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27 Abstract

28 The ability to differentiate between viable and dead microorganisms in metagenomic data is
29 crucial for various microbial inferences, ranging from assessing ecosystem functions of
30 environmental microbiomes to inferring the virulence of potential pathogens from
31 metagenomic analysis. While established viability-resolved genomic approaches are
32 labor-intensive as well as biased and lacking in sensitivity, we here introduce a new fully
33 computational framework that leverages nanopore sequencing technology to assess
34 microbial viability directly from freely available nanopore signal data. Our approach utilizes
35 deep neural networks to learn features from such raw nanopore signal data that can
36 distinguish DNA from viable and dead microorganisms in a controlled experimental setting of
37 UV-induced Escherichia cell death. The application of explainable Al tools then allows us to
38 pinpoint the signal patterns in the nanopore raw data that allow the model to make viability
39 predictions at high accuracy. Using the model predictions as well as explainable Al, we show
40 that our framework can be leveraged in a real-world application to estimate the viability of
41 obligate intracellular Chlamydia, where traditional culture-based methods suffer from
42 inherently high false negative rates. This application shows that our viability model captures
43 predictive patterns in the nanopore signal that can be utilized to predict viability across
44 taxonomic boundaries. We finally show the limits of our model’s generalizability through
45 antibiotic exposure of a simple mock microbial community, where a new model specific to the
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46 killing method had to be trained to obtain accurate viability predictions. While the potential of
47 our computational framework’s generalizability and applicability to metagenomic studies
48 needs to be assessed in more detail, we here demonstrate for the first time the analysis of
49 freely available nanopore signal data to infer the viability of microorganisms, with many
50 potential applications in environmental, veterinary, and clinical settings.

51
52 Author summary

53 Metagenomics investigates the entirety of DNA isolated from an environment or a sample to
54 holistically understand microbial diversity in terms of known and newly discovered
55 microorganisms and their ecosystem functions. Unlike traditional culturing of
56 microorganisms, genomic approaches are not able to differentiate between viable and dead
57 microorganisms since DNA might persist under different environmental circumstances. The
58 viability of microorganisms is, however, of importance when making inferences about a
59 microorganism’s metabolic potential, a pathogen’s virulence, or an entire microbiome’s
60 impact on its environment. As existing viability-resolved genomic approaches are
61 labor-intensive, expensive, and lack sensitivity, we here investigate our hypothesis if freely
62 available nanopore sequencing signal dat that captures DNA molecule information beyond
63 the DNA sequence might be leveraged to infer such viability. This hypothesis assumes that
64 DNA from dead microorganisms accumulates certain damage signatures that reflect
65 microbial viability and can be read from nanopore signal data using fully computational
66 frameworks. We here show first evidence that such a computational framework might be
67 feasible by training a deep model on controlled experimental data to predict viability at high
68 accuracy, exploring what the model has learned, and using it in a real-world application by
69 application to a bacterial species of veterinary relevance. We finally show that a specific
70 model has to be trained to accurately predict viability after antibiotic exposure of a mock
71 microbial community. While the generalizability of our computational framework therefore
72 needs to be assessed in much more detail, we here demonstrate that freely available data
73 might be usable for relevant viability inferences in environmental, veterinary, and clinical
74 settings.

75
76 Introduction

77 While microbial cultivation remains a foundational technique in microbiology to assess the
78 taxonomic composition of microbial communities and to understand their physiology and
79 ecosystem functions [1], only a small fraction of microbial diversity has been isolated in pure
8o culture [2]. This limitation has led to undiscovered functions and biased representations of
81 the phylogenetic diversity of microbial communities in nearly all of Earth’s environments [2].
82 While medically relevant microorganisms of the human microbiome often constitute an
83 exemption since they have been disproportionately well studied through microbial cultures
84 [3], the clinical application of microbial cultivation for pathogen profiling is further limited by its
85 time-consuming and labor-intensive nature [4].

86 The first studies of the so-called “microbial dark matter” have been enabled by advances in
87 culture-independent molecular methodology [5], and have been based on amplifications of
88 conserved marker regions such as ribosomal RNA genes [6]. Such targeted metabarcoding
89 approaches, however, suffer from several limitations: They can often not provide strain- or
90 even species-level taxonomic resolution, are highly dependent on genomic database
91 completeness, do not allow for any functional inferences or virulence annotations, and often
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92 introduce amplification bias due to differential amplification efficiency and primer
93 mismatches, which can significantly distort the representation of microbial community
94 compositions [7].

95 Metagenomics, on the other hand, is a shotgun sequencing-based molecular methodology
96 that can assess the entirety of DNA isolated from an environment or a sample and de novo
97 assemblies of potentially complete microbial genomes of all present microorganisms; such
98 genome-based approaches provide a variety of phylogenetically informative sequences for
99 taxonomic classification, information about the metabolic and virulence potential of
100 microorganisms, and the potential to identify completely novel genes [8, 9].

101 Especially long-read metagenomic approaches have shown great promise in achieving
102 highly contiguous de novo assemblies through the recovery of high-quality
103 metagenome-assembled genomes (MAGs) from complex environments; specifically, the
104 latest advances in nanopore sequencing technologies have resulted in high sequencing
105 accuracies of very long sequencing reads of up to millions of bases, which allowed for the
106 generation of hundreds of MAGs from metagenomic data, including the generation of closed
107 circularized genomes [10, 11]. Nanopore sequencing technology is based on the
108 interpretation of the disruption of an ionic current due to a motor protein guiding individual
109 nucleotide strands through nanopores embedded in an electrically resistant polymer
110 membrane at a consistent translocation speed [12]. This raw nanopore signal, or “squiggle”
111 data, can then be translated into nucleotide sequence using bespoke neural network-based
112 basecalling algorithms [13], which—when efficiently embedded on powerful GPUs—can
113 generate genomic data in real-time. The portable character and straightforward
114 implementation of nanopore sequencing at low upfront investment costs further make this
115 technology accessible for fast microbial and pathogen assessments at the point of interest all
116 around the world, including in low- and middle-income countries [14].

117 In contrast to cultivation-based approaches, molecular methods suffer from their inherent
118 deficiency of not being able to differentiate between viable and dead microorganisms [2, 15].
119 While cultivation-based approaches only detect viable microorganisms, DNA might remain
120 intact and therefore accessible by molecular methods despite the respective microorganisms
121 being dead [15, 16]. This would be relevant in the context of clinical infection prevention and
122 control and pathogen monitoring, where certain disinfection methods or the use of systemic
123 antibiotics often kill the bacteria before the DNA is destroyed [15, 17], but also for
124 understanding the ecosystem functions of thus far understudied microbiomes [2]: For
125 example, the air microbiome has been shown to be remarkable diverse and variable when
126 assessed through nanopore metagenomics [18], but given the low biomass of this
127 environment it is expected that many microorganisms might be dead and stem from adjacent
128 environments such as soil or water. The persistence of the DNA of dead microorganisms in
129 the environment might hereby depend on many factors, including external conditions such as
130 temperature, pH, and microbial activity, and internal, taxon-specific parameters such as
131 microbial cell wall composition. Viability-resolved metagenomics would, however, be crucial
132 for the interpretation of metagenomic data, ranging from outbreak source detection [19], food
133 safety [20], and public health investigations [21], to ecosystem function inferences [22].

134 To assess microbial viability from genomic data, several approaches have been developed:
135 Culture-dependent viability methods combine the advantages of cultivation-based and
136 molecular approaches by growing certain microorganisms of interest on selective media; this
137 approach, however, remains time-consuming and labor-intensive and suffers from the same
138 selectivity of growth media and culturable microorganisms as purely cultivation-based
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139 approaches [23], especially for fastidious or obligate intracellular microorganisms [24].
140 Microbial viability has further been described by metabolic activity, where microbial cells are
141 incubated with specific substrates leading to ATP production, tetrazolium salt reduction, or
142 radiolabeled substrate incorporation [25]. Further, ribosomal RNA may be assessed as a
143 read-out of microbial activity [26]. To what extent such metabolic activity can be used as a
144 proxy for microbial viability, however, remains to be explored [25]. While messenger RNA
145 has been used as a viable/dead marker due to its intrinsic instability outside of the microbial
146 cell [27, 28], the metatranscriptome still has to be stable enough in the environment to be
147 detectable at all, potentially leading to many false-negative detections; if only one gene is
148 targeted, the analyzed gene further has to be expressed shortly before cell death. Additional
149 potential problems stem from the relatively challenging extraction protocols due to the RNA's
150 instability and from the evolutionary conservation of gene sequences, which can hamper
151 taxonomic resolution [15].

152 Finally, an aspect that can be used for viability-resolved metagenomics is the physical
153 difference between viable and dead cells: Viability PCR (vVPCR) uses DNA-intercalating dyes
154 such as ethidium monoazide (EMA) or propidium monoazide (PMA) to differentiate between
155 viable and dead cells. These dyes penetrate only dead cells with compromised membranes
156 and bind to their DNA via covalent bonds upon photoactivation, preventing it from being
157 amplified during subsequent PCR [15, 17]; this approach has been applied to a diverse array
158 of Gram-negative and -positive bacteria, and to assess the effectiveness of disinfection and
159 heat treatment [25]. It, however, relies on the assumption that membrane integrity is a
160 reliable indicator of viability, which can lead to overestimation of viability if cells lose viability
161 without immediate membrane compromise [29] and can be biased by the dye’s variable
162 permeability across different microbial cell wall structures [30, 31]. The dependence of the
163 approach on photoactivation further means that turbid material might hamper the efficiency
164 of the dye [32].

165 All these established viability-resolved metagenomic approaches are labor-intensive, require
166 additional reagents and sample processing, and are often biased and lack sensitivity. We
167 here hypothesized that the raw, freely available nanopore signal from metagenomic datasets
168 might be leveraged to infer microbial viability, assuming that the native DNA from dead
169 microorganisms accumulates detectable squiggle signatures due to, e.g., external damage
170 through UV, heat, or drought exposure, the lack of DNA repair mechanisms, or enzymatic
171 degradation activity [33, 34, 35]. Such an analysis framework could be fully computational
172 and utilize squiggle data that is automatically obtained with nanopore sequencing. While raw
173 nanopore data is known to contain information about epigenetic modifications [36, 37, 38]
174 and oxidative stress at specific human telomere sites [39], the applicability to assess
175 microbial viability has not yet been tested.

176 In this study, we produced experimental nanopore sequencing data from viable and UV-killed
177 Escherichia coli cultures to optimize deep neural networks to predict viability just from the
178 nanopore squiggle signal. We then applied explainable Al (XAl) tools, which allow us to
179 identify the specific nanopore signal patterns in the input data that allow the model to deliver
180 high-accuracy predictions as an output. We show that our computational framework can be
181 leveraged in a real-world application to estimate the viability of obligate intracellular
182 Chlamydia suis, pointing towards the applicability of our model across taxonomic boundaries,
183 including to species with highly complex life cycles. We finally explore the limits of our
184 model’s generalizability through antibiotic exposure of a simple mock microbial community,
185 where we had to train a new killing method-specific model to obtain accurate viability
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186 predictions. While the extent of our computational framework’s generalizability needs to be
187 assessed in more detail, we here demonstrate for the first time the potential of analyzing
188 freely available nanopore signal data to infer the viability of microorganisms, with many
189 applications in environmental, veterinary, and clinical settings.

190
191 Results & Discussion
192 Viability model training and inference

193 We generated controlled training data by nanopore sequencing native DNA of viable and
194 dead E. coli (Materials and Methods). We killed E. coli cultures using different stressors to
195 then isolate the extracellular DNA and expose it to natural degradation. We only obtained
196 enough DNA for subsequent shotgun sequencing from the viable culture and from the culture
197 killed through rapid UV exposure (viable: 212 ng/uL; UV: 5.46 ng/uL; heat shock: 0.03 ng/uL;
198 bead beating: 0.67 ng/pL; Materials and Methods). We repeated this experiment and
199 confirmed that rapid heat shock, as well as bead beating exposure, again resulted in very
200 low DNA concentrations, suggesting quick and complete DNA degradation. We hypothesize
201 that UV exposure is the only stressor in our study that simultaneously destroys bacterial cell
202 walls and inactivates DNA-degrading enzymes. In contrast, heat shock at 120°C and bead
203 beating might not uniformly degrade all enzymatic activity [40, 41], potentially allowing
204 residual DNA-degrading enzymes to persist and contribute to the degradation of genomic
205 material during subsequent natural exposure. We therefore created nanopore shotgun
206 sequencing of the viable and the UV-exposed culture, which resulted in 2.92 Gbases (Gb;
207 median read length of 2,476 b) and 2.69 Gb (median read length of 1,606 b) of sequencing
208 output, respectively (Materials and Methods).

209 We then tested the implementation of different neural network architectures to predict the
210 binary viability state from the raw nanopore data (O=viable; 1=dead after UV exposure;
211 Materials and Methods). We processed the E. coli nanopore signal, or “squiggle”, data, cut it
212 into altogether 3,181,600 signal chunks of 10k signals, and separated the chunks into
213 balanced training (60%), validation (20%), and test (20%) set along each original sequencing
214 read to avoid that signal chunks from the same read would end up in the same dataset
215 (Materials and Methods). These signal chunks were then treated as 1D time series signal
216 data of consistent length. We trained the different model architectures using different learning
217 rates (LRs) up to 1,000 epochs, assessing the models’ performance based on training and
218 validation loss after each epoch (Materials and Methods; Table $1; Fig S1). The loss plot of
219 our best-performing model, a residual neural network with convolutional input layers
220 (configuration ResNet1; LR=1e-4; Table S1; Fig S1; Materials and Methods) shows minimal
221 overfitting when the minimum validation loss is reached at epoch 667 (Fig 1A). The other
222 residual neural network architectures (ResNet2, ResNet3), on the other hand, resulted in
223 overfitting to the training data at any LR, and the transformer architecture did not reach the
224 minimum validation loss of ResNet1 (Fig S1). We next only focused on ResNet1 and
225 optimized its probability threshold using the validation set; in order to obtain a high accuracy,
226 we maintained the probability threshold at the default value of 0.5 (Fig 1B), which resulted in
227 a good final performance on the test data with an accuracy of 0.83 and a F1 score of 0.81
228 (Fig 1B, inlet) as well as Area Under the Curve (AUC) values of 0.90 (Area Under the
229 Receiver Operating Characteristic curve; AUROC) and 0.92 (Area Under the
230 Precision-Recall curve; AUPR; Fig 1C).

231
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233 Fig 1. Training and viability inference on UV-killed E. coli of the Residual Neural Network 1 (ResNet1)

234 (A) Model loss for training and validation datasets across 1,000 epochs; the minimum validation loss of ResNet1
235 was reached at epoch 677. (B) Prediction probability threshold optimization on the validation dataset resulted in a
236 probability threshold of 0.5 for obtaining maximum accuracy. Inlet: Performance of ResNet1 on the test dataset
237 (Materials and Methods). (C) Test dataset performance of ResNet1 in terms of Precision-Recall (PR; magenta)
238 and Receiver Operating Characteristic (ROC; green) curves and their respective Areas Under the Curve (AUPR,
239 AUROC).

240

241 We also trained the same residual neural network architecture ResNet1 on the basecalled
242 nanopore data of viable and dead E. coli at a standardized chunk size of 800 b, which
243 roughly corresponds to the signal chunk size of 10k signals (Materials and Methods).
244 Independent of whether we only basecalled the canonical bases or used a
245 N6-methyladenine (6mA) modification-aware basecalling model (Materials and Methods), the
246 model could not be trained to distinguish viable from dead data just from basecalled DNA
247 sequence data (Table S1). This shows that our model captures patterns in the squiggle data
248 that go beyond the encoding of nucleotides and their known epigenetic modifications. While
249 this was expected since we used the same E. coli culture with the same reference genome
250 to create the viable and dead datasets, we can rule out that our squiggle-based model
251 captured any random differences in DNA sequence context between the two datasets that
252 might have occurred by chance.

253

254 We additionally obtained the performance of ResNet1 for different signal chunk sizes (Fig
255 82; Table S1), and we found that viability prediction performance was possible from a
256 minimum chunk size of approximately 5k, but that performance further improved with
257 increasing chunk size. This shows that larger signal chunks contain more information that
258 can be used by our model to make more accurate per-chunk predictions despite a
259 consequently reduced size of the training dataset. We here stick to our original model with a
260 chunk size of 10k signals, which resulted in relatively good performance (Fig 1; Table S1).
261

262 We finally trained two logistic regression models using only the read length and translocation
263 speed per sequencing read as input feature, respectively, to compare the performance of our
264 squiggle-based deep neural network with simple baseline models. Both models substantially
265 underperformed in comparison to our model (Table $1). The read length model performed
266 similarly to a random classifier (accuracy of 0.5; Table S1), showing that the read length
267 distribution difference between the viable and dead sequencing datasets can not be
268 leveraged to infer viability in this dataset. We also argue that while a difference in read length
269 distribution between viable and dead microbes might be expected in other settings, for
270 example after stronger or longer degradation exposure, such a difference would have to be
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271 substantial to allow for accurate viability classifications of each individual sequencing read. In
272 mixed microbial communities, the read length distribution would further be confounded by the
273 microbial composition and the respective genome sizes. The translocation speed model
274 reached a slightly higher accuracy of 0.59 (Table $1), which might be explained by
275 UV-induced twists or kinks in the DNA backbone having a slight impact on the translocation
276 of the sequencing read.

277

278 Explainable Al application

279 We implemented Class Activation Maps (CAM) as an XAl method [42] to identify the most
280 important regions in the nanopore signal data that inform the model’s viability classifications
281 (Materials and Methods; Fig 2A). We found that “dead” signal chunks exhibited discrete
282 regions of increased CAM values (“CAM regions” defined at CAM values>0.8; Fig 2B for
283 several true positive classifications of the test dataset). To confirm the importance of these
284 CAM regions for the model’s final predictions, we applied consecutive masking of the regions
285 with the highest CAM values within each nanopore signal chunk (Fig S3 for several
286 examples); we observed that the prediction probability for being classified as “dead”
287 decreased with increased masking of CAM-relevant regions, either by consecutively masking
288 regions using a consistent mask size or by increasing the mask size (from 100 to 2k signals;
289 Fig 2C). This shows that the CAM application reliably pinpoints patterns in the nanopore
290 signal that are predictive for our viability model.

291 We used the CAM regions to manually investigate the squiggle signals and found that many
292 CAM regions of “dead” signal chunks included a sudden substantial drop in the nanopore
293 signal. We therefore developed a simple algorithm that identifies such sudden drops, and
294 applied this XAl rule to our test dataset (Materials and Methods; Fig 2D). We here classified
295 any signal chunk with at least one sudden drop as “dead”, and all others as “viable”. While
296 this simplified algorithm led to a drop in overall performance, we could still reach a relatively
297 good overall accuracy of 0.68 (in comparison to 0.83 of the full model; Fig 2E). While the XAl
298 rule maintained performance in terms of specificity and precision, we observed a substantial
299 drop in recall in comparison to the full model (now 0.39 instead of 0.74). This shows that
300 while the absence of a sudden drop in the nanopore signal data seems to reliably predict
301 viability, not all “dead” signal chunks contain such a sudden drop. While this sudden-drop
302 detection still seems to be at the core of our model’s interpretability (when focusing on
303 high-confidence true positive chunks at p>0.99, the recall increased to 0.68), the model
304 seems to additionally detect more subtle patterns in the nanopore signal data which allow it
305 to increase recall while maintaining specificity and precision.

306 Based on our previous experience with squiggle data analysis [43, 44], we hypothesize that
307 the substantial sudden drops in nanopore signal might be caused by a twist or kink in the
308 DNA backbone, for example from 6-4 photoproduct pyrimidine dimers. The drop would then
309 mark the event of a pore getting blocked due to such damage. Such a twist could also lead
310 to a stalling signal if it impairs the motor protein from processing the DNA strand, which we
311 indeed partially observed in our data (e.g., top signal chunk of Fig 2B/D). While we here
312 hypothesize that UV exposure might have caused such twists in the DNA backbone, we
313 intend to explore the biological, chemical, and physical features detected by squiggle-based
314 viability models in more detail in future nanopore-based microbial studies.
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316 Fig 2. Explainable Al for interpretability of ResNet1

317 (A) Class Activation Maps (CAMs) leverage the global average pooling (GAP) layer right before the fully
318 connected (FC) layers of the residual neural network to map model interpretability onto the input features; they
319 are generated by aggregating the final convolutional layer's feature maps through a weighted sum, highlighting
320 nanopore signal regions that allow the neural network to make accurate predictions. (B) Exemplary nanopore
321 signal chunks that were classified as “dead” at a prediction probability of p>0.99, and their CAM values. Higher
322 CAM values indicate stronger feature map activations. (C) Impact of consecutive masking (n=5 masking events)
323 of the signal region with the highest CAM value per signal chunk (x-axis) on the model’s prediction probability
324 (y-axis); five different mask sizes (from 100 to 2k signals) were used. (D) Application of a simplified XAl rule that
325 classifies signal chunks according to the presence of a “sudden drop” (Materials and Methods; green: mean
326 signal per chunk; red: threshold for sudden drop definition; yellow: identification of sudden drops in the exemplary
327 signal chunks). (E) Comparison of the performance of the full model (ResNet1) with the simplified XAl rule.
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328
329 Sequencing read-level viability predictions

330 We finally assessed the performance of our viability model on the sequencing read-level
331 instead of on the chunk-level by leveraging the capability of ResNets to handle variable input
332 lengths. When shifting the test dataset analysis from the chunk- to the read-level (Materials
333 and Methods), the prediction performances increased substantially, from an accuracy of 0.83
334 (chunk) to 0.96 (read), and with an improved AUPR of 0.99 (instead of 0.92 on the
335 chunk-level) and AUROC of 0.99 (instead of 0.90 on the chunk-level) (Fig 3A; Table S2).
336 These improvements indicate that the model might be able to use cumulative information per
337 sequencing read to increase overall prediction performance. Additionally, such read-level
338 viability predictions enable inferences from short sequencing reads that had to be excluded
339 from chunk-level analyses; our model achieved good prediction performance on all such
340 previously excluded short reads (in our case, reads shorter than <11.5k signals; n=166,628
341 reads; accuracy: 0.80, AUPR: 0.89, AUROC: 0.87). Given this improved performance,
342 including on previously excluded short sequencing reads, and given that any genomic
343 analysis including taxonomic assignment is usually applied to the unit of the read, we will
344 report all prediction performances in the remaining manuscript on the level of sequencing
345 reads.

346
347 Application to obligate intracellular Chlamydia

348 We next applied our computational viability framework to distinguish viable from dead
349 Chlamydia suis cells, an obligate intracellular bacterial species found endemically in the
350 gastrointestinal tract of pigs with high infection rates in pig farms [45, 46]. Like other
351 members of the Chlamydiacea family, these bacteria are defined by a complex biphasic life
352 cycle comprising infectious elementary bodies and dividing reticulate bodies [47]. These
353 unique properties render both cultivation- and vPCR-based approaches for viability
354 estimations complicated [48]. We here took two samples from a viable C. suis culture as
355 biological replicates (BRs 1 and 2), and subjected them to UV treatment (Materials and
356 Methods). We obtained first insights into their viability using cultivation- and vPCR-based
357 approaches (Materials and Methods). In the case of cultivation, UV-treated C. suis cells were
358 unable to form viable inclusions in cell culture, whereas the untreated samples showed high
359 infectivity with 8.48e7 (BR1) and 6.23e7 (BR2) inclusion forming units per mL (IFU/mL; Table
360 S3). In the case of VPCR, all samples were processed with and without PMA [48] to quantify
361 the respective amounts of chlamydial DNA with a sensitive C. suis-specific gPCR [49, 50]
362 (Materials and Methods). We assessed the difference in copy number per mL between
363 PMA-treated and untreated DNA as Alog10, resulting in 0.82 and 0.81 for the viable
364 samples, and 1.51 and 2.02 for the killed samples (BR1 and BR2, respectively; Table S3).
365 These results are comparable to a previous study in which fresh C. frachomatis culture was
366 heat-killed and an absence of viable Chlamydia resulted in a Alog10 Chlamydia of 3.01
367 whereas a viability ratio of 100% resulted in a Alog10 Chlamydia of 0.37 [48]. Cultivation and
368 VPCR therefore confirmed that UV treatment had completely inactivated previously viable C.
369 suis cells and had strongly reduced the amount of “viable” DNA in both biological replicates.
370 Nanopore sequencing of the viable and dead C. suis cells identified 28,210 viable and 8,771
371 dead (BR1) and 26,643 viable and 14,302 dead (BR2) Chlamydia-classified sequencing
372 reads (Materials and Methods; Table S3).
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373 Our E. coli data-trained ResNet1 model achieved strong sequencing read-level viability
374 prediction performances across both C. suis biological replicates (Materials and Methods). At
375 the previously optimized probability threshold of 0.5, the model achieved an accuracy of 0.93
376 (both BRs), F1 score of 0.87 and 0.90 (BR1 and BR2), precision of 0.80 and 0.85, recall of
377 0.95 and 0.96, and specificity of 0.92 and 0.91, respectively (Table S2). Using
378 threshold-independent metrics, the model achieved an AUROC of 0.97 (both BRs) and an
379 AUPR of 0.94 and 0.96, respectively (Fig 3B). The slightly lower precision obtained by the
380 model’s application to BR1 might stem from a slightly higher ratio of viable reads in this
381 biological replicate (76.3% in BR2 versus 65.1% in BR2). When pooling the model’s viability
382 predictions across the two biological replicates, the percentage of correctly classified
383 sequencing reads (Fig 3C; fop row) and the prediction probability distributions across reads
384 (Fig 3C; bottom row) are comparable with sequencing read-level performances in the
385 original E. coli test dataset (Fig 3C; leff). This shows a certain degree of generalizability of
386 our viability model beyond taxonomic boundaries despite the model being trained only on E.
387 coli data. While both bacterial species are Gram-negative, they substantially differ in their
388 ecology and life cycles, suggesting a potential applicability of deep models to nanopore
389 squiggle data for taxonomy-agnostic viability predictions. The application of XAl to the C.
390 suis sequencing reads further shows that the CAMs also highlight sudden drops in the C.
391 suis squiggle data (Fig 3D), suggesting that UV exposure led to similar damage in both
392 bacterial species. The killing method or, more generally, the source of degradation might
393 therefore be the main determinant of viability-predictive features in nanopore squiggle data.
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395
396 Fig 3. Application of the E. coli-trained ResNet1 to obligate intracellular Chlamydia suis

397 (A) ResNet1 performance on the E. coli test dataset on the chunk-level (dashed) and on the sequencing
398 read-level (solid) in terms of Precision-Recall (PR; magenta) and Receiver Operating Characteristic (ROC; green)
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399 curves and their respective Areas Under the Curve (AUPR, AUROC). (B) ResNet1 performance on the C. suis
400 sequencing reads across two biological replicates (BR1 and BR2; light and dark lines, respectively) in terms of
401 PR (magenta) and ROC (green) curves and their respective AUPR and AUROC. (C) Sequencing read-level
402 comparison of ResNet1 classifications of the E. coli test and the C. suis datasets. Top row: Binary model
403 predictions for viable and dead E. coli and C. suis, respectively, at the optimized prediction probability threshold of
404 0.5; bottom row: respective normalized distributions of model prediction probabilities across all sequencing reads.
405 For E. coli, all 59,171 “viable” and 72,207 “dead” sequencing reads from the test dataset are shown; for C. suis,
406 all 54,853 “viable” and 23,073 “dead” sequencing reads from both biological replicates are shown. (D) Squiggle
407 signal of exemplary C. suis sequencing reads that were correctly classified as “dead”, and their CAM values;
408 higher CAM values indicate stronger feature map activations (Materials and Methods).

409
410 Viability inference after antibiotic exposure of a mock community

411 To test whether our ResNet1 model that was trained on UV-killed E. coli could be used for
412 viability predictions using a a different killing method, we generated two biological replicates
413 (BR1 and BR2) of a mock community of carbenicillin-susceptible E. coli and
414 carbenicillin-resistant Klebsiella oxytoca. Nanopore sequencing of the mock community after
415 carbenicillin exposure resulted in 239,316 and 240,178 E. coli sequencing reads (number of
416 reads mapping to the Escherichia genus in BR1 and BR2), and in 991,019 and 954,602 K.
417 oxytoca sequencing reads for the experiment (number of reads mapping to the Klebsiella
418 genus in BR1 and BR2; Materials and Methods). Across both species and biological
419 replicates, the majority of the sequencing reads were classified as viable (E. coli: 82.2% and
420 76.4%; K. oxytoca: 80.8% and 87.4%, for BR1 and BR2, respectively), showing that ResNet1
421 could not distinguish susceptible from resistant bacteria after antibiotic exposure. This finding
422 supports our hypothesis that the killing method or, more generally, the source of degradation
423 might be the main determinant of viability-predictive features in nanopore squiggle data.

424 We therefore explored if we could train a new model using the same previously optimized
425 ResNet1 architecture to accurately predict viability after antibiotic exposure. We first
426 generated a clean antibiotic exposure training dataset of a single bacterial species by
427 nanopore-sequencing the susceptible E. coli strain before and after exposure; similar to the
428 UV-treated E. coli, we additionally made sure to (i) only sequence cell-free DNA for the dead
429 viability class by stringent centrifugation and filtering of the supernatant, and to (ii) mainly
430 sequence DNA from intact cells for the viable class by only processing the pellet after
431 centrifugation (Materials and Methods). The newly trained antibiotic ResNet1 model
432 achieved a test dataset accuracy of 0.73 on the sequencing read-level, with an AUPR of 0.98
433 and an AUROC of 0.87, and a performance on a heldout biological replicate of 0.68
434 accuracy, with an AUPR of 0.95 and an AUROC of 0.80 (based on 16,810 viable and
435 103,120 dead sequencing reads that were classified as Escherichia; Table S4; Materials and
436 Methods).

437 We then applied this antibiotic ResNet1 model to the antibiotic exposure mock community;
438 this time, the majority of sequencing reads from the susceptible E. coli were classified as
439 dead (75.7% and 75.9%, for BR1 and BR2), while the majority of K. oxytoca was still
440 correctly classified as viable (70.1% and 71.7%). The application of our XAl framework
441 showed that this new antibiotic ResNet1 did not detect any sudden drops in the squiggle
442 data that were previously identified by the UV ResNet1’s CAMs in dead sequencing reads
443 (Fig S4 for a few examples), showing that this new model seemed to have identified different
444 squiggle signatures indicative of degradation through antibiotic exposure. These preliminary
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445 results suggest that our viability model can be tuned to classify viability in different
446 degradation contexts, and that such models can potentially be applied to separate resistant
447 from susceptible bacteria in mixed microbial communities.

448

449 Al- and nanopore-empowered viability-resolved metagenomics

450 While metagenomic approaches provide the unique opportunity of generating de novo
451 assemblies and potentially complete microbial genomes to explore the “microbial dark
452 matter” as well as to infer potential functions such as metabolic and virulence potential [8, 9],
453 they have suffered from their inability to differentiate between viable and dead
454 microorganisms [2, 15]. Such viability inferences can, however, distort any microbial
455 inference, ranging from assessing ecosystem functions of environmental microbiomes to
456 inferring the virulence of potential pathogens. As established viability-resolved metagenomic
457 approaches are labor-intensive as well as biased and lack sensitivity (e.g., 23), we here
458 show first evidence that a fully computational framework based on residual neural networks
459 with convolutional data processing layers can leverage raw nanopore signal data, also
460 known as squiggle data, to make accurate inferences about microbial viability. Using
461 experimentally killed bacterial cultures and a simple mock microbial community, we show
462 that such models can infer viability from sequencing reads at high accuracy, potentially
463 allowing for simultaneous taxonomic and viability classifications in metagenomic datasets.

464 We first leverage microbial degradation through UV exposure to show that such viability
465 models can make accurate predictions in a taxonomy-agnostic manner; a model that has
466 only ever seen E. coli squiggle data can predict viability in UV-exposed Chlamydia at high
467 recall and specificity (>0.9). The application to estimate the viability of pathogenic Chlamydia
468 is hereby of potentially immediate interest to veterinary scientists since traditional methods
469 for assessing the pathogen’s viability have been labor-intensive and suffered from inherently
470 high false negative rates; more research is, however, needed to assess to what extent this
471 model can capture natural degradation in Chlamydia.

472 Our subsequent XAl analyses point to the potential role of UV-induced DNA backbone
473 damage for achieving accurate model predictions in both species; the simplified XAl rule is,
474 however, not sufficient to correctly classify the majority of “dead” signal chunks (recall of
475 0.39), which means that the residual neural network has apparently identified additional more
476 subtle signal patterns that allow the full model to make more sensitive predictions (recall of
477 0.74) while maintaining specificity and precision. More research is therefore needed to fully
478 understand the biological, physical, or chemical underpinnings of our viability model
479 predictions; we, however, anticipate that future experiments for squiggle data generation,
480 including on different taxonomic groups and killing methods, will help us tease apart the
481 origins of our current XAl results.

482 Besides exploring the underlying rules of squiggle signal patterns, the generalizability of such
483 squiggle-based viability models also needs to be assessed in more detail, including for a
484 wider breadth of microbial taxa such as spore-forming bacteria or fungi, and for a variety of
485 degradation sources and intensities. Our preliminary results indicate that our deep model
486 that can accurately predict UV-induced degradation can not distinguish susceptible and
487 resistant bacteria in an antibiotic exposure experiment of a simple mock community. We,
488 however, show that training the same residual neural network architecture on newly
489 generated killing method-specific squiggle data can achieve good accuracy in the respective
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490 mock community (>0.7). While this application shows the limits of our current models’
491 generalizability, we also argue that clinical metagenomics might already profit from such
492 antibiotic-specific viability inferences: As previously discussed, certain disinfection methods
493 or systemic antibiotics in the clinical setting often kill the bacteria before the DNA is
494 destroyed [15, 17], leading to potential false-positive pathogen detections using
495 metagenomics; our viability model could give additional information on the antibiotic
496 exposure’s impact, and confidence could be increased by accumulating viability evidence
497 across sequencing reads per pathogen of interest. In addition, we hypothesize that models
498 could be trained to detect damage induced by suboptimal antibiotic usage, which has been
499 implicated in the emergence of new antibiotic resistances [51].

500 In order to achieve true metagenomic applications in the future, the training data of a single
501 model could be diversified in terms of taxonomy and degradation, potentially increasing the
502 generalizability of its viability inferences. We also anticipate that quantitative Al modeling has
503 the potential to inform more differentiated viability assessments, which might help quantify or
504 time degradation events, and even decipher the relevance of dormancy and metabolic
505 inactivity in metagenomic studies [52, 53]. We envision many potential benefits of such a
506 widely applicable computational framework for microbial viability inference, including for
507 applications in environmental, veterinary, and clinical settings. As is the case for epigenetic
508 inferences [36, 37, 38], the viability inference-enabling squiggle data is a complementary
509 output of any nanopore sequencing experiment of native DNA (and RNA), that is then
510 usually basecalled and archived for future re-basecalling after potential basecalling model
511 improvements. This means that any future nanopore-based metagenomic study could make
512 viability predictions for free without additional costs and laboratory work, and that any
513 existing archived nanopore data could be assessed in terms of its microorganisms’
514 viability—which would allow us to quantify the impact of dead microorganisms on
515 metagenomic analyses in a diversity of datasets and ecological settings, and to further
516 explore factors such as species- and environment-specificity.
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517 Materials and Methods

518

519 Viability inference explorations in UV-exposed E. coli
520 1) Training data generation

521 We cultured E. coli K12 in 200 mL Luria-Bertani (LB) medium for 24 hours at 37°C to reach
522 the log phase of the growth curve. The culture was then used to inoculate four 200 mL LB
523 media in 1 L Erlenmeyer flasks, which were again incubated for 24 hours to reach the growth
524 log phase. One of the media was used as viable control, i.e. DNA was extracted from 750 uL
525 of the living culture using the spin-column-based QIAGEN PowerSoil Pro Kit (QIAGEN,
526 2018, Hilden, Germany), following the manufacturers’ instructions. The remaining three
527 cultures were killed by one of the following stressors: UV irradiation at 254 nm for 15 min,
528 heat shock at 120°C for 5 min, or bead beating for 30 min. To then separate extracellular
529 DNA from cell debris and intact bacterial cells, we centrifuged the media for 10 min at 4,000
530 X g and filtered the supernatant through 0.2 um filters. The resulting extracellular DNA was
531 subsequently kept at room temperature for 5 days to simulate the natural accumulation of
532 DNA degradation. DNA from dead bacteria was extracted from these samples using the
533 same extraction approach following the QIAGEN PowerSoil Pro Kit protocol, but the first lysis
534 buffer step was omitted since cell lysis had already happened.

535 We then used Oxford Nanopore Technologies’ Rapid Barcoding library preparation kit
536 (RBK114-24 V14), R10.4.1 MinlON flow cells, and MinKNOW software v23.04.5 for shotgun
537 nanopore sequencing of the “viable” and “dead” DNA. We used four barcodes for each
538 sample, resulting in DNA input of 800 ng and 218 ng for the preparation of the “viable” and
539 “dead” library, respectively. We ran each library for 24 h, using two different flow cells to
540 avoid any cross-contamination, and filtered the resulting nanopore data at a minimum read
541 length of 20 b. Raw nanopore data was created using the standard translocation speed of
542400 b/s and a sampling frequency of 5 kHz. We applied Dorado
543 (https://github.com/nanoporetech/dorado) SUP-basecalling model v4.2.0
544 (dna_r10.4.1_e8.2 400bps_sup@v4.2.0) and 6mA-aware SUP-basecalling (6mA@v1) to all
545 nanopore reads that had passed internal data quality thresholds to obtain E. coli DNA
546 sequence data. We subsequently removed sequencing adapters and barcodes using
547 Porechop v0.2.3 (https://github.com/rrwick/Porechop).

548 2) Model training

549 We tested the implementation of different residual neural networks and transformer
550 architectures to predict the binary viability state from the raw nanopore data (O=viable;
551 1=dead). The first residual neural network, ResNet1, consists of four layers, each containing
552 two bottleneck blocks. Each bottleneck block consists of convolutional layers, batch
553 normalization, and a rectified linear unit (ReLu) activation function. Each of the four layers
554 consists of an increasing number of convolutional channels: 20, 30, 45, and 65, respectively,
555 followed by global average pooling and a fully connected layer, resulting in 66,916
556 parameters. The model then uses a softmax function to convert logits, the raw outputs from
557 the fully connected layer, into predicted probabilities ranging from 0 to 1. We evaluated the
558 training of the model using the Adam optimizer for mini-batch gradient descent at three
559 different LRs (1e-3, 1e-4, and 1e-5), training the model up to 1,000 epochs and at a batch
560 size of 1,000 signal chunks. We initialized the model using Kaiming initialization. For
561 ResNet2, we increased the number of convolutional channels to 40, 60, 90, and 135,
562 respectively, resulting in 1,828,777 parameters. For ResNet3, we increased the number of
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563 convolutional channels to 512, 30, 45, and 67, respectively, resulting in 2,479,140
564 parameters. The transformer model was based on a positional encoding, a convolutional
565 layer with a channel number of 24, and one block of one attention head, resulting in 219,586
566 parameters.

567 We processed the E. coli squiggle data by excluding the first 1,500 signal points (potential
568 noise, adapter sequences, or barcodes), then cutting it into signal chunks of 10k signals, and
569 separated the chunks into balanced training (60%), validation (20%), and test (20%) set
570 along each original sequencing read to avoid that signal chunks from the same read would
571 end up in the same dataset. We pooled the viable and dead signal chunks to obtain exactly
572 balanced training, validation, and test sets. For normalizing each chunk, we subtracted the
573 median per chunk and divided it by the median absolute deviation (MAD) to make the signal
574 data robust to outliers. We then scaled the signal by the MAD scaling factor 1.4826 and
575 replaced outliers exceeding 3.5 times the scaled MAD by the mean of their two neighboring
576 values.

577 We also trained ResNet1 on the basecalled nanopore data (with or without 6mA basecalling)
578 of viable and dead E. coli at a standardized chunk size of 800 b, which roughly corresponds
579 to a signal chunk size of 10k signals. For encoding, we used a one-hot encoding method to
580 turn DNA sequences into unique binary vectors. We then concatenated and saved these
581 encoded sequences as tensors for training and testing. We finally trained ResNet1 on signal
582 chunks of different signal lengths, ranging from 1k to 20k signals.

583 For logistic regression training, we used the LogisticRegression class from scikit-learn v1.2.2
584 with default parameters.

585 3) Explainable Al

586 We utilized CAMs to identify and visualize signals regions that influenced the model's
587 decision-making. As feature maps from the final convolutional layer undergo a global
588 average pooling layer where each map is averaged and concatenated, we can calculate the
589 weighted sum of these feature maps using the weights of the fully connected layer and
590 project it back onto the preprocessed signal [42]. To do so, we implemented CAM in
591 Python/PyTorch. During the forward pass, we ensure that the feature maps from the last
592 convolutional layer are captured. To compute the CAM, we use the weights of the model's
593 output layer for the class of interest, multiplying these weights with the corresponding feature
594 maps and then summing them up. We convert the resulting CAM to an array and normalize
595 its values to a range of 0 to 1. We then overlay the CAM on the original input signal to
596 identify the regions most influential in the model's decision-making process. We additionally
597 used the Remora API to match raw nanopore data to the corresponding Dorado-basecalled
598 bases, to then manually investigate any obvious sequence abnormalities in the CAM regions.

599 For consecutive masking of the CAM regions with the highest CAM values, we used Python
600 to first obtain and normalize the CAM values of all true-positive signal chunks at p>0.5
601 (n=286,179), identify the maximum value, mask the signal region (i.e., setting to zero after
602 MAD-normalization) at a specified mask size (between 100 and 2k signals) centered around
603 the maximum-CAM signal, and obtain updated prediction probabilities. We repeated this
604 masking step five times and calculated the confidence interval at each masking step: We
605 obtained the mean and Standard Error of the Mean (SEM) of the newly calculated prediction
606 probabilities across all signal chunks to calculate the 95% confidence interval at mean + 1.96
607 * SEM. We plotted the results using matplotlib.
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608 We next used Python to develop an algorithm to obtain a simplified XAl rule to distinguish
609 “dead” from “viable” signals chunks based on our CAM results by identifying the presence of
610 at least one sudden drop in the chunk. To identify those sudden drops, we first calculated the
611 mean and standard deviation (SD) of each signal chunk, and found that a scaling factor of 3
612 identified most manually detected sudden drops at a vertical threshold of mean - 3 * SD.

613 4) Sequencing read-level inferences

614 To evaluate read-level performance, we leveraged the inherent flexibility of ResNet
615 architectures to handle variable-length input. Prior to all read-level analyses, we removed
616 chimeric reads using information from Dorado basecalling. Dorado splits chimeric reads and
617 tags the resulting child reads with a “pi” tag (parent_read_id) in the BAM file, indicating their
618 origin from an unsplit read. Using the pysam Python package, we extracted the read IDs of
619 the reads carrying the “pi” tag to exclude chimeric reads from our downstream inference
620 analysis. The non-chimeric reads were subsequently filtered according to Kraken2
621 v2.1.4-based taxonomic assignment to the Escherichia genus [54]. All sequencing read-level
622 inferences were made only on non-chimeric, correctly taxonomically classified (on the genus

623 level) reads.
624
625 Application to obligate intracellular Chlamydia

626 The Chlamydia suis strain S45 (kindly provided by J. Storz, Baton Rouge, LA, USA) was
627 cultured as described by Leonard et al. [55]. Briefly, chlamydiae were grown in the epithelial
628 rhesus monkey kidney cell line LLM-MK2 (provided by IZSLER, Brescia, ltaly) and prepared
629 as semi-purified stock by scraping infected cells into the supernatant and removal of cellular
630 debris by centrifugation at 500 g for 10 min. Chlamydiae were then pelleted (10°000 x g, 45
631 min) and resuspended in sucrose phosphate glutamate buffer (SPG). To determine the
632 viability of this stock, one aliquot was thawed on ice and separated into two tubes of which
633 one was UV-inactivated using a Hoefer UVC 500 Ultraviolet Crosslinker (Hoefer Inc.,
634 Bridgewater MA 02324, United States): Briefly, samples were kept on ice and exposed to 8
635 watts of UV light at 12.5 cm for 30 min, similar to previously described protocols [56]. All
636 samples were prepared in biological duplicates. UV-inactivated chlamydia were then further
637 incubated at room temperature for 48 h prior to further processing, while viable chlamydiae
638 were immediately processed. The resulting four samples were divided into subsamples and
639 used for cultivation, vPCR, and nanopore sequencing.

640 For viability determination by culture, subsamples (approximately 1e7 IFU) were used to
641 infect four glass coverslips (13 mm in diameter, ThermoScientific, Waltham, MA, USA) in
642 24-well plates (TPP Techno Plastic Product AG, Trasadingen, Switzerland) seeded to
643 confluence with LLC-MK2 cells [57]. For the “viable” subsamples, a 1:1000 dilution was
644 performed prior to inoculation. The infection was then enhanced by centrifugation for 1 h at
645 25°C (1000 x g). After 48 h of incubation at 37°C (5% CO,), cultures were fixed for 10 min in
646 ice-cold methanol. If cultures were free of chlamydiae, one well was scraped and transferred
647 to fresh monolayers up to three times to confirm negativity as described [58]. Coverslips
648 were then processed using a well-established immunofluorescence assay [59]. Briefly, DNA
649 was stained with 1 pyg/mL 4', 6-diamidino-2’-phenylindole dihydrochloride (DAPI, Molecular
650 Probes, Eugene, OR, USA). In parallel, inclusions were labeled with a
651 Chlamydiaceae-specific primary antibody (Chlamydiaceae LPS, Clone ACI-P; Progen,
652 Germany), which was diluted 1:200 in blocking solution consisting of 1% bovine serum
653 albumin (BSA, St. Louis, MO, USA) in phosphate-buffered saline (PBS, GIBCO, Invitrogen,
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654 Carlsbad, CA, USA). Inclusions were visualized with Alexa Fluor 488 goat anti-mouse
655 (Molecular Probes) diluted 1:500 in blocking solution. As a final step, coverslips were
656 washed with PBS, mounted with FluoreGuard (Hard Set; ScyTek Laboratories Inc., Logan,
657 UT, USA) on glass slides, and inclusions determined using a Leica DMLB fluorescence
658 microscope (Leica Microsystems, Wetzlar, Germany) and a 10X ocular objective (Leica
659 L-Plan 10x/ 25 M, Leica Microsystems). In parallel, a three-fold dilution series of the sample
660 was performed in 96-well plates (TPP) and processed as above. The number of IFU/mI for
661 the whole samples was then calculated based on the number of inclusions detected using
662 the Nikon Ti Eclipse epifluorescence microscope (Nikon, Tokyo, Japan) at a 20X
663 magnification [57].

664 For vPCR, subsamples (approximately 2e7 IFU) were taken and mixed with 200 ul SPG and
665 100 ul PMA enhancer for Gram Negative Bacteria (5X, Biotium, Fremont, CA, USA). PMAXxx
666 (Biotium) at a final concentration of 50 uM was added (“PMA-treated”) or not (“untreated”) to
667 the subsamples. Samples were then exposed to a 650-W light source using a PMA-Lite LED
668 Photolysis Device (Biotium) for 5 min, followed by 2 min on ice and additional light exposure
669 for 5 min [48]. For vPCR as well as nanopore sequencing (subsamples with approximately
670 5e8 IFU), DNA was extracted using the DNeasy® Blood and Tissue Kit (QIAGEN, Hilden,
671 Germany) according to the manufacturer’s instructions. The amount of chlamydial DNA was
672 quantified with a sensitive C. suis qPCR [60], based on a standard curve with recombinant
673 plasmid containing the amplicon target and calculated for the whole sample. For subsequent
674 nanopore sequencing of the DNA extracts (viable: 13-16ng/uL; dead: 1.9-2.8 ng/uL), we
675 followed the same approach as described for E. coli above. Each viable sample was
676 sequenced using one barcode (input volume of 10L) and each dead sample using three
677 barcodes (input volume of 30puL). Sequencing reads were processed following the same
678 steps used for the E. coli dataset. Chimeric reads were identified using the 'pi' tag added by
679 Dorado and removed with the pysam Python package. Adapter and barcode trimming was
680 performed using Porechop, and taxonomic classification was conducted with Kraken2 v2.1.4,
681 retaining only reads classified as Chlamydia.

682
683 Antibiotic exposure experiment

684 To generate data from a simple mock community, a carbenicillin-susceptible E. coli strain and
685 an ESBL-producing Klebsiella oxytoca strain (ATCC 700324) were cultured on Muller-Hinton
686 (MH) agar at 37 °C for 20 hours in two biological replicates. Susceptibility to penicillin as an
687 approximation of carbenicillin resistance was confirmed by VITEK2 and growth curve
688 analysis at 100 and 200ng/uL. Species identity was confirmed by MALDI-TOF MS and
689 MLST. Cultures were inoculated at OD600=0.01 in 10mL MH broth and incubated for 5
690 hours. Carbenicillin (200ng/uL) was added during logarithmic growth, followed by 20 hours
691 of further incubation. DNA was extracted directly from 250 yL of uncentrifuged culture using
692 the same DNA extraction approach as described for UV-exposed E. coli.

693 To generate clean training data for an antibiotic exposure-specific model, two biological
694 replicates of the same E. coli strain were used. For the viable samples, DNA was extracted
695 from centrifuged pellets (4000 x g, 10 min) before antibiotic treatment, respectively. For the
696 dead samples, DNA was extracted from the filtered supernatant (0.2um) 20 hours after
697 carbenicillin exposure using the same DNA extraction approach as described for
698 UV-exposed E. coli.
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699 Nanopore sequencing and data processing were done as described for E. coli above. All
700 inferences were done on the sequencing read-level and restricted to non-chimeric reads
701 classified as Escherichia or Klebsiella, respectively. Model training was also done as
702 described above, using the optimized ResNet1 architecture, but chunk size was set to 5k
703 instead of 10k signals to increase the size of the training dataset. The final dataset consisted
704 of 330,000 chunks for training, 110,000 for validation, and 110,000 for testing. The model
705 was trained for up to 600 epochs using the Adam optimizer with a learning rate of 1e-5. The
706 best validation accuracy was achieved at epoch 550.

707
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903 Supporting information

904 Table S1. UV-killed E. coli viability inferences of deep neural network and logistic regression models

905 Test dataset performance metrics of residual neural networks (“ResNet”), transformer architectures, and logistic
906 regression models, trained on various data modalities (nanopore squiggle “Signal” or basecalled DNA
907 “Nucleotide” sequence) at various signal chunk sizes (“Length”), and on sequencing read length or translocation
908 speed (“Trans speed”).

" Model Data Length  Accuracy F1 Precision Sensitivity  Specificity ¥ AUROC AUPR
Architecture  Modality
ResNet1 Signal 10K 0.83 0.84 0.78 0.91 0.74 0.90 0.87
ResNet2 Signal 10K 0.83 0.85 0.77 0.94 0.72 0.89 0.86
ResNet3 Signal 10K 0.81 0.82 0.76 0.89 0.72 0.87 0.83
Transformer Signal 10K 0.79 0.82 0.73 0.92 0.67 0.86 0.82
ResNet1 Nucleotide 800 0.51 0.51 0.51 0.52 0.50 0.52 0.53
(A,C,G,T)
ResNet1 Nucleotide 800 0.51 0.50 0.51 0.50 0.52 0.51 0.51
(A,C,G,T, M)
ResNet1 Signal 1K 0.58 0.65 0.55 0.80 0.35 0.61 0.58
ResNet1 Signal 5K 0.71 0.76 0.66 0.89 0.54 0.78 0.73
ResNet1 Signal 7K 0.77 0.79 0.72 0.88 0.65 0.83 0.79
ResNet1 Signal 12K 0.84 0.85 0.77 0.97 0.71 0.91 0.88
ResNet1 Signal 20K 0.89 0.90 0.85 0.95 0.83 0.94 0.91
Regression Read length  NA 0.50 0.00 0.00 0.00 1.00 0.56 0.56
Regression Trans speed NA 0.59 0.55 0.61 0.50 0.68 0.63 0.59
910
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911 Table S2. Sequencing read-level viability inferences of UV ResNet1
912 Performance metrics across sequencing reads of the ResNet1 model trained on UV-killed E. coli for the E. coli
913 test dataset, and two biological replicates (BR1 and BR2) of UV-killed and viable Chlamydia suis. The number of
914 total reads is the number of sequencing reads after processing of the nanopore sequencing data by Porechop;
915 the number of genus-classified reads is the number of sequencing reads that map to the Escherichia or
916 Chlamydia genus, respectively, using Kraken2 (Materials and Methods).

917
Metric E. coli test dataset C. suis BR1 C. suis BR2
#total reads 140,268 63,935 76,418
#genus-classified reads 131,378 36,981 40,945
Accuracy 0.96 0.93 0.93
F1 Score 0.96 0.87 0.90
Sensitivity 0.94 0.80 0.85
Specificity 0.97 0.95 0.96
Precision 0.98 0.92 0.91
AUPR 0.99 0.97 0.97
AUROC 0.98 0.94 0.96
918
919

920 Table S3. Cultivation, viability PCR (vVPCR) and nanopore sequencing metrics of UV-killed Chlamydia suis.
921 Cultivation titer in number of Inclusion Forming Units (IFUs) per mL; PMA-untreated vPCR reflecting total
922 Chlamydia content, PMA-treated vPCR reflecting viable Chlamydia content, and Alog10 of the PMA-treated copy
923 number divided by the PMA-untreated copy-number reflecting overall viability; total number of nanopore
924 sequencing reads after Porechop-processing, and number of Chlamydia-classified reads using Kraken2
925 (Materials and Methods), of two biological replicates (BR1 and BR2) of viable and dead C. suis.

926

Condition Titer PMA-untreated PMA-treated Alog10 of #total #genus-clas
[IFU/mL] VvPCR [copy VPCR [copy viability reads sified reads
number per number per ratio
mL] mL]
viable BR1 8.48¢’ 9.63e’ 1.47¢’ 0.82 37,439 28,210
dead BR1 0 7.16¢€° 2.23¢* 1.51 26,496 8,771
viable BR2 6.23e’ 9.15¢’ 1.24¢’ 0.81 34,444 26,643
dead BR2 0 1.03¢° 9.81e® 2.02 41,974 14,302
927
928
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929 Table S4. Sequencing read-level viability inferences of antibiotic exposure ResNet1

930 Performance metrics across sequencing reads of the ResNet1 model trained on antibiotic-exposed E. coli for the
931 E. coli test dataset, and a heldout biological replicates (BR). The number of E. coli reads is the number of
932 sequencing reads after processing of the nanopore sequencing data by Porechop and mapping to the
933 Escherichia genus using Kraken2 (Materials and Methods).

934
Metric Test dataset BR
#E. coli reads 49,781 119,930
Accuracy 0.73 0.68
F1 0.82 0.78
Sensitivity 0.71 0.66
Specificity 0.87 0.80
Precision 0.98 0.95
AUPR 0.98 0.95
AUROC 0.87 0.80
935
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937 Fig S1. Training and validation loss across deep neural network architectures tested for nanopore
938 squiggle signal-based viability inference

939 (A-C) Model loss of ResNet1 at learning rates (LRs) of 1e-3, 1e-4, and 1e-5; (D-F) model loss of ResNet2 at LRs
940 of 1e-3, 1e-4, and 1e-5; (G-1) model loss of ResNet3 at LRs of 1e-3, 1e-4, and 1e-5; and (J-L) model loss of the
941 transformer models at LRs of 1e-3, 1e-4, and 1e-5. The solid blue line indicates the training loss, the solid red line
942 indicates the validation loss, and the dashed line indicates the minimum validation loss from the final ResNet1,
943 LR=1e-4, model.
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946 Fig S2. Training and validation loss of ResNet1 at various signal chunk sizes

947 The signal chunk size varies from (A) 1k, (B) 5k, (C) 7k, (D) 10k, to (E) 12k and (F) 20k. The solid blue line
948 indicates the training loss, the solid red line indicates the validation loss, and the dashed line indicates the
949 minimum validation loss from the final ResNet1model using a signal chunk size of 10k.
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951 Fig S3. Exemplary drops in ResNet1 prediction probabilities in nanopore signal chunks after consecutive masking of the signal region with the respectively
952 highest CAM value. Figure headers: signal chunk ID / total number of masked signal values / prediction probability per signal chunk “prob”. Left to right: Five exemplary
953 nanopore signal chunks (length of 10k signals). Top to bottom: Consecutive masking of 200 signal values per masking event (Materials and Methods). Legends: Red-colored
954 CAM value visualizations; higher CAM values indicate stronger feature map activations.
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956
957 Fig S4. Exemplary nanopore signal patterns of antibiotic-killed E. coli sequencing reads
958 visualizations; higher CAM values indicate stronger feature map activations.
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