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Abstract 

In neuroimaging research, tracking individuals over time is key to understanding the interplay be-

tween brain changes and genetic, environmental, or cognitive factors across the lifespan. Yet, the ex-

tent to which we can estimate the individual trajectories of brain change over time with precision 

remains uncertain. In this study, we estimated the reliability of structural brain change in cognitively 

healthy adults from multiple samples and assessed the influence of follow-up time and number of 

observations. Estimates of cross-sectional measurement error and brain change variance were ob-

tained using the longitudinal FreeSurfer processing stream. Our findings showed, on average, modest 

longitudinal reliability with two years of follow-up. Increasing the follow-up time was associated with 

a substantial increase in longitudinal reliability while the impact of increasing the number of observa-

tions was comparatively minor. On average, 2-year follow-up studies require ≈2.7 and ≈4.0 times more 

individuals than designs with follow-ups of 4 and 6 years to achieve comparable statistical power. 

Subcortical volume exhibited higher longitudinal reliability compared to cortical area, thickness, and 

volume. The reliability estimates were comparable to those estimated from empirical data. The relia-

bility estimates were affected by both the cohort’s age where younger adults had lower reliability of 

change, and the preprocessing pipeline where the FreeSurfer’s longitudinal stream was notably supe-

rior than the cross-sectional. Suboptimal reliability inflated sample size requirements and compro-

mised the ability to distinguish individual trajectories of brain aging. This study underscores the im-

portance of long-term follow-ups and the need to consider reliability in longitudinal neuroimaging 

research.   
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1. Introduction 

Reliability and validity are fundamental to scientific progress. Reliability refers to the consistency of 

repeated measurements, while validity refers to the extent to which a measure captures what it in-

tends to capture (Lavrakas, 2008). Reliability places an upper limit on validity (Spearman, 1904) and 

has severe implications for interpretation and statistical power in individual differences research (Par-

sons et al., 2019; Zuo et al., 2019). In humans, structural magnetic resonance imaging (MRI) features 

are key to understanding the aging brain and how individuals differ. Cross-sectional estimates are 

likely to be invalid measures for capturing interindividual differences in brain aging (i.e., brain change), 

as they largely reflect lifelong differences between individuals (Raz and Lindenberger, 2011; Vidal-

Pineiro et al., 2021). As a result, there is an increasing availability of longitudinal cohorts. Yet, estimat-

ing differences in intraindividual change (longitudinal) is often less reliable than those made on level 

(e.g. cross-sectional) as variance in change tends to be considerably smaller (Hertzog et al., 2008). This 

sets limits to the validity of individual differences of brain change estimates. Here, we attempt to es-

timate the reliability of longitudinal brain change for structural MRI brain features, and the follow-up 

time and number of observations required to achieve different levels of reliability in cognitively 

healthy adults. 

 

Measurement reliability is classically defined as the portion of variance attributed to true scores (i.e., 

between-subjects) relative to the total variance (between and within-subject variance) (Allen and Yen, 

2001). Reliability is indirectly related to statistical power in experimental designs (e.g., control vs. 

treatment) where the interest typically is in precision and thus in reducing both between and within-

subject variance (Hedge et al., 2018; Zimmerman and Zumbo, 2015). Yet, this index is key in individual 

differences research (Brandmaier et al., 2018b; Hedge et al., 2018; Zimmerman and Zumbo, 2015), 

and consequently in any attempt to understand how interindividual variations in brain change are 

related to genetic, cognitive, or environmental factors. Using brain change estimates with sub-optimal 

reliability may have severe consequences for the interpretation, comparability, and reproducibility of 

results (Parsons et al., 2019). Low reliability reduces statistical power and increases uncertainty in the 

parameter estimates, leading to false negative results and attenuated estimations of the effects, but 

also potentially producing false positives and artificially inflated effects when combined with other 

sources of bias (Button et al., 2013; Loken and Gelman, 2017; Spearman, 1904). Low reliability ham-

pers the validity of the results and lowers the reproducibility across studies and as such, in aging neu-

roimaging, limited longitudinal reliability is considered an important factor for the lack of converging 

evidence (Oschwald et al., 2019). 
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In neuroimaging research, reliability is often assessed as test-retest reliability via repeated scans ac-

quired within the same session, after repositioning, or after some time (Brandmaier et al., 2018b; 

Hedges et al., 2022; Madan and Kensinger, 2017; Parsons et al., 2024). Core measures of brain struc-

ture such as thickness, area, and volume have almost invariably shown high test-retest reliability, e.g., 

intra-class correlation coefficients (ICC) often > .8, across different scanners, sequences, processing 

pipelines, and populations (Hedges et al., 2022; Iscan et al., 2015; Liem et al., 2015; Madan and Kensin-

ger, 2017; Sederevičius et al., 2021) (c.f. Parsons et al., 2024). Mimicking this approach is more chal-

lenging for longitudinal reliability as it requires two assessments at each time point (c.f. Takao et al., 

2022, 2021). Alternatively, the reliability of brain change can be analytically derived by estimating the 

true and error variance of the brain slopes as in the growth rate reliability (GRR) index (Rast and Hofer, 

2014; Willett, 1989) or in its generalization to latent variable models, i.e., effective curve reliability 

(ECR) (Brandmaier et al., 2018a). True variance is defined by slope variance, that is, the degree to 

which the individuals vary in their slopes while error variance of the slopes is dependent on measure-

ment error variance, the duration of the study, the number of observations, and the spacing of these 

observations (Brandmaier et al., 2018a; Hertzog et al., 2008; Rast and Hofer, 2014; Willett, 1989). 

Here, we follow a similar approach to estimate the reliability of longitudinal brain change. 

 

Increasingly prevalent data-sharing practices mean that the majority of neuroimaging research is au-

thored by researchers who lack the ability to influence data collection plans (Milham et al., 2018). This 

lack of control is particularly important as practical constraints on collecting longitudinal neuroimaging 

data, such as economic costs, resources, time, retention, and selective attrition issues, often favor a 

particular kind of neuroimaging design in terms of number of observations, interval, and sample size. 

That is, most research in the aging neuroimaging field is performed with (relatively) open data with a 

limited follow-up time and number of observations. As such, we directed our attention to the reliabil-

ity a posteriori, i.e., in already collected data that is widely used in secondary analysis in the neuroim-

aging field. See elsewhere for a priori assessments of longitudinal reliability (Brandmaier et al., 2018a, 

2015; Hertzog et al., 2008; Rast and Hofer, 2014; von Oertzen, 2010), where reliability can be opti-

mized before data acquisition by modifying spacing, follow-up time, and number of observations. 

Here, we estimated the reliability of longitudinal brain change for regional and global cortical thick-

ness, area, and volume features, as well as for subcortical structures, using data from multiple cohorts 

and the longitudinal stream of FreeSurfer (Reuter et al., 2012a). We explored the impact of total fol-

low-up time and number of observations on longitudinal reliability (see Figure 1 for schematic repre-

sentation) as well as the consequences on required sample sizes and the ability to accurately define 
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and distinguish individual trajectories of aging. Finally, reliability is, ultimately a property of the meas-

urement, influenced by the measure, but also partially dependent on the sample (e.g. Appelbaum et 

al., 2018; Parsons et al., 2019), and in neuroimaging, also of the processing stream. Hence, we illus-

trated the dependence of the reliability estimates on the population of interest, the processing pipe-

line, and explored to what extent the results are replicated across different cohorts. We offer a sup-

porting app (https://vidalpineiro.shinyapps.io/longrho_shinyapp/) to aid researchers in estimating 

the reliability of longitudinal change.   

 

Figure 1 Schematic representation of time and follow-up effects on reliability. Hypothetical scenario 

illustrating a participant scanned twice at each time point, represented by the green and red lines. 

Measurement error causes deviations in the estimated slopes from the true trajectory (black line), 

which represents actual change over time. In the main plots, points represent observed cross-sectional 

measurements, lines estimated longitudinal (linear) trajectories, and density plots represent the 

distribution of possible values for a given cross-sectional observation. The boxes show the observed 

yearly brain change. a) Effects of follow-up time: Extending the follow-up time from 2 years to 4 years 

reduces the impact of cross-sectional measurement error on yearly change estimates. b) Effects of 

increasing the number of observations which leads to reductions of measurement error on yearly 

change estimates.   
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2. Methods 

2.1. The growth rate reliability index.  

See table 1 for a summary of key concepts, definitions, and measurements. To simplify estimations of 

longitudinal reliability, we made some initial assumptions. First, let us assume individuals have their 

specific, independent responses from each other. The repeated measures for each individual (i) 

measured at a given set of occasions (j) (j1, …, jn), can be expressed as follows (eq. 1) and change can 

be expressed in terms of linear trends and captured by slope estimates. We will, for simplicity, and in 

line with most available longitudinal neuroimaging data, assume equispaced measurements and the 

same number of measurements across individuals. We assume that the slopes of change (𝛽2𝑖) are 

linear, normally distributed in the population with mean δ and variance 𝜎𝑠
2 and similarly for (cross-

sectional) measurement errors (𝜀𝑖,𝑗) with a mean equal to 0 and variance σε
2. Although not of direct 

interest in what follows, the intercepts (𝛽1𝑖) are also assumed to be normally distributed with a non-

zero mean and variance. 

[Insert table 1 about here] 

 

(eq. 1)     𝑌𝑖,𝑗 =  𝛽1𝑖 +  𝛽2𝑖𝑡𝑗 + 𝜀𝑖,𝑗  

 

Also, as defined by classical test theory, the reliability coefficient (𝜌) is defined as the ratio of the true 

score variance by total variance. Total variance is defined as the sum of the true score and the error 

variance (eq. 2).  

 

(eq. 2)      𝜌 =  
𝑇𝑟𝑢𝑒 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒

𝑇𝑟𝑢𝑒 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒+𝐸𝑟𝑟𝑜𝑟 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 
  

 

 

In a longitudinal analysis, and assuming linear changes, true variance can, generally, be estimated us-

ing linear regression separately on individuals with three or more measurements which allows sepa-

ration from measurement error (c.f. Brandmaier et al., 2024). We used the variance of slopes (𝜎𝑠
2) as 

the estimate of true (latent) variance. Slope variance refers to the observed variability in individual 

brain change slopes, while true variance refers to the latent, unobserved variability, free from meas-

urement-related distortions. Note that 𝜎𝑠
2, is subject to two opposing influences. On one hand, it is 
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overestimated due to error propagation, while on the other, it is influenced by study design and sam-

ple characteristics including drop-out, motivation, mortality, etc., which set constraints to the sam-

ple’s variance. That is, attrition bias leads to underestimation of the variance of slopes. We assumed 

that 𝜎𝑠
2 from data with long follow-ups and a high number of observations provides a close approxi-

mation of the true variance of linear change as the impact of error propagation is minimized. Our 

simulations showed that the overestimation of the variance of the slopes is approximately 10% (Sup-

plementary Information and Supplementary Figure 1). The extent to which the variance of the slopes 

is underestimated due to attrition bias is more challenging to estimate. See Discussion for an in-depth 

discussion. 

 

The error variance of the slope, which quantifies the uncertainty associated with a given slope esti-

mate, is defined by the ratio of the squared cross-sectional measurement error (𝜎𝜀) to the sum of 

squared deviations of time points (SST) (Willett, 1989). In this case, SST captures how widely spaced 

the observations are for a given participant across time (eq. 3). The SST summation simplifies to (eq.4) 

if the measurements are approximately equally spaced (𝜏 denoting the total duration of the study) 

(Fitzmaurice et al., 2012) (von Oertzen, 2010).  

  

(eq. 3)      𝑆𝑆𝑇 =  {∑ (𝑡𝑗 − 𝑡̅)2𝑛
𝑗=1 }  

 

(eq. 4)     𝑆𝑆𝑇𝑒𝑞𝑢𝑖𝑠𝑝𝑎𝑐𝑒𝑑 = {𝑡2𝑛(𝑛 + 1)}/{12(𝑛 − 1)}  

 

Hence, reliability for longitudinal brain change (𝜌̂) can be computed as follows (eq. 5) and represents 

a simplification of both the Growth Rate Reliability (GRR) index (Willett, 1989) and the Effective Curve 

Reliability (ECR) (Brandmaier et al., 2018a), which quantify the ability to distinguish differences in 

slope parameters (Rast and Hofer, 2014). In addition to the total follow-up time (𝑡) and number of 

observations (n) - the parameters of interest in this study - we need information on the variance of 

slopes 𝜎𝑠
2 and (cross-sectional) measurement error 𝜎𝜀, estimated, for example, from test-retest data. 

Note from eq. 5 that higher reliability across features is determined by a greater ratio of variability of 

the slopes to measurement error (Supplementary Figure 2). 

 

(eq. 5)      𝜌̂ =
𝜎𝑠

2

𝜎𝑠
2+ 𝜎ε

2{𝑡2𝑛(𝑛+1)/12(𝑛−1)}−1 

 

2.2 Parameter selection. 
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Two different multi-cohort datasets were used to obtain the parameters of slope variance 𝜎𝑠
2 and 

measurement error (𝜎𝜀). The studies were approved by the relevant ethical committees and 

conducted in accordance with the Declaration of Helsinki. In both cases, data consisted of structural 

T1-weighted (T1w) scans that were collected using 1.5, 3, and 4 T scanners. T1w scans were 

preprocessed with the longitudinal FreeSurfer v.7.1 stream (Reuter et al., 2012a) (Dale et al., 1999; 

Fischl et al., 1999). Cortical thickness, area, and volume data (modalities) were summarized based on 

the Desikan atlas (Desikan et al., 2006) (|N| = 34 regions of interest [ROIs] per hemisphere) while left 

and right Lateral Ventricle, Thalamus, Caudate, Putamen, Pallidum, Hippocampus, and Amygdala 

volumes were extracted based on the aseg atlas. The combination of modality (e.g., thickness) and 

region (e.g., entorhinal cortex) are henceforth referred to as features. See Supplementary Methods 

for more information and Supplementary Table 6 for MRI acquisition parameters.  

 

2.2.1 Slope variance.  

To obtain 𝜎𝑠
2, we used a multicohort longitudinal dataset (n = 11 datasets, n = 3611 unique individuals, 

n = 10964 observations) consisting of cognitively healthy adult participants. The datasets include the 

LCBC (Walhovd et al., 2016), Umeå (Nyberg et al., 2010), and UB (Rajaram et al., 2017; Vidal-Piñeiro 

et al., 2014) datasets (from the Lifebrain Consortium) (Walhovd et al., 2018), COGNORM (Idland et al., 

2020), the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (https://adni.loni.usc.edu) 

(Mueller et al., 2005), The Australian Imaging, Biomarker & Lifestyle (AIBL) Study of Ageing  (Ellis et 

al., 2009), Harvard Aging Brain Study (HABS) (Dagley et al., 2017), UKB 

(https://www.ukbiobank.ac.uk/) (Miller et al., 2016), PREVENT-AD (Breitner et al., 2016; Tremblay-

Mercier et al., 2021), OASIS3 (LaMontagne et al., 2019), and Wayne (Daugherty and Raz, 2016; Raz et 

al., 2012) datasets. Observations concurrent with cognitive impairment and Alzheimer’s dementia 

were excluded. 𝜎𝑠
2 was estimated using a subset of these individuals followed > 4 years and with 4 or 

more observations (n = 639, observations = 3604) from 8 of these datasets. See Supplementary 

Figures 3, 4, and Supplementary Tables 1, 2 for the sample’s descriptive statistics and visualization. 

See Supplementary Table 5 for data availability. See Supplementary Information for a detailed 

description of the datasets, sample description, and image preprocessing. Values of each 

neuroimaging feature were fitted using generalized additive mixed models (gamm4 R-package) 

(Wood, 2017) that included age as a smooth term, sex as a covariate, and random intercepts for 

cohort, site (scanner), and participant. This step removes non-linear age trends at the sample level 

and harmonizes data across datasets and scanners. For each individual and feature, we estimated the 

rate of brain change by regressing the gamm residuals on follow-up time. Slopes of change were 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 20, 2025. ; https://doi.org/10.1101/2024.06.03.592804doi: bioRxiv preprint 

https://www.ukbiobank.ac.uk/
https://doi.org/10.1101/2024.06.03.592804
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 
 

converted to percentage change scores based on the individuals’ mean values. This step was 

performed so features from different modalities are directly comparable despite possibly minor 

differences in reliability compared to raw scores. Next, extreme outliers, defined by values > 5 mean 

absolute deviation (MAD) around the fitted mean (multiplied by a MAD to SD scaling factor), were 

discarded. We used the (squared) standard deviation of the slopes as the measure of interest.  

 

2.2.2. Cross-sectional measurement errorc 

Measurement error σε was estimated as the average error across six different test-retest cohorts con-

sisting of cognitively healthy adult participants, namely, the S2C (Walhovd et al., 2024), the preventAD 

(Orban et al., 2015), OASIS (Marcus et al., 2007), and GSP (Holmes et al., 2015) reliability subsets, and 

the HNU1 (Chen et al., 2015) and Maclaren (Maclaren et al., 2014) test-retest datasets (n = 341, ob-

servations = 1036). Three of the datasets partially overlapped with datasets used for estimating slope 

variance. See Supplementary Table 4 for the sample’s descriptive statistics and visualization. See Sup-

plementary Table 5 for data availability. See Supplementary Information for a detailed description of 

the datasets, sample description, and image preprocessing. Briefly, the datasets consisted either of 

test-retest designs, performed on different days (≤ 3 months) (|N| = 4) (mean interscan interval = 

77.2, 20.1, 111.4, and 82.8 days per dataset, respectively) or of cohorts of densely scanned partici-

pants over short periods (|N| = 2) (mean time between first and last observations = 33.1 and 31.0 

days per dataset, respectively). Extreme outliers (>5 MAD around the mean to the between-subject 

average for test-retest and to the within-subject average for densely scanned designs) were discarded. 

Measurement error (𝜎𝜀) was estimated for a given subject (i) as the absolute difference between each 

measure estimated from both sessions divided by the mean of the two for test-retest designs (eq. 6), 

while for densely scanned designs, we computed the coefficient of variation (eq. 7), where 𝜎𝑖 denotes 

standard deviation and 𝑋̅𝑖  the mean value across timepoints. The mean across subjects was estimated 

in each cohort while the mean across cohorts was the parameter of interest.  

 

(eq. 6.)  σε =  
|𝑥1𝑖−𝑥2𝑖|

.5 × (𝑥1𝑖+𝑥2𝑖)
 ×  100 

 

(eq. 7.)  σε =  
𝜎𝑖

𝑋̅𝑖
 ×  100 
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2.2.3 Follow-up time and number of observations.  

We explored follow-up durations (t) between 2 and 12 years (sampled every two years) and 3, 5, 7, 

and 9 observations (n). Most of the existing longitudinal MRI data falls below the upper follow-up and 

number of observations limits. We have included estimates of longitudinal reliability for 3 or more 

observations to enable comparisons with the empirical estimations which require 3 or more 

observations. A somewhat arbitrary lower limit of 2 years was set, as shorter follow-up times are rarely 

used for studying individual differences in brain aging. Rather, the available datasets are often part of 

experimental designs. In any case, reliability estimates outside the reported bounds can be explored 

in the supporting app.  

 

2.3 Higher level analysis 

All the analyses were carried out in the R environment (R Core Team, 2023). Values in parenthesis 

represent standard deviations (SD), unless otherwise stated. We chose (left) hippocampus volume, 

and entorhinal thickness to illustrate the different results in specific features. Both measures are 

widely used in the context of cognitive neuroscience of aging, especially in relation with episodic 

memory function. Hippocampus is amongst the features with higher longitudinal reliability, while en-

torhinal thickness ranks poorly. Visualizations were made with the ggplot2 (Wickham, 2016) and the 

ggseg (Mowinckel and Vidal-Piñeiro, 2020) R-packages.  

 

2.3.1 Effects of follow-up time, modality, and number of observations.  

A three-way ANOVA was carried out with all estimates of longitudinal reliability with modality, total 

follow-up time, and number of observations as predictors.  

 

2.3.2 Agreement across datasets for parameters and reliability estimates:  

Next, we explored whether measurement error (σε) and slope dispersion parameters (σs) were com-

parable across datasets using single (ICC(2,1)) and mean reliability (ICC(2,k)) (McGraw and Wong, 

1996; Shrout and Fleiss, 1979). The first index provides information on the reliability when using a 

single source for extracting parameters while the latter provides the reliability of the mean measure-

ment. Similarly, we explored the reliability of the longitudinal reliability estimates using independent 

pairs of error and slope dispersion parameters. For overall consistency, we used k = 6 for ICC for mean 

reliability, as this represents all possible combinations of independent pairs. We used a random subset 
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(n = 500) of possible combinations. We assessed global and local consistency, that is, reliability for the 

entire model and the model when constrained to a given number of observations and follow-up time. 

These indices assess the generalizability and representativeness of the parameters used, and the re-

ported reliability estimates across different datasets.  

  

2.3.3 Consequences of longitudinal reliability (I): Sample Size Estimates.  

We estimated the required sample size given the longitudinal reliability predicted as a function of 

feature, number of observations, and follow-up time. We assumed a Pearson’s correlation with dif-

ferent true effects, 80% power, and perfect reliability for the other variable, and derived the attenu-

ated correlation based on estimated reliabilities (Spearman, 1904). See the supporting app for sample 

size estimations of two-sample t-tests, and three-level ANOVAs following the formulas described else-

where (Kanyongo et al., 2007; Zuo et al., 2019). 

 

2.3.4 Consequences of longitudinal reliability (II): Misclassification of individual trajectories.  

Next, we illustrated the degree to which we correctly identify individuals with differing aging trajecto-

ries as a function of feature, number of observations, and follow-up time. Hence, we defined three 

hypothetical individuals: a normal ager, a maintainer, and a decliner which decline 0, +1, and -1 stand-

ard deviations faster than the population average. Mean annual change – estimated as the yearly 

brain change between 60 and 80 using GAMM derivatives (gratia r-package) (Simpson, 2024) - and its 

variability across individuals was available from the dataset used for estimating slope variance (section 

2.2.1). For each hypothetical subject, feature, number of observations, and follow-up time, we com-

puted the probability density functions of the possible observed slopes using the parameters de-

scribed above. We then assessed 1) the amount of overlap between these distributions using the 

Bhattacharyya coefficient (eq. 8) where p(x) and q(x) are the probability density functions of the ob-

served slopes for, e.g., the maintainer and the normal ager and 2) estimated the probability of incor-

rectly identifying (ordering) these hypothetical individuals. Note that the probability of incorrectly 

identifying these individuals at random is 50%.   

 

Eq.8 𝐵𝐶(𝑃, 𝑄) =  ∫ √𝑝(𝑥)𝑞(𝑥)𝑑𝑥 

 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 20, 2025. ; https://doi.org/10.1101/2024.06.03.592804doi: bioRxiv preprint 

https://vidalpineiro.shinyapps.io/longrho_shinyapp/
https://doi.org/10.1101/2024.06.03.592804
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 
 

2.3.5 Consequences of longitudinal reliability (III): Group membership based on trajectories.  

We used eq. 1 to estimate individual trajectories of brain change. In addition to measurement error 

and slope dispersion measures, we also used mean change (decline) and mean values. Using the 

gamm models described above (see Parameter selection section), we took the average values at age 

= 70 as the group mean, and the mean average derivatives between 60 and 80 as yearly change (gratia 

r-package) (Simpson, 2024). We simulated samples of 1,000 individuals for each cell (number of time 

points × number of observations). Based on the simulated samples, we estimated: a) the proportion 

of participants with no observed (measured) decline (observed brain maintainers); the proportion of 

those who show b) true (latent) decline (true brain maintainers), and c) true above-average decline 

(true brain decliners).  

 

2.3.6 Determinants of longitudinal reliability (I): Sample characteristics.  

Reliability is a property of the measurement and, thus, partially sample dependent. Hence, we re-

estimated the reliability of longitudinal brain change using slope variance parameters extracted from 

young and old adult subsamples (cut-off at 60 years, N = 70 and 569, respectively). A more refined 

approach to estimating age-dependent variability in brain change involves models such as generalized 

additive models for location, scale, and shape (GAMLSS). However, accurately capturing age-depend-

ent dispersion with these models requires a significantly larger sample size than what was available in 

the present study. 

 

2.3.7 Determinants of longitudinal reliability (II): Preprocessing stream.  

In neuroimaging, reliability is not only a property of the measurement but also dependent on the 

preprocessing stream. To illustrate this, we re-estimated the reliability of longitudinal brain change 

using the cross-sectional FreeSurfer processing stream. The longitudinal stream is generally recom-

mended for longitudinal analyses; however, it is computationally more demanding and can be suscep-

tible to biases when observations are acquired at uneven time intervals or when major brain events 

occur. As a result, the cross-sectional stream continues to be widely used in longitudinal designs. The 

differential reliability between longitudinal and cross-sectional FreeSurfer processing streams was as-

sessed using a three-way ANOVA with modality, total follow-up time, and number of observations.  

 

2.3.8. Determinants of longitudinal reliability (III): Global versus regional features.  

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 20, 2025. ; https://doi.org/10.1101/2024.06.03.592804doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.03.592804
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 
 

We repeated the same analyses using global summary features – based on the aseg and aparc parcel-

lations: namely total cortical area and volume, mean cortical thickness, and subcortical and supraten-

torial volume (without the ventricles). When extracted bilaterally, values were combined. The reliabil-

ities of the global features were compared to the regional estimates of the same modality based on 

the percentiles. 

 

2.3.9 Reliability of longitudinal brain change: Estimations based on empirical data.  

We used the multicohort described in the slope variance section (Supplementary Table 1, Supple-

mentary Figure 5) to empirically estimate reliability, serving as a validation for the primary analytically 

derived estimates. This approach ensures reliability is estimated from the same set of individuals, ra-

ther than relying on parameter estimates derived from only partially overlapping datasets. Otherwise, 

analytical derivation is generally preferred as i) provides stronger theoretical justification, ii) is readily 

applicable to broader research questions and datasets; iii) follows a standardized approach and iv) 

yields exact estimates. In this analysis, slope variance was considered fixed and estimated as described 

above while the error variance of the slopes was assessed using the standard error of the slope for 

each individual and feature. This measure estimates the degree of uncertainty with which an individ-

ual slope is estimated. For each feature, the standard error of the slopes were fitted by total follow-

up time, the number of observations, and its interaction with cohort as random intercept using gen-

eralized linear mixed effects models with a logarithmic link (glmer, lme4 R-package) (Bates et al., 

2015). The predictions were corrected by the number of observations as they slightly underestimate 

the error variance of the slope. See Supplementary Information for a detailed description and Sup-

plementary Figure 6 for visualization.  

 

2.4. Supporting app. 

We provide an interactive tool, powered by shiny app (Chang et al., 2022) accompanying this paper to 

enable visualization and sharing of statistics associated with the manuscript and as an interactive tool 

for users to explore reliability and sample size estimates of choice for individual differences research 

using longitudinal data. Along this line, Longpower (Iddi and Donohue, 2022), LIFESPAN (Brandmaier 

et al., 2015), and ReX (Xu et al., 2023) are other tools to estimate power and reliability in the context 

of neuroimaging and longitudinal designs.   

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 20, 2025. ; https://doi.org/10.1101/2024.06.03.592804doi: bioRxiv preprint 

https://vidalpineiro.shinyapps.io/longrho_shinyapp/
https://doi.org/10.1101/2024.06.03.592804
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 
 

3. Results 

3.1 Reliability of longitudinal brain change. 

See Figure 2a for mean effects - across features - of follow-up time and number of observations on 

longitudinal reliability of MRI change. See the supporting app for all the reliability estimates based on 

feature, follow-up time, and number of observations. A three-way ANOVA with modality, follow-up 

time, and number of observations showed that ICC was dependent on the main effects of the three 

parameters (F = 592.7 [η² = 0.26], F = 15565.3 [η² = 0.94], and F = 663.0 [η² = 0.28], respectively; all p 

< .001). Longer follow-up times led to notable increases in longitudinal reliability, whereas increasing 

the number of observations led to a more modest increase. Mean reliability across features (i.e., sub-

cortical volume, cortical area, thickness, and volume) was low (ICC = .24 [.10]) with 2 years of follow-

up, showing a rapid increase at 4 (ICC = .54 [11]) and 6 (ICC = .72 [.09]) years of follow-up and gradually 

reaching a plateau with longer follow-up times (ICC = .82 [.07], .87 [.05], .91 [.04] with 8, 10, and 12 

years). Increasing the number of time points also increased the reliability, albeit to a minor degree 

(ΔICC per additional observation = .016). Across all explored features, follow-ups and time-points, sub-

cortical volumetric features (ICC = .78) showed higher reliability than the cortical modalities, while 

cortical area (ICC = .71) showed slightly higher reliability than both cortical thickness (ICC = .65) and 

volume (ICC = .67). In addition, ICC was also dependent on the number of observations × follow-up 

time (F = 14.7, η² = 0.04, p < .001) and the modality × follow-up time two-way interactions (F = 20.9, 

η² = 0.06, p < .001). The number of observations × follow-up time showed that including more obser-

vations with shorter follow-up times led to higher increments in reliability, while increasing follow-up 

time led to comparatively minor increases in reliability for subcortical features, likely reflecting higher 

mean values of subcortical features and the consequent plateau effect. See Supplementary Figure 7 

and Supplementary Tables 7, 8 for the ANOVA visualization and statistics. Significant differences were 

found across features within modality, especially for subcortical structures (Figure 2b). Ventricular 

and caudate volume showed the highest reliability among subcortical structures, while the pallidum 

and the amygdala showed the lowest. Cortical features shared a similar regional profile (ρ ≈ .34 - .76), 

with middle cingulate regions, medial and lateral parietal regions, and somatosensory regions showing 

the highest reliability, while temporal, visual, and orbitofrontal features showed the lowest. Overall, 

we found a key role of follow-up time on longitudinal reliability, with modest reliability estimates for 

short study durations, i.e., 2 years, and a comparatively minor impact of increasing the number of 

observations.  
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Figure 2 Longitudinal reliability of structural brain features. a) Mean reliability (ICC) of structural 

brain change across features as a function of total follow-up time and number of equispaced observa-

tions. Error bars represent ±1 SD.  b) Longitudinal reliability (ICC) for individual structural features, 

grouped by modality, shown for follow-up time of 4 years and 3 observations. Subcortical features are 
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numbered as follows: 1. Lateral Ventricle, 2. Caudate, 3. Thalamus, 4. Pallidum, 5. Putamen, 6. Amyg-

dala, 7. Hippocampus. Obs. = Number of observations. 

 

3.2. Consistency of parameters and reliability estimates across datasets.  

Next, we assessed the extent to which the parameters used, and the reported reliability estimates are 

generalizable of legacy MRI datasets and representative of a single of these. We explored whether 

measurement error (σε) and slope dispersion parameters (σs) were comparable across datasets using 

single and mean reliability. See Supplementary Tables 2 and 4 for information on datasets used for 

estimating slope dispersion and measurement error, respectively. Mean reliability reflects the degree 

to which the results are generalizable, i.e., whether they offer a valid characterization of legacy da-

tasets. Single reliability indicates how well the results align with a single dataset, e.g. if one were to 

use the present results to a single dataset. Reliability of measurement error (σε) was ICC(2,1) = .65 (CI 

= .60 - .70) and ICC(2,k) = .92 (CI = .90 - .93) for single and mean measurements, while for slope dis-

persion (σs) was ICC(2,1) = .82 (CI = .76 - .87) and ICC(2,k)  = .97 (CI = .96 - .98). Within modality, cortical 

area, and subcortical volume showed better reliability estimates of measurement error and slope dis-

persion. See statistics and visualization in Supplementary Table 9 and Supplementary Figure 8. We 

also explored the overall and local agreement of the longitudinal reliability estimates using different 

pairs of error and slope dispersion parameters. The single and mean overall agreements were ICC(2,1) 

= .84 (.06) and ICC(2,k) = .97 (.01). Within a given follow-up time and number of observations, the 

single and mean overall agreements were ICC(2,1) = .23 (.14) and ICC(2,k) = .62 (.08). See statistics and 

visualization in Supplementary Table 10 and Supplementary Figure 9. Overall, measurement error 

(σε) and slope dispersion (σs) parameters were comparable across datasets, and the overall reliability 

pattern was consistent regardless of the cohorts from which the parameters were selected. In con-

trast, the regional patterns of longitudinal reliability – given a fixed number of observations and study 

duration - were less stable.  

 

3.3 Consequences of longitudinal reliability (I): Sample Size Estimates. 

Reliability places an upper limit on the maximum detectable effect size, and hence, suboptimal relia-

bility requires larger sample sizes. For each feature, we estimated the impact of follow-up time and 

number of observations on the sample sizes required to achieve a desirable level of statistical power 

(80%) at p < 0.05, given a real effect size. See Figure 3 for an illustration with correlation analysis and 

Supplementary Table 11 for the accompanying summary statistics. On average, increasing the follow-

up time to 4 (from 2) or 6 (from 4) years leads to substantial reductions in required sample size, while 

a higher number of observations leads also to reductions in required sample size in shorter follow-up 
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designs. Across features, the mean sample size to achieve 80% of power for a real effect size of r = .5 

is 154, 60, and 43 individuals following a longitudinal design with 3 observations and 2, 4, or 6 years 

of follow-up, while the mean sample sizes required for a real effect size of r = .3 and r = .1 are 565, 

205, and 139 and 5095, 1860, and 1261 individuals, respectively (Figure 3a). In the three cases, a 2-

year follow-up requires ≈2.7 and ≈4.0 times more individuals than designs with 4-year and 6-year fol-

low-ups for achieving similar statistical power. Note that the observed correlations will be lower for 

samples with shorter follow-up design and number of observations due to error-related attenuation. 

See also estimated sample sizes for Left Hippocampus (Figure 3b) and Left Entorhinal thickness (Figure 

3c). See accompanying statistics in Supplementary Table 12. Left Hippocampus, a feature with high 

longitudinal reliability, shows large reductions of required sample size up to 4 years of follow-up, while 

the Left Entorhinal thickness, a feature with low reliability, shows how extending the follow-up up to 

6 years leads to notable reductions in required sample size. That is, the lower the reliability of longi-

tudinal change, the more benefit one gets, in terms of sample size reduction with longer follow-ups. 

Extending the duration of short follow-up studies enhances longitudinal reliability and is crucial for 

reducing sample size estimates. The patterns described above are generally robust across the different 

features and parameters.   
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Figure 3 Power analysis for detecting correlations with longitudinal brain change. a) Mean required 

sample size across structural features (with power = 80%, p < .05) for detecting correlations with lon-

gitudinal brain change of small, medium, and large effect sizes (based on conventional guidelines) 

across different follow-up times and number of observations. Grey horizontal lines are the estimated 

effect sizes given reliability ICC = 1. Estimated sample size required to detect significant correlations (p 

< .05, 80% power) between b) the left hippocampus, c) left entorhinal thickness and phenotypes with 

real correlations ranging from r = 0.05 to 0.4, across different follow-up times and number of observa-

tions. For visualization purposes in b)  and c), follow-up time is capped at 8 years and the number of 

observations shown is 3 and 7. r = Pearson’s Correlation. Obs. = Number of observations. Cth = Cortical 

thickness.  

 

3.4. Consequences of longitudinal reliability (II): Misclassification of individual trajectories. 

Next, we illustrated the effects on the degree of overlap between different trajectories of brain aging 

given suboptimal longitudinal reliability, by considering a hypothetical normal ager, maintainer, and 

decliner whose brains change 0, -1, and 1 σs faster relative to the population average and its range of 

possible observed (measured) slopes. We estimated the degree of overlap between distributions using 
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the Bhattacharyya coefficient (BC) and the probability of misclassification (i.e., observing steeper 

slopes for a normal ager than for a decliner). On average – across features - the distribution of ob-

served values between the normal ager and the decliner (or maintainer) are highly overlapping at 

short follow-up times, e.g., BC = .97 [0.02] and .89 [0.06] with designs of 2 and 4 years of follow-up, 

and 3 observations. Increasing the follow-up time sharply decreased the amount of overlap between 

samples, while increasing the number of observations led to additional reductions in the distribution 

overlap (Figure 4a). This implies a probability of misclassification of p = 0.32 (0.04) and p = .018 (0.05) 

with designs of 2 and 4 years of follow-up and 3 observations (random classification is p = 0.5). Both 

the overlap between distributions and the probability of misclassification are much smaller – albeit 

significant – when comparing a decliner with a maintainer (e.g., BC = 0.89 [0.06], p = 0.18 (0.05) and 

BC = 0.63 [0.13), p = 0.04 [0.02] with designs of 2 and 4 years of follow-up, 3 observations). See full 

statistics in Supplementary Table 13. See an example of distribution overlap for specific features in 

Figure 4b-c; see corresponding statistics in Supplementary Table 14. See visualization and statistics 

for all features in the supporting app. Suboptimal reliability reduces the ability to detect differences 

in rates of change across individuals, significantly limiting the usefulness of most available longitudinal 

structural data for making accurate individual-level predictions.  

 

 

Figure 4. Overlapping between observed estimates of change. a) Mean Bhattacharyya coefficient 

(BC) across features, quantifying the degree of overlap between two samples as a function of follow-

up time and number of observations. The distributions represent possible observed estimates of brain 

change for three individuals: a normal ager, a maintainer, and a decliner who show decline at an av-

erage rate, 1 SD slower, and 1 SD faster, respectively. Overlap in observed brain change distributions 
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for the b) Left Hippocampus, and c) Left Entorhinal Thickness. For b) and c), distributions are shown for 

3 and 7 observations and 2, 6, and 10 years of study duration. 

 

3.5. Consequences of longitudinal reliability (III): Group membership based on trajectories.  

Suboptimal longitudinal reliability also has a substantial impact on subgroup classification based on 

individual trajectories, particularly when combined with observable criteria such as the absence of 

observed decline. Note that observed refers to the measured data while true represents the latent, 

error-free measure. To illustrate this, we simulated brain aging trajectories for individuals, identified 

those with no observable decline over time (observed brain maintainers), and estimated the propor-

tion of a) those without true (latent) decline over time (true brain maintainers) and b) those that had 

above-average true decline (true brain decliners). The results showed the following trends: a) the pro-

portion of participants classified as observed brain maintenance decreases with longer study duration. 

b) The proportion of observed brain maintainers that are true brain maintainers increases with longer 

study duration, and c) the proportion of observed brain maintainers that are true brain decliners de-

creases with longer follow-up times. Increasing the number of observations produced the same trends 

to a lesser degree. See Figure 5 for examples of specific features. See statistics in Supplementary Table 

15 and information for the remaining features in the supporting app. At short follow-up times, the 

majority of individuals in which brain maintenance is observed present true brain decline. For features 

with lower reliability, the proportion of individuals with above-average decline showing no decline is 

also significant (e.g. 15.4% and 9.2% for entorhinal thinning with follow-ups of  2 years and 3 time 

points). The results showed suboptimal reliability limits the ability to identify biologically meaningful 

subgroups based on rates of brain aging and increases the risk of misinterpreting data when compared 

to objective criteria. For instance, many individuals classified as brain maintainers do, in fact, 

experience true brain decline to varying degrees.  
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Figure 5. Misclassification based on external criteria. Misclassification of individuals based on an ex-

ternal criterion, i.e., whether they exhibit no brain decline over the duration of the study. The density 

plots show the distribution of real trajectories of those subjects for whom we would observe no brain 

decline over time. Green and red fillings represent the proportion of real brain maintenance and real 

brain decliners, respectively. The text represents the proportion of participants showing no observed 

brain decline. Shown for the a) Left Hippocampus and b) Left Entorhinal Thickness. Distributions dis-

played at 3 and 7 observations and 2, 6, and 10 years of study duration.  

 

3.6. Determinants of longitudinal reliability (I): Sample characteristics affect longitudinal reliability. 

Reliability is partially influenced by the variance of the slopes, which itself depends on the sample 

composition. Younger and healthier samples tend to exhibit more uniform rates of decline compared 

to samples consisting of older individuals or individuals with pathological load. To illustrate this, we 

re-estimated the longitudinal reliability using slope variance extracted from a younger and older sub-

sample (cut-off at 60 years). See Figure 6 for the differences in longitudinal reliability when slope dis-

persion parameters are extracted either from middle-aged or old adults. Middle-aged adults present 

less variance of the slopes, and thus worse longitudinal reliability estimates in the (left) hippocampus, 

and entorhinal cortex than older adults. See statistics in Supplementary Table 16 and the remaining 

features in the supporting app. Younger, healthier samples require longer follow-up times or a higher 

number of observations to reach a desired level of longitudinal reliability. Likewise, the consequences 

of suboptimal reliability, e.g., misclassification, will be more acute in younger datasets.  
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Figure 6. Longitudinal reliability and sample characteristics. Effect of cohort’s age on longitudinal 

reliability. Older individuals exhibit higher reliability than younger individuals, due to greater variability 

in slope estimates. Longitudinal reliability as a function of follow-up time, age, and number of obser-

vations for the a) Left Hippocampus, and b) Left Entorhinal Thickness. Only distributions at 3 and 7 

observations are shown. 

 

3.7. Determinants of longitudinal reliability (II): Preprocessing stream. 

Reliability is partially determined by cross-sectional measurement error. For neuroimaging data, 

measurement error is in part dependent on the acquisition sequence and the preprocessing pipelines. 

See Figure 7a for mean effects - across features - of follow-up time and number of observations on 

the reliability of brain change when processed with the cross-sectional FreeSurfer stream. See the 

supporting app for statistics. The overall pattern of longitudinal reliability was similar as shown with 

data processed using the longitudinal stream (see Figure 2a) with main effects of modality, follow-up 

time, and number of observations (Supplementary Table 17). However, longitudinal reliability was 

notably lower when using data processed with the cross-sectional stream. For the cross-sectional 

stream, mean reliability across features was ICC = .08 (.06) with 2 years of follow-up increasing to ICC 

= .24 (.12) and ICC = .41 (.14) after 4 and 6 years of following up and reaching mean reliability values 

of ICC = .54 [.15], .63 [.14], .71 [.13] with 8, 10, and 12 years). On average, longitudinal reliability was 

ΔICC = .25 (.12) lower when compared to those derived from the longitudinal FreeSurfer stream (t = 

150.9, p < .001). Area and follow-up durations of 4 – 8 showed more pronounced decrements in reli-

ability compared to the longitudinal FreeSurfer stream (Figure 7b, c). See Supplementary Figure 10 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 20, 2025. ; https://doi.org/10.1101/2024.06.03.592804doi: bioRxiv preprint 

https://vidalpineiro.shinyapps.io/longrho_shinyapp/
https://doi.org/10.1101/2024.06.03.592804
http://creativecommons.org/licenses/by-nc-nd/4.0/


25 
 

for visualization, Supplementary Table 18 for statistics. Using suboptimal pipelines increase measure-

ment error and thus negatively affects the longitudinal reliability estimates.  

 

 

Figure 7. Longitudinal reliability using FreeSurfer cross-sectional stream. Impact of preprocessing 

stream on longitudinal reliability. a) Mean reliability (ICC) of structural brain change across features as 

a function of total follow-up time and number of equispaced observations, estimated using the Free-

Surfer cross-sectional stream. Mean differences in longitudinal reliability, by b) follow-up time and 

number of observations and c) modality, between data processed with the longitudinal versus cross-

sectional FreeSurfer stream. Positive ΔICC indicates improved reliability estimates when using the lon-

gitudinal FreeSurfer Stream. Error bars represent ±1 SD. FS = FreeSurfer. Obs. = Observations.  

 

3.8. Determinants of longitudinal reliability (III): Global versus regional features. 

We computed the longitudinal reliability of global summary variables and compared their reliability 

with that of regional features within the same modality (Supplementary Figure 11). See full longitudi-

nal reliability estimates in the supporting app. Mean cortical area and Supratentorial volume showed 

markedly better longitudinal reliability than most regional estimates being in the 12th and 15th per-

centiles of their modality. Mean subcortical volume, mean cortical thickness, and mean cortical vol-

ume showed average or slightly above-average reliabilities being in the 32nd, 35th, and 51st percentile 

of their modality. Overall, using common, global variables of brain change did not lead to meaningful 

improvements in longitudinal reliability. 
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3.9 Reliability of longitudinal brain change: Estimations based on empirical data. 

See Figure 8a for mean effects - across features - of follow-up time and number of observations on 

longitudinal reliability of MRI change estimated empirically. Note that we assumed a fixed variance of 

the slope. See the supporting app for statistics. The overall pattern of longitudinal reliability was com-

parable to the main (analytically derived) estimates (see Figure 2a) with main effects of modality, 

follow-up time, and number of observations (Supplementary Table 19) as well as a similar mean reli-

ability (ΔICC = -0.03 [.10]). Longitudinal reliability estimated empirically was somewhat higher for 

study durations of 2 years and lower for study durations of 4 and 6 years; similarly for reliability esti-

mates of cortical area (Figure 8b, c). See Supplementary Figure 12 for visualization and Supplemen-

tary Table 20 for statistics. This analysis provides validation to the main results as the estimation of 

true and error variance of the slope are derived from the same dataset. 

 

 

Figure 8. Longitudinal reliability estimated empirically. Error variance of the slopes was estimated 

from a multi-cohort dataset rather than being analytically-derived from the GRR index. a) Mean relia-

bility (ICC) of structural brain change across features as a function of total follow-up time and number 

of equispaced observations. Mean differences in longitudinal reliability by b) follow-up time and num-

ber of observations and c) modality, between the analytically-derived and the empirical estimations of 

reliability. Positive ΔICC indicates higher estimates for the analytical derivation of reliability. Error bars 

represent ±1 SD. Obs. = Observations.   
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4. Discussion 

Here, we estimated the reliability of structural brain change in the context of cognitively healthy aging. 

The results highlighted total follow-up time and measurement error as two crucial factors for detect-

ing individual differences in longitudinal slopes, while the number of observations had, comparatively, 

a minor effect. These differences in reliability have substantial implications for sample size require-

ments and the ability to identify the individual trajectories in the context of brain imaging. Subcortical 

volumes showed higher reliability while the global features did not. The reliability of brain change 

estimates is also dependent on sample characteristics and the image preprocessing stream. The im-

plications of these results are discussed next. 

 

The main study finding is the notable impact of follow-up time on the reliability of individual differ-

ences in brain change. For most features, longitudinal reliability was poor with a measurement interval 

of 2 years and reached good-to-excellent levels of reliability when the follow-up time was at least 6 or 

8 years. Longer study durations reduce error variance and enable a more precise estimation of the 

individual (linear) slopes. The impact of study duration has been highlighted previously (Brandmaier 

et al., 2018a, 2015; Fitzmaurice et al., 2012; Markus et al., 2024; Rast and Hofer, 2014). Fitzmaurice 

and colleagues stated that – for equispaced observations – doubling the length of the measurement 

interval decreases within-subject variability by a factor of 4, compared to a 29% decrement obtained 

by increasing a design from 2 to 6 observations. Rast and Hofer (2014) also emphasize the impact of 

study duration, noting that in short follow-ups, most longitudinal studies lack an adequate foundation 

for analysis due to the constrains that suboptimal reliability imposes on statistical power to detect 

associations (see also von Oertzen and Brandmaier, 2013). (Note that longer study durations reduce 

error variance when one uses yearly estimates of change; rather, if using cumulative change study 

duration increases interindividual differences in true change). Our results, using structural neuroim-

aging features are, by and large, in agreement with these landmark studies. To our knowledge, the 

reliability of brain change has been assessed by a single group by leveraging double-session data (Ta-

kao et al., 2022, 2021). These studies showed, on average, low (ICC = .33) and high (ICC = .88) test-

retest reliability of brain change for cortical thickness and volumetric change (based on voxel-based 

morphometry) in cognitively healthy older adults. Takao’s reliability of cortical thinning is consistent 

with our estimations at 2 years of follow-up, but not those of volumetric data. This approach, however, 

assumes that the measurements acquired within the same session have independent measurement 

errors, an assumption that is likely greatly violated when employing signal intensity as a core measure 

(Elliott et al., 2023b). Although the extent of measurement error dependence is poorly understood, it 

inflates the reliability estimates, making them an upper bound rather than an accurate reflection of 
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reliability. Using analytical derivation to estimate reliability not only avoids this limitation but also en-

sures broader applicability to various research questions and datasets. Additionally, it follows a stand-

ardized and widely accepted approach that provides a strong theoretical justification and interpreta-

bility, aligning reliability estimates with statistical models of measurement.  

 

Higher longitudinal reliability of the subcortical volumes was driven by higher slope variances rather 

than measurement error, which is in agreement with the existing literature (Hedges et al., 2022; Sele 

et al., 2020). Slope variances explained regional differences in longitudinal reliability for subcortical 

volumes, while measurement error was key for cortical area, volume, and across all features when 

considered together. These results agree with prior evidence of both high variability in the aging tra-

jectories of subcortical structures and the homogenous patterns of cortical decline and longitudinal 

stability of both cortical area and volume (Parsons et al., 2024; Sele et al., 2021, 2020). As such, cortical 

differences in longitudinal reliability are partially determined by region size and whether the region 

lies in the vicinity of air-filled cavities. In any case, caution is required when interpreting regional dif-

ferences within cortical modalities as they seem dependent on the specific parameter source.  

 

Precomputed global features (e.g., mean cortical thinning) did not present higher longitudinal relia-

bilities than regional estimates. Global features have both less measurement error and slope variance, 

which, to some extent, are canceled across brain regions. Increases in longitudinal reliability, will de-

pend thus on how correlated the measurement error and slope variance are throughout the brain. 

Brain changes in cortical thickness, area, and volume are correlated throughout the brain (within mo-

dality) though the strength of these correlations is unclear (Cox et al., 2021; Sele et al., 2021), and the 

degree to which measurement error co-varies across the brain is unknown.  Multivariate indices, e.g., 

BrainAge, may show better longitudinal reliabilities though performance will also depend on the spe-

cific features, samples, and algorithms. However, most research has used this measure cross-section-

ally (c.f. Vidal-Pineiro et al., 2021) and efforts are often directed into reducing model error (More et 

al., 2023) – thus minimizing both true and error variance across individuals – rather than improving its 

validity and capacity to capture actual brain change. In conclusion, global features do not have better 

longitudinal reliability, but likely have reduced specificity, and hence lower true correlations (Smith et 

al., 2020). Using global features can be an advantage when modeling strategies account for measure-

ment error throughout the brain.  
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Reliability has slightly different implications for experimental (e.g., drug trials) and individual differ-

ences research (e.g., brain – behavior correlations) (Cronbach, 1957). Experimental research benefits 

from precision, homogenous groups, and minimizing both within and between-subject variance 

(Hedge et al., 2018; Parsons et al., 2019; Zimmerman and Zumbo, 2015). Reliability, though, is directly 

related to statistical power in individual differences research as this aims to maximize the ratio of 

between vs. within-subject variance (Brandmaier et al., 2018b). In the latter case, reliability places an 

upper limit on the maximum detectable effect size, with low reliability leading to attenuated correla-

tions and regression estimates or increased uncertainty (depending on if used as dependent or inde-

pendent variable). Suboptimal reliability leads to either lower statistical power or a need for bigger 

sample sizes to achieve a desired power - as shown here - and thus results in an increased chance of 

false negatives (Zuo et al., 2019). Yet, studies with low statistical power also have a higher likelihood 

of false positives and inflated estimates of effect size, i.e., “winner’s curse”, when in the presence of 

other biases such as undisclosed analytical flexibility (Button et al., 2013; Loken and Gelman, 2017; 

Simmons et al., 2011). Note that statistical power to detect significant differences will also be affected 

by the non-brain variables, which often have imperfect reliability and/or validity, such as cognitive 

scores or cognitive reserve assessments (Fawns-Ritchie and Deary, 2020; Wilson et al., 2019). Subop-

timal reliability also impacts the ability to identify a specific individual based on their trajectory and 

subgroups. Our results caution against making inferences and predictions at an individual level based 

on brain change for short follow-ups, and against treating model-based classifications as indicative of 

a real phenomenon, e.g., observation of no decline as evidence for brain maintenance. Altogether, 

suboptimal reliability of brain change hampers our ability to make decisions based on the evidence, 

to compare studies, and is likely to be an important factor behind the lack of converging evidence of 

associations between brain change and genetic, environmental, and cognitive factors (Oschwald et 

al., 2019; Walhovd et al., 2023).  

 

Most studies on longitudinal reliability have focused on study design (Brandmaier et al., 2018a, 2015; 

Hertzog et al., 2008; Rast and Hofer, 2014; Willett, 1989) and thus differentiate between modifiable 

(duration, observations, and spacing) and non-modifiable (slope variance and measurement error) 

features. In neuroimaging, significant attention has also been given to measurement error, as it is 

partially mitigated through the implementation of advanced imaging sequences and processing pipe-

lines. Yet, most researchers in longitudinal neuroimaging are not involved in the study design, i.e., 

they carry out secondary data analyses and thus need to consider longitudinal reliability from a differ-

ent perspective. First, when possible, researchers should estimate reliability and statistical power to 

minimize the risk of performing underpowered studies, with reliability estimates ideally obtained from 
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the same population (Vacha-Haase et al., 2000). See elsewhere for power analyses and sample size 

justification (Lakens, 2022). Alternatively, one can use, with caution, estimates presented elsewhere. 

Second, researchers may select datasets of higher quality. Datasets with longer follow-ups, more ob-

servations, and state-of-the-art sequences and scanners are preferable. Selecting participants who 

have been followed for extended periods may be a possibility, yet it can also reduce the variance of 

the slope and limit the generalizability of the study, especially in the context of aging. Variance in the 

slope is generally non-modifiable and constrained by the research question, yet occasionally, it is pos-

sible to select populations with high variance, for example, by including older samples or even partic-

ipants undergoing pathological changes (Nelson and Dannefer, 1992). In any case, slope variance is 

ultimately limited by the fact that brain trajectories tend to go in the same direction, that is, everybody 

declines over time, resulting in a small degree of variability in change across the population (Rouder 

and Haaf, 2018).  

 

Third, one should optimize processing pipelines and control for factors that explain within-subject 

variation. Here, we showed that FreeSurfer’s longitudinal stream leads to higher estimates of longitu-

dinal reliability compared to the cross-sectional pipeline. This superior performance is attributed to 

reductions in measurement error (Hedges et al., 2022; Reuter et al., 2012a). In the same vein, Samseg 

(Puonti et al., 2016) may show superior performance to aseg subcortical processing (Sederevičius et 

al., 2021). Further testing is required for other neuroimaging modalities and suites. The only factor 

commonly considered when accounting for within-subject variation is scanner change. Yet, other fac-

tors such as head position, scanner upgrades, and time of the day have been repeatedly suggested to 

explain both between and within-subject variability (Alfaro-Almagro et al., 2021; Hedges et al., 2022; 

Karch et al., 2019; Medawar et al., 2021) and are often available - or can be easily estimated - in legacy 

data. Fourth, one can account for measurement error in the statistical models. Structural equation 

models (SEMs) are designed to examine relationships between variables (and latent constructs) while 

accounting for measurement imprecision in observed data. While increasingly popular, SEMs are not 

the tool of choice for most neuroimaging researchers (cf. Cooper et al., 2019). Alternatively, several 

methods can account for the effect of measurement error in a range of regression and correlation 

analyses (e.g. SIMEX, Regression Calibration, attenuation correction) (see overview in Buonaccorsi, 

2010) and are implemented in open-source, statistical programming languages such as R (Lederer et 

al., 2019; Moss, 2019; Nab et al., 2021). 

 

Considerations 
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It can be problematic to blindly assume the estimates reported here generalize to other samples, pro-

cessing pipelines, and acquisition parameters (i.e., reliability induction; Vacha-Haase et al., 2000) as 

both measurement error and slope variance are likely to differ across datasets. Parsons and colleagues 

(Parsons et al., 2024) have shown that measurement errors differ by site (scanner- and vendor- spe-

cific) while notable pipeline and version-specific measurement errors have been reported here and 

elsewhere (Hedges et al., 2022; Reuter et al., 2012b; Sederevičius et al., 2021). At the same time, 

variances of the slopes are also dependent on the population and differ as a function of age – as shown 

here – or patient inclusion (Jack et al., 2000). Thus, this study is most relevant to others using similar 

approaches and samples, and caution is required when generalizing the present longitudinal reliability 

estimates. In any case, we showed that most results are invariant to the specific datasets from which 

the slope and error parameters were derived (section 3.2), at least when constrained to an image 

preprocessing pipeline and samples of cognitively healthy adults. As such, we are confident these var-

iations do not affect the key findings of the study: namely, the key effect of follow-up time and the 

poor reliability of brain change when assessed at short intervals (< 4 years). On the contrary, our con-

clusions regarding the general pattern of how ICC is affected by the different design choices will likely 

generalize across a wide variety of measurements (Brandmaier et al., 2024; Rast and Hofer, 2014). 

 

The models used here rely on several assumptions that need to be considered in more detail. I) Older 

adults present long-term changes in brain structure that can be well captured by linear trajectories. 

This assumption is presumed – either explicitly or implicitly - in most aging neuroimaging research. 

While false, as structural brain decline accelerates later in life (Bethlehem et al., 2022; Vidal-Pineiro 

et al., 2020), nonlinearities are likely to have only a minor effect except in very long follow-up studies. 

This assumption may be more severely violated in other samples, such as in child and adolescent co-

horts. Capturing (individual) non-linear trajectories with accuracy demands markedly more sampling 

(Ghisletta et al., 2020). Also, it assumes that the researcher is interested in long-term, protracted ag-

ing changes in brain structure, while state-dependent and short-term variations are considered noise. 

Within-person variance captures short-term and long-term change and measurement error and, ulti-

mately, what constitutes error and true variance depends on the research question (Karch et al., 2019; 

Nesselroade, 1991). II) Both slope variance and cross-sectional measurement error are independent 

of study duration and number of observations. Slope variance can both increase and decrease as a 

function of study duration. In the context of aging, increasing study duration may lead to reductions 

in slope variance – and thus of longitudinal reliability – due to sample selectivity, as only an increas-

ingly healthy and motivated subsample of the original participants is retained. Death, disease, and 
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motivational factors affect attrition rates, with missingness – at best – at random. At the same time, 

some features, particularly ventricular volumes, present higher slope variance with age and conse-

quently, also with longer follow-ups. Higher variance in the follow-ups should lead to better longitu-

dinal reliability (Zorowitz and Niv, 2023). Measurement error, on the other hand, might be higher in 

older datasets – with longer follow-ups - due to older sequences and software and hardware upgrades. 

III) Change and baseline levels are unrelated. Intercept-slope associations can be modeled leading to 

increments in longitudinal reliability (Brandmaier et al., 2018a). Yet, the relationship between brain 

structure intercept and change in cognitively healthy aging is often weak to insignificant (Vidal-Pineiro 

et al., 2021). In our data, a strong association between cross-sectional and longitudinal estimates, was 

observed only in the left and right lateral ventricles (r = 0.44, 0.41, respectively) (Supplementary Fig-

ure 13). IV) Brain decline and measurement error are unrelated. While a plausible assumption, there 

is some evidence that head motion is associated with both brain decline and measurement error 

(Geerligs et al., 2017; Kemenczky et al., 2022). In our data, we found a significant association between 

measurement error and age in only one region, reducing, to some extent, this concern (Supplemen-

tary Figure 14. V) The slopes of brain decline are approximately normally distributed. The scarcely 

available research shows brain change in normal aging is roughly normally distributed (Fujita et al., 

2023), but it ultimately depends on the specific population and feature of interest. In our data, the 

distribution of brain change is, on average, mildly negatively skewed (Supplementary Figure 15). 

While skewness decreases reliability, the degree of skewness observed for most features is unlikely to 

have a major impact. Note also, that mean decline, despite in increases with age (Supplementary 

Figure 16), does not influence reliability estimates. Assuming fixed variance of the slopes, we repli-

cated the main findings using empirical data, suggesting some of these concerns have a minor influ-

ence on longitudinal reliability.  

 

Note that this study is not designed to optimize longitudinal reliability, rather it intends to be repre-

sentative of the type of legacy data and study samples frequently analyzed in the aging neuroimaging 

field. See elsewhere for a priori assessments of longitudinal reliability (Brandmaier et al., 2018a, 2015; 

Hertzog et al., 2008; Rast and Hofer, 2014; von Oertzen, 2010) were spacing between observations - 

and measurement error - can be adjusted to maintain the levels of reliability while potentially short-

ening study duration. Spacing between observations (i.e., the temporal division) is the third factor – 

together with study duration and number of observations - that influences longitudinal reliability, 

though it has not formally been studied here because most datasets available have roughly equispaced 

observations. Assuming measurement error is independent between close measurements (see Elliott 
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et al., 2023b; Maclaren et al., 2014), the closer measurements are taken towards the beginning and 

the end of the study period, the better in terms of longitudinal reliability (Rast and Hofer, 2014; Wil-

lett, 1989) (SST can then be estimated using eq. 3 instead of eq. 4). Future datasets can leverage clus-

ter-like acquisitions of rapid MRI scans to boost reliability and power to detect differences (Elliott et 

al., 2023a). Such approaches hold promise for estimating brain change with relatively short study du-

rations. However, the longitudinal reliability of such datasets is beyond the scope of this study as they 

rely on considerably different sequences - shorter, noisier -, and introduce correlated errors across 

measurements acquired within a cluster.  

 

Since slope variance was estimated from observed rather than true variation, it is overestimated with 

about 10%. However, it is also underestimated due to attrition bias as the variance is derived from 

individuals who remain in the study for extended periods. This attrition-related underestimation is 

more challenging to quantify. This signals higher uncertainty of the reliability estimates, and a likely 

attenuation of the benefits from extending study duration, as the sample becomes more homogene-

ous over time. The parameters for variance of the slopes and measurement error were obtained from 

different datasets, which could be problematic if these parameters were not consistent across da-

tasets. We showed in section 3.2 these parameters are highly consistent. Further, the empirical relia-

bility estimation, which uses the same datasets to estimate true and error variance of the slopes shows 

similar estimations of longitudinal reliability compared to the main, analytically derived, results. Fi-

nally, longitudinal reliability refers to the measurement, e.g., apparent cortical thickness. Ultimately, 

validity will not be only constrained by measurement reliability but also by the relationship between 

our measures and the underlying biological basis (Natu et al., 2019), an association that can be age, 

and sample-dependent (Vidal-Pineiro et al., 2020). 

 

Measurement error and slope variance are two key parameters of longitudinal reliability, yet are sel-

dom reported in the literature (Hedges et al., 2022; Parsons et al., 2024; Sele et al., 2021). Cross-

sectional reliability of brain structure depends on real (between-subject) and error (within-subjects) 

variance, yet only the latter is relevant for longitudinal reliability. Thus, cross-sectional and longitudi-

nal reliability are not necessarily related. For example, cortical area shows markedly better cross-sec-

tional reliability than cortical thickness (Hedges et al., 2022; Liem et al., 2015) but similar longitudinal 

reliability estimates, given that changes in cortical area are – relatively – more homogenous between 

individuals (Parsons et al., 2024). Previous research has considered mean annual change for estimating 

sample size in the context of longitudinal MRI (Ard and Edland, 2011). Estimation of means requires 
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less data and is widely available in the literature (e.g., Fjell et al., 2009; Fujita et al., 2023; Sele et al., 

2021). However, this approach is problematic (Holland et al., 2012), as it sets a specific range of vari-

ance based solely on the mean (mean decline and variance are not related in our sample across re-

gions [see supporting app]). We encourage further studies to provide measurement error and vari-

ance of the slopes, and consequently, we provide these estimates in the supporting app for the dif-

ferent subsamples.  

 

In addition to measurement error, slope variance, and corresponding longitudinal reliability estimates, 

the supporting app includes interactive tools for enabling researchers to estimate reliability of their 

measurements. This tool can be of help to researchers analyzing longitudinal data in other fields or 

with other populations. This paper is not intended as a critique of previous research; rather it aims to 

raise awareness of the suboptimal reliabilities met when using longitudinal neuroimaging data and 

serve as a tool for future research. We hope to draw attention to the assessment and optimization of 

reliability in longitudinal neuroimaging by providing suggestions and an interactive supporting app. 

5. Conclusions 

The results highlight the critical importance of follow-up time for longitudinal reliability, the need for 

long follow-ups to capture individual brain change in adulthood with precision, and the importance of 

minimizing measurement error of brain features. These findings call for considering reliability in lon-

gitudinal neuroimaging studies and are of relevance not only for the aging neuroimaging community 

but to researchers and financing bodies invested in understanding the determinants of brain and cog-

nition change over time.  
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6. Data and Code Availability  

The raw data were gathered from 21 different datasets. Different agreements are required for each 

dataset. Most dataset are openly available with prespecified data usage agreements. For some da-

tasets, such as UKB, fees may apply. Requests for Lifebrain cohorts (LCBC, Umeå, UB), COGNORM, and 

S2C should be submitted to the corresponding principal investigator. See data availability and contact 

details for all datasets in Supplementary Table 5 Statistical analyses in this manuscript are available 

alongside the manuscript and will be made available at https://github.com/LCBC-UiO/Long_Brain_Re-

liability. All analyses were performed in R 4.2.1. The scripts were run on the Colossus processing clus-

ter, University of Oslo. MRI preprocessing and feature generation scripts were performed with the 

freely available FreeSurfer software (https://surfer.nmr.mgh.harvard.edu/).   
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11. Tables 1 

 2 

Table 1. Summary Panel. Key study measures, definitions, and measurements. Var. = Variance.  3 

Reliability 
𝝆 =

𝑻𝒓𝒖𝒆 𝑽𝒂𝒓.

𝑻𝒓𝒖𝒆 𝑽𝒂𝒓. +𝑬𝒓𝒓𝒐𝒓 𝑽𝒂𝒓.
 

General equation of reliability in classical test theory. Reliability represents the 
proportion of total observed variance in a measurement that is attributable to true score 
variance, as opposed to error variance. For change measures, variance refers to the 
variance of the slope (rate of change). 

True (latent) 
variance 

-- True (error-free) variance in the slopes. It is estimated based on the observed variance of 
the slopes in a subset of individuals with high-quality longitudinal data 

Observed 
variance of 
slopes 

𝜎𝑠
2 Observed between-subject variance in the slopes reflects the dispersion of yearly brain 

change across individuals. This is estimated from a subset of individuals followed for 
more than four years, with at least four observations (n = 639; total observations = 3,604) 
across eight datasets (Supplementary Table 2). 

Error variance 
of the slopes 

𝜎ε
2/𝑆𝑆𝑇 Defined as the ratio of squared cross-sectional measurement error (𝜎𝜀

2) to the sum of 
squared deviations of time points (SST) 

Measurement 
error 

𝜎ε =  
|𝑥1𝑖−𝑥2𝑖|

.5 × (𝑥1𝑖+𝑥2𝑖)
 ×  100  |   

𝜎𝑖

𝑋̅𝑖
 ×  100 

 

Cross-sectional measurement error is estimated using 6 datasets (four test-retest; two 
densely scanned datasets) (Supplementary Table 3). In test-retest datasets 𝜎𝜀 is 
calculated as the absolute difference between each measure from both sessions, divided 
by the mean of the two. In densely scanned datasets 𝜎𝜀 is estimated as the ratio of the 
standard deviation to the mean value across time points.  

SST 
𝑆𝑆𝑇 =  {∑(𝑡𝑗 − 𝑡̅)2

𝑛

𝑗=1

} 
SST quantifies how widely spaced observations are across time for a given participant. 

𝑆𝑆𝑇𝑒𝑞𝑢𝑖𝑠𝑝𝑎𝑐𝑒𝑑 = {𝑡2𝑛(𝑛 + 1)}/{12(𝑛 − 1)} If measurements are approximately equispaced, SST simplifies to (Eq. 4), where 𝑡  
represents the total study duration. 

Longitudinal 
reliability 

𝜌̂ =
𝜎𝑠

2

𝜎𝑠
2 +  𝜎𝑒

2{𝑡2𝑛(𝑛 + 1)/12(𝑛 − 1)}−1
 

Analytical derivation of longitudinal reliability for designs with equispaced 
measurements. In this study, the variance of the slopes (𝜎𝑠

2) and cross-sectional 
measurement error (𝜎𝑒

2) are known. The key parameters of interest are total follow-up 
duration (t) and number of observations (n). 
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