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Abstract

Tau aggregation is a hallmark of several neurodegenerative diseases, including
Alzheimer’ s disease and frontotemporal dementia. There are disease-causing variants of the tau-
encoding gene, MAPT, and the presence of tau aggregatesis highly correlated with disease
progression. However, the molecular mechanisms linking pathological tau to neuronal
dysfunction are not well understood. Thisisin part due to an incomplete understanding of the
normal functions of tau in development and aging, and how the associated molecular and cellular
processes change in the context of causal disease variants of tau. To address these questionsin an
unbiased manner, we conducted multi-omic characterization of iPSC-derived neurons harboring
the MAPT V337M mutation or MAPT knockdown. RNA-seq and phosphoproteomics revealed
that both V337M mutation and tau knockdown perturbed levels of transcripts and
phosphorylation of proteins related to axonogenesis or axon morphology. Surprisingly, we found
that neurons with V337M tau had much lower tau phosphorylation than neurons with WT tau.
Functional genomics screens uncovered regulators of tau phosphorylation in neurons and found
that factorsinvolved in axonogenesis modified tau phosphorylation in both MAPT WT and
MAPT V337M neurons. Intriguingly, the p38 MAPK pathway specifically modified tau
phosphorylation in MAPT V337M neurons. We propose that V337M tau perturbs tau
phosphorylation and axon morphology pathways that are relevant to the normal function of tau,
which could contribute to previously reported cognitive changes in preclinical MAPT variant

carriers.
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Introduction

Neurodegenerative diseases are a growing public health burden and remain very
challenging to treat because we lack a complete understanding of the underlying disease
mechanisms. A common theme in many neurodegenerative diseases is the aggregation of
pathological proteins[1]. Tau aggregation is a hallmark of neurodegenerative diseases
collectively called tauopathies, including Alzheimer’ s disease and frontotemporal dementia. In
Alzheimer’ s disease, tau aggregation and phosphorylation changes correlate better with disease
progression than amyloid beta pathology [2] despite clear genetic evidence linking amyloid beta
to the disease [3]. In frontotemporal dementia, rare causal variants of tau that are fully penetrant
for the disease prove a direct role for tau in disease pathogenesis[4].

Tremendous progress has been made in revealing the diverse molecular and cellular
mechanisms that are disrupted by pathogenic tau. Recent work in human induced pluripotent
stem cell (iPSC)-derived neurons has shown that pathogenic variants of tau sensitize neurons to
different types of cellular stress and that this effect can be rescued by lowering tau levels via
autophagy [5]. Other groups have shown that tau interferes with RNA splicing and stress
granules homeostasis [ 6-9], disrupts the nuclear envelope [10-12], perturbs axonal trafficking
[13, 14] or disrupts mitochondrial dynamics[15]. Acetylated tau has also been shown to disrupt
chaperone mediated autophagy, rerouting tau and other clients to be degraded by other
mechanisms[16]. Pathogenic tau has also been shown to perturb plasticity of the axon initial
segment and cause changes to neuronal excitability [17] and has been implicated in driving
excitotoxicity [9, 18-20]. Many of these data support atau toxic gain-of-function model, and tau
lowering has been successfully shown to be beneficial in cultured neurons and animal models [5,

21]. In fact, tau lowering is currently being tested in the clinic by antibodies and ASOs [22].


https://doi.org/10.1101/2024.06.04.597496
http://creativecommons.org/licenses/by/4.0/

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.04.597496; this version posted September 9, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

These focused studies have linked tau to diverse cellular processes that go awry in
neurodegeneration. However, there are few unbiased and comprehensive studies that examine
phenotypes on multiple intracellular levels or with respect to normal tau function, leaving many
open questions about the direct effects of pathogenic tau and how diverse cellular phenotypes
interact.

To characterize the earliest changes that pathogenic tau causes in human neurons and to
understand mechanistically how pathogenic tau causes human disease, we used a multi-omic
approach to unbiasedly determine the cdllular phenotypes linked to pathogenic tau. We modeled
pathogenic tau by using human iPSC-derived neurons with the MAPT V337M mutation, a known
cause of frontotemporal dementia. We used two sets of iPSCs, one from a healthy donor
(WTC11) and one from a patient with the MAPT V337M mutation (GIH6C1) [17, 23].

Our RNA-seq, ATAC-seq, proteomics and phosphoproteomics results all point to
changes in axonogenesis due to the MAPT V337M mutation. Recently published mouse
phosphoproteomics datasets in tau knockout mice and P301S mice strongly support the link
between tau and axonogenesis factors and intriguingly suggest that these effects are due to tau
loss of function [24, 25]. We have found that tau knockdown and MAPT V337M mutation have
overlapping effects on the levels and phosphorylation of proteins relevant to axonogenesis and
axon morphology, suggesting that the mutation perturbs a normal function of tau. MAPT V337M
neurons have hypophosphorylated tau, which is recapitulated by artificially overexpressing
V337M tau but not WT or R406W tau in neurons with endogenous tau knockdown. Unbiased
CRISPR screens for regulators of tau phosphorylation uncovered axonogenesis-related regulators
of tau phosphorylation and show that the p38 MAPK pathway may play arole in modifying tau

phosphorylation specifically in V337M neurons. We propose that V337M tau perturbs tau
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phosphorylation and axon morphology pathways that are relevant to the normal function of tau,
which could contribute to previously reported cognitive changesin preclinical MAPT variant

carriers.

Results
MAPT V337M and MAPT knockdown perturb the transcription of axonogenesis-related genes
iPSCs generated from a healthy individual (WTC11, referred to as MAPT WT [26]) or an
FTD patient with the MAPT V337M mutation (GIH6CL, referred to as*MAPT Het [23]) were
edited in previous work [17, 23] with Cas9 to generate isogenic pairs either introducing or
correcting the MAPT V337M mutation (Fig. 1A). The MAPT WT iPSCs were edited with Cas9
to generate a heterozygous MAPT V337M/WT clone (MAPT Het) and homozygous MAPT
V337M/V337M clone (MAPT Hom). The * MAPT Het iPSCs were corrected with Cas9 to
generate a MAPT WT/WT clone (*MAPT WT). We engineered the GIH6CL lines to introduce a
doxycycline-inducible Ngn2 for neuronal differentiation and CRISPRi machinery. We
transduced the iIPSCs with lentiviral sSgRNAs targeting MAPT to knockdown tau or non-targeting
control (NTC) sgRNASs for further mechanistic characterization (Figure S1A-C).

RNA-seq of neurons harvested at 2 and 4 weeks of differentiation revealed overlap
between effectsin MAPT Het neurons and MAPT WT tau knockdown neurons (Figure 1B).
Genes that were differentially expressed in MAPT Het neurons and MAPT WT tau knockdown
neurons were significantly enriched for regulators of axonogenesis (Figure 1C). Knocking down
tau in MAPT Het neurons resulted in only five differentially expressed genes (Figure S1D).

Differentially expressed genesin MAPT Hom and * MAPT Het neurons compared to isogenic
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controls were also significantly enriched for regulators of axonogenesis, even at one week of
differentiation (Figure S1E-G). While many of the same transcripts relevant to axonogenesis are
perturbed in *MAPT Het and MAPT Het, we did not see a high level of concordance in direction
of change (Figure S1E). On the other hand, the changesin MAPT Het and MAPT Hom are
extremely similar, suggesting high concordance between distinct clones in the same genetic
background.

ATAC-seq at 2 and 4 weeks of differentiation showed similar patterns as the RNA-seq
(Figure 1D, Figure S2A), and genes with differentially accessible peaks proximal to their
transcription start site (TSS) were enriched for axon-related genes (Figure S2B). Transcription
factor motif analysis showed that motifs for the AP-1 Transcription factor network, which
includes the cJun family of transcription factors, were consistently more accessiblein MAPT Het
and MAPT WT tau knockdown neurons compared to controls (Figure 1E, Figure S2C).
Supporting the validity of the ATAC-seq results, we found that both p-cJun and cJun are
increased in MAPT Het, MAPT Hom and * MAPT Het neurons vs. isogenic controls (Figure 1F-
H). MAPT V337M and tau knockdown induce overlapping changes in chromatin accessibility
and transcription of axonogenesis-related genes, suggesting that some phenotypesin MAPT

V337M neurons are relevant to normal tau function.

MAPT V337M and tau knockdown perturb phosphorylation of axonogenesis-related proteins
We hypothesized that changesin cJun and p-Jun may reflect broad changesin

intracellular signaling caused by V337M tau. To identify shiftsin signaling occurring at

relatively early stages of axonogenesis, we determined the total proteome and phosphoproteome

of 1 week neurons with MAPT V337M and/or tau knockdown by mass spectrometry.
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Phosphoproteomic analysis of MAPT V337M neurons confirmed elevated p-cJun levels while
also uncovering differential phosphorylation of proteins regulating neuron projection
development and splicing (Figure 2A,C). There was significant overlap in the proteins with
differential phosphorylation between MAPT Hom, MAPT Het and * MAPT Het neurons vs.
isogenic controls (Figure 2B), though the identities of the differential phosphosites varied
between conditions (Figure S3A). Gene set enrichment analysis for the 56 conserved proteins
with changes in phosphorylation in MAPT V337M neurons showed that the top enriched terms
were related to neuron projection development (Figure 2C). The total protein levels for many of
these factors were not significantly changed, suggesting that these changes are due to specific
signaling events altering phosphorylation patterns, rather than just changes in protein levels
(Figure S3B-D).

We next compared our phosphoproteomic datasets to recently published mouse
phosphoproteomic datasets using tau knockout mice [24] or P301S tau mice [25]. We found
significant overlap for proteins with differential phosphorylation in our data and the tau knockout
mice but not with the P301S mice (Figure 2D). However, we also noted that there was significant
overlap between the tau knockout mice and the P301S mice. Gene set enrichment analysis
identified substantial enrichment of axonogenesis-related protein phosphorylation changes in the
45 conserved proteins with differential phosphorylation in MAPT V337M neurons, tau knockout
mice, and P301S tau mice (Figure 2E). When we determined an even more focused set of
proteinsthat also have differential phosphorylation in MAPT V337M homozygous and MAPT
V337M heterozygous neurons from patient iPSCs, we found a core network of proteinsin highly

related pathways regulating neuron morphogenesis and polarity (Figure 2F), including ANK3 and
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MAPRE3. ANK3 and MAPRE3 were recently identified to be important for V337M tau-induced
defectsin axon initial segment plasticity [17].

We observed two patterns of protein phosphorylation changes due to tau knockdown
(Figure 2G). Many phosphorylation changes were specific to either tau knockdown in the MAPT
WT neurons or the MAPT V337M neurons. When we performed gene set enrichment analysis on
proteins with differential phosphorylation in MAPT WT tau knockdown neurons, the only
significantly enriched term was “ Regulation of microtubule-based process,” with many of these
proteins being involved in axonogenesis (Figure S3E). Gene set enrichment analysis of proteins
with differential phosphorylation in MAPT V337M tau knockdown compared to MAPT V337M
showed that splicing factors were predominantly affected, whereas cytoskeletal and

axonogenesis proteins were not perturbed (Figure S3F).

V337M tau is hypophosphorylated in neurons

We observed that MAPT V337M neurons had lower tau phosphorylation compared to
WT across all domains of the protein at many sites (Figure 3A and 3B) and validated these
changes by western blot in all sets of neurons (Figure 3C-E). Many of the differential
phosphorylation sites are known to be hyperphosphorylated in Alzheimer’s disease and other
tauopathies [27-29] (Figure H4A).

To further explore how V337M tau may have decreased phosphorylation in neurons, we
overexpressed WT tau, V337M tau or R406W tau in MAPT WT neurons with endogenous tau
knocked down. Consistent with our phosphoproteomics results, V337M tau had decreased
phosphorylation at numerous sites despite having similar tau levelsto WT tau and R406W tau

(Figure 3F,G). Intriguingly, R406W tau only had decreased phosphorylation at some of these
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sites. These data suggest tau variants affect tau phosphorylation in neurons via distinct
mechanisms.

Extensive work has been done to characterize tau phosphorylation sites and map them to
their kinases [30-35]. Proline-directed phosphorylation sites were decreased in MAPT V337M
neurons, many of which serve as priming sites for additional sites of decreased tau
phosphorylation (Figure $4B). Leveraging our global view of phosphorylation changesin MAPT
V337M neurons, we predicted which kinases may have changes in activity based on known
kinase-substrate relationships (Figure 3H). Kinases in the p38 MAPK pathway such as MAP2K3
and MAP2K6 were predicted to have increased activity in MAPT V337M neurons (Figure 3lI).
MAPK11 and MAPK14 targets had increased phosphorylation specifically in MAPT V337M
neurons with tau knockdown, whereas MAPK 12 substrates had decreased phosphorylation
specifically in MAPT WT neurons with tau knockdown. Known tau kinases with well-
documented roles in tauopathy were also predicted to have differential activity, including
GSK3B, CDKS5, and CDK5R1. CDK5 and p38 MAPKs are both proline-directed kinases that are
known to phosphorylate tau at several sitesthat had decreased phosphorylation in MAPT V337M

neurons.

CRISPR screens uncover regulators of tau phosphorylation in neurons

To directly test which kinases perturb tau phosphorylation in MAPT WT and MAPT
V337M neurons, we employed CRISPRI and CRISPRa screens to test the effects of gene
knockdown or overexpression on tau phosphorylation using the AT8 antibody, which detects the
tau pS202/pT205 phosphoepitope (Figure 4A, Figure S5A-D). We transduced iPSCswith a

lentiviral sgRNA library targeting 2,325 genes encoding kinases, phosphatases and other proteins
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in the “druggable genome’ [36]. Two weeks after differentiation, neurons were fixed and stained
with AT8 and sorted based on AT8 signal. Next generation sequencing identified genes that
causally regulate AT8 levels. We filtered out hits for enrichment analysis that also modified T22
levelsin previously published work (Figure S5E) [37]. Cytoskeleton genes and genesinvolved in
neuron proj ection development modified tau phosphorylation in both MAPT WT and MAPT
V337M neurons (Figure 4A,B) without altering T22 levels (Figure S5E). Intriguingly, severa
kinasesin the p38 MAPK pathway altered tau phosphorylation specifically in MAPT V337M
neurons. Other kinases predicted to have differential activity that may have regulated tau
phosphorylation in MAPT V337M neurons did not affect tau pS202/pT205 levels, including
CDKS5, CDK5R1, and G 3B (Figure S5F). We mapped the detected tau phosphorylation sitesin
our neurons to their known kinases based on the literature, overlaying phosphorylation sites that
were differential in MAPT V337M (blue) with kinases whose knockdown or overexpression
modified tau phosphorylation at S202/T205 (red) (Figure 4D). The overlap between differential
tau phosphorylation and kinases that regulate pS202/pT205 in neurons (purple) narrows the list
down to afew candidate kinases. Overexpression of MARK1, a kinase that phosphorylatestau in
the microtubule binding domain and regulates tau’ s interaction with microtubules, caused
increased tau phosphorylation in MAPT WT neurons (Figure 4C). Thisis consistent with
previous work showing that phosphorylation at S262, S324 and S356 affects phosphorylation

sites distal from the microtubule binding domain, such as S202/T205 [38].

Discussion

We have discovered that an FTD-causing variant of tau leads to tau hypophosphorylation

and perturbs axonogenesis pathways in differentiating neurons, overlapping at least in part with

10
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effects seen in tau knockdown. These findings are surprising because disease-associated tau is
typically associated with increased tau phosphorylation and would not be expected to have
shared phenotypic overlap with tau loss. Other groups have shown in mice or in primary neurons
that reducing tau can have varying effects on axonogenesis. Acute tau ablation in mouse neurons
in vitro prevents axonogenesis by inhibiting polarization [39, 40] and tau knockout in primary
hippocampal neurons and human iPSC-derived neurons reduces neurite outgrowth and branching
[41, 42].

The question remains whether aloss of tau function (potentially caused by atau
mutation) would have adverse effects to a disease variant carrier throughout life and with respect
to disease. The function of normal healthy tau is unclear and has been debated for many years.
Thisisin large part due to the many conflicting studies, both in physiological and pathogenic
contexts. Given the earlier results in showing the importance of tau for axonogenesis, it was
expected that knocking out tau in mice would be lethal and that tau would be essential for
neurodevelopment. Early mouse studies showed that tau knockout was surprisingly well
tolerated [43]. There were no obvious defects in polarization or gross morphology, but
microtubulesin small caliber axons were destabilized. Mapla was upregulated in tau knockout
mice, suggesting that the mice were compensating for tau loss. This could explain the difference
in phenotypes as compared to the acute depletion of tau with ASOs. Knocking out tau and
Maplb, another microtubule-associated protein, leads to much more severe phenotypes than
either knockout individually [44]. Dawson et al. disputed the findings of Harada et al. due to
poor WT data[45]. In their work, they found that indeed tau knockout did cause adelay in

neurite outgrowth and axonogenesis.

11


https://doi.org/10.1101/2024.06.04.597496
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.04.597496; this version posted September 9, 2025. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

available under aCC-BY 4.0 International license.

Biswas and Kalil showed that tau knockout neurons had altered microtubule dynamicsin
growth cones, resulting in achange in overall growth cone morphology [46]. Microtubules were
less bundled, and microtubule polymerization directionality as measured by EB3 was more
dispersed in tau knockout neurons. There also was a reduction in tyrosinated tubulin projecting
into the filopodia of the peripheral domain. Another paper showed that tau knockout increased
Fyn mobility in dendrites and lowered Fyn localization in dendrites and spines [47]. Intriguingly,
expressing P301L tau had the opposite effect and anchored or trapped Fyn in dendritic spines.

Many motor and behavioral phenotypes have been observed in tau knockout mice. Tau
knockout mice or mice with acute tau reduction with antisense oligonucleotides have
consistently shown resistance to seizures [21, 48-51]. Another consistent theme is that there are
often behavioral and learning changes in tau knockout mice, including hyperactivity, fear
conditioning, and memory [52-57]. There is more controversy over the effect of tau knockout on
motor function. Some groups report motor deficitsin tau knockout mice [52, 58, 59], while
others claim there are no significant changes in tau knockout mice to motor function [48, 49, 57].
One group showed that tau is essential for long term depression in the hippocampus [60], while
another showed that tau knockout only perturbs long term potentiation [57]. Tau phosphorylation
has also been shown to be required for long term depression [61].

Considering our datain the context of these other findings, we expect that loss-of-
function phenotypes would coincide with the onset of tau expression and axon extension. Tau
loss of function may precede human disease onset by many decades, occurring during
devel opment and continuing through adulthood via perturbed synaptic plasticity. A study showed
that mice with the MAPT P301L mutation show early cognitive changes before tau pathology is

detectable [62]. A Parkinson’s disease GWAS study found that MAPT was a significant risk

12
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locus for Parkinson’s disease that is uncoupled from the age of onset [63]. Y e and colleagues
proposed that tau may drive changes during development or early in life that then increase risk
for Parkinson’ s disease decades later [64]. Two studies have also identified cognitive differences
between MAPT carriers and non-carrier siblings decades before expected disease onset [65, 66].
Our work also emphasized the importance of having iPSCs from multiple individuals and
multiple clones paired with appropriate controls, such as tau knockdown and knockoui.
Furthermore, comparisons to other published data sets revealed previously underappreciated
relationships, including overlapping molecular phenotypes between MAPT knockout and MAPT
P301S mice. It will be fascinating to uncover the mechanisms of these shared signaling pathway
changes and to determineif they are due a shared stress response, or if downstream phenotypes
converge despite unique upstream perturbations. Previous work using different differentiation
protocols and much longer time scales showed that FTD-causing tau variants cause tau
hyperphosphorylation in more mature neurons, suggesting that there is a complex, time-
dependent effect of MAPT mutations on developmental tau phosphorylation patterns. There was
substantial overlap between our RNA-seq findings and a recent paper using MAPT V337M
neuronsin an organoid model, which is interesting because of the observed tau
hyperphosphorylation at the later timepointsin their model [9]. Intriguingly, one other group
reported decreased tau phosphorylation in organoid-derived iPSC neurons with MAPT R406\W.
[67] Earlier work showed that fetal tau was highly phosphorylated during development, but the
precise mechanisms and functions of this process are still unknown.[32, 68-70] Our findings
suggest that at earlier timepoints different tau mutations may behave in unexpected ways and

have complex effects on cellular pathways. [5, 9, 71]

13
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We acknowledge that there are limitations to our study. Our neurons under the conditions
we used only express a single isoform of tau, the fetal isoform ON3R. Understanding how
different tau isoforms are regulated and how they contribute tau function in health and diseaseis
an open question. Additionally, it will be intriguing to understand how different disease variants
of tau perturb neurons. Our data showing phosphorylation differences between WT tau, V337M
tau and R406W tau joins a growing body of literature showing that different mutations have
different effects on tau properties, including microtubule binding, microtubule polymerization,
and fibril formation [72-78]. Our data suggests a potential tau loss of function caused by the
V337M mutation at an early timepoint, but we have not functionally validated if the mutation
causes a change in tau function in neurons.

Beyond the findings presented here, we expect that the data sets we have generated will
continue to be useful to the field as we resolve the plethora of molecular and cellular phenotypes
driven by pathogenic tau in avariety of contexts. Smilarly, although much is still to be learned
about the consequences of dysregulated tau phosphorylation (both loss and gain), our functional

genomic screens could inform the design of tau phosphorylation modulators, perhaps even for

therapy.

Conclusions

Our study aimsto characterize WT, V337M tau and tau knockdown neurons to
understand how tau loss or mutation perturbs neuron biology. We show that V337M tau and tau
knockdown have conserved effectsin RNA-seq, ATAC-seq and phosphoproteomics.
Surprisingly, we found that V337M tau causes tau hypophosphorylation. We performed

functional genomics screensto uncover the regulators of tau phosphorylation in WT and V337M
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tau neurons. V337M tau perturbs axon morphology pathways similarly to tau loss and causes tau
hypophosphorylation, which could contribute to the previously reported cognitive changesin

preclinical MAPT variant carriers.

Materialsand Methods

Human iPSC culture and neuronal differentiation (Adapted from Tian et al. 2021)

Human iPSCs from the WTC11 background were cultured in StemFlex Medium
(GIBCO/Thermo Fisher Scientific; Cat. No. A3349401). Human iPSCs from the GIH6C1
background were cultured in mTeSR Plus medium (StemCell Technologies; Cat. No. 100-0276).
iPSCs were grown in plates or dishes coated with Growth Factor Reduced, Phenol Red-Free,
LDEV-Free Matrigel Basement Membrane Matrix (Corning; Cat. No. 356231) diluted 1:100 in
Knockout DMEM (GIBCO/Thermo Fisher Scientific; Cat. No. 10829-018). StemFlex Medium
was replaced daily. When cells reached 80-90% confluency, cells were dissociated with StemPro
Accutase Cdll Dissociation Reagent (GIBCO/Thermo Fisher Scientific; Cat. No. A11105-01) at
37°C for 5 min, centrifuged at 200 g for 5 min, resuspended in StemFex M edium supplemented
with 10 nM Y -27632 dihydrochloride ROCK inhibitor (Tocris, Cat. No. 125410) and placed
onto Matrigel-coated plates or dishes. Studies at UCSF with human iPSCs were approved by the

Human Gamete, Embryo, and Stem Cell Research (GESCR) Committee.

For individual gene knockdown in CRISPRI iPSCs, sgRNAs were introduced into iPSCsvia

lentiviral delivery. Cells were selected by 1 pg/ml puromycin for 2-4 days and recovered for 2-4

days. Phenotypes were evaluated 5-7 days after infection.

15


https://doi.org/10.1101/2024.06.04.597496
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.04.597496; this version posted September 9, 2025. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

available under aCC-BY 4.0 International license.

The WTC11 CRISPRI iPSC lines were previously engineered to express mMNGN2 under a
doxycycline-inducible system in the AAV S1 safe harbor locus. The GIHEC1 iPSC lines were
engineered in this work to express Ngn2 under a doxycycline-inducible promoter in the AAV S1
safe harbor locus. For their neuronal differentiation, we followed our previously described
protocol [79]. Briefly, iPSCs were pre-differentiated in matrigel-coated plates or dishesin N2
Pre-Differentiation Medium containing the following: Knockout DMEM/F12 (GIBCO/Thermo
Fisher Scientific; Cat. No. 12660-012) as the base, 1X MEM Non-Essential Amino Avids
(GIBCO/Thermo Fisher Scientific; Cat. No. 17502-048), 10 ng/mL NT-3 (PeproTech; Cat. No.
450-03), 10 ng/mL BDNF (PeproTech; Cat. No. 450-02), 1ug/mL Mouse Laminin (Thermo
Fisher Scientific; Cat. No. 23017-015), 10 nM ROCK inhibitor and 2ug/mL doxycycline to
induce the expression of Ngn2. After three days, or Day 0, pre-differentiated cells were
dissociated with accutase and plated into BioCoat Poly-D-Lysine-coated plates or dishes
(Corning; assorted Cat. No.) in Classic N2 neuronal medium or BrainPhys Neuronal Medium.
Classic N2 neurona medium contained the following: half DMEM/F12 (GIBCO/Thermo Fisher
Scientific; Cat. No. 11320-033) and half Neurobasal-A (GIBCO/Thermo Fisher Scientific; Cat.
No. 10888-022) asthe base, 1X MEM Non-Essential Amino Acids, 0.5X GlutaM AX
Supplement (GIBCO/Thermo Fisher Scientific; Cat. No. 35050-061), 0.5X N2 Supplement, 0.5X
B27 Supplement (GIBCO/Thermo Fisher Scientific; Cat. No. 17504-044), 10 ng/mL NT-3, 10
ng/mL BDNF and 1 pg/mL Mouse Laminin. BrainPhys Neuronal Medium was comprised of the
following: BrainPhys Neuronal Medium (StemCell Technologies; Cat. No. 05791) as the base,
0.5x N2 Supplement, 0.5X B27 Supplement, 10 ng/mL NT-3, 10ng/mL BDNF, and 1 pg/mL
Mouse Laminin. Neuronal medium was fully changed on day 3 post differentiation and then

half-replaced on day 7 and weekly thereafter.
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GIHCL1iPSC cél line generation

GIH6C1 and GIH6C1A1E11 were obtained from NeuraCell [23]. iPSCs were transfected with
pC13N-dCasO-BFP-KRAB and TALENS targeting the human CLY BL intragenic safe harbor
locus (between exons 2 and 3) (pZT-C13-R1 and pZT-C13-L1, Addgene #62196, #62197) [80]
using DNA In-Stem (VitaScientific). At the same time, the iPSCs were also transfected with
pUCM-AAVS1-TO hNGN2 (Addgene #105840) [81] and TALENS targeting the human
AAVSL intragenic safe harbor locus () TALANC JAAVSL T1, pTALANCOAAVSL T2). [82]
After two weeks, BFP-positive iPSCs (CRISPRi+/mMNGNZ2-), mCherry-positive iPSCs
(CRISPRI-/mMNGN2+) and BFP/mCherry-positive iPSCs (CRISPRi+/mNGN2+) were isolated
via FACS sorting. Cells were plated sparsely in a 10 cm dish (5,000-10,000 per dish) and
allowed to grow up until they formed large col onies. Homogenous BFP+/mCherry+ colonies
were picked with a pipette tip and placed into a 24 well plate for expansion and characterization.
Cre mRNA was then transfected into the iPSCs to remove the selection marker and mCherry.
Cdlls were sorted for mCherry negativity, and then mCherry negative colonies were picked and

genotyped.

Western blots

Neurons were washed 3 times with ice-cold PBS. Ice-cold RIPA with protease and phosphatase
inhibitors was added to cells. Lysates were incubated on ice for 2 minutes and then scraped
down. Lysates were centrifuged at 12500xg for 10 minutes at 4 °C. The supernatants were
collected, and the concentrations were measured with the BCA assay (Thermo Fisher Scientific;

Cat No. 23225). 10-20 ug protein were loaded onto 4-12% Bis-Tris polyacrylamide gel (Thermo
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389  Fisher Scientific; Cat No. NPO336BOX) Nitrocellulose (BioRad, Cat. No. 1620146) or PVDF
390 membranes were used to transfer the protein in a BioRad Transblot for 11 minutesat 25V, 25 A.
391 Membranes were then blocked for 1 hour with Licor Intercept blocking buffer (Licor, Cat. No.
392  927-60001) at room temperature. Primary antibody was added in Licor Intercept block overnight
393 at4°C. Blots were washed 3 times for 5 minutes with TBST at room temperature. Secondary
394  antibodies were added in Licor Intercept block for 1 hour at room temperature. Blots were

395  washed 3 timesfor 5 minutes with TBST at room temperature and imaged on a Licor Odyssey.
396 Immunaoblots were quantified by intensity using ImageStudio (Licor).

397

398 Bulk RNA sequencing sample preparation

399 RNA was harvested from day 7, day 14 and day 28 post differentiation neurons using a Zymo
400 microprep kit (Zymo Research, Cat No. R2062). The library was prepared by first depleting

401 ribosomal RNA (New England BioLabs, Cat No. E7405L). cDNA synthesis was then performed
402  onall remaining RNAs (New England BioLabs, Cat. No. E7765S). Paired-end (PEG5)

403  sequencing was performed at the Chan Zuckerberg Biohub and the UCSF Center for Advanced
404  Technology.

405

406  ATAC-seq sample preparation

407  Omni-ATAC-seq was performed as previously described.[83] In short, nuclel from 50,000

408 neurons were resuspended with Tn5 transposase (to tag and cleave open chromatin with PCR
409  adapters) and incubated at 37 C for 30 minutes on athermomixer at 1,000 rpm. DNA was then
410 extracted using the Qiagen MinElute Reaction Cleanup Kit (Cat#28204). Tagged sequences were

411  amplified using lllumina/Nexterai5 common adapter and i7 index adapters. DNA libraries were
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412  purified usng AMPure X P beads (A63880), and paired-end (PE65) sequencing was performed at
413  the Chan Zuckerberg Biohub and the UCSF Center for Advanced Technology.
414

415  Proteomics sample preparation

416  Briefly, neurons were scraped off 15 cm dishes at day 7 of differentiation and flash frozen in
417  liquid nitrogen. Cell pellet was lysed by adding 1 ml of 6 M GnHCI, 100mM TrispH 8 and

418  boiling at 95 C for 5 minutes two times with 5 min rest in between. DNA was sheared three

419 timesviaprobe sonication at 20% amplitude for 10 s., followed by 10 s of rest. Following

420  sonication, samples were allowed to solubilize on ice for 20 mins before clearing cell debris by
421  centrifugation at 16,000 x g for 10 mins and determining protein concentration was using Protein
422  Thermo Scientific 660 assay. Enough lysate for 1 mg of protein was aliquoted and Tris 2-

423  carboxyethyl phosphine (TCEP) and chloroacetamide (CAA) were added to each sampleto a
424 final concentration of 40 mM and 10 mM respecitively, before incubating for 10 min at 45 C
425  with shaking. Guanidine was then diluted at least 1:5 with 200 mM Tris pH 8. Trypsin and LysC
426  (Promega) were added at a 1:100 (enzyme:protein w:w) ratio (total protease:protein ratio of

427  1:50) and digested overnight at 37°C with shaking. Following digestion, 10% trifluoroacetic acid
428 (TFA) was added to each sample to afinal pH ~2. Samples were desalted under vacuum using
429  Sep Pak tC18 cartridges (Waters). Each cartridge was activated with 1 mL 80% acetonitrile

430 (ACN)/0.1% TFA, then equilibrated with 3 x 1 mL of 0.1% TFA. Cartridges were then washed
431  with4 x 1 mL of 0.1% TFA, and samples were eluted with 0.8 mL 50% ACN/0.25% formic acid
432  (FA). 20 pg of each sample was kept for protein abundance measurements, and the remainder

433  was used for phosphopeptide enrichment. Samples were dried by vacuum centrifugation.

434
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Phosphopeptide enrichment

For phosphopeptide enrichment of samples for phosphoproteomics, IMAC beads (Fe-IMAC
from Cube Biotech) were prepared by washing 3x with washing buffer (0.1% TFA, 80%

ACN). Dry, digested peptide samples were resuspended in washing buffer and incubated for 15
mins at 37 C with shaking. Peptides were enriched for phosphorylated peptides using a King
Fisher Flex (KFF). A more detailed KFF protocol can be provided. Briefly, after resuspension
peptides were mixed with beads and bound peptides were washed three times with wash buffer
before being eluted from beads using 50% ACN, 2.5 % NH4OH solution. Enriched
phosphorylated peptide samples were acidified using 75% ACN, 10% FA (at aratio of 5:3

elution buffer:acid buffer), and filtered by centrifugation through NEST tips.

Mass spectrometry data acquisition

Digested samples were analyzed on an Orbitrap Exploris 480 mass spectrometry system (Thermo
Fisher Scientific) equipped with either an Easy nLC 1200 or Neo Vanquish ultra-high pressure
liquid chromatography system (Thermo Fisher Scientific) interfaced via a Nanospray Flex
source. Separation was performed using a 15 cm long PepSep column with a 150 um inner
diameter packed with 1.5um Reprosil C18 particles. Mobile phase A consisted of 0.1% FA, and
mobile phase B consisted of 0.1% FA/80% ACN. Abundance samples were separated by an
organic gradient from 4% to 30% mobile phase B over 62 minutes followed by an increase to
45% B over 10 minutes, then held at 90% B for 8 minutes at a flow rate of 600 nL/minute.
Phosphoproteomi cs samples were separated by an organic gradient from 2% to 25% mobile
phase B over 62 minutes followed by an increase to 40% B over 10 minutes, then held at 95% B
for 8 minutes at a flow rate of 600 nL/minute. To expand the spectral library, two samples from

each set of replicates was acquired in a data dependent manner. Data dependent analysis (DDA)
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was performed by acquiring a full scan over am/z range of 350-1100 in the Orbitrap at 60,000
resolving power (@200 m/z) with anormalized AGC target of 300%, an RF |lens setting of 40%,
and a maximum ion injection time of “ Auto”. Dynamic exclusion was set to 45 seconds, with a
10 ppm exclusion width setting. Peptides with charge states 2-6 were selected for MSIMS
interrogation using higher energy collisional dissociation (HCD), with 20 MS/M S scans per
cycle. MS/M S scans were analyzed in the Orbitrap using isolation width of 1.6 m/z, normalized
HCD collision energy of 30%, normalized AGC of 200% at a resolving power of 15,000 with a
22 ms maximum ion injection time. Similar settings were used for data dependent analysis of
phosphopeptide-enriched and abundance samples. Data-independent analysis (DIA) was
performed on all samples. An M S scan at 60,000 resolving power over a scan range of 350-1100
m/z, anormalized AGC target of 300%, an RF lens setting of 40%, and the maximum injection
time set to “Auto”, followed by DIA scans using 20 m/z isolation windows over 350-1100 m/z

with a2 m/z overlap at anormalized HCD collision energy of 30%.

Antibodies used in this study

cJun (CST, #9165)

p-cJun (CST, #91952)

Taul3 (Santa Cruz Biotechnology, sc-21796)
AT8 (Invitrogen, MN1020)

AT100 (Invitrogen, MN1060)

AT180 (Invitrogen, MN1040)

Tau pT217 (Invitrogen, 44-744)

Tau pS396 (Invitrogen, 44-752G)
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481 GAPDH (Santa Cruz Biotechnology, sc-47724)

482  B-Actin (CST, #4967)

483  Molecular Cloning:

484  Overexpression constructs were generated using our previously described PSAP expression
485  vector [84] as abackbone. This vector expressed PSAP fused to a c-terminal mScarlett. We
486 cloned emGFP-BRD?2 into this vector (deleting PSAP-mScarlett) and then used Xhol and Agel
487  restriction enzyme sites to clone in ON3R tau. We then cloned a gene block for ORF-BamHI-
488 (GS)4-exFlag-T2A-mApple into the vector using the Agel and EcoRI sites [37]. We then

489  mutated WT ON3R tau to V337M and R406W to generate the final overexpression constructs.

490

491 CRISPR screening:

492 45 million iPSCs were infected with lentivirus encoding for the H1 sublibrary (Horlbeck et al
493 Elife) at an MOI of ~0.3 and selected with ug/mL puromycin until 100% BFP positive.

494  Lentivirus preparation was performed as described

495  (https://dx.doi.org/10.17504/protocol s.i0.8dfhs3n, [37], [79]). For CRISPRa screens, TMP was

496 added at afinal concentration of 50uM for all cultures after selection. Cells were then

497  differentiated and cultured as previously described (dx.doi.org/10.17504/protocols.io.bcerjivan,

498 [79]). Upon differentiation, pre-differentiated cells were plated on three 15cm PDL-coated dishes
499  at adensity of 15 million cells per plate. Neurons were then matured for two weeks. At two

500 weeksof age, neurons were lifted with papain and zinc fixed as previously described [37]. On
501 theday of sorting, preparation for FACS was performed as described [37] using the AT8

502  antibody (Thermo MN1020) at a concentration of 1:200. After sorting, cells were pelleted at
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503  200xg for 20 minutes, the supernatant was removed and the pellet was frozen at -20. Genomic
504 DNA was extracted with the NucleoSpin Blood L kit. SgRNA cassettes were amplified, pooled,
505 and sequenced as described [79]. CRISPR screens were analyzed using MAGeCK-iNC as

506 previoudy described [79]. Briefly, raw sequencing reads were cropped and aligned using custom

507  scriptsthat are publicly available (https.//kampmannlab.ucsf.edu/resources). Raw phenotype

508 scoresand p-values were calculated for target genes and negative control genes using a Mann-

509  Whitney U-test.

510 DataAnalysis

511 RNA-seqganalysis

512  Sequencing data was aligned to the human reference genome hg38. Rbowtie2 was used to align
513  and count the number of transcripts from aligned reads. Differentially expressed genes were
514  determined using DEseq?2.

515

516 ATAC-seqanalysis

517  Sequencing data was aligned to the human reference genome hg38 using Rbowtie2. Peak calling
518 was performed with MACS2. Differential ATACseq was performed using DEseg2, and motif
519 analysis was performed with the motifDB and motifmatchr packages. Differential motif analysis
520  was performed with the chromVar package.

521

522  Gene set enrichment analysis

523  Enrichr was used to perform gene set enrichment analysis on RNA-seq, proteomics and

524  phosphoproteomics datasets [85].

525

23


https://doi.org/10.1101/2024.06.04.597496
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.04.597496; this version posted September 9, 2025. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

526

927

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

945

546

547

548

available under aCC-BY 4.0 International license.

Proteomics and Phosphoproteomics Analysis

Raw files were searched using the directDIA+ feature in Spectronaut, with DDA files provided
as supplementary search files against a full human proteome from Uniprot (reviewed entries
only, isoforms included). Phosphosites were extracted from the PTMsites output table from

Spectronaut, and collapsed using the Tukey's median polish functionality of MSstatsin R.

Abbreviations

MAPT: Microtubule Associated Protein Tau

iPSC: induced pluripotent stem cell

MAPK: Mitogen-Activated Protein Kinase

MAP2K: Mitogen-Activated Protein Kinase Kinase

ASOs:. Anti-sense oligonucleotides

FTD: Frontotemporal Dementia

WT: wild type

MAPT Het: MAPT heterozygous (MAPT V337M/WT)

MAPT Hom: MAPT homozygous (MAPT V337M/V337M)
MNGNZ2: mouse Neurogenin2

AAV S1: adeno-associated virusintegration site 1, safe harbor locus.
CLYBL: Citramalyl-CoA Lyase, here refers to an intergenic safe harbor locus.
sgRNA: single guide RNA

NTC: non-targeting control

ANKS: Ankyrin 3

MAPRE3: Microtubule-Associated Protein RP/EB Family Member 3, or EB3
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549 GSK3B: Glycogen Synthase Kinase 3 Beta

550 CDKS5: Cyclin Dependent Kinase 5

551 CDKB5R1: Cyclin Dependent Kinase 5 Regulatory Subunit 1
552  MARK1: Microtubule Affinity Regulating Kinase 1

553 Mapla: Microtubule-Associated Protein 1A

554  Maplb: Microtubule-Associated Protein 1B

555 LDEV: Lactate Dehydrogenase Elevating Virus

556 DMEM: Dulbecco’'s Modified Eagle Medium

557 ROCK: Rho Associated Coiled-Coil Containing Protein Kinase
558 BDNF: Brain-Derived Neurotrophic Factor

559 KRAB: Kruppel-associated box

560 TALENS: transcription activator-like effector nucleases
561 PBS: Phosphate-buffered saline

562 TBST: Tris-buffered saline + 0.1% Tween20

563  TCEP: Tris 2-carboxyethyl phosphine

564  CAA: chloroacetamide

565  TFA: trifluoroacetic acid

566  ACN: acetonitrile

567  FA:formic acid

568 KFF: King Fisher Flex

569 DDA: Data dependent analysis

570 AGC: Automated gain control

571 DIA: Data-independent analysis
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572 MS: Mass spectrometry

573  Ppm: parts per million

574  PTM: Post trandlational modification

575 MS/MS: Tandem mass spectrometry

576  HCD: Higher energy collisional dissociation

577  GAPDH: glyceraldehyde-3-phosphate dehydrogenase
578 PSAP: Prosaposin

579 emGFP: emerald green fluorescent protein

580 BRD2: Bromodomain Containing 2

581 ORF: open reading frame

582  TMP: trimethoprim

583 PDL: poly-D lysine

584  FACS: fluorescence-activated cell sorting

585 MAGeCK-iNC: Mode-based Analysis of Genome-wide CRISPR/Cas9 Knockout — including
586  negative controls

587
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629 Figurel: RNA-seq and ATAC-seq in neurons reveal conserved effects of MAPT V337M

630 knockdown on axonogenesis pathways (A) iPSCs from a healthy donor (WTC11, here called
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MAPT WT) or a patient with the heterozygous MAPT V337M mutation (GIH6C1, here called
*MAPT Het) were edited with Cas9 previously to generate a heterozygous MAPT V337M clone
(MAPT Het), ahomozygous MAPT V337M clone (MAPT Hom) and a healthy isogenic control
(GIH6C1A1E11, here caled *MAPT WT). These cells were engineered to express dox-inducible
MNGN2 in AAVSL1 and CRISPRI machinery in CLYBL. We transduce the iPSCs with lentivirus
for sgRNA/BFP expression. (B) Heatmap comparing changes in gene expression based on RNA-
seg in MAPT Het NTC and MAPT WT MAPT KD vs. MAPT WT NTC at 2 and 4 weeks post
differentiation. Three independent wells of neurons for each genotype/sgRNA combination were
harvested at each timepoint. (C) Gene Ontology (GO) term enrichment analysis of the RNA-seq
experiment in (B). Genes that are differentially expressed in both MAPT Het and MAPT WT
MAPT KD vs. MAPT WT NTC were analyzed with Enrichr, and top terms with minimal overlap
were plotted. Pathways related to axonogenesis and neuron morphology are colored magenta.
(D) Heatmap summarizing ATAC-seq differential peaks at 4 weeks of differentiation. Two
independent wells of neurons for each genotype/sgRNA combination were harvested. (E)
Heatmap summarizing ATAC-seq transcription factor motif analysis at 4 weeks of
differentiation from the same experiment in (D). Clusters were analyzed for pathway enrichment
using Enrichr, and major pathways are annotated (“ AP-1 Transcription Factor Network” and
“Neuron Differentiation”). (F) Western blot measuring p-cJun and cJun levelsin neurons at 1
week of differentiation. Two independent wells of neurons for each genotype/sgRNA
combination were harvested. (G-H) Quantification of cJun (G) and p-cJdun (H) from the western
blot in (F). Significance was calculated using one-way ANOV A with Dunnett’s multiple

comparison test, and comparisons were restricted within the donor background.
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Figure 2: Proteomics uncover s altered phosphorylation of axonogenesis-related proteinsin
neuronswith the MAPT V337M mutation. (A) Volcano plot showing changesin protein
phosphorylation in MAPT Hom vs. MAPT WT neurons using mass spectrometry. Four
independent 150mm dishes of neurons for each condition were harvested after one week of
differentiation. Dots represent individual phosphorylation sites. (B) Proteins with differential
phosphorylation between MAPT Het, MAPT Hom neurons, and * MAPT Het vs. controls.
Significance was cal culated using multiple t-tests adjusted with Sidék single-step correction.
Proteins with differential phosphorylation in all three datasets were filtered to identify 56
conserved proteins. (C) GO term enrichment of the 56 proteins from (B). Neuron morphology
term bars are magenta, and splicing term bars are green. (D) Proteins with differential
phosphorylation between MAPT Het vs. MAPT WT and two published mouse
phosphoproteomics datasets, including tau KO mice and P301S mice vs. WT mice. Significance
was calculated using multiple t-tests adjusted with Sidak single-step correction. Proteins with
differential phosphorylation in all three datasets were filtered to identify 45 conserved proteins.
(E) GO term enrichment of the 45 proteins from (D). Annotations are consistent with (C). (F)
String-DB protein-protein interaction network of proteins with differential phosphorylationin
five datasets: MAPT Het, MAPT Hom, *MAPT Het vsisogenic controls, and tau KO mice and
P301S mice vs. controls. Theinner circle is colored based on the protein log, fold change, and
the outer circles are colored based on the log; fold change for the indicated phosphorylation site.
(G) Heatmap of phosphoproteomics data comparing MAPT KD vs. isogenic controls.
Phosphosites that are decreased in MAPT Het vs. MAPT WT but that are rescued by tau

knockdown in MAPT Het neurons are labeled in purple as atau “gain-of-function” signature.
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677  Phosphositesthat are changed in the same direction in MAPT WT MAPT KD and MAPT Het vs.

678 WT arelabeled in orange as atau “loss-of-function” signature.
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Figure 3: Tau phosphorylation isreduced in neuronswith the MAPT V337M mutation. (A)
Heatmap of tau phosphorylation from MAPT Hom or MAPT Het vs. MAPT WT. Phosphosites
that were not detected in more than half of the replicatesin both samples are marked in grey, and
statistically significant phosphorylation changes are marked with an asterisk. (B) Protein domain
map of ON3R tau with detected phosphorylation sites labeled. Decreased phosphorylations
detected in either MAPT Hom or MAPT Het neurons are labeled in blue. When
phosphoproteomics could not distinguish between multiple potential phosphosites, all are
included. (C) Western blot validating decreased tau phosphorylation in neurons with V337M tau.
Two independent wells of neurons were harvested after one week of differentiation. AT8 was
used to label tau pS202/pT205, and Taul3 was used to label total tau. (D-E) Quantification of
total tau levels (D) or pS202/pT205 levels (E) from the western blot in (C). One way ANOVA
with Sidak’s correction and comparisons within donor backgrounds was used to test for
significance. (F) WT, V337M and R406W tau were overexpressed via lentivirusin MAPT WT
MAPT KD iPSCs. Three independent wells of neurons were harvested after one week of
differentiation. pTau and total tau levels were analyzed by Western blot. (G) Quantification of
the western blot in (F). Band intensities were normalized to actin and to the WT tau
overexpression line. Significance was calculated using two-way ANOV A with Dunnet’s multiple
comparisonstest. (H) Kinase activity analysis from phosphorylation changes in neurons after
one week of differentiation with the homozygous MAPT V337M mutation (MAPT Hom) vs.
isogenic controls (MAPT WT). The log, fold change of phosphopeptide abundance for annotated
kinase substrates is plotted. The range is represented by the thin lines, the box represents the
IQR, and the median is represented by athick line. (1) Heatmap for kinase activity scores from

all five phosphoproteomic datasets vs. isogenic controls.
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Pooled genetic screening workflow for tau pS202/pT205 levels in neurons. MAPT WT CRISPRI
NGN2 iPSCs, MAPT Het CRISPRiI NGN2 iPSCs or MAPT WT CRISPRa NGN2 iPSCs were
transduced by lentivirus with a pooled “druggable genome’ sgRNA library targeting 2,318 genes
enriched for kinases and phosphatases. iPSCs were differentiated into neurons. After two weeks,
neurons were fixed, stained with AT8 and sorted for high or low AT8 staining. The high AT8
and low AT8 samples were sequenced to determine which sgRNAs were enriched in either
fraction. (B) Scatter plot comparing CRISPRI screensin MAPT Het neuronsvs. MAPT WT
neurons. AT8 non-hits are labeled with grey circles, AT8 hitsthat also modify tau levels (using
the T22 antibody as a surrogate for total tau levels) are labeled with “+”, and AT8-specific hits
are labeled with black circles. Top genotype-specific hits are labeled in black, and key pathways
are labeled in green (cytoskeleton), purple (Neuron projection devel opment) and blue (p38
MAPK pathway). (C) Rank plot showing the results of the CRISPRa screen in MAPT WT
neurons. AT8 non-hits are labeled in grey and AT8 hits are labeled in black. Hits that are
cytoskeleton-related genes are labeled in green and hits that are related to neuron projection
development are labeled in purple. (D) Detected tau phosphosites are mapped to the phenotype
of known tau kinases from the CRISPRi/a screens. Tau phosphosites that were significantly
different in either MAPT Hom or MAPT Het neurons vs. MAPT WT are indicated with blue
text/boxes. Kinases whose knockdown or overexpression perturb tau phosphorylation at
S202/T205 areindicated by red text/boxes. Overlap between significant kinases and differential
phosphorylations are indicated by purple boxes. Grey boxes indicate phosphorylations by known
tau kinases that are not significantly differential or involved in tau pS202/T205. References for

known tau kinase activity are indicated by the kinase name.
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Figure S1: V337M tau and tau knockdown perturb gene expression of axonogenesis-related
genes. (A) Normalized RNA counts of MAPT from the RNA-seq experiment described in Figure
1B showing tau knockdown in MAPT WT and MAPT Het neurons. (B) Western blot measuring
tau knockdown in MAPT WT and MAPT Het neurons. Two replicates (individual wells) of
neurons were harvested after two weeks of differentiation. (C) Quantification of the western blot
in (B). (D) Bar plot showing the number of differentially expressed genes dueto MAPT KD in
either MAPT WT or MAPT Het neurons. (E) Heatmap of RNA-seq from MAPT Het, MAPT Hom

and *MAPT Het neurons vs. isogenic controls at 1 week or 2 weeks of differentiation.

43


https://doi.org/10.1101/2024.06.04.597496
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.04.597496; this version posted September 9, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

949 Differentially expressed genes related to axon guidance or axonogenesis are labeled. (F) GO
950 term enrichment analysis of one-week neurons from the RNA-seq experiment in (A). Genes that
951 aredifferentially expressed in both MAPT Het and MAPT Hom vs. MAPT WT were analyzed
952  with Enrichr, and top terms with minimal overlap were plotted. Pathways related to

953  axonogenesis and neuron morphology are colored magenta. (G) GO term enrichment analysis of
954  two-week old neurons from the RNA-seq experiment in (A). Genes that are differentially

955  expressed in both MAPT Het, MAPT Hom and *MAPT Het vs. their isogenic MAPT WT controls
956  wereanalyzed with Enrichr, and top terms with minimal overlap were plotted. Pathways related
957  to axonogenesis and neuron morphology are colored magenta.
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Figure S2: V337M tau and tau knockdown perturb chromatin accessibility of AP-1
transcription factor networ k motifs. (A) PCA plot of ATAC-seq differential peaksat 2 and 4
weeks of differentiation. Two replicates (individual wells) of neurons were harvested at each
timepoint. (B) GO term enrichment analysis using Cellular Component on genes in 2-week
neurons with differential ATAC-seq peaks in both MAPT WT MAPT KD and MAPT Het NTC
vs. MAPT WT NTC. Non-significant terms are labeled in grey. (C) Heatmap showing the

relative deviation of transcription factor motifs with significantly different accessibility in MAPT
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979 WT and MAPT Het neurons +/- tau knockdown. Two replicates (individual wells) of neurons
980 were harvested at two weeks of differentiation. GO term enrichment analysis was used on
981 clustersof transcription factors to categorize clusters.
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Figure S3: V337M tau and tau knockdown cause phosphorylation changesin axonogeness

and splicing proteins. (A) (Top) Overlap between differential phosphositesin neurons derived

from iPSCs edited to introduce the homozygous MAPT V337M mutation (MAPT Hom)vs.

isogenic controls (MAPT WT). Four replicates (independent 150mm dishes) of neurons for each

genotype/sgRNA combination were harvested after one week of differentiation, and the

phosphoproteome was measured using mass spectrometry. Significance was calculated using

Fisher’'s Exact Test. (Bottom) Overlap between proteins with differential phosphorylation in both
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datasets. Significance was calculated using Fisher’s Exact Test. (B) Overlap between proteomic
changesin MAPT Hom neurons, neurons derived from iPSCs edited to have the heterozygous
MAPT V337M mutation (MAPT Het) and neurons derived from patient iPSCs with the
heterozygous MAPT V337M mutation (*MAPT Het) vs. isogenic controls (MAPT WT or *MAPT
WT). Four replicates (independent 150mm dishes) of neurons for each genotype/sgRNA
combination were harvested after one week of differentiation, and the total proteome was
measured using mass spectrometry. Significance was calculated usng multiple t-tests adjusted
with Sidék single-step correction. Significantly differential proteinsin all three datasets were
filtered to identify 145 conserved proteins. (C) GO term enrichment of the 145 proteins with
differential abundance in MAPT Hom, MAPT Het and * MAPT Het neurons compared to isogenic
controls. Top terms with minimal overlap are shown. Term names are colored to match relevant
gene names in the heatmap in (C). (D) Heatmap showing the Log, fold change of protein
abundance for the 145 proteins with differential abundance in MAPT Hom, MAPT Het and
*MAPT Het neurons vs. isogenic MAPT WT neurons. Proteins within enriched GO terms are
labeled and colored according to the shared pathways. (E) GO term analysis of phospoproteins
with differential phosphorylation in MAPT Het NTC and MAPT WT MAPT KD vs. MAPT WT
NTC. Non-significant terms are labeled by grey bars. Regulation of Microtubule-based processis
labeled by a magenta bar due to its overlap with axon-related terms. (F) GO term analysis of
phosphoproteins with differential phosphorylation in MAPT Het NTC vs. MAPT WT NTC and
MAPT Het MAPT KD vs. MAPT Het NTC. Terms related to RNA processing and splicing are

marked by green bars.
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1017 Figure $4: Neuronswith V337M tau have decreased tau phosphorylation at disease-

1018 associated phosphorylation sites. (A) Protein domain map of 2N4R tau. Phosphosites detected
1019 inthisstudy are labeled, with disease-associated phosphorylation sites from AD labeled in
1020 orange. Phosphosites not detected in this study are marked with asmall black line and are

1021  unlabeled. Domain abbreviations are as follows: N-terminal inserts (N1,N2), proline rich domain
1022  (PRD), microtubule binding repeats (R1, R2, R3, R4). (B) Consensus sequences for tau kinases.
1023  Detected tau phosphosites are shown with their sequence context. Phosphorylation sites that are
1024  differential between either MAPT V337M heterozygous (MAPT Het) or MAPT V337M

1025 homozygous (MAPT Hom) are labeled blue with an asterisk, and detected phosphosites are
1026 labeled with an open circle. Kinase consensus sequences are annotated with colored boxes, with
1027  priming sites marked with a“P’ in an orange circle. V337 is labeled with a bold/underlined red
1028 V. Thedomains abbreviated as follows: N-terminal projection domain (NTD), prolinerich

1029 domain (PRD), Microtubule binding repeats (R1, R3, R4), C-terminal domain (CTD).
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1031 Figure S5: Functional genomics uncover sregulators of tau phosphorylation in MAPT WT
1032 and MAPT V337M neurons. (A-D) Bar plots showing the median intensity of AT8 (A), AT180
1033 (B), AT100 (C) and pS396 (D) in 2-week MAPT WT, MAPT KD and MAPT Het neurons. AT8
1034  was selected for CRISPR screening due to high reproducibility across timepoints and AT8

1035 detection in both MAPT WT and MAPT Het neurons at 2 weeks of differentiaton. (E) Heatmap
1036  of hitsfrom the CRISPRi and CRISPRa AT8 screens and the CRISPRI T22 screen. Many of the
1037  ATS hitsfrom the three screens do not modify T22 levels and are therefore unlikely to be due to
1038 modifying tau levels [37]. Genes related to cytoskeleton, neuron projection development or the
1039 p38 MAPK pathway are annotated. (F) Heatmap of AT8 and T22 screens with the kinases

1040 predicted to have differential activity in Figure 3I. Selected kinases predicted to have differential
1041  activity in MAPT V337M neurons with particular disease relevance that did not have a

1042  phenotypein the AT8 screens are highlighted with grey boxes. MARK1 is annotated with a
1043  yelow box.
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