

1 Multi-omic phenotyping of iPSC-derived neurons harboring the *MAPT* V337M mutation reveals
2 tau hypophosphorylation and perturbed axon morphology pathways
3

4 Gregory A. Mohl*^{1,2}, Gary Dixon*¹, Emily Marzette¹, Justin McKetney^{3,4,5}, Avi J. Samelson¹,
5 Carlota Pereda Serras^{1,6}, Julianne Jin¹, Nabeela Ariqat¹, Andrew Li¹, Steven C. Boggess¹,
6 Danielle L. Swaney^{3,4,5}, Martin Kampmann^{1,7}
7

8 Affiliations

9 1. Institute for Neurodegenerative Diseases, University of California San Francisco, San
10 Francisco, CA, USA

11 2. Department of Neurology, University of California San Francisco, San Francisco, CA, USA

12 3. Gladstone Data Science and Biotechnology Institute, The J. David Gladstone Institutes, San
13 Francisco, CA, USA

14 4. Quantitative Bioscience Institute, University of California San Francisco, San Francisco, CA,
15 USA

16 5. Department of Cellular and Molecular Pharmacology, University of California San Francisco,
17 San Francisco, CA, USA

18 6. Bakar Computational Health Sciences Institute, University of California San Francisco, San
19 Francisco, CA USA

20 7. Department of Biochemistry and Biophysics, University of California San Francisco, San
21 Francisco, CA, USA

22 * Contributed equally.

23

24 Correspondence: martin.kampmann@ucsf.edu

25 **Abstract**

26 Tau aggregation is a hallmark of several neurodegenerative diseases, including
27 Alzheimer's disease and frontotemporal dementia. There are disease-causing variants of the tau-
28 encoding gene, *MAPT*, and the presence of tau aggregates is highly correlated with disease
29 progression. However, the molecular mechanisms linking pathological tau to neuronal
30 dysfunction are not well understood. This is in part due to an incomplete understanding of the
31 normal functions of tau in development and aging, and how the associated molecular and cellular
32 processes change in the context of causal disease variants of tau. To address these questions in an
33 unbiased manner, we conducted multi-omic characterization of iPSC-derived neurons harboring
34 the *MAPT* V337M mutation or *MAPT* knockdown. RNA-seq and phosphoproteomics revealed
35 that both V337M mutation and tau knockdown perturbed levels of transcripts and
36 phosphorylation of proteins related to axonogenesis or axon morphology. Surprisingly, we found
37 that neurons with V337M tau had much lower tau phosphorylation than neurons with WT tau.
38 Functional genomics screens uncovered regulators of tau phosphorylation in neurons and found
39 that factors involved in axonogenesis modified tau phosphorylation in both *MAPT* WT and
40 *MAPT* V337M neurons. Intriguingly, the p38 MAPK pathway specifically modified tau
41 phosphorylation in *MAPT* V337M neurons. We propose that V337M tau perturbs tau
42 phosphorylation and axon morphology pathways that are relevant to the normal function of tau,
43 which could contribute to previously reported cognitive changes in preclinical *MAPT* variant
44 carriers.

45

46

47 **Introduction**

48 Neurodegenerative diseases are a growing public health burden and remain very
49 challenging to treat because we lack a complete understanding of the underlying disease
50 mechanisms. A common theme in many neurodegenerative diseases is the aggregation of
51 pathological proteins [1]. Tau aggregation is a hallmark of neurodegenerative diseases
52 collectively called tauopathies, including Alzheimer's disease and frontotemporal dementia. In
53 Alzheimer's disease, tau aggregation and phosphorylation changes correlate better with disease
54 progression than amyloid beta pathology [2] despite clear genetic evidence linking amyloid beta
55 to the disease [3]. In frontotemporal dementia, rare causal variants of tau that are fully penetrant
56 for the disease prove a direct role for tau in disease pathogenesis [4].

57 Tremendous progress has been made in revealing the diverse molecular and cellular
58 mechanisms that are disrupted by pathogenic tau. Recent work in human induced pluripotent
59 stem cell (iPSC)-derived neurons has shown that pathogenic variants of tau sensitize neurons to
60 different types of cellular stress and that this effect can be rescued by lowering tau levels via
61 autophagy [5]. Other groups have shown that tau interferes with RNA splicing and stress
62 granules homeostasis [6-9], disrupts the nuclear envelope [10-12], perturbs axonal trafficking
63 [13, 14] or disrupts mitochondrial dynamics [15]. Acetylated tau has also been shown to disrupt
64 chaperone mediated autophagy, rerouting tau and other clients to be degraded by other
65 mechanisms [16]. Pathogenic tau has also been shown to perturb plasticity of the axon initial
66 segment and cause changes to neuronal excitability [17] and has been implicated in driving
67 excitotoxicity [9, 18-20]. Many of these data support a tau toxic gain-of-function model, and tau
68 lowering has been successfully shown to be beneficial in cultured neurons and animal models [5,
69 21]. In fact, tau lowering is currently being tested in the clinic by antibodies and ASOs [22].

70 These focused studies have linked tau to diverse cellular processes that go awry in
71 neurodegeneration. However, there are few unbiased and comprehensive studies that examine
72 phenotypes on multiple intracellular levels or with respect to normal tau function, leaving many
73 open questions about the direct effects of pathogenic tau and how diverse cellular phenotypes
74 interact.

75 To characterize the earliest changes that pathogenic tau causes in human neurons and to
76 understand mechanistically how pathogenic tau causes human disease, we used a multi-omic
77 approach to unbiasedly determine the cellular phenotypes linked to pathogenic tau. We modeled
78 pathogenic tau by using human iPSC-derived neurons with the *MAPT* V337M mutation, a known
79 cause of frontotemporal dementia. We used two sets of iPSCs, one from a healthy donor
80 (WTC11) and one from a patient with the *MAPT* V337M mutation (GIH6C1) [17, 23].

81 Our RNA-seq, ATAC-seq, proteomics and phosphoproteomics results all point to
82 changes in axonogenesis due to the *MAPT* V337M mutation. Recently published mouse
83 phosphoproteomics datasets in tau knockout mice and P301S mice strongly support the link
84 between tau and axonogenesis factors and intriguingly suggest that these effects are due to tau
85 loss of function [24, 25]. We have found that tau knockdown and *MAPT* V337M mutation have
86 overlapping effects on the levels and phosphorylation of proteins relevant to axonogenesis and
87 axon morphology, suggesting that the mutation perturbs a normal function of tau. *MAPT* V337M
88 neurons have hypophosphorylated tau, which is recapitulated by artificially overexpressing
89 V337M tau but not WT or R406W tau in neurons with endogenous tau knockdown. Unbiased
90 CRISPR screens for regulators of tau phosphorylation uncovered axonogenesis-related regulators
91 of tau phosphorylation and show that the p38 MAPK pathway may play a role in modifying tau
92 phosphorylation specifically in V337M neurons. We propose that V337M tau perturbs tau

93 phosphorylation and axon morphology pathways that are relevant to the normal function of tau,
94 which could contribute to previously reported cognitive changes in preclinical *MAPT* variant
95 carriers.

96

97

98 **Results**

99 *MAPT V337M and MAPT knockdown perturb the transcription of axonogenesis-related genes*

100 iPSCs generated from a healthy individual (WTC11, referred to as *MAPT* WT [26]) or an
101 FTD patient with the *MAPT* V337M mutation (GIH6C1, referred to as **MAPT* Het [23]) were
102 edited in previous work [17, 23] with Cas9 to generate isogenic pairs either introducing or
103 correcting the *MAPT* V337M mutation (Fig. 1A). The *MAPT* WT iPSCs were edited with Cas9
104 to generate a heterozygous *MAPT* V337M/WT clone (*MAPT* Het) and homozygous *MAPT*
105 V337M/V337M clone (*MAPT* Hom). The **MAPT* Het iPSCs were corrected with Cas9 to
106 generate a *MAPT* WT/WT clone (**MAPT* WT). We engineered the GIH6C1 lines to introduce a
107 doxycycline-inducible Ngn2 for neuronal differentiation and CRISPRi machinery. We
108 transduced the iPSCs with lentiviral sgRNAs targeting *MAPT* to knockdown tau or non-targeting
109 control (NTC) sgRNAs for further mechanistic characterization (Figure S1A-C).

110 RNA-seq of neurons harvested at 2 and 4 weeks of differentiation revealed overlap
111 between effects in *MAPT* Het neurons and *MAPT* WT tau knockdown neurons (Figure 1B).
112 Genes that were differentially expressed in *MAPT* Het neurons and *MAPT* WT tau knockdown
113 neurons were significantly enriched for regulators of axonogenesis (Figure 1C). Knocking down
114 tau in *MAPT* Het neurons resulted in only five differentially expressed genes (Figure S1D).
115 Differentially expressed genes in *MAPT* Hom and **MAPT* Het neurons compared to isogenic

116 controls were also significantly enriched for regulators of axonogenesis, even at one week of
117 differentiation (Figure S1E-G). While many of the same transcripts relevant to axonogenesis are
118 perturbed in **MAPT* Het and *MAPT* Het, we did not see a high level of concordance in direction
119 of change (Figure S1E). On the other hand, the changes in *MAPT* Het and *MAPT* Hom are
120 extremely similar, suggesting high concordance between distinct clones in the same genetic
121 background.

122 ATAC-seq at 2 and 4 weeks of differentiation showed similar patterns as the RNA-seq
123 (Figure 1D, Figure S2A), and genes with differentially accessible peaks proximal to their
124 transcription start site (TSS) were enriched for axon-related genes (Figure S2B). Transcription
125 factor motif analysis showed that motifs for the AP-1 Transcription factor network, which
126 includes the cJun family of transcription factors, were consistently more accessible in *MAPT* Het
127 and *MAPT* WT tau knockdown neurons compared to controls (Figure 1E, Figure S2C).
128 Supporting the validity of the ATAC-seq results, we found that both p-cJun and cJun are
129 increased in *MAPT* Het, *MAPT* Hom and **MAPT* Het neurons vs. isogenic controls (Figure 1F-
130 H). *MAPT* V337M and tau knockdown induce overlapping changes in chromatin accessibility
131 and transcription of axonogenesis-related genes, suggesting that some phenotypes in *MAPT*
132 V337M neurons are relevant to normal tau function.

133

134 *MAPT* V337M and tau knockdown perturb phosphorylation of axonogenesis-related proteins

135 We hypothesized that changes in cJun and p-Jun may reflect broad changes in
136 intracellular signaling caused by V337M tau. To identify shifts in signaling occurring at
137 relatively early stages of axonogenesis, we determined the total proteome and phosphoproteome
138 of 1 week neurons with *MAPT* V337M and/or tau knockdown by mass spectrometry.

139 Phosphoproteomic analysis of *MAPT* V337M neurons confirmed elevated p-cJun levels while
140 also uncovering differential phosphorylation of proteins regulating neuron projection
141 development and splicing (Figure 2A,C). There was significant overlap in the proteins with
142 differential phosphorylation between *MAPT* Hom, *MAPT* Het and **MAPT* Het neurons vs.
143 isogenic controls (Figure 2B), though the identities of the differential phosphosites varied
144 between conditions (Figure S3A). Gene set enrichment analysis for the 56 conserved proteins
145 with changes in phosphorylation in *MAPT* V337M neurons showed that the top enriched terms
146 were related to neuron projection development (Figure 2C). The total protein levels for many of
147 these factors were not significantly changed, suggesting that these changes are due to specific
148 signaling events altering phosphorylation patterns, rather than just changes in protein levels
149 (Figure S3B-D).

150 We next compared our phosphoproteomic datasets to recently published mouse
151 phosphoproteomic datasets using tau knockout mice [24] or P301S tau mice [25]. We found
152 significant overlap for proteins with differential phosphorylation in our data and the tau knockout
153 mice but not with the P301S mice (Figure 2D). However, we also noted that there was significant
154 overlap between the tau knockout mice and the P301S mice. Gene set enrichment analysis
155 identified substantial enrichment of axonogenesis-related protein phosphorylation changes in the
156 45 conserved proteins with differential phosphorylation in *MAPT* V337M neurons, tau knockout
157 mice, and P301S tau mice (Figure 2E). When we determined an even more focused set of
158 proteins that also have differential phosphorylation in *MAPT* V337M homozygous and *MAPT*
159 V337M heterozygous neurons from patient iPSCs, we found a core network of proteins in highly
160 related pathways regulating neuron morphogenesis and polarity (Figure 2F), including *ANK3* and

161 *MAPRE3*. *ANK3* and *MAPRE3* were recently identified to be important for V337M tau-induced
162 defects in axon initial segment plasticity [17].

163 We observed two patterns of protein phosphorylation changes due to tau knockdown
164 (Figure 2G). Many phosphorylation changes were specific to either tau knockdown in the *MAPT*
165 WT neurons or the *MAPT* V337M neurons. When we performed gene set enrichment analysis on
166 proteins with differential phosphorylation in *MAPT* WT tau knockdown neurons, the only
167 significantly enriched term was “Regulation of microtubule-based process,” with many of these
168 proteins being involved in axonogenesis (Figure S3E). Gene set enrichment analysis of proteins
169 with differential phosphorylation in *MAPT* V337M tau knockdown compared to *MAPT* V337M
170 showed that splicing factors were predominantly affected, whereas cytoskeletal and
171 axonogenesis proteins were not perturbed (Figure S3F).

172

173 *V337M tau is hypophosphorylated in neurons*

174 We observed that *MAPT* V337M neurons had lower tau phosphorylation compared to
175 WT across all domains of the protein at many sites (Figure 3A and 3B) and validated these
176 changes by western blot in all sets of neurons (Figure 3C-E). Many of the differential
177 phosphorylation sites are known to be hyperphosphorylated in Alzheimer’s disease and other
178 tauopathies [27-29] (Figure S4A).

179 To further explore how V337M tau may have decreased phosphorylation in neurons, we
180 overexpressed WT tau, V337M tau or R406W tau in *MAPT* WT neurons with endogenous tau
181 knocked down. Consistent with our phosphoproteomics results, V337M tau had decreased
182 phosphorylation at numerous sites despite having similar tau levels to WT tau and R406W tau
183 (Figure 3F,G). Intriguingly, R406W tau only had decreased phosphorylation at some of these

184 sites. These data suggest tau variants affect tau phosphorylation in neurons via distinct
185 mechanisms.

186 Extensive work has been done to characterize tau phosphorylation sites and map them to
187 their kinases [30-35]. Proline-directed phosphorylation sites were decreased in *MAPT* V337M
188 neurons, many of which serve as priming sites for additional sites of decreased tau
189 phosphorylation (Figure S4B). Leveraging our global view of phosphorylation changes in *MAPT*
190 V337M neurons, we predicted which kinases may have changes in activity based on known
191 kinase-substrate relationships (Figure 3H). Kinases in the p38 MAPK pathway such as *MAP2K3*
192 and *MAP2K6* were predicted to have increased activity in *MAPT* V337M neurons (Figure 3I).
193 *MAPK11* and *MAPK14* targets had increased phosphorylation specifically in *MAPT* V337M
194 neurons with tau knockdown, whereas *MAPK12* substrates had decreased phosphorylation
195 specifically in *MAPT* WT neurons with tau knockdown. Known tau kinases with well-
196 documented roles in tauopathy were also predicted to have differential activity, including
197 *GSK3B*, *CDK5*, and *CDK5R1*. *CDK5* and p38 MAPKs are both proline-directed kinases that are
198 known to phosphorylate tau at several sites that had decreased phosphorylation in *MAPT* V337M
199 neurons.

200

201 *CRISPR screens uncover regulators of tau phosphorylation in neurons*

202 To directly test which kinases perturb tau phosphorylation in *MAPT* WT and *MAPT*
203 V337M neurons, we employed CRISPRi and CRISPRa screens to test the effects of gene
204 knockdown or overexpression on tau phosphorylation using the AT8 antibody, which detects the
205 tau pS202/pT205 phosphoepitope (Figure 4A, Figure S5A-D). We transduced iPSCs with a
206 lentiviral sgRNA library targeting 2,325 genes encoding kinases, phosphatases and other proteins

207 in the “druggable genome”[36]. Two weeks after differentiation, neurons were fixed and stained
208 with AT8 and sorted based on AT8 signal. Next generation sequencing identified genes that
209 causally regulate AT8 levels. We filtered out hits for enrichment analysis that also modified T22
210 levels in previously published work (Figure S5E) [37]. Cytoskeleton genes and genes involved in
211 neuron projection development modified tau phosphorylation in both *MAPT* WT and *MAPT*
212 V337M neurons (Figure 4A,B) without altering T22 levels (Figure S5E). Intriguingly, several
213 kinases in the p38 MAPK pathway altered tau phosphorylation specifically in *MAPT* V337M
214 neurons. Other kinases predicted to have differential activity that may have regulated tau
215 phosphorylation in *MAPT* V337M neurons did not affect tau pS202/pT205 levels, including
216 *CDK5*, *CDK5R1*, and *GSK3B* (Figure S5F). We mapped the detected tau phosphorylation sites in
217 our neurons to their known kinases based on the literature, overlaying phosphorylation sites that
218 were differential in *MAPT* V337M (blue) with kinases whose knockdown or overexpression
219 modified tau phosphorylation at S202/T205 (red) (Figure 4D). The overlap between differential
220 tau phosphorylation and kinases that regulate pS202/pT205 in neurons (purple) narrows the list
221 down to a few candidate kinases. Overexpression of *MARK1*, a kinase that phosphorylates tau in
222 the microtubule binding domain and regulates tau’s interaction with microtubules, caused
223 increased tau phosphorylation in *MAPT* WT neurons (Figure 4C). This is consistent with
224 previous work showing that phosphorylation at S262, S324 and S356 affects phosphorylation
225 sites distal from the microtubule binding domain, such as S202/T205 [38].

226

227 **Discussion**

228 We have discovered that an FTD-causing variant of tau leads to tau hypophosphorylation
229 and perturbs axonogenesis pathways in differentiating neurons, overlapping at least in part with

230 effects seen in tau knockdown. These findings are surprising because disease-associated tau is
231 typically associated with increased tau phosphorylation and would not be expected to have
232 shared phenotypic overlap with tau loss. Other groups have shown in mice or in primary neurons
233 that reducing tau can have varying effects on axonogenesis. Acute tau ablation in mouse neurons
234 *in vitro* prevents axonogenesis by inhibiting polarization [39, 40] and tau knockout in primary
235 hippocampal neurons and human iPSC-derived neurons reduces neurite outgrowth and branching
236 [41, 42].

237 The question remains whether a loss of tau function (potentially caused by a tau
238 mutation) would have adverse effects to a disease variant carrier throughout life and with respect
239 to disease. The function of normal healthy tau is unclear and has been debated for many years.
240 This is in large part due to the many conflicting studies, both in physiological and pathogenic
241 contexts. Given the earlier results in showing the importance of tau for axonogenesis, it was
242 expected that knocking out tau in mice would be lethal and that tau would be essential for
243 neurodevelopment. Early mouse studies showed that tau knockout was surprisingly well
244 tolerated [43]. There were no obvious defects in polarization or gross morphology, but
245 microtubules in small caliber axons were destabilized. *Map1a* was upregulated in tau knockout
246 mice, suggesting that the mice were compensating for tau loss. This could explain the difference
247 in phenotypes as compared to the acute depletion of tau with ASOs. Knocking out tau and
248 *Map1b*, another microtubule-associated protein, leads to much more severe phenotypes than
249 either knockout individually [44]. Dawson et al. disputed the findings of Harada et al. due to
250 poor WT data [45]. In their work, they found that indeed tau knockout did cause a delay in
251 neurite outgrowth and axonogenesis.

252 Biswas and Kalil showed that tau knockout neurons had altered microtubule dynamics in
253 growth cones, resulting in a change in overall growth cone morphology [46]. Microtubules were
254 less bundled, and microtubule polymerization directionality as measured by EB3 was more
255 dispersed in tau knockout neurons. There also was a reduction in tyrosinated tubulin projecting
256 into the filopodia of the peripheral domain. Another paper showed that tau knockout increased
257 Fyn mobility in dendrites and lowered Fyn localization in dendrites and spines [47]. Intriguingly,
258 expressing P301L tau had the opposite effect and anchored or trapped Fyn in dendritic spines.

259 Many motor and behavioral phenotypes have been observed in tau knockout mice. Tau
260 knockout mice or mice with acute tau reduction with antisense oligonucleotides have
261 consistently shown resistance to seizures [21, 48-51]. Another consistent theme is that there are
262 often behavioral and learning changes in tau knockout mice, including hyperactivity, fear
263 conditioning, and memory [52-57]. There is more controversy over the effect of tau knockout on
264 motor function. Some groups report motor deficits in tau knockout mice [52, 58, 59], while
265 others claim there are no significant changes in tau knockout mice to motor function [48, 49, 57].
266 One group showed that tau is essential for long term depression in the hippocampus [60], while
267 another showed that tau knockout only perturbs long term potentiation [57]. Tau phosphorylation
268 has also been shown to be required for long term depression [61].

269 Considering our data in the context of these other findings, we expect that loss-of-
270 function phenotypes would coincide with the onset of tau expression and axon extension. Tau
271 loss of function may precede human disease onset by many decades, occurring during
272 development and continuing through adulthood via perturbed synaptic plasticity. A study showed
273 that mice with the *MAPT* P301L mutation show early cognitive changes before tau pathology is
274 detectable [62]. A Parkinson's disease GWAS study found that *MAPT* was a significant risk

275 locus for Parkinson's disease that is uncoupled from the age of onset [63]. Ye and colleagues
276 proposed that tau may drive changes during development or early in life that then increase risk
277 for Parkinson's disease decades later [64]. Two studies have also identified cognitive differences
278 between *MAPT* carriers and non-carrier siblings decades before expected disease onset [65, 66].

279 Our work also emphasized the importance of having iPSCs from multiple individuals and
280 multiple clones paired with appropriate controls, such as tau knockdown and knockout.
281 Furthermore, comparisons to other published data sets revealed previously underappreciated
282 relationships, including overlapping molecular phenotypes between *MAPT* knockout and *MAPT*
283 P301S mice. It will be fascinating to uncover the mechanisms of these shared signaling pathway
284 changes and to determine if they are due a shared stress response, or if downstream phenotypes
285 converge despite unique upstream perturbations. Previous work using different differentiation
286 protocols and much longer time scales showed that FTD-causing tau variants cause tau
287 hyperphosphorylation in more mature neurons, suggesting that there is a complex, time-
288 dependent effect of *MAPT* mutations on developmental tau phosphorylation patterns. There was
289 substantial overlap between our RNA-seq findings and a recent paper using *MAPT* V337M
290 neurons in an organoid model, which is interesting because of the observed tau
291 hyperphosphorylation at the later timepoints in their model [9]. Intriguingly, one other group
292 reported decreased tau phosphorylation in organoid-derived iPSC neurons with *MAPT* R406W.
293 [67] Earlier work showed that fetal tau was highly phosphorylated during development, but the
294 precise mechanisms and functions of this process are still unknown.[32, 68-70] Our findings
295 suggest that at earlier timepoints different tau mutations may behave in unexpected ways and
296 have complex effects on cellular pathways. [5, 9, 71]

297 We acknowledge that there are limitations to our study. Our neurons under the conditions
298 we used only express a single isoform of tau, the fetal isoform 0N3R. Understanding how
299 different tau isoforms are regulated and how they contribute tau function in health and disease is
300 an open question. Additionally, it will be intriguing to understand how different disease variants
301 of tau perturb neurons. Our data showing phosphorylation differences between WT tau, V337M
302 tau and R406W tau joins a growing body of literature showing that different mutations have
303 different effects on tau properties, including microtubule binding, microtubule polymerization,
304 and fibril formation [72-78]. Our data suggests a potential tau loss of function caused by the
305 V337M mutation at an early timepoint, but we have not functionally validated if the mutation
306 causes a change in tau function in neurons.

307 Beyond the findings presented here, we expect that the data sets we have generated will
308 continue to be useful to the field as we resolve the plethora of molecular and cellular phenotypes
309 driven by pathogenic tau in a variety of contexts. Similarly, although much is still to be learned
310 about the consequences of dysregulated tau phosphorylation (both loss and gain), our functional
311 genomic screens could inform the design of tau phosphorylation modulators, perhaps even for
312 therapy.

313

314 **Conclusions**

315 Our study aims to characterize WT, V337M tau and tau knockdown neurons to
316 understand how tau loss or mutation perturbs neuron biology. We show that V337M tau and tau
317 knockdown have conserved effects in RNA-seq, ATAC-seq and phosphoproteomics.
318 Surprisingly, we found that V337M tau causes tau hypophosphorylation. We performed
319 functional genomics screens to uncover the regulators of tau phosphorylation in WT and V337M

320 tau neurons. V337M tau perturbs axon morphology pathways similarly to tau loss and causes tau
321 hypophosphorylation, which could contribute to the previously reported cognitive changes in
322 preclinical *MAPT* variant carriers.

323

324 **Materials and Methods**

325 *Human iPSC culture and neuronal differentiation (Adapted from Tian et al. 2021)*

326 Human iPSCs from the WTC11 background were cultured in StemFlex Medium
327 (GIBCO/Thermo Fisher Scientific; Cat. No. A3349401). Human iPSCs from the GIH6C1
328 background were cultured in mTeSR Plus medium (StemCell Technologies; Cat. No. 100-0276).
329 iPSCs were grown in plates or dishes coated with Growth Factor Reduced, Phenol Red-Free,
330 LDEV-Free Matrigel Basement Membrane Matrix (Corning; Cat. No. 356231) diluted 1:100 in
331 Knockout DMEM (GIBCO/Thermo Fisher Scientific; Cat. No. 10829-018). StemFlex Medium
332 was replaced daily. When cells reached 80-90% confluency, cells were dissociated with StemPro
333 Accutase Cell Dissociation Reagent (GIBCO/Thermo Fisher Scientific; Cat. No. A11105-01) at
334 37°C for 5 min, centrifuged at 200 g for 5 min, resuspended in StemFlex Medium supplemented
335 with 10 nM Y-27632 dihydrochloride ROCK inhibitor (Tocris; Cat. No. 125410) and placed
336 onto Matrigel-coated plates or dishes. Studies at UCSF with human iPSCs were approved by the
337 Human Gamete, Embryo, and Stem Cell Research (GESCR) Committee.

338

339 For individual gene knockdown in CRISPRi iPSCs, sgRNAs were introduced into iPSCs via
340 lentiviral delivery. Cells were selected by 1 µg/ml puromycin for 2-4 days and recovered for 2-4
341 days. Phenotypes were evaluated 5-7 days after infection.

342

343 The WTC11 CRISPRi iPSC lines were previously engineered to express mNGN2 under a
344 doxycycline-inducible system in the AAVS1 safe harbor locus. The GIH6C1 iPSC lines were
345 engineered in this work to express Ngn2 under a doxycycline-inducible promoter in the AAVS1
346 safe harbor locus. For their neuronal differentiation, we followed our previously described
347 protocol [79]. Briefly, iPSCs were pre-differentiated in matrigel-coated plates or dishes in N2
348 Pre-Differentiation Medium containing the following: Knockout DMEM/F12 (GIBCO/Thermo
349 Fisher Scientific; Cat. No. 12660-012) as the base, 1X MEM Non-Essential Amino Avids
350 (GIBCO/Thermo Fisher Scientific; Cat. No. 17502-048), 10 ng/mL NT-3 (PeproTech; Cat. No.
351 450-03), 10 ng/mL BDNF (PeproTech; Cat. No. 450-02), 1 μ g/mL Mouse Laminin (Thermo
352 Fisher Scientific; Cat. No. 23017-015), 10 nM ROCK inhibitor and 2 μ g/mL doxycycline to
353 induce the expression of Ngn2. After three days, or Day 0, pre-differentiated cells were
354 dissociated with accutase and plated into BioCoat Poly-D-Lysine-coated plates or dishes
355 (Corning; assorted Cat. No.) in Classic N2 neuronal medium or BrainPhys Neuronal Medium.
356 Classic N2 neuronal medium contained the following: half DMEM/F12 (GIBCO/Thermo Fisher
357 Scientific; Cat. No. 11320-033) and half Neurobasal-A (GIBCO/Thermo Fisher Scientific; Cat.
358 No. 10888-022) as the base, 1X MEM Non-Essential Amino Acids, 0.5X GlutaMAX
359 Supplement (GIBCO/Thermo Fisher Scientific; Cat. No. 35050-061), 0.5X N2 Supplement, 0.5X
360 B27 Supplement (GIBCO/Thermo Fisher Scientific; Cat. No. 17504-044), 10 ng/mL NT-3, 10
361 ng/mL BDNF and 1 μ g/mL Mouse Laminin. BrainPhys Neuronal Medium was comprised of the
362 following: BrainPhys Neuronal Medium (StemCell Technologies; Cat. No. 05791) as the base,
363 0.5x N2 Supplement, 0.5X B27 Supplement, 10 ng/mL NT-3, 10ng/mL BDNF, and 1 μ g/mL
364 Mouse Laminin. Neuronal medium was fully changed on day 3 post differentiation and then
365 half-replaced on day 7 and weekly thereafter.

366

367 *GIHC1 iPSC cell line generation*

368 GIH6C1 and GIH6C1Δ1E11 were obtained from NeuraCell [23]. iPSCs were transfected with

369 pC13N-dCas9-BFP-KRAB and TALENS targeting the human CLYBL intragenic safe harbor

370 locus (between exons 2 and 3) (pZT-C13-R1 and pZT-C13-L1, Addgene #62196, #62197) [80]

371 using DNA In-Stem (VitaScientific). At the same time, the iPSCs were also transfected with

372 pUCM-AAVS1-TO_hNGN2 (Addgene #105840) [81] and TALENS targeting the human

373 AAVS1 intragenic safe harbor locus (pTALdNC-AAVS1_T1, pTALdNC-AAVS1_T2). [82]

374 After two weeks, BFP-positive iPSCs (CRISPRi+/mNGN2-), mCherry-positive iPSCs

375 (CRISPRi-/mNGN2+) and BFP/mCherry-positive iPSCs (CRISPRi+/mNGN2+) were isolated

376 via FACS sorting. Cells were plated sparsely in a 10 cm dish (5,000-10,000 per dish) and

377 allowed to grow up until they formed large colonies. Homogenous BFP+/mCherry+ colonies

378 were picked with a pipette tip and placed into a 24 well plate for expansion and characterization.

379 Cre mRNA was then transfected into the iPSCs to remove the selection marker and mCherry.

380 Cells were sorted for mCherry negativity, and then mCherry negative colonies were picked and

381 genotyped.

382

383 *Western blots*

384 Neurons were washed 3 times with ice-cold PBS. Ice-cold RIPA with protease and phosphatase

385 inhibitors was added to cells. Lysates were incubated on ice for 2 minutes and then scraped

386 down. Lysates were centrifuged at 12500xg for 10 minutes at 4 °C. The supernatants were

387 collected, and the concentrations were measured with the BCA assay (Thermo Fisher Scientific;

388 Cat No. 23225). 10-20 µg protein were loaded onto 4-12% Bis-Tris polyacrylamide gel (Thermo

389 Fisher Scientific; Cat No. NP0336BOX) Nitrocellulose (BioRad, Cat. No. 1620146) or PVDF
390 membranes were used to transfer the protein in a BioRad Transblot for 11 minutes at 25 V, 25 A.
391 Membranes were then blocked for 1 hour with Licor Intercept blocking buffer (Licor, Cat. No.
392 927-60001) at room temperature. Primary antibody was added in Licor Intercept block overnight
393 at 4 °C. Blots were washed 3 times for 5 minutes with TBST at room temperature. Secondary
394 antibodies were added in Licor Intercept block for 1 hour at room temperature. Blots were
395 washed 3 times for 5 minutes with TBST at room temperature and imaged on a Licor Odyssey.
396 Immunoblots were quantified by intensity using ImageStudio (Licor).

397

398 *Bulk RNA sequencing sample preparation*

399 RNA was harvested from day 7, day 14 and day 28 post differentiation neurons using a Zymo
400 microprep kit (Zymo Research, Cat No. R2062). The library was prepared by first depleting
401 ribosomal RNA (New England BioLabs, Cat No. E7405L). cDNA synthesis was then performed
402 on all remaining RNAs (New England BioLabs, Cat. No. E7765S). Paired-end (PE65)
403 sequencing was performed at the Chan Zuckerberg Biohub and the UCSF Center for Advanced
404 Technology.

405

406 *ATAC-seq sample preparation*

407 Omni-ATAC-seq was performed as previously described.[83] In short, nuclei from 50,000
408 neurons were resuspended with Tn5 transposase (to tag and cleave open chromatin with PCR
409 adapters) and incubated at 37 C for 30 minutes on a thermomixer at 1,000 rpm. DNA was then
410 extracted using the Qiagen MinElute Reaction Cleanup Kit (Cat#28204). Tagged sequences were
411 amplified using Illumina/Nextera i5 common adapter and i7 index adapters. DNA libraries were

412 purified using AMPure XP beads (A63880), and paired-end (PE65) sequencing was performed at
413 the Chan Zuckerberg Biohub and the UCSF Center for Advanced Technology.

414

415 *Proteomics sample preparation*

416 Briefly, neurons were scraped off 15 cm dishes at day 7 of differentiation and flash frozen in
417 liquid nitrogen. Cell pellet was lysed by adding 1 ml of 6 M GnHCl, 100mM Tris pH 8 and
418 boiling at 95 C for 5 minutes two times with 5 min rest in between. DNA was sheared three
419 times via probe sonication at 20% amplitude for 10 s., followed by 10 s of rest. Following
420 sonication, samples were allowed to solubilize on ice for 20 mins before clearing cell debris by
421 centrifugation at 16,000 x g for 10 mins and determining protein concentration was using Protein
422 Thermo Scientific 660 assay. Enough lysate for 1 mg of protein was aliquoted and Tris 2-
423 carboxyethyl phosphine (TCEP) and chloroacetamide (CAA) were added to each sample to a
424 final concentration of 40 mM and 10 mM respectively, before incubating for 10 min at 45 C
425 with shaking. Guanidine was then diluted at least 1:5 with 100 mM Tris pH 8. Trypsin and LysC
426 (Promega) were added at a 1:100 (enzyme:protein w:w) ratio (total protease:protein ratio of
427 1:50) and digested overnight at 37°C with shaking. Following digestion, 10% trifluoroacetic acid
428 (TFA) was added to each sample to a final pH ~2. Samples were desalted under vacuum using
429 Sep Pak tC18 cartridges (Waters). Each cartridge was activated with 1 mL 80% acetonitrile
430 (ACN)/0.1% TFA, then equilibrated with 3 × 1 mL of 0.1% TFA. Cartridges were then washed
431 with 4 × 1 mL of 0.1% TFA, and samples were eluted with 0.8 mL 50% ACN/0.25% formic acid
432 (FA). 20 µg of each sample was kept for protein abundance measurements, and the remainder
433 was used for phosphopeptide enrichment. Samples were dried by vacuum centrifugation.

434

435 *Phosphopeptide enrichment*

436 For phosphopeptide enrichment of samples for phosphoproteomics, IMAC beads (Fe-IMAC
437 from Cube Biotech) were prepared by washing 3x with washing buffer (0.1% TFA, 80%
438 ACN). Dry, digested peptide samples were resuspended in washing buffer and incubated for 15
439 mins at 37 C with shaking. Peptides were enriched for phosphorylated peptides using a King
440 Fisher Flex (KFF). A more detailed KFF protocol can be provided. Briefly, after resuspension
441 peptides were mixed with beads and bound peptides were washed three times with wash buffer
442 before being eluted from beads using 50% ACN, 2.5 % NH4OH solution. Enriched
443 phosphorylated peptide samples were acidified using 75% ACN, 10% FA (at a ratio of 5:3
444 elution buffer:acid buffer), and filtered by centrifugation through NEST tips.

445 *Mass spectrometry data acquisition*

446 Digested samples were analyzed on an Orbitrap Exploris 480 mass spectrometry system (Thermo
447 Fisher Scientific) equipped with either an Easy nLC 1200 or Neo Vanquish ultra-high pressure
448 liquid chromatography system (Thermo Fisher Scientific) interfaced via a Nanospray Flex
449 source. Separation was performed using a 15 cm long PepSep column with a 150 um inner
450 diameter packed with 1.5um ReproSil C18 particles. Mobile phase A consisted of 0.1% FA, and
451 mobile phase B consisted of 0.1% FA/80% ACN. Abundance samples were separated by an
452 organic gradient from 4% to 30% mobile phase B over 62 minutes followed by an increase to
453 45% B over 10 minutes, then held at 90% B for 8 minutes at a flow rate of 600 nL/minute.
454 Phosphoproteomics samples were separated by an organic gradient from 2% to 25% mobile
455 phase B over 62 minutes followed by an increase to 40% B over 10 minutes, then held at 95% B
456 for 8 minutes at a flow rate of 600 nL/minute. To expand the spectral library, two samples from
457 each set of replicates was acquired in a data dependent manner. Data dependent analysis (DDA)

458 was performed by acquiring a full scan over a m/z range of 350-1100 in the Orbitrap at 60,000
459 resolving power (@200 m/z) with a normalized AGC target of 300%, an RF lens setting of 40%,
460 and a maximum ion injection time of “Auto”. Dynamic exclusion was set to 45 seconds, with a
461 10 ppm exclusion width setting. Peptides with charge states 2-6 were selected for MS/MS
462 interrogation using higher energy collisional dissociation (HCD), with 20 MS/MS scans per
463 cycle. MS/MS scans were analyzed in the Orbitrap using isolation width of 1.6 m/z, normalized
464 HCD collision energy of 30%, normalized AGC of 200% at a resolving power of 15,000 with a
465 22 ms maximum ion injection time. Similar settings were used for data dependent analysis of
466 phosphopeptide-enriched and abundance samples. Data-independent analysis (DIA) was
467 performed on all samples. An MS scan at 60,000 resolving power over a scan range of 350-1100
468 m/z, a normalized AGC target of 300%, an RF lens setting of 40%, and the maximum injection
469 time set to “Auto”, followed by DIA scans using 20 m/z isolation windows over 350-1100 m/z
470 with a 2 m/z overlap at a normalized HCD collision energy of 30%.

471

472 *Antibodies used in this study*

473 cJun (CST, #9165)

474 p-cJun (CST, #91952)

475 Tau13 (Santa Cruz Biotechnology, sc-21796)

476 AT8 (Invitrogen, MN1020)

477 AT100 (Invitrogen, MN1060)

478 AT180 (Invitrogen, MN1040)

479 Tau pT217 (Invitrogen, 44-744)

480 Tau pS396 (Invitrogen, 44-752G)

481 GAPDH (Santa Cruz Biotechnology, sc-47724)

482 β-Actin (CST, #4967)

483 *Molecular Cloning:*

484 Overexpression constructs were generated using our previously described PSAP expression
485 vector [84] as a backbone. This vector expressed PSAP fused to a c-terminal mScarlett. We
486 cloned emGFP-BRD2 into this vector (deleting PSAP-mScarlett) and then used XhoI and AgeI
487 restriction enzyme sites to clone in 0N3R tau. We then cloned a gene block for ORF-BamHI-
488 (GS)4-exFlag-T2A-mApple into the vector using the AgeI and EcoRI sites [37]. We then
489 mutated WT 0N3R tau to V337M and R406W to generate the final overexpression constructs.

490

491 *CRISPR screening:*

492 45 million iPSCs were infected with lentivirus encoding for the H1 sublibrary (Horlbeck et al
493 Elife) at an MOI of ~0.3 and selected with 1ug/mL puromycin until 100% BFP positive.
494 Lentivirus preparation was performed as described
495 (<https://dx.doi.org/10.17504/protocols.io.8dfhs3n>, [37], [79]). For CRISPRa screens, TMP was
496 added at a final concentration of 50uM for all cultures after selection. Cells were then
497 differentiated and cultured as previously described (dx.doi.org/10.17504/protocols.io.bcrjiv4n,
498 [79]). Upon differentiation, pre-differentiated cells were plated on three 15cm PDL-coated dishes
499 at a density of 15 million cells per plate. Neurons were then matured for two weeks. At two
500 weeks of age, neurons were lifted with papain and zinc fixed as previously described [37]. On
501 the day of sorting, preparation for FACS was performed as described [37] using the AT8
502 antibody (Thermo MN1020) at a concentration of 1:200. After sorting, cells were pelleted at

503 200xg for 20 minutes, the supernatant was removed and the pellet was frozen at -20. Genomic
504 DNA was extracted with the NucleoSpin Blood L kit. sgRNA cassettes were amplified, pooled,
505 and sequenced as described [79]. CRISPR screens were analyzed using MAGeCK-iNC as
506 previously described [79]. Briefly, raw sequencing reads were cropped and aligned using custom
507 scripts that are publicly available (<https://kampmannlab.ucsf.edu/resources>). Raw phenotype
508 scores and p-values were calculated for target genes and negative control genes using a Mann-
509 Whitney U-test.

510 ***Data Analysis***

511 *RNA-seq analysis*

512 Sequencing data was aligned to the human reference genome hg38. Rbowtie2 was used to align
513 and count the number of transcripts from aligned reads. Differentially expressed genes were
514 determined using DEseq2.

515

516 *ATAC-seq analysis*

517 Sequencing data was aligned to the human reference genome hg38 using Rbowtie2. Peak calling
518 was performed with MACS2. Differential ATACseq was performed using DEseq2, and motif
519 analysis was performed with the motifDB and motifmatchr packages. Differential motif analysis
520 was performed with the chromVar package.

521

522 *Gene set enrichment analysis*

523 Enrichr was used to perform gene set enrichment analysis on RNA-seq, proteomics and
524 phosphoproteomics datasets [85].

525

526 *Proteomics and Phosphoproteomics Analysis*

527 Raw files were searched using the directDIA+ feature in Spectronaut, with DDA files provided
528 as supplementary search files against a full human proteome from Uniprot (reviewed entries
529 only, isoforms included). Phosphosites were extracted from the PTMsites output table from
530 Spectronaut, and collapsed using the Tukey's median polish functionality of MSstats in R.

531

532 **Abbreviations**

533 *MAPT*: Microtubule Associated Protein Tau

534 iPSC: induced pluripotent stem cell

535 MAPK: Mitogen-Activated Protein Kinase

536 MAP2K: Mitogen-Activated Protein Kinase Kinase

537 ASOs: Anti-sense oligonucleotides

538 FTD: Frontotemporal Dementia

539 WT: wild type

540 *MAPT* Het: *MAPT* heterozygous (*MAPT* V337M/WT)

541 *MAPT* Hom: *MAPT* homozygous (*MAPT* V337M/V337M)

542 mNGN2: mouse Neurogenin2

543 AAVS1: adeno-associated virus integration site 1, safe harbor locus.

544 CLYBL: Citramalyl-CoA Lyase, here refers to an intergenic safe harbor locus.

545 sgRNA: single guide RNA

546 NTC: non-targeting control

547 *ANK3*: Ankyrin 3

548 *MAPRE3*: Microtubule-Associated Protein RP/EB Family Member 3, or EB3

549 *GSK3B*: Glycogen Synthase Kinase 3 Beta

550 *CDK5*: Cyclin Dependent Kinase 5

551 *CDK5R1*: Cyclin Dependent Kinase 5 Regulatory Subunit 1

552 *MARK1*: Microtubule Affinity Regulating Kinase 1

553 *Map1a*: Microtubule-Associated Protein 1A

554 *Map1b*: Microtubule-Associated Protein 1B

555 LDEV: Lactate Dehydrogenase Elevating Virus

556 DMEM: Dulbecco's Modified Eagle Medium

557 ROCK: Rho Associated Coiled-Coil Containing Protein Kinase

558 BDNF: Brain-Derived Neurotrophic Factor

559 KRAB: Krüppel-associated box

560 TALENS: transcription activator-like effector nucleases

561 PBS: Phosphate-buffered saline

562 TBST: Tris-buffered saline + 0.1% Tween20

563 TCEP: Tris 2-carboxyethyl phosphine

564 CAA: chloroacetamide

565 TFA: trifluoroacetic acid

566 ACN: acetonitrile

567 FA: formic acid

568 KFF: King Fisher Flex

569 DDA: Data dependent analysis

570 AGC: Automated gain control

571 DIA: Data-independent analysis

572 MS: Mass spectrometry

573 Ppm: parts per million

574 PTM: Post translational modification

575 MS/MS: Tandem mass spectrometry

576 HCD: Higher energy collisional dissociation

577 *GAPDH*: glyceraldehyde-3-phosphate dehydrogenase

578 *PSAP*: Prosaposin

579 emGFP: emerald green fluorescent protein

580 *BRD2*: Bromodomain Containing 2

581 ORF: open reading frame

582 TMP: trimethoprim

583 PDL: poly-D lysine

584 FACS: fluorescence-activated cell sorting

585 MAGeCK-iNC: Model-based Analysis of Genome-wide CRISPR/Cas9 Knockout – including

586 negative controls

587

588 **Declarations:**

589 **Ethics approval and consent to participate**

590 Studies at UCSF with human iPSCs were approved by the Human Gamete, Embryo, and Stem

591 Cell Research (GESCR) Committee.

592

593 **Consent for publication**

594 All authors have approved the contents of this study and provided consent for publication.

595

596

597 **Competing interests**

598 M.K. is a co-scientific founder of Montara Therapeutics and serves on the Scientific Advisory
599 Boards of Engine Biosciences, Casma Therapeutics, Alector, and Montara Therapeutics, and is
600 an advisor to Modulo Bio and Theseus Therapeutics. M.K. is an inventor on US Patent
601 11,254,933 related to CRISPRi and CRISPRa screening, and on a US Patent application on *in*
602 *vivo* screening methods.

603

604 **Funding**

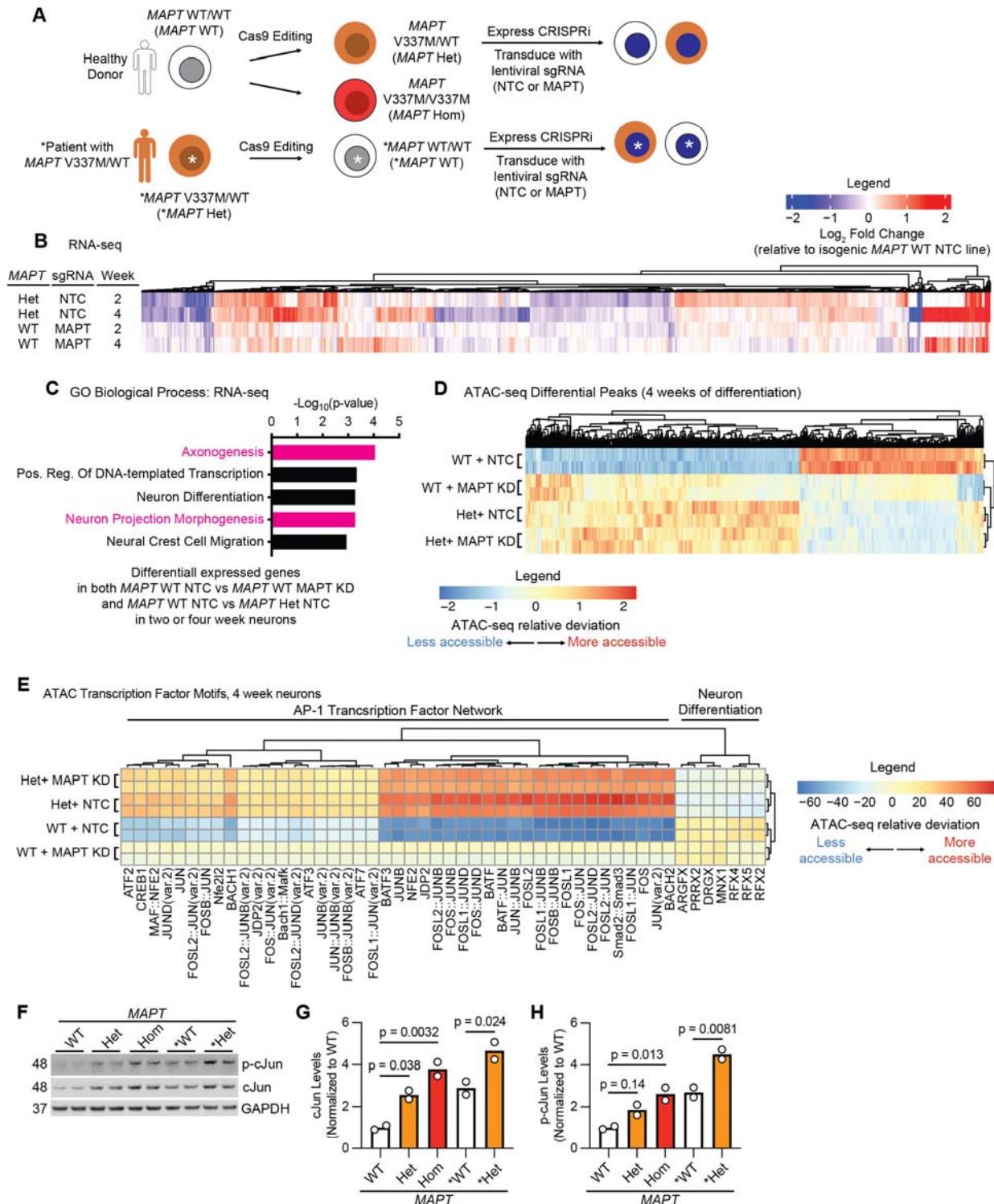
605 M.K. was supported by the Rainwater Charitable Foundation/Tau consortium, the Chan
606 Zuckerberg Initiative Ben Barres Early Career Acceleration Award, and NIH grants R01
607 AG062359, R01 AG082141, U54 NS100717. M.K. and D.L.S were supported by U54
608 NS123746. G.D. was supported by the A.P. Gianni Foundation. A.J.S was supported by NIH F32
609 AG063487 and NIH K99 AG080116. S.C.B. was supported by the Alzheimer's Association
610 Research Fellowship 23AARF-1027616.

611

612 **Author's contributions**

613 G.A.M., G.D. and M.K. conceptualized and led the project and wrote the manuscript with input
614 from all co-authors. G.A.M, G.D., E.M., A.J.S., C.P.S, J.J., N.A., A.L., and S.C.B. contributed to
615 making cell lines, performing experiments, and data analysis. J.M. and D.P.S. performed and
616 analyzed the mass spectrometry.

617

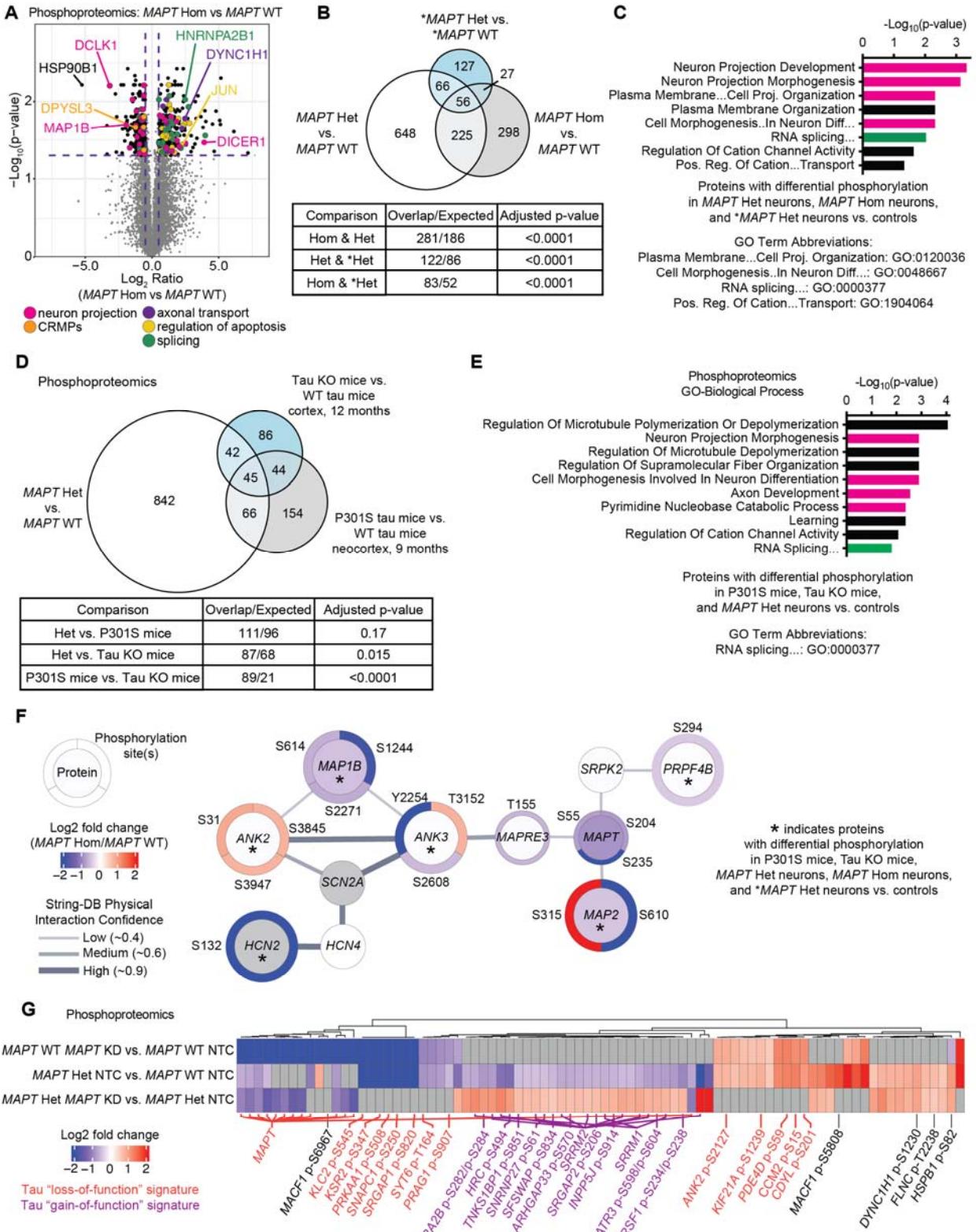

618 **Acknowledgements**

619 We would like to thank all members of the Kampmann lab for helpful feedback and support. We
620 would like to thank Dr. Ruilin Tian, Dr. Carlo Condello, Dr. Noam Teyssier, Dr. Parker
621 Grosjean, Dr. Olivia Teter and Ian Steele for helpful discussions and contributions to preliminary
622 studies. We would like to thank the Tau Consortium Stem Cell Group for sharing the GIH6C1
623 and GIH6C1Δ1E11 iPSC cell lines and Dr. Li Gan for sharing the WTC11 V337M iPSC cell
624 lines.

625

626 **Authors' Information**

627 Gregory A. Mohl and Gary Dixon have contributed equally to this work.

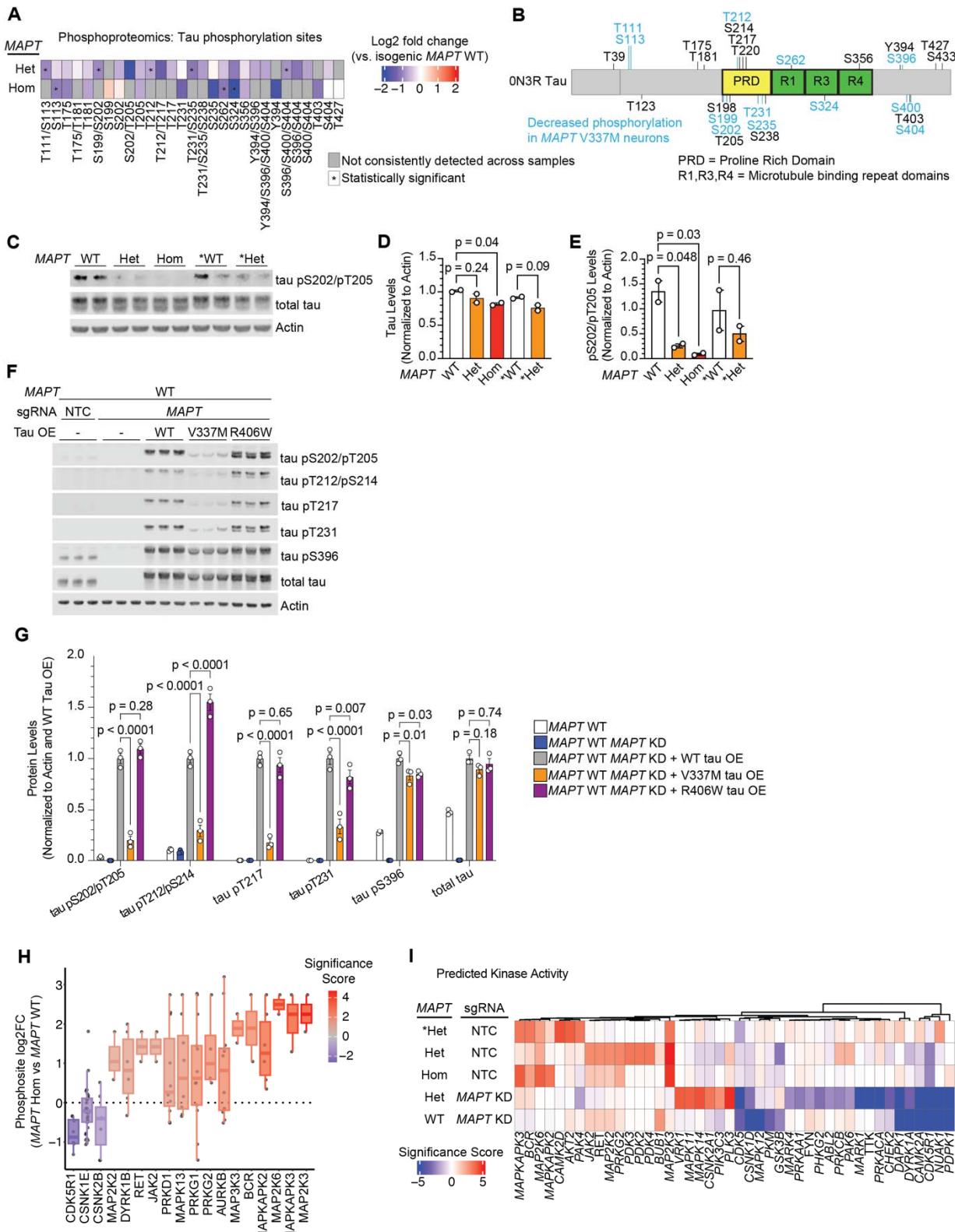


628
629

Figure 1: RNA-seq and ATAC-seq in neurons reveal conserved effects of *MAPT* V337M

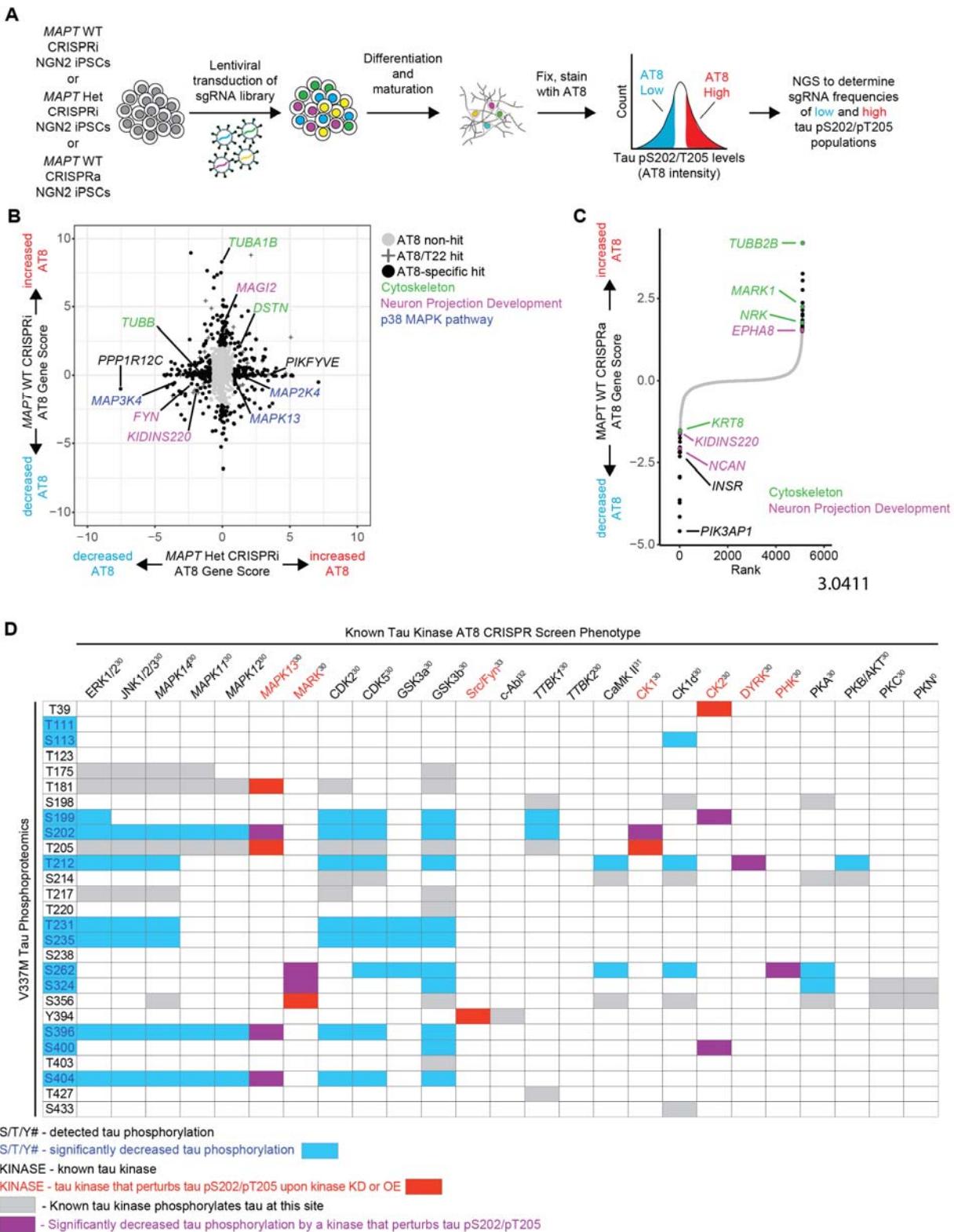
630 knockdown on axonogenesis pathways (A) iPSCs from a healthy donor (WTC11, here called

631 *MAPT* WT) or a patient with the heterozygous *MAPT* V337M mutation (GIH6C1, here called
632 **MAPT* Het) were edited with Cas9 previously to generate a heterozygous *MAPT* V337M clone
633 (*MAPT* Het), a homozygous *MAPT* V337M clone (*MAPT* Hom) and a healthy isogenic control
634 (GIH6C1Δ1E11, here called **MAPT* WT). These cells were engineered to express dox-inducible
635 mNGN2 in AAVS1 and CRISPRi machinery in CLYBL. We transduce the iPSCs with lentivirus
636 for sgRNA/BFP expression. **(B)** Heatmap comparing changes in gene expression based on RNA-
637 seq in *MAPT* Het NTC and *MAPT* WT MAPT KD vs. *MAPT* WT NTC at 2 and 4 weeks post
638 differentiation. Three independent wells of neurons for each genotype/sgRNA combination were
639 harvested at each timepoint. **(C)** Gene Ontology (GO) term enrichment analysis of the RNA-seq
640 experiment in (B). Genes that are differentially expressed in both *MAPT* Het and *MAPT* WT
641 *MAPT* KD vs. *MAPT* WT NTC were analyzed with Enrichr, and top terms with minimal overlap
642 were plotted. Pathways related to axonogenesis and neuron morphology are colored magenta.
643 **(D)** Heatmap summarizing ATAC-seq differential peaks at 4 weeks of differentiation. Two
644 independent wells of neurons for each genotype/sgRNA combination were harvested. **(E)**
645 Heatmap summarizing ATAC-seq transcription factor motif analysis at 4 weeks of
646 differentiation from the same experiment in (D). Clusters were analyzed for pathway enrichment
647 using Enrichr, and major pathways are annotated (“AP-1 Transcription Factor Network” and
648 “Neuron Differentiation”). **(F)** Western blot measuring p-cJun and cJun levels in neurons at 1
649 week of differentiation. Two independent wells of neurons for each genotype/sgRNA
650 combination were harvested. **(G-H)** Quantification of cJun (G) and p-cJun (H) from the western
651 blot in (F). Significance was calculated using one-way ANOVA with Dunnett’s multiple
652 comparison test, and comparisons were restricted within the donor background.


653

654

655 **Figure 2: Proteomics uncovers altered phosphorylation of axonogenesis-related proteins in**
656 **neurons with the *MAPT* V337M mutation. (A)** Volcano plot showing changes in protein
657 phosphorylation in *MAPT* Hom vs. *MAPT* WT neurons using mass spectrometry. Four
658 independent 150mm dishes of neurons for each condition were harvested after one week of
659 differentiation. Dots represent individual phosphorylation sites. **(B)** Proteins with differential
660 phosphorylation between *MAPT* Het, *MAPT* Hom neurons, and **MAPT* Het vs. controls.
661 Significance was calculated using multiple t-tests adjusted with Šidák single-step correction.
662 Proteins with differential phosphorylation in all three datasets were filtered to identify 56
663 conserved proteins. **(C)** GO term enrichment of the 56 proteins from (B). Neuron morphology
664 term bars are magenta, and splicing term bars are green. **(D)** Proteins with differential
665 phosphorylation between *MAPT* Het vs. *MAPT* WT and two published mouse
666 phosphoproteomics datasets, including tau KO mice and P301S mice vs. WT mice. Significance
667 was calculated using multiple t-tests adjusted with Šidák single-step correction. Proteins with
668 differential phosphorylation in all three datasets were filtered to identify 45 conserved proteins.
669 **(E)** GO term enrichment of the 45 proteins from (D). Annotations are consistent with (C). **(F)**
670 String-DB protein-protein interaction network of proteins with differential phosphorylation in
671 five datasets: *MAPT* Het, *MAPT* Hom, **MAPT* Het vs isogenic controls, and tau KO mice and
672 P301S mice vs. controls. The inner circle is colored based on the protein \log_2 fold change, and
673 the outer circles are colored based on the \log_2 fold change for the indicated phosphorylation site.
674 **(G)** Heatmap of phosphoproteomics data comparing *MAPT* KD vs. isogenic controls.
675 Phosphosites that are decreased in *MAPT* Het vs. *MAPT* WT but that are rescued by tau
676 knockdown in *MAPT* Het neurons are labeled in purple as a tau “gain-of-function” signature.


677 Phosphosites that are changed in the same direction in *MAPT* WT *MAPT* KD and *MAPT* Het vs.

678 WT are labeled in orange as a tau “loss-of-function” signature.

680 **Figure 3: Tau phosphorylation is reduced in neurons with the *MAPT* V337M mutation. (A)**

681 Heatmap of tau phosphorylation from *MAPT* Hom or *MAPT* Het vs. *MAPT* WT. Phosphosites
682 that were not detected in more than half of the replicates in both samples are marked in grey, and
683 statistically significant phosphorylation changes are marked with an asterisk. **(B)** Protein domain
684 map of 0N3R tau with detected phosphorylation sites labeled. Decreased phosphorylations
685 detected in either *MAPT* Hom or *MAPT* Het neurons are labeled in blue. When
686 phosphoproteomics could not distinguish between multiple potential phosphosites, all are
687 included. **(C)** Western blot validating decreased tau phosphorylation in neurons with V337M tau.
688 Two independent wells of neurons were harvested after one week of differentiation. AT8 was
689 used to label tau pS202/pT205, and Tau13 was used to label total tau. **(D-E)** Quantification of
690 total tau levels (D) or pS202/pT205 levels (E) from the western blot in (C). One way ANOVA
691 with Šidák's correction and comparisons within donor backgrounds was used to test for
692 significance. **(F)** WT, V337M and R406W tau were overexpressed via lentivirus in *MAPT* WT
693 *MAPT* KD iPSCs. Three independent wells of neurons were harvested after one week of
694 differentiation. pTau and total tau levels were analyzed by Western blot. **(G)** Quantification of
695 the western blot in (F). Band intensities were normalized to actin and to the WT tau
696 overexpression line. Significance was calculated using two-way ANOVA with Dunnet's multiple
697 comparisons test. **(H)** Kinase activity analysis from phosphorylation changes in neurons after
698 one week of differentiation with the homozygous *MAPT* V337M mutation (*MAPT* Hom) vs.
699 isogenic controls (*MAPT* WT). The \log_2 fold change of phosphopeptide abundance for annotated
700 kinase substrates is plotted. The range is represented by the thin lines, the box represents the
701 IQR, and the median is represented by a thick line. **(I)** Heatmap for kinase activity scores from
702 all five phosphoproteomic datasets vs. isogenic controls.

703

704 **Figure 4: CRISPR screens elucidate regulators of tau phosphorylation in neurons. (A)**

705 Pooled genetic screening workflow for tau pS202/pT205 levels in neurons. *MAPT* WT CRISPRi
706 NGN2 iPSCs, *MAPT* Het CRISPRi NGN2 iPSCs or *MAPT* WT CRISPRa NGN2 iPSCs were
707 transduced by lentivirus with a pooled “druggable genome” sgRNA library targeting 2,318 genes
708 enriched for kinases and phosphatases. iPSCs were differentiated into neurons. After two weeks,
709 neurons were fixed, stained with AT8 and sorted for high or low AT8 staining. The high AT8
710 and low AT8 samples were sequenced to determine which sgRNAs were enriched in either
711 fraction. **(B)** Scatter plot comparing CRISPRi screens in *MAPT* Het neurons vs. *MAPT* WT
712 neurons. AT8 non-hits are labeled with grey circles, AT8 hits that also modify tau levels (using
713 the T22 antibody as a surrogate for total tau levels) are labeled with “+”, and AT8-specific hits
714 are labeled with black circles. Top genotype-specific hits are labeled in black, and key pathways
715 are labeled in green (cytoskeleton), purple (Neuron projection development) and blue (p38
716 MAPK pathway). **(C)** Rank plot showing the results of the CRISPRa screen in *MAPT* WT
717 neurons. AT8 non-hits are labeled in grey and AT8 hits are labeled in black. Hits that are
718 cytoskeleton-related genes are labeled in green and hits that are related to neuron projection
719 development are labeled in purple. **(D)** Detected tau phosphosites are mapped to the phenotype
720 of known tau kinases from the CRISPRi/a screens. Tau phosphosites that were significantly
721 different in either *MAPT* Hom or *MAPT* Het neurons vs. *MAPT* WT are indicated with blue
722 text/boxes. Kinases whose knockdown or overexpression perturb tau phosphorylation at
723 S202/T205 are indicated by red text/boxes. Overlap between significant kinases and differential
724 phosphorylations are indicated by purple boxes. Grey boxes indicate phosphorylations by known
725 tau kinases that are not significantly differential or involved in tau pS202/T205. References for
726 known tau kinase activity are indicated by the kinase name.

727

728

729 **References**

- 730 1. Alzheimer, A., *Über eigenartige Erkrankung der Hirnrinde*. All Z Psychiatr, 1907.
731 **64**: p. 146–148.
- 732 2. Malpetti, M., R. Joie, and G.D. Rabinovici, *Tau Beats Amyloid in Predicting Brain*
733 *Atrophy in Alzheimer Disease: Implications for Prognosis and Clinical Trials*. J
734 Nucl Med, 2022. **63**(6): p. 830–832.
- 735 3. Wu, L., et al., *Early-onset familial Alzheimer's disease (EOFAD)*. Can J Neurol
736 Sci, 2012. **39**(4): p. 436–45.
- 737 4. Wang, Y. and E. Mandelkow, *Tau in physiology and pathology*. Nat Rev Neurosci,
738 2016. **17**(1): p. 5–21.
- 739 5. Silva, M.C., et al., *Human iPSC-Derived Neuronal Model of Tau-A152T*
740 *Frontotemporal Dementia Reveals Tau-Mediated Mechanisms of Neuronal*
741 *Vulnerability*. Stem Cell Reports, 2016. **7**(3): p. 325–340.
- 742 6. Ash, P.E.A., et al., *TIA1 potentiates tau phase separation and promotes*
743 *generation of toxic oligomeric tau*. Proc Natl Acad Sci U S A, 2021. **118**(9).
- 744 7. Jiang, L., et al., *Interaction of tau with HNRNPA2B1 and N(6)-methyladenosine*
745 *RNA mediates the progression of tauopathy*. Mol Cell, 2021. **81**(20): p. 4209–
746 4227 e12.
- 747 8. Lester, E., et al., *Tau aggregates are RNA-protein assemblies that mislocalize*
748 *multiple nuclear speckle components*. Neuron, 2021. **109**(10): p. 1675–1691 e9.
- 749 9. Bowles, K.R., et al., *ELavl4, splicing, and glutamatergic dysfunction precede*
750 *neuron loss in MAPT mutation cerebral organoids*. Cell, 2021. **184**(17): p. 4547–
751 4563 e17.
- 752 10. Dickson, J.R., M.P. Frosch, and B.T. Hyman, *Altered localization of nucleoporin*
753 *98 in primary tauopathies*. Brain Commun, 2023. **5**(1): p. fcac334.
- 754 11. Frost, B., F.H. Bardai, and M.B. Feany, *Lamin Dysfunction Mediates*
755 *Neurodegeneration in Tauopathies*. Curr Biol, 2016. **26**(1): p. 129–36.
- 756 12. Paonessa, F., et al., *Microtubules Deform the Nuclear Membrane and Disrupt*
757 *Nucleocytoplasmic Transport in Tau-Mediated Frontotemporal Dementia*. Cell
758 Rep, 2019. **26**(3): p. 582–593 e5.
- 759 13. Stamer, K., et al., *Tau blocks traffic of organelles, neurofilaments, and APP*
760 *vesicles in neurons and enhances oxidative stress*. J Cell Biol, 2002. **156**(6): p.
761 1051–63.
- 762 14. Vossel, K.A., et al., *Tau reduction prevents Abeta-induced axonal transport*
763 *deficits by blocking activation of GSK3beta*. J Cell Biol, 2015. **209**(3): p. 419–33.
- 764 15. DuBoff, B., J. Gotz, and M.B. Feany, *Tau promotes neurodegeneration via DRP1*
765 *mislocalization in vivo*. Neuron, 2012. **75**(4): p. 618–32.
- 766 16. Caballero, B., et al., *Acetylated tau inhibits chaperone-mediated autophagy and*
767 *promotes tau pathology propagation in mice*. Nat Commun, 2021. **12**(1): p. 2238.
- 768 17. Sohn, P.D., et al., *Pathogenic Tau Impairs Axon Initial Segment Plasticity and*
769 *Excitability Homeostasis*. Neuron, 2019. **104**(3): p. 458–470 e5.

770 18. Chang, C.W., et al., *Tau reduction affects excitatory and inhibitory neurons*
771 *differently, reduces excitation/inhibition ratios, and counteracts network*
772 *hypersynchrony*. *Cell Rep*, 2021. **37**(3): p. 109855.

773 19. Ittner, L.M., et al., *Dendritic function of tau mediates amyloid-beta toxicity in*
774 *Alzheimer's disease mouse models*. *Cell*, 2010. **142**(3): p. 387–97.

775 20. Miyamoto, T., et al., *Phosphorylation of tau at Y18, but not tau-fyn binding, is*
776 *required for tau to modulate NMDA receptor-dependent excitotoxicity in primary*
777 *neuronal culture*. *Mol Neurodegener*, 2017. **12**(1): p. 41.

778 21. Roberson, E.D., et al., *Reducing endogenous tau ameliorates amyloid beta-*
779 *induced deficits in an Alzheimer's disease mouse model*. *Science*, 2007.
780 **316**(5825): p. 750–4.

781 22. Chang, C.W., E. Shao, and L. Mucke, *Tau: Enabler of diverse brain disorders and*
782 *target of rapidly evolving therapeutic strategies*. *Science*, 2021. **371**(6532).

783 23. Karch, C.M., et al., *A Comprehensive Resource for Induced Pluripotent Stem*
784 *Cells from Patients with Primary Tauopathies*. *Stem Cell Reports*, 2019. **13**(5): p.
785 939–955.

786 24. Andres-Benito, P., et al., *Deregulated Transcription and Proteostasis in Adult*
787 *mapt Knockout Mouse*. *Int J Mol Sci*, 2023. **24**(7).

788 25. Ferrer, I., et al., *Dysregulated Protein Phosphorylation in a Mouse Model of*
789 *FTLD-Tau*. *J Neuropathol Exp Neurol*, 2022. **81**(9): p. 696–706.

790 26. Miyaoka, Y., et al., *Isolation of single-base genome-edited human iPS cells*
791 *without antibiotic selection*. *Nat Methods*, 2014. **11**(3): p. 291–3.

792 27. Dujardin, S., et al., *Tau molecular diversity contributes to clinical heterogeneity in*
793 *Alzheimer's disease*. *Nat Med*, 2020. **26**(8): p. 1256–1263.

794 28. Wesseling, H., et al., *Tau PTM Profiles Identify Patient Heterogeneity and Stages*
795 *of Alzheimer's Disease*. *Cell*, 2020. **183**(6): p. 1699–1713 e13.

796 29. Wegmann, S., J. Biernat, and E. Mandelkow, *A current view on Tau protein*
797 *phosphorylation in Alzheimer's disease*. *Curr Opin Neurobiol*, 2021. **69**: p. 131–
798 138.

799 30. Sergeant, N., et al., *Biochemistry of Tau in Alzheimer's disease and related*
800 *neurological disorders*. *Expert Rev Proteomics*, 2008. **5**(2): p. 207–24.

801 31. Yoshimura, Y., T. Ichinose, and T. Yamauchi, *Phosphorylation of tau protein to*
802 *sites found in Alzheimer's disease brain is catalyzed by Ca2+/calmodulin-*
803 *dependent protein kinase II as demonstrated tandem mass spectrometry*.
804 *Neurosci Lett*, 2003. **353**(3): p. 185–8.

805 32. Derkinderen, P., et al., *Tyrosine 394 is phosphorylated in Alzheimer's paired*
806 *helical filament tau and in fetal tau with c-Abl as the candidate tyrosine kinase*. *J*
807 *Neurosci*, 2005. **25**(28): p. 6584–93.

808 33. Scales, T.M., et al., *Tyrosine phosphorylation of tau by the SRC family kinases*
809 *Ick and fyn*. *Mol Neurodegener*, 2011. **6**: p. 12.

810 34. Abreha, M.H., et al., *TBK1 interacts with tau and enhances neurodegeneration in*
811 *tauopathy*. *J Biol Chem*, 2021. **296**: p. 100760.

812 35. Roth, A., et al., *Comprehensive Characterization of CK1delta-Mediated Tau*
813 *Phosphorylation in Alzheimer's Disease*. *Front Mol Biosci*, 2022. **9**: p. 872171.

814 36. Horlbeck, M.A., et al., *Compact and highly active next-generation libraries for*
815 *CRISPR-mediated gene repression and activation*. *Elife*, 2016. **5**.

816 37. Samelson, A.J., et al., *CRISPR screens in iPSC-derived neurons reveal*
817 *principles of tau proteostasis*. bioRxiv, 2023.

818 38. Nishimura, I., Y. Yang, and B. Lu, *PAR-1 kinase plays an initiator role in a*
819 *temporally ordered phosphorylation process that confers tau toxicity in*
820 *Drosophila*. Cell, 2004. **116**(5): p. 671–82.

821 39. Caceres, A., S. Potrebic, and K.S. Kosik, *The effect of tau antisense*
822 *oligonucleotides on neurite formation of cultured cerebellar macroneurons*. J
823 Neurosci, 1991. **11**(6): p. 1515–23.

824 40. Caceres, A. and K.S. Kosik, *Inhibition of neurite polarity by tau antisense*
825 *oligonucleotides in primary cerebellar neurons*. Nature, 1990. **343**(6257): p. 461–
826 3.

827 41. Morris, S.L. and S.T. Brady, *Tau phosphorylation and PAD exposure in regulation*
828 *of axonal growth*. Front Cell Dev Biol, 2022. **10**: p. 1023418.

829 42. Buchholz, S., et al., *The tau isoform 1N4R confers vulnerability of MAPT*
830 *knockout human iPSC-derived neurons to amyloid beta and phosphorylated tau-*
831 *induced neuronal dysfunction*. Alzheimers Dement, 2025: p. e14403.

832 43. Harada, A., et al., *Altered microtubule organization in small-calibre axons of mice*
833 *lacking tau protein*. Nature, 1994. **369**(6480): p. 488–91.

834 44. Takei, Y., et al., *Defects in axonal elongation and neuronal migration in mice with*
835 *disrupted tau and map1b genes*. J Cell Biol, 2000. **150**(5): p. 989–1000.

836 45. Dawson, H.N., et al., *Inhibition of neuronal maturation in primary hippocampal*
837 *neurons from tau deficient mice*. J Cell Sci, 2001. **114**(Pt 6): p. 1179–87.

838 46. Biswas, S. and K. Kalil, *The Microtubule-Associated Protein Tau Mediates the*
839 *Organization of Microtubules and Their Dynamic Exploration of Actin-Rich*
840 *Lamellipodia and Filopodia of Cortical Growth Cones*. J Neurosci, 2018. **38**(2): p.
841 291–307.

842 47. Padmanabhan, P., et al., *Frontotemporal dementia mutant Tau promotes*
843 *aberrant Fyn nanoclustering in hippocampal dendritic spines*. Elife, 2019. **8**.

844 48. Tan, D.C.S., et al., *Generation of a New Tau Knockout (tauDeltaex1) Line Using*
845 *CRISPR/Cas9 Genome Editing in Mice*. J Alzheimers Dis, 2018. **62**(2): p. 571–
846 578.

847 49. Li, Z., et al., *Seizure resistance without parkinsonism in aged mice after tau*
848 *reduction*. Neurobiol Aging, 2014. **35**(11): p. 2617–2624.

849 50. Gheyara, A.L., et al., *Tau reduction prevents disease in a mouse model of Dravet*
850 *syndrome*. Ann Neurol, 2014. **76**(3): p. 443–56.

851 51. DeVos, S.L., et al., *Antisense reduction of tau in adult mice protects against*
852 *seizures*. J Neurosci, 2013. **33**(31): p. 12887–97.

853 52. Velazquez, R., et al., *Acute tau knockdown in the hippocampus of adult mice*
854 *causes learning and memory deficits*. Aging Cell, 2018. **17**(4): p. e12775.

855 53. Oberrauch, S., et al., *Reward motivation and cognitive flexibility in tau null-*
856 *mutation mice*. Neurobiol Aging, 2021. **100**: p. 106–117.

857 54. Ikegami, S., A. Harada, and N. Hirokawa, *Muscle weakness, hyperactivity, and*
858 *impairment in fear conditioning in tau-deficient mice*. Neurosci Lett, 2000. **279**(3):
859 p. 129–32.

860 55. Goncalves, R.A., et al., *Behavioral Abnormalities in Knockout and Humanized*
861 *Tau Mice*. Front Endocrinol (Lausanne), 2020. **11**: p. 124.

862 56. Cheng, J.S., et al., *Tau reduction diminishes spatial learning and memory deficits*
863 *after mild repetitive traumatic brain injury in mice*. PLoS One, 2014. **9**(12): p.
864 e115765.

865 57. Ahmed, T., et al., *Cognition and hippocampal synaptic plasticity in mice with a*
866 *homozygous tau deletion*. Neurobiol Aging, 2014. **35**(11): p. 2474–2478.

867 58. Morris, M., et al., *Age-appropriate cognition and subtle dopamine-independent*
868 *motor deficits in aged tau knockout mice*. Neurobiol Aging, 2013. **34**(6): p. 1523–
869 9.

870 59. Lei, P., et al., *Motor and cognitive deficits in aged tau knockout mice in two*
871 *background strains*. Mol Neurodegener, 2014. **9**: p. 29.

872 60. Kimura, T., et al., *Microtubule-associated protein tau is essential for long-term*
873 *depression in the hippocampus*. Philos Trans R Soc Lond B Biol Sci, 2014.
874 **369**(1633): p. 20130144.

875 61. Regan, P., et al., *Tau phosphorylation at serine 396 residue is required for*
876 *hippocampal LTD*. J Neurosci, 2015. **35**(12): p. 4804–12.

877 62. Boekhoorn, K., et al., *Improved long-term potentiation and memory in young tau-*
878 *P301L transgenic mice before onset of hyperphosphorylation and tauopathy*. J
879 Neurosci, 2006. **26**(13): p. 3514–23.

880 63. Blauwendraat, C., et al., *Parkinson's disease age at onset genome-wide*
881 *association study: Defining heritability, genetic loci, and alpha-synuclein*
882 *mechanisms*. Mov Disord, 2019. **34**(6): p. 866–875.

883 64. Ye, H., et al., *Genetics and Pathogenesis of Parkinson's Syndrome*. Annu Rev
884 Pathol, 2023. **18**: p. 95–121.

885 65. Finger, E., et al., *Neurodevelopmental effects of genetic frontotemporal dementia*
886 *in young adult mutation carriers*. Brain, 2023. **146**(5): p. 2120–2131.

887 66. Geschwind, D.H., et al., *Dementia and neurodevelopmental predisposition:*
888 *cognitive dysfunction in presymptomatic subjects precedes dementia by decades*
889 *in frontotemporal dementia*. Ann Neurol, 2001. **50**(6): p. 741–6.

890 67. Nakamura, M., et al., *Pathological Progression Induced by the Frontotemporal*
891 *Dementia-Associated R406W Tau Mutation in Patient-Derived iPSCs*. Stem Cell
892 Reports, 2019. **13**(4): p. 684–699.

893 68. Brion, J.P., et al., *Developmental changes in tau phosphorylation: fetal tau is*
894 *transiently phosphorylated in a manner similar to paired helical filament-tau*
895 *characteristic of Alzheimer's disease*. J Neurochem, 1993. **61**(6): p. 2071–80.

896 69. Goedert, M., et al., *The abnormal phosphorylation of tau protein at Ser-202 in*
897 *Alzheimer disease recapitulates phosphorylation during development*. Proc Natl
898 Acad Sci U S A, 1993. **90**(11): p. 5066–70.

899 70. Naseri, N.N., et al., *Specific Combinations of Physiological Tau Phosphorylation*
900 *Regulate Tau-Microtubule Interactions in Developing Neurons*. bioRxiv, 2025.

901 71. Ehrlich, M., et al., *Distinct Neurodegenerative Changes in an Induced Pluripotent*
902 *Stem Cell Model of Frontotemporal Dementia Linked to Mutant TAU Protein*.
903 Stem Cell Reports, 2015. **5**(1): p. 83–96.

904 72. Mutreja, Y., B. Combs, and T.C. Gamblin, *FTDP-17 Mutations Alter the*
905 *Aggregation and Microtubule Stabilization Propensity of Tau in an Isoform-*
906 *Specific Fashion*. Biochemistry, 2019. **58**(6): p. 742–754.

907 73. Hong, M., et al., *Mutation-specific functional impairments in distinct tau isoforms*
908 *of hereditary FTDP-17*. Science, 1998. **282**(5395): p. 1914–7.

909 74. Hasegawa, M., M.J. Smith, and M. Goedert, *Tau proteins with FTDP-17*
910 *mutations have a reduced ability to promote microtubule assembly*. FEBS Lett, 1998. **437**(3): p. 207–10.

911 75. DeTure, M., et al., *Missense tau mutations identified in FTDP-17 have a small*
912 *effect on tau-microtubule interactions*. Brain Res, 2000. **853**(1): p. 5–14.

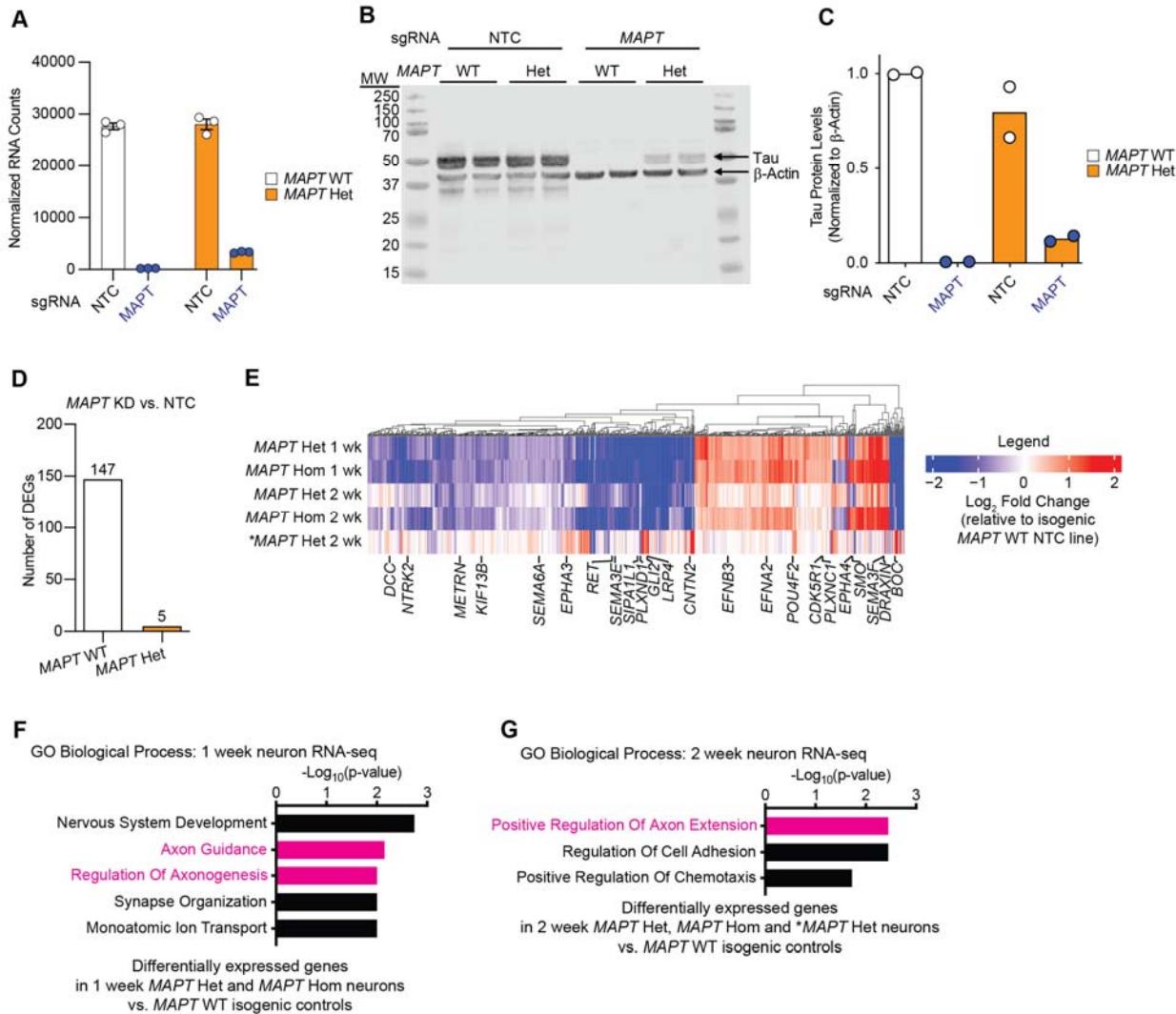
913 76. Combs, B. and T.C. Gamblin, *FTDP-17 tau mutations induce distinct effects on*
914 *aggregation and microtubule interactions*. Biochemistry, 2012. **51**(43): p. 8597–
915 607.

916 77. Combs, B., K. Voss, and T.C. Gamblin, *Pseudohyperphosphorylation has*
917 *differential effects on polymerization and function of tau isoforms*. Biochemistry, 2011. **50**(44): p. 9446–56.

918 78. Barghorn, S., et al., *Structure, microtubule interactions, and paired helical*
919 *filament aggregation by tau mutants of frontotemporal dementias*. Biochemistry, 2000. **39**(38): p. 11714–21.

920 79. Tian, R., et al., *CRISPR Interference-Based Platform for Multimodal Genetic*
921 *Screens in Human iPSC-Derived Neurons*. Neuron, 2019. **104**(2): p. 239–255
922 e12.

923 80. Cerbini, T., et al., *Transcription activator-like effector nuclease (TALEN)-mediated*
924 *CLYBL targeting enables enhanced transgene expression and one-step*
925 *generation of dual reporter human induced pluripotent stem cell (iPSC) and*
926 *neural stem cell (NSC) lines*. PLoS One, 2015. **10**(1): p. e0116032.


927 81. Fernandopulle, M.S., et al., *Transcription Factor-Mediated Differentiation of*
928 *Human iPSCs into Neurons*. Curr Protoc Cell Biol, 2018. **79**(1): p. e51.

929 82. Oceguera-Yanez, F., et al., *Engineering the AAVS1 locus for consistent and*
930 *scalable transgene expression in human iPSCs and their differentiated*
931 *derivatives*. Methods, 2016. **101**: p. 43–55.

932 83. Corces, M.R., et al., *An improved ATAC-seq protocol reduces background and*
933 *enables interrogation of frozen tissues*. Nat Methods, 2017. **14**(10): p. 959–962.

934 84. Tian, R., et al., *Genome-wide CRISPRi/a screens in human neurons link*
935 *lysosomal failure to ferroptosis*. Nat Neurosci, 2021. **24**(7): p. 1020–1034.

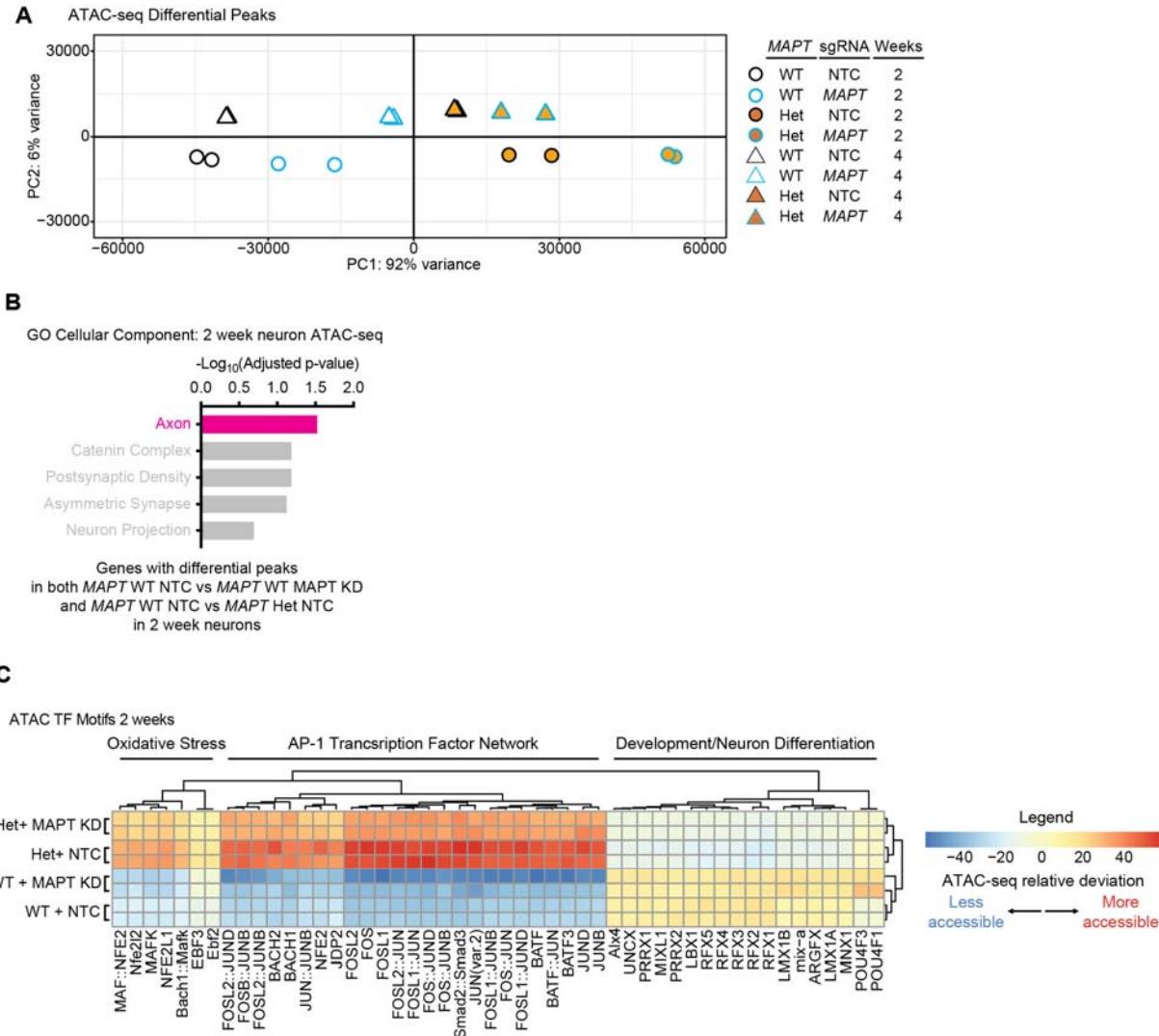
936 85. Chen, E.Y., et al., *Enrichr: interactive and collaborative HTML5 gene list*
937 *enrichment analysis tool*. BMC Bioinformatics, 2013. **14**: p. 128.

941 **Figure S1: V337M tau and tau knockdown perturb gene expression of axonogenesis-related**

942 **genes. (A)** Normalized RNA counts of *MAPT* from the RNA-seq experiment described in Figure

943 1B showing tau knockdown in *MAPT* WT and *MAPT* Het neurons. **(B)** Western blot measuring

944 tau knockdown in *MAPT* WT and *MAPT* Het neurons. Two replicates (individual wells) of


945 neurons were harvested after two weeks of differentiation. **(C)** Quantification of the western blot

946 in (B). **(D)** Bar plot showing the number of differentially expressed genes due to *MAPT* KD in

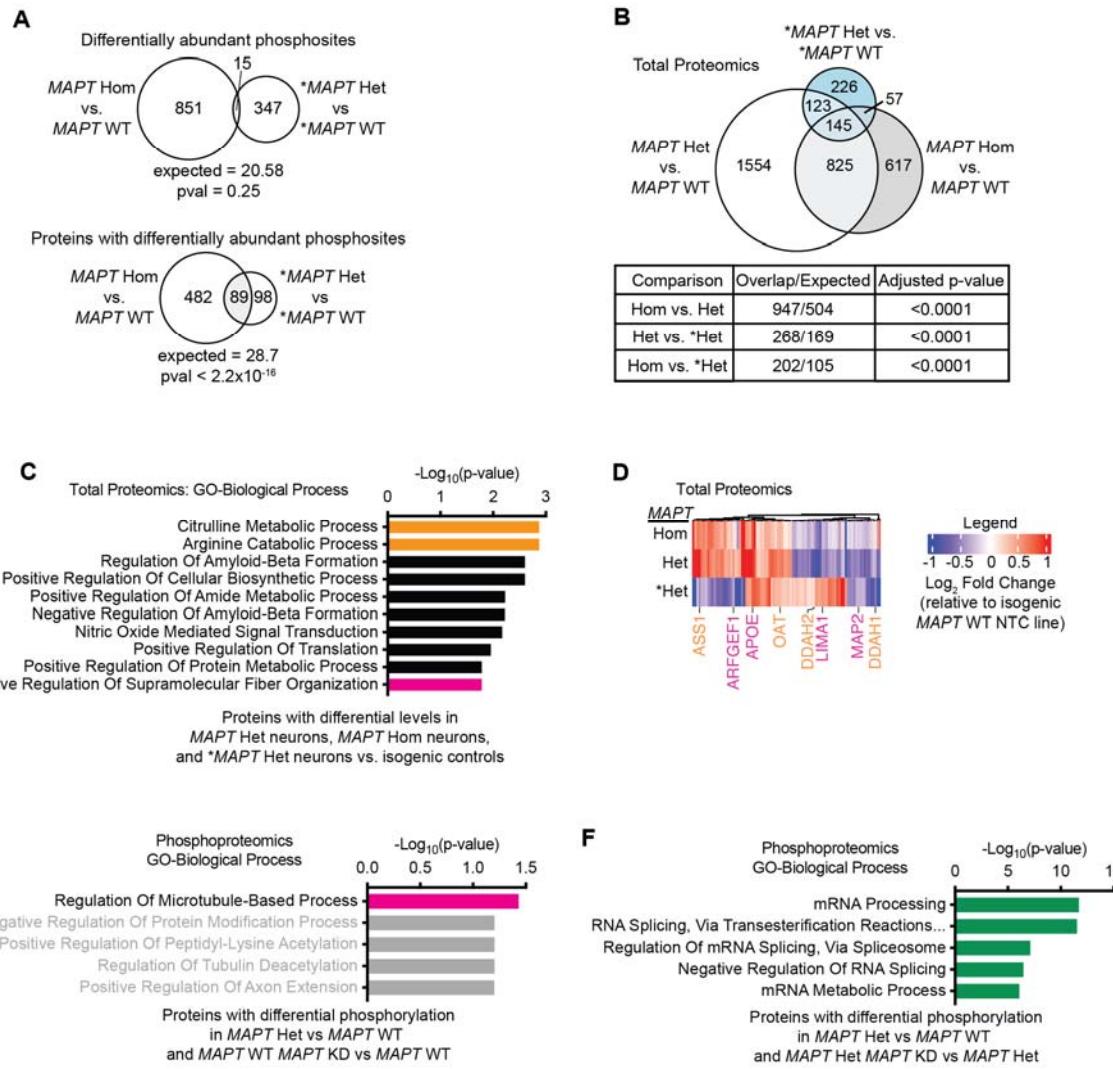
947 either *MAPT* WT or *MAPT* Het neurons. **(E)** Heatmap of RNA-seq from *MAPT* Het, *MAPT* Hom

948 and **MAPT* Het neurons vs. isogenic controls at 1 week or 2 weeks of differentiation.

949 Differentially expressed genes related to axon guidance or axonogenesis are labeled. (F) GO
950 term enrichment analysis of one-week neurons from the RNA-seq experiment in (A). Genes that
951 are differentially expressed in both *MAPT* Het and *MAPT* Hom vs. *MAPT* WT were analyzed
952 with Enrichr, and top terms with minimal overlap were plotted. Pathways related to
953 axonogenesis and neuron morphology are colored magenta. (G) GO term enrichment analysis of
954 two-week old neurons from the RNA-seq experiment in (A). Genes that are differentially
955 expressed in both *MAPT* Het, *MAPT* Hom and **MAPT* Het vs. their isogenic *MAPT* WT controls
956 were analyzed with Enrichr, and top terms with minimal overlap were plotted. Pathways related
957 to axonogenesis and neuron morphology are colored magenta.
958
959
960
961
962
963
964
965
966
967
968
969
970
971

972 **Figure S2: V337M tau and tau knockdown perturb chromatin accessibility of AP-1**
973 **transcription factor network motifs.** (A) PCA plot of ATAC-seq differential peaks at 2 and 4
974 weeks of differentiation. Two replicates (individual wells) of neurons were harvested at each
975 timepoint. (B) GO term enrichment analysis using Cellular Component on genes in 2-week
976 neurons with differential ATAC-seq peaks in both *MAPT* WT *MAPT* KD and *MAPT* Het NTC
977 vs. *MAPT* WT NTC. Non-significant terms are labeled in grey. (C) Heatmap showing the
978 relative deviation of transcription factor motifs with significantly different accessibility in *MAPT*

979 WT and *MAPT* Het neurons +/- tau knockdown. Two replicates (individual wells) of neurons
980 were harvested at two weeks of differentiation. GO term enrichment analysis was used on
981 clusters of transcription factors to categorize clusters.


982

983

984

985

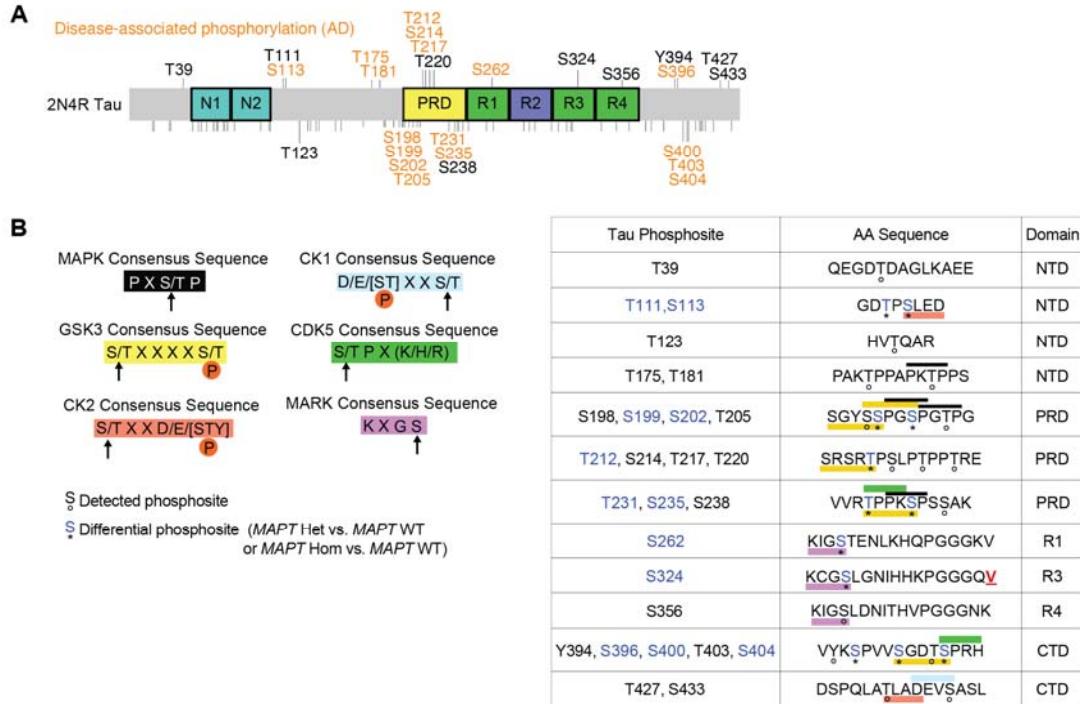
986

987

988 **Figure S3: V337M tau and tau knockdown cause phosphorylation changes in axonogenesis**

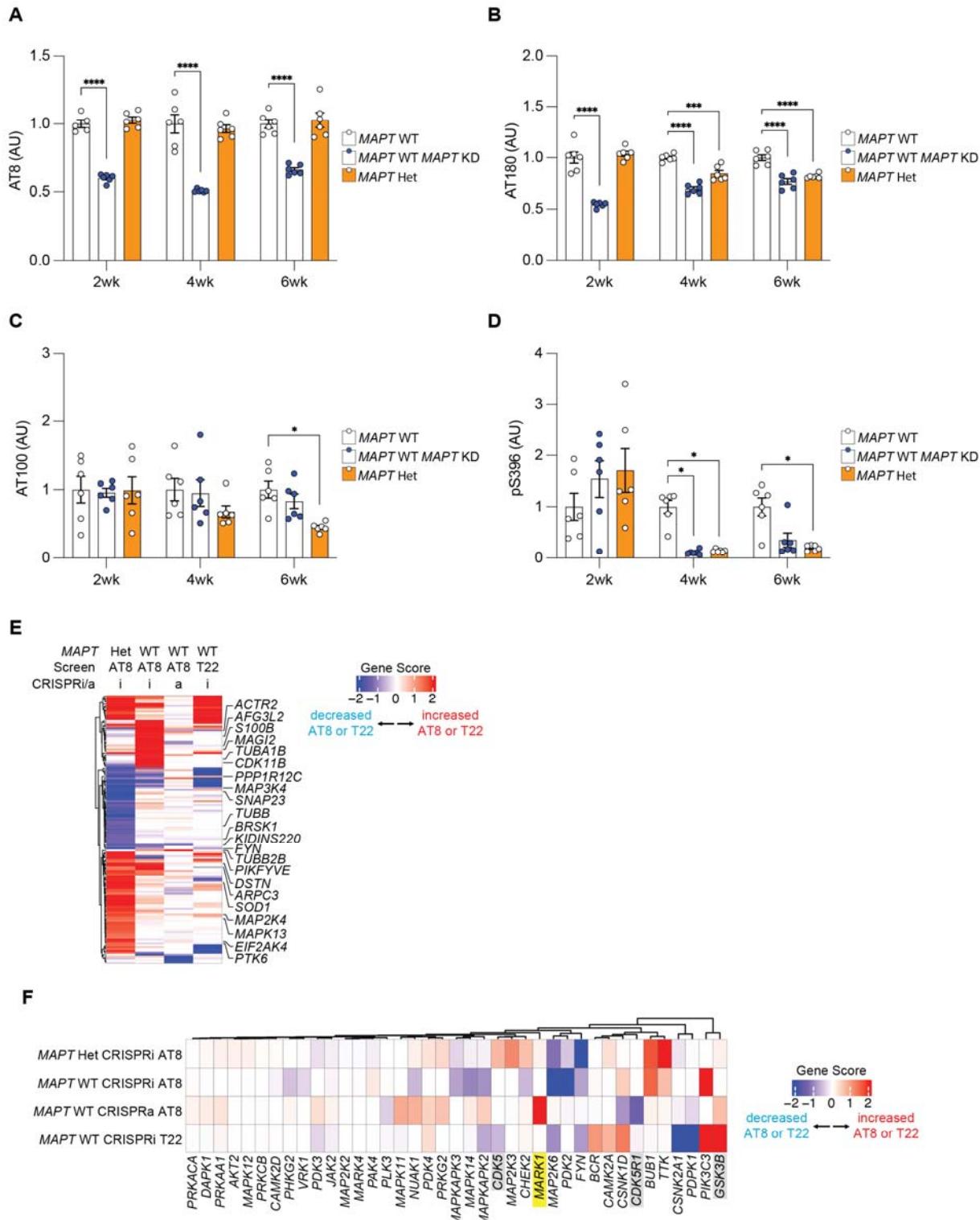
989 **and splicing proteins. (A) (Top)** Overlap between differential phosphosites in neurons derived

990 from iPSCs edited to introduce the homozygous *MAPT* V337M mutation (*MAPT* Hom) vs.


991 isogenic controls (*MAPT* WT). Four replicates (independent 150mm dishes) of neurons for each

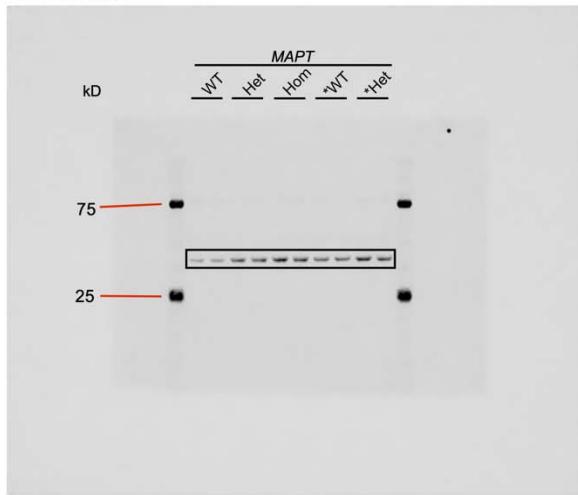
992 genotype/sgRNA combination were harvested after one week of differentiation, and the

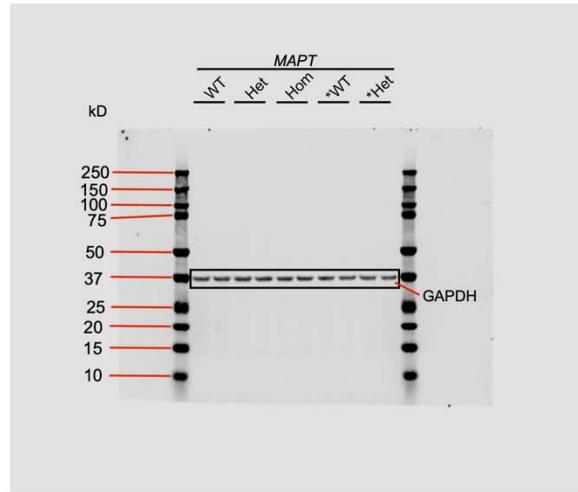
993 phosphoproteome was measured using mass spectrometry. Significance was calculated using


994 Fisher's Exact Test. **(Bottom)** Overlap between proteins with differential phosphorylation in both

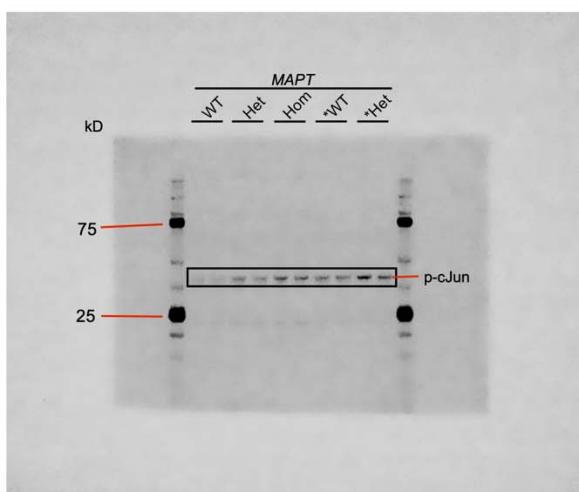
995 datasets. Significance was calculated using Fisher's Exact Test. **(B)** Overlap between proteomic
996 changes in *MAPT* Hom neurons, neurons derived from iPSCs edited to have the heterozygous
997 *MAPT* V337M mutation (*MAPT* Het) and neurons derived from patient iPSCs with the
998 heterozygous *MAPT* V337M mutation (**MAPT* Het) vs. isogenic controls (*MAPT* WT or **MAPT*
999 WT). Four replicates (independent 150mm dishes) of neurons for each genotype/sgRNA
1000 combination were harvested after one week of differentiation, and the total proteome was
1001 measured using mass spectrometry. Significance was calculated using multiple t-tests adjusted
1002 with Šidák single-step correction. Significantly differential proteins in all three datasets were
1003 filtered to identify 145 conserved proteins. **(C)** GO term enrichment of the 145 proteins with
1004 differential abundance in *MAPT* Hom, *MAPT* Het and **MAPT* Het neurons compared to isogenic
1005 controls. Top terms with minimal overlap are shown. Term names are colored to match relevant
1006 gene names in the heatmap in (C). **(D)** Heatmap showing the Log₂ fold change of protein
1007 abundance for the 145 proteins with differential abundance in *MAPT* Hom, *MAPT* Het and
1008 **MAPT* Het neurons vs. isogenic *MAPT* WT neurons. Proteins within enriched GO terms are
1009 labeled and colored according to the shared pathways. **(E)** GO term analysis of phosphoproteins
1010 with differential phosphorylation in *MAPT* Het NTC and *MAPT* WT *MAPT* KD vs. *MAPT* WT
1011 NTC. Non-significant terms are labeled by grey bars. Regulation of Microtubule-based process is
1012 labeled by a magenta bar due to its overlap with axon-related terms. **(F)** GO term analysis of
1013 phosphoproteins with differential phosphorylation in *MAPT* Het NTC vs. *MAPT* WT NTC and
1014 *MAPT* Het *MAPT* KD vs. *MAPT* Het NTC. Terms related to RNA processing and splicing are
1015 marked by green bars.

1016

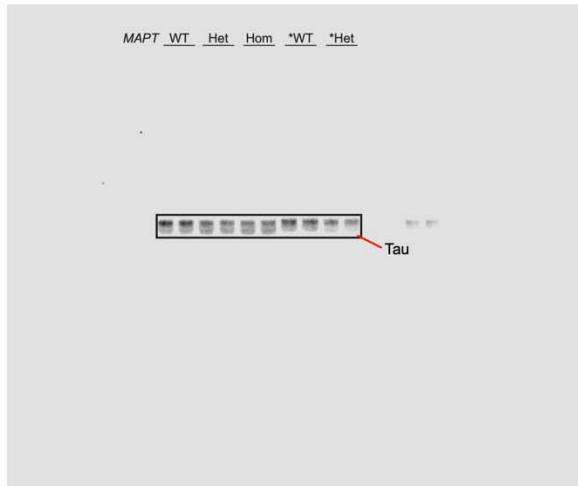

1017 **Figure S4: Neurons with V337M tau have decreased tau phosphorylation at disease-**
1018 **associated phosphorylation sites. (A)** Protein domain map of 2N4R tau. Phosphosites detected
1019 in this study are labeled, with disease-associated phosphorylation sites from AD labeled in
1020 orange. Phosphosites not detected in this study are marked with a small black line and are
1021 unlabeled. Domain abbreviations are as follows: N-terminal inserts (N1,N2), proline rich
1022 domain (PRD), microtubule binding repeats (R1, R2, R3, R4). **(B)** Consensus sequences for tau kinases.
1023 Detected tau phosphosites are shown with their sequence context. Phosphorylation sites that are
1024 differential between either *MAPT* V337M heterozygous (*MAPT* Het) or *MAPT* V337M
1025 homozygous (*MAPT* Hom) are labeled blue with an asterisk, and detected phosphosites are
1026 labeled with an open circle. Kinase consensus sequences are annotated with colored boxes, with
1027 priming sites marked with a “P” in an orange circle. V337 is labeled with a bold/underlined red
1028 V. The domains abbreviated as follows: N-terminal projection domain (NTD), proline rich
1029 domain (PRD), Microtubule binding repeats (R1, R3, R4), C-terminal domain (CTD).


1031 **Figure S5: Functional genomics uncovers regulators of tau phosphorylation in *MAPT* WT**
1032 **and *MAPT* V337M neurons. (A-D)** Bar plots showing the median intensity of AT8 (A), AT180
1033 (B), AT100 (C) and pS396 (D) in 2-week *MAPT* WT, *MAPT* KD and *MAPT* Het neurons. AT8
1034 was selected for CRISPR screening due to high reproducibility across timepoints and AT8
1035 detection in both *MAPT* WT and *MAPT* Het neurons at 2 weeks of differentiaton. **(E)** Heatmap
1036 of hits from the CRISPRi and CRISPRa AT8 screens and the CRISPRi T22 screen. Many of the
1037 AT8 hits from the three screens do not modify T22 levels and are therefore unlikely to be due to
1038 modifying tau levels [37]. Genes related to cytoskeleton, neuron projection development or the
1039 p38 MAPK pathway are annotated. **(F)** Heatmap of AT8 and T22 screens with the kinases
1040 predicted to have differential activity in Figure 3I. Selected kinases predicted to have differential
1041 activity in *MAPT* V337M neurons with particular disease relevance that did not have a
1042 phenotype in the AT8 screens are highlighted with grey boxes. *MARK1* is annotated with a
1043 yellow box.

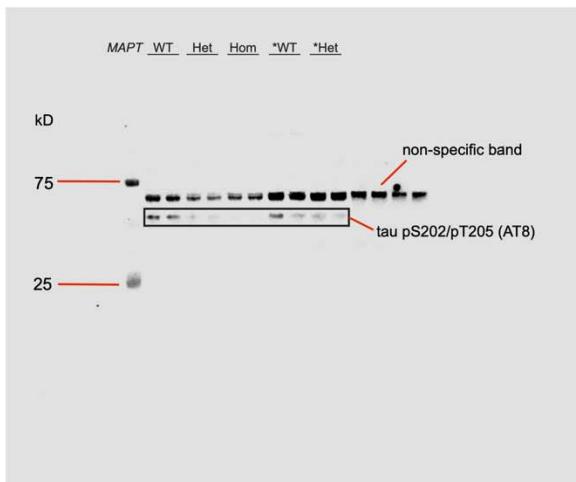
1044


cJun - 800 channel

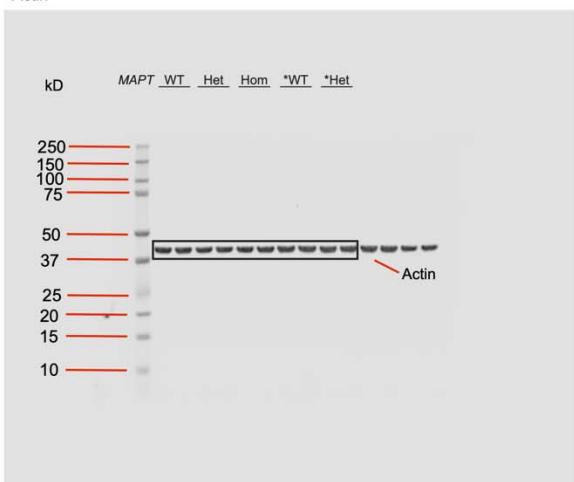
GAPDH - 700 channel



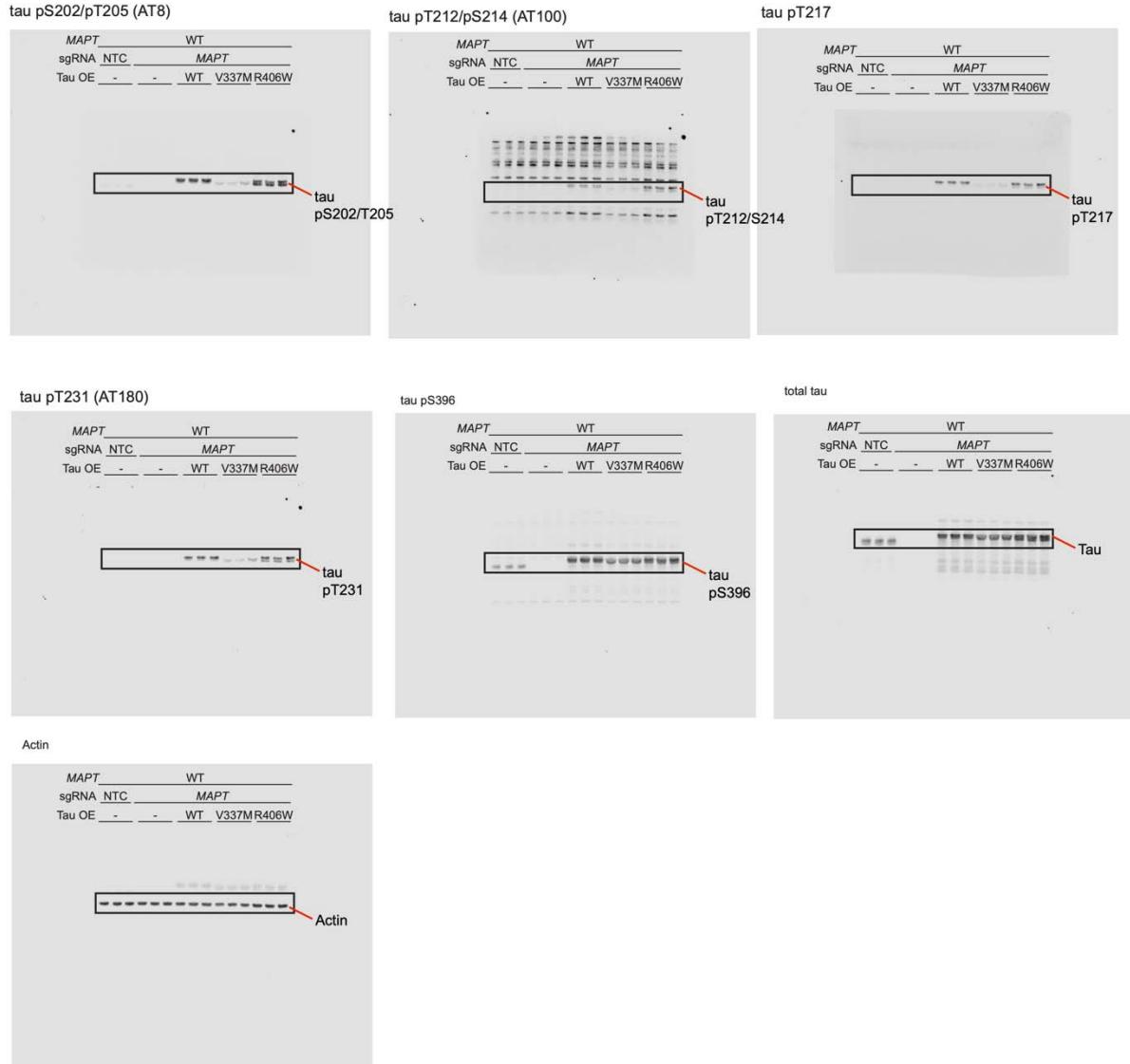
p-cJun - 800 channel



1045
1046
1047 **Source data for Fig. 1F**
1048
1049


tau13

tau pS202/pT205 (AT8)


Actin

1050

1051 **Source data for Fig. 3C**

1052

1053

1054 **Source data for Fig. 3F**