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16

Abstract Targeted monotherapies for cancer often fail due to inherent or acquired drug17

resistance. By aiming at multiple targets simultaneously, drug combinations can produce18

synergistic interactions that increase drug effectiveness and reduce resistance. Computational19

models based on the integration of omics data have been used to identify synergistic20

combinations, but predicting drug synergy remains a challenge. Here, we introduce DIPx, an21

algorithm for personalized prediction of drug synergy based on biologically motivated tumor-22

and drug-specific pathway activation scores (PASs). We trained and validated DIPx in the23

AstraZeneca-Sanger (AZS) DREAM Challenge dataset using two separate test sets: Test Set 124

comprised the combinations already present in the training set, while Test Set 2 contained25

combinations absent from the training set, thus indicating the model’s ability to handle novel26

combinations. The Spearman correlation coefficients between predicted and observed drug27

synergy were 0.50 (95% CI: 0.47–0.53) in Test Set 1 and 0.26 (95% CI: 0.22–0.30) in Test Set 2,28

compared to 0.38 (95% CI: 0.34–0.42) and 0.18 (95% CI: 0.16–0.20), respectively, for the best29

performing method in the Challenge. We show evidence that higher synergy is associated with30

higher functional interaction between the drug targets, and this functional interaction31

information is captured by PAS. We illustrate the use of PAS to provide a potential biological32

explanation in terms of activated pathways that mediate the synergistic effects of combined33

drugs. In summary, DIPx can be a useful tool for personalized prediction of drug synergy and34

exploration of activated pathways related to the effects of combined drugs.35

36

Introduction37

Targeted therapies such as specific inhibitors are the most promising class of cancer drugs, but38

often fail or achieve only temporary remission due to inherent or acquired resistance. Theoreti-39

cally, by aiming at multiple targets simultaneously, drug combinations can produce a synergistic40
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interaction that increases drug effectiveness and reduces resistance and the chances of relapse41

(Medicine, 2017; Pemovska et al., 2018; Plana et al., 2022). This is illustrated in the combination of42

a BRAF inhibitor dabrafenib with a MEK inhibitor trametinib, which suppresses paradoxical reacti-43

vation and resistance observed in patients with BRAF-mutated melanoma treated with dabrafenib44

alone (Zhong et al., 2022; Banzi et al., 2016). This recently approved combination has been shown45

to improve progression-free and overall survival rates (Subbiah et al., 2023).46

The discovery of effective drug combinations has traditionally relied on expert knowledge and47

understanding of known biological mechanisms (Li et al., 2015). However, this expert-based ap-48

proach has limited scope to come up with novel combinations. Furthermore, ideally, novel com-49

binations are clinically tested, but it is practically impossible to test all reasonable combinations50

in a clinical setting. Computational models of drug synergy have shown some potential for per-51

sonalized prediction of synergistic combinations (Güvenç Paltun et al., 2021;Wu et al., 2022; Kong52

et al., 2022). These models are typically based on the integration of patient-specific molecular53

data, such as mutation profiles, gene expression, and drug response information (Güvenç Paltun54

et al., 2021). For example, TAIJI, the best performing method in the AstraZeneca-Sanger DREAM55

Challenge, uses these diverse data types to predict drug synergy (Li et al., 2018). The drug combina-56

tions predicted to be effective will expand the therapeutic options whilemaintaining the same level57

of adverse effects profile. However, despite the advantages offered by modern machine learning58

methodologies and the availability of large-scale datasets, prediction of synergistic combinations59

and validating computational models remains challenging. For example, drug screening protocols60

often vary across studies, and there is a limited overlap in tested drugs and cell lines, complicating61

the external validation of these models. Additionally, the reliance on ‘black-box’ machine learn-62

ing approaches hinders the exploration of underlying molecular mechanisms driving synergistic63

combinations.64

To address this limitation, several studies have introduced statistical and computational ap-65

proaches to infer the mechanisms of action of synergistic combinations within cancer signaling66

pathways. For example, Liu et al. proposed TranSynergy, a drug synergy prediction model that67

uses the interaction between drug target genes in a protein-protein interaction (PPI) network (Liu68

and Xie, 2021). However, TranSynergy only relies on target gene information, neglecting informa-69

tion on upstream and downstream activities of the targets and their differential contributions to70

synergy. More recently, Tang et al. developed SynPathy, a deep learning model for drug synergy71

prediction that incorporates drug-pathway associations (Tang and Gottlieb, 2022). SynPathy cal-72

culates pathway enrichment scores as a measure of the distance between target genes of each73

drug in a combination and pathway genes in the PPI network. These pathway enrichment scores,74

along with chemical structure information, are then combined to fit the model and infer pathway75

importance scores for each combination. More recently, Wu et al. introduced ForSyn (Wu et al.,76

2023), a deep forest-based method. Although ForSyn implemented a gene enrichment analysis to77

identify cancer-related pathways, it does not directly identify them through prediction.78

Herewe present a Drug synergy Interaction Prediction (DIPx) based on tumor- and drug-specific79

pathway activation scores (PASs). PASs are biologically motivated features that provide potentially80

relevant information on the underlying mechanisms of synergistic combinations. We trained and81

validated DIPx using the AstraZeneca-Sanger (AZS) DREAMChallenge dataset (Menden et al., 2019),82

and compared its performance with the best performing method in the Challenge. Furthermore,83

we assessed the generalizability of the model by validating it on the ONeil dataset (O’Neil et al.,84

2016), and provided illustrations of pathways that could mediate the synergistic combinations85

found by DIPx. DIPx is publicly available at https://www.github.com/tracquangthinh/DIPx.86
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Figure 1. Overview of DIPx. a) The AZS omics data were used to train and validate the model. The test set was split into two subsets: Test Set 1contained combinations found in the training set, while Set 2 comprised combinations not found in the training set. The model was alsoexternally validated using the ONeil dataset. b) A cartoon illustration of the ERBB pathway in a breast cancer cell line treated with thecombination of Capivasertib + Sapitinib. Capivasertib targets the AKT gene, whereas Sapitinib targets the ERBB genes. Pathway genes wereclassified into upstream and downstream genes relative to the position of the target genes in the network. c) The drug synergy prediction modelwas trained using pathway activation scores (PAS) of the upstream, downstream and driver genes. d) The predicted and observed Loewe scoresof a cell line achieved the median Spearman correlation in Test Set 1 of the AZS dataset. The color of each bar shows the confidence scoreinformation with the threshold of 0.75. e) The main pathways that contribute to the prediction of the synergy of the Capivasertib + Sapitinibcombination. f) The proportion of validated high synergistic predictions (Loewe score ≥ 20) increases with higher confidence scores. The x-axispresents four groups defined by quartiles of confidence scores. This figure was created using BioRender.com.

Results87

A pathway based drug synergy prediction model88

Figure 1provides anoverviewofDIPx, which uses gene expression,mutationprofiles, gene-interaction89

network and drug synergy data to generate PAS of upstream, downstreamand driver genes. Based90

on the PAS combination of these gene sets, we train a random forest prediction model for DIPx91

and validate its predictive performance in the AZS dataset; see, e.g., Ishwaran and Lu (2019) for a92

more detailed description of the random forest model. For a new experiment (drug A + drug B, cell93

line C), DIPx provides the predicted Loewe score and a confidence score. The test set consisted of94

two subsets: (i) Test Set 1 includes combinations from the training set, and (ii) Test Set 2 includes95

combinations absent from the training set. Together, both sets assess the generalizability of the96
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prediction for new patients and new combinations. The analysis involved a total of 75 cell lines97

tested in 910 combinations in the AZS dataset. DIPx was also validated using an external dataset,98

as shown in Figure 1a.99

Figure 1b illustrates the ERBB signaling pathway in relation to the Capivasertib + Sapitinib com-100

bination, where the genes belonging to the pathway are classified into upstream and downstream101

genes relative to the position of the target genes: AKT targeted by Capivasertib and ERBB tar-102

geted by Sapitinib. Putative driver mutations were identified in each sample based on a well-103

characterized list of frequently mutated genes in cancer; see Section 4.3. We first calculate the104

PAS of the upstream and downstream part of the pathway relative to the driver genes; see the105

Methods section for details. The PAS values are then combined to train a random forest regres-106

sion model. Given a new drug combination experiment, DIPx predicts the Loewe score for drug107

synergy, as shown in Figure 1c.108

Figure 1d presents the predicted and observed synergies for the SW900 lung cancer cell line,109

which has a median correlation of 0.50 among the cell lines in Test Set 1; each bar in the figure rep-110

resents a drug combination. The best predicted combinations includeBCL2L1 +AZD5582, AZD5582111

+ etoposide and doxorubicin + AZD5582, with predicted Loewe scores of 42.34, 26.60, and 25.72,112

respectively, and high confidence scores of 1.0, 0.90, and 0.82, respectively. A combination with113

Loewe score greater than 20 is considered highly synergistic (Menden et al., 2019). Although the114

combination of doxorubicin + AZ12623380 is predicted to have high synergy, it is a low confidence115

prediction with a confidence score of 0.33. Indeed, the observed Loewe synergy score for this116

combination is near zero.117

The use of PAS allows DIPx to infer the potential biological mechanisms of synergistic drug118

combinations. Figure 1e shows pathways with the highest contribution to prediction of drug syn-119

ergy of the Capivasertib + Sapitinib combination: these include the ERBB-related pathways (ERBB2120

signaling pathway, ERBB pathway), and tumor-related pathway (lymph-node metastates, focal ad-121

hesion).122

Figure 1f demonstrates the association between the confidence scores and the validation of123

predictions. The x-axis represents the confidence scores grouped into quartiles, while the y-axis124

displays the proportion of validated high synergy (Loewe score ≥ 20). Predictions with higher con-125

fidence scores are expected to exhibit a greater level of validation. Indeed, in this figure, the pro-126

portion of high synergistic predictions that are validated in the combination of Test Set 1 and 2 of127

the AZS dataset increases as the confidence score rises.128

Validation and comparisons in the AZS dataset129

Weevaluated the performance of DIPx in the AZS test sets and compared it with TAIJI, whichwas the130

best performing method in the AZS DREAM Challenge (Li et al., 2018). TAIJI was trained using both131

monotherapy drug-response and molecular data. Since DIPx uses only molecular data, to make a132

fair comparison, we trained TAIJI using only molecular features and referred to it as TAIJI-M.133

Figure 2a shows the correlation between the predicted and observed Loewe scores of 963 ex-134

periments in Test Set 1 (𝑟 = 0.5, 95% CI: 0.47–0.53), where each experiment represents a combina-135

tion drug A + drug B tried on cell line C, yielding one data point. In comparison, TAIJI-M gives 𝑟 = 0.38136

(95% CI: 0.34–0.42). We also bootstrapped the training set (n = 100 times) and for each bootstrap137

replicate calculated the Spearman correlation between the predicted and observed scores of all138

experiments. As illustrated in Figure 2b, DIPx achieved stable Spearman correlations across all139

bootstrap replicates, which are significantly higher than that of TAIJI-M. The bootstrap distribution140

actually indicates that the Spearman correlation from DIPx is negatively biased, while from TAIJI it141

is slightly positively biased. This means that the gap between the bias-corrected estimates of the142

Spearman correlations from DIPx and TAIJI-M would be even larger; see the Method section for a143

theoretical explanation.144

Todemonstrate thatDIPx does not overfit the training set, weperformeda10-fold cross-validation145

for DIPx. Figure 2-figure supplement 1 shows the Spearman correlation between the predicted and146
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Figure 2. Performance of DIPx in the AZS dataset. This includes both Test Set 1 (panels a, b, c, f) and Test Set 2 (panels d, e, g). a) Comparison ofpredicted vs observed synergy scores for all experiments in Test Set 1. b) Comparison of DIPx vs TAIJI-M in terms of the correlation betweenpredicted and observed synergy scores from all experiments in Test Set 1. Each boxplot shows the results based on 100 bootstrap replicates ofthe training set. c) Comparison of DIPx and TAIJI-M performance across cell lines in Test Set 1. Each point represents the correlation betweenthe predicted and observed synergy for a given cell line. d) Comparison of DIPx vs TAIJI-M in Test Set 2. Each boxplot displays the correlationsbetween the predicted and observed values obtained from 100 bootstrap replicates of the training set. e) Comparison of performance betweenDIPx and TAIJI-M in Test Set 2 in relation to the number of drugs in common (x-axis) between the combinations in the test set and the training set.
f) and g) DIPx vs TAIJI-M in three groups classified by monotherapy sensivitity of two drugs in a combination in Test Set 1 (f) and Test Set 2 (g).
Figure 2—figure supplement 1. 10-fold cross validation of DIPx in the training set of the ASZ DREAM dataset 5 of 21
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observed Loewe scores across the ten folds. DIPx achieved a median correlation of 0.48, which is147

comparable to the correlation of 0.50 in Test Set 1. This indicates that there is no evidence of148

overfitting in the training set.149

Furthermore, we compared the performance of DIPx and TAIJI-M across all cell lines in Test Set150

1 using a Spearman correlation between the predicted and observed synergy scores, as shown151

in Figure 2c. A majority of the cell lines (63%) are below the diagonal line, indicating that DIPx152

outperforms TAIJI-M in predicting synergy scores for these cell lines.153

We also compared the performance of DIPx and TAIJI-M in Test Set 2. As expected, the pre-154

diction performance of both methods was worse in Test Set 2 than in Test Set 1 since Test Set 2155

consists of new combinations absent from the training set. The Spearman correlation of the ob-156

served vs predicted synergy using DIPx is 0.26 (95% CI: 0.22–0.30), which is greater than 0.18 (95%157

CI: 0.16–0.20) using TAIJI-M. However, the difference is not statistically significant. Figure 2d show158

that this result is stable across 100 bootstrap replications of the training set. A similar downward159

bias for DIPx is observed in the bootstrap distribution.160

To investigate the effect of unseen combinations on prediction performance, we divided each161

combination (drug A + drug B) in Test Set 2 into one of three groups based on the number of162

individual drugs present in the training set: (i) neither drug A nor drug B in the training set ("no163

drug"), (ii) either drug A or drug B in the training set (‘one drug’), (iii) and both drugs A and B in the164

training set (‘two drugs’), as shown in Figure 2e. Overall, both DIPx and TAIJI-M showed improved165

performance as the number of drugs present in the training set increased. For experiments in166

which both drugs were not in the training set (𝑛 = 262), TAIJI-M achieved a median correlation of167

0.11, while DIPx performedworse with amedian correlation of –0.03. For experiments with at least168

one drug in the training set (𝑛 = 2, 499), bothmethods showed improved performance withmedian169

correlations of 0.16 and 0.12 for DIPx and TAIJI-M, respectively. When both drugs in an experiment170

were present in the training set (𝑛 = 4, 370), DIPx achieved a median correlation of 0.30, which was171

better than TAIJI-M’s performance (𝑟 = 0.22, p-value < 6 × 10−4).172

Monotherapy drug response profiles have been shown to correlate with synergistic effects and173

contribute to improving prediction performance, e.g., in TAIJI (Li et al., 2018). Here, we compared174

the performance of DIPx and TAIJI-M in relation to monotherapy sensitivity as measured by the175

IC50 value. We categorized each experiment in the AZS test sets into three groups according to176

the monotherapy response. Briefly, we first calculated the median sensitivity to monotherapy for177

each drug A (𝑇𝐴) across all experiments. Measuring the response of a cell line to drug A in an178

experiment by 𝑆𝐴, the drug is considered sensitive if 𝑆𝐴 ≥ 𝑇𝐴. We then compared the synergy of179

a combination of drugs A and B in relation to the monotherapy sensitivity to both drugs, only one180

drug, or neither drug.181

In Test Set 1, we observe some improvement by DIPx in all three groups of monotherapy sensi-182

tivity, with the highest performance in the group sensitive to both drugs (median 𝑟 = 0.48), but they183

are not statistically significant, see Figure 2f. In Test Set 2, TAIJI-M and DIPx performed similar in184

the group with no sensitive drug (median 𝑟 = 0.21 vs 𝑟 = 0.20 by DIPx, p-value ∼ 0.68). Interestingly,185

we found that, while the performance of DIPx improved as the number of monotherapy-sensitive186

drugs in a combination increased, the performance of TAIJI-M decreased, see Figure 2g. All predic-187

tion results are provided in Supplementary Table S1.188

External validation of DIPx in the ONeil dataset189

We used a similar computational approach to evaluate the prediction performance of DIPx in re-190

lation to the sensitivity of the constituent monotherapies and the impact of unseen combinations191

in the ONeil dataset. As shown in Figure 3a, the performance of DIPx improved with an increasing192

number of monotherapy-sensitive drugs in the combination, consistent with the results of Test Set193

2 of the AZS data. The highest Spearman correlation between the predicted and observed scores194

was seen in combinations with two sensitive drugs (median 𝑟 = 0.11). In relation to the number195

of drugs in a combination present in the training set, DIPx achieved better performance for com-196

6 of 21

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 21, 2025. ; https://doi.org/10.1101/2024.06.05.597583doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.05.597583
http://creativecommons.org/licenses/by/4.0/


0.54

0.12

0.04

0.00

0.05

0.10

0.15

0.20

0.25

No drug One drugTwo drugs
Monotherapy sensitivity

B
oo

st
ra

p 
−

 S
pe

ar
m

an
 c

or
(p

re
d,

 o
bs

)

ONEILa
CLCC LL OBLLLCCOO CBO PMOM MMBMBML

−0.2

−0.1

0.0

0.1

0.2

0.3

NCIH
21

22

SKM
EL3

0
T47

D

HT14
4

M
DAM

B43
6

UACC62
A37

5

CAOV3

A20
58

RPM
I7

95
1
OV90

ZR75
1

VCAP

SKOV3
ES2

RKO

HCT11
6
HT29

A42
7

NCIH
16

50

SKM
ES1

KPL1

NCIH
52

0

A27
80

SW
83

7

NCIH
46

0

SW
62

0

NCIH
23

LO
VO

Cell line

B
oo

st
ra

p 
−

 S
pe

ar
m

an
 c

or
(p

re
d,

 o
bs

)

Breast (B)

Colon (C)

Lung (L)

Melanoma (M)

Ovarian (O)

Prostate (P)

b

Figure 3. Prediction performance of DIPx in the ONeil dataset. a) monotherapy sensitivity, b) 29 cell linesfrom 6 cancer tissues. The y-axis in all box plots shows the Spearman correlation between predicted andobserved values in 100 bootstrap replicates.
Figure 3—figure supplement 2. Prediction performance of DIPx in the ONeil dataset, grouped by unseen
combinations.

binations with none or one drug in the training set (middle box plot, Figure 3 - figure supplement197

2).198

We also obtained TAIJI-M’s results in the O’Neil dataset. The original version of TAIJI-M uses199

gene expression, CNV, mutation, and methylation data. However, due to the lack of methylation200

data in the ONeil dataset, we retrained TAIJI-M by excluding themethylation features. According to201

the final report of TAIJI in the challenge (https://www.synapse.org/Synapse:syn5614689/wiki/396206),202

Guan et al. reported that methylation features do not contribute to prediction performance in the203

post-challenge analysis. This means that retraining TAIJI-M without methylation data will not affect204

the comparison between DIPx and TAIJI-M on the ONeil dataset.205

TAIJI-M relies on a gene-gene interaction network to calculate post-treatment gene expression.206

This approach limits its applicability to new datasets, as TAIJI-M can only predict synergy scores207

for drug combinations present in the training dataset. Among the set of drug combinations with208

both drugs present in the training set, both DIPx and TAIJI-M perform poorly, with Spearman cor-209

relations between predicted and observed synergy scores of 0.09 and 0.05, respectively. The poor210

performance could be due to the limited number of drug combinations (42/583).211

We also analyzed the prediction performance of DIPx in the 29 cell lines from 6 different can-212

cer tissues (Figure 3b). Colon cancer (yellow boxplots) and lung cancer cell lines (purple boxplots)213

showed better validation compared to cell lines from breast, ovarian, melanoma, and prostate214

cancers.215

Inference of the mechanism of action based on PAS216

The use of PAS in DIPx allows us to infer the potential mechanisms of action of drug combina-217

tions while maintaining the prediction performance of the model. For instance, in Test Set 1 of the218

AZS data, DIPx suggests the involvement of ERBB2 signaling pathways in the Capivasertib + Sapi-219

tinib combination, as illustrated by the top pathways depicted in Figure 1e and marked yellow in220
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Figure 4. Inference of pathway importance scores in the AZS dataset. a) Scatter plot showing feature importance (x-axis) vs PAS (y-axis) for theCapivasertib + Sapitinib combination. Pathways with high PAS and feature importance (top 5%) are of particular interest. b, c) Top pathwayscontributing to the prediction of the combinations in Test Set 1 (b) and Test Set 2 (c). For each pathway, the bar plots show its feature importance.
d, f) Functional interaction between the pathway vs driver genes (x-axis) and the pathway vs target genes (y-axis) of the top pathways suggestedby DIPx in the SW900 cell line treated with synergistic combination BCL2L1 + AZD5582 (d) and the non-synergistic combination Doxorubicin +AZ12623380 (f). The z-score from network enrichment analysis (NEA) is a measure of functional interaction between two gene sets. A higherz-score indicates a stronger interaction compared to a random permutation of the network. The upper right quadrant (z-score > 1.96) representspathways that are potentially interesting. e, g) Cartoon illustration of the potential pathways mediated by the synergistic combination of BCL2L1+ AZD5582 (e) and the non-synergistic combination Doxorubicin + AZ12623380 (g). This figure was created using BioRender.com.
Figure 4—figure supplement 3. A cartoon illustration of the RAS pathway mediated by the Selumetinib + MK-2206 combination
Figure 4—figure supplement 4. Observed vs predicted inhibition in the SW900 cell line treated by BCL2L1 + AZD5582 and Doxorubicin +
AZ12623380 combinations
Figure 4—figure supplement 5. Functional interaction between driver genes, target genes, and top pathways suggested by DIPx in the SW900
cell line treated with BCL2L1 + AZD5582.
Figure 4—figure supplement 6. Functional interaction between driver genes, target genes, and top pathways suggested by DIPx in the SW900
cell line treated with Doxorubicin + AZ12623380.
Figure 4—figure supplement 7. Top pathways contributing to the prediction of the MK2206 + Erlotinib combination in the ONeil dataset
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Figure 4a. This combination therapy has shown promise in overcoming resistance to anti-ERBB2221

monotherapy in HER2+ breast cancer (Fujimoto et al., 2020), and ERBB2 has been identified as a222

key biomarker associated with synergistic responses to this combination in the AZS DREAM Chal-223

lenge study (Menden et al., 2019).224

Figure 4a further shows the distribution of feature importance versus PAS for all pathways for225

Capivasertib + Sapitinib combination. The feature importance value (x-axis) is calculated using the226

permutation method of Ishwaran and Lu (2019). The PAS value (y-axis) represents the median227

PAS across samples treated with this combination in two test sets. Our focus is on pathways with228

high feature importance (e.g., the top 5%) as well as highly activated (top 5% PAS). Therefore, the229

top-right section of Figure 4a is the interesting region. We present additional examples to further230

demonstrate the capabilities of DIPx. Figure 4b gives the top pathways ofMEDI3622, an ADAM17 in-231

hibitor, in combinations with AKT inhibitors including Capivasertib and MK-2206. These ADAM17 +232

AKT combinations target multiple parts of the PI3K/AKT pathway through ERBB activation (Menden233

et al., 2019), which aligns with the potential pathway candidates suggested by DIPx.234

One of the key strengths of DIPx is its ability to infer potential mechanisms of both known and235

novel drug combinations, even in cases where limited biological or clinical information is available.236

This capability is particularly valuable for new combinations that have not been included in the237

training set. For instance, in Figure 4c, we present the key pathways identified for the Selumetinib238

+ MK-2206 combination from Test Set 2 of the AZS data. We observe the involvement of RAS sig-239

naling, with Selumetinib targeting MEK and MK-2206 targeting AKT, as shown in Figure 4-figure240

supplement 3. A recent clinical study has used Selumetinib + MK-2206 to target downstream com-241

ponents of the RAS pathway (Chung et al., 2017).242

If the drugs in a combination have the same target, the efficacy of the combination is likely243

similar to that of each individual drug at higher doses, i.e., they will only have an additive effect.244

So it seems reasonable to hypothesize that a synergistic combination is more likely to occur when245

the two drugs have different targets (Chen et al., 2015). But how should the targets be related to246

each other? To investigate this, we examine the pathways suggested by DIPx. First, we choose a247

synergistic combination of BCL2L1 + AZD5582 in the SW900 cell line for further illustration. The248

contour plot of the BCL2L1 + AZD5582 inhibition in the SW900 cell line is illustrated in Figure 4 -249

figure supplement 4a. We first collected the top 15 pathways (ranked by feature importance) for250

this BCL2L1 + AZD5582 combination suggested by DIPx. The full list of these pathways is shown in251

Figure 4 - figure supplement 5. Figure 4d illustrates the functional interaction between the genes252

of the top 15 pathways and the driver genes of the SW900 cell line (x-axis); the target genes of the253

combination BCL2L1 + AZD5582 (y-axis). To assess the strength of this interaction, we used the254

network enrichment analysis (NEA) (Alexeyenko et al., 2012), which provides z-score, an enrich-255

ment score, indicating the degree of interaction. A higher z-score reflects a stronger interaction256

between the two gene sets. The top pathways exhibiting high functional interaction with both the257

driver genes and target genes (z-score > 1.96) are particularly notable, located in the upper right258

quadrant of Figure 4d. In particular, the apoptosis pathway via NF-kB (highlighted in green) has259

the highest pathway-target interaction among these pathways. Figure 4e shows the cartoon illus-260

tration of the pathway in which the drug BCL2L1 targets BCL-xL and AZD5582 targets XIAP. This261

suggests an explanation for the observed synergy between the two drugs. Thus, it appears that in262

this case we get synergy when the drugs target different parts of a driving pathway, either directly263

or via other functional interactions.264

As a negative control, we examine the non-synergistic combination Doxorubicin + AZ12623380,265

which targets the same gene TOP2; see Figure 4f and g and Figure 4 - figure supplement 4b. We266

similarly obtain 15 top-ranking pathways according to feature importance, but now we do not267

expect to see anything obviously relevant to the SW900 cell line (more details in Figure 4 - fig-268

ure supplement 6). Some pathways that have a high functional interaction with the target genes269

(upper-left quadrant) have little interaction with the drivers. There are no clearly outlying points in270

the upper-right quadrant; the two pathways near the boundary are (i) Shen_Smarca2_targets_up,271
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containing genes whose expression negatively correlated with the expression of the SMARCA2272

gene in prostate cancer samples, discovered in relation to androgen-induced proliferation in the273

prostate; and (ii) Kokkinakis_Methione _deprivation_48hr_up, which contains up-regulated genes274

in melanoma cell-line MEWO cells after 48h of methionine deprivation. They do not appear to be275

relevant for the lung cancer cell line SW900.276

We also applied DIPx to identify potential activated pathways in the ONeil dataset. Figure 4 -277

figure supplementary 7 highlights the key pathways contributing to the MK2206 + Erlotinib com-278

bination. The most significant pathway is ’Metabolism by CYP Enzymes.’ Previous studies (Molife279

et al., 2014) have reported that both MK2206 and Erlotinib are metabolized by the CYP enzyme280

family, further supporting this finding.281

PAS captures the functional interaction of drug targets282

In Figure 5a, using the AZS data, we compare the observed drug synergy of combinations of two283

drugs that share some target genes vs those that do not share any target genes. No significant284

differences were observed (p-value > 0.72), suggesting that non-overlapping drugs in terms of285

their targets do not necessarily result in improved drug synergy.286

However, we also observed synergy when the two drugs target different genes in the same287

pathway. More generally, we hypothesize that synergistic effects occur when the targets have288

functional interaction. As before, the functional interaction is assessed using NEA (Alexeyenko289

et al., 2012), where a higher z-score value indicates a stronger functional interaction between the290

two drugs. Figure 5b shows the observed drug synergy (y-axis) in the AZS data for the four groups291

defined by the quartile values of the z-scores (x-axis). It indicates that combinations with higher292

functional interaction aremore likely to achieve higher drug synergy, with the highest z-score group293

(𝑧 ∈ (2.97, 29.3]) exhibiting the most favorable drug synergy (median Loewe score = 10.34).294

However, when added to the prediction model, the functional interaction z-score did not im-295

prove the prediction of synergy (data not shown). Statistically, this can happen if PAS already cap-296

tures the functional interaction information. To show this, using the AZS training data, we trained a297

prediction model using PAS as the feature and the functional interaction z-score as the output. We298

then evaluated the performance of the model in the test set. As shown in Figure 5c, we observed a299

significant correlation between the predicted and observed z-scores, with a Spearman correlation300

coefficient of 0.46. This explains why the functional interaction does not give additional predictive301

power in our model. All medians of predicted and observed Loewe scores related to Figure 5c are302

provided in Supplementary Table S2.303

Discussion304

We have developed and validated DIPx, an advanced computational model that incorporates gene305

expression and mutation profiles to predict synergistic drug combinations. DIPx performs well306

against the best performingmethod in theAstraZeneca-SangerDREAMChallenge. Through theuse307

of tumor- and patient-specific pathway activation scores, DIPx also provides valuable information308

on the potential underlying pathways associated with an observed synergistic drug interaction. In309

addition to rigorous validation using the AZS dataset, DIPx is further validated on the independent310

ONeil dataset. This comprehensive validation ensures the robustness and reliability of DIPx in311

predicting drug synergy across different cancers.312

We have compared the perfomance of DIPx to TAIJI-M, the molecular-based model of TAIJI (Li313

et al., 2018). The extra information from the use of monotherapy data in TAIJI is rather small, ap-314

proximately 10% increase in the overall Spearman correlation (Li et al., 2018), and, of course, we315

could also use such data in DIPx, but it is more convenient and informative to focus the compar-316

isons on prediction based on molecular data alone. For instance, this allows us to compare DIPx317

with TAIJI-M on the prediction of combinations that contain untrained drug(s), which is not possible318

with the full TAIJI.319
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Figure 5. a) Comparison of drug synergy between combinations (drug A + drug B) with vs without overlappingtarget genes. The numbers in parentheses show the sample sizes of each group. b) Drug synergy betweenfour groups in relation to increased functional interaction between the target genes of the two drugs. c)Comparison between the observed functional interaction (z-score in the network enrichment analysis) andthe predicted z-score by PAS.
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The recent availability of large-scale drug combination assay data has allowed the development320

of realistic prediction models for drug synergy. These datasets offer a substantial number of sam-321

ples encompassing hundreds of combinations, allowing for extensive validation studies. However,322

it is important to note that these datasets were generated using different protocols and drug323

screening techniques. For instance, the AZS data used a 5-by-5 concentration matrix, while the324

study by ONeil et al. used a 4-by-4 format. In addition, there is limited overlap in the cell lines325

used among the datasets. These differences pose challenges to the proper validation of predic-326

tion methods (Menden et al., 2019). Exploring new datasets or applying novel techniques in the327

training process (e.g., transfer learning) will be our future direction to improve the performance of328

DIPx.329

A particular strength of our study is that we use the best-performing method in the Challenge330

as a benchmark. This is a convenient and robust benchmarking, as there were 160 teams that331

participated in the Challenge (73 teams submitted in the final round). Altogether, these teams332

used practically all of the commonly usedmachine learning tools; see the summary inMenden et al.333

(2019). Another strength is our use and validation of the confidence score metric, which captures334

the statistical uncertainty in the predicted synergy by a single number. This is more convenient335

for clinical interpretation than the standard prediction interval, because there is a target level for336

which a combination is considered synergistic, so the score measures our confidence in achieving337

the target.338

Despite promising results, our study has several limitations. First, the use of cell lines as training339

and validation samples from the AZS and ONeil datasets may not fully capture the heterogeneity340

present in actual tumors. Second, the computation of PAS relies solely on the primary target genes341

of the drug combinations, potentially disregarding valuable information from non-primary targets.342

There could also be off-targets that we do not know about. This limitation might lead to the loss343

of information about the broader effects of drug combinations. Third, cancer is a heterogeneous344

disease that occurs in many tissues. Even within a single tissue, cancer exhibits distinct (molecular)345

subtypes with varying biological mechanisms and clinical outcomes. Since DIPx was developed346

using pan-cancer datasets, it may not be optimal for tissue-specific predictions. Our future plan347

for DIPx would be building cancer-specific models.348

Last but not least, prediction of previously untrained combinations remains a great challenge.349

The worst case is for combinations of drugs that were not previously trained, with the Spearman350

correlation only around 0.1. However, from a clinical perspective, it is perhaps more realistic to351

look for combinations among drugs previously trained in monotherapy or in other combinations.352

Improving the prediction for the combination of such drugs would be worthwhile.353

Methods and Materials354

Pathway activation score for drug combinations355

Pathway activation scores (PASs) are the key features in DIPx. The PAS of pathway P in cell line C356

is calculated for each drug combination (drug A + drug B) and pathway P. Genes in pathway P are357

grouped into three subgroups: (a) 𝐺𝑢, which includes all the target genes of drugs A and B, as well358

as the upstream genes of pathway P; (b) 𝐺𝑑 , which includes the downstream genes of pathway P;359

and (c) 𝐺𝑑𝑟, which consists of all the driver genes of cell line C in pathway P. In the example of the360

ERBB pathway targeted by Capivasertib + Sapitinib. (Figure 1b), 𝐺𝑢 consists of ERBB, PI3K, and also361

AKT; 𝐺𝑑 contains MTOR, RAS and MAPK, while 𝐺𝑑𝑟 includes TP53 and ERBB2.362

The score for upstream activity (𝑃𝐴𝑆𝑢) is calculated by the sum of mRNA expression for genes363

in 𝐺𝑢. Similarly, the scores for the downstream activity (𝑃𝐴𝑆𝑑 ) and the set of driver genes (𝑃𝐴𝑆𝑑𝑟)364

are calculated from 𝐺𝑑 and 𝐺𝑑𝑟. In practice, the genes of the N = 4,762 curated human pathways365

are provided from the MsigDB database (version 6.2) (Liberzon et al., 2015). The target genes of366

the drugs are collected from the AZS dataset and extended from the DrugBank database (Wishart367

et al., 2018) and the ChEMBL database (Zdrazil et al., 2024). The extraction of the driver genes of368
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the cell lines is described in the Datasets section.369

A pathway based model for drug synergy prediction370

The training features of DIPx consist of three components: upstream activity (𝑃𝐴𝑆𝑢), downstream371

activity (𝑃𝐴𝑆𝑑 ), and driver genes (𝑃𝐴𝑆𝑑𝑟), as shown in Figure 1b. The final training matrix has a size372

of K experiments by 14,286 PASs, where each row corresponds to a specific experiment (drug A +373

drug B, cell line C).374

To address potential sparsity in the training matrix caused by pathways with no target or driver375

genes, we explored an alternative model with N = 4,762 additional features. Each feature corre-376

sponds to a pathway P and is calculated as S(g) * (w1 +w2), where S(g) represents the sumofmRNA377

expression for all genes in pathway P, and w1 and w2 denote the functional interactions between378

gene sets: (pathway genes↔ target genes) and (pathway genes↔ driver genes), respectively. The379

functional interactions were estimated using NEA and converted into normal probability scores for380

w1 and w2. The feature value is zero only when the pathway lacks both targets and driver genes,381

as well as any interactions with drug targets and driver genes. Additionally, we incorporated the382

NEA enrichment score between target genes and driver genes into the final matrix. Despite adding383

these new features, the alternative model did not exhibit any significant improvements in predic-384

tive power (data not shown).385

For the predictor, we used the random forest algorithm implemented in the randomforestRSC386

package (with default parameters) in R version 4.0.4. During the development of DIPx, we exper-387

imented with various machine learning methods, such as the support vector machine (SVM) and388

the elastic net. However, we found that these other methods yielded comparable results and that389

tuning their parameters did not significantly improve prediction performance while requiring ex-390

tensive additional computations (data not shown). The random forest algorithm in the random-391

forestRSC package also offers multiple options to calculate the importance of features. In this392

study, we used the permutation (or Breiman-Cutler) method (Ishwaran and Lu, 2019) to infer the393

importance of each PAS.394

The confidence score (CS) is used to assess the statistical quality of synergy prediction; see395

Section 5.6 in Pawitan (2001) for the confidence concept in general. First, as previously defined396

for example in (Menden et al., 2019), a combination is considered synergistic if the Loewe score397

is greater than or equal to 20. For each sample 𝑠, we have the actual predicted synergy 𝑃𝑠 (the398

output of the regression random forest model). We then generate 𝑁𝑏 = 100 bootstrap replicates399

of the training data and obtain the bootstrap predictions for the sample: 𝑃 ∗
𝑠1,… , 𝑃 ∗

𝑠100. The CS of 𝑃𝑠400

is defined as follows:401

CS(𝑃𝑠) = #(𝑃 ∗
𝑠𝑖𝑠 ≥ 20)
𝑁𝑏

.

The bootstrap replicates are also used to evaluate the standard errors (se) of the Spearman402

correlation between the observed and predicted synergy scores in the test sets. The 95% confi-403

dence intervals are computed by the usual formula: 𝜌± 1.96se, where 𝜌 is the observed Spearman404

correlation. Though less frequently used, the bootstrap can also be used for bias correction (Paw-405

itan, 2001, Section 5.2). Bias occurs if there is a nontrivial gap between the observed estimate and406

the mean of the bootstrap replications and bias correction is used to adjust the original estimate.407

Theoretically,408

Bias = 𝐸𝐹 (𝜌) − 𝜌,

where 𝐹 is the underlying data distribution. So, the bias-corrected estimate should be409

̂̂𝜌 = 𝜌 − Bias
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In practice, the bias is estimated by410

B̂ias = 𝐸𝐹 (𝜌) − 𝜌

= average{𝜌∗1 … 𝜌∗𝑛} − 𝜌,

where 𝜌∗1 … 𝜌∗𝑛 are the bootstrap replicates of 𝜌. When the estimated bias is negative, as we ob-411

served for DIPx, the bias-corrected estimate is shifted upward. And vice versa, if the bias is positive,412

as observed for TAIJI-M, the corrected estimate is shifted downward.413

Computing p-values using the bootstrap414

To compare the predictive performance of DIPx and TAIJI-M (e.g., as shown in Figure 2), the boot-415

strap method can be used to compute a confidence interval for differential correlation in the test416

set. However, there is a close relationship between p-values and confidence intervals; see Pawitan417

(2001), Chapter 5; particularly p.134. In this case, we compute the p-value as follows:418

(1) For each bootstrap replication, (i) compute the Spearman correlation between the predicted419

and observed scores in the test set for DIPx and TAIJI-M. Denote this by 𝑟1 and 𝑟2. (ii) Compute420

the difference in the Spearman correlations 𝑑 = (𝑟1 − 𝑟2).421

(2). Repeat the bootstrap 𝑛 = 100 times.422

(3). Compute the minimum of these two proportions: proportion of d<0 or proportion of d>0. To423

overcome the limited bootstrap sample size, we use the normal approximation in computing424

the proportions.425

(4). The two-sided p-value = 2× the minimum proportion in (3).426

Datasets427

AstraZeneca-Sanger (AZS) DREAM Challenge dataset The AZS DREAM Challenge is a rigorous428

competition in the effort to systematically develop and validate drug synergy prediction methods.429

Indicating the strong interest in the topic, 160 international teams (Menden et al., 2019) partici-430

pated in the Challenge. It was organized into two subchallenges: i) Prediction for known (tested)431

combination and ii) Prediction for unknown (untested) drug combinations. The final dataset com-432

prised 11,576 experiments from 85 cell lines and 910 combinations. The gene expression data of433

these cell lines was obtained from Affymetrix microarray (Menden et al., 2019). However, to en-434

sure consistency between the AZS dataset and the Oneil dataset (O’Neil et al., 2016) (which did not435

provide gene expression profiles of cell lines), we utilized gene expression data from the Cancer436

Cell Line Encyclopedia (CCLE) cohort (Ghandi et al., 2019).437

Out of the 85 cell lines, we identified 75 cell lines with available gene expression data in the438

CCLE cohort, resulting in a total of 10,154 experiments involving 903 combinations used in our439

study. Supplementary Table S3 shows the list of 75 cell lines. For the validation of the prediction440

model, the data were split into a training set (n = 2,060) and two test sets (n = 963 and 7,131)441

according to subchallenges 1 and 2, respectively. The first test set contains experiments from 167442

combinations (of 69 single drugs) that are also in the training set. The second test set includes443

experiments with 736 drug combinations that are not in the training set.444

We collected gene expression data of 75 cell lines, measuring the transcript per million (TPM) of445

37,222 genes, of the CCLE cohort downloaded from theDepMap Portal (Tsherniak et al., 2017). The446

gene expression data was logarithmically transformed to the base 2 scale for downstream analysis.447

Additionally, we obtained potential driver genes for these cell lines, including both mutations and448

fusion genes, from the DepMap Portal. The portal provides information on mutations in 1,637449

protein-coding genes associated with cancer biology in a collection of 1,030 cell lines.450

To filter the list ofmutations, we focused on those occurring in at least 2.5% of the total cell lines.451

Subsequently, we extracted the list of mutations specific to the 75 cell lines under investigation.452

For fusion genes, we focused on those present in the Miltelman database (Mitelman, 2022) and453

occurring at least twice, considering them as relevant for our analysis. The final list of potential454
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driver genes for the 75 cell lines can be found in Supplementary Table S3. On average, each cell455

line had a median of 29 potential driver genes.456

For the drug synergy data, we used a 5-by-5 concentration matrix provided by the Challenge.457

Drug synergy values were estimated using the Loewe reference model from Combenefit (Di Veroli458

et al., 2016).459

ONeil dataset ONeil dataset is a large-scale drug synergy screening dataset from Merck&Co com-460

pany (O’Neil et al., 2016). A total of 23,062 experiments with 583 unique drug combinations (38461

monotherapy drugs) was carried out on 38 cancer cell lines by a 4-by-4 drug concentration matrix.462

Out of 38 cell lines, we found 29 cell lines with available gene expression data from the DepMap463

Portal. The detail of 29 cell lines is described in Supplementary Table S4. The gene expression data464

of 37,222 genes from 29 cell lines, as well as the driver genes of these cell lines, were collected from465

the DepMap Portal using the same procedure as in the AZS dataset. The original release of this466

dataset provides only the raw data on drug synergy. Here, we calculated the Loewe synergy score467

for each experiment using Combenefit (Di Veroli et al., 2016). In total, we obtained 16,907 exper-468

iments for 583 combinations in 29 cell lines for further analysis. Drug targets of 38 monotherapy469

drugs were collected from the DrugBank database (Wishart et al., 2018) and the ChEMBL database470

(Zdrazil et al., 2024). The original names of all pathways mentioned in the manuscript are listed in471

Supplementary Table S5.472

Data Availability473

The implementation of DIPx, and related data are publicly available in https://www.github.com/474

tracquangthinh/DIPx. Drug synergy data are available from their original studies: Synapse database475

at synapse.org/DrugCombinationChallenge for the AZS dataset (Menden et al., 2019), raw data from476

the supplementary data for the ONeil dataset (O’Neil et al., 2016). The implementation of TAIJI-M477

as the molecular model is available at https://github.com/GuanLab/TAIJI/.478
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Figure 2—figure supplement 1. Cross-validation of DIPx on the training set of the ASZ DREAM
dataset. The y-axis of the boxplot represents the Spearman correlation between predicted and ob-
served values across ten folds. The red star indicates the corresponding DIPx correlation achieved
in Test Set 1.

558

0.93

0.19

0.09

−0.1

0.0

0.1

0.2

No drug One drug Two drugs
In the training set

B
oo

st
ra

p 
−

 S
pe

ar
m

an
 c

or
(p

re
d,

 o
bs

)

Figure 3—figure supplement 2. Prediction performance of DIPx in the ONeil dataset, grouped by
unseen combinations in the training set (x-axist). The y-axis in all box plots shows the Spearman
correlation between predicted and observed values in 100 bootstrap replicates.
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Figure 4—figure supplement 3. A cartoon illustration of the RAS pathway mediated by the
Selumetinib + MK-2206 combination

560

Figure 4—figure supplement 4. Observed (red lines) vs predicted inhibition (black, dash lines)
from Loewe reference model in the SW900 cell line treated by the synergistic BCL2L1 + AZD5582
combination (a) and the non-synergistic Doxorubicin + AZ12623380 combination (b). The number
in each line presents the percentage of inhibition..
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Figure 4—figure supplement 5. Functional interaction (x-axis) between the pathway vs driver
genes (1st column), the pathway vs all target genes (2nd), the pathway vs BCL2L1 target genes
(3th), and the pathway vs AZD5582 target genes (4th) of the top pathways suggested by DIPx in the
SW900 cell line treated with synergistic combination BCL2L1 + AZD5582.
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Figure 4—figure supplement 6. Functional interaction (x-axis) between the pathway vs driver
genes (1st column), the pathway vs all target genes (2nd), the pathway vs Doxorubicin target genes
(3th), and the pathway vs AZ12623380 target genes (4th) of the top pathways suggested by DIPx in
the SW900 cell line treated with non-synergistic combination Doxorubicin + AZ12623380.
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Figure 4—figure supplement 7. Top pathways contributing to the prediction of the MK2206 +
Erlotinib combination in the ONeil dataset.
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