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Abstract

The success of clinical trials of longevity drugs relies heavily on identifying in-
tegrative health and aging biomarkers, such as biological age. Epigenetic aging
clocks predict the biological age of an individual using their DNA methylation pro-
files, commonly retrieved from blood samples. However, there is no standardized
methodology to validate and compare epigenetic clock models as yet. We propose
ComputAgeBench, a unifying framework that comprises such a methodology and
a dataset for comprehensive benchmarking of different clinically relevant aging
clocks. Our methodology exploits the core idea that reliable aging clocks must be
able to distinguish between healthy individuals and those with aging-accelerating
conditions. Specifically, we collected and harmonized 66 public datasets of blood
DNA methylation, covering 19 such conditions across different ages, and tested
13 published clock models. Additionally, we compiled 46 separate datasets to
facilitate the training of new aging clocks. We believe our work will bring the fields
of aging biology and machine learning closer together for the research on reliable
biomarkers of health and aging.
Code: https://github.com/ComputationalAgingLab/ComputAge
Dataset: https://huggingface.co/datasets/computage/computage_bench

1 Introduction

Longevity drugs (a.k.a., geroprotectors) appear to be on the brink of entering clinical practice to
slow down or reverse the features of aging [1, 2]. The research community is yet to identify proper
biomarkers of aging and rejuvenation that could be used as clinical trial endpoints instead of or in
combination with observations on patient lifespans [3]. Biological age (BA) has been proposed as one
of such surrogate biomarkers of aging, defined as a generalized measure of human health compared to
the average health of individuals at a given age within a population [4, 5]. Thus, if an individual has a
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Figure 1: ComputAgeBench: benchmarking various epigenetic aging clock models. For a dataset X ,
obtained by profiling DNA methylation at CpG sites in bulk blood samples, an aging clock model f is
trained to distinguish healthy individuals from those with pre-defined aging-accelerating conditions.

biological age of 40 at the chronological age of 30, it is assumed that their overall health corresponds
to that of an average 40-year-old in the population. This relationship can be concisely expressed as

B = C +∆ , (1)

where B represents biological age, C denotes chronological age (i.e., time since birth), and ∆
symbolizes BA acceleration (or deceleration, if negative).

In general, BA can be estimated from a set of biomarkers X with a model (algorithm) f : X → B,
also called an aging clock. However, BA is latent: it has no ground truth value that can be measured
directly and then used to train an aging clock model f in a classical supervised fashion, making
clock validation a nontrivial task [6]. This obstacle forces researchers to introduce various additional
assumptions about the aging clock behavior [7–10], as well as to experiment with different machine
learning models (including penalized linear regressions, such as ElasticNet, support vector machines,
decision trees, transfomer-based neural networks, etc. [10, 11]) and underlying types of data X [12–
14]. The vast majority of aging clocks, though, rely primarily on DNA methylation data, also called
epigenetic aging clocks [15–19]. Summarizing abundant discussions about a “good” mathematical
description of BA in the literature [1, 10, 20], we elicited four of its defining properties, formalized
as follows.

Let X ∈ Rp, where p is the number of biomarkers in data, B ∈ R, and f : X → B. Given the aging
acceleration ∆ = B − C, the following four properties hold:

1. B is expressed in the same time units as C;
2. ∆ allows distinguishing between healthy individuals and individuals with aging-accelerating

or decelerating conditions (AACs or ADCs), such as severe chronic diseases;
3. B helps to predict the remaining lifespan better than C does [20];
4. B helps to predict the time to onset of chronic age-related diseases (e.g., the Alzheimer’s)

better than C does [20].

Garnered together, these properties motivated us to construct a benchmarking methodology for
validating the potential biological age predictors. In property №1, the model f should output age
values in a biologically meaningful range, comparable with a typical lifespan, e.g., from 0 to 120
years for the humans. This property is trivial, but necessary to differentiate biological age from other
possible aging scores. To investigate if a model f satisfies the 2nd property, we can define a panel of
aging-accelerating (or decelerating) conditions and test if the predicted ∆ allows distinguishing the
individuals with an AAC/ADC from a healthy control group, according to an appropriate statistical
test. To validate the compliance with the 3rd and the 4th properties, one also needs data on mortality
and multi-morbidity. That is, the information about the timing of death or the onset of chronic
age-related diseases, along with a prior measurement of a set of relevant biomarkers. It is important
to note that such data are highly sensitive and are generally not publicly available.

DNA methylation (DNAm) is the most prevalent measurement employed in the construction of aging
clocks [21]. From a chemical point of view, DNA methylation refers to a covalent modification
of DNA nucleotides by the methyl groups [22]. Specifically, cytosine nucleotides (C) followed
by guanine nucleotides (G), also referred to as cytosines in a CpG context or simply CpG sites
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(CpGs), are methylated most often in the mammalian cells, making it the most well-studied type of
DNA methylation [23] (refer to Figure 1 for visualization of the DNA and CpGs). This epigenetic
modification plays a crucial role in regulating gene expression and is engaged in a variety of cellular
events, varying significantly across different species, tissues, and the lifespan. DNA methylation levels
per site are usually reported quantitatively as beta values that represent the methylation proportion
at a specific CpG site in the range from 0 to 1, where 0 indicates no methylation, and 1 indicates
complete methylation across all the cells in the sample (Figure 1).

Importantly, despite the numerous recent publications of various aging clocks [4, 10, 21], including
the ones built on DNA methylation, no systematic open-access benchmark, which would include
a standardized panel of datasets, diseases, interventions, or other conditions, has been proposed
to date to validate the aforementioned properties. In this paper, we introduce such a benchmark
to validate the 1st and the 2nd properties in epigenetic aging clocks. To do this, we developed a
methodology for identifying aging-accelerating conditions, which relies on simple, yet strict and
evidence-based principles for defining and selecting a panel of aging-accelerating conditions. We
collected an unprecedented number of DNA methylation datasets for the respective conditions from
dozens of published studies. 66 of these datasets are intended for clock benchmarking, while the other
46—to facilitate the training of new epigenetic clocks. We also developed a cumulative benchmarking
score that aggregates two error-based tasks and two simple, but informative tasks based on common
statistical tests. Ultimately, this cumulative score enables comparing aging clock ability to satisfy the
1st and the 2nd properties stated above.

To demonstrate our methodology in a clinically relevant scenario, we specifically focused on the
blood-, saliva-, and buccal-based epigenetic biomarkers obtained via a microarray-based technology.
Such biomarkers are widespread in clinical testing and aging clock construction [10, 24]. We then
examined 13 published epigenetic clocks and provided their benchmarking results.

2 Related work and Background

2.1 Aging clock construction methodology

Because the BA ground truth values cannot be measured, and, therefore, a direct validation of aging
clocks is problematic, previous studies introduced various approaches to construct aging clocks
with different underlying assumptions. The most widespread one, belonging to the so-called “first-
generation aging clocks”, uses an assumption that a model f can be trained to predict chronological
age, i.e., C = Ĉ + ε = f(X) + ε, and its predictions will correspond to BA: B = Ĉ. The simplicity
of this approach has made it attractive for decades, and it is still used today to train new aging clocks
on new types of data [25–29]. In fact, BA obtained by this approach can satisfy the 2nd [8] and
the 3rd [30] properties from our definition. However, using this assumption in Eq. (1) leads us to
the conclusion that ε = −∆. It then turns out that the perfect solution of the chronological age
prediction problem, i.e., minimizing the prediction error so that ε → 0, leads to the inability of a
clock to identify any aging acceleration or deceleration. Namely, it implies that ∆ → −0, which is
also known as the biomarkers paradox [7, 31] (refer to Sluiskes et al. [6] for a more recent review).
Supporting this concept, it has been shown that the clocks featuring strong correlation with the
chronological age poorly correlate with the population mortality [32] (hence they fail to satisfy the
3rd property). As a consequence, validating clock performance in terms of accuracy of chronological
age prediction becomes meaningless, because high accuracy may not necessarily correspond to a
biologically relevant clock. Despite the obvious methodological challenges of this approach, the vast
majority of aging clocks belong to the first generation [6].

Seeking for a better solution, researchers experimented with survival models, which led to the
development of "second-generation aging clocks". In this approach, models are trained to predict time
to death [16, 17, 33], and the resulting prediction is rescaled to age units to represent BA, therefore
addressing the 3rd and the 4th properties of a "good" BA estimator. However, there is no open
large-scale DNA methylation data containing time-to-death or multi-morbidity measurements, with
existing studies being either available upon an authorized request or being held completely private
(see Appendix A.8).
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2.2 Attempts to compare epigenetic aging clocks

Despite reported attempts to compare the performance of different aging clocks, a benchmark with
a standardized panel of datasets, diseases, interventions, or other conditions has not been proposed
yet. As a result, different comparative studies employ widely varying validation data and approaches
[1, 19, 30, 34–40]. As highlighted in a recent review on biomarker validation by Moqri et al. [1],
“for a reliable comparison across studies, . . . biomarker formulations should be established ‘a priori’
and not be further modified during validation”. In the same line of thought, we propose to define a
standardized and a justified procedure for clock benchmarking before constructing any predictive
model.

Two approaches we propose as essential tasks in our benchmark entail related prior art. For example,
Porter et al. [41] and Mei et al. [34] used one-sample or two-sample aging acceleration tests for
clock validation. Ying et al. [19] employed two-sample tests across multiple aging clocks. These
authors implicitly tested the 2nd property of “good” aging clocks discussed above. Likewise, there
were also attempts to test the 3rd and the 4th properties separately. In some works, including
the recently updated pre-print of Biolearn [42], a Python-based framework for clock training and
testing in ongoing development, authors performed Cox Proportional Hazards analysis and calculated
hazard ratios with statistical significance to test if BA estimates of selected clocks are capable of
predicting all-cause mortality or the onset of age-related diseases (e.g., cardiovascular events) [30, 35–
37, 40, 42]. However, these prior studies are either small-scale in terms of tested diseases [19],
limited to predicting the chronological age only [38], lack standardized procedures for selecting data
and conditions for clock comparison and compare only a small number of models [34, 41], or rely
on mortality and disease data that are under restricted access [42]. Therefore, while developing our
methodology, we attempted to mitigate all mentioned drawbacks, while balancing between framework
simplicity, open source, and clinical relevance.

3 Benchmarking Methodology

An infographic overview of the proposed benchmarking of aging clocks is shown in Figure 2.

3.1 Criteria for selecting aging-accelerating conditions

In the context of clock benchmarking, we propose to define an aging-accelerating condition (AAC)
as a biological condition that satisfies the following three criteria (Figure 2B). First, having an AAC
must lead to decreased life expectancy (LE) compared to the general population, even when treated
with existing therapies. Second, an AAC must be chronic (to safely assume that it has sufficient time
to drive observable changes in DNAm). And third, an AAC must manifest systemically, so that it can
be expected to affect DNAm in blood, saliva, and buccal cells (hereafter referred to as BSB).

Importantly, the decrease in LE and the corresponding increase in mortality must result mainly from
intrinsic organismal causes rather than from socioeconomic factors and self-destructive behaviors
related to a given condition. The second criterion is aimed at excluding short-term conditions such
as acute infectious diseases, stressful events, and other confounding DNAm-alternating accidents,
whose effects might not induce significant changes in DNAm data obtained from BSB, or, on the
contrary, might last too briefly to be reliably detected. The third part of the AAC definition precludes
us from considering events with long-lasting and life-threatening consequences that might be difficult
to observe in BSB-derived data. For instance, a bone fracture (unless it is a critical bone marrow
reserve) or some types of malignancies.

Conversely, an aging-decelerating condition (ADC) is defined as a condition that increases LE,
compared to the general population, and features the same second and third criteria as an AAC.
With human data, however, the ADCs are difficult to determine, as the human lifespan-increasing
interventions are yet to emerge. To avoid ambiguous interpretation, we omitted such conditions in
our benchmarking of human aging clocks (see Appendix A.4 and Table A1 for more details).

3.2 Criteria for dataset selection

Aiming to provide a comprehensive, easily accessible, and clinically relevant toolbox for the ongoing
research on human epigenetic clocks, we relied on the following five criteria while performing the
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1. Open access to pre-processed data
2. Sample sources: blood, saliva, and buccal cells (BSB)
3. Annotated ages: 18-90 yo (except progeroid)
4. Data type: DNA methylation microarrays (27K/450K/850K)
5. 10+ samples per dataset, 10+ samples per condition

1. Decreases life expectancy, even if treated
2. Сhronic          
         has su�cient time to drive changes in DNAm
3. Manifests systemically
         a�ects DNAm in blood, saliva, or buccal cells

Dataset
of aging-accelerating conditions (ACCs)

Assumption:
AAC increases BA
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Figure 2: ComputAgeBench methodology. A) The proposed pipeline for constructing aging clocks
features an important step of validating the model on pre-defined aging-acceleration conditions that
satisfy criteria (B) and are collected into datasets that meet criteria (C) for individual study design.
D) Major classes that include putative aging-accelerating conditions. E) Aggregated dataset panel for
benchmarking aging clocks, comprising 66 unique data sources (labeled by their Gene Expression
Omnibus dataset identification numbers and conditions) from more than 50 studies. See Table A1 for
the full names and Table A2 for the population-based evidence for including each condition.

datasets aggregation (Figure 2C). First, all datasets in the benchmark must feature open access to
pre-processed data, without any data access requests or raw data processing required. Second, we
only used data obtained from the BSB samples. Third, chronological ages must be annotated with,
at most, one-year intervals (e.g., without age binning by decades), including only samples from the
age range of 18–90 years1. The only exception to this requirement are the individuals with certain
progeroid conditions, such as the Hutchinson-Gilford progeria syndrome, who survive approximately
12 to 13 years on average: their pathologies resemble premature aging so strikingly [43] that we
included patients aged under 18 years into the benchmark. Fourth, we employ data obtained only with
the Illumina Infinium BeadChip (27K, 450K, and 850K) methylation microarrays, as they remain
to be the most popular technologies for human DNAm profiling and clock construction. Fifth, we
applied thresholds of at least 10 samples per dataset, 5 samples with an AAC per dataset, and 10
samples with an AAC across all datasets to attain sufficient statistical power.

1Reporting increased or decreased biological age for people outside of this range is debatable.

5

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 4, 2025. ; https://doi.org/10.1101/2024.06.06.597715doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.06.597715
http://creativecommons.org/licenses/by/4.0/


3.3 Collecting AAC datasets for benchmarking

To cover as many organismal systems affected by age-related conditions as possible, we split the
aggregated data into nine broad categories (Figure 2D): cardiovascular diseases (CVD), immune
system diseases (ISD), kidney diseases (KD), liver diseases (LD), metabolic diseases (MBD), mus-
culoskeletal diseases (MSD), neurodegenerative diseases (NDD), respiratory diseases (RSD), and
progeroid syndromes (PGS). In each class, we identified several AACs relying on the established lists
of age-related diseases and on the leading causes of death [34, 44, 45], including closely associated
conditions and other conditions mentioned in a variety of epigenetic clock studies [8, 16, 19, 34, 46].
The corresponding AACs with their abbreviations and population-based evidence for their inclusion
are provided in Appendix (Tables A1 and A2, respectively).

Dataset search was performed using the NCBI Gene Expression Omnibus (GEO) database, an omics
data repository with unrestricted access (https://www.ncbi.nlm.nih.gov/geo/). We applied
filters to include the Homo sapiens species and all types of methylation-related studies (methylation
microarray data can be found in any of these study types): methylation profiling by single-nucleotide
polymorphism (SNP) array, methylation profiling by array, methylation profiling by genome tiling
array, and methylation profiling by high throughput sequencing.

Upon performing the dataset search, only a portion of AACs from seven condition classes were
retained (see Appendix and Table A2). All five dataset selection criteria were met by none of the
found kidney- and liver-related AAC datasets, and by no buccal-based dataset. The resulting list
of 66 datasets [47–96] comprises 65 blood studies and 1 saliva study, and is visualized in Figure
2E. An overview of all datasets, dataset sizes, and their age distributions is provided in Figure A1.
Descriptive statistics for all datasets are provided in Figure A2.

We unified the metadata of all datasets by retrieving only the relevant metadata columns and formatting
them into the appropriate data types, similarly to what was proposed by Ying et al. [42]. We also
added the condition and condition class annotation, thus obtaining a single metadata file with 10,410
rows (samples) and the following columns: SampleID, DatasetID (dataset GEO accession number),
PlatformID (sequencing platform), Tissue (blood or saliva), CellType (whole blood or cell type after
sorting), Gender, Age, Condition, and Class (see also Appendix A.10 for details on data processing).

3.4 Epigenetic age predictors

Any epigenetic aging clock that predicts BA in age units (or can be re-scaled to them) can be
validated in our benchmark. We tested 13 publicly available epigenetic clock models trained on
adult human data to evaluate sample age (Table A3), with the model coefficients retrieved from the
corresponding studies. Among the collected first-generation clocks, 6 were trained purely on blood
samples [15, 19, 97, 98], 3 models were trained on multiple tissues [8, 32, 46]. Among the second-
generation clocks, all were blood-based, and 2 models relied entirely on CpG sites as predictive
features [16, 99], while the other 2 required additional information about gender and chronological
age as inputs [17, 100]. Because the clocks were trained on somewhat differing data, some clock
CpGs may be lacking in the datasets outside of training, so it is an established practice to impute
such missing values [42, 101, 102]. We performed this imputation by employing the "gold standard"
beta values averaged for each CpG site, retrieving them from the R "SeSAMe" package [103] (for the
results on comparing imputation methods, see Appendix A.7). We also ensured that no data in the
benchmark was used to train any of the selected clocks, and that all clock input and output structures
were consistent with each other ("harmonized", as described by Ying et al. [42]).

3.5 Benchmarking tasks for evaluating aging clocks

To benchmark aging clock models, we propose four tasks: relative aging acceleration prediction
(Figure 3A), absolute aging acceleration prediction (Figure 3B), chronological age prediction accuracy
(Figure 3C), and systematic chronological age prediction bias (Figure 3D). In the first two tasks,
the clocks are tested if they can correctly predict aging acceleration in the predefined panel of AAC
datasets.

In the relative aging acceleration prediction task (AA2 task), we test aging clock ability to distinguish
AAC from healthy control (HC) samples in a dataset containing both sample groups. After predicting
ages in each dataset corresponding to this task using various clock models, we apply a two-sample
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Welch’s test per dataset and calculate a one-sided P-value (i.e., HA : ∆AAC > ∆HC ) to determine if
mean aging acceleration in the AAC cohort is significantly greater than that in the HC cohort (Figure
3A). Next, we apply the Benjamini-Hochberg correction procedure for controlling the false discovery
rate (FDR) of predictions across all datasets, with an adjusted P-value less than 0.05 considered
indicative of statistical significance. We selected a parametric test due to the assumption of normal
distribution of ∆, a fundamental trait of multivariate linear regression models commonly used in
aging clock construction.

In the absolute aging acceleration prediction task (AA1 task), we test clock ability to correctly predict
positive aging acceleration for an AAC in the absence of the HC cohort. For each dataset in this
task, we predict ages using various clock models, apply a one-sample Student’s t-test and calculate
a one-sided P-value (i.e., HA : ∆AAC > 0) to determine if mean aging acceleration in the AAC
cohort is significantly greater than zero (Figure 3B). As before, we apply the Benjamini-Hochberg
correction procedure for controlling FDR with the same adjusted P-value threshold.

Clearly, the first task (AA2) provides a more rigorous way to test aging clocks compared to AA1,
because it helps to control potential covariate shifts, but the second task (AA1) deserves its place in
the list, as it allows introducing more data to mitigate data scarcity.

The third task is aimed at distinguishing good predictors of chronological age from predictors of
biological age. Due to the paradox of biomarkers mentioned above, it is highly unlikely that the
same model could combine both these properties. Yet, the good predictors of chronological age are
believed to be useful in forensics [104] or data labeling, where the chronological age information
is lacking. We chose median absolute aging acceleration (Med(|∆|)), a full equivalent of median
absolute error, for testing clock performance. We calculate it across HC samples from the whole
dataset panel and report it as a single number expressed in years.

We introduced the fourth task, a prediction bias task, to evaluate the robustness of a given aging
clock model to covariate shift between the original clock training dataset and the datasets from the
proposed benchmark. Covariate shift, also referred to as batch effect in bioinformatics, denotes the
shift between covariate distributions in two datasets. For instance, the distribution of methylation
values for a given CpG site could be centered around 0.45 in one dataset and around 0.55 in the
other one—a common scenario in DNAm and other omics data. Because each clock is trained on
healthy controls, we expect age deviation of HC samples to be zero on average (i.e., E(∆HC) = 0).
In practice, however, due to the presence of a covariate shift between the training and testing data, a
clock might produce biased predictions, resulting in a systemic bias and adding or subtracting extra
years for a healthy individual coming from an external dataset. The goal of the fourth task is to
control for such systemic bias in clock predictions. Therefore, as a benchmarking metric for this task,
we calculated median aging acceleration (Med(∆)) across HC samples from the entire dataset panel,
which reflects the systematic shift in clock predictions caused by differences between datasets.

3.6 Cumulative benchmarking score

We define cumulative benchmarking score such that it would account for the main drawback of AA1
task, namely, the sensitivity to positive model bias. Let SAA2 denote total score of a model in AA2
task and SAA1 from the AA1 task (both SAA2 and SAA1 represent the number of datasets evaluated
correctly by a model in the respective task), then the cumulative benchmarking score is:

BenchScore = SAA2 + SAA1 ·
(
1− max(0,Med(∆))

Med(|∆|)

)
. (2)

Consequently, if a model is positively biased, its performance in the AA1 task will be penalized by
the bracketed coefficient by the SAA1, the largest when the model bias Med(∆) is zero. Because
Med(∆) ≤ Med(|∆|), this coefficient is limited to the [0, 1] interval.

While designing our metric, we aimed for simplicity and interpretability. At the same time, we sought
to include more data in the benchmark to address data scarcity caused by the underrepresentation of
certain AACs. Admittedly, there could be a more optimal solution for the metric, but we also believe
that such a consensus solution must be proposed by a continuous collaborative discussion between
the aging clock and machine learning communities, which we are eager to establish.
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Figure 3: ComputAgeBench tasks and performance of aging clock models. A-D) The four bench-
marking tasks. (C) illustrates that chronological age prediction accuracy is measured by median
absolute error Med(|∆|) across all predictions. For a limiting case of prediction bias sketched in
(D), all samples were predicted with positive age acceleration, leading to a strictly positive value of
Med(∆), graphically represented as a red arrow pointing to a cross. E) AA2 task results split into
columns by condition class, where scores demonstrate the number of datasets per class in which a
given clock model detected significant difference between the HC and AAC cohorts. F) AA1 task
results: same as (E), but the statistics are calculated for datasets containing the AAC cohort alone.

3.7 Collecting HC datasets for training

To facilitate the ML community’s engagement in developing reliable aging biomarkers, we applied
our methodology to collect and unify the pre-processed datasets of HC patients, suitable for training
novel aging clocks. This training data comprise 46 distinct datasets [102, 105–146] encompassing
7,419 DNA methylation profiles (see Figure A3) with annotated chronological ages. These datasets
enable the training of first-generation aging clocks and the evaluation of various model architectures
to determine those which best satisfy the aforementioned properties №1–4, thereby achieving superior
performance on the proposed benchmark.

4 Results

The most rigorous of the four, AA2 task demonstrates that second-generation clocks (PhenoAgeV2
[99], GrimAgeV1 [17], GrimAgeV2 [100], and PhenoAgeV1 [16]) appear on top, particularly at
predicting aging acceleration for the ISD class (Figure 3E, Supplementary Material Figure A6).
Nevertheless, all clocks failed to detect aging acceleration in patients with cardiovascular and
metabolic diseases, at least at the statistically significant level (see Figures A4 and A5 for results
without FDR correction). Modest scores (<50% datasets in total) on the AA2 task across all models
are expected, as no clocks had specifically been calibrated to pass this benchmarking task (and not a
single first-generation clock had been trained to predict anything aside from chronological age).

In contrast, the first-generation aging clocks by Zhang et al. [32] and Hannum et al. [15] populated
the top of the AA1 leaderboard, in addition to the GrimAge, exhibiting good scores across multiple
condition classes (Figure 3F, Supplementary Material Figure A7). Notably, combining the results
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Table 1: Benchmarking results.

Model name AA2 score AA1 score Med(|∆|), years Med(∆), years BenchScore

PhenoAgeV2 20 9 7.6 ±0.1 -2.6 ±0.1 29.0
GrimAgeV1 14 15 7.5 ±0.1 5.7 ±0.1 17.4
PhenoAgeV1 9 7 8.0 ±0.1 -4.2 ±0.2 16.0
GrimAgeV2 14 20 9.8 ±0.1 9.3 ±0.1 15.1
HorvathV1 3 12 5.4 ±0.1 -0.1 ±0.1 15.0
HorvathV2 5 12 4.1 ±0.1 1.1 ±0.1 13.9
VidalBralo 0 13 9.1 ±0.1 0.1 ±0.2 12.8
Lin 5 9 7.5 ±0.1 2.1 ±0.2 11.4
YingAdaptAge 5 11 20.0 ±0.2 12.5 ±0.5 9.1
YingCausAge 6 2 9.0 ±0.1 1.3 ±0.2 7.7
YingDamAge 0 6 19.5 ±0.3 -14.5 ±0.5 6.0
Zhang19_EN 2 19 10.5 ±0.2 9.6 ±0.2 3.7
Hannum 1 17 7.5 ±0.1 6.3 ±0.1 3.7

of this task with the model bias task exposes the potential source of the exceptional “robustness” in
predicting accelerated aging in datasets without healthy controls.

The task of chronological age prediction accuracy reveals two undeniable leaders (Table 1): Hor-
vathV2 [46] and HorvathV1 [8] clocks, specifically tuned for this task on large multi-tissue datasets.
Notably, clocks predicting chronological age with Med(|∆|) ≥ 18 years would be inferior to a
constant model yielding a 50 y.o. prediction (average age across all HC samples in the benchmark).
Unless scaled, such clocks can hardly be used for inferring age acceleration.

Finally, to prove the validity of AA1 performance, a clock should also pass the task for being unbiased.
We show that the AA1 leader, GrimAgeV2 clock [100], is also characterized by a large prediction
bias for the HC samples (Table 1), warning us against considering its AA1 task score reliable. On the
other hand, the top-2 unbiased HorvathV1 clock [8] and VidalBralo clock [98] have low prediction
bias, rendering their AA1 performance as more trustworthy.

To account for the discrepancies of AA1 task interpretation regarding the prediction bias, we devised
cumulative benchmarking score (Table 1) which penalizes AA1 score by the magnitude of prediction
bias (see Eq. 2). With such a metric, a second-generation aging clock PhenoAgeV2 [99] becomes the
most robust model in terms of distinguishing individuals with aging-accelerating conditions from
the healthy cohort. This model is a leader, according to the cumulative benchmarking score and
the AA2 task score. Closely behind it are the other second-generation clocks: GrimAgeV1 [17],
PhenoAgeV1 [16], and GrimAgeV2 [100]. On the other hand, our results indicate that even the
classic first-generation aging clocks, such as HorvathV1 [8] and HorvathV2 [46], can perform quite
reliably in predicting biological age, at least for some condition classes. It is noteworthy that in
both AA1 and AA2 tasks, many aging clocks perform well in detecting accelerated aging caused by
immune system diseases, mostly represented by the human immunodeficiency virus (HIV) infection
in our dataset, while the other disease classes are only captured by some clocks, putatively indicating
that the models could have been implicitly and unintentionally trained to recognize only a certain
subset of diseases. By providing a full decomposition of our benchmarking metrics in Figures 3E,F
and Table 1, we strived to clarify such skewness towards particular condition classes and allow for a
detailed examination of each clock’s performance. Our analysis generalizes previous findings [34]
and shows that comprehensive benchmarking of aging clocks can resolve the controversy regarding
their robustness and utility.

5 Discussion

Biological age is an elusive concept that cannot be measured and validated directly, which necessitates
careful choice of model assumptions to avoid methodological errors and false discoveries while
estimating it. While maintaining some degree of correlation between predicted and chronological age
is desirable, the biomarkers paradox [7] precludes one from automatically considering BA evaluation
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via the classic performance metrics of chronological age prediction accuracy as acceptable. From a
methodological perspective, training BA predictors to estimate time to death or to a disease onset
remains the most rigorous approach to aging clock validation, as these events can be measured
directly. However, obtaining such data is challenging due to various ethical and financial constraints.
At present, no open-access data of DNA methylation annotated with either mortality or disease onset
labels are available for public clock benchmarking (see Appendix A.8).

While mortality data remain unavailable, we propose to validate clocks by their ability to demonstrate
BA acceleration in a fixed pre-determined panel of datasets for established aging-accelerating
diseases or predict decelerated aging in the datasets of lifespan-prolonging interventions. For that,
we developed our benchmark, where each aging clock could be tested across 4 distinct tasks. We
gathered an unprecedented number of DNA methylation datasets from 66 studies covering 19
putative aging-accelerating conditions and 46 more datasets of healthy individuals suitable for
model training to provide the ML community with a convenient entry point into the realm of aging
biomarkers. Notably, no aging-decelerating conditions have been confirmed for the benchmark study
(see Appendix A.4). It should be taken into account that in vitro cell reprogramming cannot serve as
validation data for the deceleration effect, because, as has previously been shown [147], such data are
essentially out-of-domain with regard to blood DNA methylation across aging.

To showcase our benchmark, we tested 13 different published models and revealed that second-
generation aging clocks, namely, PhenoAge [16], GrimAge [17], and their upgraded variants [99, 100],
appeared the most successful, according to the cumulative benchmarking score. As these clocks had
initially been designed to predict all-cause mortality, they were expected to be robust in distinguishing
aging-accelerating conditions. Yet, our findings reinforce the growing trends in training BA predictors
based on mortality rather than on chronological age [1, 4].

As blood DNA methylation generally comes from the immune cells, which would be directly affected
by the HIV, it is not surprising that the majority of clocks managed to discern accelerated aging in the
immune system-related conditions (featured predominantly by the HIV infection in our dataset). This
result supports the notion that the blood-based clocks might be implicitly attuned to such conditions,
while only a few clocks are capable of successfully capturing accelerated aging in the other disease
classes.

Remarkably, some datasets were evaluated incorrectly by all models, which may have several possible
explanations apart from poor clock performance. First, a strong covariate shift between these data
and the training data might impede model performance on some datasets. Second, some selected
conditions might not induce accelerated aging in blood, either by itself or by the design of the original
study (see Limitations in Appendix A.1). Third, the multidimensionality of aging as a biological
phenomenon might not allow for correct prediction of all aging-accelerating conditions by such
univariate measures as blood-based epigenetic clocks. In favor of this notion, it has recently been
shown that different organ systems have different aging trajectories [148, 149], suggesting promising
directions for future research outlined in Appendix A.2.

6 Conclusion

In this work, we developed the first systematic benchmark for evaluating epigenetic aging clocks.
We believe it will help longevity researchers and data scientists to better gauge the power of existing
biomarkers of aging, quantitatively assessing their role, limitations, and reliability. We anticipate that,
as a result of such computational paradigm, rapid and reliable clinical trials of lifespan-extending
therapies will become an attainable reality in a not-so-distant future.

7 Reproducibility statement

We assured the reproducibility of our pipeline by providing a Google Colab notebook (https:
//colab.research.google.com/drive/1_nrGMUd8oH8ADNWUPNeXHr4ZAJlZOQhm), which al-
lows to download all datasets and benchmark all clocks considered in this article.
Additionally, we provide a notebook (https://colab.research.google.com/drive/
17oODr9a5nz3GVV74Grxrxl1wxQ-Y0hAr) that briefly outlines the methodology for constructing
first-generation aging clocks based on our training dataset.
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A Appendix

A.1 Limitations

The current version of our benchmark harbors several important limitations. First, some selected
conditions might not actually fulfill the suggested criteria, especially regarding their effect on blood
DNA methylation, although we did our best to identify the most unambiguous ones. From the other
hand, some conditions that fit our criteria might have escaped our attention. Second, the conditions
are not represented uniformly, with some being featured in 10+ datasets (HIV, rheumatoid arthritis),
and some present in a single dataset with few samples (ischemic heart disease, chronic obstructive
pulmonary disease, congenital generalized lipodystrophy). The third limitation arises from the
known issue of hidden subgroups of patients and mislabeled instances [150]. For the AAC cohorts,
having hidden co-morbidities is acceptable, as they would supposedly exaggerate aging acceleration
even stronger. Conversely, having severe, but unlabeled diseases in the HC cohort would likely
substantially alter the findings of our benchmark. Unfortunately, we can neither expand our dataset
to cover all conditions equally by mining solely the open-access data, nor explicitly confirm if all
studies at hand comply with our requirements.

A.2 Future work

We plan to further extend our benchmarking dataset by incorporating open access data of additional
modalities, such as clinical biochemistry, transcriptomics, proteomics, metabolomics, etc. To over-
come the aforementioned limitations, we strongly urge an open discussion on developing a panel
of conditions and datasets that would serve as the gold standard for reliable and comprehensive
validation of emerging biomarkers of aging. We also believe that it is important to expand the
benchmark to animal models, since collecting the required data and developing preclinical biomarkers
of aging in some animals is associated with fewer ethical and financial challenges. Hopefully, all
these issues and developments will be addressed by the efforts of a recently established Biomark-
ers of Aging Consortium (https://www.agingconsortium.org/). Ultimately, the “correct” BA
estimator should satisfy all four properties we defined in the Introduction. Regardless of the clock
generation or data modality, reliable aging clock models must also be able to assess the uncertainty of
their own predictions before being integrated in clinical trials [147, 151]. And indeed, an example of
uncertainty-aware aging clocks has recently been proposed [28]. We also aim to upgrade our package
to facilitate the interaction with other clock-related resources, including Biolearn [42] and pyaging
[152].

A.3 Societal impact

The obvious positive societal impact of our work is the prospect of increased active lifespan and
that of healthy longevity. Our benchmarking methodology assists in determining the most accurate
predictors of the biological age, which, in turn, assists in delineating the crucial biomarkers and
factors that might prolong the healthy life. The potential negative impact entails the common issues
emphasized when a fundamental biological problem is tackled with the AI tools. Specific to the
subject of longevity are the issues of pre-mature excitement in the mass media when a certain factor
is hypothesized to prolong life. A relevant fraud in the pharmaceutical industry is also plausible, if
not regulated. One could also envision the depletion of resources caused by an overpopulation of the
Earth, which might happen if the longevity drug is found. These negative possibilities are not expected
to be sudden and could be mitigated gradually – similarly to a plethora of other benchmarking works
established for solving important biological problems.

A.4 Motivation behind including or excluding particular conditions

Our first criterion for selecting aging-accelerating conditions (AACs) was that having an AAC must
lead to decreased life expectancy (LE) compared to the general population, even when treated with
existing therapies. As we have mentioned earlier, this decrease in LE and the corresponding increase
in mortality must result mainly from intrinsic organismal causes rather than from socioeconomic
factors and self-destructive behaviors related to a given condition. Thus, while Down syndrome (DS)
is associated with elevated prevalence of multiple chronic diseases [153–155], LE of DS individuals
has grown dramatically by over 450% from 1960 to 2007 [156], even though no cure for DS has
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been developed, suggesting strong non-biological confounding factors at play. Additionally, while
some authors expect DS to display accelerated epigenetic aging [8], others anticipate deceleration
when applying epigenetic clocks to DS blood samples, as DS individuals are hypothesized to feature
juvenile blood [34]. Schizophrenia (SCZ) is another example of a controversial condition: while we
can find increased incidence of age-related comorbidities such as cardiovascular diseases, cancers,
or chronic obstructive pulmonary disease [157–159], the rates of suicide and substance-induced
death are also increased in people with SCZ [157]. We therefore suggest excluding such ambiguous
conditions from robust clock benchmarking, as it is currently difficult to disentangle functional
organismal deterioration from external and behavioral condition-related confounders and evaluate the
degree to which the latter influence LE.

Regarding cancers in general, it is difficult to formulate a pre-hoc hypothesis about the directionality
of epigenetic age changes. Even though we know that DNAm can be used to create signatures of
various cancers, and that changes in some DNAm sites are shared between aging and cancers [160],
we cannot be certain that an aging clock would indicate accelerated aging in cancerous samples, as
some cancer-specific and stem cell-like features such as telomere maintenance might prompt a clock
model to treat it as a marker of partial rejuvenation. In support of these considerations, epigenetic age
predictions were found to exhibit no correlation with multiple TCGA cancer types [161]. To avoid
possible speculation as far as possible, we recommend excluding cancer from clock benchmarking,
as it is difficult to hypothesize about clock performance in such complex phenomena.

Aging-decelerating condition (ADC) is defined as a condition that increases LE compared to the
general population and features the same second and third criteria as an AAC. With respect to human
data, however, the ADCs are difficult to determine, as human lifespan-increasing interventions are
yet to emerge. There are genetic mutations, such as Laron syndrome (growth hormone insensitivity)
or isolated growth hormone deficiency (growth hormone releasing hormone insensitivity), that appear
to protect against some age-related pathologies, but they do not feature a prolonged lifespan [162].
To avoid dubious interpretation, we recommend omitting the inclusion of any condition into the ADC
category when benchmarking human aging clocks.

The resulting list of condition classes and conditions selected to represent accelerated aging is listed
in Table A1. Population-based evidence for condition inclusion and the number of datasets found and
selected per condition are displayed in Table A2.

A.5 On data types used for aging clocks construction

Multiple data modalities were previously used for aging clocks construction. Some examples beyond
DNA methylation data include also clinical blood samples [12], psycho-social questionnaires [264],
facial images [13], urine metabolites [33], and different omics data, gene expression [14], DNA
accessibility [265], plasma proteins [266], etc. Interestingly, DNA methylation data allow one the
most accurate prediction of chronological age compared to other data modalities, second only to
facial imaging data [21], and it continues to be used most widely in aging clock construction [10]. It
is also important to note that from a practical point of view, in order to construct a clinically relevant
aging clock, the method of obtaining the data should not be too invasive and heavy-handed. For this
reason, many clock developers prefer using blood, saliva, or buccal epithelial samples as data sources.

A.6 Aging clocks included in the benchmarking

The full list of published aging clocks used in this analysis is provided in Table A3.

A.7 Comparison of different approaches to missing values imputation

We ran additional experiments (see Table A4) to test different imputation methods and observed that
the method we used (SeSAMe 450k) leads to the most accurate age predictions across all models
except the VidalBralo clock, whose MAE is 0.19% lower when using imputation by zeros. Notably,
we did not have to impute all 800k+ sites in the whole dataset, as we only imputed sites included
in each respective clock model. Most importantly, clock performance in other benchmarking tasks
remained intact, regardless of the imputation strategies.
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Table A1: Aging-accelerating conditions. ICD-10: class or condition code(s) from the International
Classification of Diseases Version 10; a dash indicates lack of specific code; abbr.: abbreviation.

Condition
class

Class
ICD-10

code

Class
abbr.

Aging-accelerating
condition (AAC)

Condition
ICD-10

code

Condition
abbr.

Cardio-
vascular
diseases

I00-
I99 CVD

Atherosclerosis I70 AS

Ischemic heart disease I20-I25 IHD

Cerebrovascular accident I60-I63 CVA

Heart failure I50 HF

Myocardial infarction I21-I22 MCI

Immune
system
diseases

— ISD
Inflammatory bowel disease K50-K51 IBD

Human immunodeficiency
virus infection B20-B24 HIV

Kidney
diseases

N00-
N99 KDD Chronic kidney disease N18 CKD

Liver
diseases

K70-
K77 LVD

Nonalcoholic steatohepatitis K75.81 NASH

Primary biliary cholangitis K74.3 PBC

Primary sclerosing cholangitis K83.01 PSC

Cirrhosis K70.3,
K74.3-K74.6 CIR

Metabolic
diseases

E00-
E90 MBD

Extreme obesity E66.01, E66.2 XOB

Type 1 diabetes E10 T1D

Type 2 diabetes E11 T2D

Metabolic syndrome E88.810 MBS

Musculo-
skeletal
diseases

M00-
M99 MSD

Sarcopenia M62.84 SP

Osteoporosis M80-M81 OP

Osteoarthritis M15-M19 OA

Rheumatoid arthritis M05-M06 RA

Neuro-
degenerative

diseases

G00-
G99 NDD

Alzheimer’s disease G30 AD

Parkinson’s disease G20 PD

Multiple sclerosis G35 MS

Dementia with Lewy bodies G31.83 DLB

Creutzfeldt-Jakob disease A81.0 CJD

Respiratory
diseases

J00-
J99 RSD

Chronic obstructive pulmonary disease J44 COPD

Idiopathic pulmonary fibrosis J84.112 IPF

Tuberculosis A15 TB

Progeroid
syndromes — PGS

Werner syndrome E34.8 WS

Hutchinson-Gilford progeria syndrome E34.8 HGPS

Congenital generalized lipodystrophy E88.1 CGL

Dyskeratosis congenita Q82.8 DKC
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Table A2: Population-based evidence for condition inclusion, and the number of datasets found and
selected for each condition. GEO: Gene Expression Omnibus database; abbr.: abbreviation.

Class
abbr.

Condition
abbr.

Evidence of decreased life expectancy
and/or systemic effects

N items
in the

GEO query

N datasets
after

filtering

CVD

AS [163–167] 22 3

IHD [168–171] 21 1

CVA [168, 172–174] 10 2

HF [168, 175, 176] 14 0

MCI [168, 177, 178] 19 0

ISD
IBD [179–185] 30 4

HIV [168, 186–189] 44 15

KDD CKD [190–192] 6 0

LVD

NASH [193, 194] 8 0

PBC [195, 196] 1 0

PSC [197, 198] 2 0

CIR [168, 199, 200] 68 0

MBD

XOB [168, 201–204] 96 4

T1D [205–210] 14 1

T2D [168, 211–214] 45 1

MBS [168, 215–217] 17 0

MSD

SP [218–220] 2 0

OP [221–224] 5 1

OA [168, 225–227] 26 0

RA [228–231] 37 10

NDD

AD [168, 232–235] 43 2

PD [236–238] 37 6

MS [239–241] 29 8

DLB [242–244] 5 0

CJD [245–247] 1 1

RSD

COPD [168, 248–250] 14 1

IPF [251–254] 14 0

TB [168, 255, 256] 13 3

PGS

WS [257–259] 7 1

HGPS [257, 260] 14 1

CGL [261, 262] 1 1

DKC [263] 2 0

Total number of datasets 667 66
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Table A3: Aging clock models tested in our benchmark.

Model name N CpGs Gene-
ration

Extra
parameters

Tissues used
for training Reference

Hannum 71 1 — Blood [15]
HorvathV1 353 1 — Multi-tissue [8]

Lin 99 1 — Blood [97]
VidalBralo 8 1 — Blood [98]
HorvathV2 391 1 — Blood, Skin [46]

PhenoAgeV1 513 2 — Blood [16]
Zhang19_EN 514 1 — Blood, Saliva [32]
GrimAgeV1 1030 2 Age, Sex Blood [17]
GrimAgeV2 1030 2 Age, Sex Blood [100]
PhenoAgeV2 959 2 — Blood [99]

YingAdaptAge 999 1 — Blood [19]
YingCausAge 585 1 — Blood [19]
YingDamAge 1089 1 — Blood [19]

Table A4: MAE results (in years) for different strategies of missing values imputation (sorted by
increasing MAE when using SeSAMe 450k imputation).

Model name SeSAMe 450k Average Zeros

HorvathV2 4.143847 4.701762 4.719477
HorvathV1 5.350622 5.475857 5.475857
GrimAgeV1 7.462245 8.102066 8.241653
Lin 7.467559 8.367630 8.429655
Hannum 7.477633 7.890421 7.907489
PhenoAgeV2 7.604413 8.439977 8.432397
PhenoAgeV1 8.009677 8.380239 8.381561
YingCausAge 8.969959 11.599078 11.551690
VidalBralo 9.124225 9.124387 9.107015
GrimAgeV2 9.796544 10.513198 10.576180
Zhang19_EN 10.534452 10.611938 10.611938
YingDamAge 19.534224 20.179561 20.211066
YingAdaptAge 19.972273 23.287544 23.353844
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A.8 On accessibility of existing epigenetic mortality data

Although there are some existing biobanks that aggregate sensitive human data and provide them in an
open-access manner, (e.g., NHANES: https://wwwn.cdc.gov/nchs/nhanes/), most biobanks
rely on authorized access to their data (e.g., UK Biobank: https://www.ukbiobank.ac.uk/).
The similar semi-open situation occurs with DNA methylation data. Here, we provide information
about 12 cohort studies containing DNA methylation data and mortality/morbidity information
simultaneously, but all of which allow downloading their data upon a reasonable request by contacting
with the principal investigators of each cohort or by requesting data on a special platform. These
studies include the Framingham Heart Study (FHS), the Women’s Health Initiative (WHI), the
Lothian Birth Cohorts (LBC), the Atherosclerosis Risk in Communities (ARIC), the Cardiovascular
Health Study (CHS), the Normative Aging Study (NAS), the Invecchiare in Chianti (InCHIANTi),
the Cooperative Health Research in the Region of Augsburg (KORA), the Epidemiologische Studie
zu Chancen der Verhütung, Früherkennung und optimierten Therapie chronischer Erkrankungen in
der älteren Bevölkerung (ESTHER), the Danish Twin Register sample (DTR), the Rotterdam Study
(RS), and the Coronary Artery Risk Development in Young Adults (CARDIA) [1, 36]. While we
recognize the risks associated with releasing sensitive patient data into the public domain, we also
want to emphasize that comprehensive independent validation of the aging clock is difficult without
these important datasets. The confidentiality of such data also does not allow us to use it as part of
this open-access benchmark. Instead, we focused solely on those epigenetic datasets of patients with
AACs distributed across human lifespan, which did not contain information on mortality, but was
publicly accessible.

A.9 DNA methylation data collection

As we have mentioned in the Methodology section, dataset search was performed using the NCBI
Gene Expression Omnibus (GEO) database, an unrestricted-access omics data repository (https:
//www.ncbi.nlm.nih.gov/geo/) which shares data using the Open Database License (ODbL).
The resulting list of 66 AAC datasets [47–96] indicated in Table A2 is visualized in Figure 2E
and includes: atherosclerosis (AS), ischemic heart disease (IHD, also known as coronary heart
disease), cerebrovascular accident (CVA, also known as stroke), inflammatory bowel disease (IBD,
including Crohn’s disease and ulcerative colitis), human immunodeficiency virus infection (HIV),
extreme obesity (XOB, defined by having BMI ≥ 40 kg/m2 [267, 268]; also known as class III
obesity, severe obesity, or morbid obesity), type 1 diabetes mellitus (T1D), type 2 diabetes mellitus
(T2D), rheumatoid arthritis (RA), osteoporosis (OP), Alzheimer’s disease (AD), Parkinson’s disease
(PD), multiple sclerosis (MS), Creutzfeldt-Jakob disease (CJD), chronic obstructive pulmonary
disease (COPD), tuberculosis (TB), Werner syndrome (WS, including atypical Werner syndrome),
Hutchinson-Gilford progeria syndrome (HGPS, including non-classical progeroid laminopathies),
and congenital generalized lipodystrophy (CGL, also known as Berardinelli-Seip lipodystrophy).
Age distribution across conditions is demonstrated in Figure A1. Overviews of all benchmarking
and training (healthy controls only) datasets and their age distributions are provided in Figure A2
and Figure A3. The information on how patient consent was obtained and which ethics procedures
were implemented can be accessed in the respective publications. As per NCBI GEO guidelines, all
submitters must "ensure that the submitted information does not compromise participant privacy"
(https://www.ncbi.nlm.nih.gov/geo/info/faq.html).

A.10 DNA methylation data processing

After pre-processing raw output from microarrays or sequencing machines, DNA methylation levels
per site are reported quantitatively either as beta values, or as M values. Briefly, beta values represent
the ratio of methylated signal (probe intensity or sequencing read counts) to total signal per site (sum
of methylated and unmethylated probe intensities or sequencing read counts), while M value is the
log2 ratio of the methylated signal versus an unmethylated signal. A more thorough comparison of
the two measures can be found in Du et al. [269]. In the original datasets deposited on GEO, DNA
methylation values were represented either as a beta fraction (ranging from 0 to 1), beta percentages
(ranging from 0 to 100), or M-values (can be both negative and positive, equals 0 when beta equals
0.5). We converted all data to the beta-value fractions ranging from 0 to 1. The values outside this
range were treated as missing values (NaNs), as they are not biological. In each dataset, only samples
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Figure A1: Distribution of the benchmarking dataset samples per condition across ages.

that were relevant for benchmarking (that is, were annotated by age, tissue, and condition) were
retained.

The resulting datasets meta-data contains the following fields: DatasetID (datasets GEO ID), Plat-
formID (GEO ID of a DNA methylation profiling platform), Tissue (sample source tissue: “Blood”
stands for peripheral blood samples, “Saliva”—for saliva samples, and “Buccal”—for buccal swab
samples), CellType (sample cell type: either a specific cell population, e.g., immune cell subtypes
with cell type-specific molecular markers, or broader categories such as whole blood, buffy coat, pe-
ripheral blood mononuclear cells (PBMC), or peripheral blood leukocytes (PBL); some samples lack
this annotation), Gender (abbreviated sample donor gender: M = Male, F = Female, U = Unknown),
Age (sample donor chronological age in years; in the original datasets deposited on GEO, it can be
either rounded by the researchers to full years, or converted from months, weeks, or days; where
available, we calculated years from the smaller units), Condition (one of AACs or HC), and Class.

As there is no gold standard for DNAm processing, each research group carries out their preferred
pipeline that does not necessarily match the processing pipeline used for training the clock model,
especially in case of applying earlier clocks (e.g., those by Hannum et al. [15] or Horvath [8]) to
recently collected data. Therefore, so as to retain this typical workflow and not to put any clock
model into advantage by choosing the same processing that matches its own pipeline for every dataset,
we did not perform any post-processing, inter-dataset normalization, or batch effect correction. In
doing so, we also relied on two existing papers. First, compiling already pre-processed datasets
without performing the same processing for all of them was done by Ying et al. [42] in creating
Biolearn, another notable effort in the aging clock community. Second, we were encouraged by a
recent work by Varshavsky et al. [28] who managed to create an accurate clock model by combining
several blood datasets—without any additional normalization or correction procedure, using already
pre-processed data from previous studies (some of which are included in our dataset as well), and
thus demonstrating that the between-dataset normalization is not critical for this type of data.

A.11 Benchmarking results without FDR correction

Figures A4 and A5 demonstrate benchmarking results before applying FDR correction.
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Reynolds, 2014 GSE56046 450K B CVD AS
Reynolds, 2014 GSE56581 450K B CVD AS
Nazarenko, 2014 GSE62867 27K B CVD IHD
Soriano-Tárraga, 2016 GSE69138 450K B CVD CVA
Istas, 2017 GSE107143 450K B CVD AS
Cullell, 2022 GSE203399 850K, 450K B CVD CVA
Harris, 2012 GSE32148 450K B ISD IBD
Horvath, 2015a GSE53840 450K B ISD HIV
Horvath, 2015a GSE53841 450K B ISD HIV
Gross, 2016 GSE67705 450K B ISD HIV
Horvath, 2015a GSE67751 450K B ISD HIV
Zhang, 2016 GSE77696 450K B ISD HIV
Li Yim, 2016 GSE81961 450K B ISD IBD
Ventham, 2016 GSE87640 450K B ISD IBD
Ventham, 2016 GSE87648 450K B ISD IBD
Zhang, 2017 GSE100264 450K B ISD HIV
Zhang, 2017 GSE107080 850K B ISD HIV
Zhang, 2018 GSE117859 450K B ISD HIV
Zhang, 2018 GSE117860 850K B ISD HIV
Oriol-Tordera, 2020 GSE140800 450K B ISD HIV
Martinez-Picado, 2023 GSE143942 450K B ISD HIV
DiNardo, 2020 GSE145714 850K B ISD HIV+TB
Oriol-Tordera, 2022 GSE185389 450K B ISD HIV
Oriol-Tordera, 2022 GSE185390 850K B ISD HIV
Esteban-Cantos, 2023 GSE217633 850K B ISD HIV
Day, 2013 GSE49909 27K B MBD XOB
Rakyan, 2011 GSE56606 27K B MBD T1D
Lunnon, 2015 GSE62003 450K B MBD T2D
Ramos-Molina, 2019 GSE131461 850K B MBD XOB
Nonino, 2021 GSE166611 450K B MBD XOB
Noronha, 2022 GSE193836 450K B MBD XOB
Liu, 2013 GSE42861 450K B MSD RA
Guo, 2017 GSE71841 450K B MSD RA
Fernandez-Rebollo, 2018 GSE99624 450K B MSD OP
Rhead, 2017 GSE131989 450K B MSD RA
Rodríguez-Ubreva, 2019 GSE134429 850K B MSD RA
Clark, 2020 GSE137593 850K B MSD RA
Clark, 2020 GSE137594 850K B MSD RA
Tao, 2021 GSE138653 850K B MSD RA
de la Calle-Fabregat, 2021 GSE175364 850K, 450K B MSD RA
Julià, 2022 GSE176168 850K B MSD RA
Chen, 2023 GSE228104 850K B MSD RA
Marabita, 2013 GSE43976 450K B NDD MS
Lunnon, 2014 GSE59685 450K B NDD AD
Horvath, 2015b GSE72774 450K B NDD PD
Horvath, 2015b GSE72776 450K B NDD PD
Castro, 2019 GSE103929 450K B NDD MS
Kular, 2019 GSE106648 450K B NDD MS
Chuang, 2017 GSE111223 450K S NDD PD
Chuang, 2019 GSE111629 450K B NDD PD
Ntranos, 2019 GSE112596 850K B NDD MS
Ezquerra, 2023 GSE122244 850K B NDD PD
Ewing, 2019 GSE130029 450K B NDD MS
Ewing, 2019 GSE130030 450K B NDD MS
Carlström, 2019 GSE130491 850K B NDD MS
Roubroeks, 2020 GSE144858 450K B NDD AD
Go, 2020 GSE151355 450K B NDD PD
Dabin, 2020 GSE156994 450K B NDD CJD
Bingen, 2023 GSE219293 850K B NDD MS
Esterhuyse, 2015 GSE72338 450K B RSD TB
Chen, 2021 GSE118468 450K B RSD COPD
Chen, 2020 GSE118469 450K B RSD TB
DiNardo, 2020 GSE145714 850K B RSD TB
Maierhofer, 2019 GSE131752 850K B PGS WS
Bejaoui, 2022 GSE182991 850K B PGS HGPS
Qannan, 2022 GSE214297 850K B PGS CGL
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Figure A2: Descriptive statistics of datasets included in the benchmark. B: blood, S: saliva. Ages are
indicated in years.
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Athanasios, 2012 GSE40005 450K B HC HC
Tsaprouni, 2014 GSE50660 450K B HC HC
Demetriou, 2013 GSE51057 450K B HC HC
Zhang, 2015 GSE51388 450K B HC HC
Bell, 2014 GSE53128 450K B HC HC
Li, 2014 GSE53740 450K B HC HC
McRae, 2014 GSE56105 450K B HC HC
Tserel, 2015 GSE59065 450K B HC HC
Flanagan, 2015 GSE61151 450K B HC HC
Xu, 2015 GSE65638 450K B HC HC
Tabassum, 2015 GSE67490 450K B HC HC
Horvath, 2016 GSE72773 450K B HC HC
Horvath, 2016 GSE72777 450K B HC HC
Kok, 2015 GSE74548 450K B HC HC
Houtepen, 2016 GSE77445 450K B HC HC
Tobi, 2018 GSE78743 450K B HC HC
Hannon, 2016 GSE80417 450K B HC HC
Martens, 2020 GSE85311 450K B HC HC
Roos, 2016 GSE89093 450K B HC HC
Joseph, 2019 GSE96879 450K B HC HC
Salas, 2018 GSE110554 850K B HC HC
Chen, 2018 GSE112696 450K B HC HC
Cobben, 2019 GSE112987 450K B HC HC
Crawford, 2018 GSE113725 450K B HC HC
Boks, 2018 GSE116378 450K B HC HC
Boks, 2018 GSE116379 450K B HC HC
Córdova-Palomera, 2018 GSE120307 450K B HC HC
Zaimi, 2018 GSE123914 850K B HC HC
Arloth, 2020 GSE125105 450K B HC HC
Zannas, 2019 GSE128235 450K B HC HC
Bartlett, 2019 GSE130748 850K B HC HC
Johnson, 2020 GSE142512 850K, 450K B HC HC
Westerman, 2020 GSE143307 850K B HC HC
Vyas, 2020 GSE145254 850K B HC HC
Robinson, 2020 GSE147740 850K B HC HC
Hannon, 2021 GSE152026 850K B HC HC
Konigsberg, 2021 GSE167202 850K B HC HC
Xu, 2021 GSE174422 450K B HC HC
Balnis, 2021 GSE174818 850K B HC HC
Barturen, 2022 GSE179325 850K B HC HC
Roy, 2021 GSE184269 850K B HC HC
Webster, 2024 GSE196696 850K B HC HC
Xiu, 2022 GSE201287 450K B HC HC
Clement, 2022 GSE210245 850K B HC HC
Kalyakulina, 2023 GSE234461 850K B HC HC
Owen, 2023 GSE235717 850K B HC HC
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Figure A3: Descriptive statistics of datasets included in the training subset. B: blood. Ages are
indicated in years.
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PhenoAgeV2

GrimAgeV2

GrimAgeV1

PhenoAgeV1

YingAdaptAge

Lin

YingCausAge

HorvathV2

VidalBralo

HorvathV1

Hannum

YingDamAge

Zhang19_EN

Model CVD ISD MBD MSD NDD PGS RSD Total

0/3 7/10 0/4 4/6 6/12 1/3 3/4 21/42

0/3 7/10 0/4 3/6 2/12 2/3 3/4 17/42

0/3 7/10 0/4 3/6 2/12 2/3 2/4 16/42

0/3 6/10 0/4 2/6 1/12 1/3 1/4 11/42

0/3 6/10 0/4 1/6 1/12 2/3 0/4 10/42

0/3 7/10 0/4 0/6 1/12 0/3 1/4 9/42

0/3 4/10 0/4 1/6 1/12 2/3 0/4 8/42

0/3 4/10 0/4 0/6 2/12 2/3 0/4 8/42

0/3 5/10 0/4 1/6 0/12 1/3 0/4 7/42

0/3 5/10 0/4 0/6 0/12 1/3 0/4 6/42

0/3 3/10 0/4 1/6 1/12 1/3 0/4 6/42

0/3 3/10 0/4 0/6 1/12 1/3 0/4 5/42

0/3 2/10 0/4 0/6 0/12 1/3 0/4 3/42

Figure A4: AA2 task results split into columns by condition class without FDR correction of
P-values. Scores demonstrate the number of datasets per class, in which a given clock model detected
significant (at the 0.05 level of significance) difference between the HC and AAC cohorts.
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Model CVD ISD MBD MSD NDD Total

3/3 9/9 2/2 2/5 4/5 20/24

0/3 9/9 1/2 5/5 4/5 19/24

1/3 9/9 2/2 2/5 4/5 18/24

1/3 9/9 2/2 2/5 2/5 16/24

1/3 9/9 1/2 1/5 1/5 13/24

0/3 9/9 0/2 0/5 3/5 12/24
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1/3 4/9 1/2 2/5 3/5 11/24

0/3 6/9 1/2 2/5 1/5 10/24

0/3 8/9 0/2 0/5 1/5 9/24

0/3 6/9 0/2 0/5 1/5 7/24

0/3 5/9 1/2 0/5 0/5 6/24

0/3 2/9 0/2 1/5 0/5 3/24

Figure A5: AA1 task results without FDR correction of P-values: same as Figure A4, but the
statistics are calculated for datasets containing the AAC cohort only.
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