

1

2 Stomach-brain coupling indexes a dimensional signature of mental health

4 Leah Banellis PhD^{*1}, Ignacio Rebollo PhD^{*2}, Niia Nikolova PhD¹, Micah Allen
5 PhD^{1,3}

⁶ *equal contribution

8 1. Center of Functionally Integrative Neuroscience, Aarhus University,
9 Denmark.

10 2. Department of Decision Neuroscience and Nutrition, German Institute of
11 Human Nutrition, Germany.

12 3. Cambridge Psychiatry, University of Cambridge, United Kingdom.

13

14 Corresponding Author: Leah Banellis, leahbanellis@cfin.au.dk.

15

16 Short title: The Stomach Brain-Axis in Mental Health

17

20 **Abstract**

21 Visceral rhythms orchestrate the physiological states underlying human
22 emotion. Chronic aberrations in these brain-body interactions are implicated in
23 a broad spectrum of mental health disorders. However, the relationship of
24 gastric-brain coupling to affective symptoms remains poorly understood. We
25 investigated the relationship between this novel interoceptive axis and mental
26 health in 243 participants, using a cross validated machine learning approach.
27 We find that increased fronto-parietal brain coupling to the gastric rhythm
28 indexes a dimensional signature of worse mental health, spanning anxiety,
29 depression, stress, and well-being. Control analyses confirm the specificity of
30 these interactions to the gastric-brain axis. Our study proposes coupling
31 between the stomach and brain as a factor in mental health and offers potential
32 new targets for interventions remediating aberrant brain-body coupling.

33

34

35

36

37

38 Main

39 Far from being a mere brain in a vat, the nervous system is embedded within an
40 intricate web of visceral rhythms. While philosophy has long championed the
41 embodiment of mind and life¹, it is only more recently that the importance of
42 the visceral body in contextualising brain function has gained widespread
43 recognition^{2,3}. In particular, interoceptive processes linking brain and body are
44 thought to be critically important in mood and emotion^{2,4}, and their larger role
45 in affective symptoms has become a topic of intense interest in mental health
46 research⁵.

47 Research investigating these links have so far focused almost exclusively on the
48 cardiac^{6,7}, lower gastrointestinal^{8,9}, and respiratory axes¹⁰⁻¹². Recent landmark
49 findings demonstrate that, for example, anxiety responses in threatening
50 situations relies on ascending cardiac information⁶, and that respiratory
51 rhythms modify neural patterns during emotional processing¹³.
52 Simultaneously, the burgeoning study of gut-brain interaction has produced a
53 plethora of new findings linking the function and biology of the lower
54 gastrointestinal tract or gut to physical and mental health¹⁴⁻¹⁶. While these and
55 many other findings herald a visceral turn in our understanding of the biology
56 of the mind and its disorder, one particular domain of brain-body coupling
57 remains notably understudied: the upper gastrointestinal tract comprising
58 interconnections between the brain and stomach.

59 Gastric-brain interactions have recently emerged as a novel frontier in
60 interoception research¹⁷⁻²². Hormones secreted by the stomach directly regulate
61 hypothalamic mechanisms that govern satiety and hunger²³. Additionally, the
62 stomach generates its own independent myoelectrical rhythm, in which the
63 interstitial cells of Cajal pace muscular contractions approximately once every
64 20 seconds²⁴. Previously relegated to merely driving mechanical food digestion,
65 recent discoveries indicate that the gastric rhythm is closely linked to ongoing
66 brain activity through reciprocal vagal innervation²⁵⁻²⁷. This link can be directly
67 modulated through techniques such as non-invasive vagal nerve stimulation²⁸,
68 bilateral vagotomy in rodent models²⁹, as well as through emerging
69 pharmacological methods^{22,30,31}, offering a promising means by which to
70 intervene upon the stomach-brain axis.

71 Despite the close linkage of emotion and brain-body interaction, the extent to
72 which alterations in the gastric axis relate to mental health remains unclear.
73 This gap is curious in part because folk psychology has long centred the
74 stomach as a locus of stress and anxiety: difficult decisions are described as
75 evoking "gut feelings" which in extreme cases, can make one "sick to their

76 stomach." Conversely, intense moments of love or joy are described as giving
77 "butterflies in the stomach." Aligning with these descriptions, recent empirical
78 findings indicate that individuals often report subjective disgust, fear, and
79 anxiety as being localised in the stomach^{32,33}, and that pharmacological
80 modulation of the gastric rhythm alters emotional processing²². On this basis,
81 we hypothesised that inter-individual patterns in gastric-brain coupling might
82 expose unique patterns of affective mental health, in particular those relating
83 to core mood disorders such as anxiety and depression. To test this hypothesis,
84 we conducted a large scale neuroimaging study of simultaneous
85 electrogastrographic (EGG) and functional MRI (fMRI) brain imaging in 243
86 participants. To assess mental health across a broad spectrum, we employed a
87 multidimensional approach to quantify highly individualistic profiles spanning
88 a range of affective, cognitive, social, and somatic health dimensions. This
89 approach builds on research identifying mental illness as a continuum of
90 overlapping symptoms across disorders³⁴⁻³⁹, rather than relying on discrete
91 diagnostic categories with high comorbidity, high heterogeneity and poor
92 reliability^{40,41}. Utilising a multivariate, cross-validated machine learning
93 technique, we estimated highly robust, sensitive, and specific signatures that
94 interrelate these profiles to individual patterns of stomach-brain coupling. Our
95 findings demonstrate that the stomach-brain axis exposes a positive-to-negative
96 mode of mental health^{37,42}, revealing a previously unknown embodied target for
97 future clinical intervention research.

98 **Results**

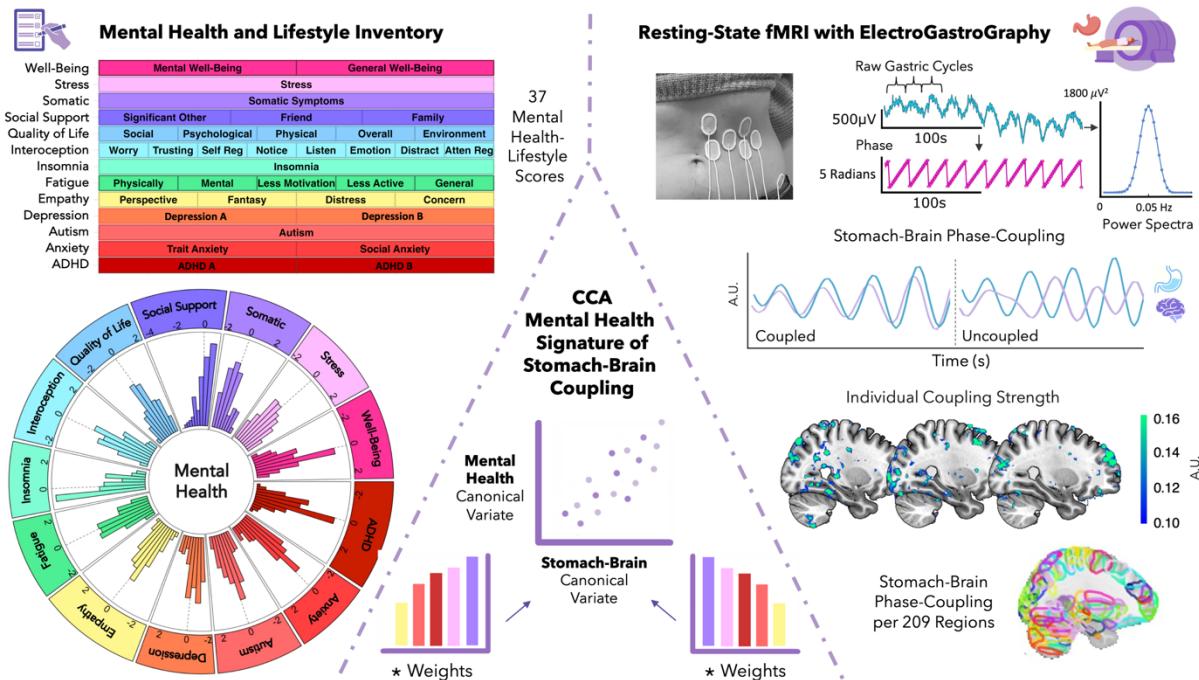
99 **Mental health functional correlates**

100 To characterise variation in the gastric-brain axis, we utilised simultaneous
101 electrogastrographic (EGG) and resting state fMRI recordings. Following an
102 extensive data quality control procedure (*Methods*), we estimated stomach-
103 brain coupling for each participant using the phase locking value (PLV) of the
104 EGG and resting state fMRI time series across 209 parcellated whole-brain
105 regions⁴³ (see Figure 1 for example).

106 To characterise individual mental health profiles, we conducted a
107 comprehensive assessment across 37 self-reported scores encompassing
108 autism, ADHD, empathy, insomnia, interoception, depression, fatigue, social
109 support, somatic symptoms, stress, social anxiety, trait anxiety, well-being, and
110 quality of life (see Supplementary Table 1 for a full list of instruments and
111 subscales). This approach successfully captured robust inter-individual
112 variability spanning a variety of mental health dimensions (see Figure 1).

113 Individual variance spanned from completely healthy to those experiencing
114 significant distress, such that 30% of the sample exhibited mild depression, 19%
115 exhibited clinically significant levels of ADHD, 19% medium or more severe
116 somatic symptoms, 18% trait anxiety, 9% moderate depression, 7% autism
117 spectrum, and 5% insomnia (see Supplementary Table 1 for all percentage cut-
118 offs).

119 Finally, to determine latent patterns interlinking these mental health profiles to
120 stomach-brain coupling, we conducted a cross-validated Canonical Correlation
121 Analysis (CCA). This method determines maximally correlated patterns
122 between two multidimensional variables (in this case, mental health and
123 stomach-brain coupling data). CCA does this via linear transformation of the
124 inputted data using weights, which produces the resulting CCA variates (i.e.,
125 weighted sums) (see Figure 1).



126

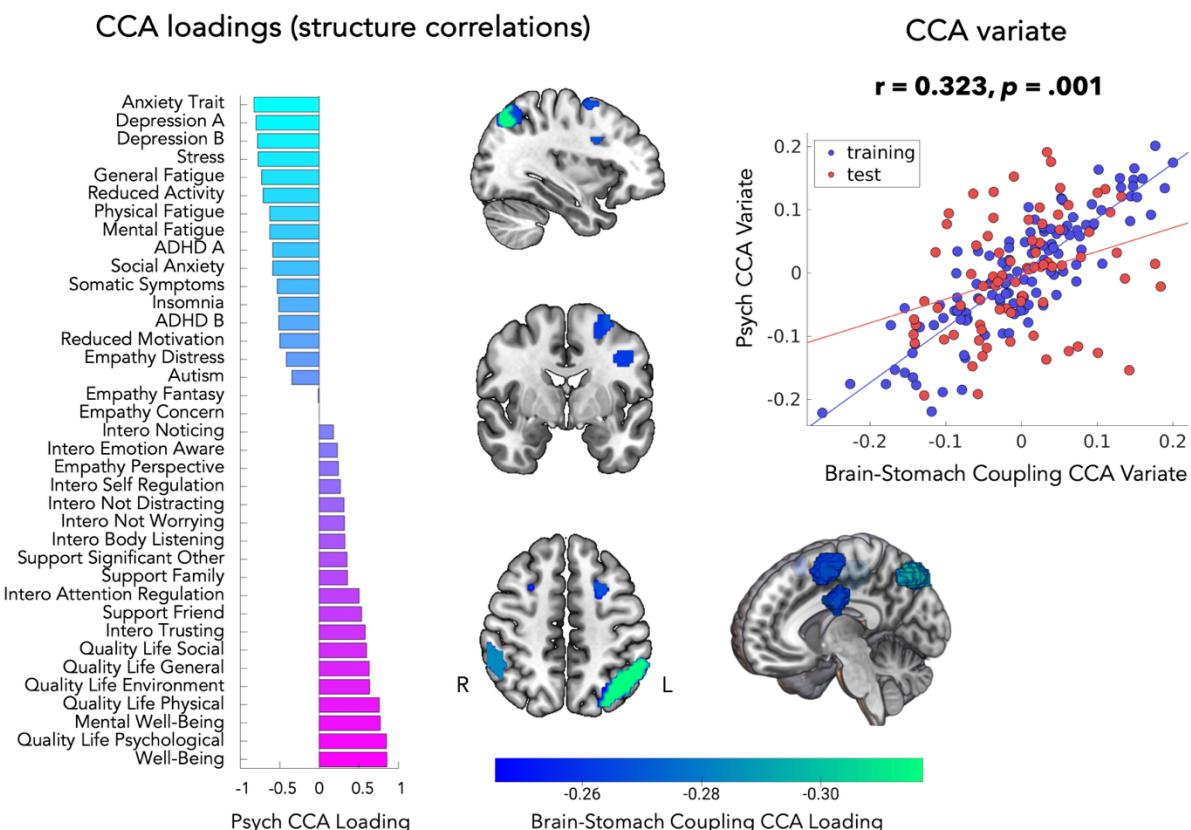
127 **Figure 1: Canonical Correlation Analysis of stomach-brain coupling and**
128 **mental health.**

129 Figure 1 synthesises the process and outcomes of correlating stomach-brain phase
130 coupling with mental health, as quantified by 37 variables from 16 validated surveys.
131 The top left quadrant presents these variables organised into their respective mental
132 health categories (categorised for visualisation only, the CCA incorporated 37
133 individual scores), and their distribution is visualised as histograms on the bottom left,
134 reflecting the range of participant mental health profiles. Electrogastrography (EGG)
135 data depicted on the top right demonstrates the extraction of gastric cycle frequency
136 from raw EGG signals, power spectra, and their phase information, essential for
137 identifying stomach-brain coupling. The middle right figure illustrates coupled versus

138 uncoupled states in stomach-brain interaction, with the individual variability in
139 coupling strength highlighted across three brain images from individual participants
140 (plotted on a standard mni152 brain template using MRIcroGL: visualised MNI
141 coordinates plotted: 28, -19, 26, thresholded at 0.1, and small clusters <1000mm³
142 removed). For the CCA, stomach-brain phase-coupling is parcellated over 209 brain
143 regions identified using the DiFuMo atlas, shown on the bottom right. The CCA model,
144 depicted centrally, outputs a stomach-brain signature correlating with mental health
145 individual profiles. This pattern is represented by canonical variates, which are
146 weighted combinations of the multidimensional mental health and stomach-brain
147 coupling data (illustrated as the central scatter plot). These weights, depicted as bar
148 graphs, capture the most significant relationships between gastric-brain coupling and
149 mental health profiles.

150 We observed a significant latent dimension in which stomach-brain coupling
151 was associated with a positive-to-negative mode of mental health (canonical
152 variate in-sample $r(118) = 0.886$, out-sample $r(77) = 0.323$, $p = 0.001$). This was
153 reflected behaviourally as high negative loadings for trait anxiety (STAI trait
154 subscale: -0.827), depression (PHQ9: -0.800, and MDI: -0.782), stress (PSS: -0.773),
155 and fatigue (MFI general fatigue subscale: -0.734), as well as high positive
156 loadings for well-being, and quality of life (highest loadings: WEMWBS: 0.856,
157 WHOQOL psychological subscale: 0.847, WHO5: 0.776). The top stomach-brain
158 coupling canonical loadings were found in the left superior angular gyrus (-
159 0.317), right intermediate primus of Jensen (right supramarginal gyrus
160 posterior division using the Harvard-Oxford Cortical Structural Atlas) (-0.284),
161 left inferior precentral sulcus (-0.270), left posterior superior frontal gyrus (-
162 0.269), and left posterior intraparietal sulcus (-0.245). These loadings constitute
163 a pattern of stomach-brain coupling in which healthier mental scores (i.e.,
164 improved well-being and quality of life) are associated with reduced gastric
165 coupling to fronto-parietal brain activity (see Figure 2 and Supplementary Table
166 2), or conversely, in which more negative mental health scores (i.e., increased
167 anxiety, depression, and fatigue) are associated with increased coupling. We did
168 not observe significant gender or age differences with this mental health
169 associated stomach-brain coupling result (see Supplementary Table 3).

Mental Health Signature of Stomach-Brain Coupling

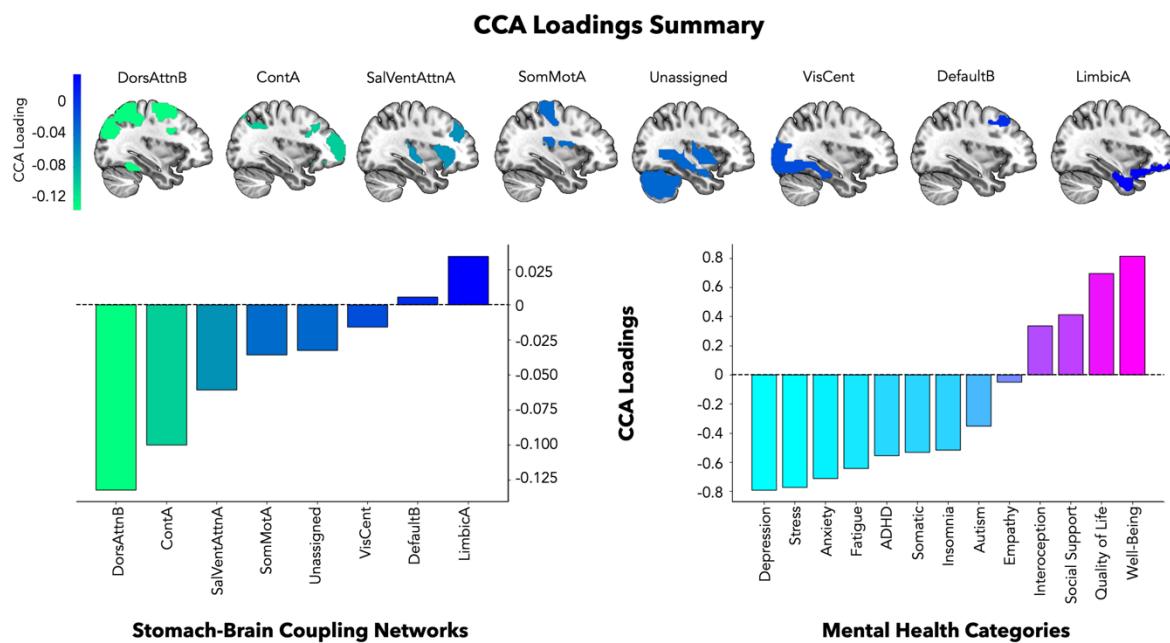


171 **Figure 2: Mental health functional correlate of stomach-brain coupling.**

172 Canonical Correlation Analysis results depicting the correlation between stomach-
173 brain coupling and mental health dimensions. This indicated diminished fronto-
174 parietal stomach-brain coupling with healthier mental health scores (i.e., lower
175 anxiety, depression, and stress, and higher quality of life and well-being). Left panel
176 depicts the CCA loadings (structure correlations: Pearson's correlations between raw
177 mental health and stomach-brain coupling variables and their respective canonical
178 variate). Importantly, this represents the pattern of mental health data that is
179 maximally correlated with the stomach-brain coupling canonical variate. High
180 negative loadings are shown for anxiety, depression, stress, fatigue, ADHD, somatic
181 symptoms, and insomnia, while high positive loadings are shown for well-being and
182 quality of life. The middle panel shows the top 5 DiFuMo parcellated regions with the
183 absolute highest stomach-brain coupling loadings (all negative), coloured according to
184 their respective CCA loading: left superior angular gyrus, right posterior
185 supramarginal gyrus, left inferior precentral sulcus, left posterior superior frontal
186 gyrus and left posterior intraparietal sulcus (plotted on a standard mni152 brain
187 template using MRIcroGL: MNI coordinates: -34, -3, 48). Right depicts the cross-
188 validated CCA result denoting the maximally correlated psychological variate and
189 brain-stomach coupling variate (in-sample $r(118) = 0.886$, out-sample $r(77) = 0.323, p =$
190 0.001).

191

192 To further summarise our findings, we averaged parcel-level stomach-brain
193 canonical loadings across the Yeo 7-networks⁴⁴, and also averaged psychological
194 canonical loadings across mental health categories (to condense the
195 multivariate variables, and to be consistent with the mental health
196 categorisation in Figure 1). This revealed the highest absolute network level
197 stomach brain loadings in the dorsal attention (-0.132), frontoparietal control (-
198 0.100), and ventral attention salience network (-0.061). This pattern of stomach-
199 brain coupling was maximally correlated with the corresponding averaged
200 mental health structure, in particular with strong negative loadings for
201 depression (-0.791), stress (-0.773), anxiety (-0.709), and fatigue (-0.642), and
202 strong positive loadings for well-being (0.815) and quality of life (0.696) (see
203 Figure 3, and Supplementary Figure 1 for an averaged summary of the raw
204 weights).



205

206 **Figure 3: CCA loadings averaged summary.**

207 Canonical loadings (structure correlations: Pearson's correlations between raw
208 inputted variables and respective canonical variate) from the mental health associated
209 stomach-brain coupling CCA, summarised via averaging. Note that there are prominent
210 negative average stomach-brain loadings in the 'dorsal attention B' network and the
211 'control A' network, associated with reduced average depression, stress, anxiety,
212 fatigue, and increased average well-being and quality of life (i.e. better mental health).
213 The opposite pattern is also true: increased average stomach-brain loadings in
214 attention and control networks is associated with worse mental health (increased
215 depression, stress, anxiety, fatigue, and reduced well-being, and quality of life). Left

216 shows the stomach-brain loadings averaged according to yeo-7 networks. Above
217 demonstrates these network-averaged stomach-brain loadings projected onto a mask
218 of the DiFuMo regions for each yeo-7 network (from left to right: DorsAttnB = Dorsal
219 Attention B, ContA = Control A, SalVentAttnA = Salience Ventral Attention A, SomMotA
220 = Somatomotor A, Unassigned = no network found, VisCent = Visual A, DefaultB =
221 Default Mode B, LimbicA = Limbic A)⁴⁴, plotted on a standard mni152 brain template
222 using MRIcroGL: MNI coordinates: -34, -3, 48. Right illustrates the psychological
223 loadings averaged across mental health categories defined for visualisation in Figure 1.

224 **CCA control analyses**

225 To evaluate the specificity and robustness of these results, we conducted control
226 CCAs predicting mental health scores from either 1) functional connectivity, 2)
227 BOLD signal variability, 3) cardiac or 4) respiratory brain maps instead of from
228 stomach-brain coupling. In all cases no significant canonical variate was found
229 ($p > 0.05$, Bonferroni threshold = 0.01), indicating that the dimensional index of
230 mental health reported here is specific to stomach-brain coupling and unlikely
231 to be explained by residual BOLD connectivity, signal variability or
232 cardiac/respiratory-brain influences.

233 We conducted a further control analysis to determine if a simpler univariate
234 model would yield comparable results as to our multivariate approach. A
235 principal components analysis (PCA) of the mental health scores yielded a
236 highly similar latent structure as that derived from the CCA ($r(35) = -0.999$, $p <$
237 .001) (see Supplementary Figure 2). We then correlated this mental health PCA
238 component with stomach-brain coupling values from each DiFuMo parcellated
239 region separately. This revealed significant correlations of stomach-brain
240 coupling with the mental health PCA component in 9 DiFuMo parcellated
241 regions, all of which were in the top loading regions of the CCA, with the
242 exception of the 'lateral fissure anterior' (see Supplementary Table 4).
243 Furthermore, across all brain regions, loadings from the stomach-brain
244 coupling CCA were highly correlated with the univariate correlation
245 coefficients linking mental health to stomach-brain coupling ($r(207) = -0.870$, p
246 < .001) (see Supplementary Figure 2). These results complement our cross-
247 validation procedure by demonstrating that the multivariate CCA model
248 detected effects could be reproduced with a simpler, albeit less sensitive, model,
249 with the CCA explaining more variance (in-sample $R^2 = 0.785$, out-sample $R^2 =$
250 0.104) than the significant univariate correlations (mean $R^2 = 0.033$).

251 We also controlled for whether the mental health associated stomach-brain
252 coupling result was driven by gastrointestinal symptoms by removing the
253 somatic symptoms survey (PHQ15) from the CCA, and instead including the

254 PHQ15 survey as a nuisance regressor. The CCA result persisted without the
255 somatic symptoms survey with highly replicable loadings (see Supplementary
256 Figure 3). Furthermore, when completing the CCA with the somatic symptom
257 survey items only, or only the gastrointestinal symptom items only, the results
258 were not significant (all somatic symptom survey items smallest $p = 0.428$,
259 gastrointestinal symptom survey items only smallest $p = .267$).

260 **EGG control analyses**

261 To control for possible low-level physiological confounds, we further estimated
262 the association between the psychological canonical variate loadings and
263 summary electrogastrographic (EGG) metrics, using non-parametric
264 Spearman's rank order correlation coefficients (see Supplementary Table 5 for
265 EGG metric descriptive statistics). We did not observe a significant correlation
266 of normogastric EGG activity measured via the proportion of normogastric
267 power, maximum power, or peak frequency with the observed mental health
268 canonical variate (smallest *FDR-corrected p* = 0.267). Therefore, the link
269 between stomach-brain coupling is specific to the strength of brain-body
270 coupling with mental health, rather than being explained by baseline
271 differences in peripheral gastric physiology.

272 **Discussion**

273 Our study reveals a distinctive stomach-brain signature of mental health,
274 established through cross-validated multivariate regression techniques and
275 control analyses. This signature encapsulates a positive-to-negative latent
276 dimension of mental health, with notable negative loadings on anxiety,
277 depression, stress, fatigue, as well as enhanced well-being and quality of life.
278 Significantly, all 20 of the highest loadings for stomach-brain coupling were
279 negative, indicating a direct correlation between diminished gastric-brain
280 coupling and improved mental health (refer to Supplementary Table 6). Our
281 control analyses confirm that this extensive psychological signature spanning
282 affective, cognitive, social, and somatic health dimensions is uniquely
283 attributable to stomach-brain coupling, distinct from factors such as residual
284 brain connectivity or variability, cardiac-brain or respiratory-brain influences,
285 gastric activity variations, bodily mass, age, or gender differences. However,
286 future research should explore this using a more diverse sample with a balanced
287 representation of age groups and genders.

288 Our main result reveals a pattern of worse mental health with increased gastric
289 coupling in brain regions which are known transdiagnostic hotspots, such as

290 the posterior superior frontal gyrus and the posterior intraparietal sulcus^{45,46}.
291 Notably, the left superior angular gyrus, our model's most prominently featured
292 region, is crucial for its integrative role in various cognitive functions⁴⁷. This
293 region is also associated with a range of psychiatric disorders, including
294 schizophrenia⁴⁸, somatization disorder⁴⁹, and major depressive disorder^{50,51}.
295 Thus, gastric rhythms may co-vary with brain activity in neural hubs that are
296 highly sensitive to disruptions in mental health. Note, recent advancements
297 have discovered numerous transdiagnostic biotypes in affective disorders like
298 depression and anxiety with varying resting and emotion-evoked connectivity
299 and brain activation profiles⁵². Our findings indicate that there may be brain-
300 body biotypes, however further causal research is necessary. In our study, the
301 brain areas in which psychological health dimensions were most significantly
302 associated with the gastric axis comprised attentional and control network
303 hubs⁴⁴. This indicates that top-down attentional and inhibitory control
304 mechanisms may be particularly important for the relationship of visceral-
305 brain rhythms with mental health. Beyond these control oriented networks, we
306 also observed a negative association with the ventral salience network⁵³, weak
307 negative loadings in the somatomotor network⁵⁴, and weak positive loadings in
308 the limbic system, emphasising the multidimensional nature of the signature.

309 This research significantly advances our understanding of the mental health
310 implications of stomach-brain coupling^{18,19,55,56}. While previous smaller scale
311 studies have linked stomach-brain coupling with bodily shame and weight
312 preoccupation⁵⁷, our multivariate CCA approach leverages our extensive sample
313 size to encompass a continuum of transdiagnostic mental health scores. Indeed
314 our multidimensional mental health variate is comparable to previously
315 observed positive-to-negative axes of wellbeing across cognitive, affective, and
316 lifestyle dimensions^{37,42}, as well as observed 'general mental health factors'
317 which encompass symptoms across numerous psychiatric disorders^{35,38,58}.
318 Importantly, although our analyses do not focus on clinical diagnostic
319 categories, our multivariate, psychological dimension-based approach is
320 advantageous in directly assessing highly individualistic mental health profiles
321 across a broad multidimensional spectrum. This aligns with recent paradigm
322 shifting calls for a dimensional schema in mental health with biological
323 plausibility^{34,40,41}, as dichotomous psychiatric diagnoses are plagued with short-
324 comings, including arbitrary thresholds for binarisation, poor reliability, high
325 rates of diagnosis comorbidity, shared symptomatology across disorders, and
326 symptom heterogeneity within disorders^{40,41}. Moreover, the cross-validated
327 method we apply here is specifically optimised to estimate the continuous
328 statistical prediction of these dimensions, while also robustly protecting against

329 overfitting⁵⁹. Future work could build upon these results to predict
330 multidimensional psychiatric symptoms based on stomach-brain coupling in
331 controlled clinical samples or longitudinal studies.

332 Interestingly, we identified trait anxiety as a prominent mental health feature
333 associated with stomach-brain coupling, but a previous study found no such
334 relationship with state anxiety¹⁹. A key difference between that study and ours,
335 was the use of a region-of-interest based approach in a smaller sample size. Our
336 whole-brain, multivariate method was optimised to detect such effects, and
337 likely yielded a substantial improvement in statistical power by estimating
338 latent psychological dimensions directly. It may also be that there are distinct
339 stomach-brain relationships with trait and state aspects of anxiety. Notably, the
340 anxiogenic relationship of stomach-brain coupling is also consistent with a
341 previous report linking state anxiety with intestinal-brain coupling in the
342 insula⁶⁰ and rodent research of increased anxiety behaviours when activating
343 gut-innervating vagal afferents¹⁴, as well as research with generalised anxiety
344 disorder patients demonstrating an increased bodily reactivity and intensity of
345 interoceptive sensations in response to adrenergic stimulation⁷. Furthermore, a
346 recent pilot study revealed that stress increased gastric phase-amplitude
347 coupling with EEG activity, in contrast to a relaxing biofeedback task⁶¹. Future
348 research could similarly causally manipulating anxiety or stress to help
349 determine its influence on stomach-brain coupling in fMRI. Complementary
350 approaches could also directly modulate stomach-brain coupling using various
351 emerging interventions as a potential means to remediate anxiety or stress
352 symptoms in patients^{17,22,31}.

353 One potential limitation of our study concerns our EGG data exclusion rate,
354 which was somewhat higher than the 20% rate reported in previous EGG
355 literature^{28,62}. This increase was driven by an exhaustive quantitative and
356 qualitative quality control protocol, which may have resulted in higher
357 numbers of excluded participants than in previous, smaller scale studies. To
358 assuage these concerns, we conducted additional control analyses
359 demonstrating the validity of these procedures (see Supplementary Figure 4).
360 Furthermore, we ensured that the excluded participants did not differ in terms
361 of mental health characteristics, gastrointestinal symptoms, or under/over
362 eating behaviour, ruling out the possibility that our quality control may have
363 created a sampling bias which could impact our results (see
364 Electrogastrography Methods). While our preprocessing pipeline aligns with
365 prior literature^{18,19,55,56}, emerging ICA-based methods offer promising
366 alternatives for noise reduction, particularly in datasets with high-density

367 montages. Future work may benefit from applying such approaches to
368 reconstruct the EGG signal from components with a high signal-to-noise ratio in
369 the normogastric range⁶³.

370 There is a growing body of evidence associating a dysfunctional gastrointestinal
371 system to various mental health conditions^{15,64,65}, as well as on the frequent
372 coexistence of gastrointestinal dysfunction with affective disorders¹⁵. By
373 elucidating the multimodal interactions between the stomach and the brain in
374 mental health, our findings provide a starting point for future research on novel
375 diagnostic and therapeutic strategies targeting disordered brain-stomach
376 interactions. This includes not only innovations like non-invasive vagus nerve
377 stimulation, which recent studies have found to modulate stomach-brain
378 coupling²⁸, but also the exploration of new mechanical^{17,66} and
379 pharmacological^{22,31} interventions to remedy aberrant stomach-brain
380 interactions. Similarly, future research could leverage newly emerging
381 technologies such as ingestible recording devices to further elucidate the
382 physiological mechanisms linking mental health to the stomach-brain axis⁶⁷.

383 In summary, our study represents the largest and most comprehensive
384 neuroimaging sample focusing on brain-body interaction to date. Our results
385 signify a link between increased stomach-brain coupling and poorer mental
386 health across anxiety, depression, stress, and well-being dimensions. This
387 finding contributes significantly to multidisciplinary research on brain-body
388 interaction and opens new avenues for therapeutic, diagnostic, and
389 classification strategies to improve psychological well-being and mental health.

390 **Methods**

391 **Participants**

392 We recruited participants as part of the Visceral Mind Project, a large brain
393 imaging project at the Centre of Functionally Integrative Neuroscience, Aarhus
394 University. We recorded electrogastrography (EGG) in 380 participants (230
395 females, 149 males, 1 other gender, median age = 24, age range = 18-56). As our
396 aim was to apply machine learning to individual differences in mental health,
397 we adopted a participant recruitment strategy that sought to maximise between
398 individual variance from fully healthy to those with scores crossing clinical
399 thresholds. Accordingly, we did not explicitly exclude participants for
400 psychiatric diagnosis, and recruited participants from a wide range of possible
401 online communities and backgrounds (see Supplementary Table 1). These
402 participants did not report any major physical illnesses, or medication beyond

403 over-the-counter antihistamines or contraceptives, furthermore they reported
404 abstinence from alcohol/drugs 48 hours before participation. We acquired
405 participants in two data collection cohorts by advertising on nation-wide
406 participant pools, social media, newspapers, and posted fliers. As additional
407 criteria, participants had normal or corrected-to-normal vision and were fluent
408 in Danish or English. Furthermore, we only included participants compatible
409 with MRI scanning (not pregnant/breastfeeding, no metal implants,
410 claustrophobia etc).

411 Participants took part in multiple sessions including fMRI scans, behavioural
412 tasks, physiological recordings, and mental health/lifestyle inventories. In this
413 study, we focus on resting state fMRI data, electrogastrography (EGG)
414 recordings, and a mental health/lifestyle assessment battery to evaluate
415 individual differences in gastric-brain coupling and their link to mental health.
416 We compensated individuals for participating. The local Region Midtjylland
417 Ethics Committee granted approval for the study and all participants provided
418 informed consent. The study was conducted in accordance with the Declaration
419 of Helsinki. After the removal of poor-quality fMRI and EGG data (see quality
420 control below), we estimated stomach-brain-coupling in 243 participants.
421 Including the mental health scores, a total of 199 full-dataset participants were
422 included in the mental health functional correlate analysis (138 females, 61
423 males, median age = 23, age range = 18-47) (see Supplementary Figure 5 and
424 Supplementary Figure 6).

425 **Anatomical and resting state fMRI acquisition**

426 We acquired anatomical MRI and resting state fMRI data using a 3T MRI scanner
427 (Siemens Prisma) with a 32-channel head coil. We positioned small cushions
428 around the head to minimise head movement. The participants wore earplugs
429 and were instructed not to move. The resting state scan included 600 volumes
430 acquired over 14 minutes using a T2*-weighted echo-planar imaging (EPI)
431 multiband accelerated sequence (TR = 1400ms, TE = 29.6ms, voxel size = 1.79 x
432 1.79 x 1.80 mm). An acceleration factor of 4 was used in the slice direction along
433 with GRAPPA in-plane acceleration factor = 2. A set of high-resolution whole
434 brain T1-weighted anatomical images (0.9 mm³ isotropic) were acquired using
435 an MP-RAGE sequence (repetition time=2.2s, echo time=2.51ms, matrix
436 size=256×256 x 192 voxels, flip angle=8°, AP acquisition direction).

437 **Physiological recording acquisition**

438 We simultaneously recorded physiological measurements
439 (photoplethysmography, respiratory breathing belt, and EGG) during resting-
440 state fMRI. For the EGG recordings, we cleaned the abdomen and applied
441 abrasive gel to remove dead skin and improve the signal-to-noise ratio. Three
442 electrogastrography recording montages were implemented using a Brain
443 Vision MRI-compatible ExG system and amplifier (see Supplementary Figure 7
444 for each recording montage consisting of 1, 3 or 6 bipolar channels). All
445 physiological montages were acquired with a sampling rate of 1000 Hz, a low-
446 pass filter of 1000 Hz (with a 450 Hz anti-aliasing filter), and no high-pass filter
447 (DC recordings). EGG was recorded at a 0.5 μ V/bit resolution, and +/- 16.384 mV
448 range, while photoplethysmography and respiratory recordings were acquired
449 at 152.6 μ V/bit resolution, and +/- 5000 mV range.

450 **MRI and fMRI preprocessing**

451 We implemented the minimal preprocessing pipeline in fmriprep. MRI and
452 fMRI results included in this manuscript come from preprocessing performed
453 using fMRIPrep 22.1.1, which is based on Nipype 1.8.5 (see Supplementary
454 Material for anatomical and functional MRI preprocessing details with
455 fMRIPrep). Additional fMRI preprocessing steps following fMRIPrep included
456 spatial smoothing with a 3mm FWHM kernel, and regressing out six motion
457 parameters, six aCompCor parameters, as well as 13 RETROICOR components
458 reflecting cardiac and respiratory physiological noise.

459 **Electrogastrography peak selection and preprocessing**

460 The EGG data was first demeaned and downsampled from 1000 Hz to 10 Hz for
461 computational efficiency, followed by computing the power spectrum using a
462 Hanning-tapered fast Fourier transform (FFT) incorporating 1000 seconds of
463 zero-padding in 200-second data segments with 75% overlap. For each
464 participant, we selected the bipolar EGG channel that showed the most
465 prominent peak within the normal frequency range of the gastric rhythm in
466 humans (i.e., normogastric range: 0.033-0.066 Hz), which is on average one cycle
467 every 20 seconds (0.05 Hz)⁶². Specifically, two researchers (L.B. and I.R.)
468 independently conducted peak selection by visually inspecting each channel to
469 identify the EGG channel with the highest normogastric power peak, without
470 large artefacts and with power above 5 μ V². Peak quality was rated as 'excellent'
471 for gaussian-like peaks (n=184) and 'good' for shoulder-like peaks (n=81); those
472 not meeting these standards were deemed 'poor quality' (n=115) and excluded.
473 This visual inspection approach is consistent with previous research to account
474 for noise in the normogastric window, or cases of multiple peaks^{18,19,28}. Note,

475 selected electrode choice did not cause significant differences in the mental
476 health CCA variate (F range(2 to 5, 86 to 87) = 0.867 to 1.972, p range = .146 to .507,
477 n^2 range = 0.044 to 0.051) or the stomach-brain coupling CCA variate (F range(2
478 to 5, 86 to 87) = 1.376 to 2.863, p range = .063 to .242, n^2 range = 0.063 to 0.078).
479 Similarly, the EGG recording montage did not cause any significant differences
480 in the mental health CCA variate ($F(2, 198) = 1.717$, $p = .182$, $n^2 = 0.017$) or the
481 stomach-brain coupling CCA variate ($F(2, 198) = 1.220$, $p = .298$, $n^2 = 0.012$).

482 As an additional check, we computed signal quality metrics using a comparison
483 template-based procedure of 10 ideal participants with very clear and
484 prominent gastric peaks. 'Poor quality' participants had significantly lower
485 signal quality as measured by cosine similarity (excellent/good quality: Median
486 = 0.963, Range = 0.667, poor quality: Median = 0.595, Range = 0.585; $U = 63780$, $p <$
487 $.001$, $r_{rb} = 3.186$) and Pearson's correlation (excellent/good quality: Median =
488 0.950, Range = 1.169, poor quality: Median = 0.054, Range = 1.287; $U = 63849$, $p <$
489 $.001$, $r_{rb} = 3.190$) (see Supplementary Figure 4). As an extra precaution, we
490 confirmed that the mental health scores of the included and excluded EGG
491 participants did not significantly differ when using the first PCA component of
492 the 37 mental health scores (excellent/good quality: Median = 3.766, Range =
493 150.429, poor quality: Median = 5.745, Range = 106.762; $U = 46989$, $p = 0.964$, $r_{rb} =$
494 2.084). Furthermore, included/excluded participants did not differ in reported
495 gastrointestinal symptoms (average of PHQ15 items inquiring of "stomach
496 pain", "constipation, loose bowels, or diarrhea", and "nausea, gas, or
497 indigestion": excellent/good quality: Median = 1.333, Range = 2, poor quality:
498 Median = 1.333, Range = 2; $U = 14104$, $p = 0.913$, $r_{rb} = -0.0744$). In addition,
499 participants did not differ in reported under/overeating behaviour (PHQ9 item
500 "poor appetite or overeating": excellent/good quality: Median = 1, Range = 3,
501 poor quality: Median = 1, Range = 3; $U = 13250$, $p = 0.361$, $r_{rb} = -0.130$). The
502 selected EGG channel was then bandpass filtered, centred at the individual peak
503 frequency (filter width of ± 0.015 Hz, filter order of 5 or 1470 samples), in forward
504 and backward direction to avoid time shifts. After phase correction, the data
505 was resampled to the fMRI rate (0.7143 Hz) and processed through a Hilbert
506 transform to calculate the average phase per volume.

507 **Gastric-brain coupling estimation**

508 We followed procedures validated in previous EGG studies to estimate gastric-
509 brain coupling^{18,19}. The preprocessing of BOLD time series for all brain voxels
510 involved bandpass filtering, using parameters identical to those applied during
511 the EGG analysis. The initial and final 21 volumes (equivalent to 29.4 seconds)
512 were excluded from both the fMRI and EGG time series. This adjustment

513 resulted in a total signal duration of 781.2 seconds for further analysis. The
514 instantaneous phases of both signals were obtained through the application of
515 the Hilbert transform. Subsequently, the phase-locking value (PLV) was
516 calculated as the absolute value of the average phase angle differences between
517 the EGG and each voxel over time (see Equation 1)⁴³. The PLV is quantified by
518 values ranging from 0 (representing a total absence of phase synchrony) to 1
519 (corresponding to absolute phase synchrony).

$$PLV_{x,y} = \left| \frac{1}{T} \sum_{t=1}^T e^{i(\varphi_x(t) - \varphi_y(t))} \right|$$

520
521 **Equation 1:** where T is the number of time samples, and x and y are brain and
522 gastric time series.

523 In order to account for any biases in PLV that arise from differences in signal
524 amplitude, we created surrogate PLV values by disrupting the phase
525 relationship between EGG and BOLD time series. We achieved this by shifting
526 the EGG by at least ± 60 s with respect to the BOLD time series, with
527 concatenation at the edges. Given the 558 samples in the BOLD time series, this
528 procedure generated 472 surrogate PLV datasets. We then took the median value
529 of these surrogate PLV distributions as chance level coupling, and defined
530 coupling strength as the difference between empirical and chance level
531 coupling. Therefore, a higher value represents stronger stomach-brain coupling
532 strength.

533 **Mental health assessment battery**

534 Participants completed a battery of mental health and lifestyle assessments.
535 This encompassed 16 separate survey instruments spanning autism, ADHD,
536 empathy, insomnia, interoception, depression, fatigue, social support, somatic
537 symptoms, stress, social anxiety, trait anxiety, well-being, and quality of life. All
538 scales utilised validated Danish translations, except in cases where participants
539 spoke English as their first language, in which case validated English versions
540 were used. This allowed us to explore a broad range of mental health and
541 lifestyle factors across 37 subscale scores (see Supplementary Table 1 for details
542 of surveys, abbreviations, and subscale scores).

543 **Canonical correlation analysis**

544 We used the CCA-PLS toolbox to fit multivariate, cross-validated Canonical
545 Correlation Analysis (CCA) models relating stomach-brain coupling (coupling
546 strength of the BOLD and EGG time series) to mental health scores. Specifically,
547 CCA aims to find linear combinations of each multidimensional variable (i.e.,
548 canonical variates: which are weighted sums of stomach-brain coupling ($V = X * B$)
549 and mental health ($U = Y * A$)) that are maximally correlated with each other,
550 but uncorrelated with all other combinations (X and Y represent the inputted
551 stomach-brain coupling and mental health data, while A and B represent the
552 canonical weights)^{59,68}. The toolbox incorporates various CCA/PLS models,
553 including the cross-validated and optimised PCA-CCA techniques applied
554 here⁵⁹. This method importantly guards against overfitting via optimised data-
555 reduction methods, assessing statistical inference between independent
556 training and test sets, as well as by implementing permutation testing based on
557 the out-of-sample correlation (see below for further details).

558 We first reduced the dimensions of stomach-brain coupling per fMRI voxel by
559 parcellating with the 256-region Dictionary of Functional Modes (DiFuMo) atlas,
560 excluding regions of cerebrospinal fluid, ventricles, or white matter, yielding
561 209 relevant regions. Because CCA is very sensitive to outliers⁶⁹⁻⁷², it is important
562 to screen for outliers in the stomach-brain coupling and mental health data,
563 leading to the exclusion of 12 and 25 participants respectively (see
564 Supplementary Figure 5 for a complete flow chart of exclusions). This avoids
565 false dependencies in the training set and distortions to the canonical projection
566 weights⁶⁹⁻⁷². Our final Canonical Correlation Analysis (CCA) sample comprised
567 199 participants for whom we had complete stomach-brain coupling and mental
568 health matrices. These were standardised to have zero mean and unit variance,
569 and nuisance regression was applied to control the estimated canonical variates
570 for the influence of gender, age, body mass index, and data collection cohort.

571 Subsequently, we applied the cross-validated CCA approach within the
572 predictive framework (machine learning) provided by the CCA-PLS toolbox⁵⁹.
573 This predictive approach involved randomly splitting the data into a
574 training/optimisation set (60% of the overall data) and a test/holdout set (40% of
575 the overall data) 5 times (5-fold cross-validation). These optimisation and
576 holdout sets are known as the ‘outer data splits’, used for statistical inference
577 (determining the number of significant associative CCA modes). The p-values
578 were calculated via permutation testing (1000 permutations), as the fraction of
579 the shuffled permuted out-of-sample correlations exceeding the out-of-sample
580 correlation in the non-permuted holdout set. Because we implemented 5
581 holdout sets, the p-value for each holdout set was Bonferroni corrected ($\alpha =$
582 $0.05/5 = 0.01$). An associative CCA effect is considered significant if the p-value

583 was significant in at least one of the independent test/holdout sets, once trained
584 on the training/optimisation set (out-of-sample correlation). If a significant
585 associative CCA effect was found, the CCA iteratively removed the effect from
586 the data via deflation and repeated this approach to find orthogonal CCA
587 associative effects.

588 Before statistical inference, to overcome multicollinearity and overfitting
589 issues, the PCA-CCA approach optimises the number of features (PCA
590 components) inputted to each of the outer data splits used for statistical
591 inference. Thus, the PCA-CCA approach further divides the optimisation set into
592 a training set (60% of the optimisation set) and a validation set (40% of the
593 optimisation set) 5 times (5-fold hyperparameter optimisation) for each outer
594 data split. These ‘inner data splits’ were used to select the optimal
595 hyperparameters (number of PCA components the inputted stomach-brain
596 coupling and mental health data dimensions were reduced to) by maximising
597 the average out-of-sample correlation in the validation sets.

598 To aid interpretation of the networks underlying the estimated brain-stomach
599 coupling signature, we visualised overall network-level contributions by
600 averaging the canonical loadings across the Yeo 7-network parcellation for the
601 stomach-brain coupling axis⁴⁴. Moreover, we averaged across mental health
602 categories for the psychological loading axis for clearer visualisation of the CCA
603 result (see Figure 3).

604 **Control analyses**

605 To control for underlying influences of neural connectivity or brain activity
606 variability to the mental health stomach-brain coupling result, we conducted
607 two separate control CCA analyses. For the neural connectivity control analysis,
608 we parcellated the fMRI preprocessed data (with an additional high-pass filter
609 to handle low-frequency signal drifts) with the same method used for the
610 stomach-brain coupling data (using the 256-DiFuMo atlas and removing
611 cerebrospinal fluid, ventricles, and white matter regions), and quantified
612 individual functional connectivity data matrices using correlation (Nilearn
613 function: ‘ConnectivityMeasure.fit_transform’). Furthermore, for the brain
614 activity variability control analysis, we calculated the standard deviation of
615 BOLD activity for each voxel of the fMRI preprocessed data and parcellated
616 using the same method. Both the resting connectivity and BOLD signal
617 variability control CCA analyses were completed with the same CCA parameters
618 as described in the methods section of the manuscript (including gender, age,
619 body mass index, and data collection cohort as nuisance variables).

620 To control that the mental health dimension we uncovered is specific to the
621 stomach and not cardiac and respiratory activity, we conducted two additional
622 CCA analyses to control for cardiac-brain and respiratory-brain interactions.
623 For the cardiac domain we used inter-beat-intervals of the heartbeat, computed
624 using identified R-peaks via the ‘ppg_peaks’ function from systole which uses a
625 rolling average algorithm, while the respiration analysis focused on inhalation
626 breath durations (inter-breath-intervals), computed using identified inhalation
627 peaks via the ‘find_peaks’ function from scipy.signal with a distance of 1
628 samples and a peak prominence of 0.6. Both identified cardiac R-peaks and
629 respiratory inhalation peaks were visually inspected and manually corrected if
630 necessary. To estimate instantaneous HRV regressors, we interpolated the
631 cardiac inter-beat-intervals at the fMRI scanner frequency (TR=1.4 seconds,
632 spline interpolation method) and band-pass filtered them at the frequencies
633 corresponding to low (0.05-0.15 Hz) and high (0.15-0.357 Hz - upper limit
634 constrained by Nyquist frequency of the scanner) heart rate variability (low
635 center frequency = 0.1 Hz ± 0.05, high center frequency = 0.2535 Hz ± 0.1035,
636 Matlab FIR filter)^{18,73}. For the respiratory domain, we interpolated the inter-
637 breath-intervals at fMRI scanner frequency, and bandpass filtered at 0.1-0.357
638 Hz^{74,75} (center frequency = 0.2285 Hz ± 0.1285 - upper limit constrained by
639 Nyquist frequency of the scanner). We obtained the amplitude envelopes of the
640 instantaneous high and low frequency HRV and respiratory rate variability
641 signal via a Hilbert transformation. These amplitude envelopes were used as
642 regressors of interest (without convolution with HRF)^{18,73} in first level GLM’s,
643 with six motion and six acompcor noise regressors using SPM12 and a high-pass
644 filter with cutoff of 128 seconds. The fMRI had the same preprocessing as the
645 stomach-brain phase coupling analysis. We then used T-contrasts to identify
646 individual maps of brain activity associated with increased low frequency HRV,
647 high frequency HRV, or respiratory rate variability. Each of these individual
648 heart/respiratory-brain maps were parcellated and inputted into a CCA with the
649 37 mental health scores with the same parameters as the stomach-brain
650 coupling CCA.

651 As an additional control, we conducted a separate whole brain analysis to
652 determine if we could identify a similar result when using a simpler mass
653 univariate analysis. First, we computed PCA on the mental health scores to get
654 a single component similar to the psychological canonical loadings from the
655 CCA. This independent mental health PCA component was then correlated with
656 the stomach-brain coupling from each of the 209 DiFuMo parcellated regions
657 separately. Finally, these univariate Pearson correlation coefficients were
658 correlated with the stomach-brain coupling loadings from the multivariate CCA
659 to determine similarity of the two analysis strategies.

660 Moreover, we completed control Spearman correlations of gastric physiology
661 (EGG metrics) with the mental health canonical variate extracted from the
662 stomach-brain coupling CCA analysis. From the computed EGG power spectra
663 (as described in the electrogastrography preprocessing section), we quantified
664 the following normogastric EGG metrics: peak frequency, maximum power,
665 and proportion of power (see Supplementary Table 5). Specifically, within the
666 normogastric frequency range (0.033-0.067 Hz/2-4 cpm/15-30 seconds), we
667 stored the peak frequency and maximum power. Furthermore, we computed
668 the proportion of normogastric power as the sum of the normogastric power
669 divided by the sum of the power in all gastric frequencies (including
670 bradygastric, normogastric, and tachygastri frequencies: 0.02-0.17 Hz/1-10
671 cpm/6-60 seconds). We input those EGG metrics into a correlation matrix with
672 the mental health canonical variate, correcting for multiple comparisons using
673 the false-discovery rate (FDR) at 5%.

674 To control for age or gender effects, we conducted the mental health associated
675 stomach-brain coupling CCA with the same parameters as the main analysis,
676 but removed age and gender as nuisance regressors. We then tested for age and
677 gender effects via a pearsons correlation with age and an independent-samples
678 t-test with gender with the subsequent CCA variate for each stomach-brain
679 coupling and mental health.

680 **Data availability**

681 Deidentified participant data and scripts implemented in this paper are
682 available here: <https://github.com/embodied-computation->
683 [group/StomachBrain-MentalHealth](https://github.com/embodied-computation-group/StomachBrain-MentalHealth)

684

685 **Acknowledgements**

686 This research is financially supported by a Lundbeckfonden Fellowship (R272-
687 2017-4345) and a European Research Council Grant (ERC-2020-StG-948788). The
688 funding source was not involved in the study design, collection, analysis,
689 interpretation, or writing of the manuscript.

690 **Author contributions**

691 LB and IR analysed the data, interpreted the results, and wrote the manuscript,
692 NN provided conceptual advice and contributed towards preprocessing of
693 neuroimaging data, MA provided supervision, conceptual advice, and wrote the
694 manuscript.

695 **Competing interests**

696 All authors declare no conflicts of interest.

697 **Materials and correspondence**

698 Leah Banellis: leahbanellis@cfin.au.dk.

699

700

701

702 **References**

703

- 704 1. Thompson, E. *Mind in Life: Biology, Phenomenology, and the Sciences of Mind*.
705 (Harvard University Press, 2010).
- 706 2. Engelen, T., Solcà, M. & Tallon-Baudry, C. Interoceptive rhythms in the brain. *Nat. Neurosci.* **26**, 1670–1684 (2023).
- 707 3. Allen, M. Unravelling the Neurobiology of Interoceptive Inference. *Trends Cogn. Sci.* **24**,
709 265–266 (2020).
- 710 4. Critchley, H. D. & Garfinkel, S. N. Interoception and emotion. *Curr. Opin. Psychol.* **17**, 7–
711 14 (2017).
- 712 5. Nord, C. L. & Garfinkel, S. N. Interoceptive pathways to understand and treat mental
713 health conditions. *Trends Cogn. Sci.* **26**, 499–513 (2022).
- 714 6. Hsueh, B. *et al.* Cardiogenic control of affective behavioural state. *Nature* **615**, 292–299
715 (2023).
- 716 7. Teed, A. R. *et al.* Association of Generalized Anxiety Disorder With Autonomic
717 Hypersensitivity and Blunted Ventromedial Prefrontal Cortex Activity During Peripheral
718 Adrenergic Stimulation: A Randomized Clinical Trial. *JAMA Psychiatry* **79**, 323–332
719 (2022).
- 720 8. Cryan, J. F. & Dinan, T. G. Mind-altering microorganisms: the impact of the gut
721 microbiota on brain and behaviour. *Nat. Rev. Neurosci.* **13**, 701–712 (2012).
- 722 9. Kolobaric, A. *et al.* Gut microbiome predicts cognitive function and depressive symptoms
723 in late life. *Mol. Psychiatry* 1–12 (2024) doi:10.1038/s41380-024-02551-3.
- 724 10. Allen, M., Varga, S. & Heck, D. H. Respiratory rhythms of the predictive mind. *Psychol.*
725 *Rev. No Pagination Specified-No Pagination Specified* (2022) doi:10.1037/rev0000391.
- 726 11. Bagur, S. *et al.* Breathing-driven prefrontal oscillations regulate maintenance of
727 conditioned-fear evoked freezing independently of initiation. *Nat. Commun.* **12**, 2605
728 (2021).

729 12. Kluger, D. S. *et al.* Modulatory dynamics of periodic and aperiodic activity in respiration-
730 brain coupling. *Nat. Commun.* **14**, 4699 (2023).

731 13. Zelano, C. *et al.* Nasal Respiration Entrains Human Limbic Oscillations and Modulates
732 Cognitive Function. *J. Neurosci.* **36**, 12448–12467 (2016).

733 14. Krieger, J.-P. *et al.* Neural Pathway for Gut Feelings: Vagal Interoceptive Feedback
734 From the Gastrointestinal Tract Is a Critical Modulator of Anxiety-like Behavior. *Biol.*
735 *Psychiatry* **92**, 709–721 (2022).

736 15. Margolis, K. G., Cryan, J. F. & Mayer, E. A. The Microbiota-Gut-Brain Axis: From Motility
737 to Mood. *Gastroenterology* **160**, 1486–1501 (2021).

738 16. Foster, J. A. & McVey Neufeld, K.-A. Gut–brain axis: how the microbiome influences
739 anxiety and depression. *Trends Neurosci.* **36**, 305–312 (2013).

740 17. Mayeli, A. *et al.* Parieto-occipital ERP indicators of gut mechanosensation in humans.
741 *Nat. Commun.* **14**, 3398 (2023).

742 18. Rebollo, I., Devauchelle, A.-D., Béranger, B. & Tallon-Baudry, C. Stomach-brain
743 synchrony reveals a novel, delayed-connectivity resting-state network in humans. *eLife*
744 **7**, e33321 (2018).

745 19. Rebollo, I. & Tallon-Baudry, C. The sensory and motor components of the cortical
746 hierarchy are coupled to the rhythm of the stomach during rest. *J. Neurosci.* **42**, 2202–
747 2220 (2021).

748 20. Azzalini, D., Rebollo, I. & Tallon-Baudry, C. Visceral Signals Shape Brain Dynamics and
749 Cognition. *Trends Cogn. Sci.* (2019) doi:10.1016/j.tics.2019.03.007.

750 21. Teckentrup, V. & Kroemer, N. B. Mechanisms for survival: vagal control of goal-directed
751 behavior. *Trends Cogn. Sci.* **0**, (2023).

752 22. Nord, C. L., Dalmaijer, E. S., Armstrong, T., Baker, K. & Dalgleish, T. A Causal Role for
753 Gastric Rhythm in Human Disgust Avoidance. *Curr. Biol.* **31**, 629-634.e3 (2021).

754 23. Inui, A. Ghrelin: An orexigenic and somatotropic signal from the stomach. *Nat. Rev.*
755 *Neurosci.* **2**, 551–560 (2001).

756 24. Sanders, K. M., Ward, S. M. & Koh, S. D. Interstitial Cells: Regulators of Smooth Muscle
757 Function. *Physiol. Rev.* **94**, 859–907 (2014).

758 25. Richter, C. G., Babo-Rebelo, M., Schwartz, D. & Tallon-Baudry, C. Phase-amplitude
759 coupling at the organism level: The amplitude of spontaneous alpha rhythm fluctuations
760 varies with the phase of the infra-slow gastric basal rhythm. *NeuroImage* **146**, 951–958
761 (2017).

762 26. Cao, J. et al. Gastric stimulation drives fast BOLD responses of neural origin.
763 *NeuroImage* **197**, 200–211 (2019).

764 27. Alladin, S. N. B., Judson, R., Whittaker, P., Attwood, A. S. & Dalmaijer, E. S. Review of
765 the gastric physiology of disgust: Proto-nausea as an under-explored facet of the gut–
766 brain axis. *Brain Neurosci. Adv.* **8**, 23982128241305890 (2024).

767 28. Müller, S. J., Teckentrup, V., Rebollo, I., Hallschmid, M. & Kroemer, N. B. Vagus nerve
768 stimulation increases stomach-brain coupling via a vagal afferent pathway. *Brain*
769 *Stimulat.* **15**, 1279–1289 (2022).

770 29. Cao, J., Wang, X., Chen, J., Zhang, N. & Liu, Z. The vagus nerve mediates the stomach-
771 brain coherence in rats. *NeuroImage* **263**, 119628 (2022).

772 30. Marso Steven P. et al. Semaglutide and Cardiovascular Outcomes in Patients with Type
773 2 Diabetes. *N. Engl. J. Med.* **375**, 1834–1844 (2016).

774 31. Wilding John P.H. et al. Once-Weekly Semaglutide in Adults with Overweight or Obesity.
775 *N. Engl. J. Med.* **384**, 989–1002 (2021).

776 32. Nummenmaa, L., Hari, R., Hietanen, J. K. & Glerean, E. Maps of subjective feelings.
777 *Proc. Natl. Acad. Sci.* **115**, 9198–9203 (2018).

778 33. Nummenmaa, L., Glerean, E., Hari, R. & Hietanen, J. K. Bodily maps of emotions. *Proc.*
779 *Natl. Acad. Sci.* **111**, 646–651 (2014).

780 34. Insel, T. R. & Cuthbert, B. N. Brain disorders? Precisely. *Science* **348**, 499–500 (2015).

781 35. Calkins, M. E. et al. The Philadelphia Neurodevelopmental Cohort: constructing a deep
782 phenotyping collaborative. *J. Child Psychol. Psychiatry* **56**, 1356–1369 (2015).

783 36. Gillan, C. M., Kosinski, M., Whelan, R., Phelps, E. A. & Daw, N. D. Characterizing a
784 psychiatric symptom dimension related to deficits in goal-directed control. *eLife* **5**,
785 e11305 (2016).

786 37. Smith, S. M. *et al.* A positive-negative mode of population covariation links brain
787 connectivity, demographics and behavior. *Nat. Neurosci.* **18**, 1565–1567 (2015).

788 38. Kaczkurkin, A. N. *et al.* Common and dissociable regional cerebral blood flow differences
789 associate with dimensions of psychopathology across categorical diagnoses. *Mol.*
790 *Psychiatry* **23**, 1981–1989 (2018).

791 39. Benwell, C. S. Y., Mohr, G., Wallberg, J., Kouadio, A. & Ince, R. A. A. Psychiatrically
792 relevant signatures of domain-general decision-making and metacognition in the general
793 population. *Npj Ment. Health Res.* **1**, 1–17 (2022).

794 40. Insel, T. *et al.* Research Domain Criteria (RDoC): Toward a New Classification
795 Framework for Research on Mental Disorders. *Am. J. Psychiatry* **167**, 748–751 (2010).

796 41. Schumann, G. *et al.* Stratified medicine for mental disorders. *Eur.*
797 *Neuropsychopharmacol.* **24**, 5–50 (2014).

798 42. Goyal, N., Moraczewski, D., Bandettini, P. A., Finn, E. S. & Thomas, A. G. The positive–
799 negative mode link between brain connectivity, demographics and behaviour: a pre-
800 registered replication of Smith *et al.* (2015). *R. Soc. Open Sci.* **9**, 201090 (2022).

801 43. Lachaux, J.-P., Rodriguez, E., Martinerie, J. & Varela, F. J. Measuring phase synchrony
802 in brain signals. *Hum. Brain Mapp.* **8**, 194–208 (1999).

803 44. Yeo, B. T. T. *et al.* The organization of the human cerebral cortex estimated by intrinsic
804 functional connectivity. *J. Neurophysiol.* **106**, 1125–1165 (2011).

805 45. McTeague, L. M. *et al.* Identification of Common Neural Circuit Disruptions in Cognitive
806 Control Across Psychiatric Disorders. *Am. J. Psychiatry* **174**, 676–685 (2017).

807 46. Yang, Y. *et al.* Common and Specific Functional Activity Features in Schizophrenia,
808 Major Depressive Disorder, and Bipolar Disorder. *Front. Psychiatry* **10**, (2019).

809 47. Seghier, M. L. The Angular Gyrus. *The Neuroscientist* **19**, 43–61 (2013).

810 48. Gao, Y. *et al.* Decreased resting-state neural signal in the left angular gyrus as a
811 potential neuroimaging biomarker of schizophrenia: An amplitude of low-frequency
812 fluctuation and support vector machine analysis. *Front. Psychiatry* **13**, (2022).

813 49. Su, Q. *et al.* Decreased interhemispheric functional connectivity in insula and angular
814 gyrus/supramarginal gyrus: Significant findings in first-episode, drug-naive somatization
815 disorder. *Psychiatry Res. Neuroimaging* **248**, 48–54 (2016).

816 50. Gao, J. *et al.* Habenula and left angular gyrus circuit contributes to response of
817 electroconvulsive therapy in major depressive disorder. *Brain Imaging Behav.* **15**, 2246–
818 2253 (2021).

819 51. Mo, Y. *et al.* Bifrontal electroconvulsive therapy changed regional homogeneity and
820 functional connectivity of left angular gyrus in major depressive disorder. *Psychiatry Res.*
821 **294**, 113461 (2020).

822 52. Tozzi, L. *et al.* Personalized brain circuit scores identify clinically distinct biotypes in
823 depression and anxiety. *Nat. Med.* **30**, 2076–2087 (2024).

824 53. Menon, V. & Uddin, L. Q. Saliency, switching, attention and control: a network model of
825 insula function. *Brain Struct. Funct.* **214**, 655–667 (2010).

826 54. Gordon, E. M. *et al.* A somato-cognitive action network alternates with effector regions in
827 motor cortex. *Nature* **617**, 351–359 (2023).

828 55. Choe, A. S. *et al.* Phase-locking of resting-state brain networks with the gastric basal
829 electrical rhythm. *PLOS ONE* **16**, e0244756 (2021).

830 56. Levakov, G., Ganor, S. & Avidan, G. Reliability and validity of brain-gastric phase
831 synchronization. *Hum. Brain Mapp.* **44**, 4956–4966 (2023).

832 57. Todd, J., Cardelluccio, P., Swami, V., Cardini, F. & Aspell, J. E. Weaker implicit
833 interoception is associated with more negative body image: Evidence from gastric-alpha
834 phase amplitude coupling and the heartbeat evoked potential. *Cortex* **143**, 254–266
835 (2021).

836 58. Schürmann-Vengels, J., Troche, S., Victor, P. P., Teismann, T. & Willutzki, U.
837 Multidimensional Assessment of Strengths and Their Association With Mental Health in

838 Psychotherapy Patients at the Beginning of Treatment. *Clin. Psychol. Eur.* **5**, e8041
839 (2023).

840 59. Mihalik, A. *et al.* Canonical Correlation Analysis and Partial Least Squares for Identifying
841 Brain–Behavior Associations: A Tutorial and a Comparative Study. *Biol. Psychiatry*
842 *Cogn. Neurosci. Neuroimaging* **7**, 1055–1067 (2022).

843 60. Hashimoto, T. *et al.* Neural correlates of electrointestinography: Insular activity
844 modulated by signals recorded from the abdominal surface. *Neuroscience* **289**, 1–8
845 (2015).

846 61. Jeanne, R. *et al.* Gut-Brain Coupling and Multilevel Physiological Response to
847 Biofeedback Relaxation After a Stressful Task Under Virtual Reality Immersion: A Pilot
848 Study. *Appl. Psychophysiol. Biofeedback* **48**, 109–125 (2023).

849 62. Wolpert, N., Rebollo, I. & Tallon-Baudry, C. Electrogastrography for psychophysiological
850 research: Practical considerations, analysis pipeline, and normative data in a large
851 sample. *Psychophysiology* **57**, e13599 (2020).

852 63. Alladin, S. N. B. *et al.* Children aged 5–13 years show adult-like disgust avoidance, but
853 not proto-nausea. *Brain Neurosci. Adv.* **8**, 23982128241279616 (2024).

854 64. Chang, L., Wei, Y. & Hashimoto, K. Brain–gut–microbiota axis in depression: A historical
855 overview and future directions. *Brain Res. Bull.* **182**, 44–56 (2022).

856 65. Vindegaard, N., Speyer, H., Nordentoft, M., Rasmussen, S. & Benros, M. E. Gut
857 microbial changes of patients with psychotic and affective disorders: A systematic
858 review. *Schizophr. Res.* **234**, 41–50 (2021).

859 66. Rao, S. S. C., Quigley, E. M. M., Chey, W. D., Sharma, A. & Lembo, A. J. Randomized
860 Placebo-Controlled Phase 3 Trial of Vibrating Capsule for Chronic Constipation.
861 *Gastroenterology* **164**, 1202-1210.e6 (2023).

862 67. Porciello, G., Monti, A., Panasiti, M. S. & Aglioti, S. M. Ingestible pills reveal gastric
863 correlates of emotions. *eLife* **13**, e85567 (2024).

864 68. Linke, J. O. *et al.* Shared and Anxiety-Specific Pediatric Psychopathology Dimensions
865 Manifest Distributed Neural Correlates. *Biol. Psychiatry* **89**, 579–587 (2021).

866 69. Luo, L., Wang, W., Bao, S., Peng, X. & Peng, Y. Robust and sparse canonical
867 correlation analysis for fault detection and diagnosis using training data with outliers.
868 *Expert Syst. Appl.* **236**, 121434 (2024).

869 70. Wilms, I. & Croux, C. Robust sparse canonical correlation analysis. *BMC Syst. Biol.* **10**,
870 72 (2016).

871 71. Okan Sakar, C. & Kursun, O. A method for combining mutual information and canonical
872 correlation analysis: Predictive Mutual Information and its use in feature selection.
873 *Expert Syst. Appl.* **39**, 3333–3344 (2012).

874 72. Mandal, A. & Cichocki, A. Non-Linear Canonical Correlation Analysis Using Alpha-Beta
875 Divergence. *Entropy* **15**, 2788–2804 (2013).

876 73. Critchley, H. D. *et al.* Human cingulate cortex and autonomic control: converging
877 neuroimaging and clinical evidence. *Brain* **126**, 2139–2152 (2003).

878 74. Natarajan, A. *et al.* Measurement of respiratory rate using wearable devices and
879 applications to COVID-19 detection. *NPJ Digit. Med.* **4**, 136 (2021).

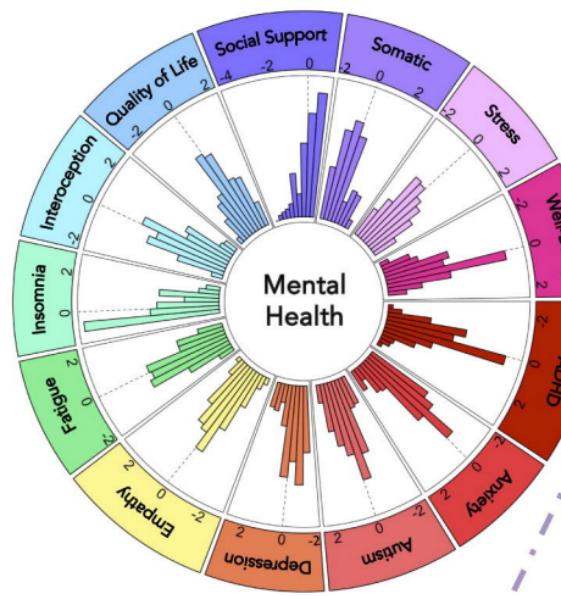
880 75. Iqbal, T., Elahi, A., Ganly, S., Wijns, W. & Shahzad, A. Photoplethysmography-Based
881 Respiratory Rate Estimation Algorithm for Health Monitoring Applications. *J. Med. Biol.*
882 *Eng.* **42**, 242–252 (2022).

883

884

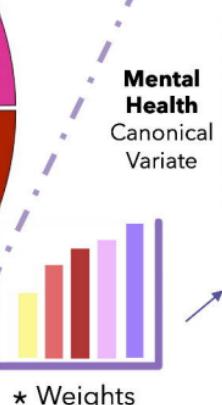
Mental Health and Lifestyle Inventory

Well-Being	Mental Well-Being				General Well-Being							
	Stress				Somatic Symptoms							
	Significant Other		Friend		Family		Environment					
Social Support	Social		Psychological		Physical		Overall	Environment				
Quality of Life	Worry	Trusting	Self Reg	Notice	Listen	Emotion	Distract	Atten Reg				
Interoception	Insomnia											
Insomnia	Physically		Mental		Less Motivation		Less Active					
Fatigue	Perspective		Fantasy		Distress		General					
Empathy	Depression A				Depression B							
Depression	Autism				Autism							
Autism	Trait Anxiety				Social Anxiety							
Anxiety	ADHD A				ADHD B							
ADHD												

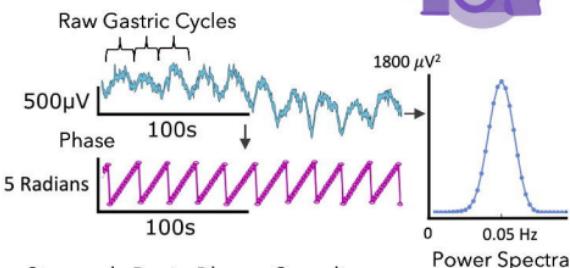
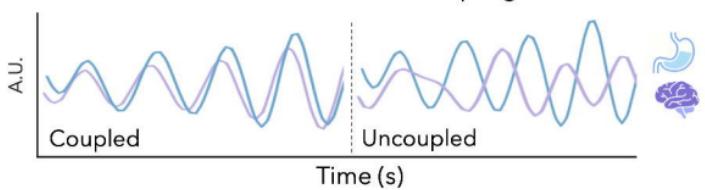
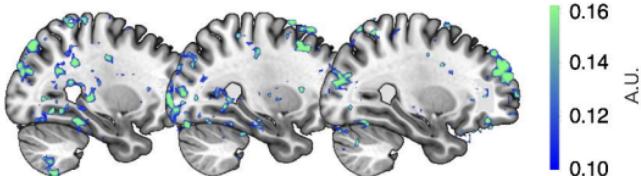


37 Mental Health- Lifestyle Scores

CCA Mental Health Signature of Stomach-Brain Coupling

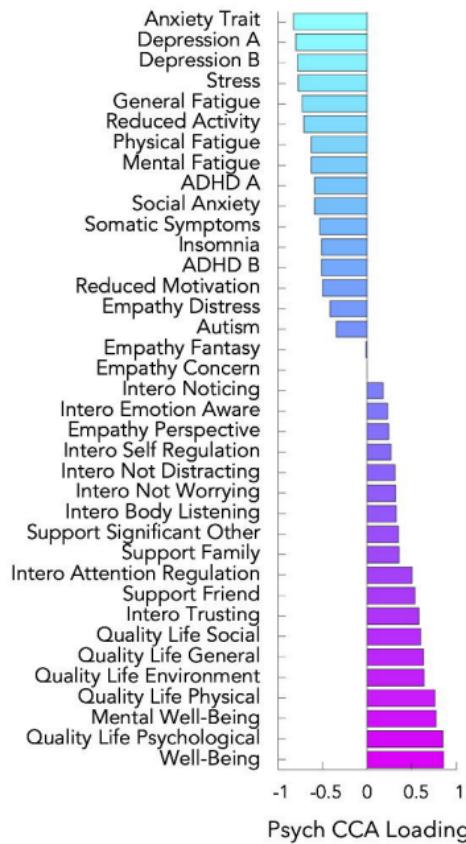
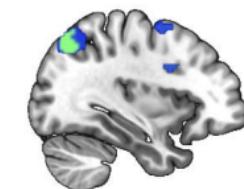
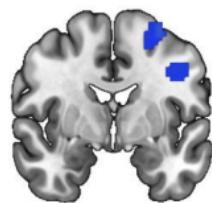
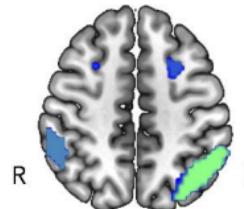
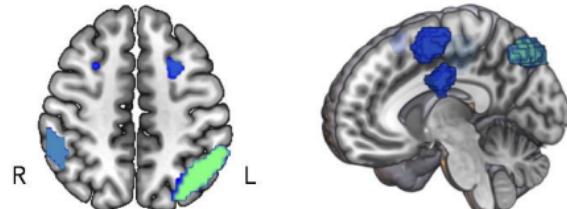


Resting-State fMRI with ElectroGastroGraphy



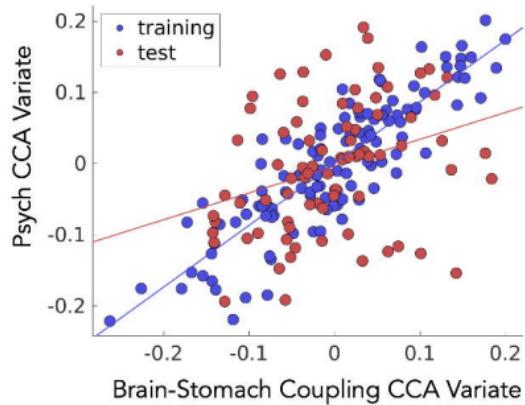
Mental Health Signature of Stomach-Brain Coupling

CCA loadings (structure correlations)



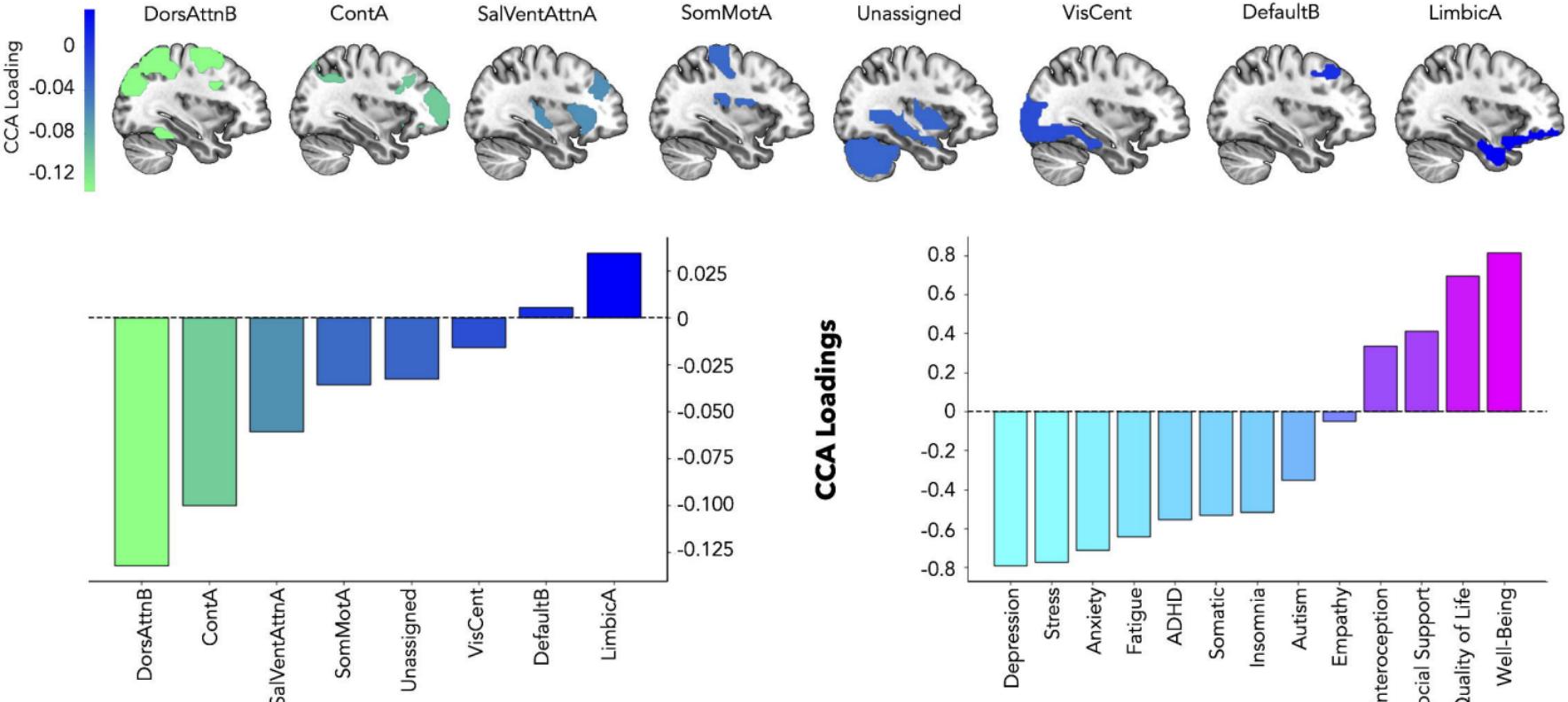
CCA variate

$r = 0.323, p = .001$



Brain-Stomach Coupling CCA Loading

CCA Loadings Summary



Stomach-Brain Coupling Networks

Mental Health Categories