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Abstract 20 

Visceral rhythms orchestrate the physiological states underlying human 21 
emotion. Chronic aberrations in these brain-body interactions are implicated in 22 
a broad spectrum of mental health disorders. However, the relationship of 23 
gastric-brain coupling to affective symptoms remains poorly understood. We 24 
investigated the relationship between this novel interoceptive axis and mental 25 
health in 243 participants, using a cross validated machine learning approach. 26 
We find that increased fronto-parietal brain coupling to the gastric rhythm 27 
indexes a dimensional signature of worse mental health, spanning anxiety, 28 
depression, stress, and well-being. Control analyses confirm the specificity of 29 
these interactions to the gastric-brain axis. Our study proposes coupling 30 
between the stomach and brain as a factor in mental health and offers potential 31 
new targets for interventions remediating aberrant brain-body coupling. 32 

 33 

 34 

 35 

 36 

  37 
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Main  38 

Far from being a mere brain in a vat, the nervous system is embedded within an 39 
intricate web of visceral rhythms. While philosophy has long championed the 40 
embodiment of mind and life1, it is only more recently that the importance of 41 
the visceral body in contextualising brain function has gained widespread 42 
recognition2,3. In particular, interoceptive processes linking brain and body are 43 
thought to be critically important in mood and emotion2,4, and their larger role 44 
in affective symptoms has become a topic of intense interest in mental health 45 
research5.   46 

Research investigating these links have so far focused almost exclusively on the 47 
cardiac6,7, lower gastrointestinal8,9, and respiratory axes10–12. Recent landmark 48 
findings demonstrate that, for example, anxiety responses in threatening 49 
situations relies on ascending cardiac information6, and that respiratory 50 
rhythms modify neural patterns during emotional processing13. 51 
Simultaneously, the burgeoning study of gut-brain interaction has produced a 52 
plethora of new findings linking the function and biology of the lower 53 
gastrointestinal tract or gut to physical and mental health14–16. While these and 54 
many other findings herald a visceral turn in our understanding of the biology 55 
of the mind and its disorder, one particular domain of brain-body coupling 56 
remains notably understudied: the upper gastrointestinal tract comprising 57 
interconnections between the brain and stomach. 58 

Gastric-brain interactions have recently emerged as a novel frontier in 59 
interoception research17–22. Hormones secreted by the stomach directly regulate 60 
hypothalamic mechanisms that govern satiety and hunger23. Additionally, the 61 
stomach generates its own independent myoelectrical rhythm, in which the 62 
interstitial cells of Cajal pace muscular contractions approximately once every 63 
20 seconds24. Previously relegated to merely driving mechanical food digestion, 64 
recent discoveries indicate that the gastric rhythm is closely linked to ongoing 65 
brain activity through reciprocal vagal innervation25–27. This link can be directly 66 
modulated through techniques such as non-invasive vagal nerve stimulation28, 67 
bilateral vagotomy in rodent models29, as well as through emerging 68 
pharmacological methods22,30,31, offering a promising means by which to 69 
intervene upon the stomach-brain axis. 70 

Despite the close linkage of emotion and brain-body interaction, the extent to 71 
which alterations in the gastric axis relate to mental health remains unclear. 72 
This gap is curious in part because folk psychology has long centred the 73 
stomach as a locus of stress and anxiety: difficult decisions are described as 74 
evoking "gut feelings" which in extreme cases, can make one "sick to their 75 
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stomach." Conversely, intense moments of love or joy are described as giving 76 
"butterflies in the stomach." Aligning with these descriptions, recent empirical 77 
findings indicate that individuals often report subjective disgust, fear, and 78 
anxiety as being localised in the stomach32,33, and that pharmacological 79 
modulation of the gastric rhythm alters emotional processing22. On this basis, 80 
we hypothesised that inter-individual patterns in gastric-brain coupling might 81 
expose unique patterns of affective mental health, in particular those relating 82 
to core mood disorders such as anxiety and depression. To test this hypothesis, 83 
we conducted a large scale neuroimaging study of simultaneous 84 
electrogastrographic (EGG) and functional MRI (fMRI) brain imaging in 243 85 
participants. To assess mental health across a broad spectrum, we employed a 86 
multidimensional approach to quantify highly individualistic profiles spanning 87 
a range of affective, cognitive, social, and somatic health dimensions. This 88 
approach builds on research identifying mental illness as a continuum of 89 
overlapping symptoms across disorders34–39, rather than relying on discrete 90 
diagnostic categories with high comorbidity, high heterogeneity and poor 91 
reliability40,41. Utilising a multivariate, cross-validated machine learning 92 
technique, we estimated highly robust, sensitive, and specific signatures that 93 
interrelate these profiles to individual patterns of stomach-brain coupling. Our 94 
findings demonstrate that the stomach-brain axis exposes a positive-to-negative 95 
mode of mental health37,42, revealing a previously unknown embodied target for 96 
future clinical intervention research. 97 

Results 98 

Mental health functional correlates 99 

To characterise variation in the gastric-brain axis, we utilised simultaneous 100 
electrogastrographic (EGG) and resting state fMRI recordings. Following an 101 
extensive data quality control procedure (Methods), we estimated stomach-102 
brain coupling for each participant using the phase locking value (PLV) of the 103 
EGG and resting state fMRI time series across 209 parcellated whole-brain 104 
regions43 (see Figure 1 for example).   105 

To characterise individual mental health profiles, we conducted a 106 
comprehensive assessment across 37 self-reported scores encompassing 107 
autism, ADHD, empathy, insomnia, interoception, depression, fatigue, social 108 
support, somatic symptoms, stress, social anxiety, trait anxiety, well-being, and 109 
quality of life (see Supplementary Table 1 for a full list of instruments and 110 
subscales). This approach successfully captured robust inter-individual 111 
variability spanning a variety of mental health dimensions (see Figure 1). 112 
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Individual variance spanned from completely healthy to those experiencing 113 
significant distress, such that 30% of the sample exhibited mild depression, 19% 114 
exhibited clinically significant levels of ADHD, 19% medium or more severe 115 
somatic symptoms, 18% trait anxiety, 9% moderate depression, 7% autism 116 
spectrum, and 5% insomnia (see Supplementary Table 1 for all percentage cut-117 
offs).  118 

Finally, to determine latent patterns interlinking these mental health profiles to 119 
stomach-brain coupling, we conducted a cross-validated Canonical Correlation 120 
Analysis (CCA). This method determines maximally correlated patterns 121 
between two multidimensional variables (in this case, mental health and 122 
stomach-brain coupling data). CCA does this via linear transformation of the 123 
inputted data using weights, which produces the resulting CCA variates (i.e., 124 
weighted sums) (see Figure 1).  125 

 126 

Figure 1: Canonical Correlation Analysis of stomach-brain coupling and 127 
mental health. 128 

Figure 1 synthesises the process and outcomes of correlating stomach-brain phase 129 
coupling with mental health, as quantified by 37 variables from 16 validated surveys. 130 
The top left quadrant presents these variables organised into their respective mental 131 
health categories (categorised for visualisation only, the CCA incorporated 37 132 
individual scores), and their distribution is visualised as histograms on the bottom left, 133 
reflecting the range of participant mental health profiles. Electrogastrography (EGG) 134 
data depicted on the top right demonstrates the extraction of gastric cycle frequency 135 
from raw EGG signals, power spectra, and their phase information, essential for 136 
identifying stomach-brain coupling. The middle right figure illustrates coupled versus 137 
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uncoupled states in stomach-brain interaction, with the individual variability in 138 
coupling strength highlighted across three brain images from individual participants 139 
(plotted on a standard mni152 brain template using MRIcroGL: visualised MNI 140 
coordinates plotted: 28, -19, 26, thresholded at 0.1, and small clusters <1000mm3 141 
removed). For the CCA, stomach-brain phase-coupling is parcellated over 209 brain 142 
regions identified using the DiFuMo atlas, shown on the bottom right. The CCA model, 143 
depicted centrally, outputs a stomach-brain signature correlating with mental health 144 
individual profiles. This pattern is represented by canonical variates, which are 145 
weighted combinations of the multidimensional mental health and stomach-brain 146 
coupling data (illustrated as the central scatter plot). These weights, depicted as bar 147 
graphs, capture the most significant relationships between gastric-brain coupling and 148 
mental health profiles. 149 

We observed a significant latent dimension in which stomach-brain coupling 150 
was associated with a positive-to-negative mode of mental health (canonical 151 
variate in-sample r (118) = 0.886, out-sample r (77) = 0.323, p = 0.001). This was 152 
reflected behaviourally as high negative loadings for trait anxiety (STAI trait 153 
subscale: -0.827), depression (PHQ9: -0.800, and MDI: -0.782), stress (PSS: -0.773), 154 
and fatigue (MFI general fatigue subscale: -0.734), as well as high positive 155 
loadings for well-being, and quality of life (highest loadings: WEMWBS: 0.856, 156 
WHOQOL psychological subscale: 0.847, WHO5: 0.776). The top stomach-brain 157 
coupling canonical loadings were found in the left superior angular gyrus (-158 
0.317), right intermediate primus of Jensen (right supramarginal gyrus 159 
posterior division using the Harvard-Oxford Cortical Structural Atlas) (-0.284), 160 
left inferior precentral sulcus (-0.270), left posterior superior frontal gyrus (-161 
0.269), and left posterior intraparietal sulcus (-0.245). These loadings constitute 162 
a pattern of stomach-brain coupling in which healthier mental scores (i.e., 163 
improved well-being and quality of life) are associated with reduced gastric 164 
coupling to fronto-parietal brain activity (see Figure 2 and Supplementary Table 165 
2), or conversely, in which more negative mental health scores (i.e., increased 166 
anxiety, depression, and fatigue) are associated with increased coupling. We did 167 
not observe significant gender or age differences with this mental health 168 
associated stomach-brain coupling result (see Supplementary Table 3). 169 
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 170 

Figure 2: Mental health functional correlate of stomach-brain coupling. 171 

Canonical Correlation Analysis results depicting the correlation between stomach-172 
brain coupling and mental health dimensions. This indicated diminished fronto-173 
parietal stomach-brain coupling with healthier mental health scores (i.e., lower 174 
anxiety, depression, and stress, and higher quality of life and well-being). Left panel 175 
depicts the CCA loadings (structure correlations: Pearson's correlations between raw 176 
mental health and stomach-brain coupling variables and their respective canonical 177 
variate). Importantly, this represents the pattern of mental health data that is 178 
maximally correlated with the stomach-brain coupling canonical variate. High 179 
negative loadings are shown for anxiety, depression, stress, fatigue, ADHD, somatic 180 
symptoms, and insomnia, while high positive loadings are shown for well-being and 181 
quality of life. The middle panel shows the top 5 DiFuMo parcellated regions with the 182 
absolute highest stomach-brain coupling loadings (all negative), coloured according to 183 
their respective CCA loading: left superior angular gyrus, right posterior 184 
supramarginal gyrus, left inferior precentral sulcus, left posterior superior frontal 185 
gyrus and left posterior intraparietal sulcus (plotted on a standard mni152 brain 186 
template using MRIcroGL: MNI coordinates: -34, -3, 48). Right depicts the cross-187 
validated CCA result denoting the maximally correlated psychological variate and 188 
brain-stomach coupling variate (in-sample r (118) = 0.886, out-sample r (77) = 0.323, p = 189 
0.001). 190 
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 191 

To further summarise our findings, we averaged parcel-level stomach-brain 192 
canonical loadings across the Yeo 7-networks44, and also averaged psychological 193 
canonical loadings across mental health categories (to condense the 194 
multivariate variables, and to be consistent with the mental health 195 
categorisation in Figure 1). This revealed the highest absolute network level 196 
stomach brain loadings in the dorsal attention (-0.132), frontoparietal control (-197 
0.100), and ventral attention salience network (-0.061). This pattern of stomach-198 
brain coupling was maximally correlated with the corresponding averaged 199 
mental health structure, in particular with strong negative loadings for 200 
depression (-0.791), stress (-0.773), anxiety (-0.709), and fatigue (-0.642), and 201 
strong positive loadings for well-being (0.815) and quality of life (0.696) (see 202 
Figure 3, and Supplementary Figure 1 for an averaged summary of the raw 203 
weights). 204 

 205 

Figure 3: CCA loadings averaged summary. 206 

Canonical loadings (structure correlations: Pearson's correlations between raw 207 
inputted variables and respective canonical variate) from the mental health associated 208 
stomach-brain coupling CCA, summarised via averaging. Note that there are prominent 209 
negative average stomach-brain loadings in the ʻdorsal attention Bʼ network and the 210 
ʻcontrol Aʼ network, associated with reduced average depression, stress, anxiety, 211 
fatigue, and increased average well-being and quality of life (i.e. better mental health). 212 
The opposite pattern is also true: increased average stomach-brain loadings in 213 
attention and control networks is associated with worse mental health (increased 214 
depression, stress, anxiety, fatigue, and reduced well-being, and quality of life). Left 215 
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shows the stomach-brain loadings averaged according to yeo-7 networks. Above 216 
demonstrates these network-averaged stomach-brain loadings projected onto a mask 217 
of the DiFuMo regions for each yeo-7 network (from left to right: DorsAttnB = Dorsal 218 
Attention B, ContA = Control A, SalVentAttnA = Salience Ventral Attention A, SomMotA 219 
= Somatomotor A, Unassigned = no network found, VisCent = Visual A, DefaultB = 220 
Default Mode B, LimbicA = Limbic A)44, plotted on a standard mni152 brain template 221 
using MRIcroGL: MNI coordinates: -34, -3, 48. Right illustrates the psychological 222 
loadings averaged across mental health categories defined for visualisation in Figure 1.  223 

CCA control analyses 224 

To evaluate the specificity and robustness of these results, we conducted control 225 
CCAs predicting mental health scores from either 1) functional connectivity, 2) 226 
BOLD signal variability, 3) cardiac or 4) respiratory brain maps instead of from 227 
stomach-brain coupling. In all cases no significant canonical variate was found 228 
(p > 0.05, Bonferonni threshold = 0.01), indicating that the dimensional index of 229 
mental health reported here is specific to stomach-brain coupling and unlikely 230 
to be explained by residual BOLD connectivity, signal variability or 231 
cardiac/respiratory-brain influences. 232 

We conducted a further control analysis to determine if a simpler univariate 233 
model would yield comparable results as to our multivariate approach. A 234 
principal components analysis (PCA) of the mental health scores yielded a 235 
highly similar latent structure as that derived from the CCA (r (35) = -0.999, p < 236 
.001) (see Supplementary Figure 2). We then correlated this mental health PCA 237 
component with stomach-brain coupling values from each DiFuMo parcellated 238 
region separately. This revealed significant correlations of stomach-brain 239 
coupling with the mental health PCA component in 9 DiFuMo parcellated 240 
regions, all of which were in the top loading regions of the CCA, with the 241 
exception of the ʻlateral fissure anteriorʼ (see Supplementary Table 4). 242 
Furthermore, across all brain regions, loadings from the stomach-brain 243 
coupling CCA were highly correlated with the univariate correlation 244 
coefficients linking mental health to stomach-brain coupling (r (207) = -0.870, p 245 
< .001) (see Supplementary Figure 2). These results complement our cross-246 
validation procedure by demonstrating that the multivariate CCA model 247 
detected effects could be reproduced with a simpler, albeit less sensitive, model, 248 
with the CCA explaining more variance (in-sample R2 = 0.785, out-sample R2 = 249 
0.104) than the significant univariate correlations (mean R2 = 0.033).  250 

We also controlled for whether the mental health associated stomach-brain 251 
coupling result was driven by gastrointestinal symptoms by removing the 252 
somatic symptoms survey (PHQ15) from the CCA, and instead including the 253 
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PHQ15 survey as a nuisance regressor. The CCA result persisted without the 254 
somatic symptoms survey with highly replicable loadings (see Supplementary 255 
Figure 3). Furthermore, when completing the CCA with the somatic symptom 256 
survey items only, or only the gastrointestinal symptom items only, the results 257 
were not significant (all somatic symptom survey items smallest p = 0.428, 258 
gastrointestinal symptom survey items only smallest p = .267). 259 

EGG control analyses 260 

To control for possible low-level physiological confounds, we further estimated 261 
the association between the psychological canonical variate loadings and 262 
summary electrogastrographic (EGG) metrics, using non-parametric 263 
Spearmanʼs rank order correlation coefficients (see Supplementary Table 5 for 264 
EGG metric descriptive statistics). We did not observe a significant correlation 265 
of normogastric EGG activity measured via the proportion of normogastric 266 
power, maximum power, or peak frequency with the observed mental health 267 
canonical variate (smallest FDR-corrected p = 0.267). Therefore, the link 268 
between stomach-brain coupling is specific to the strength of brain-body 269 
coupling with mental health, rather than being explained by baseline 270 
differences in peripheral gastric physiology.  271 

Discussion 272 

Our study reveals a distinctive stomach-brain signature of mental health, 273 
established through cross-validated multivariate regression techniques and 274 
control analyses. This signature encapsulates a positive-to-negative latent 275 
dimension of mental health, with notable negative loadings on anxiety, 276 
depression, stress, fatigue, as well as enhanced well-being and quality of life. 277 
Significantly, all 20 of the highest loadings for stomach-brain coupling were 278 
negative, indicating a direct correlation between diminished gastric-brain 279 
coupling and improved mental health (refer to Supplementary Table 6). Our 280 
control analyses confirm that this extensive psychological signature spanning 281 
affective, cognitive, social, and somatic health dimensions is uniquely 282 
attributable to stomach-brain coupling, distinct from factors such as residual 283 
brain connectivity or variability, cardiac-brain or respiratory-brain influences, 284 
gastric activity variations, bodily mass, age, or gender differences. However, 285 
future research should explore this using a more diverse sample with a balanced 286 
representation of age groups and genders. 287 

Our main result reveals a pattern of worse mental health with increased gastric 288 
coupling in brain regions which are known transdiagnostic hotspots, such as 289 
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the posterior superior frontal gyrus and the posterior intraparietal sulcus45,46. 290 
Notably, the left superior angular gyrus, our model's most prominently featured 291 
region, is crucial for its integrative role in various cognitive functions47. This 292 
region is also associated with a range of psychiatric disorders, including 293 
schizophrenia48, somatization disorder49, and major depressive disorder50,51. 294 
Thus, gastric rhythms may co-vary with brain activity in neural hubs that are 295 
highly sensitive to disruptions in mental health. Note, recent advancements 296 
have discovered numerous transdiagnostic biotypes in affective disorders like 297 
depression and anxiety with varying resting and emotion-evoked connectivity 298 
and brain activation profiles52. Our findings indicate that there may be brain-299 
body biotypes, however further causal research is necessary. In our study, the 300 
brain areas in which psychological health dimensions were most significantly 301 
associated with the gastric axis comprised attentional and control network 302 
hubs44. This indicates that top-down attentional and inhibitory control 303 
mechanisms may be particularly important for the relationship of visceral-304 
brain rhythms with mental health. Beyond these control oriented networks, we 305 
also observed a negative association with the ventral salience network53, weak 306 
negative loadings in the somatomotor network54, and weak positive loadings in 307 
the limbic system, emphasising the multidimensional nature of the signature. 308 

This research significantly advances our understanding of the mental health 309 
implications of stomach-brain coupling18,19,55,56. While previous smaller scale 310 
studies have linked stomach-brain coupling with bodily shame and weight 311 
preoccupation57, our multivariate CCA approach leverages our extensive sample 312 
size to encompass a continuum of transdiagnostic mental health scores. Indeed 313 
our multidimensional mental health variate is comparable to previously 314 
observed positive-to-negative axes of wellbeing across cognitive, affective, and 315 
lifestyle dimensions37,42, as well as observed ʻgeneral mental health factorsʼ 316 
which encompass symptoms across numerous psychiatric disorders35,38,58. 317 
Importantly, although our analyses do not focus on clinical diagnostic 318 
categories, our multivariate, psychological dimension-based approach is 319 
advantageous in directly assessing highly individualistic mental health profiles 320 
across a broad multidimensional spectrum. This aligns with recent paradigm 321 
shifting calls for a dimensional schema in mental health with biological 322 
plausibility34,40,41, as dichotomous psychiatric diagnoses are plagued with short-323 
comings, including arbitrary thresholds for binarisation, poor reliability, high 324 
rates of diagnosis comorbidity, shared symptomatology across disorders, and 325 
symptom heterogeneity within disorders40,41. Moreover, the cross-validated 326 
method we apply here is specifically optimised to estimate the continuous 327 
statistical prediction of these dimensions, while also robustly protecting against 328 
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overfitting59. Future work could build upon these results to predict 329 
multidimensional psychiatric symptoms based on stomach-brain coupling in 330 
controlled clinical samples or longitudinal studies.  331 

Interestingly, we identified trait anxiety as a prominent mental health feature 332 
associated with stomach-brain coupling, but a previous study found no such 333 
relationship with state anxiety19. A key difference between that study and ours, 334 
was the use of a region-of-interest based approach in a smaller sample size. Our 335 
whole-brain, multivariate method was optimised to detect such effects, and 336 
likely yielded a substantial improvement in statistical power by estimating 337 
latent psychological dimensions directly. It may also be that there are distinct 338 
stomach-brain relationships with trait and state aspects of anxiety. Notably, the 339 
anxiogenic relationship of stomach-brain coupling is also consistent with a 340 
previous report linking state anxiety with intestinal-brain coupling in the 341 
insula60 and rodent research of increased anxiety behaviours when activating 342 
gut-innervating vagal afferents14, as well as research with generalised anxiety 343 
disorder patients demonstrating an increased bodily reactivity and intensity of 344 
interoceptive sensations in response to adrenergic stimulation7. Furthermore, a 345 
recent pilot study revealed that stress increased gastric phase-amplitude 346 
coupling with EEG activity, in contrast to a relaxing biofeedback task61. Future 347 
research could similarly causally manipulating anxiety or stress to help 348 
determine its influence on stomach-brain coupling in fMRI. Complementary 349 
approaches could also directly modulate stomach-brain coupling using various 350 
emerging interventions as a potential means to remediate anxiety or stress 351 
symptoms in patients17,22,31.  352 

One potential limitation of our study concerns our EGG data exclusion rate, 353 
which was somewhat higher than the 20% rate reported in previous EGG 354 
literature28,62. This increase was driven by an exhaustive quantitative and 355 
qualitative quality control protocol, which may have resulted in higher 356 
numbers of excluded participants than in previous, smaller scale studies. To 357 
assuage these concerns, we conducted additional control analyses 358 
demonstrating the validity of these procedures (see Supplementary Figure 4). 359 
Furthermore, we ensured that the excluded participants did not differ in terms 360 
of mental health characteristics, gastrointestinal symptoms, or under/over 361 
eating behaviour, ruling out the possibility that our quality control may have 362 
created a sampling bias which could impact our results (see 363 
Electrogastrography Methods). While our preprocessing pipeline aligns with 364 
prior literature18,19,55,56, emerging ICA-based methods offer promising 365 
alternatives for noise reduction, particularly in datasets with high-density 366 
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montages. Future work may benefit from applying such approaches to 367 
reconstruct the EGG signal from components with a high signal-to-noise ratio in 368 
the normogastric range63. 369 

There is a growing body of evidence associating a dysfunctional gastrointestinal 370 
system to various mental health conditions15,64,65, as well as on the frequent 371 
coexistence of gastrointestinal dysfunction with affective disorders15. By 372 
elucidating the multimodal interactions between the stomach and the brain in 373 
mental health, our findings provide a starting point for future research on novel 374 
diagnostic and therapeutic strategies targeting disordered brain-stomach 375 
interactions. This includes not only innovations like non-invasive vagus nerve 376 
stimulation, which recent studies have found to modulate stomach-brain 377 
coupling28, but also the exploration of new mechanical17,66 and 378 
pharmacological22,31 interventions to remedy aberrant stomach-brain 379 
interactions. Similarly, future research could leverage newly emerging 380 
technologies such as ingestible recording devices to further elucidate the 381 
physiological mechanisms linking mental health to the stomach-brain axis67.  382 

In summary, our study represents the largest and most comprehensive 383 
neuroimaging sample focusing on brain-body interaction to date. Our results 384 
signify a link between increased stomach-brain coupling and poorer mental 385 
health across anxiety, depression, stress, and well-being dimensions. This 386 
finding contributes significantly to multidisciplinary research on brain-body 387 
interaction and opens new avenues for therapeutic, diagnostic, and 388 
classification strategies to improve psychological well-being and mental health. 389 

Methods 390 

Participants 391 

We recruited participants as part of the Visceral Mind Project, a large brain 392 
imaging project at the Centre of Functionally Integrative Neuroscience, Aarhus 393 
University. We recorded electrogastrography (EGG) in 380 participants (230 394 
females, 149 males, 1 other gender, median age = 24, age range = 18-56). As our 395 
aim was to apply machine learning to individual differences in mental health, 396 
we adopted a participant recruitment strategy that sought to maximise between 397 
individual variance from fully healthy to those with scores crossing clinical 398 
thresholds. Accordingly, we did not explicitly exclude participants for 399 
psychiatric diagnosis, and recruited participants from a wide range of possible 400 
online communities and backgrounds (see Supplementary Table 1). These 401 
participants did not report any major physical illnesses, or medication beyond 402 
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over-the-counter antihistamines or contraceptives, furthermore they reported 403 
abstinence from alcohol/drugs 48 hours before participation. We acquired 404 
participants in two data collection cohorts by advertising on nation-wide 405 
participant pools, social media, newspapers, and posted fliers. As additional 406 
criteria, participants had normal or corrected-to-normal vision and were fluent 407 
in Danish or English. Furthermore, we only included participants compatible 408 
with MRI scanning (not pregnant/breastfeeding, no metal implants, 409 
claustrophobia etc).  410 

Participants took part in multiple sessions including fMRI scans, behavioural 411 
tasks, physiological recordings, and mental health/lifestyle inventories. In this 412 
study, we focus on resting state fMRI data, electrogastrography (EGG) 413 
recordings, and a mental health/lifestyle assessment battery to evaluate 414 
individual differences in gastric-brain coupling and their link to mental health. 415 
We compensated individuals for participating. The local Region Midtjylland 416 
Ethics Committee granted approval for the study and all participants provided 417 
informed consent. The study was conducted in accordance with the Declaration 418 
of Helsinki. After the removal of poor-quality fMRI and EGG data (see quality 419 
control below), we estimated stomach-brain-coupling in 243 participants. 420 
Including the mental health scores, a total of 199 full-dataset participants were 421 
included in the mental health functional correlate analysis (138 females, 61 422 
males, median age = 23, age range = 18-47) (see Supplementary Figure 5 and 423 
Supplementary Figure 6). 424 

Anatomical and resting state fMRI acquisition 425 

We acquired anatomical MRI and resting state fMRI data using a 3T MRI scanner 426 
(Siemens Prisma) with a 32-channel head coil. We positioned small cushions 427 
around the head to minimise head movement. The participants wore earplugs 428 
and were instructed not to move. The resting state scan included 600 volumes 429 
acquired over 14 minutes using a T2*-weighted echo-planar imaging (EPI) 430 
multiband accelerated sequence (TR = 1400ms, TE = 29.6ms, voxel size = 1.79 x 431 
1.79 x 1.80 mm). An acceleration factor of 4 was used in the slice direction along 432 
with GRAPPA in-plane acceleration factor = 2. A set of high-resolution whole 433 
brain T1-weighted anatomical images (0.9 mm^3 isotropic) were acquired using 434 
an MP-RAGE sequence (repetition time = 2.2s, echo time = 2.51ms, matrix 435 
size = 256 × 256 x 192 voxels, flip angle = 8°, AP acquisition direction). 436 

Physiological recording acquisition 437 
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We simultaneously recorded physiological measurements 438 
(photoplethysmography, respiratory breathing belt, and EGG) during resting-439 
state fMRI. For the EGG recordings, we cleaned the abdomen and applied 440 
abrasive gel to remove dead skin and improve the signal-to-noise ratio. Three 441 
electrogastrography recording montages were implemented using a Brain 442 
Vision MRI-compatible ExG system and amplifier (see Supplementary Figure 7 443 
for each recording montage consisting of 1, 3 or 6 bipolar channels). All 444 
physiological montages were acquired with a sampling rate of 1000 Hz, a low-445 
pass filter of 1000 Hz (with a 450 Hz anti-aliasing filter), and no high-pass filter 446 
(DC recordings). EGG was recorded at a 0.5 µV/bit resolution, and +/- 16.384 mV 447 
range, while photoplethysmography and respiratory recordings were acquired 448 
at 152.6 µV/bit resolution, and +/- 5000 mV range. 449 

MRI and fMRI preprocessing 450 

We implemented the minimal preprocessing pipeline in fmriprep. MRI and 451 
fMRI results included in this manuscript come from preprocessing performed 452 
using fMRIPrep 22.1.1, which is based on Nipype 1.8.5 (see Supplementary 453 
Material for anatomical and functional MRI preprocessing details with 454 
fMRIPrep). Additional fMRI preprocessing steps following fMRIPrep included 455 
spatial smoothing with a 3mm FWHM kernel, and regressing out six motion 456 
parameters, six aCompCor parameters, as well as 13 RETROICOR components 457 
reflecting cardiac and respiratory physiological noise. 458 

Electrogastrography peak selection and preprocessing 459 

The EGG data was first demeaned and downsampled from 1000 Hz to 10 Hz for 460 
computational efficiency, followed by computing the power spectrum using a 461 
Hanning-tapered fast Fourier transform (FFT) incorporating 1000 seconds of 462 
zero-padding in 200-second data segments with 75% overlap. For each 463 
participant, we selected the bipolar EGG channel that showed the most 464 
prominent peak within the normal frequency range of the gastric rhythm in 465 
humans (i.e., normogastric range: 0.033-0.066 Hz), which is on average one cycle 466 
every 20 seconds (0.05 Hz)62. Specifically, two researchers (L.B. and I.R.) 467 
independently conducted peak selection by visually inspecting each channel to 468 
identify the EGG channel with the highest normogastric power peak, without 469 
large artefacts and with power above 5 µv2. Peak quality was rated as 'excellent' 470 
for gaussian-like peaks (n=184) and 'good' for shoulder-like peaks (n=81); those 471 
not meeting these standards were deemed 'poor quality' (n=115) and excluded. 472 
This visual inspection approach is consistent with previous research to account 473 
for noise in the normogastric window, or cases of multiple peaks18,19,28.  Note, 474 
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selected electrode choice did not cause significant differences in the mental 475 
health CCA variate (F range(2 to 5, 86 to 87) = 0.867 to 1.972, p range = .146 to .507, 476 
n2 range =  0.044 to 0.051) or the stomach-brain coupling CCA variate (F range(2 477 
to 5, 86 to 87) = 1.376 to 2.863, p range = .063 to .242, n2 range = 0.063 to 0.078). 478 
Similarly, the EGG recording montage did not cause any significant differences 479 
in the mental health CCA variate (F(2, 198) = 1.717, p = .182 , n2 = 0.017) or the 480 
stomach-brain coupling CCA variate (F(2, 198) = 1.220, p = .298 , n2 = 0.012).  481 

As an additional check, we computed signal quality metrics using a comparison 482 
template-based procedure of 10 ideal participants with very clear and 483 
prominent gastric peaks. ʻPoor qualityʼ participants had significantly lower 484 
signal quality as measured by cosine similarity (excellent/good quality: Median 485 
= 0.963, Range = 0.667, poor quality: Median = 0.595, Range = 0.585; U = 63780, p < 486 
.001, rrb = 3.186) and Pearsonʼs correlation (excellent/good quality: Median = 487 
0.950, Range = 1.169, poor quality: Median = 0.054, Range = 1.287; U = 63849, p < 488 
0.001, rrb = 3.190) (see Supplementary Figure 4). As an extra precaution, we 489 
confirmed that the mental health scores of the included and excluded EGG 490 
participants did not significantly differ when using the first PCA component of 491 
the 37 mental health scores (excellent/good quality: Median = 3.766, Range = 492 
150.429, poor quality:  Median = 5.745, Range = 106.762; U = 46989, p = 0.964, rrb = 493 
2.084). Furthermore, included/excluded participants did not differ in reported 494 
gastrointestinal symptoms (average of PHQ15 items inquiring of "stomach 495 
pain", "constipation, loose bowels, or diarrhea", and "nausea, gas, or 496 
indigestion": excellent/good quality: Median = 1.333, Range = 2, poor quality:  497 
Median = 1.333, Range = 2; U = 14104, p = 0.913, rrb = -0.0744). In addition, 498 
participants did not differ in reported under/overeating behaviour (PHQ9 item 499 
"poor appetite or overeating": excellent/good quality: Median = 1, Range = 3, 500 
poor quality:  Median = 1, Range = 3; U = 13250, p = 0.361, rrb = -0.130). The 501 
selected EGG channel was then bandpass filtered, centred at the individual peak 502 
frequency (filter width of ±0.015 Hz, filter order of 5 or 1470 samples), in forward 503 
and backward direction to avoid time shifts. After phase correction, the data 504 
was resampled to the fMRI rate (0.7143 Hz) and processed through a Hilbert 505 
transform to calculate the average phase per volume. 506 

Gastric-brain coupling estimation 507 

We followed procedures validated in previous EGG studies to estimate gastric-508 
brain coupling18,19. The preprocessing of BOLD time series for all brain voxels 509 
involved bandpass filtering, using parameters identical to those applied during 510 
the EGG analysis. The initial and final 21 volumes (equivalent to 29.4 seconds) 511 
were excluded from both the fMRI and EGG time series. This adjustment 512 
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resulted in a total signal duration of 781.2 seconds for further analysis. The 513 
instantaneous phases of both signals were obtained through the application of 514 
the Hilbert transform. Subsequently, the phase-locking value (PLV) was 515 
calculated as the absolute value of the average phase angle differences between 516 
the EGG and each voxel over time (see Equation 1)43. The PLV is quantified by 517 
values ranging from 0 (representing a total absence of phase synchrony) to 1 518 
(corresponding to absolute phase synchrony). 519 

 520 

Equation 1: where T is the number of time samples, and x and y are brain and 521 
gastric time series. 522 

In order to account for any biases in PLV that arise from differences in signal 523 
amplitude, we created surrogate PLV values by disrupting the phase 524 
relationship between EGG and BOLD time series. We achieved this by shifting 525 
the EGG by at least ±60 s with respect to the BOLD time series, with 526 
concatenation at the edges. Given the 558 samples in the BOLD time series, this 527 
procedure generated 472 surrogate PLV datasets. We then took the median value 528 
of these surrogate PLV distributions as chance level coupling, and defined 529 
coupling strength as the difference between empirical and chance level 530 
coupling. Therefore, a higher value represents stronger stomach-brain coupling 531 
strength. 532 

Mental health assessment battery 533 

Participants completed a battery of mental health and lifestyle assessments. 534 
This encompassed 16 separate survey instruments spanning autism, ADHD, 535 
empathy, insomnia, interoception, depression, fatigue, social support, somatic 536 
symptoms, stress, social anxiety, trait anxiety, well-being, and quality of life. All 537 
scales utilised validated Danish translations, except in cases where participants 538 
spoke English as their first language, in which case validated English versions 539 
were used. This allowed us to explore a broad range of mental health and 540 
lifestyle factors across 37 subscale scores (see Supplementary Table 1 for details 541 
of surveys, abbreviations, and subscale scores). 542 

Canonical correlation analysis 543 
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We used the CCA-PLS toolbox to fit multivariate, cross-validated Canonical 544 
Correlation Analysis (CCA) models relating stomach-brain coupling (coupling 545 
strength of the BOLD and EGG time series) to mental health scores. Specifically, 546 
CCA aims to find linear combinations of each multidimensional variable (i.e., 547 
canonical variates: which are weighted sums of stomach-brain coupling (V = X * 548 
B) and mental health (U = Y * A)) that are maximally correlated with each other, 549 
but uncorrelated with all other combinations (X and Y represent the inputted 550 
stomach-brain coupling and mental health data, while A and B represent the 551 
canonical weights)59,68. The toolbox incorporates various CCA/PLS models, 552 
including the cross-validated and optimised PCA-CCA techniques applied 553 
here59. This method importantly guards against overfitting via optimised data-554 
reduction methods, assessing statistical inference between independent 555 
training and test sets, as well as by implementing permutation testing based on 556 
the out-of-sample correlation (see below for further details). 557 

We first reduced the dimensions of stomach-brain coupling per fMRI voxel by 558 
parcellating with the 256-region Dictionary of Functional Modes (DiFuMo) atlas, 559 
excluding regions of cerebrospinal fluid, ventricles, or white matter, yielding 560 
209 relevant regions. Because CCA is very sensitive to outliers69–72, it is important 561 
to screen for outliers in the stomach-brain coupling and mental health data, 562 
leading to the exclusion of 12 and 25 participants respectively (see 563 
Supplementary Figure 5 for a complete flow chart of exclusions). This avoids 564 
false dependencies in the training set and distortions to the canonical projection 565 
weights69–72. Our final Canonical Correlation Analysis (CCA) sample comprised 566 
199 participants for whom we had complete stomach-brain coupling and mental 567 
health matrices. These were standardised to have zero mean and unit variance, 568 
and nuisance regression was applied to control the estimated canonical variates 569 
for the influence of gender, age, body mass index, and data collection cohort. 570 

Subsequently, we applied the cross-validated CCA approach within the 571 
predictive framework (machine learning) provided by the CCA-PLS toolbox59. 572 
This predictive approach involved randomly splitting the data into a 573 
training/optimisation set (60% of the overall data) and a test/holdout set (40% of 574 
the overall data) 5 times (5-fold cross-validation). These optimisation and 575 
holdout sets are known as the ʻouter data splitsʼ, used for statistical inference 576 
(determining the number of significant associative CCA modes). The p-values 577 
were calculated via permutation testing (1000 permutations), as the fraction of 578 
the shuffled permuted out-of-sample correlations exceeding the out-of-sample 579 
correlation in the non-permuted holdout set. Because we implemented 5 580 
holdout sets, the p-value for each holdout set was Bonferroni corrected (a = 581 
0.05/5 = 0.01). An associative CCA effect is considered significant if the p-value 582 
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was significant in at least one of the independent test/holdout sets, once trained 583 
on the training/optimisation set (out-of-sample correlation). If a significant 584 
associative CCA effect was found, the CCA iteratively removed the effect from 585 
the data via deflation and repeated this approach to find orthogonal CCA 586 
associative effects.  587 

Before statistical inference, to overcome multicollinearity and overfitting 588 
issues, the PCA-CCA approach optimises the number of features (PCA 589 
components) inputted to each of the outer data splits used for statistical 590 
inference. Thus, the PCA-CCA approach further divides the optimisation set into 591 
a training set (60% of the optimisation set) and a validation set (40% of the 592 
optimisation set) 5 times (5-fold hyperparameter optimisation) for each outer 593 
data split. These ʻinner data splitsʼ were used to select the optimal 594 
hyperparameters (number of PCA components the inputted stomach-brain 595 
coupling and mental health data dimensions were reduced to) by maximising 596 
the average out-of-sample correlation in the validation sets. 597 

To aid interpretation of the networks underlying the estimated brain-stomach 598 
coupling signature, we visualised overall network-level contributions by 599 
averaging the canonical loadings across the Yeo 7-network parcellation for the 600 
stomach-brain coupling axis44. Moreover, we averaged across mental health 601 
categories for the psychological loading axis for clearer visualisation of the CCA 602 
result (see Figure 3). 603 

Control analyses 604 

To control for underlying influences of neural connectivity or brain activity 605 
variability to the mental health stomach-brain coupling result, we conducted 606 
two separate control CCA analyses. For the neural connectivity control analysis, 607 
we parcellated the fMRI preprocessed data (with an additional high-pass filter 608 
to handle low-frequency signal drifts) with the same method used for the 609 
stomach-brain coupling data (using the 256-DiFuMo atlas and removing 610 
cerebrospinal fluid, ventricles, and white matter regions), and quantified 611 
individual functional connectivity data matrices using correlation (Nilearn 612 
function: ʻConnectivityMeasure.fit_transformʼ). Furthermore, for the brain 613 
activity variability control analysis, we calculated the standard deviation of 614 
BOLD activity for each voxel of the fMRI preprocessed data and parcellated 615 
using the same method. Both the resting connectivity and BOLD signal 616 
variability control CCA analyses were completed with the same CCA parameters 617 
as described in the methods section of the manuscript (including gender, age, 618 
body mass index, and data collection cohort as nuisance variables). 619 
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To control that the mental health dimension we uncovered is specific to the 620 
stomach and not cardiac and respiratory activity, we conducted two additional 621 
CCA analyses to control for cardiac-brain and respiratory-brain interactions. 622 
For the cardiac domain we used inter-beat-intervals of the heartbeat, computed 623 
using identified R-peaks via the ʻppg_peaksʼ function from systole which uses a 624 
rolling average algorithm, while the respiration analysis focused on inhalation 625 
breath durations (inter-breath-intervals), computed using identified inhalation 626 
peaks via the ʻfind_peaksʼ function from scipy.signal with a distance of 1 627 
samples and a peak prominence of 0.6. Both identified cardiac R-peaks and 628 
respiratory inhalation peaks were visually inspected and manually corrected if 629 
necessary. To estimate instantaneous HRV regressors, we interpolated the 630 
cardiac inter-beat-intervals at the fMRI scanner frequency (TR=1.4 seconds, 631 
spline interpolation method) and band-pass filtered them at the frequencies 632 
corresponding to low (0.05-0.15 Hz) and high (0.15-0.357 Hz - upper limit 633 
constrained by Nyquist frequency of the scanner) heart rate variability (low 634 
center frequency = 0.1 Hz ± 0.05, high center frequency = 0.2535 Hz ± 0.1035, 635 
Matlab FIR filter)18,73. For the respiratory domain, we interpolated the inter-636 
breath-intervals at fMRI scanner frequency, and bandpass filtered at 0.1-0.357 637 
Hz74,75 (center frequency = 0.2285 Hz ± 0.1285 - upper limit constrained by 638 
Nyquist frequency of the scanner). We obtained the amplitude envelopes of the 639 
instantaneous high and low frequency HRV and respiratory rate variability 640 
signal via a Hilbert transformation. These amplitude envelopes were used as 641 
regressors of interest (without convolution with HRF)18,73 in first level GLMʼs, 642 
with six motion and six acompcor noise regressors using SPM12 and a high-pass 643 
filter with cutoff of 128 seconds. The fMRI had the same preprocessing as the 644 
stomach-brain phase coupling analysis. We then used T-contrasts to identify 645 
individual maps of brain activity associated with increased low frequency HRV, 646 
high frequency HRV, or respiratory rate variability. Each of these individual 647 
heart/respiratory-brain maps were parcellated and inputted into a CCA with the 648 
37 mental health scores with the same parameters as the stomach-brain 649 
coupling CCA. 650 

As an additional control, we conducted a separate whole brain analysis to 651 
determine if we could identify a similar result when using a simpler mass 652 
univariate analysis. First, we computed PCA on the mental health scores to get 653 
a single component similar to the psychological canonical loadings from the 654 
CCA. This independent mental health PCA component was then correlated with 655 
the stomach-brain coupling from each of the 209 DiFuMo parcellated regions 656 
separately. Finally, these univariate Pearson correlation coefficients were 657 
correlated with the stomach-brain coupling loadings from the multivariate CCA 658 
to determine similarity of the two analysis strategies. 659 
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Moreover, we completed control Spearman correlations of gastric physiology 660 
(EGG metrics) with the mental health canonical variate extracted from the 661 
stomach-brain coupling CCA analysis. From the computed EGG power spectra 662 
(as described in the electrogastrography preprocessing section), we quantified 663 
the following normogastric EGG metrics: peak frequency, maximum power, 664 
and proportion of power (see Supplementary Table 5). Specifically, within the 665 
normogastric frequency range (0.033-0.067 Hz/2-4 cpm/15-30 seconds), we 666 
stored the peak frequency and maximum power. Furthermore, we computed 667 
the proportion of normogastric power as the sum of the normogastric power 668 
divided by the sum of the power in all gastric frequencies (including 669 
bradygastric, normogastric, and tachygastric frequencies: 0.02-0.17 Hz/1-10 670 
cpm/6-60 seconds). We input those EGG metrics into a correlation matrix with 671 
the mental health canonical variate, correcting for multiple comparisons using 672 
the false-discovery rate (FDR) at 5%. 673 

To control for age or gender effects, we conducted the mental health associated 674 
stomach-brain coupling CCA with the same parameters as the main analysis, 675 
but removed age and gender as nuisance regressors. We then tested for age and 676 
gender effects via a pearsons correlation with age and an independent-samples 677 
t-test with gender with the subsequent CCA variate for each stomach-brain 678 
coupling and mental health.  679 

Data availability 680 

Deidentified participant data and scripts implemented in this paper are 681 
available here: https://github.com/embodied-computation-682 
group/StomachBrain-MentalHealth  683 

  684 
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