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Abstract Targeted monotherapies for cancer often fail due to inherent or acquired drug
resistance. By aiming at multiple targets simultaneously, drug combinations can produce
synergistic interactions that increase drug effectiveness and reduce resistance. Computational
models based on the integration of omics data have been used to identify synergistic
combinations, but predicting drug synergy remains a challenge. Here, we introduce DIPx, an
algorithm for personalized prediction of drug synergy based on biologically motivated tumor-
and drug-specific pathway activation scores (PASs). We trained and validated DIPx in the
AstraZeneca-Sanger (AZS) DREAM Challenge dataset using two separate test sets: Test Set 1
comprised the combinations already present in the training set, while Test Set 2 contained
combinations absent from the training set, thus indicating the model's ability to handle novel
combinations. The Spearman correlation coefficients between predicted and observed drug
synergy were 0.50 (95% Cl: 0.47-0.53) in Test Set 1 and 0.26 (95% Cl: 0.22-0.30) in Test Set 2,
compared to 0.38 (95% Cl: 0.34-0.42) and 0.18 (95% ClI: 0.16-0.20), respectively, for the best
performing method in the Challenge. We show evidence that higher synergy is associated with
higher functional interaction between the drug targets, and this functional interaction
information is captured by PAS. We illustrate the use of PAS to provide a potential biological
explanation in terms of activated pathways that mediate the synergistic effects of combined
drugs. In summary, DIPx can be a useful tool for personalized prediction of drug synergy and
exploration of activated pathways related to the effects of combined drugs.

Introduction

Targeted therapies such as specific inhibitors are the most promising class of cancer drugs, but
often fail or achieve only temporary remission due to inherent or acquired resistance. Theoreti-
cally, by aiming at multiple targets simultaneously, drug combinations can produce a synergistic
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interaction that increases drug effectiveness and reduces resistance and the chances of relapse
(Medicine, 2017, Pemovska et al., 2018; Plana et al., 2022). This is illustrated in the combination of
a BRAF inhibitor dabrafenib with a MEK inhibitor trametinib, which suppresses paradoxical reacti-
vation and resistance observed in patients with BRAF-mutated melanoma treated with dabrafenib
alone (Zhong et al., 2022; Banzi et al., 2016). This recently approved combination has been shown
to improve progression-free and overall survival rates (Subbiah et al., 2023).

The discovery of effective drug combinations has traditionally relied on expert knowledge and
understanding of known biological mechanisms (Li et al., 2015). However, this expert-based ap-
proach has limited scope to come up with novel combinations. Furthermore, ideally, novel com-
binations are clinically tested, but it is practically impossible to test all reasonable combinations
in a clinical setting. Computational models of drug synergy have shown some potential for per-
sonalized prediction of synergistic combinations (Giivenc Paltun et al., 2021; Wu et al., 2022; Kong
et al., 2022). These models are typically based on the integration of patient-specific molecular
data, such as mutation profiles, gene expression, and drug response information (Giivenc¢ Paltun
et al., 2021). For example, TAlJl, the best performing method in the AstraZeneca-Sanger DREAM
Challenge, uses these diverse data types to predict drug synergy (Li et al., 2018). The drug combina-
tions predicted to be effective will expand the therapeutic options while maintaining the same level
of adverse effects profile. However, despite the advantages offered by modern machine learning
methodologies and the availability of large-scale datasets, prediction of synergistic combinations
and validating computational models remains challenging. For example, drug screening protocols
often vary across studies, and there is a limited overlap in tested drugs and cell lines, complicating
the external validation of these models. Additionally, the reliance on ‘black-box’ machine learn-
ing approaches hinders the exploration of underlying molecular mechanisms driving synergistic
combinations.

To address this limitation, several studies have introduced statistical and computational ap-
proaches to infer the mechanisms of action of synergistic combinations within cancer signaling
pathways. For example, Liu et al. proposed TranSynergy, a drug synergy prediction model that
uses the interaction between drug target genes in a protein-protein interaction (PPI) network (Liu
and Xie, 2021). However, TranSynergy only relies on target gene information, neglecting informa-
tion on upstream and downstream activities of the targets and their differential contributions to
synergy. More recently, Tang et al. developed SynPathy, a deep learning model for drug synergy
prediction that incorporates drug-pathway associations (Tang and Gottlieb, 2022). SynPathy cal-
culates pathway enrichment scores as a measure of the distance between target genes of each
drug in a combination and pathway genes in the PPI network. These pathway enrichment scores,
along with chemical structure information, are then combined to fit the model and infer pathway
importance scores for each combination. More recently, Wu et al. introduced ForSyn (Wu et al.,
2023), a deep forest-based method. Although ForSyn implemented a gene enrichment analysis to
identify cancer-related pathways, it does not directly identify them through prediction.

Here we present a Drug synergy Interaction Prediction (DIPx) based on tumor- and drug-specific
pathway activation scores (PASs). PASs are biologically motivated features that provide potentially
relevant information on the underlying mechanisms of synergistic combinations. We trained and
validated DIPx using the AstraZeneca-Sanger (AZS) DREAM Challenge dataset (Menden et al., 2019),
and compared its performance with the best performing method in the Challenge. Furthermore,
we assessed the generalizability of the model by validating it on the ONeil dataset (O’'Neil et al.,
2016), and provided illustrations of pathways that could mediate the synergistic combinations
found by DIPx. DIPx is publicly available at https://www.github.com/tracquangthinh/DIPx.
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Figure 1. Overview of DIPx. a) The AZS omics data were used to train and validate the model. The test set was split into two subsets: Test Set 1
contained combinations found in the training set, while Set 2 comprised combinations not found in the training set. The model was also
externally validated using the ONeil dataset. b) A cartoon illustration of the ERBB pathway in a breast cancer cell line treated with the
combination of Capivasertib + Sapitinib. Capivasertib targets the AKT gene, whereas Sapitinib targets the ERBB genes. Pathway genes were
classified into upstream and downstream genes relative to the position of the target genes in the network. ¢) The drug synergy prediction model
was trained using pathway activation scores (PAS) of the upstream, downstream and driver genes. d) The predicted and observed Loewe scores
of a cell line achieved the median Spearman correlation in Test Set 1 of the AZS dataset. The color of each bar shows the confidence score
information with the threshold of 0.75. e) The main pathways that contribute to the prediction of the synergy of the Capivasertib + Sapitinib
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validated high synergistic predictions (Loewe score > 20) increases with higher confidence scores. The x-axis
uartiles of confidence scores. This figure was created using BioRender.com.

Results

A pathway based drug synergy prediction model

Figure 1 provides an overview of DIPx, which uses gene expression, mutation profiles, gene-interaction
network and drug synergy data to generate PAS of upstream, downstream and driver genes. Based

on the PAS combination of these gene sets, we train a random forest prediction model for DIPx
and validate its predictive performance in the AZS dataset; see, e.g., Ishwaran and Lu (2019) for a
more detailed description of the random forest model. For a new experiment (drug A + drug B, cell
line C), DIPx provides the predicted Loewe score and a confidence score. The test set consisted of
two subsets: (i) Test Set 1 includes combinations from the training set, and (ii) Test Set 2 includes
combinations absent from the training set. Together, both sets assess the generalizability of the
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o7 prediction for new patients and new combinations. The analysis involved a total of 75 cell lines
s tested in 910 combinations in the AZS dataset. DIPx was also validated using an external dataset,
e asshown in Figure 1a.

100 Figure 1b illustrates the ERBB signaling pathway in relation to the Capivasertib + Sapitinib com-
w bination, where the genes belonging to the pathway are classified into upstream and downstream
102 genes relative to the position of the target genes: AKT targeted by Capivasertib and ERBB tar-
w3 geted by Sapitinib. Putative driver mutations were identified in each sample based on a well-
w4 Characterized list of frequently mutated genes in cancer; see Section 4.3. We first calculate the
s PAS of the upstream and downstream part of the pathway relative to the driver genes; see the
s Methods section for details. The PAS values are then combined to train a random forest regres-
w7 sion model. Given a new drug combination experiment, DIPx predicts the Loewe score for drug
w8 Synergy, as shown in Figure 1c.

109 Figure 1d presents the predicted and observed synergies for the SW900 lung cancer cell line,
uo  which has a median correlation of 0.50 among the cell lines in Test Set 1; each bar in the figure rep-
w  resentsadrug combination. The best predicted combinationsinclude BCL2L1 + AZD5582, AZD5582
w2+ etoposide and doxorubicin + AZD5582, with predicted Loewe scores of 42.34, 26.60, and 25.72,
us  respectively, and high confidence scores of 1.0, 0.90, and 0.82, respectively. A combination with
us Loewe score greater than 20 is considered highly synergistic (Menden et al., 2019). Although the
ns combination of doxorubicin + AZ12623380 is predicted to have high synergy, it is a low confidence
us prediction with a confidence score of 0.33. Indeed, the observed Loewe synergy score for this
w  combination is near zero.

118 The use of PAS allows DIPx to infer the potential biological mechanisms of synergistic drug
ue combinations. Figure Te shows pathways with the highest contribution to prediction of drug syn-
1o ergy of the Capivasertib + Sapitinib combination: these include the ERBB-related pathways (ERBB2
2 signaling pathway, ERBB pathway), and tumor-related pathway (lymph-node metastates, focal ad-
122 hesion).

123 Figure 1f demonstrates the association between the confidence scores and the validation of
124 predictions. The x-axis represents the confidence scores grouped into quartiles, while the y-axis
s displays the proportion of validated high synergy (Loewe score > 20). Predictions with higher con-
126 fidence scores are expected to exhibit a greater level of validation. Indeed, in this figure, the pro-
127 portion of high synergistic predictions that are validated in the combination of Test Set 1 and 2 of
s the AZS dataset increases as the confidence score rises.

2o Validation and comparisons in the AZS dataset

130 We evaluated the performance of DIPx in the AZS test sets and compared it with TAIJl, which was the
1 best performing method in the AZS DREAM Challenge (Li et al., 2018). TAlJl was trained using both
122 monotherapy drug-response and molecular data. Since DIPx uses only molecular data, to make a
133 fair comparison, we trained TAlJl using only molecular features and referred to it as TAIJI-M.

134 Figure 2a shows the correlation between the predicted and observed Loewe scores of 963 ex-
s periments in Test Set 1 (r = 0.5, 95% Cl: 0.47-0.53), where each experiment represents a combina-
s tiondrug A+drugBtried on cell line C, yielding one data point. In comparison, TAlJI-M gives r = 0.38
w (95% Cl: 0.34-0.42). We also bootstrapped the training set (n = 100 times) and for each bootstrap
138 replicate calculated the Spearman correlation between the predicted and observed scores of all
139 experiments. As illustrated in Figure 2b, DIPx achieved stable Spearman correlations across all
1o bootstrap replicates, which are significantly higher than that of TAlJI-M. The bootstrap distribution
w  actually indicates that the Spearman correlation from DIPx is negatively biased, while from TAIJl it
w2 is slightly positively biased. This means that the gap between the bias-corrected estimates of the
w3 Spearman correlations from DIPx and TAIJI-M would be even larger; see the Method section for a
s theoretical explanation.

145 To demonstrate that DIPx does not overfit the training set, we performed a 10-fold cross-validation
us for DIPx. Figure 2-figure supplement 1 shows the Spearman correlation between the predicted and
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Figure 2. Performance of DIPx in the AZS dataset. This includes both Test Set 1 (panels a, b, ¢, f) and Test Set 2 (panels d, e, g). a) Comparison of
predicted vs observed synergy scores for all experiments in Test Set 1. b) Comparison of DIPx vs TAIJI-M in terms of the correlation between
predicted and observed synergy scores from all experiments in Test Set 1. Each boxplot shows the results based on 100 bootstrap replicates of
the training set. ¢) Comparison of DIPx and TAIJI-M performance across cell lines in Test Set 1. Each point represents the correlation between
the predicted and observed synergy for a given cell line. d) Comparison of DIPx vs TAlJI-M in Test Set 2. Each boxplot displays the correlations
between the predicted and observed values obtained from 100 bootstrap replicates of the training set. e) Comparison of performance between
DIPx and TAIJI-M in Test Set 2 in relation to the number of drugs in common (x-axis) between the combinations in the test set and the training set.
f) and g) DIPx vs TAIJI-M in three groups classified by monotherapy sensivitity of two drugs in a combination in Test Set 1 (f) and Test Set 2 (g).

Figure 2—figure supplement 1. 10-fold cross validation of DIPx in the training set of the ASZ DREAM dataset 5 of 21
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observed Loewe scores across the ten folds. DIPx achieved a median correlation of 0.48, which is
comparable to the correlation of 0.50 in Test Set 1. This indicates that there is no evidence of
overfitting in the training set.

Furthermore, we compared the performance of DIPx and TAlJI-M across all cell lines in Test Set
1 using a Spearman correlation between the predicted and observed synergy scores, as shown
in Figure 2c. A majority of the cell lines (63%) are below the diagonal line, indicating that DIPx
outperforms TAIJI-M in predicting synergy scores for these cell lines.

We also compared the performance of DIPx and TAIJI-M in Test Set 2. As expected, the pre-
diction performance of both methods was worse in Test Set 2 than in Test Set 1 since Test Set 2
consists of new combinations absent from the training set. The Spearman correlation of the ob-
served vs predicted synergy using DIPx is 0.26 (95% Cl: 0.22-0.30), which is greater than 0.18 (95%
Cl: 0.16-0.20) using TAIJI-M. However, the difference is not statistically significant. Figure 2d show
that this result is stable across 100 bootstrap replications of the training set. A similar downward
bias for DIPx is observed in the bootstrap distribution.

To investigate the effect of unseen combinations on prediction performance, we divided each
combination (drug A + drug B) in Test Set 2 into one of three groups based on the number of
individual drugs present in the training set: (i) neither drug A nor drug B in the training set ("no
drug"), (i) either drug A or drug B in the training set (‘one drug)), (iii) and both drugs A and B in the
training set (‘two drugs’), as shown in Figure 2e. Overall, both DIPx and TAIlJI-M showed improved
performance as the number of drugs present in the training set increased. For experiments in
which both drugs were not in the training set (n = 262), TAlJI-M achieved a median correlation of
0.11, while DIPx performed worse with a median correlation of -0.03. For experiments with at least
one drug in the training set (n = 2,499), both methods showed improved performance with median
correlations of 0.16 and 0.12 for DIPx and TAlJI-M, respectively. When both drugs in an experiment
were present in the training set (n = 4, 370), DIPx achieved a median correlation of 0.30, which was
better than TAIJI-M’s performance (r = 0.22, p-value < 6 x 1074).

Monotherapy drug response profiles have been shown to correlate with synergistic effects and
contribute to improving prediction performance, e.g., in TAlJl (Li et al., 2018). Here, we compared
the performance of DIPx and TAIJI-M in relation to monotherapy sensitivity as measured by the
IC50 value. We categorized each experiment in the AZS test sets into three groups according to
the monotherapy response. Briefly, we first calculated the median sensitivity to monotherapy for
each drug A (T,) across all experiments. Measuring the response of a cell line to drug A in an
experiment by S,, the drug is considered sensitive if S, > T,. We then compared the synergy of
a combination of drugs A and B in relation to the monotherapy sensitivity to both drugs, only one
drug, or neither drug.

In Test Set 1, we observe some improvement by DIPx in all three groups of monotherapy sensi-
tivity, with the highest performance in the group sensitive to both drugs (median r = 0.48), but they
are not statistically significant, see Figure 2f. In Test Set 2, TAlJI-M and DIPx performed similar in
the group with no sensitive drug (median r = 0.21 vs r = 0.20 by DIPx, p-value ~ 0.68). Interestingly,
we found that, while the performance of DIPx improved as the number of monotherapy-sensitive
drugs in a combination increased, the performance of TAlJI-M decreased, see Figure 2g. All predic-
tion results are provided in Supplementary Table S1.

External validation of DIPx in the ONeil dataset

We used a similar computational approach to evaluate the prediction performance of DIPx in re-
lation to the sensitivity of the constituent monotherapies and the impact of unseen combinations
in the ONeil dataset. As shown in Figure 3a, the performance of DIPx improved with an increasing
number of monotherapy-sensitive drugs in the combination, consistent with the results of Test Set
2 of the AZS data. The highest Spearman correlation between the predicted and observed scores
was seen in combinations with two sensitive drugs (median r = 0.11). In relation to the number
of drugs in a combination present in the training set, DIPx achieved better performance for com-
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Figure 3. Prediction performance of DIPx in the ONeil dataset. a) monotherapy sensitivity, b) 29 cell lines
from 6 cancer tissues. The y-axis in all box plots shows the Spearman correlation between predicted and
observed values in 100 bootstrap replicates.

Figure 3—figure supplement 2. Prediction performance of DIPx in the ONeil dataset, grouped by unseen
combinations.

binations with none or one drug in the training set (middle box plot, Figure 3 - figure supplement
2).

We also obtained TAlJI-M's results in the O’'Neil dataset. The original version of TAlJI-M uses
gene expression, CNV, mutation, and methylation data. However, due to the lack of methylation
data in the ONeil dataset, we retrained TAIJI-M by excluding the methylation features. According to
the final report of TAIJl in the challenge (https://www.synapse.org/Synapse:syn5614689 /wiki/396206),
Guan et al. reported that methylation features do not contribute to prediction performance in the
post-challenge analysis. This means that retraining TAlJI-M without methylation data will not affect
the comparison between DIPx and TAlJI-M on the ONeil dataset.

TAlJI-M relies on a gene-gene interaction network to calculate post-treatment gene expression.
This approach limits its applicability to new datasets, as TAIJI-M can only predict synergy scores
for drug combinations present in the training dataset. Among the set of drug combinations with
both drugs present in the training set, both DIPx and TAIJI-M perform poorly, with Spearman cor-
relations between predicted and observed synergy scores of 0.09 and 0.05, respectively. The poor
performance could be due to the limited number of drug combinations (42/583).

We also analyzed the prediction performance of DIPx in the 29 cell lines from 6 different can-
cer tissues (Figure 3b). Colon cancer (yellow boxplots) and lung cancer cell lines (purple boxplots)
showed better validation compared to cell lines from breast, ovarian, melanoma, and prostate
cancers.

Inference of the mechanism of action based on PAS

The use of PAS in DIPx allows us to infer the potential mechanisms of action of drug combina-
tions while maintaining the prediction performance of the model. For instance, in Test Set 1 of the
AZS data, DIPx suggests the involvement of ERBB2 signaling pathways in the Capivasertib + Sapi-
tinib combination, as illustrated by the top pathways depicted in Figure 1e and marked yellow in
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Figure 4. Inference of pathway importance scores in the AZS dataset. a) Scatter plot showing feature importance (x-axis) vs PAS (y-axis) for the
Capivasertib + Sapitinib combination. Pathways with high PAS and feature importance (top 5%) are of particular interest. b, c) Top pathways
contributing to the prediction of the combinations in Test Set 1 (b) and Test Set 2 (c). For each pathway, the bar plots show its feature importance.
d, f) Functional interaction between the pathway vs driver genes (x-axis) and the pathway vs target genes (y-axis) of the top pathways suggested
by DIPx in the SW900 cell line treated with synergistic combination BCL2L1 + AZD5582 (d) and the non-synergistic combination Doxorubicin +
AZ12623380 (f). The z-score from network enrichment analysis (NEA) is a measure of functional interaction between two gene sets. A higher
z-score indicates a stronger interaction compared to a random permutation of the network. The upper right quadrant (z-score > 1.96) represents
pathways that are potentially interesting. e, g) Cartoon illustration of the potential pathways mediated by the synergistic combination of BCL2L1
+ AZD5582 (e) and the non-synergistic combination Doxorubicin + AZ12623380 (g). This figure was created using BioRender.com.

Figure 4—figure supplement 3. A cartoon illustration of the RAS pathway mediated by the Selumetinib + MK-2206 combination

Figure 4—figure supplement 4. Observed vs predicted inhibition in the SW900 cell line treated by BCL2L1 + AZD5582 and Doxorubicin +
AZ12623380 combinations

Figure 4—figure supplement 5. Functional interaction between driver genes, target genes, and top pathways suggested by DIPx in the SW900
cell line treated with BCL2L1 + AZD5582.

Figure 4—figure supplement 6. Functional interaction between driver genes, target genes, and top pathways suggested by DIPx in the SW900
cell line treated with Doxorubicin + AZ12623380.

Figure 4—figure supplement 7. Top pathways contributing to the prediction of the MK2206 + Erlotinib combination in the ONeil dataset
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Figure 4a. This combination therapy has shown promise in overcoming resistance to anti-ERBB2
monotherapy in HER2+ breast cancer (Fujimoto et al., 2020), and ERBB2 has been identified as a
key biomarker associated with synergistic responses to this combination in the AZS DREAM Chal-
lenge study (Menden et al., 2019).

Figure 4a further shows the distribution of feature importance versus PAS for all pathways for
Capivasertib + Sapitinib combination. The feature importance value (x-axis) is calculated using the
permutation method of Ishwaran and Lu (20719). The PAS value (y-axis) represents the median
PAS across samples treated with this combination in two test sets. Our focus is on pathways with
high feature importance (e.g., the top 5%) as well as highly activated (top 5% PAS). Therefore, the
top-right section of Figure 4a is the interesting region. We present additional examples to further
demonstrate the capabilities of DIPx. Figure 4b gives the top pathways of MEDI3622, an ADAM17 in-
hibitor, in combinations with AKT inhibitors including Capivasertib and MK-2206. These ADAM17 +
AKT combinations target multiple parts of the PI3K/AKT pathway through ERBB activation (Menden
et al., 2019), which aligns with the potential pathway candidates suggested by DIPx.

One of the key strengths of DIPx is its ability to infer potential mechanisms of both known and
novel drug combinations, even in cases where limited biological or clinical information is available.
This capability is particularly valuable for new combinations that have not been included in the
training set. For instance, in Figure 4c, we present the key pathways identified for the Selumetinib
+ MK-2206 combination from Test Set 2 of the AZS data. We observe the involvement of RAS sig-
naling, with Selumetinib targeting MEK and MK-2206 targeting AKT, as shown in Figure 4-figure
supplement 3. A recent clinical study has used Selumetinib + MK-2206 to target downstream com-
ponents of the RAS pathway (Chung et al., 2017).

If the drugs in a combination have the same target, the efficacy of the combination is likely
similar to that of each individual drug at higher doses, i.e., they will only have an additive effect.
So it seems reasonable to hypothesize that a synergistic combination is more likely to occur when
the two drugs have different targets (Chen et al., 2015). But how should the targets be related to
each other? To investigate this, we examine the pathways suggested by DIPx. First, we choose a
synergistic combination of BCL2L1 + AZD5582 in the SW900 cell line for further illustration. The
contour plot of the BCL2L1 + AZD5582 inhibition in the SW900 cell line is illustrated in Figure 4 -
figure supplement 4a. We first collected the top 15 pathways (ranked by feature importance) for
this BCL2L1 + AZD5582 combination suggested by DIPx. The full list of these pathways is shown in
Figure 4 - figure supplement 5. Figure 4d illustrates the functional interaction between the genes
of the top 15 pathways and the driver genes of the SW900 cell line (x-axis); the target genes of the
combination BCL2L1 + AZD5582 (y-axis). To assess the strength of this interaction, we used the
network enrichment analysis (NEA) (Alexeyenko et al., 2012), which provides z-score, an enrich-
ment score, indicating the degree of interaction. A higher z-score reflects a stronger interaction
between the two gene sets. The top pathways exhibiting high functional interaction with both the
driver genes and target genes (z-score > 1.96) are particularly notable, located in the upper right
quadrant of Figure 4d. In particular, the apoptosis pathway via NF-kB (highlighted in green) has
the highest pathway-target interaction among these pathways. Figure 4e shows the cartoon illus-
tration of the pathway in which the drug BCL2L1 targets BCL-xL and AZD5582 targets XIAP. This
suggests an explanation for the observed synergy between the two drugs. Thus, it appears that in
this case we get synergy when the drugs target different parts of a driving pathway, either directly
or via other functional interactions.

As a negative control, we examine the non-synergistic combination Doxorubicin + AZ12623380,
which targets the same gene TOP2; see Figure 4f and g and Figure 4 - figure supplement 4b. We
similarly obtain 15 top-ranking pathways according to feature importance, but now we do not
expect to see anything obviously relevant to the SW900 cell line (more details in Figure 4 - fig-
ure supplement 6). Some pathways that have a high functional interaction with the target genes
(upper-left quadrant) have little interaction with the drivers. There are no clearly outlying points in
the upper-right quadrant; the two pathways near the boundary are (i) Shen_Smarca2_targets_up,

9 of 21


https://doi.org/10.1101/2024.06.05.597583
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.05.597583; this version posted March 21, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

available under aCC-BY 4.0 International license.

containing genes whose expression negatively correlated with the expression of the SMARCA2
gene in prostate cancer samples, discovered in relation to androgen-induced proliferation in the
prostate; and (ii) Kokkinakis_Methione _deprivation_48hr_up, which contains up-regulated genes
in melanoma cell-line MEWO cells after 48h of methionine deprivation. They do not appear to be
relevant for the lung cancer cell line SW900.

We also applied DIPx to identify potential activated pathways in the ONeil dataset. Figure 4 -
figure supplementary 7 highlights the key pathways contributing to the MK2206 + Erlotinib com-
bination. The most significant pathway is ‘Metabolism by CYP Enzymes.’ Previous studies (Molife
et al., 2014) have reported that both MK2206 and Erlotinib are metabolized by the CYP enzyme
family, further supporting this finding.

PAS captures the functional interaction of drug targets

In Figure 5a, using the AZS data, we compare the observed drug synergy of combinations of two
drugs that share some target genes vs those that do not share any target genes. No significant
differences were observed (p-value > 0.72), suggesting that non-overlapping drugs in terms of
their targets do not necessarily result in improved drug synergy.

However, we also observed synergy when the two drugs target different genes in the same
pathway. More generally, we hypothesize that synergistic effects occur when the targets have
functional interaction. As before, the functional interaction is assessed using NEA (Alexeyenko
et al., 2012), where a higher z-score value indicates a stronger functional interaction between the
two drugs. Figure 5b shows the observed drug synergy (y-axis) in the AZS data for the four groups
defined by the quartile values of the z-scores (x-axis). It indicates that combinations with higher
functional interaction are more likely to achieve higher drug synergy, with the highest z-score group
(z € (2.97,29.3]) exhibiting the most favorable drug synergy (median Loewe score = 10.34).

However, when added to the prediction model, the functional interaction z-score did not im-
prove the prediction of synergy (data not shown). Statistically, this can happen if PAS already cap-
tures the functional interaction information. To show this, using the AZS training data, we trained a
prediction model using PAS as the feature and the functional interaction z-score as the output. We
then evaluated the performance of the model in the test set. As shown in Figure 5¢, we observed a
significant correlation between the predicted and observed z-scores, with a Spearman correlation
coefficient of 0.46. This explains why the functional interaction does not give additional predictive
power in our model. All medians of predicted and observed Loewe scores related to Figure 5c are
provided in Supplementary Table S2.

Discussion

We have developed and validated DIPx, an advanced computational model that incorporates gene
expression and mutation profiles to predict synergistic drug combinations. DIPx performs well
against the best performing method in the AstraZeneca-Sanger DREAM Challenge. Through the use
of tumor- and patient-specific pathway activation scores, DIPx also provides valuable information
on the potential underlying pathways associated with an observed synergistic drug interaction. In
addition to rigorous validation using the AZS dataset, DIPx is further validated on the independent
ONeil dataset. This comprehensive validation ensures the robustness and reliability of DIPx in
predicting drug synergy across different cancers.

We have compared the perfomance of DIPx to TAIJI-M, the molecular-based model of TAIJI (Li
et al., 2018). The extra information from the use of monotherapy data in TAlJl is rather small, ap-
proximately 10% increase in the overall Spearman correlation (Li et al., 2018), and, of course, we
could also use such data in DIPx, but it is more convenient and informative to focus the compar-
isons on prediction based on molecular data alone. For instance, this allows us to compare DIPx
with TAIJI-M on the prediction of combinations that contain untrained drug(s), which is not possible
with the full TAIJI.
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Figure 5. a) Comparison of drug synergy between combinations (drug A + drug B) with vs without overlapping
target genes. The numbers in parentheses show the sample sizes of each group. b) Drug synergy between
four groups in relation to increased functional interaction between the target genes of the two drugs. c)
Comparison between the observed functional interaction (z-score in the network enrichment analysis) and
the predicted z-score by PAS.
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The recent availability of large-scale drug combination assay data has allowed the development
of realistic prediction models for drug synergy. These datasets offer a substantial number of sam-
ples encompassing hundreds of combinations, allowing for extensive validation studies. However,
it is important to note that these datasets were generated using different protocols and drug
screening techniques. For instance, the AZS data used a 5-by-5 concentration matrix, while the
study by ONeil et al. used a 4-by-4 format. In addition, there is limited overlap in the cell lines
used among the datasets. These differences pose challenges to the proper validation of predic-
tion methods (Menden et al., 2019). Exploring new datasets or applying novel techniques in the
training process (e.g., transfer learning) will be our future direction to improve the performance of
DIPx.

A particular strength of our study is that we use the best-performing method in the Challenge
as a benchmark. This is a convenient and robust benchmarking, as there were 160 teams that
participated in the Challenge (73 teams submitted in the final round). Altogether, these teams
used practically all of the commonly used machine learning tools; see the summary in Menden et al.
(2079). Another strength is our use and validation of the confidence score metric, which captures
the statistical uncertainty in the predicted synergy by a single number. This is more convenient
for clinical interpretation than the standard prediction interval, because there is a target level for
which a combination is considered synergistic, so the score measures our confidence in achieving
the target.

Despite promising results, our study has several limitations. First, the use of cell lines as training
and validation samples from the AZS and ONeil datasets may not fully capture the heterogeneity
presentin actual tumors. Second, the computation of PAS relies solely on the primary target genes
of the drug combinations, potentially disregarding valuable information from non-primary targets.
There could also be off-targets that we do not know about. This limitation might lead to the loss
of information about the broader effects of drug combinations. Third, cancer is a heterogeneous
disease that occurs in many tissues. Even within a single tissue, cancer exhibits distinct (molecular)
subtypes with varying biological mechanisms and clinical outcomes. Since DIPx was developed
using pan-cancer datasets, it may not be optimal for tissue-specific predictions. Our future plan
for DIPx would be building cancer-specific models.

Last but not least, prediction of previously untrained combinations remains a great challenge.
The worst case is for combinations of drugs that were not previously trained, with the Spearman
correlation only around 0.1. However, from a clinical perspective, it is perhaps more realistic to
look for combinations among drugs previously trained in monotherapy or in other combinations.
Improving the prediction for the combination of such drugs would be worthwhile.

Methods and Materials

Pathway activation score for drug combinations

Pathway activation scores (PASs) are the key features in DIPx. The PAS of pathway P in cell line C
is calculated for each drug combination (drug A + drug B) and pathway P. Genes in pathway P are
grouped into three subgroups: (a) G,, which includes all the target genes of drugs A and B, as well
as the upstream genes of pathway P; (b) G,, which includes the downstream genes of pathway P;
and (¢) G,,, which consists of all the driver genes of cell line C in pathway P. In the example of the
ERBB pathway targeted by Capivasertib + Sapitinib. (Figure 1b), G, consists of ERBB, PI3K, and also
AKT; G, contains MTOR, RAS and MAPK, while G,, includes TP53 and ERBB2.

The score for upstream activity (PAS,) is calculated by the sum of mRNA expression for genes
in G,. Similarly, the scores for the downstream activity (PAS,) and the set of driver genes (PAS,,)
are calculated from G, and G,,. In practice, the genes of the N = 4,762 curated human pathways
are provided from the MsigDB database (version 6.2) (Liberzon et al., 2015). The target genes of
the drugs are collected from the AZS dataset and extended from the DrugBank database (Wishart
et al., 2018) and the ChEMBL database (Zdrazil et al., 2024). The extraction of the driver genes of
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the cell lines is described in the Datasets section.

A pathway based model for drug synergy prediction

The training features of DIPx consist of three components: upstream activity (PAS,), downstream
activity (PAS,), and driver genes (PAS,,), as shown in Figure 1b. The final training matrix has a size
of K experiments by 14,286 PASs, where each row corresponds to a specific experiment (drug A +
drug B, cell line C).

To address potential sparsity in the training matrix caused by pathways with no target or driver
genes, we explored an alternative model with N = 4,762 additional features. Each feature corre-
sponds to a pathway P and is calculated as S(g) * (w1 + w2), where S(g) represents the sum of mMRNA
expression for all genes in pathway P, and w1 and w2 denote the functional interactions between
gene sets: (pathway genes « target genes) and (pathway genes < driver genes), respectively. The
functional interactions were estimated using NEA and converted into normal probability scores for
w1 and w2. The feature value is zero only when the pathway lacks both targets and driver genes,
as well as any interactions with drug targets and driver genes. Additionally, we incorporated the
NEA enrichment score between target genes and driver genes into the final matrix. Despite adding
these new features, the alternative model did not exhibit any significant improvements in predic-
tive power (data not shown).

For the predictor, we used the random forest algorithm implemented in the randomforestRSC
package (with default parameters) in R version 4.0.4. During the development of DIPx, we exper-
imented with various machine learning methods, such as the support vector machine (SVM) and
the elastic net. However, we found that these other methods yielded comparable results and that
tuning their parameters did not significantly improve prediction performance while requiring ex-
tensive additional computations (data not shown). The random forest algorithm in the random-
forestRSC package also offers multiple options to calculate the importance of features. In this
study, we used the permutation (or Breiman-Cutler) method (Ishwaran and Lu, 2019) to infer the
importance of each PAS.

The confidence score (CS) is used to assess the statistical quality of synergy prediction; see
Section 5.6 in Pawitan (2007) for the confidence concept in general. First, as previously defined
for example in (Menden et al., 2019), a combination is considered synergistic if the Loewe score
is greater than or equal to 20. For each sample s, we have the actual predicted synergy P, (the
output of the regression random forest model). We then generate N, = 100 bootstrap replicates
of the training data and obtain the bootstrap predictions for the sample: P}, ..., P . The CS of P,
is defined as follows:

#(Prs > 20)
N, '

The bootstrap replicates are also used to evaluate the standard errors (se) of the Spearman
correlation between the observed and predicted synergy scores in the test sets. The 95% confi-
dence intervals are computed by the usual formula: 5 + 1.96se, where 5 is the observed Spearman
correlation. Though less frequently used, the bootstrap can also be used for bias correction (Paw-
itan, 2001, Section 5.2). Bias occurs if there is a nontrivial gap between the observed estimate and
the mean of the bootstrap replications and bias correction is used to adjust the original estimate.
Theoretically,

CS(Ps) =

Bias = E.(p) — p,

where F is the underlying data distribution. So, the bias-corrected estimate should be

%: p — Bias
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In practice, the bias is estimated by
Bias = Exp)-7
= average{p;...0.} =7,

where 77 ... p* are the bootstrap replicates of . When the estimated bias is negative, as we ob-
served for DIPx, the bias-corrected estimate is shifted upward. And vice versa, if the bias is positive,
as observed for TAIJI-M, the corrected estimate is shifted downward.

Computing p-values using the bootstrap

To compare the predictive performance of DIPx and TAIJI-M (e.g., as shown in Figure 2), the boot-
strap method can be used to compute a confidence interval for differential correlation in the test
set. However, there is a close relationship between p-values and confidence intervals; see Pawitan
(2007), Chapter 5; particularly p.134. In this case, we compute the p-value as follows:

(1) For each bootstrap replication, (i) compute the Spearman correlation between the predicted
and observed scores in the test set for DIPx and TAIJI-M. Denote this by r, and r,. (ii) Compute
the difference in the Spearman correlations d = (r, — r,).

(2). Repeat the bootstrap n = 100 times.

(3). Compute the minimum of these two proportions: proportion of d<0 or proportion of d>0. To
overcome the limited bootstrap sample size, we use the normal approximation in computing
the proportions.

(4). The two-sided p-value = 2x the minimum proportion in (3).

Datasets

AstraZeneca-Sanger (AZS) DREAM Challenge dataset The AZS DREAM Challenge is a rigorous
competition in the effort to systematically develop and validate drug synergy prediction methods.
Indicating the strong interest in the topic, 160 international teams (Menden et al., 2019) partici-
pated in the Challenge. It was organized into two subchallenges: i) Prediction for known (tested)
combination and ii) Prediction for unknown (untested) drug combinations. The final dataset com-
prised 11,576 experiments from 85 cell lines and 910 combinations. The gene expression data of
these cell lines was obtained from Affymetrix microarray (Menden et al., 2019). However, to en-
sure consistency between the AZS dataset and the Oneil dataset (O'Neil et al., 2016) (which did not
provide gene expression profiles of cell lines), we utilized gene expression data from the Cancer
Cell Line Encyclopedia (CCLE) cohort (Ghandi et al., 2019).

Out of the 85 cell lines, we identified 75 cell lines with available gene expression data in the
CCLE cohort, resulting in a total of 10,154 experiments involving 903 combinations used in our
study. Supplementary Table S3 shows the list of 75 cell lines. For the validation of the prediction
model, the data were split into a training set (n = 2,060) and two test sets (n = 963 and 7,131)
according to subchallenges 1 and 2, respectively. The first test set contains experiments from 167
combinations (of 69 single drugs) that are also in the training set. The second test set includes
experiments with 736 drug combinations that are not in the training set.

We collected gene expression data of 75 cell lines, measuring the transcript per million (TPM) of
37,222 genes, of the CCLE cohort downloaded from the DepMap Portal (Tsherniak et al., 2017). The
gene expression data was logarithmically transformed to the base 2 scale for downstream analysis.
Additionally, we obtained potential driver genes for these cell lines, including both mutations and
fusion genes, from the DepMap Portal. The portal provides information on mutations in 1,637
protein-coding genes associated with cancer biology in a collection of 1,030 cell lines.

To filter the list of mutations, we focused on those occurring in at least 2.5% of the total cell lines.
Subsequently, we extracted the list of mutations specific to the 75 cell lines under investigation.
For fusion genes, we focused on those present in the Miltelman database (Mitelman, 2022) and
occurring at least twice, considering them as relevant for our analysis. The final list of potential
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driver genes for the 75 cell lines can be found in Supplementary Table S3. On average, each cell
line had a median of 29 potential driver genes.

For the drug synergy data, we used a 5-by-5 concentration matrix provided by the Challenge.
Drug synergy values were estimated using the Loewe reference model from Combenefit (Di Veroli
et al., 2016).

ONeil dataset ONeil dataset is a large-scale drug synergy screening dataset from Merck&Co com-
pany (O'Neil et al., 2016). A total of 23,062 experiments with 583 unique drug combinations (38
monotherapy drugs) was carried out on 38 cancer cell lines by a 4-by-4 drug concentration matrix.
Out of 38 cell lines, we found 29 cell lines with available gene expression data from the DepMap
Portal. The detail of 29 cell lines is described in Supplementary Table S4. The gene expression data
of 37,222 genes from 29 cell lines, as well as the driver genes of these cell lines, were collected from
the DepMap Portal using the same procedure as in the AZS dataset. The original release of this
dataset provides only the raw data on drug synergy. Here, we calculated the Loewe synergy score
for each experiment using Combenefit (Di Veroli et al., 2016). In total, we obtained 16,907 exper-
iments for 583 combinations in 29 cell lines for further analysis. Drug targets of 38 monotherapy
drugs were collected from the DrugBank database (Wishart et al., 2018) and the ChEMBL database
(Zdrazil et al., 2024). The original names of all pathways mentioned in the manuscript are listed in
Supplementary Table S5.

Data Availability

The implementation of DIPx, and related data are publicly available in https://www.github.com/
tracquangthinh/DIPx. Drug synergy data are available from their original studies: Synapse database
at synapse.org/DrugCombinationChallenge for the AZS dataset (Menden et al., 2019), raw data from
the supplementary data for the ONeil dataset (O'Neil et al., 2016). The implementation of TAlJI-M
as the molecular model is available at https://github.com/GuanLab/TAlJI/.
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Figure 2—figure supplement 1. Cross-validation of DIPx on the training set of the ASZ DREAM
dataset. The y-axis of the boxplot represents the Spearman correlation between predicted and ob-
served values across ten folds. The red star indicates the corresponding DIPx correlation achieved
in Test Set 1.
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Figure 3—figure supplement 2. Prediction performance of DIPx in the ONeil dataset, grouped by
unseen combinations in the training set (x-axist). The y-axis in all box plots shows the Spearman
correlation between predicted and observed values in 100 bootstrap replicates.
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Figure 4—figure supplement 3. A cartoon illustration of the RAS pathway mediated by the
Selumetinib + MK-2206 combination
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Figure 4—figure supplement 4. Observed (red lines) vs predicted inhibition (black, dash lines)
from Loewe reference model in the SW900 cell line treated by the synergistic BCL2L1 + AZD5582
combination (a) and the non-synergistic Doxorubicin + AZ12623380 combination (b). The number
in each line presents the percentage of inhibition..
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Figure 4—figure supplement 5. Functional interaction (x-axis) between the pathway vs driver
genes (1st column), the pathway vs all target genes (2nd), the pathway vs BCL2L1 target genes
(3th), and the pathway vs AZD5582 target genes (4th) of the top pathways suggested by DIPx in the
SW900 cell line treated with synergistic combination BCL2L1 + AZD5582.
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Figure 4—figure supplement 6. Functional interaction (x-axis) between the pathway vs driver
genes (1st column), the pathway vs all target genes (2nd), the pathway vs Doxorubicin target genes
(3th), and the pathway vs AZ12623380 target genes (4th) of the top pathways suggested by DIPx in
the SW900 cell line treated with non-synergistic combination Doxorubicin + AZ12623380.
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Figure 4—figure supplement 7. Top pathways contributing to the prediction of the MK2206 +
Erlotinib combination in the ONeil dataset.
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