between bacteria by tracing the phylogenetic relation of plasmids. Dedrick *et al.* reported that pGD69-1
366 (pGD69A-1), identical to pMAB625-3, is the same as the other five plasmids³³. Lewin *et al.* identified pMabs-
367 09-13 through WGS of the clinical isolates of *M. abscessus* within cystic fibrosis patients and reported that
368 pMabs-09-13 exhibits an identity of 99.86% to pGD42-1, pGD69A-1, and pGD69B-1³⁴. These reports
369 suggested that pMAB625-3 is spreading among many other isolates of *M. abscessus*, but the detailed
370 distribution of pMAB625 plasmids in the world and other subspecies has remained unclear. Our study
371 shows that pMAB625-3 is the plasmid spreading beyond regions and subspecies in the largest number of
372 clinical isolates of *M. abscessus*. This allowed us to investigate the possibility of speculating the precise
373 classification of bacteria and the past contact between them. The phylogenetic tree analysis of pMAB625-
374 3 based on the SNVs of plasmids (Figure 4A) indicated that the SNV pattern was correlated with the
375 phylogenetic relation of the hosts' chromosome sequences; however, a unique variant (SRR7800511, US)
376 different from the other sequences in the clade was found. This indicates that it is possible to predict the
377 bacterial contact using the distribution of the unique variant like SRR7800511. In the case of pMAB625-2,
378 it is actually indicated that the past contact between the different subspecies is predictable based on the
379 relation between the phylogenetic tree of the hosts' chromosomes and the distribution of pMAB625-2 type.

380

381 As important findings, we found that 2.2% (10/462) and 11.5% (53/462) of the clinical isolates worldwide
382 had pMAB625-2, and pMAB625-3, respectively (Table 4). This result provides an epidemiological insight
383 into the spread of plasmids in *M. abscessus* beyond regions and strains. Other than person-to-person
384 transmission of *M. abscessus*, this global spread of pMAB625 plasmids may be mainly due to increased
385 global logistical activity and human mobility with associated interference of human and microbial habitats³⁵.
386 The habitat of *M. abscessus* is soil and water systems, and it is also possible that increased flooding due
387 to recent climate change may have increased the chance of contact between the different strains. Analysis
388 of plasmid distribution revealed that some plasmids (pMAB625-2, pMAB625-3, pGD19, pGD25-1 and
389 pGD69A-2) have been widely spread between strains, regions and subspecies, while others (pGD22-2 and
390 pGD42-2) have been restricted to specific strains and regions (Figure 3). Therefore, it is speculated that
391 regarding pGD22-2 and pGD42-2, the identical isolates retaining these plasmids had been spread within
392 or between the regions, whereas, regarding pMAB625-2, pMAB625-3, pGD19, pGD25-1 and p69A-2,
393 plasmids themselves had been spread between different strains, subspecies and region through horizontal
394 transfer. It is unknown what factors determine these differences in plasmid distribution. It is possible that
395 the factors encoded on the plasmid or the periods from the emergence were different among the plasmids.
396 In addition, we also showed the plasmid distribution was different from *M. abscessus* and MAC (Table S8),
397 indicating that incompatibility also exists in the plasmids present in NTM, strictly distinguishing *M.*
398 *abscessus* from other NTMs except for very few cases, such as pMN23 and pMFLV03.

399

400 We identified various factors associated with bacterial virulence and multidrug resistance on the pMAB625
401 plasmids. The components of the ESX secretion system, the MMPL family transporter, and the components
402 of the TA system were encoded on the plasmids, and these genes were highly expressed in the clinical
403 isolates compared to the type strain. The ESX secretion system is involved in the export of the various
404 pathogenic proteins and metal ions associated with proliferation, survival in the cytosol of macrophage, and
405 conjugation. It has also been reported that ESX-1 components are required for sliding motility and biofilm
406 formation in *M. avium*²⁰. Therefore, given the close genetic distance between ESX-1 and ESX-P cluster 5,
407 which include the components of the ESX secretion system on the pMAB625-1 and pMAB625-2 (Figure
408 1B), the components of ESX-P cluster 5 may be involved in biofilm formation. In addition, MMPL family

409 transporters can transport antibiotics across the cell membrane. It has been reported that the increased
410 expression of MMPL5 is associated with decreased susceptibility to bedaquiline, and clofazimine in *M.*
411 *tuberculosis*^{36,37}, bedaquiline, and clofazimine in *M. intracellulare*³⁸, and thiactazone derivative in *M.*
412 *abscessus*³⁹. The function of the MMPL family transporter encoded on the pMAB625-3 is unknown;
413 however, the presence of mutational hotspots (Figure 4B) indicates that this MMPL transporter may be
414 compatible with a variety of substrates, including antimicrobial agents. Therefore, our results suggest that
415 Isolate57625 enhanced defence mechanisms against antibiotics through the acquisition of the ESX
416 secretion system and transporters, accompanied by changes in biofilm barriers, and transport of antibiotics.
417 These results suggest that pMAB625 plasmids appeared to be a cause of the low susceptibility to
418 carbapenem antibiotics in the clinical isolates compared with the type strain; however, further studies will
419 be essential to determine whether these plasmids are the main cause of AMR.

420

421 In conclusion, we reported the distribution of plasmids in *M. abscessus* and found that pMAB625-3 is the
422 most widely distributed plasmid in the clinical isolates of *M. abscessus* worldwide. In addition, phylogenetic
423 tree analysis and mutational analysis of the pMAB625 plasmids partially predict past bacterial contact.
424 These findings provide a new perspective on the acquisition of genomic diversity, the origin and
425 transmission route of *M. abscessus*. These findings will also lead to the development of effective
426 countermeasures to identify pathways of bacterial transmission and prevent serious bacterial outbreaks.

427

428 ***Limitations of the study***

429 Although it is assumed that phylogenetically close plasmids with similar SNV and SV patterns were spread
430 via bacterial contact, it cannot be excluded that they may have acquired identical mutation patterns in their
431 respective clinical isolates without bacterial contact. To clarify this, it is necessary to calculate the mutation
432 rate of the plasmid and compare the mutation acquisition period with the interval of appearance in the
433 different strains. In addition, future studies are required to verify whether the pMAB625 plasmids induce
434 multidrug resistance in *M. abscessus* by plasmid transfection.

435

436 **RESOURCE AVAILABILITY**

437 ***Lead contact***

438 Further information and requests for resources and reagents should be directed to and will be fulfilled by
439 the lead contact, Masashi Toyoda (mtoyoda@tmig.or.jp).

440 ***Materials availability***

441 This study did not generate new unique reagents.

442 ***Data and code availability***

- 443 • All raw sequence data generated in this study have been deposited in the DDBJ database at
444 <https://www.ddbj.nig.ac.jp/> under the BioProject accession number PRJDB16220. The complete
445 genome sequences of the isolates are available in the DDBJ database. They can be accessed
446 using the accession numbers, AP028613, AP028614, AP028615, and AP028616 for Isolate57625;
447 AP028617, AP028618, AP028619, and AP028620 for Isolate57629; AP028621, AP028622,
448 AP028623, and AP028624 for Isolate57630; AP028625, AP028626, AP028627, and AP028628 for
449 Isolate57596; AP028629, AP028630, AP028631, and AP028632 for Isolate57626, for the
450 chromosome and three plasmids in each isolate.
- 451 • The analyzed data of RNA-seq have been deposited in the Genomic Expression Archive at
452 <https://www.ddbj.nig.ac.jp/gea/> under the accession number E-GEAD-827.
- 453 • All data reported in this paper will be shared by the **lead contact** upon request.
- 454 • This paper does not report original code.

455 • Any additional information required to reanalyze the data reported in this paper is available from
456 the lead contact upon request.
457

458 **ACKNOWLEDGMENTS**

459 The authors thank the staff of the microbiology laboratory of Dokkyo Medical University Hospital for
460 performing identification and drug susceptibility tests, and Dr. Yoshishige Masuda and Dr. Takashi
461 Inamatsu at TMIG for supervising in clinical practice. Computations were partially performed on the NIG
462 supercomputer at ROIS National Institute of Genetics. This work was supported by Japan Society for the
463 Promotion of Science (JSPS) KAKENHI Grant Number JP19K08938.

464

465 **AUTHOR CONTRIBUTIONS**

466 Conceptualization, K.O., A.Y.; Formal analysis, K.O.; Methodology, K.O., A.Y., and Hiroshi Koganemaru;
467 Data curation, K.O.; Investigation, K.O., Keisuke Kamada, and Ken Kikutchi ; Validation, K.O.; Writing-
468 original draft, K.O. and A.Y.; Writing-review & editing, K.O., Y.A. and M.T.; Funding acquisition, A.Y. and
469 Ken Kikuchi.; Patient care and resources, Hironobu Kitazawa, Y.I., T.S. and K.W.; Supervision, M.T.

470

471 **DECLARATION OF INTERESTS**

472 The authors declare no competing interests.

473

474 **SUPPLEMENTAL INFORMATION**

475 **Document S1. Figures S1–S6**

476 **Table S1. Primer sequences used in this study**

477 **Table S2. Genbank accession numbers of the genome and plasmid sequences in this study**

478 **Table S3. Gene lists on chromosome which were acquired, lost and mutated in Isolate57625
479 compared with ATCC19977**

480 **Table S4. Gene lists which were acquired, lost and mutated in Isolate57625 compared with
481 ATCC19977**

482 **Table S5. Homology search results of genes on pMAB625 plasmids against genes of
483 Mycobacterium**

484 **Table S6. The results of RNA-seq analysis**

485 **Table S7. The mutation type of MMPL family transporter**

486 **Table S8. The analysis of distribution regarding NTM plasmids in the clinical isolates of *M.*
487 abscessus**

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503 **FIGURE TITLES AND LEGENDS**

504 **Figure 1. Phylogenetic and gene expression analysis of the genes related to the ESX secretion**
505 **system**

506 (A) The loci of the ESX secretion system are encoded on pMAB625-1 and pMAB625-2. CDSs of the ESX
507 secretion system were searched using Blast+. The core components that construct membrane pore
508 (*eccB*, *eccC*, *eccD*, *mycP*, and *eccE*) are contained in this operon.
509 (B) Phylogenetic tree analysis of various ESX loci encoded on chromosomes and plasmids. The amino
510 acid sequence of the genes that construct the membrane pore were concatenated and the phylogenetic
511 tree was created by NGphylogeny.fr²⁴ using the PhyML+SMS inference method. The classification of
512 each cluster was followed as previously reported²¹.
513 (C) RNA-seq analysis of the type strain and the isolates. The x-axis represents the mean log expression
514 levels, and the y-axis of the top plot represents the log fold change. The bottom dot plot and box plot
515 represent the distribution of the expression levels of each gene. The green dots represent the data of
516 genes that the isolates acquired by SVs and plasmid acquisition. The red dots represent the data of ESX
517 secretion system genes encoded on the plasmids.

518
519 **Figure 2. The distribution of pMAB625 plasmid in the clinical isolates in Japan**
520 (A) PCR analysis of the possession of pMAB625 plasmid in the clinical isolates which our group isolated
521 in Japan. PCR was performed using the primers specific to each plasmid and *HrpA*. The color bar
522 represents the species of each isolate. The primer sets of *HrpA* were different depending on the species.
523 (B) Mapping the read data of the clinical isolates in Japan to Isolate57625 genome sequence. The bar
524 plot represents the depth of coverage to chromosome and each plasmid and the dot plot represents the
525 percentage of covered genome region.
526 (C) Geographical map of Japan. The prefectures in which the pMAB625 plasmids were detected are
527 represented by color.

528
529 **Figure 3. The relation between the phylogenetic distance of host bacterial chromosomes and**
530 **plasmid distribution in clinical isolates worldwide**

531 The phylogenetic tree was created by Gubbins²⁷ using chromosome sequences and visualized by
532 ggtree²⁸. The read data of the clinical isolates collected worldwide were mapped to pMAB625 and known
533 plasmid sequences to verify the plasmid distribution. Tree-scale represents the number of SNVs per
534 genome.

535

536 **Figure 4 Phylogenetic tree and SNVs analysis of pMAB625-3**

537 (A) Phylogenetic tree of the sequences of pMAB625-3 detected in the 53 isolates. The phylogenetic tree
538 was created using the maximum-likelihood method using iQ-TREE2 based on the core-SNVs data. The
539 sequences belonging to the clade covered by yellow color were identical, although the sequence of
540 SRR18969469 was heterogeneous. The classification of “Clade (Chromosome)” is based on the clade in
541 the phylogenetic tree indicated in Figure 3. pMAB625-3 sequences of the isolates covered by yellow box
542 were identical except for SRR18969469, whose sequence of MMPL family transporter was mixed.

543 (B) The classification of the pMAB625 sequences based on the SNVs. The mapping results of the reads
544 data from each isolate to pMAB625-3 were also visualized by IGV. The mutation hotspot was located at
545 the MMPL family transporter (surrounded by a black line square). The mutation types of the MMPL
546 transporters were classified into three types, and all mutations at this region were missense or silent.

547

548 **Figure 5. Classification of pMAB625-2 by structural variants and relation with the phylogenetic**
549 **distance of host bacterial chromosomes**

550 (A) The mapping results of the reads data from each isolate to pMAB625-2 were visualized using IGV.
551 Each sequence was classified into 4 types by the pattern of structural variants (surrounded by black line
552 squares).

553 (B) Relation between the phylogenetic distance and pMAB625-2 distribution.

554

555

556 **TABLES AND TEXT BOXES**

557 **Table 1. The isolation time point of the clinical isolates and antimicrobial susceptibility of the type**
 558 **strain and the isolates**

Isolates	Source	Period from the first isolation (month)	MIC ^a (µg/mL)															
			AM K	TO B	IPM	FRP M	LVF X	MFL X	AZ M	CA M 4day	CAM 14day	ST	DOX Y	MEP M	LZ D	CL F	STF X	
ATCC 19977	-	-	8	8	16	>64	32	>8	64	2	>64	>152/8	>16	64	32	1	2	
Isolate5762 5	catheter	0	8	8	16 ^b	>64	16	>8	64	2	>64	>152/8	>16	>64	32	1	2	
Isolate5762 9	catheter	4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Isolate5763 0	bone biopsy	4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Isolate5759 6	heel	6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Isolate5762 6	malleolu s	6	8	8	>64	c	>64	32	>8	64	2	>64	>152/8	>16	>64	32	1	2

559 ^aMICs were determined as the minimum concentration at which the bacteria did not grow. No antimicrobial
 560 susceptibility testing was conducted on the isolates other than Isolate57625 and Isolate57626, representing hyphens
 561 in the table. The test was repeated three times and all MICs were confirmed to be the same between the experiments
 562 with the exception of imipenem for the isolates. AMK, Amikacin; TOB, Tobramycin; IPM, Imipenem; FRPM,
 563 Faropenem; LVFX, Levofloxacin; MFLX, Moxifloxacin; AZM, Azithromycin; CAM, Clarithromycin; ST,
 564 Trimethoprim/sulfamethoxazole; DOXY, Doxycycline; MEP, Meropenem; LNZ, Linezolid; CLF, Clofazimine; STFX,
 565 Sitaflloxacin

566 ^bFor Isolate57625, the MICs against IPM in the three experiments were 64, 16, and 16 µg/mL, respectively.

567 ^cFor Isolate57626, the MICs against IPM in the three experiments were >64, 16, and >64 µg/mL, respectively.

568

569 **Table 2. Genome assembly and the annotation statics of the Isolate57625**

Contig	Form	Length(bp)	GC contents (%)	Number of CDS	Number of rRNA	Number of tRNA	Number of tmRNA
Chromosome	circular	5,072,346	64.1	5,034	3	48	1
pMAB625-1	linear	202,398	64.7	247	0	29	0
pMAB625-2	linear	142,689	62.2	171	0	0	0
pMAB625-3	circular	24,988	65.6	30	0	0	0

570

571 **Table 3. Homology search result between plasmids identified in *M. abscessus***

Plasmid	Accession no.	Topology	Length (bp)	Homologous plasmid (ANI(%)>99)	Homologous plasmid (97< ANI(%)<99)	Use for "Reference"
pMAB625-1	AP028614.1	linear	202,398	-	-	TRUE
pMAB625-2	AP028615.1	linear	142,689	-	pGD21-2 ^b	TRUE
pMAB625-3	AP028616.1	circular	24,988	pGD69A-1, pGD42-1	-	TRUE
pMAB23	NC_010394.1	circular	23,319	pMabS_GZ002 ^a , FDAARGOS_1604_plasmid	-	TRUE
pMabS_GZ002	NZ_CP034180.1	linear	15,203	pMAB23, FDAARGOS_1604_plasmid	-	TRUE

pGD19	NZ_CP063329.1	circular	18,605	-	-	-	TRUE
pGD21-1	NZ_CP065285.1	circular	112,633	-	-	-	TRUE
pGD21-2	NZ_CP065286.1	linear	155,609	-	pMAB625-2 ^b	-	TRUE
pGD22-1	NZ_CP063325.1	circular	19,694	-	-	-	TRUE
pGD22-2	NZ_CP063326.1	circular	18,117	pGD42-2 ^a	-	-	TRUE
pGD25-1	NZ_CP063321.1	circular	31,413	-	-	-	TRUE
pGD25-2	NZ_CP063322.1	circular	27,424	-	-	-	TRUE
pGD25-3	NZ_CP063323.1	circular	23,599	-	-	-	TRUE
pGD42-1	NZ_CP065281.1	circular	24,993	pMAB625-3, pGD69A-1	-	-	FALSE
pGD42-2	NZ_CP065282.1	circular	9,547	pGD22-2	pGD69A-2	-	TRUE
pGD69A-1	NZ_CP065270.1	circular	25,000	pMAB625-3, pGD42-1	-	-	FALSE
pGD69A-2	NZ_CP065271.1	circular	18,611	-	pGD42-2 ^a	-	TRUE
pJCM30620_1	NZ_AP022622.1	linear	119,389	50594_plasmid2 ^a	-	-	TRUE
pJCM30620_2	NZ_AP022623.1	linear	38,763	50594_plasmid1 ^b	-	-	TRUE
BRA100	NC_017908.2	circular	56,265	-	-	-	TRUE
FDAARGOS_1 604_plasmid	NZ_CP085920.1	circular	23,319	pMAB23, pMabS_GZ002 ^a	-	-	FALSE
50594_plasmid1	NC_021278.1	circular	172,814	pJCM30620_2 ^a	-	-	TRUE
50594_plasmid2	NC_021279.1	circular	97,240	pJCM30620_1 ^b	-	-	TRUE

572 ^aOne Structural Variant (SV) exists in the sequence.

573 ^bMore than two SVs exist in the sequence.

574

575 **Table 4. pMAB625 and known plasmids distribution in the clinical isolates worldwide**

Region	Unknown (Type strain)	Number (%) of isolates retaining plasmid							total ^a
		Japan	China	Taiwan	US	Spain	UK		
Analyzed isolates	3	125	69	98	110	30	30	462	
pMAB625-1	0	1 (0.8)	0	0	0	0	0	1 (0.2)	
pMAB625-2	0	4 (3.2)	2 (2.9)	0	2 (1.8)	0	2 (6.7)	10 (2.2)	
pMAB625-3	0	16 (12.8)	5 (7.2)	8 (8.2)	14 (12.7)	9 (30.0)	1 (3.3)	53 (11.5)	
pMAB23	1 (33.3)	0	0	0	1 (0.9)	0	0	1 (0.2)	
pMabS_GZ00 2	1 (33.3)	0	0	0	1 (0.9)	0	0	1 (0.2)	

pGD69A-2	0	0	0	1 (1.0)	9 (8.2) ^b	2 (6.7)	3 (10.0)	15(3.2)
pGD19	0	0	4 (5.8)	3 (3.1)	0	1 (3.3)	1 (3.3)	9(1.9)
pJCM30620_1	0	0	1 (1.4)	0	0	0	1 (3.3)	2(0.4)
50594_plasmid2	0	0	1 (1.4)	0	0	0	1 (3.3)	2(0.4)
pGD22-2	0	0	0	0	6 (5.5)	4 (13.3) ^c	1 (3.3)	11(2.4)
pGD42-2	0	0	0	1 (1.0)	12 (10.9) ^d	4 (13.3) ^b	1 (3.3)	18(3.9)
pGD25-1	0	0	0	0	3 (2.7)	0	4 (13.3) ^c	7(1.5)
pGD25-2	0	0	0	0	1 (0.9)	0	2 (6.7)	3(0.6)

576 Fisher's exact tests were performed to verify regional differences in the frequency of appearance of each
577 plasmid. Corrections for the multiple comparisons were performed using Holm's method.

578 ^aTotal number excludes the number of the type strains.

579 ^b $p<0.05$, compared with Japan

580 ^c $p<0.05$, compared with Japan and Taiwan

581 ^d $p<0.05$, compared with Japan, China and Taiwan

582

583

584 **REFERENCES**

585 1. Naghavi, M., Vollset, S.E., Ikuta, K.S., Swetschinski, L.R., Gray, A.P., Wool, E.E., Aguilar, G.R.,
586 Mestrovic, T., Smith, G., Han, C., et al. (2024). Global burden of bacterial antimicrobial resistance 1990–
587 2021: a systematic analysis with forecasts to 2050. *The Lancet* 404, 1199–1226.
588 [https://doi.org/10.1016/S0140-6736\(24\)01867-1](https://doi.org/10.1016/S0140-6736(24)01867-1).

589 2. Johansen, M.D., Herrmann, J.-L., and Kremer, L. (2020). Non-tuberculous mycobacteria and the
590 rise of *Mycobacterium abscessus*. *Nat Rev Microbiol* 18, 392–407. [https://doi.org/10.1038/s41579-020-0331-1](https://doi.org/10.1038/s41579-020-
591 0331-1).

592 3. Cristancho-Rojas, C., Varley, C.D., Lara, S.C., Kherabi, Y., Henkle, E., and Winthrop, K.L. (2024).
593 Epidemiology of *Mycobacterium abscessus*. *Clinical Microbiology and Infection* 30, 712–717.
594 <https://doi.org/10.1016/j.cmi.2023.08.035>.

595 4. Bryant, J.M., Grogono, D.M., Greaves, D., Foweraker, J., Roddick, I., Inns, T., Reacher, M.,
596 Haworth, C.S., Curran, M.D., Harris, S.R., et al. (2013). Whole-genome sequencing to identify
597 transmission of *Mycobacterium abscessus* between patients with cystic fibrosis: a retrospective cohort
598 study. *Lancet* 381, 1551–1560. [https://doi.org/10.1016/S0140-6736\(13\)60632-7](https://doi.org/10.1016/S0140-6736(13)60632-7).

599 5. Lipworth, S., Hough, N., Weston, N., Muller-Pebody, B., Phin, N., Myers, R., Chapman, S., Flight,
600 W., Alexander, E., Smith, E.G., et al. (2021). Epidemiology of *Mycobacterium abscessus* in England: an
601 observational study. *Lancet Microbe* 2, e498–e507. [https://doi.org/10.1016/S2666-5247\(21\)00128-2](https://doi.org/10.1016/S2666-5247(21)00128-2).

602 6. Bryant, J.M., Grogono, D.M., Rodriguez-Rincon, D., Everall, I., Brown, K.P., Moreno, P., Verma,
603 D., Hill, E., Drijkoningen, J., Gilligan, P., et al. (2016). Emergence and spread of a human-transmissible
604 multidrug-resistant nontuberculous mycobacterium. *Science* 354, 751–757.
605 <https://doi.org/10.1126/science.aaf8156>.

606 7. Yoshida, M., Chien, J.-Y., Morimoto, K., Kinjo, T., Aono, A., Murase, Y., Fujiwara, K., Morishige,
607 Y., Nagano, H., Jou, R., et al. (2022). Molecular Epidemiological Characteristics of *Mycobacterium*
608 *abscessus* Complex Derived from Non-Cystic Fibrosis Patients in Japan and Taiwan. *Microbiol Spectr* 10,
609 e00571-22. <https://doi.org/10.1128/spectrum.00571-22>.

610 8. Davidson, R.M. (2018). A Closer Look at the Genomic Variation of Geographically Diverse
611 *Mycobacterium abscessus* Clones That Cause Human Infection and Disease. *Front Microbiol* 9, 2988.
612 <https://doi.org/10.3389/fmicb.2018.02988>.

613 9. Zhang, M., Adroub, S., Ummels, R., Asaad, M., Song, L., Pain, A., Bitter, W., Guan, Q., and
614 Abdallah, A.M. (2024). Comprehensive pan-genome analysis of *Mycobacterium marinum*: insights into
615 genomic diversity, evolution, and pathogenicity. *Sci Rep* 14, 27723. [https://doi.org/10.1038/s41598-024-75228-0](https://doi.org/10.1038/s41598-024-
616 75228-0).

617 10. Choo, S.W., Wee, W.Y., Ngeow, Y.F., Mitchell, W., Tan, J.L., Wong, G.J., Zhao, Y., and Xiao, J.
618 (2014). Genomic reconnaissance of clinical isolates of emerging human pathogen *Mycobacterium*
619 *abscessus* reveals high evolutionary potential. *Sci Rep* 4, 4061. <https://doi.org/10.1038/srep04061>.

620 11. Bronson, R.A., Gupta, C., Manson, A.L., Nguyen, J.A., Bahadirli-Talbott, A., Parrish, N.M., Earl,
621 A.M., and Cohen, K.A. (2021). Global phylogenomic analyses of *Mycobacterium abscessus* provide
622 context for non cystic fibrosis infections and the evolution of antibiotic resistance. *Nat Commun* 12, 5145.
623 <https://doi.org/10.1038/s41467-021-25484-9>.

624 12. Sauvage, E., Kerff, F., Terrak, M., Ayala, J.A., and Charlier, P. (2008). The penicillin-binding
625 proteins: structure and role in peptidoglycan biosynthesis. *FEMS Microbiol Rev* 32, 234–258.
626 <https://doi.org/10.1111/j.1574-6976.2008.00105.x>.

627 13. Hellinger, W.C., and Brewer, N.S. (1991). Imipenem. Mayo Clin Proc 66, 1074–1081.
628 [https://doi.org/10.1016/s0025-6196\(12\)61732-7](https://doi.org/10.1016/s0025-6196(12)61732-7).

629 14. Schmartz, G.P., Hartung, A., Hirsch, P., Kern, F., Fehlmann, T., Müller, R., and Keller, A. (2022).
630 PLSDB: advancing a comprehensive database of bacterial plasmids. Nucleic Acids Research 50, D273–
631 D278. <https://doi.org/10.1093/nar/gkab1111>.

632 15. Paulsen, I.T., Brown, M.H., Littlejohn, T.G., Mitchell, B.A., and Skurray, R.A. (1996). Multidrug
633 resistance proteins QacA and QacB from *Staphylococcus aureus*: membrane topology and identification
634 of residues involved in substrate specificity. Proceedings of the National Academy of Sciences 93, 3630–
635 3635. <https://doi.org/10.1073/pnas.93.8.3630>.

636 16. Chuanchuen, R., Gaynor, J.B., Karkhoff-Schweizer, R., and Schweizer, H.P. (2005). Molecular
637 Characterization of MexL, the Transcriptional Repressor of the mexJK Multidrug Efflux Operon in
638 *Pseudomonas aeruginosa*. Antimicrob Agents Chemother 49, 1844–1851.
639 <https://doi.org/10.1128/AAC.49.5.1844-1851.2005>.

640 17. Kapopoulou, A., Lew, J.M., and Cole, S.T. (2011). The MycoBrowser portal: a comprehensive
641 and manually annotated resource for mycobacterial genomes. Tuberculosis (Edinb) 91, 8–13.
642 <https://doi.org/10.1016/j.tube.2010.09.006>.

643 18. Osman, M.M., Shanahan, J.K., Chu, F., Takaki, K.K., Pinckert, M.L., Pagán, A.J., Brosch, R.,
644 Conrad, W.H., and Ramakrishnan, L. (2022). The C terminus of the mycobacterium ESX-1 secretion
645 system substrate ESAT-6 is required for phagosomal membrane damage and virulence. Proceedings of
646 the National Academy of Sciences 119, e2122161119. <https://doi.org/10.1073/pnas.2122161119>.

647 19. Laencina, L., Dubois, V., Le Moigne, V., Viljoen, A., Majlessi, L., Pritchard, J., Bernut, A., Piel, L.,
648 Roux, A.-L., Gaillard, J.-L., et al. (2018). Identification of genes required for *Mycobacterium abscessus*
649 growth in vivo with a prominent role of the ESX-4 locus. Proceedings of the National Academy of
650 Sciences 115, E1002–E1011. <https://doi.org/10.1073/pnas.1713195115>.

651 20. Lai, L.-Y., Lin, T.-L., Chen, Y.-Y., Hsieh, P.-F., and Wang, J.-T. (2018). Role of the
652 *Mycobacterium marinum* ESX-1 Secretion System in Sliding Motility and Biofilm Formation. Frontiers in
653 Microbiology 9, 1160.

654 21. Dumas, E., Christina Boritsch, E., Vandenbogaert, M., Rodríguez de la Vega, R.C., Thiberge, J.-
655 M., Caro, V., Gaillard, J.-L., Heym, B., Girard-Misguich, F., Brosch, R., et al. (2016). Mycobacterial Pan-
656 Genome Analysis Suggests Important Role of Plasmids in the Radiation of Type VII Secretion Systems.
657 Genome Biology and Evolution 8, 387–402. <https://doi.org/10.1093/gbe/evw001>.

658 22. Zhou, Z., Xu, L., Zhu, L., Liu, Y., Shuai, X., Lin, Z., and Chen, H. (2021). Metagenomic analysis of
659 microbiota and antibiotic resistome in household activated carbon drinking water purifiers. Environment
660 International 148, 106394. <https://doi.org/10.1016/j.envint.2021.106394>.

661 23. Harms, A., Brodersen, D.E., Mitarai, N., and Gerdes, K. (2018). Toxins, Targets, and Triggers: An
662 Overview of Toxin-Antitoxin Biology. Molecular Cell 70, 768–784.
663 <https://doi.org/10.1016/j.molcel.2018.01.003>.

664 24. Lemoine, F., Correia, D., Lefort, V., Doppelt-Azeroual, O., Mareuil, F., Cohen-Boulakia, S., and
665 Gascuel, O. (2019). NGPhylogeny.fr: new generation phylogenetic services for non-specialists. Nucleic
666 Acids Research 47, W260–W265. <https://doi.org/10.1093/nar/gkz303>.

667 25. Kamada, K., Yoshida, A., Iguchi, S., Arai, Y., Uzawa, Y., Konno, S., Shimojima, M., and Kikuchi,
668 K. (2021). Nationwide surveillance of antimicrobial susceptibility of 509 rapidly growing mycobacteria
669 strains isolated from clinical specimens in Japan. Sci Rep 11, 12208. [https://doi.org/10.1038/s41598-021-91757-4](https://doi.org/10.1038/s41598-021-
670 91757-4).

671 26. Jin, P., Dai, J., Guo, Y., Wang, X., Lu, J., Zhu, Y., and Yu, F. (2022). Genomic Analysis of
672 Mycobacterium abscessus Complex Isolates from Patients with Pulmonary Infection in China. *Microbiol*
673 *Spectr* 10, e00118-22. <https://doi.org/10.1128/spectrum.00118-22>.

674 27. Croucher, N.J., Page, A.J., Connor, T.R., Delaney, A.J., Keane, J.A., Bentley, S.D., Parkhill, J.,
675 and Harris, S.R. (2015). Rapid phylogenetic analysis of large samples of recombinant bacterial whole
676 genome sequences using Gubbins. *Nucleic Acids Research* 43, e15. <https://doi.org/10.1093/nar/gku1196>.

677 28. Yu, G., Smith, D.K., Zhu, H., Guan, Y., and Lam, T.T.-Y. (2017). ggtree: an r package for
678 visualization and annotation of phylogenetic trees with their covariates and other associated data.
679 *Methods in Ecology and Evolution* 8, 28–36. <https://doi.org/10.1111/2041-210X.12628>.

680 29. Wetzstein, N., Diricks, M., Anton, T.B., Andres, S., Kuhns, M., Kohl, T.A., Schwarz, C., Lewin, A.,
681 Kehrmann, J., Kahl, B.C., et al. (2024). Clinical and genomic features of *Mycobacterium avium* complex: a
682 multi-national European study. *Genome Med* 16, 86. <https://doi.org/10.1186/s13073-024-01359-8>.

683 30. Namkoong, H., Kurashima, A., Morimoto, K., Hoshino, Y., Hasegawa, N., Ato, M., and Mitarai, S.
684 (2016). Epidemiology of Pulmonary Nontuberculous Mycobacterial Disease, Japan. *Emerging Infectious*
685 *Diseases* 22, 1116. <https://doi.org/10.3201/eid2206.151086>.

686 31. Hoefsloot, W., Ingen, J. van, Andrejak, C., Ängeby, K., Bauriaud, R., Bemer, P., Beylis, N.,
687 Boeree, M.J., Cacho, J., Chihota, V., et al. (2013). The geographic diversity of nontuberculous
688 mycobacteria isolated from pulmonary samples: an NTM-NET collaborative study. *European Respiratory*
689 *Journal* 42, 1604–1613. <https://doi.org/10.1183/09031936.00149212>.

690 32. Stinear, T.P., Seemann, T., Harrison, P.F., Jenkin, G.A., Davies, J.K., Johnson, P.D.R., Abdellah,
691 Z., Arrowsmith, C., Chillingworth, T., Churcher, C., et al. (2008). Insights from the complete genome
692 sequence of *Mycobacterium marinum* on the evolution of *Mycobacterium tuberculosis*. *Genome Res* 18,
693 729–741. <https://doi.org/10.1101/gr.075069.107>.

694 33. Dedrick, R.M., Aull, H.G., Jacobs-Sera, D., Garlena, R.A., Russell, D.A., Smith, B.E.,
695 Mahalingam, V., Abad, L., Gauthier, C.H., and Hatfull, G.F. (2021). The Prophage and Plasmid Mobilome
696 as a Likely Driver of *Mycobacterium abscessus* Diversity. *mBio* 12, e03441-20.
697 <https://doi.org/10.1128/mBio.03441-20>.

698 34. Lewin, A., Kamal, E., Semmler, T., Winter, K., Kaiser, S., Schäfer, H., Mao, L., Eschenhagen, P.,
699 Grehn, C., Bender, J., et al. (2021). Genetic diversification of persistent *Mycobacterium abscessus* within
700 cystic fibrosis patients. *Virulence* 12, 2415–2429. <https://doi.org/10.1080/21505594.2021.1959808>.

701 35. Castañeda-Barba, S., Top, E.M., and Stalder, T. (2024). Plasmids, a molecular cornerstone of
702 antimicrobial resistance in the One Health era. *Nat Rev Microbiol* 22, 18–32.
703 <https://doi.org/10.1038/s41579-023-00926-x>.

704 36. Andries, K., Villegas, C., Coeck, N., Thys, K., Gevers, T., Vranckx, L., Lounis, N., Jong, B.C. de,
705 and Koul, A. (2014). Acquired Resistance of *Mycobacterium tuberculosis* to Bedaquiline. *PLOS ONE* 9,
706 e102135. <https://doi.org/10.1371/journal.pone.0102135>.

707 37. Hartkoorn, R.C., Uplekar, S., and Cole, S.T. (2014). Cross-Resistance between Clofazimine and
708 Bedaquiline through Upregulation of MmpL5 in *Mycobacterium tuberculosis*. *Antimicrob Agents*
709 *Chemother* 58, 2979–2981. <https://doi.org/10.1128/AAC.00037-14>.

710 38. Alexander, D.C., Vasireddy, R., Vasireddy, S., Philley, J.V., Brown-Elliott, B.A., Perry, B.J.,
711 Griffith, D.E., Benwill, J.L., Cameron, A.D.S., and Wallace, R.J. (2017). Emergence of mmpT5 Variants
712 during Bedaquiline Treatment of *Mycobacterium intracellulare* Lung Disease. *Journal of Clinical*
713 *Microbiology* 55, 574–584. <https://doi.org/10.1128/jcm.02087-16>.

714 39. Halloum, I., Viljoen, A., Khanna, V., Craig, D., Bouchier, C., Brosch, R., Coxon, G., and Kremer,
715 L. (2017). Resistance to Thiacetazone Derivatives Active against *Mycobacterium abscessus* Involves
716 Mutations in the MmpL5 Transcriptional Repressor MAB_4384. *Antimicrob Agents Chemother* 61,
717 e02509-16. <https://doi.org/10.1128/AAC.02509-16>.

718 40. De Coster, W., D'Hert, S., Schultz, D.T., Cruts, M., and Van Broeckhoven, C. (2018). NanoPack:
719 visualizing and processing long-read sequencing data. *Bioinformatics* 34, 2666–2669.
720 <https://doi.org/10.1093/bioinformatics/bty149>.

721 41. Wick, R.R., Judd, L.M., Gorrie, C.L., and Holt, K.E. (2017). Completing bacterial genome
722 assemblies with multiplex MinION sequencing. *Microb Genom* 3, e000132.
723 <https://doi.org/10.1099/mgen.0.000132>.

724 42. Wang, J.R., Holt, J., McMillan, L., and Jones, C.D. (2018). FMLRC: Hybrid long read error
725 correction using an FM-index. *BMC Bioinformatics* 19, 50. <https://doi.org/10.1186/s12859-018-2051-3>.

726 43. Kolmogorov, M., Yuan, J., Lin, Y., and Pevzner, P.A. (2019). Assembly of long, error-prone reads
727 using repeat graphs. *Nat Biotechnol* 37, 540–546. <https://doi.org/10.1038/s41587-019-0072-8>.

728 44. Walker, B.J., Abeel, T., Shea, T., Priest, M., Abouelliel, A., Sakthikumar, S., Cuomo, C.A., Zeng,
729 Q., Wortman, J., Young, S.K., et al. (2014). Pilon: An Integrated Tool for Comprehensive Microbial Variant
730 Detection and Genome Assembly Improvement. *PLOS ONE* 9, e112963.
731 <https://doi.org/10.1371/journal.pone.0112963>.

732 45. Gurevich, A., Saveliev, V., Vyahhi, N., and Tesler, G. (2013). QUAST: quality assessment tool for
733 genome assemblies. *Bioinformatics* 29, 1072–1075. <https://doi.org/10.1093/bioinformatics/btt086>.

734 46. Wick, R.R., Schultz, M.B., Zobel, J., and Holt, K.E. (2015). Bandage: interactive visualization of
735 de novo genome assemblies. *Bioinformatics* 31, 3350–3352.
736 <https://doi.org/10.1093/bioinformatics/btv383>.

737 47. Tanizawa, Y., Fujisawa, T., and Nakamura, Y. (2018). DFAST: a flexible prokaryotic genome
738 annotation pipeline for faster genome publication. *Bioinformatics* 34, 1037–1039.
739 <https://doi.org/10.1093/bioinformatics/btx713>.

740 48. Tanizawa, Y., Fujisawa, T., Kaminuma, E., Nakamura, Y., and Arita, M. (2016). DFAST and
741 DAGA: web-based integrated genome annotation tools and resources. *Bioscience of Microbiota, Food
742 and Health* 35, 173–184. <https://doi.org/10.12938/bmfh.16-003>.

743 49. Jain, C., Rodriguez-R, L.M., Phillippy, A.M., Konstantinidis, K.T., and Aluru, S. (2018). High
744 throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. *Nat Commun* 9,
745 5114. <https://doi.org/10.1038/s41467-018-07641-9>.

746 50. Darling, A.C.E., Mau, B., Blattner, F.R., and Perna, N.T. (2004). Mauve: Multiple Alignment of
747 Conserved Genomic Sequence With Rearrangements. *Genome Res* 14, 1394–1403.
748 <https://doi.org/10.1101/gr.2289704>.

749 51. Li, H. (2013). Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM.
750 Preprint at arXiv, <https://doi.org/10.48550/arXiv.1303.3997> <https://doi.org/10.48550/arXiv.1303.3997>.

751 52. Danecek, P., Bonfield, J.K., Liddle, J., Marshall, J., Ohan, V., Pollard, M.O., Whitwam, A.,
752 Keane, T., McCarthy, S.A., Davies, R.M., et al. (2021). Twelve years of SAMtools and BCFtools.
753 *Gigascience* 10, giab008. <https://doi.org/10.1093/gigascience/giab008>.

754 53. Garrison, E., and Marth, G. (2012). Haplotype-based variant detection from short-read
755 sequencing. Preprint at arXiv, <https://doi.org/10.48550/arXiv.1207.3907>.

756 54. Cingolani, P., Platts, A., Wang, L.L., Coon, M., Nguyen, T., Wang, L., Land, S.J., Lu, X., and
757 Ruden, D.M. (2012). A program for annotating and predicting the effects of single nucleotide
758 polymorphisms, SnpEff: SNPs in the genome of *Drosophila melanogaster* strain w¹¹¹⁸; iso-2; iso-3. *Fly* 6,
759 80–92. <https://doi.org/10.4161/fly.19695>.

760 55. Robinson, J.T., Thorvaldsdóttir, H., Winckler, W., Guttman, M., Lander, E.S., Getz, G., and
761 Mesirov, J.P. (2011). Integrative genomics viewer. *Nat Biotechnol* 29, 24–26.
762 <https://doi.org/10.1038/nbt.1754>.

763 56. Li, H. (2018). Minimap2: pairwise alignment for nucleotide sequences. *Bioinformatics* 34, 3094–
764 3100. <https://doi.org/10.1093/bioinformatics/bty191>.

765 57. Langmead, B., and Salzberg, S.L. (2012). Fast gapped-read alignment with Bowtie 2. *Nat
766 Methods* 9, 357–359. <https://doi.org/10.1038/nmeth.1923>.

767 58. Anders, S., Pyl, P.T., and Huber, W. (2015). HTSeq—a Python framework to work with high-
768 throughput sequencing data. *Bioinformatics* 31, 166–169. <https://doi.org/10.1093/bioinformatics/btu638>.

769 59. Sun, J., Nishiyama, T., Shimizu, K., and Kadota, K. (2013). TCC: an R package for comparing tag
770 count data with robust normalization strategies. *BMC Bioinformatics* 14, 219.
771 <https://doi.org/10.1186/1471-2105-14-219>.

772 60. Minh, B.Q., Schmidt, H.A., Chernomor, O., Schrempf, D., Woodhams, M.D., von Haeseler, A.,
773 and Lanfear, R. (2020). IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the
774 Genomic Era. *Molecular Biology and Evolution* 37, 1530–1534. <https://doi.org/10.1093/molbev/msaa015>.

775 61. Letunic, I., and Bork, P. (2021). Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic
776 tree display and annotation. *Nucleic Acids Research* 49, W293–W296.
777 <https://doi.org/10.1093/nar/gkab301>.

778 62. Chen, S. (2023). Ultrafast one-pass FASTQ data preprocessing, quality control, and
779 deduplication using fastp. *iMeta* 2, e107. <https://doi.org/10.1002/imt2.107>.

780 63. Shen, W., Le, S., Li, Y., and Hu, F. (2016). SeqKit: A Cross-Platform and Ultrafast Toolkit for
781 FASTA/Q File Manipulation. *PLoS ONE* 11, e0163962. <https://doi.org/10.1371/journal.pone.0163962>.

782 64. Quinlan, A.R., and Hall, I.M. (2010). BEDTools: a flexible suite of utilities for comparing genomic
783 features. *Bioinformatics* 26, 841–842. <https://doi.org/10.1093/bioinformatics/btq033>.

784 65. Clinical & Laboratory Standards Institute (2018). Susceptibility Testing of Mycobacteria, Nocardia
785 spp., and Other Aerobic Actinomycetes, M24Ed3E, (CLSI Publication).

786 66. Bouso, J.M., and Planet, P.J. (2019). Complete nontuberculous mycobacteria whole genomes
787 using an optimized DNA extraction protocol for long-read sequencing. *BMC Genomics* 20, 793.
788 <https://doi.org/10.1186/s12864-019-6134-y>.

789 67. Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., and Madden,
790 T.L. (2009). BLAST+: architecture and applications. *BMC Bioinformatics* 10, 421.
791 <https://doi.org/10.1186/1471-2105-10-421>.

792 68. Feldgarden, M., Brover, V., Haft, D.H., Prasad, A.B., Slotta, D.J., Tolstoy, I., Tyson, G.H., Zhao,
793 S., Hsu, C.-H., McDermott, P.F., et al. (2019). Validating the AMRFinder Tool and Resistance Gene
794 Database by Using Antimicrobial Resistance Genotype-Phenotype Correlations in a Collection of Isolates.
795 *Antimicrob Agents Chemother* 63, e00483-19. <https://doi.org/10.1128/AAC.00483-19>.

796 69. Jia, B., Raphenya, A.R., Alcock, B., Waglechner, N., Guo, P., Tsang, K.K., Lago, B.A., Dave,
797 B.M., Pereira, S., Sharma, A.N., et al. (2017). CARD 2017: expansion and model-centric curation of the

798 comprehensive antibiotic resistance database. *Nucleic Acids Research* 45, D566–D573.
799 <https://doi.org/10.1093/nar/gkw1004>.

800 70. Zankari, E., Hasman, H., Cosentino, S., Vestergaard, M., Rasmussen, S., Lund, O., Aarestrup,
801 F.M., and Larsen, M.V. (2012). Identification of acquired antimicrobial resistance genes. *Journal of*
802 *Antimicrobial Chemotherapy* 67, 2640–2644. <https://doi.org/10.1093/jac/dks261>.

803 71. Gupta, S.K., Padmanabhan, B.R., Diene, S.M., Lopez-Rojas, R., Kempf, M., Landraud, L., and
804 Rolain, J.-M. (2014). ARG-ANNOT, a New Bioinformatic Tool To Discover Antibiotic Resistance Genes in
805 Bacterial Genomes. *Antimicrobial Agents and Chemotherapy* 58, 212–220.
806 <https://doi.org/10.1128/AAC.01310-13>.

807 72. Chen, L., Zheng, D., Liu, B., Yang, J., and Jin, Q. (2016). VFDB 2016: hierarchical and refined
808 dataset for big data analysis—10 years on. *Nucleic Acids Research* 44, D694–D697.
809 <https://doi.org/10.1093/nar/gkv1239>.

810 73. Carattoli, A., Zankari, E., García-Fernández, A., Voldby Larsen, M., Lund, O., Villa, L., Møller
811 Aarestrup, F., and Hasman, H. (2014). In Silico Detection and Typing of Plasmids using PlasmidFinder
812 and Plasmid Multilocus Sequence Typing. *Antimicrobial Agents and Chemotherapy* 58, 3895–3903.
813 <https://doi.org/10.1128/AAC.02412-14>.

814 74. Ingle, D.J., Valcanis, M., Kuzevski, A., Tauschek, M., Inouye, M., Stinear, T., Levine, M.M.,
815 Robins-Browne, R.M., and Holt, K.E. (2016). In silico serotyping of *E. coli* from short read data identifies
816 limited novel O-loci but extensive diversity of O:H serotype combinations within and between pathogenic
817 lineages. *Microb Genom* 2, e000064. <https://doi.org/10.1099/mgen.0.000064>.

818 75. Doster, E., Lakin, S.M., Dean, C.J., Wolfe, C., Young, J.G., Boucher, C., Belk, K.E., Noyes, N.R.,
819 and Morley, P.S. (2020). MEGARes 2.0: a database for classification of antimicrobial drug, biocide and
820 metal resistance determinants in metagenomic sequence data. *Nucleic Acids Research* 48, D561–D569.
821 <https://doi.org/10.1093/nar/gkz1010>.

822 76. Sun, J., Nishiyama, T., Shimizu, K., and Kadota, K. (2013). TCC: an R package for comparing tag
823 count data with robust normalization strategies. *BMC Bioinformatics* 14, 219.
824 <https://doi.org/10.1186/1471-2105-14-219>.

825 77. García-Alcalde, F., Okonechnikov, K., Carbonell, J., Cruz, L.M., Götz, S., Tarazona, S., Dopazo,
826 J., Meyer, T.F., and Conesa, A. (2012). Qualimap: evaluating next-generation sequencing alignment data.
827 *Bioinformatics* 28, 2678–2679. <https://doi.org/10.1093/bioinformatics/bts503>.

828

829

830

STAR★METHODS

831

KEY RESOURCES TABLE

REAGENT OR RESOURCE	SOURCE	IDENTIFIER
Bacterial and virus strains		
<i>M. abscessus</i> subsp. <i>abscessus</i> type strain, ATCC 19977	ATCC	19977
<i>M. abscessus</i> subsp. <i>massiliense</i> type strain, JCM 15300	Japan Collection of Microorganisms (JCM), RIKEN BRC	15300
<i>M. abscessus</i> subsp. <i>bolletii</i> type strain, JCM 15297	JCM, RIKEN BRC	15297
Isolate57625, Isolate57629, Isolate57630, Isolate57596, and Isolate57626	This study	N/A
Chemicals, peptides, and recombinant proteins		
Trypticase soy agar with 5% sheep blood	Beckton Dickinson	Cat.# 251239
BBL™ Mueller Hinton II Broth (Cation-Adjusted)	Beckton Dickinson	Cat.# 212322
Middlebrook 7H9 Medium	Sigma-Aldrich	Cat.# M0178
2% OGAWA medium	Kyokuto Pharmaceutical Industrial	Cat.# 551-08026
Lysozyme	Sigma-Aldrich	Cat.# L4919
Critical commercial assays		
BrothMIC RGM	Kyokuto Pharmaceutical Industrial	Cat.# 551-10087
EZ-Beads	Promega	Cat.# AMR76813M
Wizard® HMW DNA Extraction Kit	Promega	Cat.# A2920
Qubit™ BR DNA Quantitation Kit	Thermo Fisher Scientific	Cat.# Q32850
Ion Xpress™ Plus Fragment Library Kit	Thermo Fisher Scientific	Cat.# 4471252
Ion Xpress™ Barcode Adapters 1-16 kit	Thermo Fisher Scientific	Cat.# 4471250
TaqMan™ Quantitation Kit	Thermo Fisher Scientific	Cat.# 4468802
Ion PI™ Chip kit v3	Thermo Fisher Scientific	Cat.# A26711
UltraPure™ DNase/RNase-free Distilled Water	Thermo Fisher Scientific	Cat.# 10977015
SUPERase-In™ RNase Inhibitor	Thermo Fisher Scientific	Cat.# AM2696
mirVana™ miRNA Isolation Kit	Thermo Fisher Scientific	Cat.# AM1561
IonXpress™ RNA-Seq Barcode 1-16 Kit	Thermo Fisher Scientific	Cat.# 4475485
Ion PI™ Hi-Q™ OT2 200 Kit v2	Thermo Fisher Scientific	Cat.# A26434
Ion Total RNA-Seq Kit v2	Thermo Fisher Scientific	Cat.# 4479789
PowerUp™ SYBR™ Green Master Mix	Thermo Fisher Scientific	Cat.# A25741
KOD One® PCR Master Mix	TOYOBO	Cat.#LMM-101
Short Read Eliminator Kit	PacBio	Cat.# 102-208-300
Ligation Sequencing Kit	Oxford Nanopore Technologies	Cat.# SQK-LSK109
Native Barcoding Expansion 1-12	Oxford Nanopore Technologies	Cat.# EXP-NBD104
Flow cell (R9.4.1)	Oxford Nanopore Technologies	Cat.# FLO-MIN106

NEBNext® rRNA Depletion Kit (Bacteria)	NEB	Cat.# E7850
Deposited data		
All raw sequence data generated in this study	DDBJ	PRJDB16220
Complete genome sequences (Chromosome, pMAB625-1, pMAB625-2 and pMAB625-3) of the Isolate57625	DDBJ	AP028613 AP028614 AP028615 AP028616
The analyzed RNA-seq data	Genomic Expression Archive (GEA)	E-GEAD-827
Oligonucleotides		
Forward primer for validation of large deletion in Figure S1 for Deletion_1, CAAGAACTGATGGCTGAAATCCTAATG	This study	N/A
Reverse primer for validation of large deletion in Figure S1 for Deletion_1, AAAGTGATGCTTGCTCTGCCAGTC	This study	N/A
Forward primer for validation of large deletion in Figure S1 for Insertion_1, GTTAGATATGTGCAGGGAGTCCGAGTG	This study	N/A
Reverse primer for validation of large deletion in Figure S1 for Insertion_1, ACCAATACTGCCGAATTCTCTAAAGC	This study	N/A
Forward primer for validation of large deletion in Figure S1 for Insertion_2, GTGACATGATCTGCTGCTCAAAG	This study	N/A
Reverse primer for validation of large deletion in Figure S1 for Insertion_2, GCTATCTGTCGCAGTACTCGTGACC	This study	N/A
Forward Primers for plasmid copy number analysis in Figure S5 for <i>HrpA</i> (MAB), GGATCTGGTCCACAAGACCTACAG	This study	N/A
Reverse Primers for plasmid copy number analysis in Figure S5 for <i>HrpA</i> (MAB), AAAGTGATGCTTGCTCTGCCAGTC	This study	N/A
Forward Primers for plasmid copy number analysis in Figure S5 for <i>HrpA</i> (no MAB), ACCCTGGTGAAGTTGATGACCGAC	This study	N/A
Reverse Primers for plasmid copy number analysis in Figure S5 for <i>HrpA</i> (no MAB), AGGAGGAAGTCGATGTTGAGGCTG	This study	N/A
Forward Primers for plasmid copy number analysis in Figure S5 for pMAB625-1(LOCUS_52450), TCTACTACGCAGACCCCTGCACATATC	This study	N/A
Reverse Primers for plasmid copy number analysis in Figure S5 for pMAB625-1(LOCUS_52450), AACTGCTGCCACATCGCTTCTG	This study	N/A
Forward Primers for plasmid copy number analysis in Figure S5 for pMAB625-2(LOCUS_53740), GACCGATCACGTACATCATTCTTAATC	This study	N/A
Reverse Primers for plasmid copy number analysis in Figure S5 for pMAB625-2(LOCUS_53740), GAACCTCAGCCTCAATATGCTCCTC	This study	N/A
Forward Primers for plasmid copy number analysis in Figure S5 for pMAB625-3(LOCUS_54770), CGACCAGGTACACATCCTGACCAC	This study	N/A
Reverse Primers for plasmid copy number analysis in Figure S5 for pMAB625-3(LOCUS_54770), GAGTTGGCTGATTCGTCTGGAG	This study	N/A
Software and algorithms		
R (ver. 4.3.1)	R Core Team (2024)	https://www.R-project.org/
MinKNOW (ver.21.06.0)	Oxford Nanopore Technologies	https://nanoporetech.com/
Guppy (ver. 5.0.7)	Oxford Nanopore Technologies	https://nanoporetech.com/
NanoPlot (ver. 1.38.0)	De Coster et al. ⁴⁰	https://github.com/wdecoster/NanoPlot

Porechop (ver. 0.2.4)	Wick et al. ⁴¹	https://github.com/rrwick/Porechop
Filtlong (ver. 0.2.1)	Wick	https://github.com/rrwick/Filtlong
Fmlrc (ver. 1.0.0)	Wang et al. ⁴²	https://github.com/holtjma/fmlrc
Flye (ver. 2.9-b1768)	Kolmogorov et al. ⁴³	https://github.com/mikolmogorov/Flye
Pilon (ver. 1.24.0)	Walker et al. ⁴⁴	https://github.com/broadinstitute/pilon
QUAST (ver. 5.0.2)	Gurevich et al. ⁴⁵	https://quast.sourceforge.net/
Bandage (ver. 0.8.1)	Wick et al. ⁴⁶	https://rrwick.github.io/Bandage/
DFAST (ver.1.5.0)	Tanizawa et al. ^{47,48}	https://dfast.ddbj.nig.ac.jp/
FastANI (ver.1.34)	Jain et al. ⁴⁹	https://github.com/ParBLI/SS/FastANI
Mauve (ver. 2.4.0)	Darling et al. ⁵⁰	https://darlinglab.org/mauve/mauve.html
Abriicate (ver.1.0.1)	Seeman. T	https://github.com/tseemann/abricate
BWA-MEM (ver. 0.7.17-r1188)	Li H. ⁵¹	https://github.com/lh3/bwa
Samtools (ver.1.12)	Danecek et al. ⁵²	https://github.com/samtools/samtools
Freebayes (ver. 1.3.5)	Garrison et al. ⁵³	https://github.com/freebayes/freebayes
SnpEff (ver. 5.2)	Cingolani et al. ⁵⁴	https://pcingola.github.io/SnpEff/
IGV (ver.2.17.4)	Robinson et al. ⁵⁵	https://igv.org/
Minimap2 (ver. 2.21-r1071)	Li H. ⁵⁶	https://github.com/lh3/minimap2
Bowtie2 (ver. 2.5.4)	Langmead and Salzberg ⁵⁷	https://github.com/BenLangmead/bowtie2
HTseq (ver. 1.99.2)	Anders et al. ⁵⁸	https://github.com/htseq/htseq
R package, TCC (ver. 1.26.0)	Sun et al. ⁵⁹	https://bioconductor.org/packages/release/bioc/html/TCC.html
Snippy (ver. 4.6.0)	Seeman. T	https://github.com/tseemann/snippy
IQ-TREE (ver.2)	Minh et al. ⁶⁰	https://www.iqtree.org
iTOL ver.6.7	Letunic and Bork ⁶¹	https://itol.embl.de
NGphylogeny.fr	Lemoine et al. ²⁴	https://ngphylogeny.fr
Fastp (ver. 0.23.4)	Chen ⁶²	https://github.com/OpenGene/fastp
Seqkit ver.2.4.0	Shen et al. ⁶³	https://github.com/shenwei356/seqkit
Bedtools ver. 2.30.0	Quinlan and Hall ⁶⁴	https://github.com/arq5x/bedtools2
Gubbins ver.3.3.1	Croucher ²⁷	https://github.com/nickjcroucher/gubbins

R package, ggtree (ver 3.10.1)	Yu et al. ²⁸	https://bioconductor.org/packages/release/bioc/html/ggtree.html
R package, RVAideMemoire (ver. 0.9-83-7)	Herve M.	https://github.com/cran/RVAideMemoire

832

833 EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

834 **Clinical isolates and type strain**

835 Ethical approval for this study was obtained from the Ethics Committee of Dokkyo Medical University
836 (approval number 28045). Regarding Isolate57625, Isolate57629, Isolate57630, Isolate57596, and
837 Isolate57626, specimens were obtained from a patient with osteomyelitis at the five time points in six
838 months indicated in Table 1. Each strain was isolated from the specimen at Shizuoka Children's Hospital
839 for diagnosis. The other clinical isolates used for PCR or WGS were stored at Tokyo Metropolitan Institute
840 for Geriatrics and Gerontology or Tokyo Women's Medical University or Dokkyo Medical University²⁵. The
841 type strain of ABS, ATCC 19977, was purchased from ATCC (Manassas, VA, US). The type strain of MAS,
842 JCM 15300, and the type strain of BOL, JCM 15297, were provided by Japan Collection of Microorganisms,
843 RIKEN BRC which is participating in the National BioResource Project of the MEXT, Japan.
844

845 **METHOD DETAILS**

846 **Growth curve**

847 The type strain and the five clinical isolates were inoculated onto trypticase soy agar with 5% sheep blood
848 (Beckton Dickinson, Franklin Lakes, NJ, US) and incubated at 30 °C for five days. Next, some colonies
849 were inoculated into BBL™ Mueller Hinton II Broth (Cation-Adjusted) (Beckton Dickinson) and incubated
850 overnight at 30°C. These culture media were measured for absorbance (OD₆₀₀), from which they were
851 prepared to 0.1 by medium. Seventy microliter of the adjusted culture solution was inoculated into 7 mL of
852 BBL™ Mueller Hinton II Broth (Cation-Adjusted) and incubated at 30 °C for eight days with agitation (200
853 rpm). OD₆₀₀ was measured on days one to eight after inoculation. Statistical analysis was performed using
854 R ver. 4.3.1.
855

856 **Antimicrobial susceptibility testing**

857 The type strain and the clinical isolates were subcultured on 2% OGAWA medium (Kyokuto Pharmaceutical
858 Industrial, Tokyo, Japan) at 30 °C for five days. Antimicrobial susceptibility testing was performed using
859 BrothMIC RGM (Kyokuto Pharmaceutical Industrial) following CLSI M24 3rd ed⁶⁵. MICs were determined
860 as the minimum concentration at which bacteria had not grown on day four (all antibiotics) and day 14
861 (clarithromycin). The test was repeated three times and all MICs were confirmed to be the same between
862 the experiments, except for imipenem (IPM) for the isolates. For IPM, the MICs of the type strain were
863 confirmed to be the same between all three experiments, while for the MICs of Isolate57625 and
864 Isolate57626, they were confirmed to be the same between two out of three experiments, as indicated in
865 Table 1.
866

867 **Mycobacterial DNA isolation and whole-genome sequencing**

868 The type strain and the clinical isolates of *M. abscessus* were stored in frozen stock containing skim milk
869 and 5% (v/v) glycerol. Each strain was inoculated from frozen stocks into Middlebrook 7H9 Medium (Sigma-
870 Aldrich, St. Louis, MO, US) containing 10% (v/v) oleic acid-albumin-dextrose-catalase and 0.2% (v/v)
871 glycerol and cultured at 30 °C for six days with agitation (200 rpm). Bacterial genomic DNA for short-read
872 sequencing was extracted as previously reported⁶⁶. The quality of the extracted DNA was confirmed by
873 agarose gel electrophoresis, and the concentration was measured using Qubit™ BR DNA Quantitation Kit
874 (Thermo Fisher Scientific, Waltham, MA, US). Genomic DNA was fragmented, and the sequencing library
875 was prepared using the Ion Xpress™ Plus Fragment Library Kit and the Ion Xpress™ Barcode Adapters 1-
876 16 kit (Thermo Fisher Scientific) according to the manufacturer's instructions. The quantity of sequencing
877 library was assessed using the Ion Library TaqMan™ Quantitation Kit (Thermo Fisher Scientific). Emulsion
878 PCR for sequence template synthesis was performed with the Ion PI™ Hi-Q™ OT2 200 Kit v2 using the

879 Ion One Touch™ II System and the Ion One Touch™ II ES (Thermo Fisher Scientific). Sequencing was
880 performed using the Ion PI™ Chip kit v3 and the Ion Proton™ System (Thermo Fisher Scientific). Data were
881 collected using the Torrent Suite v5.0.5 software (Thermo Fisher Scientific).

882
883 High-molecular-weight genomic DNA for long-read sequencing was extracted as follows. The bacterial
884 pellet was collected by centrifugation and homogenized using EZ-beads (Promega, Madison, WI, US) and
885 Shakeman 6 (Bio Medical Science, Tokyo, Japan). The homogenized pellet was lysed with Lysozyme
886 (Sigma-Aldrich) at 37 °C for one hour. Next, DNA was extracted using Wizard® HMW DNA Extraction Kit
887 (Promega) following the manufacturer's instructions. Fragmented DNA in the extracted DNA was removed
888 using the Short Read Eliminator Kit (PacBio, Menlo Park, CA, US). The sequencing library for long-read
889 sequencing was prepared using the Ligation Sequencing Kit (SQK-LSK109, Oxford Nanopore
890 Technologies, Oxford, UK) and the Native Barcoding Expansion 1-12 (EXP-NBD104, Oxford Nanopore
891 Technologies). In brief, the barcode sequences for multiplex sequencing were attached to the ends of the
892 HMW genomic DNA. In addition, the sequencing adapters were ligated to the end of HMW genomic DNA.
893 The prepared DNA was loaded into a flow cell (FLO-MIN106, Oxford Nanopore Technologies) attached to
894 MinION Mk1B (Oxford Nanopore Technologies). Sequencing data were acquired using MinKNOW
895 ver.21.06.0 (Oxford Nanopore Technologies), and base calling was performed using Guppy ver. 5.0.7
896 (Oxford Nanopore Technologies) with high accuracy mode using the National Institute of Genomics
897 supercomputer system (NIG, Shizuoka, Japan). Data quality was confirmed using NanoPlot ver. 1.38.0⁴⁰
898 and adapter sequences were trimmed using Porechop ver. 0.2.4⁴¹. Raw reads shorter than 1000 bp
899 (Isolate57625, Isolate57629, Isolate57630, Isolate57596) or 5000 bp (Isolate57626) were removed using
900 Filtlong ver. 0.2.1 (<https://github.com/rrwick/Filtlong>). Filtered reads were corrected using Fmlrc ver. 1.0.0⁴²
901 with the data of short-read sequencing acquired by the Ion Proton™ Sequencer. *De novo* assembly was
902 performed using Flye ver. 2.9-b1768⁴³ with corrected long-reads. Assembled genome sequences were
903 polished using Pilon ver. 1.24.0⁴⁴, evaluated using QUAST ver. 5.0.2⁴⁵, and visualized using Bandage ver.
904 0.8.1⁴⁶. Genome annotation was performed using DFAST ver.1.5.0^{47,48}.

905
906 **Plasmid sequence analysis**

907 Known plasmid sequences were downloaded from PLSDB¹⁴ by the taxonomic search for "abscessus".
908 Average nucleotide identity (ANI) was calculated using FastANI ver.1.34⁴⁹ and structural variants (SVs)
909 were analyzed using Mauve ver. 2.4.0⁵⁰.

910
911 Homology search was performed by blast+⁶⁷ using the amino acid sequence as the query or by Abricate
912 ver.1.0.1 (<http://github.com/tseemann/abricate>) using the nucleotide sequences as the query. NCBI
913 AMRFinderPlus⁶⁸, CARD⁶⁹, Resfinder⁷⁰, ARG-ANNOT⁷¹, VFDB⁷², PlasmidFinder⁷³, EcOH⁷⁴, and
914 MEGARes 2.00⁷⁵ were used as the database for the search of AMR genes. Mycobrowser¹⁷ was used as
915 the database for the homology search of the mycobacterium genes.

916
917 **SNVs and SVs analysis**
918 Short-read data acquired by the Ion Proton™ Sequencer were mapped using BWA-MEM ver. 0.7.17-
919 r1188⁵¹ against the reference sequence (CU458896.1, CU458745.1). Output BAM files were sorted using
920 samtools ver.1.12⁵². Valiant calling was performed using Freebayes ver. 1.3.5⁵³, and variants were
921 annotated using SnpEff ver. 5.2⁵⁴ with annotated genome sequence. The positions of single nucleotide
922 variants (SNVs) were visualized using IGV⁵⁵ (Broad Institute, Cambridge, MA, US). Assembled genome
923 sequences were aligned using Mauve ver. 2.4.0⁵⁰ for SVs analysis. Mapping the short- and long-read to

924 the assembled genome sequence using minimap2 ver. 2.21-r1071⁵⁶ was performed for the validation of
925 assembly.

926

927 PCR for the validation of SVs was performed using KOD One[®] PCR Master Mix (TOYOBO, Osaka, Japan)
928 and the primers indicated in Table S1. Amplified DNA was confirmed using agarose gel electrophoresis
929 following staining with SYBRTM Safe Gel Stain (Thermo Fisher Scientific).

930

931 **RNA-seq analysis**

932 Total RNA was extracted as follows: The bacterial pellet was collected by centrifugation and suspended in
933 UltraPureTM DNase/RNase-free Distilled Water (Thermo Fisher Scientific) and homogenized using EZ-
934 beads (Promega) and Shakeman 6 (Bio Medical Science). SUPERase-InTM RNase Inhibitor (Thermo Fisher
935 Scientific) was added to the homogenized pellet. Next, the homogenized pellet was lysed by Lysozyme
936 (Sigma-Aldrich) at 37 °C for an hour. Total RNA was purified by mirVanaTM miRNA Isolation Kit (Thermo
937 Fisher Scientific). The size and quality of total RNA were assessed using the Agilent 2100 Bioanalyzer
938 (Agilent Technologies, Santa Clara, CA, US) and the RNA 6000 Nano Kit (Agilent Technologies). rRNA
939 was depleted using the NEBNext[®] rRNA Depletion Kit (Bacteria) (NEB, Ipswich, MA, US) from 500 ng of
940 total RNA. The whole transcriptome library was prepared using the Ion Total RNA-Seq Kit v2 (Thermo
941 Fisher Scientific) as follows: First, the rRNA-depleted RNA was fragmented by RNase III at 37 °C for 10
942 minutes and purified using the Magnetic Beads Cleanup Module. Next, adapter sequences were ligated
943 and reverse transcription was performed. The whole transcriptome library was amplified and barcoded
944 using the IonXpressTM RNA-Seq Barcode 1-16 Kit (Thermo Fisher Scientific). The quantity of the amplified
945 whole transcriptome library was assessed using the Ion Library TaqManTM Quantitation Kit (Thermo Fisher
946 Scientific). Emulsion PCR for sequence template synthesis was performed using the Ion PITM Hi-QTM OT2
947 200 Kit v2 with the Ion One TouchTM II System and the Ion One TouchTM II ES (Thermo Fisher Scientific).
948 Sequencing was performed using the Ion ProtonTM System with Ion PITM Chip kit v3 (Thermo Fisher
949 Scientific). Data was collected using the Torrent Suite ver. 5.0.5 software (Thermo Fisher Scientific).
950 Sequence reads were mapped using Bowtie2 ver. 2.5.4⁵⁷ against the assembled genome sequence of
951 Isolate57625. Mapped reads were counted using HTseq ver. 1.99.2⁵⁸. Merged transcript count data were
952 normalized using TCC ver. 1.26.0⁷⁶ and differentially expressed genes (DEG) were detected under false
953 discovery rate (FDR) < 0.01.

954

955 **Phylogenetic tree analysis**

956 The genome sequences of the various clinical isolates shown in Figure S2C for phylogenetic tree analysis
957 were obtained from the NCBI database and are listed in Table S2. Core-genome SNVs were detected using
958 Snippy ver. 4.6.0 (<https://github.com/tseemann/snippy>) with each assembled genome sequence and the
959 type strain (ATCC 19977, CU458896.1) as the reference. The concatenated core-genome SNVs were also
960 aligned using the snippy-core script. The phylogenetic tree was constructed using IQ-TREE ver.2⁶⁰ using
961 the maximum likelihood criterion and rendered using iTOL ver.6.7⁶¹. Phylogenetic tree analysis of pMAB625
962 sequences was performed by the same method. For the phylogenetic tree analysis regarding the
963 components of the ESX secretion system, the amino acid sequences of ESX loci (*eccB*, *eccC*, *eccD*, *mycP*,
964 and *eccE*) were concatenated and used as input for NGphylogeny.fr²⁴ using the PhyML+SMS inference
965 method.

966

967 **PCR for plasmid detection and copy number analysis**

968 PCR was performed using KOD One[®] PCR Master Mix (TOYOBO) and the primers indicated in Table S1.
969 Amplified DNA was confirmed using agarose gel electrophoresis. The plasmid copy number was analyzed
970 by qPCR using PowerUpTM SYBRTM Green Master Mix (Thermo Fisher Scientific). qPCR was performed
971 using the QuantStudioTM 5 Real-Time PCR System (Thermo Fisher Scientific). Five nanogram of genomic

972 DNA was used for a 20 μ L reaction volume of qPCR. The plasmid copy number is shown as a relative value
973 normalized using the copy number of *HrpA*, which is present in one copy on the chromosome.
974

975 ***Mapping the read data of various clinical isolates to the genome sequence of Isolate57625***

976 Raw read data of *M. abscessus* clinical isolate in Japan, Taiwan⁷, China²⁶, the US, the United Kingdom
977 (UK) and Spain were obtained from the NCBI sequence reads archive (SRA). Raw read data were trimmed
978 using fastp ver. 0.23.4⁶² and reduced using seqkit ver.2.4.0⁶³ to 200 Mb for the Ion ProtonTM single-end
979 data and 100 Mb for the Illumina pair-end data to equalize the depth of coverage among isolates. Reads
980 were mapped using BWA-MEM ver. 0.7.17-r1188 against the chromosome and plasmid sequences of
981 Isolate57625 and other plasmids which were hit using PLSDB by the taxonomic searching of “*abscessus*”
982 with removing the redundant plasmid sequences (ANI (%)>97, without large SV (>8 kbp)). The depth of
983 coverage was calculated using Qualimap ver. 2.2.2-dev⁷⁷. The covered genome region was calculated
984 using bedtools ver. 2.30.0⁶⁴. We considered the isolate whose depth of coverage was higher than 10x and
985 the covered genome region was higher than 75% as the plasmid-harboring isolate. The 152 sequences for
986 the analysis of the distribution of plasmids identified in other NTM and previously reported²⁹ were listed in
987 Table S2. For the phylogenetic tree analysis, the aligned assumed chromosome sequences using Snippy-
988 core script were used as input for Gubbins ver.3.3.1²⁷. The phylogenetic tree was rendered using ggtree
989 ver 3.10.1²⁸.

990

991 ***QUANTIFICATION AND STATISTICAL ANALYSIS***

992 Statistical analysis in this study were performed using R ver. 4.3.1. Statistical significance in Figure S1 were
993 calculated using one-way ANOVA followed by Dunnett’s test and data were represents the mean of the
994 three independent experiments and the error bar represents the standard deviation. Statistical analysis of
995 the number of clinical isolates retaining plasmid in Table 4 was performed using Fisher’s exact test with
996 Holm’s method for correction of multiple comparisons using RVAideMemoire ver. 0.9-83-7
997 (<https://github.com/cran/RVAideMemoire>).