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Towards an unbiased characterization of genetic polymorphism: a
comparison of 27 A. thaliana genomes
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Haim Ashkenazy2,†, Aleksandra E. Kornienko1,†, Joffrey Fitz2, Max Collenberg2,
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Ya-Long Guo8, Paul Kersey3, Detlef Weigel2,9k, Magnus Nordborg1k

Our view of genetic polymorphism is shaped by methods that provide a limited and reference-biased picture. Long-
read sequencing technologies, which are starting to provide nearly complete genome sequences for population samples,
should solve the problem—except that characterizing and making sense of non-SNP variation is difficult even with
perfect sequence data. Here we analyze 27 genomes of Arabidopsis thaliana in an attempt to address these issues, and
illustrate what can be learned by analyzing whole-genome polymorphism data in an unbiased manner. Estimated
genome sizes range from 135 to 155 Mb, with differences almost entirely due to centromeric and rDNA repeats that
are difficult to assemble. The completely assembled chromosome arms comprise roughly 120 Mb in all accessions,
but are full of structural variants, largely due to transposable elements. Even with only 27 accessions, a pan-genome
coordinate system that includes the resulting variation ends up being ∼70% larger than the size of any one genome.
Our analysis reveals an incompletely annotated mobile-ome: we not only detect several novel TE families, but also find
that existing TE annotation is a poor predictor of elements that have recently been active. In contrast to this, the genic
portion, or “gene-ome”, is highly conserved. By annotating each genome using accession-specific transcriptome data,
we find that 13% of all (non-TE) genes are segregating in our 27 accessions, but most of these are transcriptionally
silenced. Finally, we show that with short-read data we previously massively underestimated genetic variation of all
kinds, including SNPs—mostly in regions where short reads could not be mapped reliably, but also where reads were
mapped incorrectly. We demonstrate that SNP-calling errors can be biased by the choice of reference genome, and
that RNA-seq and BS-seq results can be strongly affected by mapping reads only to a reference genome rather than
to the genome of the assayed individual. In conclusion, while whole-genome polymorphism data pose tremendous
analytical challenges, they also have the potential to revolutionize our understanding of genome evolution.

Introduction

The last 25 years have witnessed an explosion of genetic
polymorphism data, fueled by Human Genome Project-
inspired collaborations and the development of massively par-
allel technologies for sequencing and genotyping. Such data
allow us to study population history, selection, and genetic
architecture of traits—as well as the evolution of the genome
itself. However, our current view of genetic polymorphism
has been substantially shaped by technologies that attempt
to align short sequence fragments to a reference genome in
order to detect sites that differ. As a result, our knowledge
of genome variation has remained incomplete and biased to-
wards simple variants in regions that are easy to align—
a small fraction of the genome in many species. A fur-
ther source of bias arises from the use of a single reference
genome.

All this is beginning to change now that long reads are
making it possible to assemble high-quality, full-length chro-

mosomal sequences from population samples. During the
last couple of years, nearly complete genomes have been
produced for large numbers of eukaryotic species, including
yeast, animals (including fruit flies, humans, and cichlids),
and many plants, including rice, tomato, soybean, grapevine,
wheat, barley, maize, millet, Brassica oleracea, Eucalyptus,
Populus and Marchantia sp.—as well as A. thaliana1–27. Im-
pressive as these studies are, they have also highlighted how
difficult it is to make sense of whole-genome polymorphism
data, primarily because sequence alignment is not unambigu-
ous. Pan-genome graphs28,29 may provide elegant and com-
putationally efficient ways of representing such data, but they
do not solve this fundamental problem. To compare genomes
and interpret their differences properly, we require a model-
ing framework that reflects the mutational mechanisms and
recombination history that gave rise to these differences, but
such a framework is still largely missing.

Here we illustrate this problem by analyzing the genomes
of 27 natural inbred accessions of A. thaliana, chosen to
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Figure 1 – Genome assemblies and size variation. A. Histogram of genome sizes estimated from k-mers in PCR-free short reads with
total assembly sizes superimposed (values to the left of “zero”). Most of the variation in genome size can be attributed to unassembled
regions (values to the right of “zero”). B. The amount of centromeric, 5S rDNA and 45S rDNA repeats in the genome, as estimated from
PCR-free short reads with a BLAST-based approach. C. Correlation between genome size and each of the three major satellite repeats.
Their estimated amounts jointly explain up to 92% (P < 2.2 × 10−16) of total genome size variation (see Supplementary Note 1.3 for
details). The regression line and estimates in the figure exclude accession 6981 (Ws-2; indicated with a triangle), because of its high
centromeric repeat content (∼8 Mb).

cover the global genetic diversity of the species. Our focus
is on obtaining an unbiased picture of polymorphism in the
more easily alignable chromosome arms and comparing it
to existing data built over almost two decades30–34. To pro-
vide an unbiased picture of the “gene-ome”, i.e., the collec-
tion of genes across multiple genomes, we complement our
genome assemblies with transcriptomes from multiple tissues
for the entire sample. In addition, we seek to lay the founda-
tion for a community resource that will eventually comprise
complete genomes for the thousands of natural inbred acces-
sions that are publicly available for this model plant, thus
connecting whole-genome polymorphism data to experimen-
tally accessible germplasm and knowledge of a wide range
of morphological, life-history, physiological and molecular
phenotypes, as well as precise collection information (see
1001genomes.org).

Results

The organization of genome variation

We selected 27 accessions to cover global genetic variation
of the species based on the original 1001 Genomes project34,
and additional samples from eastern Asia35, Africa36, and
Madeira37 (Extended Data Fig. 1). We sequenced their
genomes with PacBio continuous long reads (CLRs) to high
depth, assembled them into contigs with Canu38, and pol-
ished these contigs with Illumina PCR-free short reads39 (for
assembly statistics, see Supplementary Table 1). To recon-

struct chromosomes, we generated hybrid scaffolds with in-
dividual Bionano optical maps for eight accessions, which al-
lowed us to determine the most appropriate parameters for
scaffolding40 based on the TAIR10 reference genome41. Al-
though this potentially introduces some reference bias, our
focus is on the gene-dense chromosome arms, which are well-
covered by large contigs, and appear to harbor few large-scale
rearrangements.

Like many plants, A. thaliana has experienced recent
episodes of TE activity, leading to nearly identical sequences
inserted across each genome42. These make short-read align-
ments difficult, but the PacBio CLR technology used here
produced reads long enough to bridge such insertions. How-
ever, extensive tracts of identical or near-identical tandem re-
peats, such as centromere satellites and 5S rDNAs, consis-
tently break our assemblies (Extended Data Figs. 2-3). We
note that centromeres can now be assembled with PacBio
HiFi reads16. CLRs are less accurate, but they are on aver-
age longer, hence marginally better for chromosome arms43.
45S rDNA clusters remain challenging regardless of technol-
ogy44.

Our 27 assemblies are all ∼120 Mb in size, whereas the full
genomes, consistent with previous results45,46, are estimated
to range from 135 to 155 Mb (Fig. 1A). A BLAST-based ap-
proach indicates that centromeres and rDNA clusters alone
account for up to 92% of the estimated variation (Fig. 1B-
C), with the importance of 45S rDNA variation having been
appreciated before46. While individual TE families can vary
greatly in size across accessions (Extended Data Fig. 4), we
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confirm that the cumulative effect of all TEs on genome size
variation appears to be small in A. thaliana46—contrary to
the major role they play in inter-specific variation47,48.

Detecting structural variation
In agreement with others23, we find the chromosome arms
to be not only similar in length across accessions, but also
largely syntenic—as expected for a sexually reproducing
organism with normal recombination (Fig. 2A). This said,
thirteen Mb-scale rearrangements were readily apparent in
whole-genome alignments. These include the previously de-
scribed 1.2-Mb paracentric inversion associated with a het-
erochromatic knob on chromosome 449,50, which is accom-
panied in a subset of the knob-less accessions by an 877-kb
inversion that is 100 kb closer to the centromere (Extended
Data Fig. 5; Supplementary Table 2), and a very large re-
ciprocal translocation in accession 22001 from the Yangtze
River region, which has swapped the distal portions of chro-
mosomes 3 and 5 (Supplementary Fig. 1 in Supplementary
Note 5). This latter rearrangement, which would presum-
ably lead to decreased fertility in heterozygotes, appears to
be rare, as the translocation was not detected in any of the
other 117 accessions from the region that had previously been
sequenced with Illumina short reads35. In the analyses, we
treated the rearranged segments as if they had remained in
their original positions (and will refer to this modified assem-
bly as 22001m; see Supplementary Note 1.1).

Obvious large-scale rearrangements aside, a comprehen-
sive characterization of structural variants (SVs, by which we
mean any alteration that causes variation in length, orienta-
tion, or local context of sequence) remains difficult. While
SVs, along with SNPs, can be identified in genome align-
ments, the characterization of SVs is a fundamentally differ-
ent problem from SNP-calling. The latter can be viewed as
a technical issue—how to distinguish single-nucleotide poly-
morphisms from sequencing errors—but SV-calling is chal-
lenging even with flawless chromosomal sequences. The rea-
son is that the SVs identified between genomes depend on the
alignment method and parameters used, and there is no obvi-
ous ground truth. Given these uncertainties, we pursued two
complementary approaches.

First, we developed a whole-genome multiple-alignment
pipeline, Pannagram, that produces an intuitive representation
for genome-browser visualization51 (Fig. 2A). This approach
can be considered an extension of pairwise-alignment meth-
ods52 to handle multiple genomes in a reference-free man-
ner. We derived a pan-genome coordinate system based on
the resulting alignment and anchored it to the TAIR10 refer-
ence genome. Second, we used Pan-Genome Graph Builder
(PGGB)29, which yields a graph representation of multi-
ple genomes by collapsing identical sequences into single
nodes, connected by multiple paths forming bubbles where
the genomes differ (Fig. 2B). The resulting object is compu-
tationally efficient for genotyping, but is also highly complex,
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Figure 2 – Distribution of variation on chromosome 1. A.
Whole-genome alignment of the assembled parts illustrates that
the genomes are generally structurally conserved away from cen-
tromeric regions. Chromosomes are aligned from both ends to
emphasize the contiguity of the arms, with the unassembled cen-
tromeric regions indicated in yellow, and inversions in pink. Os-
cillating gray shades highlight homologous regions (the periodicity
of the gradients reflects repeated use of the color scheme, and has
no biological meaning). For chromosomes 2-5, see Extended Data
Fig. 5. B. The density of pan-genome graph bubbles, reflecting
higher diversity in pericentromeric regions and at ∼20 Mb, where
an ancestral centromere was lost through chromosome fusion since
the divergence of A. thaliana from the rest of the genus 46. Synteny
level refers to average sharing of links (1-27) between nodes across
the 27 genomes in 300 kb blocks. For chromosomes 2-5, see Ex-
tended Data Fig. 6. C. Distribution of nucleotide diversity based
on SNPs called from a multiple alignment. Dark blue corresponds
to the centromeric region, with lighter blue highlights the pericen-
tromeric area and lightest blue the ancestral lost centromere 46. For
chromosomes 2-5, see Extended Data Fig. 7.
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with neither nodes nor bubbles having an obvious biological
interpretation.

Comparing the SVs identified by these two conceptually
approaches was not straightforward. SVs identified by Pan-
nagram were typically covered by PGGB variants, which in-
cluded nearly twice as much sequence, especially in highly
polymorphic pericentromeric regions (Extended Data Fig. 8).
A trivial reason for this difference is that Pannagram masked
centromeric regions full of tandem repeat arrays (Fig. 2A-C),
but we also identified several less obvious causes (see Ex-
tended Data Fig. 9–12 for details and examples).

First, the presence of physically distant but closely related
sequences (e.g., reflecting recent TE activity) can lead to
large loops in the PGGB graph that do not reflect actual SVs.
Masking repetitive sequences will reduce this problem, but
requires good repeat annotation—and would also make it im-
possible to study genome-variation comprehensively (one of
our goals in this paper). Second, even in the case of tandem
duplications, the graph combines duplicated sequences into a
single node and hence counts all these sequences as part of
SVs, even if not all of them are variable. Third, PGGB and
Pannagram rely on different alignment parameters. To reduce
the number of uninterpretable nodes, PGGB requires strict
similarity criteria, whereas Pannagram can use more relaxed
cutoffs to maximize homology detection. The A. thaliana
genome contains many highly diverged regions53, and these
tend to be treated by PGGB as long SVs, whereas Panna-
gram often finds short alignments, resulting in local clusters
of shorter variants. Whether Pannagram or PGGB results are
more biologically relevant ultimately depends on the question
and the cause of high divergence.

A final difference between PGGB and Pannagram lies in
how nested length variants are represented. PGGB shows
these as easily interpreted loops-within-loops, whereas Pan-
nagram treats them as complex SV regions. This does not
affect the size of the region covered by SVs, but does cause
differences in the SV counts.

We emphasize that the differences between two algorithms
designed to do different things should not be interpreted as
bias, and that, as noted above, there is no ground truth.
However, since Pannagram produces easily interpretable SVs
along with convenient pan-genome coordinates, and all Pan-
nagram SVs are covered by PGGB SVs, we based our further
SV analyses on Pannagram.

Characterization of structural variants
SVs come in many types and sizes, reflecting diverse muta-
tional mechanisms. In what follows, we will focus on length
variants, which are by far the most numerous (we identified
fewer than a hundred inversions, for example). We further
divide them into bi-allelic presence/absence polymorphisms,
consistent with simple insertion/deletion (indel) mutations
(sSV), and more complex multi-allelic polymorphisms (cSV)
(Extended Data Fig. 10). We primarily consider the former,

as they are easier to interpret, and also constitute the major-
ity (over 80% overall), especially in the chromosome arms
(Extended Data Fig. 13).

We identified 532,178 sSVs, affecting over 37.5 Mb in
total—with the length-distribution being heavily skewed to-
wards short variants (Fig. 3). To gain further insight into the
nature of these polymorphisms, we consider sSVs between
15 bp and 20,000 bp length, because shorter variants are more
sensitive to choice of alignment parameters, and larger ones
are too few for statistical treatment. Determining the ances-
tral state of these variants using an outgroup species was in
general impossible, as the homologous regions are typically
intergenic and difficult to align. Nevertheless, the frequency
distribution for the presence-allele of sSVs was consistent
with sSVs mostly being due to rare insertions or rare dele-
tions. Specifically, long presence alleles tend to be rare, and
short ones common—suggesting that sSVs are mainly caused
by long insertions and short deletions. As noted, both types
are more frequent in intergenic than in genic regions, and
they are also more often observed in introns than in exons,
consistent with purifying selection removing many of them
(Extended Data Fig. 14).
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Figure 3 – Structural variation. A. The frequency distribution of
the presence alleles of all sSVs with length ≥ 15 bp, by length of
variant. The height of the gray block in the left panel is equivalent
to the height of the complete panel on the right. B. The proportion
of length classes of sSVs in each frequency bin.

Finally, rare nuclear insertions of organellar DNA are easy
to spot. We found 108 such insertions, almost all of them
singletons or doubletons, ranging from a few hundred bp to
entire organellar genomes (Extended Data Fig. 15, Supple-
mentary Table 3). None of our genomes, other than our strain
of the reference accession Col-0, 6909, shared the large nu-
clear insertion of mitochondrial DNA in chromosome 2 of the
TAIR10 reference43,54,55.

Structural variants and annotated TEs
Active TEs produce SVs of diverse nature, both insertions
and deletions, and serve as templates for various mutational
processes e.g., double-stranded break repair56. To investi-
gate the role of TEs in generating SVs, we classified the
presence alleles of 17,447 sSVs of length ≥ 100 bp based
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Figure 4 – The role of TEs in bi-allelic indels. A. Categories of overlap between presence allele of sSVs and TE sequences from
annotation. B. Total annotated TE content in sSVs. Grey, no TE content. C-D. Histograms of presence frequency showing annotated TE
content as a function of frequency, either (C) raw counts or (D) relative to TE-related SVs, which are colored by categories, as shown in
(A) and (B). E. Distribution of the length of presence-alleles in different categories.

on their BLAST-identified coverage by ∼35,000 annotated
TEs sequences, spanning ∼15% of the A. thaliana reference
genome (cf. Fig. 1A). We defined different categories reflect-
ing the extent of overlap (see Fig. 4A; for an analysis broken
down by TE superfamily, see Supplementary Note 3). In total
over 60% of sSVs showed some overlap with TE annotation,
confirming a strong connection between our sSVs and TEs
(Fig. 4B).

Likely insertions (presence allele in 1-3 accessions) tend
to be longer than likely deletions (absence allele in 1-3 ac-
cessions). The former also more likely correspond to com-
plete TEs, consistent with recent TE activity (Fig. 4C-D). The
likely deletions more often correspond to incomplete TEs,
suggesting that they are decaying elements (Fig. 4C-D). We
tested this assertion by examining the regions flanking sSVs
with similarity to TE fragments: 71% of likely deletions were
within a TE, while the same was true for only 24% of likely
insertions.

As expected, sSVs corresponding to complete TEs are en-
riched for particular lengths (specifically around 5 kb), re-
flecting activity of complete TEs (Fig. 4E). Similar patterns
of enrichment were also found for sSVs in all other categories
except for those corresponding to TE fragments. This sup-
ports recent reports that active TEs are far from perfectly an-
notated57,58.

The mobile-ome

Mobile elements that have been active in the history of our
sample of genomes will have generated segregating inser-
tions and deletions with similar sequence in different loca-
tions the genomes. We can use this property to look directly
for mobile elements without relying on TE annotation. We
will refer to the set of such elements as the mobile-ome, not-

ing that our usage differs somewhat from that of others42. To
identify the mobile-ome, we used Pannagram to cluster all
presence-alleles from sSVs based on sequence similarity, and
represented the output as a graph of nestedness, where nodes
represent sequences. The graph consists of many connected
components, which we expected to correspond to distinct TE
superfamilies or families (see Supplementary Note 3). We
note that several similar approaches have recently been pro-
posed59–61.

Almost all sSVs that corresponded to complete TEs are
part of the graph, consistent with their being part of the
mobile-ome (Fig. 5A). Among other TE-related sSVs, ap-
proximately 70% are linked to the graph, and are thus also
related to the mobile-ome, presumably reflecting a mixture
of incompletely annotated TE families, complex insertion be-
haviors, and deletions within active TE families. The remain-
ing 30% could result from low-activity TEs or decay of inac-
tive TEs.

To understand the relationship between annotated TEs, we
filtered out sequences without TE content, and merged se-
quences with high similarity into larger nodes. The resulting
subgraph consists of one dominant component along with nu-
merous smaller ones (Fig. 5B). As expected, there are multi-
ple large nodes corresponding to complete TEs, but we also
see large nodes corresponding to sequences ostensibly con-
taining complete TEs or TE fragments, demonstrating that
many of these sequences are in fact part of the mobile-ome
(see also Extended Data Fig. 16). Coloring the nodes by
TE superfamily reveals that, while the smaller components
mostly can be attributed to individual TE families, the dom-
inant component contains members of all known TE super-
families (Fig. 5C, Extended Data Fig. 17). Possible reasons
include TEs inserting into existing TEs, and closely related
sequences being mis-annotated as belonging to different su-
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properties (Extended Data Fig. 17). D. A graph of nestedness for sSVs without TE content, colored by ORF content based on protein
BLAST, as shown on the right.
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perfamilies (e.g., Extended Data Fig. 18). Further evidence
for the incompleteness of the TE annotation comes from
small graph components that contain large nodes of longer
elements that have only partial TE content. Closer exami-
nation of such nodes reveal many clear examples of un- or
mis-annotated TE families (see Extended Data Figs. 19– 20).

In the set of sSVs without TE content, the majority (74%)
is not connected in the graph, presumably reflecting unique
events. Some are gene duplications; some may also be un-
annotated TEs that are too rare in our limited set of genomes
to be detectable by our method. Among the remaining 26%,
we observed 238 connected components with ≥3 nodes, sim-
ilar in structure to small components corresponding to single
TE families in the analysis above (Fig. 5D). We hypothesized
that these components contain previously un-annotated TEs.
Protein BLAST analysis of ORFs from the sequences of these
components revealed that 97 are indeed TE-like, with similar-
ity to TE proteins from A. thaliana or other species. Among
these, we observed a few TE families with evidence of hor-
izontal gene transfer, as they have greater protein similarity
to species outside a panel of five Brassicaceae species (e.g.,
Extended Data Fig. 21). We also found potentially new mo-
bile element families lacking clear protein-coding potential.
They form relatively large components in the graph (Fig. 5D,
purple islands), composed of multiple sequences of similar
length. They are not low-complexity and some are exclusive
to A. thaliana (see Extended Data Fig. 22 for an example).

Annotated TEs in A. thaliana are generally epigenetically
silenced. However, most published results have relied on a
single reference genome, which makes it difficult to distin-
guish active from inactive TEs. Our mobile-ome data iden-
tifies segregating insertions corresponding to recently active
TE families, and we can also consider the age of insertions,
which should be proportional to their population frequency.

We investigated footprints of silencing in sSVs with exist-
ing methylation data62. As expected, sSVs with annotated TE
content (Fig. 4) are generally methylated, and at least three
pattens support our conclusions above about the nature of
these sSVs (Extended Data Fig. 23). First, sSVs correspond-
ing to complete TEs are most highly methylated, followed by
those corresponding to TE fragments. sSVs containing TEs
or TE fragments are more variable, consistent with a subset of
these sSVs corresponding to un- or mis-annotated TEs. Sec-
ond, for sSVs corresponding to complete TEs, methylation
increases with frequency, indicating that older insertion are
more highly methylated. For sSVs containing TEs or TE frag-
ments, this pattern changes at high frequencies, which could
reflect high-frequency presence alleles not being insertions of
un- or mis-annotated elements, but rather deletions that hap-
pen to contain TEs. Third, methylation is higher on sSVs that
are part of the graph of nestedness (Fig. 5), consistent with
methylation targeting the mobile-ome.

Finally, sSVs without annotated TE content behave sim-
ilarly to sSVs containing TEs or TE fragments, but are on
average less methylated, consistent with a smaller fraction

of these sSVs corresponding to un-annotated TEs. Note in
particular that sSVs that are part of the graph of nestedness
are almost as highly methylated as previously annotated TEs,
whereas those that are not tend to be completely unmethy-
lated.

Expression patterns from existing RNA-seq data63 are con-
sistent with the methylation data: sequences in sSVs corre-
sponding to complete TEs are barely expressed (except in
pollen, where some TE expression is known to occur64),
while the behavior of sequences in other sSVs is more vari-
able (Extended Data Fig. 24). Especially sSVs without anno-
tated TE content are highly variable, with a small subset, pre-
sumably corresponding to protein-coding genes, having evi-
dence of high expression levels.

The gene-ome
To investigate how much the portion of the genome contain-
ing protein-coding genes—the “gene-ome”—varies among
accessions, while minimizing reference-bias, we annotated
each genome independently with sequence-based gene mod-
eling and RNA-seq data from four tissues63. To connect
the annotations, we used the pan-genome coordinate system
(rather than matching orthologs23, which is the only possi-
bility for distantly related genomes). Despite 83% of ge-
netic loci having a one-to-one correspondence in the aligned
genomes, gene model predictions varied considerably be-
tween accessions. While some of these differences likely
represent genuine genetic variation, we lacked data to dis-
tinguish this from artifacts, and thus adopted a majority vot-
ing approach to harmonize annotations (Methods and Sup-
plementary Note 4.1). After including 1,789 TAIR10 genes
that were not re-identified in our study (unsurprising given
that we used only four tissues for RNA-seq41,65) and filter-
ing out low-confidence genes (Methods), the final annota-
tion contained 34,153 genes, ∼28,138 of which are bona fide
protein-coding genes (Fig. 6A; Extended Data Fig. 25A; Sup-
plementary Note 4.2). Of these, 2,661 were not previously
annotated (for a detailed analysis of new genes, see Supple-
mentary Note 4.3).

Focusing on presence-absence variation of genomic loci
rather than annotated gene models, we found that 13% of loci
were segregating in the population of 27 accessions (Fig. 6B;
Extended Data Fig. 25B–C). This variation could reflect dele-
tions (in some accessions) of ancestral genes, or segregating
insertions of new genes specific to A. thaliana. To resolve
this, we compared our genes to those in A. lyrata, to deter-
mine whether they were present and, if so, whether they were
syntenic (Fig. 6C; Extended Data Fig. 25D). This analysis re-
vealed a striking difference between TAIR10 genes and the
previously un-annotated protein-coding genes: while most
TAIR10 genes are ancestral, most newly identified genes are
not (Fig. 6D). There was also a clear difference between seg-
regating and fixed genes: as expected, most of the latter are
ancestral, but the vast majority of the segregating genes is
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not (Fig. 6E). Although it is likely that we have underesti-
mated the fraction of ancestral genes due to our reliance on
the A. lyrata gene annotation, our results strongly suggest that
segregating ancestral deletions are rare.

Segregating genes appear to be more common near cen-
tromeres, while fixed genes are clearly more common in the
arms (Fig. 6F; Extended Data Fig. 26; P < 5 × 10−4 for
all chromosomes using a Chi-Square test). Syntenic ancestral
genes are also enriched in the arms, while other categories
are evenly distributed across the genome. As expected, TE
genes of higher frequency are more likely to be found near
centromeres, consistent with selection against TE insertions
in the arms42.

To investigate functional enrichment in different gene cat-
egories, we searched for homologous proteins in UniProt KB
(see Methods). We found that new protein-coding genes were
enriched in defense and Zinc-finger genes, while TAIR10
genes were enriched in housekeeping functions such as tran-
scription regulation and membrane proteins (Fig. 6G). A sim-
ilar difference was found between ancestral and non-ancestral
genes (Fig. 6H), as well as between fixed and segregating
genes (Extended Data Fig. 27). Interestingly, new TE genes
were strikingly more enriched for TE-function proteins than
already annotated TE genes, suggesting that the former are
more likely to be active TEs—which might be expected given
that they are segregating.

Finally, there is a striking difference in expression levels
between fixed and segregating genes: even genes that are
only absent in one or two accessions tend to be almost silent
in the remaining accessions (Fig. 6I). Consistent with this,
epigenetic silencing is a function of population frequency:
both gene-like Polycomb silencing (H3K27me3) and TE-
like silencing (H3K9me2 and DNA methylation) are high-
est for genes of intermediate frequency (Fig. 6I). Likewise,
non-ancestral genes have reduced expression and increased
silencing (Fig. 6I–J; Extended Data Figs. 28–29), with in-
creased H3K9me2 levels for all gene frequencies (Extended
Data Fig. 29).

The pan-genome
The term “pan-genome” is currently applied with a variety of
meanings, from the original use in prokaryotes to describe the
observation that genomes from different strains of the same
species vary enormously in gene content66, to the human ge-
netics ambition of representing all polymorphism in a single
“pan-genome graph”15,28. We will discuss the utility of these
concepts further below—here we simply consider how the
pan-genome grows with sample size, and why. As shown in
Figure 7A, all components of variation considered in this pa-
per grow with sample size, but at different rates: the mobile-
ome grows faster than the full genome and the gene-ome
more slowly, consistent with the former being under stronger
purifying selection. All components increase faster than the
logarithmic growth expected under neutrality in a constant
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Figure 7 – The growth of the pan-genome. A. The dependence
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quence length, separately for the full genome, the mobile-ome, and
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see Extended Data Figs. 30–31). B. Pan-genome vs. reference
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population, and more slowly than the linear growth expected
in an exponentially growing population67.

The growth of the pan-genome is reflected in the coordi-
nate system and is not uniform along each chromosome, be-
cause most of the variation is found in centromeric regions
(Fig. 7B). Already with 27 accessions, the pan-genome chro-
mosomes are 63–76% longer than the TAIR10 chromosomes.

Missing polymorphism

As part of the 1001 Genomes Project, we previously “re-
sequenced” 1,135 accessions using short reads34. We were
well aware that the data were both incomplete and error-
prone: we only called SNPs and short SVs, and only an av-
erage of 84% of the reference genome was covered by short
reads from any particular accession.

With our whole-genome polymorphism data, we are now
in a position to assess how much variation was previously
missed. In the 1001 Genomes data, a pair of accessions dif-
fered, on average, at ∼440,000 SNPs. In our Pannagram
alignment, the corresponding number is 600,000–800,000
SNPs, depending on how SNPs are defined (see Methods). In
other words, we previously missed 25–45% of the SNP varia-
tion. In addition, whole-genome alignments of two genomes
reveal on average ∼190k SVs (of length < 10 kb) covering
a total over ∼12.5 Mb of sequence—approximately 10% of
each assembled genome (Fig. 7C).

We investigated the causes of the missing SNPs by calling
SNPs for our 27 genomes using the PCR-free, high-coverage
short reads that were generated for this study, and comparing
the results to those from pair-wise whole-genome alignment
of complete assemblies (Fig. 8A and Supplementary Note 5).
The main reason for missing SNPs from short reads is that
the former lie in regions where no calls are made because
the regions are not reliably covered by reads due to mapping
problems. The extent of such regions depends on the map-
ping parameters used, but less conservative read-mapping
will generally come at a cost of higher error rates. In our
test SNP-calling with PCR-free data, we were able to reduce
the fraction of missing SNPs to below 20%, but our FDR
was then close to 7%. Consistent with a trade-off between
conservative and aggressive read-mapping, bona fide SNP-
calling errors, be they false positives or false negatives, were
overwhelmingly due to read mismapping. Rampant pseudo-
heterozygosity caused by segregating duplications that are
absent from the reference genome is particularly worrisome,
in agreement with previous observations57 (actual residual
heterozygosity in inbred lines can be readily detected, but
only one of our accessions had very limited amounts of resid-
ual heterozygosity, see Methods). Differences in local se-
quence alignment between algorithms also contributed to dis-
crepancies, whereas traditional base-calling errors played an
insignificant role (Supplementary Fig. 12 in Supplementary
Note 5).

Reference bias

It is obvious that mapping short reads to a reference genome
can cause reference bias, i.e., the results will depend on which
genome is used as reference. Because we now have mul-
tiple genomes to choose the reference from, our data allow
for systematic investigation of this problem. Starting with
SNP-calling, we found that all SNP error rates depend both
on the reference genome and on the relatedness between the
reference and the sampled genome, often in unpredictable
ways (Fig. 8B). Since many population genetic analyses rely
on SNPs to estimate the relatedness between samples, this
is troubling, and the consequences of non-randomly varying
levels of bias in samples for downstream analyses such as
GWAS or demographic inference merit further investigation.

Reference bias may also affect standard -omics techniques
that quantify molecular phenotypes by mapping short reads
to a reference genome rather than to the genome of the in-
dividual being studied. We illustrated this problem for tran-
scriptome and methylome profiling by comparing the results
of mapping RNA-seq and BS-seq reads to the TAIR10 refer-
ence as well as to the actual genome of the accession in ques-
tion. Expression estimates between the two approaches were
strongly correlated on average (Fig. 8C), but a subset of genes
diverged markedly (Fig. 8D). These were strongly enriched
for copy-number variable genes and TE genes (Fig. 8E).
Methylome profiling was even more sensitive to the choice
of genome for mapping, not surprising given that methylation
in A. thaliana predominantly targets TEs, which in turn vary
greatly in copy number between accessions and are therefore
prime targets for cryptic mismapping57. A scan for Differen-
tially Methylated Regions (DMRs) in 100-bp windows across
the genome revealed that profiling methylation by mapping
reads to the TAIR10 reference rather than to each sample’s
own genome produced a large number of spurious DMRs
(Supplementary Fig. 17 in Supplementary Note 5). How se-
rious this problem is will depend on the application, but it
seems clear that it must be considered.

Discussion

Over the last several years, population samples of more-or-
less complete eukaryotic genomes have been appearing at an
increasing rate, and there has been much excitement over the
(variously defined) “pan-genome”, especially in plants68. At
the same time, it has become abundantly clear that a detailed
and in-depth characterization of all the differences between
individual genomes is very difficult. The problem is man-
ifestly not a technical one, because even with perfect chro-
mosomal sequences, we have to decide how to align them
and how to interpret the differences. For complex structural
variation, especially in highly diverged regions53 where short
stretches of similar or identical sequence are interspersed
with variable stretches of diverged sequence, this is not trivial,

10

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 10, 2025. ; https://doi.org/10.1101/2024.05.30.596703doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.30.596703
http://creativecommons.org/licenses/by/4.0/


Igolkina et al. February 9, 2025

A

0% 1% 2% 3%
%TE genesEDC

0.50
0.60
0.70
0.80
0.90
1.00
1.10

se
ed

lin
g

ro
se

tte
flo

w
er

s
po

lle
n

C
G

C
H

G
C

H
HPe

ar
so

n 
co

rre
la

tio
n

al
ig

n 
to

 o
w

n 
vs

 T
AI

R
10

0
5

10
15
20
25
30
35

se
ed

lin
g

ro
se

tte
flo

w
er

s
po

lle
n

C
G

C
H

G
C

H
H

pe
rc

en
t g

ee
s 

w
ro

ng
ly

 
es

tim
at

ed
 o

n 
TA

IR
10

0% 10% 20% 30%
% CNV genes

seedling

rosette

pollen

flowers

CHG

CG

CHH

methylation

expression

seedling

rosette

pollen

flowers

CHG

CG

CHH

methylation
expression

expression
m

ethylation

genes
estimated

wrongly
correctly

91%

9%

~90%

~10%

TP: 784,885 
(±114,934)

FP: 
57,271 

(±11,673)

FN: 58,668 
(±10,118)

168,776
(±27,681)

WGA

site aligned

no SNP

SNP

976,328
(±146,454)

site not aligned

NGS

site covered

heterozygous

180,182
(±24,006)

SNP

806,156
(±125,121)

no SNP

site not covered

A

B

C D E

FD
R

FN
R

ps
eu
do
-h
et

Relatedness Relatedness Relatedness

Figure 8 – Read-mapping and reference bias. A. To investigate SNP-calling errors, SNPs were identified from pairwise whole-genome
alignment (WGA) as well as by designating one genome as a reference and calling SNPs using short reads from the other (NGS). See
Supplementary Note 5 for details. Numbers are averages across all accession pairs (±s.d.). From the point of view of WGA, each site can
either be aligned or not. Conversely, from the point of view of NGS, each site in the reference genome can be covered by sample reads,
or not. Arrows pointing right refer to WGA SNPs, which we assume to be correct; arrows pointing left refer to NGS SNPs. WGA SNPs
are: true positives (TPs) if also called by NGS; false negatives (FNs) if missed by NGS; and uncalled if in regions not covered by NGS
reads. Conversely, NGS SNPs are TPs if also found in the WGA and false positives (FPs) if not. The latter come in two flavors: those that
correspond to bona fide non-SNPs in the WGA, and those that correspond to regions that were not aligned. Heterozygous calls in completely
inbred lines are obviously FP and are treated separately. B. SNP-calling error rates depend on the relationship between the reference and
the sampled genome. Each line is the regression of SNP-calling errors for a different choice of reference genome (identified by color).
C. Correlation between expression- and methylation-level estimates derived from mapping reads to the TAIR10 reference genome and the
genome from the sampled individual. D. Percentage of genes for which expression or methylation levels differ by more than 30% or 50%,
respectively, when mapping reads to the TAIR10 reference instead of to their “own” genome. See Extended Data Fig. 33 for scatter plots.
E. Enrichment of copy-number variable genes and TE genes among those with discordant expression- or methylation-level estimates.

11

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 10, 2025. ; https://doi.org/10.1101/2024.05.30.596703doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.30.596703
http://creativecommons.org/licenses/by/4.0/


Igolkina et al. February 9, 2025

and there is no obvious “gold standard” by which to evaluate
algorithms. Furthermore, the ultimate reason for comparing
genomes matters. If we are interested in using the pattern of
polymorphism to answer questions about evolutionary history
and mutational mechanisms, we must employ models that re-
flect actual historical events. In contrast, if the goal is simply
to develop easily usable genetic markers, it may be irrelevant
whether there is any correspondence between designated vari-
ants and the molecular processes that generated them.

With these caveats in mind, we tried two different ap-
proaches. First, we aligned the genomes using Pannagram51,
a whole-genome multiple-alignment pipeline, and created a
pan-genome coordinate system anchored to the TAIR10 ref-
erence genome, facilitating the visualization of alignments in
standard genome browsers (see Data availability). Second,
we created a pan-genome graph with PGGB15,29, which was
developed primarily for human genomes. This matters be-
cause A. thaliana genomes have higher levels of polymor-
phism, stronger population structure, and many recently ac-
tive TEs—all of which complicate graph building and inter-
pretation. For these reasons, as well as general convenience,
we based most of our analysis on the Pannagram output.

It has long been clear that SVs contribute substantially to
polymorphism in higher organisms69,70, and A. thaliana is
no exception. In addition to massive variation in tandem re-
peat regions (Fig. 1), the readily alignable chromosome arms
(Fig. 2) are highly polymorphic, with two accessions differing
at ∼191,000 SVs covering ∼12.5 Mb on average. Although
we also uncover massive amounts of new SNP variation, this
still means that at least an order of magnitude more nucleotide
sites are affected by SVs than by SNPs. The allele-frequency
distribution of SVs suggests purifying selection, and also a
mutational process that involves insertion of longer segments
coupled with deletion of shorter segments. This is consistent
with TE activity, and the overwhelming majority of presence-
absence variants longer than 100 bp involves annotated TE
sequences. As expected in an organisms with active TEs42,71,
we found thousands of examples of what appear to be re-
cent insertions of presumably complete TEs. Importantly, al-
though many of these correspond perfectly to annotated TEs,
many do not, demonstrating that our understanding of the
mobile-ome remains highly incomplete—as is also becoming
evident from long-read transcriptome analysis58. To explore
this further, we developed a graph-based analysis that iden-
tified several putative new TE families, providing a glimpse
into how much is left to discover.

Turning to the gene-ome, we note that the term “pan-
genome” was originally invented to describe the rather fluid
genomes of prokaryotes66, which appear to be characterized
by a relatively small number of essential (or “core”) genes,
and a large cloud of presumably dispensable (or “accessory”)
genes, which are shared even between distantly related taxa
thanks to rampant horizontal gene transfer72. It has been ar-
gued that this paradigm should apply to eukaryotes as well,
for example in the context of rapidly evolving plant-pathogen

interactions73, but the overall picture in A. thaliana is clearly
very different: the gene-ome is highly conserved, with 87%
of genes detected in all 27 genomes, and the number of segre-
gating genes growing considerably more slowly with sample
size than other types of variation (Fig. 7). Furthermore, we
distinguish between two types of segregating genes: a mi-
nority with homologs in the closely related A. lyrata, and a
majority without (Fig. 6). The former, which correspond ei-
ther to gene duplications or segregating deletions of ances-
tral genes, tend to be expressed at significantly higher levels
than the latter, which often were characterized by TE-like epi-
genetic silencing. The extent to which these are genes with
identifiable biological function will require further investiga-
tion.

Finally, we demonstrate that algorithms for SNP-calling,
transcriptome profiling, and methylation profiling that rely on
mapping short-read data to a reference genome can be highly
biased, at least in a species with active TEs and many gene
duplications. This is not surprising, but the problem may not
have been appreciated fully, and it is likely to be worse in
organisms with larger and more polymorphic genomes than
A. thaliana. Also, outcrossing makes problems like pseudo-
heterozygosity due to cryptic duplications far more difficult
to detect57,74. While it is still impractical to completely aban-
don the use of SNP-calling based on short reads in favor of
whole-genome polymorphism data, we note that a recent pa-
per that did this in order to estimate demographic parameters
in A. thaliana reported that parameter-estimates changed two
orders of magnitude75! In general, utilizing at least a sam-
ple of diverse high-quality genomes for read-mapping should
greatly help quantify the biases.

In conclusion, we recall Aravinda Chakravarti’s prediction
at the dawn of the SNP era that models would be needed to
“make sense out of sequence”—and that this would lead to
“a rejuvenation of population genetics”76. We think that the
advent of unbiased whole-genome polymorphism data will
have a similar effect. Most obviously, our understanding of
TE dynamics will be revolutionized by our ability to see seg-
regating TE insertions reflecting recent activity. While inter-
specific genome comparisons can reveal that bursts of activ-
ity have occurred, they lack the resolution to understand their
dynamics, and cannot readily distinguish active TEs from the
accumulated layers of dead and decaying TE sequences that
litter most genomes.

More subtly, in order to make sense of complex polymor-
phisms, we need to understand the history of mutations that
gave rise to them. The problem is analogous to phylogenetic
analysis, where the estimated relationship between species is
used to deduce the history of complex traits—what evolved
first, and what evolved multiple times? In the present con-
text, we need to estimate local coalescent trees (the so-called
Ancestral Recombination Graph77,78) and use them to infer
the sequence of mutational and recombination events that
gave rise to the sampled sequences. This analysis must be
informed by a better understanding of the molecular mech-
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anisms that cause structural variation. Although a consider-
able literature on phylogeny-guided statistical alignment ex-
ists79–83, methods for doing this on a whole-genome scale, us-
ing an appropriate population genetic framework67 and incor-
porating knowledge about molecular mechanisms, are miss-
ing.

In this context, it is important to remember that alignment-
based methods developed for humans often do not work well
in other species for a variety of reasons, including much
higher levels of polymorphism and TE activity. Arabidop-
sis thaliana genomes are not unusual in these respects. In
species like maize, where intergenic space is essentially un-
alignable even between relatively closely related agricultural
varieties69, the idea of representing a whole-genome multiple
alignment as a graph that captures all variation may be neither
practicable nor useful84.
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Methods

DNA extraction and sequencing

For long-read sequencing, we began with 3-week-old plants
grown in soil that had been transferred to darkness for 24-
48 h before harvesting to reduce the starch content. 20-
30 g of flash-frozen rosette tissue from pooled individuals
was ground in liquid nitrogen with pestle and mortar. Nu-
clei were isolated as described for accession Ey15-243, and
high-molecular-weight (HMW) DNA purified with Genomic-
tips 100G (Qiagen; #10243) following manufacturer’s in-
structions. 10 µg of HMW DNA were sheared with either
Megaruptor 3 (Diagenode; #B06010003) or a needle (FINE-
JECT® 26Gx1” 0.45x25mm; #14-13651) to ca. 75 kb, and
used as input for long-read library preparation with the SM-
RTbell Express Template Preparation Kit 2.0 (Pacific Bio-
sciences; #101-693-800). These libraries were size-selected
with the BluePippin system (SageScience) with a 30 kb cut-
off in a 0.75% DF Marker U1 high-pass 30–40 kb vs3 gel
cassette (Biozym; #BLF7510). Libraries for accessions 9981
(Angit-1; CS76366) and 10002 (TueWal-2; CS76405) were
sequenced on a Sequel II system (Pacific Biosciences), and
the others on a Sequel I system.

To prepare PCR-free libraries for short-read sequencing,
the genomic DNA was fragmented to 250-350 bp using a
Covaris S2 Focused Ultrasonicator (Covaris). The libraries
were prepared according to manufacturer’s instructions with
either the TruSeq DNA PCR-Free (Illumina, #20015962) or
the NxSeq® AmpFREE Low DNA Library Kit (Lucigen; #
14000-2). In total, libraries for 89 accessions (including the
main 27 for which we assembled their genomes) were se-
quenced in paired-end mode on an HiSeq 3000 system (Il-
lumina).

The ultra-HMW DNA extraction and sample preparation
for optical maps was done as described43,85 at Corteva Agri-
science (Johnston, Indiana, USA) using the Direct Labeling
and Stain (DLS) technology (Bionano Genomics).

Assembly

The CLR subreads were assembled with Canu v1.7138.
Since accessions 9981 and 10002 had been sequenced at
higher coverage on a Sequel II instrument, only about 200X
genome coverage worth of reads were used for assembly. We
performed two rounds of polishing on the resulting contigs of
all assemblies: first with the CLR subreads and Arrow v2.3.2
(https://github.com/PacificBiosciences/GenomicConsensus),
and then with PCR-free short reads and Pilon v1.2286.

For scaffolding, we generated hybrid scaffolds with op-
tical maps for eight accessions (Supplementary Table 1)
using Bionano Access v1.5 and Bionano Solve v3.6.
The assembly was performed in pre-assembly mode us-
ing parameters non-haplotype and no-CMPR-cut, with-
out extend-split. Based on what we learned from

these hybrid assemblies, we set the parameters for in sil-
ico scaffolding of the other genomes. We scaffolded con-
tigs > 150 kb with RagTag v1.1.140 (scaffold -q 60 -f

10000 -I 0.6 -remove-small) using the TAIR10 ref-
erence with hard-masked centromeres, rDNAs, telomeres,
and nuclear insertions of organelles to prevent misplace-
ment of contigs due to reference bias43. All scaffolded as-
semblies were manually curated to specifically discard low-
confidence centromere satellite-rich contigs or to invert con-
tigs with satellite repeats at their edges indicative of their cor-
rect orientation. These edits were implemented in the agp
files, which were converted to fasta format with the RagTag
agp2fa function40. To detect traces of residual heterozygos-
ity, we aligned the original long reads to their correspond-
ing chromosome scaffolds using pbmm2 v1.3.0 with the
parameters align -sort -log-level DEBUG -preset

SUBREAD -min-length 5000. Unmapped reads, as well
as secondary and supplementary alignments, were filtered out
using samtools v1.9 (view -b -F 2308 <input.bam>

Chr1 Chr2 Chr3 Chr4 Chr5). The resulting BAM file
was then analyzed with NucFreq v0.1 (-minobed 2) to as-
sess genome-wide coverage of primary and secondary alle-
les87. Agp files before and after manual curation, as well as
NucFreq plots are available in the GitHub repository of this
project.

Repeat annotation
Repetitive elements were annotated as described43. We
ran RepeatMasker v4.0.9 (-cutoff 200 -nolow -gff

-xsmall) using a custom library that included various
consensus sequences for the CEN17888, 5S rDNA89, 45S
rDNA90, and telomere repeats. We identified insertions of
organellar DNA in the nuclear genomes by aligning the or-
ganellar genomes from the TAIR10 reference41 with min-
imap2 v2.1691 (-cx asm5). We annotated tRNAs with
tRNAscan-SE v2.0.692, and TEs with Extensive de-novo TE
Annotator (EDTA) v1.9.793 (--step all --sensitive

1 --anno 1), a pipeline that combines several TE annota-
tion tools (LTRharvest, LTR FINDER, LTR retriever, TIR-
Learner, HelitronScanner, TEsorter)94–101. Finally, to under-
stand the causes of contig breaks, we determined what type
of repetitive element was closest to each contig edge, consid-
ering the first 2 kb from each edge in contigs >10 kb.

Pannagram
Pannagram is a toolkit designed for reference-free pan-
genome alignment, annotation, and analysis, as well as for
generating diagrams51.

We represent the whole-genome alignment as a matrix of
corresponding positions, where rows represent accessions,
and columns represent homologous positions. The construc-
tion of the alignment is done in a reference-free manner
(see below). However, to visualize the alignment in genome

1

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 10, 2025. ; https://doi.org/10.1101/2024.05.30.596703doi: bioRxiv preprint 

https://docs.google.com/spreadsheets/d/1Dca5uqQt5sFr_rhqteRZTI7elL5hm_easACs96_9nzk/edit?usp=sharing
https://bionanogenomics.com/support/software-downloads
https://www.repeatmasker.org
https://doi.org/10.1101/2024.05.30.596703
http://creativecommons.org/licenses/by/4.0/


Igolkina et al. February 9, 2025

browsers, columns must be sorted in some manner, e.g., to
correspond to the TAIR10 sequence order. Then, columns
of the pan-genome are used as positions in the pan-genome
coordinate system.

To perform reference-free whole-genome alignment, we
developed a 3-step pipeline. First, we use several accessions
as reference and build draft pairwise alignments between
each and all other accessions. This process results in several
reference-based matrices of corresponding positions. Next,
we intersect these matrices, selecting only those columns that
are present in all reference-biased matrices, which produces
reliable and reference-independent correspondences. In the
final step, we resolve unaligned sequences between blocks of
corresponding positions using multiple sequence alignment
tools. Once the reference-free alignment is complete, it can
be sorted according to the desired order of accessions. In
our case, we employ an alphabetical order, with the TAIR10
genome first.

For the pairwise alignments between a reference genome
(not necessarily TAIR10) and another accession, the focal ac-
cession genome is divided into blocks of 5,000 bp, and each
block is then mapped to the corresponding chromosomes of
the reference genome using BLAST, with exactly one best
hit retained for each block through this process. Next, the
BLAST hits that are not in close proximity to each other in
both genomes are removed. An additional BLAST search
is performed to align corresponding unaligned sequences be-
tween remaining hits.

To resolve any unaligned blocks after the reference-
randomization procedure, MAFFT102 is used. Blocks longer
than 30 kb cannot be aligned within a reasonable time using
MAFFT, so they are considered to be highly diverged. We
found the final unaligned regions to be primarily associated
with centromeric regions, rDNA clusters, telomeres and com-
plex regions of multiple and long insertions and deletions,
which are regions that are not of primary interest in this pa-
per.

Given the whole-genome alignment, SNPs can simply be
output as sequence differences. However, sequence differ-
ences can arise from ambiguities in local alignment and do
not necessarily correspond to SNPs (see also Supplementary
Note 5). If we take all sequence differences as SNPs, a pair of
accessions differs at over 800,000 positions, on average, but
if we restrict ourselves to isolated sequence differences, the
number shrinks to 600,000.

Pan-genome graph

Graph construction

We constructed genome graphs for each of the five chro-
mosomes using the Pan-genome Graph Builder (PGGB)
pipeline29. First, we prepared the assemblies by splitting
them into chromosomes and removing all unplaced contigs.
To enforce linearity for simpler analysis and comparison, we

used a modified version of accession 22001 with the genome
rearranged to a consensus pan-genomic order (suffix: “f”).
We added the TAIR10 reference genome to the graph to
enable anchoring and presentation of results in a reference
frame work.

We executed the PGGB pipeline (downloaded 25 Jan-
uary 2024) with the parameters -s 10000 -p 90 -n 27.
PGGB consists of three methods: An all-against-all align-
ment with wfmash (v0.12.4-5-g0b191bb), graph induction
using seqwish (v0.7.9-2-gf44b402), and two rounds of pan-
genome ordering (odgi v0.8.3-26-gbc7742ed) followed by
normalization with smoothxg (v0.7.2-11-g9970e0d). The
graph was used for the analysis of the pan-genome and syn-
teny and for variation detection using vg deconstruct103.

Similarity

We exploited graph properties to classify different levels of
similarity between genomes. Nodes traversed in all acces-
sions are labeled as core, nodes traversed in only one ac-
cession are private, and all other nodes (> 1 and < 28

traversals) are shell (soft). Note that nodes can be tra-
versed multiple times by the same genome, which affects the
total number of core nodes. Since each node contains a spe-
cific sequence, node count can easily be converted to the ac-
tual amount of sequence and respective genomic location.

Synteny windows

Every node in the graph can be translated to its exact posi-
tion for each path. This direct connection allows us to create
sliding window approaches for each sample/path using graph-
based statistics. Here, we used non-overlapping windows of
300 kb and calculated the average similarity (see above) of
these regions. This was performed for each graph and path
independently and the results represented in a heat map.

Saturation analysis

A saturation analysis was performed using a bootstrapping
approach. In each iteration we removed a specific number of
paths from our graph and performed the same pan-genome
categorization as above (s. 6.4.2 Similarity). In addition, we
added the total pan-genome, which describes the total amount
of sequence (core+shell+private sequence). We performed
20 different (unique) combinations for each size (number of
genomes).

Deconstructing the graph

To achieve full insights into graph variation and cover all bub-
bles in the graph, VG deconstruct was run multiple times
with each accession reference path once (vg deconstruct

-a -e. After, the reported VCF (v1.54.0 “Parafada”) files
were converted to a BED file with all important informa-
tion provided. In addition, each chromosome was merged
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and genotype information was concluded and added. Bub-
bles were identified by start and end position, also reporting
all traversals within these bubbles. Scripts can be found the
in the repository.

The mobile-ome
The mobile-ome refers to the collection of insertions and
deletions that are likely to have occurred recently and are
therefore not fixed in our sample. We hypothesize that
each mobile event results in an SV, specifically a presence-
absence polymorphism at the location of the insertion or dele-
tion. Consequently, our initial approach involves extract-
ing all presence-absence SVs and systematically decompos-
ing them step by step. To distinguish between simple bi-
allelic presence-absence polymorphisms (indels) and com-
plex multi-allelic polymorphisms, we analyzed the lengths of
alleles within the SVs. We distinguish two types based on the
similarity threshold s, with s = 0.9 in our case. We consider
a simple indel as one that contains alleles of two length types:
those that are shorter than (1 − s) of the SV length (absence
allele) and those that are longer than s of the SV length (pres-
ence allele). The distinction between simple and complex
presence-absence polymorphisms is partially a computational
construct to filter SVs and simplify further analysis. Simple
indels and complex presence-absence polymorphisms form a
continuum, and by relaxing the similarity threshold (s < 0.9,
in our case), some complex SVs become classified as simple
indels. Additionally, there is an natural bias towards complex
presence-absence polymorphisms. Consider a scenario with
a simple presence-absence polymorphism where an indel oc-
curs within the presence allele. If the presence allele was ini-
tially observed in only one accession, then the new event does
not reclassify the initial region as not belonging to the simple
presence-absence polymorphisms category. However, if the
presence allele was observed in multiple accessions, the new
event is likely to be reclassified as complex presence-absence
polymorphisms. To simplify and clarify the analysis, we con-
sidered only the simple polymorphisms. In order to deter-
mine the known portion of the mobile-ome within indels, we
conducted BLAST searches using pan-genome consensus se-
quences of indels against known A. thaliana TEs, as well as
against themselves. The indels that exhibited some similarity
to known TEs were divided into the following groups:

is complete Significant similarity to known TEs and can be
classified as TEs themselves.

contains complete Contained regions with similarity to
known TEs but also additional sequences.

is fragment Contained only partially sequences with simi-
larity to known TEs.

contains fragment Partial coverage by BLAST hits of TE
segments but also additional sequences unrelated to
known TEs.

We consider all these indels as parts of the mobile-ome. In-
dels without similarity to known TEs but showing nested sim-
ilarities within the indel data set (where one sequence is a sub-
sequence of another) were considered as potential candidates
for new mobile-ome elements. In order to investigate their
potential function, we obtained all six open reading frames
(ORFs) within each of these indels. From each translated
sequence, we selected either all continuous stretches with-
out stop codons that were longer than 100 codons, or the
longest stretch that exceeded 30 codons without a stop. Sub-
sequently, we performed a BLAST search using the obtained
amino acid sequences against the NCBI protein database and
classified the potential proteins into four categories. If the
BLAST results for an sSV contained keywords related to
transposable elements (TE), we assigned the sequence to the
TE-like category. These key words were: “transcriptase”,
“reverse”, “transpos”, “gag-”, “pol-”, “integrase”, “gag/pol”,
“gagpol”, “retrovirus’, “rna-directed dna polymerase”, “rna-
dependent dna polymerase”. sSVs that only had BLAST hits
with descriptions such as “hypothetical protein”, “unnamed
protein product”, “uncharacterized protein”, “predicted pro-
tein”, “PREDICTED:”, “putative protein”, and “unknown”
were categorized as “undefined proteins”. Indels without any
BLAST hits were classified as “no protein”. In all other cases,
sSV was categorized as a ”defined protein.”

Gene annotation
Preliminary annotation

Gene annotation was mainly based on Augustus (v3.3.3)104.
Augustus-predicted gene models were trained using parame-
ters obtained from “hints” from three different sources. First,
we ran BUSCO (v4.0.1)105 with -m genome option. Second,
the A. thaliana reference gene annotation was projected onto
each genome using Liftoff106 with the -exclude partial

and -copies options. Third, the RNA-seq data for each
accession were used: wiggle hints were generated using
bam2wig and wig2hints and EST hints were generated us-
ing bam2hints (all three tools provided by Augustus). Au-
gustus was run with the following non-default parameters:

--softmasking 1
--species=BUSCO_retraining
--gff3=on
--extrinsicCfgFile=Custom_Config
--hintsfile=Liftoff_hints

For every accession, the GFF3 output of Augustus was run
through the Augustus-provided tool getAnno.pl to trans-
late gene annotations into protein sequences. Finally, for
each annotation the Augustus output was combined and eval-
uated using augustus GFF3 to EVM GFF3.pl (provided by
EVidenceModeler107).

In addition to the Augustus-generated annotations, we
used two types of independent evidence for gene mod-
els: from the SNAP de novo annotation tool108 and
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from Cufflinks transcriptome assemblies109. Annotations
produced by Augustus, SNAP, and Cufflinks were com-
bined and then subdivided into 1 Mb windows with 1
kb overlap using partition EVM input.pl (provided by
EVidenceModeler). We ran EVidenceModeler with an-
notation gff files, the assembly fasta file, the partitions and
a weight matrix. We chose weights for each input based on
their ability to recreate the Araport11 gene annotation. Run-
ning EVidenceModeler produced the final annotation com-
pilation for each accession. We retained only the longest iso-
form for each gene using gffread110.

Reconciling annotations

To enable comparison between the independent annotations,
we utilized the pan-genome coordinate system, reconciling
discrepancies using majority voting. Additionally, we com-
pared the sequences of each gene across different accessions.
If a gene showed significant variation because it was located
in regions heavily influenced by SVs, we excluded it from the
analysis. Our approach generated a total of 34,153 putative
genes: 3,438 of these were the result of splitting preliminary
annotations; 1,020 were the result of merges.

For details, see Supplementary Note 4.1.

Ancestry analysis

All protein-coding sequences from all accessions were
compared using DIAMOND’s blastp module111 (version
2.0.11) against the A. lyrata MN47 proteome (version 2, Gen-
Bank: GCA 944990045.1) and the best hit was considered
as the A. lyrata homolog. To avoid bias due to mis-annotated
genes in the A. lyrata proteome we further applied Liftoff
v1.63106 to annotate all A. thaliana genes from all accessions
on A. lyrata MN47 (v2, https://doi.org/10.6084/
m9.figshare.22285444.v1) and A. lyrata NT1
(v2, https://doi.org/10.6084/m9.figshare.
22293196.v1) assemblies. Next, each annotation group
from A. thaliana was assigned to the A. lyrata homolog
(by LiftOff or proteome similarity) that was common to
at least 50% of its members, sharing at least 80% percent
identity and covering at least 80% of the A. thaliana coding
sequence. Arabidopsis thaliana annotation groups were
defined to be ancestral relative to the A. lyrata gene, if they
were part of a co-linear segment (of at least two) genes. To
that end, all A. thaliana genes was ordered according to its
relative position in the pan-genome coordinate system. Each
pair of consecutive genes in A. thaliana was assigned to
the same co-linear segment as its homologs in A. lyrata, if
the homologs were separated by fewer than six genes. The
ancestral state was defined as ‘similar’ for cases where the
genes from A. lyrata and A. thaliana were not part of the
same co-linear segment but shared at least 80% sequence
identity over at least 80% of the length A. thaliana gene.

Further details in Supplementary Note 4.2 for TE analysis
and Supplementary Note 4.3 for origin of new genes.

Expression analysis

RNA-seq read mapping and gene expression calculation

Raw RNA-seq reads from 7-day-old seedlings, 9-leaf
rosettes, flowers, and pollen63 were aligned either to the
TAIR10 reference genome or the corresponding accession ac-
cession genome using STAR v2.7.1112 with custom options:

--alignIntronMax 6000
--alignMatesGapMax 6000
--outFilterIntronMotifs RemoveNoncanonical
--outFilterMismatchNoverReadLmax 0.1
--outFilterMismatchNmax 999
--outFilterMismatchNoverLmax 0.3
--outFilterMultimapNmax 1
--alignSJoverhangMin 8
--outSAMattributes NH HI AS nM NM MD jM jI XS

(for read statistics, see Supplementary Table 4). Expression
levels were assessed using featurecounts from Subread
v2.0.1113 on each RNA-seq sample with either the TAIR10
gene annotation or the accession-specific annotations from
this study. The entire locus including exons and introns was
used for expression estimaties. Expression levels were nor-
malized by calculating TPMs, the number of read counts di-
vided by the gene length in kb and the total number of counts
per kb for all genes divided by one million.

Expression of duplicated genes

The expression of gene copies was calculated only on the
whole-locus level (disregarding exon-intron structure, as
many copies were not part of our annotation and we did not
have exon information) using the same method as abpve, but
normalizing expression to the total number of counts cover-
ing the full annotation for a given sample and not the total
number of reads covering the gene copies.

Mapping to TAIR10 vs. own genome

To determine whether the gene expression calculation was
consistent between RNA-seq mapping in TAIR10 versus
accession-specific genomes, we focused on the annotation
groups with a one-to-one correspondence with an Araport11
gene. For each RNA-seq sample, we obtained the Pear-
son’s correlation coefficient between the exonic counts ob-
tained from TAIR10 mapping and accession-specific map-
ping. We also determined the number of genes that were
correctly or wrongly estimated using TAIR10 mapping. We
called a gene “wrong” if the counts in TAIR10 and the
counts in its own genome differed by more than 30%
(Ncounts min/Ncounts max ≤ 0.7). Only genes with at
least 6 counts in either calculation were analyzed.
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ChIP-seq analysis

We used ChIP-seq data from 6 accessions and sRNA-seq data
from 14 accessions63. We used STAR112 to map ChIP-seq
reads with these non-default options:

--alignIntronMax 5
--outFilterMismatchNmax 10
--outFilterMultimapNmax 1
--alignEndsType EndToEnd
--twopassMode Basic

The ChIP-seq data were log2-normalized to input using
bamCompare (deeptools package114) using

--operation log2
--effectiveGenomeSize 119481543
--ignoreDuplicates
--outFileFormat bedgraph

The ChIP-seq coverage was estimated using bedtools map
-mean115. The ChIP-seq coverage was further normalized to
obtain value range similarity across accessions. For this, we
applied quantile-normalization using an R function:

function(x) {
(x-quantile(x,.20)) / (quantile(x,.80) - quantile(x,.20))

}

which equalized the 20% and 80% quantile values of each
ChIP-seq sample. After quantile-normalization, the repli-
cated samples were averaged.

sRNA-seq analysis

We used sRNA-seq data for 14 accessions63. To pro-
cess the sRNA-seq data, we trimmed the reads us-
ing cutadapt116: cutadapt -a AACTGTAGGCACCATCAAT

--minimum-length 18. We then used STAR112 with the
following non-default options to map sRNA-seq reads to the
corresponding genome:

--runRNGseed 12345
--alignEndsType Extend5pOfRead1
--alignIntronMax 5000 --alignSJDBoverhangMin 1
--outReadsUnmapped Fastx --outSAMmultNmax 100
--outSAMprimaryFlag AllBestScore
--outSAMattributes NH HI AS nM NM MD jM jI XS
--outFilterMultimapNmax 10
--outFilterMatchNmin 16
--outFilterMatchNminOverLread 0.66
--outFilterMismatchNmax 2
--outFilterMismatchNoverReadLmax 0.05
--outFilterIntronMotifs RemoveNoncanonicalUnannotated
--twopassMode None

We extracted 24-nt reads, calculated read coverage for each
position of the genome using genomeCoverageBed (bed-
tools v.2.27.1), normalized it by the total number of uniquely-
mapped reads in each sample, and calculated 24-nt sRNA
coverage for each locus of interest using bedtools map

-mean function.

DNA methylation analysis
To estimate DNA methylation levels, we used published
BS-seq data for 12 accessions62. After trimming with Trim-
Galore (https://github.com/FelixKrueger/
TrimGalore) with --clip r1 10 --clip r2 15

--three prime clip r1 10 --three prime clip r2

10, reads for each accession were mapped to its corre-
sponding genome with Bismark117 with --score min

L,0,-0.5 for a relaxed mismatch threshold and the --un

--ambiguous parameters to obtain additional unmapped
and multiply-mapping reads. Methylation was called as
described118. CG, CHG, and CHH methylation levels for
genes and SVs in each accession were then calculated for
each gene by focusing on all Cs in the specific context within
the gene and calculating the ratio between the total number
of methylated and unmethylated reads across all sites.

Mapping to TAIR10 vs. own genome

To estimate reference bias we mapped BS-seq data for all ac-
cessions to the TAIR10 genome and performed CG, CHG
and CHH methylation level estimation in the same way as
for own genomes. We then focused on annotation groups
with a one-to-one correspondence with an Araport11 gene
(the current annotation of the TAIR10 genome). We cal-
culated Pearson’s correlation coefficient between the methy-
lation level estimates obtained from TAIR10 mapping and
accession-genome mapping. We also estimated the num-
ber of genes that were correctly or wrongly estimated us-
ing TAIR10 mapping. For each methylation context, we
called a gene “wrongly estimated” if the methylation level
in TAIR10 and the own genome differed by more than 50%
(methlevel min/methlevel max ≤ 0.5). For a more re-
fined analysis of reference bias, see Supplementary Note 6.

Data availability
The raw data (PacBio CLR and Illumina PCR-free short
reads) and genome assemblies are deposited in the European
Nucleotide Archive (ENA) under project accession number
PRJEB73474 (ERP158243). Illumina PCR-free data for 61
additional accessions used to investigate the contribution of
satellite repeats can be accessed under project accession num-
ber PRJEB73476 (ERP158245). In addition, assemblies, an-
notations, TEs, RNA-Seq, BS-seq, and ChIP-Seq data can
be downloaded from 1001genomes.org, where a collection
of accession-based JBrowse2 genome viewers and a pan-
genome JBrowse2 browser are also available.

Code availability
All scripts can be found in an ad hoc 1001 Genomes+
repository. The Pannagram toolkit51 can be found in a
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GitHub repository as can the Pangenome-graph methods. The
genome assembly pipeline can be found in another GitHub
repository.
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Extended Data Figure 1 – Origin of the sequenced accessions. Colors indicate “ADMIXTURE group” 34. Note that 6909, which
corresponds to the TAIR10 reference genome (Col-0) lacks reliable collection data (but hails from Central Europe based on genotype as
well as historical records).

Extended Data Figure 2 – The causes of contig breaks. Stacked bar chart summarizing the type of repetitive element closest to each
contig edge across the 27 assemblies, separately for scaffolded and unplaced contigs. 72% of the latter end with centromeric or rDNA
repeats.
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Extended Data Figure 3 – Scaffolded vs. unplaced contigs. The former correspond to the chromosome arms and contain mostly non-
repetitive sequence and TEs, while the latter mostly contain centromeric and rDNA repeats, as well as organellar DNA sequence (cf. Fig. 1).

Extended Data Figure 4 – TE class size distribution. The cumulative length of all copies of a given TE class differs greatly across
accessions, but the total TE content does not.

8

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 10, 2025. ; https://doi.org/10.1101/2024.05.30.596703doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.30.596703
http://creativecommons.org/licenses/by/4.0/


Igolkina et al. Extended Data

Extended Data Figure 5 – Whole-genome alignments. A. Chromosome 2. B. Chromosome 3. C. Chromosome 4. D. Chromosome 5.
For chromosome 1 and further explanation, please see Fig 2A.
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Extended Data Figure 6 – Density of PGGB graph bubbles. A. Chromosome 2. B. Chromosome 3. C. Chromosome 4. D. Chromo-
some 5. For chromosome 1 and further explanation, please see Fig 2B.
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Extended Data Figure 7 – Nucleotide diversity across the genome. A. Chromosome 2. B. Chromosome 3. C. Chromosome 4. D.
Chromosome 5. For chromosome 1 and further explanation, please see Fig 2C.
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Extended Data Figure 8 – Comparing SVs from Pannagram and PGGB graphs. A. Scatter plot of overlap and method-specific SVs as
a function of eliminating SVs above a certain length-cutoff. Overall, the overlap between the two methods is 50%, but the overlap can be
increased by removing large SVs (demonstrating that disagreement is disproportionally due to large SVs. B. Comparison of Pannagram and
graph-based SVs across chromosomes (average per accession), demonstrating that there are no major differences between chromosomes.
SVs shorter than 15 bp were not included in this figure. C. Position of overlapping and method-specific SVs for each chromosome of
accession 6909 (Col-0). Large discrepancies are more pronounced close to the centromeres (there is no overlap inside centromeres, as these
are masked by Pannagram). Each dot represents a 100 kb window, using a moving average of five windows.
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Extended Data Figure 9 – Cartoons illustrating cases where graph SVs are longer than Pannagram SVs. A. Two genomes (red and
blue) differ by a single simple SV (Extended Data Fig. 10), which can be represented as a gap in the alignment, or a loop in the graph.
Pannagram and the graph give the same result and the length of SV (indicated in grey) is identical. B. However, if SNPs, represented by
dots, are linked to the SV, causing imperfect alignment in the flanking regions around the SV, PGGB may recognize longer haplotypes,
resulting in an arrangement that resembles a hat. In this case, the graph SV is not merely a presence-absence variant, but a complex SV
with two alleles. The entire region affected (in grey) is longer than the SV recognized by Pannagram (still the same as in A). C. When the
SV is formed by a tandem duplication, the graph representation of the SV is topologically similar to scenario A, but the SV covers both the
original sequence and its duplicated copy (grey region), while the SV identified by Pannagram is still the same as in A.
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Extended Data Figure 10 – Simple and complex length variants. Cartoons illustrating our classification of length variants into simple
and complex structural variants (SVs) in the whole-genome alignment and graph representations.
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Extended Data Figure 11 – An example of how Pannagram and the PGGB graph each handle closely linked duplications. The
region depicted corresponds to coordinates 285,000-310,000 bp on chromosome 1 in accession 1741. The Pannagram alignment (panel A)
identifies four simple SVs, with the two longest ones being due to duplicated sequences in accession 9543 (panel B) and accession 10002
(panel C). The PGGB graph representation of this region is shown on the right, along with paths corresponding to three different haplotypes.
Panel D shows the path taken by accession 0 (TAIR10), which carries the majority haplotype. Panel E shows the path of accession 9543,
which carries a duplication, and hence goes around the small loop twice. Panel F shows the path of accession 10002, which has the longest
duplication, and hence goes around the big central loop twice. Thus, while Pannagram identifies four simple SVs (the longest one being
18.6 kb long), the PGGB graph SVs involve all accessions and cover almost the entire region shown. Note that, as in the cartoon example
(Extended Data Fig. 9), similar PGGB graph topologies may result from very different types of sequence differences between accessions.
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Extended Data Figure 12 – Another example of how Pannagram and the PGGB graph each handle regions that are difficult to
align. A. Pannagram alignment of a highly polymorphic region corresponding to coordinates 21,956,400-21,958,060 bp on chromosome
1 in accession 1741. Pannagram identifies a complex SV covering most of the region. B. The PGGB graph also recognizes these SVs, but
merges them with flanking SNP variation, resulting in two nested hat-like structures (cf. Extended Data Fig. 9B). As a result, the sequence
covered by SVs is longer. C. Pannagram alignment of the region corresponding to coordinates 1,183,130-1,186,590 bp on chromosome 1
in accession 0 (TAIR10). Pannagram identifies several, mostly simple SVs separated by short alignable regions. D. The PGGB graph does
not align these regions, and merges most variants into two longer haplotypes. In this case as well, the graph SVs cover more sequence than
the Pannagram SVs.
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Extended Data Figure 13 – Complex versus simple SVs. A. Fraction of simple SVs (sSVs) and complex SVs (cSVs) by length. The
prevalence of short sSVs is at least partly explained by the low probability of the multiple events required for cSVs occurring in small DNA
segments. B. The distribution of sSVs and cSVs across chromosomes—the latter are enriched in pericentromeric regions.
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Extended Data Figure 14 – Location of sSVs with respect to genes. A. The number of putative insertions (presence allele in 1-3
accessions) and deletions (absence allele in 1-3 accessions) of varying lengths in gene and intergenic regions. B. Same for exons and
introns.
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Extended Data Figure 15 – Frequency and size distribution of organellar insertions. Seven insertions are excluded because they were
associated with contig breaks, and we could therefore not determine their exact length (Extended Data Fig. 2).
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Extended Data Figure 17 – The graph of the nestedness of existing A. thaliana TE annotations. Each node is a cluster of similar
sequences (with length and identity thresholds of 0.85), where the size of the node indicates its relative abundance. The graph can be
decomposed into one dominant connected component and several smaller ones, as shown on the right.
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Extended Data Figure 18 – Different TE annotations of Very similar mobile elements. A-C. A particular part of our graph of nestedness
(Fig. 5) colored separately by TE content, TE superfamily, and presence frequency. D. Dot plots comparing sSVs from the central node of
the graph. Dark color reflects the similarity on the forward strand, pink color on the reverse complement. The dot plots were constructed
with a window parameter of 15 and the number of matches set to 12. Sequences in the central node are very similar to members of both
HELITRONY3 and SIMPLEHAT2 families, which are also similar to each other, demonstrating how confusing TAIR10 TE annotation
leads to nodes connecting different TE superfamilies.
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Extended Data Figure 19 – An example of a mobile element containing annotated TE sequences. A-C. A connected component
from the graph of nestedness (Fig. 5) colored separately by TE content, TE superfamily, and frequency (indicating likely insertion/deletion
status). The component is characterized by putative insertions of a large element (5.4 kb) containing annotated DNA/MuDR element.
As illustrated by BLAST results (D-E) and dot plots (F-H), the Node #1 presence alleles contains several copies of an annotated MuDR
element, while the Node #2 allele contains one copy. The nature and mechanism of transposition of this mobile element is unclear.
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Extended Data Figure 20 – Another example of a mobile element containing annotated TE sequences. A-C. A connected component
from the graph of nestedness (Fig. 5) separately colored by TE content, TE superfamily, and frequency (indicating likely insertion/deletion
status). The component is characterized two active elements, a 3.7 kb one (Node #2) corresponding to an annotated LTR/Copia element,
and an apparently more active one (based on copy number) that is larger (5 kb, Node #1) and contains a very similar LTR/Copia element
plus additional sequence, including LTR/Copia fragments. Both elements have (matching) LTRs (G), as well as LTR/Copia ORFs. Unlike
the example in Extended Data Fig. 19, the nature and mechanism of this element is clearer, and we have previously described an LTR/Copia
element that is longer than the existing TAIR10 annotation suggests 57.
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Extended Data Figure 21 – An un-annotated TE with evidence of putative horizontal transfer. A component from the graph of
nestedness (Fig. 5) built on sSVs that have no overlap with annotated TEs in A. thaliana. A-B. The component consists of many rare
insertions of a ∼5.3 kb element containing an ORF matching “transpos*” in protein BLAST, plus a few more common insertions of a
∼450 bp element without coding potential. A dot plot (C) and multiple alignment of all alleles from the graph (D) reveal the presence of
LTRs, and identify the ∼450 bp element as a solo-LTR. The length of the element (E) is highly conserved, and it is mostly present in low
copy number (F-G). The element is most likely un-annotated in TAIR10 because it is not present in the TAIR10 reference genome—only a
solo-LTR is found in TAIR10 (H, which contains all detected instances, not only those identified as sSVs). The element contains two long
putative ORFs (I) without matches in genomes of closely related species, but possible matches in potato and sweet orange (J).
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Extended Data Figure 22 – A putative novel mobile element family. A connected component from the graph of nestedness (Fig. 5)
built on sSVs that have no overlap with annotated TEs. A-B. The component consists of many variable-frequency insertions of a short
sequence of 351-361 bp without coding potential. The element is not repetitive (C) but is surrounded by putative target-site duplications
(not shown). The element is low copy-number, but insertions are sometimes common (D-F; D contains all detected instances, not only
those in sSVs). An NCBI BLAST search excluding A. thaliana (G) identified no matches except in the closely related A. arenosa. H. The
length distribution of the element, again including all detected instances, not only those in sSVs.
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Extended Data Figure 23 – Methylation of sSVs. A. Methylation levels of sSVs categorized by their TE content. Those corresponding to
complete TEs or TE fragments are most highly methylated. B. Methylation levels of sSVs categorized by their TE content and frequency
of presence (“private” = 1, “low” = 2–3, “mid” = 4–24, “high” = 25–26). For those corresponding to complete TEs, methylation increases
with frequency (which is correlated with age). C. Methylation levels of sSVs categorized by membership in the graph of nestedness
(Fig. 5). Methylation levels are always higher for sSVs in the graph, and the difference for those without annotated TE content is striking.
Methylation on SVs was estimated using the BS-seq data from 62 12 accessions mapped to their corresponding genomes (Methods). Only
simple SVs are plotted. Each data point in the plots corresponds to the maximal methylation level of each sSV among the accessions where
this sSV is present.
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Extended Data Figure 24 – Expression of sSV sequences. The distribution of expression levels as a function of different TE-coverage
categories and tissues (R = rosette; S = seedling; F = flower; P = pollen), illustrating that sequences in sSVs that are more likely to be part
of the mobile-ome have low expression. For each sSV, read counts were normalized by length. A. Each dot is the mean expression of
sequences in sSVs in that category for an accession, using values normalized within accessions. B. Mean expression of sequences in sSVs
for each category normalized within tissue. C–D. For two different accessions, the distribution of expression for each category and tissue.
Values have been normalized within tissue.
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Extended Data Figure 25 – Details of gene-ome analysis. A. Overlap between two indicators used to identify TE: a) high nucleotide
similarity (locus contains > 50% annotated TE sequence in at least one accession) and; b) protein domain similarity (ORF having similarity
to proteins known to be involved in TE function). We defined TE genes as the union of these sets. B. Gene presence frequency distribution
for TE genes. C. Comparison of gene presence variation in this study to a recent analysis of gene model in 69 A. thaliana accessions 23.
For both protein-coding genes and TE genes, presence-absence variability is higher for gene models compared to gene loci. This can be
explained by the fact that our gene annotation pipeline might miss lowly expressed genes or genes not expressed in any of the four tissues
we used. The gene model variability in the protein-coding gene models of Lian et al. 23 is noticeably higher than in our data. This could
reflect that the larger population size in their study, but the different approaches used for matching genes between accessions and estimating
gene model variation: while we used pan-genome coordinates, they used an orthogroup search approach. For example, if the gene locus
is present in every accession and has a gene model in every accession, but in three accessions a shorter gene model was annotated, the
orthogroup approach would produce two gene families for this locus and call both gene models dispensable, while our approach would
treat this locus as one and would identify such a gene (and gene models corresponding to this gene) as part of the core, since it is represented
by a gene model in every accession. D. Synteny and sequence similarity analysis in A. lyrata for TAIR10 and new TE genes with the same
stringency as in Fig. 6: 80% sequence similarity (see Methods). Genes are plotted by their gene IDs along the chromosomes. The small
number of data points compared to protein-coding genes is due to the fact that most TE genes were not found in the A. lyrata genome.
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Extended Data Figure 26 – Chromosomal distribution of genes and TEs. The distribution of protein-coding genes and TEs along all
five chromosomes is shown broken down by frequence of presence and ancestral status. Cf. Fig. 6.
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Extended Data Figure 27 – Additional functional domain gene distributions. Functional domains identified by UniProt (see Methods).
“NA” indicates genes where no functional domains could be found. A. Genes grouped by new vs. old and protein-coding vs. TE. B.
Protein-coding genes grouped by frequency of presence. C. Protein-coding and TE genes by ancestral status.
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Extended Data Figure 28 – Protein-coding gene silencing by frequency category. A. Expression of genes vs. their presence frequency.
The median TPM for each gene category is plotted for each accession. B. H3K9me2 and H3K27me3 63 of genes vs. their presence
frequency. The median of quantile- and input-normalized ChIP-seq signals for each gene category is plotted for each accession. C. 24-nt
sRNAs targeting of genes of different presence frequency. Left: 24-nt locus coverage in flowers of accession 6024. Right: the median of
24-nt coverage is plotted for each gene category and accession. D–F. Locus-wide CHG, CG and CHH methylation levels in leaves 62 for
genes of different presence frequency. Left: accession 6024. Right: the median of CHH methylation level is plotted for each gene category
and accession. All heatmaps were created using the heatmap package in R and all except for expression are scaled by row to facilitate
within- and between-accession comparison. Significance estimates are from Mann-Whitney tests (***: P < 10−10, **: P < 10−5, *:
P < 10−2, n.s.: P ≥ 10−2).
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Extended Data Figure 29 – Protein-coding gene silencing by ancestral status. A. Expression of genes vs. their ancestral status. The
median TPM over the whole gene locus for each gene category is plotted for each accession. B. H3K9me2 and H3K27me3 silencing 63

of genes vs. their ancestral status. The median of quantile- and input-normalized ChIP-seq signals for each gene category is plotted for
each accession. C-E. Locus-wide CG, CHH and CHG methylation levels in leaves 62 for genes of different ancestral status. Left: accession
6024. Right: the median methylation level is plotted for each gene category and accession. F. 24-nt sRNAs locus coverage in flowers of
accession 6024 for genes of different ancestral status. The medians heatmap is not plotted due to zero median values in many accessions.
All heatmaps were created using heatmap package in R and all except for expression are scaled by row to facilitate within- and between-
accession comparison. Significance estimates are from Mann-Whitney tests (***: P < 10−10, **: P < 10−5, *: P < 10−2, n.s.:
P ≥ 10−2).
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Extended Data Figure 31 – Normalized saturation curves for different genome components. The dependence on sample size for the
union (“pan”) and intersection (“core”) sequence length, separately for the full genome, the mobile-ome, and the gene-ome. Within the
“pan” curves, the mobile-ome saturates the fastest, the gene-ome the slowest, and the entire genome at an intermediate rate. Gene-ome and
whole genome “core” curves show similar trends.
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A B

C D

Extended Data Figure 32 – Pan-genome vs. reference genome coordinates for each chromosome. The pericentromeric region (light
blue) shows a higher “dilution” of the spatial coordinates due to the increased number of SVs in this region. The centromeric region is dark
blue.

32

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 10, 2025. ; https://doi.org/10.1101/2024.05.30.596703doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.30.596703
http://creativecommons.org/licenses/by/4.0/


Igolkina et al. Extended Data

Extended Data Figure 33 – Reference bias when estimating gene expression. Raw counts in seedling RNA-seq samples for genes
mapped to TAIR10 (using TAIR10 gene annotation) and to an accession’s own genome (using our annotation). Only one-to-one matched
genes are shown.
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1 Genome assembly

1.1 Reciprocal translocation in 22001

A B

Supplementary Figure 1 – Reciprocal translocation in accession
22001. Dot plot of the original assembly 22001 (A) and of the mod-
ified assembly 22001m against (B) accession 22002. The transloca-
tion is readily seen at the beginning of chromosome 3 and the end of
5. Dot plots were created with D-GENIES.

We discovered a very large reciprocal translocation in ac-
cession 22001 (alternative name 85-3) from the Yangtze River
region, which swapped the distal portions of chromosomes 3

and 5 (Supplementary Fig. 1). We validated the transloca-
tion by PCR with two sets of primer pairs designed to ei-
ther amplify the standard arrangement of chromosomes 3 and
5 of Col-0, or the two translocation junction regions in ac-
cession 22001 (Supplementary Fig. 2). This rearrangement,
which would presumably lead to decreased fertility in het-
erozygotes, appears to be quite rare as we did not identify
other examples in a sample of 117 accessions sequenced with
Illumina short reads from the same region35. For the purposes
of this study, we manually rearranged this genome to match
the ancestral organization. To identify the exact breakpoints,
we aligned chromosome 3 of 22001 to all other sequences of
chromosome 3 with minimap2 (-x asm5). After filtering the
alignments to retain those longer than 50 kb (fpa drop -l

50000), we removed the sequence from the start to the first
position of alignment and added the reverse complement to
the end of chromosome 5. A collection of the scripts can be
found at the project GitHub repository.

Similar steps were followed for the segment in chromo-
some 5, using the sequence starting at the last position of
the alignment to the end of the originally assembled chromo-
some. The sequence was removed from chromosome 5 and
added to the beginning of chromosome 3.

We searched the repeat annotation for clues as to what type
of sequence might have been responsible for the transloca-
tion, but found no obvious cause.

1.2 Genome size estimation

To estimate genome sizes from PCR-free reads, we em-
ployed a k-mer based approach98 after pre-processing the
datasets. First, we trimmed adapters from the raw reads and
removed low quality sequences with cutadapt v2.4116 (-q
20,15 -trim-n -minimum-length 75). We aligned the
trimmed reads to the organellar genomes of TAIR10 and the
bacteriophage phiX174 genome with bwa-mem v0.7.17119,
and executed a series of samtools v1.9120 commands to keep
only reads for which both pairs did not align to any of these
genomes. Briefly, we used samtools view -b -f 12 -F

256 to obtain unmapped read pairs; samtools view -b

-f 4 -F 264 for paired-reads alignments in which read1
was unmapped and read2 was mapped; and samtools view

-b -f 8 -F 260 paired-read alignments in which read1
was mapped and read2 was unmapped. Then, we com-
bined the three outputs of the described steps with samtools
merge, discarded supplementary alignments with samtools
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Supplementary Figure 2 – Validation by PCR of reciprocal
translocation in accession 22001.

view -b -F 2048 and converted the BAM file to FASTQ
format with bedtools bamtofastq. To avoid biases due to
different read lengths for all subsequent analyses, we trimmed
reads in all data sets to the common minimum of 124 bp
and removed reads shorter than that with cutadapt v2.4116

(--length 124 --minimum-length 124). Finally, we
counted 21 bp long k-mers with the commands count -C

-m 21 -s 5G and histo from Jellyfish v2.3.0121, and the
outputs were processed by the findGSE tool122 to estimate
genome sizes.

1.3 Estimation of satellite repeats

To estimate the contribution that the three main classes
of satellite repeats make to the genomes — centromere,
45S and 5S rDNA repeats — from Illumina PCR-free
reads, we used BLAST v2.2.29123 (blastn -evalue

1e-10 -soft masking false -dust no -max hsps

1 -outfmt), with reads trimmed to 124 bp in length as
queries (see above) against a database with representative
sequences of some of the most abundant or genetically
diverse CEN159 and CEN178 satellite repeats collected from
a recent pancentromere study16, as well as three consensus
5S rDNA units89, and a reference 45S rDNA copy90. For
each repeat class, the full-length of reads with a blast hit
was added, and their sum was divided by the coverage
estimated by findGSE. The sum of centromere and rDNA
repeats estimated by this method and the difference between
genome size (estimated by the k-mer approach) and the
scaffolded assembly were highly correlated (r2 = 0.9639;
P < 2.2× 10−16; see Supplementary Fig. 3).

Supplementary Figure 3 – Correlation between the combined sum
of centromere and rDNA repeats estimated by a BLAST-based ap-
proach with PCR-free reads, and the difference between the total
genome size estimated by a k-mer approach with PCR-free reads
and the summed lengths of the chromosome scaffolds.

2 Graph statistics

2.1 Deconstructing the graph

For variation detection we used the vg toolkit (v1.46.0 “Alta-
mura”)103. vg deconstruct was run on every path in the graph.
Bubbles represent variation in graphs and are returned by the
vg deconstruct subcommand in a modified VCF file. Bub-
bles have a start and end position (node based), and provide
all different traversals from start to end position. This is re-
flected as a sequence of nodes and their direction and addi-
tionally with the covered base sequence. The resulting VCF
files were merged based on start and end nodes of bubbles.
The merged VCF file was further processed to only retain
relevant information and converted to BED format for com-
parison with Pannagram results.

sSVs and cSVs in the graphs were defined as follows:

• SVs are representing indels, having one traversal that is
very small (deletion) and a large one containing the SV
sequence (insertion). Bubbles were identified as a sSV
if the bubble was shared by all accessions in the graph
(here 28), and as cSV if not. Traversals covering the in-
sertion are at least 15 bp long and must be of high sim-
ilarity (95% sequence). The deletion part of the bubble
should be small, at most 5% of the length of the inserted
sequence.

• Most cSVs correspond to bubbles that have a complex
structure and/or are sub-bubbles of larger bubbles.
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Supplementary Figure 4 – TE-superfamily content in SVs. A. Distribution of absolute numbers of sSVs across different TE content
categories, based on the frequency of the presence allele. B. To confirm that that distributions in A differed, all columns in these subplots
were taken as observations, and a PCA was performed. The second PC described the difference between categories of TE content based
on their TE-superfamily content, in support of differences in TE-superfamily content in sSVs from different TE-overlap categories. C.
Normalized distributions of TE-superfamily content according to the frequency of presence for each category of TE overlap. D. Corre-
spondence between the number of TE superfamily members in the TAIR10 annotation and the representation of TE superfamilies in sSVs.

2.2 General pan-genome

To perform a reference-free pan-genome analysis, we utilized
genome graphs built for each chromosome separately. The
complete graph contains 18.3 million nodes and 20.9 million
edges and has a total size of 225 Mb, with a mean compres-
sion rate over all chromosomes of 6.75%. Similar to other
genome-wide analyses in this study, the large-scale recipro-
cal translocation in accession 22001 was masked to maximize
linearity and increase resolution in the variation graph.

3 sSVs and TEs

We showed that most sSVs correspond to different categories
of overlap with annotated TE sequences (Fig. 4). This anal-
ysis can broken down further to the level of TE superfami-
lies. Different TE superfamilies show very different patterns
with respect to these overlap categories, presumably reflect-
ing both the biology of the superfamilies and the quality of
the annotation (Supplementary Fig. 4A). That there is a dif-

ference between the categories can also be seen in a Principal
Components analysis, where the two first PCs of TE super-
family composition distinguish four TE-content categories,
consistent with different mechanisms underlying formation
of different groups of TEs (Supplementary Fig. 4B).

We found several differences between TE superfamilies.
For example, LTR/Copia elements appear to be both active
and fairly well annotated, with roughly 50% of matches cor-
responding to presence-absence polymorphisms that include
apparently complete elements, whereas matches to LINE el-
ements rarely correspond to complete elements (Supplemen-
tary Fig. 4C). Also notable is the relationship between pres-
ence in sSVs and representation in the annotation. In gen-
eral, they are strongly correlated (Supplementary Fig. 4D),
but LTR/Copia elements, for example, seem over-represented
in sSVs, consistent with their continuing to be active42.
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4 The gene-ome

4.1 Details about reconciling annotations

Our de novo annotation pipeline provided independent gene
annotations for each accession. To find correspondences in
annotated genes between accessions, we utilized the pan-
genome coordinate system. Mapping annotations to the com-
mon coordinates revealed that many genes had discordant
annotations. The disagreements were of several types: (1)
differences in exon-intron organization; (2) inconsistency in
gene length; and (3) variability in the number of genes in a
region. We resolved (3) by deciding to either merge or split
genes based on a majority vote (Supplementary Fig. 5). We
did not alter exon-intron organization and grouped genes into
non-overlapping blocks for each strand to cover the maxi-
mum length (Supplementary Fig. 6). After identifying an-
notation groups on the pangenome coordinate, we compared
the obtained gene and mRNA sequences between accessions.
If, within a single annotation group, the sequences for acces-
sions differed by more than 85% of their length or similar-
ity, such genes were filtered out from the analysis. Such sit-
uations are associated with regions enriched with structural
variations (SVs) or regions containing two or more haplo-
types. Lastly, overleaping gene models on the pangenome
coordinate system after the above-mentioned procedure were
excluded from the analyses, ensuring that only one annota-
tion group was considered. The resultant annotation groups
were considered as genes.

After generating a consistent annotation, we projected it
back onto all accessions. If a locus was present in an ac-
cession but not annotated by the de novo annotation, we still
identified it as a gene, though without the exon-intron model.
This procedure helped us to avoid underestimating the num-
ber of segregated genes (Supplementary Fig. 7). Supplemen-
tary Fig. 8 illustrates the final consensus annotation.

4.2 Genes and TEs

Arabidopsis thaliana annotations group were compared with
TAIR10 annotations for pseudogenes and TEs based on their
position in the pan-genome coordinate systems. Annota-
tion groups without overlap to TAIR10 were defined as
’new gene’. We then separated genes into two main cat-
egories: Protein-coding genes (TAIR10 and new) and TE
genes (TAIR10 and new, plus all TE-like genes). New genes
with more than 50% overlap to TEs in TAIR10 were classi-
fied as TE. To further characterize these ’new’ genes, their
coding sequence were compared using DIAMOND’s blastp
module against UniProt DB (version 2024 06). The best hit
in UniProt that shared at least 50% sequence identity over at
least 50% of the A. thaliana gene length was further used.
The functional and taxonomical annotation of UniProt hits
were retrieved from uniprot KB using uniprot id-mapping ser-
vice. Annotation groups were classified as TE if their uniprot
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Supplementary Figure 5 – Reconciling ambiguous gene annota-
tion with majority voting. A. Situation where the solution was to
split. Red triangles denote regions to solve. B. Situation where the
solution was to merge. Red triangles denote the region to solve and
the resultant merged gene.

annotation met any of the following conditions: uniprot
protein names including transposon, retrotransposon, trans-
posase, transposable, reverse transcriptase; GO terms includ-
ing transposase, DNA transposition; their UniProt domain
annotation includeing transposase, transposon, reverse tran-
scriptase; had Pfam domains PF14223, PF03078, PF03732.
Additional functional categories were defined based on pro-
tein name, keywords, domains, GO terms, and subcellular lo-
cation annotations associated with the UniProt hit. We further
categorized ’new’ genes as ’TAIR10 high similarity’ if they
shared more than 80% sequence identity over 80% of the cod-
ing sequence length and as ’TAIR10 medium similarity’ if
they share between 45% and 80% sequence identity with the
TAIR10 hit (see further details in Supplementary Note 4.3).
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Supplementary Figure 6 – Variation in gene models. A. Varia-
tion in exon-intron structure. Red triangles denote regions of exon-
intron variation in the de novo annotations between accessions. B.
Variation in gene length. Problems and how they were solved are
indicated with red triangles. Red triangles on the gray plot indi-
cate regions where transcript lengths vary between accessions. Red
triangles on the green plot indicate regions of genes in the final an-
notation that cover the positions of all transcripts.
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Supplementary Figure 7 – Number of segregating genes. Com-
parison of the estimates based on the raw de novo annotation and on
the final consensus gene annotation.

4.3 New genes

We performed a more detailed analysis of “new genes”—
those that did not have a match in the TAIR10 gene
annotation—to investigate their origin and characteristics.
First, we assessed the chromosomal distribution of new
genes, which are enriched around the centromeres (Supple-
mentary Fig. 9A), while TAIR10 annotated genes are de-
pleted around centromeres. Grouping new genes based on
their TE-sequence content shows that the pericentromeric en-

Accession 6024, Chromosome 2

AT2G14210 new new new

AT2G14247

AT2G14255

AT2G14260

AT2G14265(add)

AT2G14270
AT2G14282(add)

AT2G14285 new

Supplementary Figure 8 – An example of the final consensus an-
notation. This region of accession 6024 on chromosome 2 shows
different sources of annotation: (i) TAIR10 genes, which were
found in this accession (black names), (ii) TAIR10 genes, which
were found in other accessions (black names with a green glow),
(iii) TAIR10 genes, which were not found in any accession (purple
names), (iv) new genes, which were found in this accession (denoted
as “new” with the gene model) and also in other accessions (denoted
as “new” without the gene model, a line only).

richment is largely due to genes with high TE content (Sup-
plementary Fig. 9B). Thus we find new protein-coding (non-
TE) genes all across the chromosomes with slight deple-
tion around centromeres. We preliminary classified genes
into TE and non-TE based on their TE-sequence content:
genes with >50% TE-sequence in at least one accession were
classified as TE, the rest as non-TE (protein-coding) (Sup-
plementary Fig. 9C). Unsurprisingly, newly annotated genes
were strongly enriched for TE genes, compared to TAIR10-
annotated genes.

To make sure that we did not miss any additional TE genes,
we further looked for amino acid similarity of the genes in our
annotation to genes encoding proteins known to participate in
TE function, such as transposase (Methods) and added them
to genes classified as TE (Extended Data Fig. 25A).

Next, we compared the presence-frequency of old
(TAIR10) and new genes (Supplementary Fig. 10A) and
found that, as expected, the great majority (94.2%) of
TAIR10-annotated genes are fixed in the population, while
the majority of new genes are not (82.9%). While new TE
genes showed similar frequency distribution to new protein-
coding genes, genes that were classified as TAIR10 TE genes
are, surprisingly, often fixed (52.2%), which likely is due to
the skewed representation of TAIR10 TE genes in our annota-
tion: we only identified a small portion of annotated TE genes
(565), and since our annotation pipeline relied on RNA ex-
pression, those are likely TE genes with higher-than-average
expression. Since expression is markedly higher among fixed
genes (Fig. 6I), this might explain an over-representation of
fixed “TAIR10 TE genes” genes in our annotation. Finally,
high-frequency genes are more likely to have already been
already annotated in TAIR10.

In order to identify the origin of the “new” genes in our
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in different categories that are duplicated in at least one accession. D. Percent of genes in different categories that are tandemly duplicated
in at least one accession. Tandem duplications were defined as copies located within 10kb from each other. Copy search was done using
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annotation, we searched for these genes in the genomes
of TAIR10, other accessions, A. lyrata, other Brassicaceae
species, and all other species using UniProt KB (Supplemen-
tary Fig. 10B). 28% of previously unannotated protein-coding
genes had a very high sequence similarity (at least 80% iden-
tity) to TAIR10, indicating that they originated by recent gene
duplication. 25% had medium similarity (45-80% identity)
suggesting more ancient gene duplications, or, alternatively,
a recently duplicated gene modified by a large structural vari-
ation. Another 31% did not have a sequence match in TAIR10
but their sequences could be found in other accessions, or in
other Brassicaceae species, including A. lyrata. Consistent
with a likely origin via duplication, new genes were strongly
enriched for being present in 2 or more copies (6.0-fold en-
richment over TAIR10 genes, Supplementary Fig. 10C), with
TAIR10-high-similarity genes showing the highest – 10.0-
fold – enrichment. We can assume that a few of the du-
plications responsible for the creation of the new genes are
tandem, as new genes showed a 3.0-fold enrichment in be-
ing in a tandem copy in at least one accession, compared to
TAIR10-annotated genes, with high-similarity genes show-
ing 6.5-fold enrichment (Supplementary Fig. 10D). We next
investigated why the newly annotated genes were missing
from the TAIR10 annotation. For the majority (75.9%) of the
“new” protein-coding genes, their genetic sequence is sim-
ply absent from the Col-0 genome (Supplementary Fig. 10E).
New genes might also be missing from the TAIR10 annota-
tion because they are not expressed in Col-0, but we were
able to annotate them if they are expressed in other acces-
sions, which was the case for 7.5% of new genes; About 45%
of the new genes that are present also in Col-0 (the TAIR10
accession) are also expressed there—albeit at a low level. It is
also worth noting that our annotation pipeline identified many
new genes that are not expressed in any accession, i.e., their
identification had been solely due to sequence-based predic-
tion (see Methods). From the categories of new genes, the
TAIR10-high-similarity genes have the highest rate of the lo-
cus being absent from TAIR10 (Supplementary Fig. 10E, bot-
tom), confirming our intuition that these are the most recently
arising genes that stem from a structural change of inserting
a new gene locus through gene duplication.

We have shown that many new genes are often physically
absent from specific accessions, but even where present, the
new genes are often not expressed and show signs of PRC2
and TE-like silencing (Supplementary Fig. 11A). New TE
genes show very high levels of silencing, consistent with the
idea that many old (fixed) (Supplementary Fig. 10A-D) TE
genes manage to increase their frequency by becoming harm-
less and thus requiring less silencing than new and poten-
tially more deleterious TE genes. This is also supported by
our finding that new TE genes are strikingly more enriched
in functional TE domains (Fig. 6G). Different categories of
new protein-coding genes show no significant differences
in expression or silencing, with the exception for slightly
lower H3K9me2 and CG methylation level on TAIR10-high-

similarity genes (Supplementary Fig. 10E).

5 Errors and biases in SNP-calling

5.1 Results
To explore the sources of errors in SNP calling, we took ad-
vantage of the high-coverage, PCR-free Illumina short-read
data that were used to correct PacBio reads during assembly.
Briefly, for a pair of accessions, we first identified SNPs us-
ing a whole-genome alignment, then designated one of the
genomes as a reference and called SNPs using short reads
from the other genome. The process was repeated until each
genome had been used as reference genome for every other
genome in the sample. The results were compared using the
whole-genome alignments as “ground truth”.

Using standard parameters, we found that we could call
far more SNPs than in our previous work (over 80% of those
found in whole-genome alignment), but that the False Dis-
covery Rate,

FDR =
FP

FP+ TP
,

was very high, ∼7%. A comprehensive investigation into the
extent to which it is possible to decrease the number of false
positives without increasing false negatives awaits investiga-
tion, but a closer look at the nature of these SNP-calling errors
was already informative. As illustrated in Fig. 8A:

• 17.3% of SNPs identified in the whole-genome align-
ment were entirely missed by short read-based SNP-
calling because they lie in regions not covered by reads
because of mapping problems. This is the main reason
SNP-calling underestimates polymorphism.

• 18.4% of SNPs called using short reads were pseudo-
heterozygous (because the material analyzed was highly
inbred and true heterozygous sites should not exist), al-
most entirely because the sample contained duplicated
regions not found in the reference genome, leading to
erroneous mapping of reads to regions that do not corre-
spond to their true origin.

• 83.1% of false positive SNP calls were due to spurious
read-mapping caused by various forms of polymorphism
(not only SVs). A minor fraction (13.9%) were techni-
cal artifacts due to our two pipelines making different
choices about local alignment.

• Bona fide false negative SNP-calls were either caused by
read-mapping or local alignment problems, in roughly
equal proportions.

• Other types of errors (including base-calling and random
coverage) made trivial contributions.

It goes without saying that the precise numbers of SNP-
calling errors will depend on the parameters used, but the
qualitative conclusions will hold.

7

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 10, 2025. ; https://doi.org/10.1101/2024.05.30.596703doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.30.596703
http://creativecommons.org/licenses/by/4.0/


Igolkina et al. Supplementary Note

P
C

_T
A

IR
10

P
C

_n
ew

T
E

_T
A

IR
10

T
E

_n
ew

−1.0
−0.5

0.0
0.5
1.0
1.5
2.0
2.5

H3K27me3, acc 6024

*** n.s. *

−1
0
1
2
3
4

H3K9me2, acc 6024

*** n.s. ***

0
5

10
15
20
25
30
35

expression, 6024

ex
pr

es
si

on
, T

P
M

*** * ***

0.00

0.05

0.10

0.15

0.20
CHH, leaves acc 6024

m
et

hy
la

tio
n 

le
ve

l

*** * ***

0.0
0.2
0.4
0.6
0.8
1.0

CG, leaves acc 6024

m
et

hy
la

tio
n 

le
ve

l n.s. ** ***

P
C

_T
A

IR
10

P
C

_n
ew

T
E

_T
A

IR
10

T
E

_n
ew

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

24nt sRNA targeting, 6024
24

nt
 c

ov
er

ag
e,

 R
P

M

*** ** ***

no
rm

al
iz

ed
 C

h
IP

-s
eq

 s
ig

na
l

P
C

 TA
IR

10

P
C

 new

T
E

 TA
IR

10

T
E

 new

10002
10015
10024
1741
220011
22002
22003
22004
22005
22006
22007
6024
6069
6124
6244
6909
6966
8236
9075
9537
9543
9638
9728
9764
9888
9905
9981

0

1

2

3

4

2
7
 a

cc
es

si
on

s

median H3K9me2 level, leaves

P
C

_TA
IR

10

P
C

_new

T
E

_TA
IR

10

T
E

_new

1741

6909

6024

6966

9888

9905

−1

−0.5

0

0.5

1

median expression, rosette

6
 a

cc
es

si
on

s

median H3K27me3 level, leaves

P
C

_TA
IR

10

P
C

_new

T
E

_TA
IR

10

T
E

_new

1741

6909

6024

9888

9905

−1

−0.5

0

0.5

1

5
 a

cc
es

si
on

s

A

D

B

C

H3K27me3, acc 6024

−1

0

1

2

3

H3K9me2, acc 6024

* n.s. n.s.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

expression, 6024

ex
pr

es
si

on
, T

P
M

n.s. n.s.

0.0
0.2
0.4
0.6
0.8
1.0

CG, leaves acc 6024

m
et

hy
la

tio
n 

le
ve

l

* n.s. n.s.

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14

CHH, leaves acc 6024

m
et

hy
la

tio
n 

le
ve

l

n.s. n.s. n.s.

0.00

0.02

0.04

0.06

0.08

0.10

0.12

24nt sRNA targeting, 6024

24
nt

 c
ov

er
ag

e,
 R

P
M

n.s. n.s. n.s.

n
or

m
al

iz
ed

 C
h
IP

-s
eq

 s
ig

n
al

E

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

n.s. n.s. n.s.

ta
ir_

m
ed

B
ra

ss

no
_h

om

ta
ir_

hi
gh

ta
ir_

m
ed

B
ra

ss

no
_h

om

ta
ir_

hi
gh found in BrassicaceaeBrass

low or no homologyno_hom

found in TAIR10
(High_Similarity)

found in TAIR10
(Medium_Similarity)tair_med

tair_high

Supplementary Figure 11 – ”New” genes silencing. A. Locus-wide RNA expression in 9-leaf rosette, the levels of H3K9me2 and
H3K27me3 in mature leaves, the levels of CG and CHH methylation in mature leaves and 24nt sRNA level in flowers 63 for TAIR10 and
new genes. Data for accession 6024 is plotted; other accessions showed similar patterns. B. Median expression of TAIR10 and new genes
in 9-leaf rosette in 27 accessions. C-D. Median H3K9me2 level in 6 accessions and median H3K27me3 level in 5 accessions for TAIR10
and new genes. E. Locus-wide RNA expression in 9-leaf rosette, the levels of H3K9me2 and H3K27me3 in mature leaves, the levels of
CG and CHH methylation in mature leaves and 24nt sRNA level in flowers 63 for the 4 categories of new protein-coding genes defined in
(Supplementary Fig. 10B) Data for accession 6024 is plotted; other accessions showed similar patterns.Significance estimates from Mann-
Whitney tests (***: P < 10−10, **: P < 10−5, *: P < 10−2, n.s.: P ≥ 10−2).

8

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 10, 2025. ; https://doi.org/10.1101/2024.05.30.596703doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.30.596703
http://creativecommons.org/licenses/by/4.0/


Igolkina et al. Supplementary Note

Supplementary Figure 12 – Sources of errors in SNP-calling. A. Overview of the approach. Genome 1 is used as reference, and SNPs
are identified both by whole-genome alignment to Genome 2 and by SNP-calling using Illumina reads from Genome 2. The SNPs identified
in the whole-genome alignment are treated as truth when compared with Illumina read-based SNPs. The process was repeated using all
27 genomes as reference, and using 25 NGS Illumina read sets with sufficient coverage as samples. B. Sources of errors, in percent, for
whole-genome alignment SNPs and Illumina read-based SNPs (cf. Fig. 8A). Of the whole-genome alignment SNPs, 76.7% (on average)
were also called using Illumina reads, while 6% were FNs, and 17.3% were not called because the region was not covered by any Illumina
read. Relative to the number of whole-genome alignment SNPs, 18.6% of Illumina read-based SNP calls were heterozygous and 5.8% FPs.
From the point-of-view of the Illumina read-based SNPs, 7.1% of homozygous SNP calls were FPs. Heterozygous calls constituted 18.4%
of total SNP calls, and the false negative rate, FNR = FN/(FN + TP) was 7.3%. C. Diagram of the sources of the three types of errors
(FP, FN, and HET; see text for details, and Supplementary Figs. 13- 16) for concrete examples).
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Supplementary Figure 13 – Not Aligned (NOTAL) regions can cause both FP and FN calls. FP calls can be found in NOTAL region,
while FN can be found in flanking sequence. A. Screen shot from IGV showing FP (red circle) and FN (blue circle) SNPs, and the
corresponding read-mapping, using WGS from 9905 to TAIR10 as an example. B. Aligning the mis-mapped reads (red square in A) to
9905 instead results in a well-mapped read to another non-collinear region. C. Genome alignment showing that both the regions of (A) and
(B) were NOTAL, while the vertical red lines represent the mis-mapped (non-collinear, gap) region at TAIR10, from which the reads can
be well-mapped to the region in 9905 (horizontal line). The diagonal lines are aligned regions and the gaps are NOTAL regions.
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Supplementary Figure 14 – How duplications introduce FP calls. FP calls can occur when there were more duplications in reference than
in the new genome. A. Screen shot from Integrated Genome Viewer (IGV) shows the FP (framed by red circle) SNPs and corresponding
reads mapped situations. The bottom IGV screen shot shows how these reads were mapped to the corresponding genome (9905), suggesting
that the reads from one region were mapped separately to two different regions with a large gap between them. B. Further investigation
showed that the region has only one copy in 9905 and two tandem duplications in TAIR10, resulting in a duplication event called in WGA,
but not SNPs. The red regions indicate the two FP clusters based on TAIR10. C. This shows why the reads from one region of the 9905
genome were mapped separately to the early part of the first copy and the late part of the second copy of TAIR10. This is because these
two regions were more identical to the one copy of 9905, so the reads could still be well aligned elsewhere in the TAIR10 genome, but not
multi-mapped, resulting in false SNP calls.
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Supplementary Figure 15 – How duplications introduce FN calls. More duplications in the new genome than in the reference can lead
to FN SNPs. A. Screen shot from Integrated Genome Viewer (IGV) shows the FN SNPs (framed by the red circle) that can only be called
in WGA and not in short-read mapping. B. Genome alignment showed that this region was duplicated in another short fragment in its own
genome. The red region indicates the FN cluster based on mapping to TAIR10. C. However, in WGA analysis, it is easy to remove the
short non-collinear alignment and use only the collinear alignment to call SNPs, whereas in NGS, this is impossible due to multi-mapping,
and real differences are missed.

5.2 Methods and parameters

We used pairwise whole-genome alignments as baseline
(“ground truth”) for comparison with Illumina read-based
SNP calls. Mummer4124 was employed for whole-genome
alignment between corresponding chromosomes of accession
pairs, and the delta-filter (-1 -q -r) was used to elim-
inate one-to-many and many-to-many redundant matches,
followed by show-snps (-THCr) to extract variants. Only
SNPs were retained for further examination.

For Illumina read-based SNP-calling, we used the PCR-
free Illumina reads generated for this study. Not only were
these data generated from the same DNA preparations as
was used for the PacBio CLR reads, but the coverage was
also in general far higher than in previous work34 (one ac-
cession, 22002, had less than 10x coverage, and was not
used). Reads were mapped to each of the 27 genomes with
BWA-MEM v0.7.17119, followed by use of Picard tools to
remove duplicates, and GATK HaplotypeCaller v4.3125 to
call variants with gVCF mode. Each of the 27 “reference”
genomes was used to call SNPs in the remaining 25 sam-

ples. Variants were filtered by QD < 2.0, FS > 60.0,

MQ < 40.0, SOR > 4.0, and genotypes with low quality
or coverage were changed to missing with GQ < 20 or DP

< 3. The VCFs were separated into pairwise comparisons
for each combination of investigated accession and “refer-
ence”. Since SNPs could be nested with other types vari-
ants (for example, with REF and ALT alleles of GTT and
TTT,G, respectively), multi-allelic loci were first converted
to bi-allelic with bcftools norm -m -any and the alter-
nate alleles were realigned against the reference allele (trans-
forming GTT/TTT to G/T) using vcfwave126. Heterozygous
SNPs were extracted, and homozygous SNPs (MNPs here
were considered as multiple SNPs) were retained for further
evaluation.

The gVCF files were used to measure the genome fraction
covered by Illumina reads. Regions covered by fewer than 3
reads, or with GQ below 20, together with all heterozygous
sites, were all considered not missing and excluded from the
analysis (Fig. 8A). Illumina read-based FPs were SNPs called
with Illumina reads but not from the whole-genome align-
ment or SNPs found with both approaches but with different

12

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 10, 2025. ; https://doi.org/10.1101/2024.05.30.596703doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.30.596703
http://creativecommons.org/licenses/by/4.0/


Igolkina et al. Supplementary Note

Supplementary Figure 16 – Duplications contribute to the majority of mis-called heterozygous SNPs. Heterozygous (HET) SNPs can
be called when there are more duplications in the new genome than in the reference. A. Screen shot from Integrated Genome Viewer (IGV)
shows that heterozygous SNPs (framed by the red circle) were called in WGS due to more duplications in the sample genome than in the
reference. The reads from the duplications were mapped to one location on TAIR10, leading to the identification of HET SNPs. B. Genome
alignment showed that this large region is a segmental duplication in the new genome. C. The HET alleles from duplications that could be
identified (DUP=yes, 88.2% of all HET variants) had higher read coverage, with the ALT allele depth ratio (reads with ALT alleles/total
reads covered) enriched at 50% than the rest (that the 11.8% of HET variants that could not identify evidence of duplications).
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ALT alleles. Illumina read-based FNs were SNPs only called
with a whole-genome alignment at sites covered by Illumina
reads.

To investigate the sources of SNP errors (Supplementary
Fig. 12), the following steps were taken:

1. The filtered (-1 -q -r) “delta” file produced by
Nucmer was used to determine the ALN (Aligned,
marks a block of aligned sequence between two
genomes) and NOTAL (Not Aligned, highlights sections
of a genome that did not align with the other) regions,
and FP SNPs located within NOTAL regions were con-
sidered as “FP NOTAL”, and FN SNPs located within
ALN regions but within 100 bp of NOTAL boundaries
were considered “FN: Aligned boundary”.

2. The raw delta file including one-to-many and many-
to-many alignments was processed using the command
show-snps of Mummer4, and SNPs covered with
multiple alignments ([R]>0) were retained to over-
lap with the FP calls to obtain the “FP: DUP” cate-
gory. To estimate the fraction of FNs caused by this
category, whole-genome alignments (including inter-
chromosomes) were produced with Nucmer, followed
by show-coords -THrcl to obtain aligned corre-
sponding regions.

3. The indels called from the WGA were used to investi-
gate how much of the remaining NGS FP SNPs could be
explained, while the indels called from the PCR-free Il-
lumina reads were used to assess that of FN SNPs. Erro-
neous (both FP and FN) SNPs within 5 bp of indels
identified by the alternate technology were considered
to be caused by local indels. These predominantly oc-
curred in low complexity regions.

6 Errors and biases in DNA methyla-
tion profiling

Many cytosines can be potentially missed and some of their
cytosine contexts (CG/CHG/CHH) are incorrect, because of
genetic differences between the TAIR10 reference and a focal
genome (Supplementary Fig. 17A).

Even though for those that could be well aligned and with
the same cytosine context, a DMR between accessions iden-
tified based on TAIR10 can be a FP (no significant dif-
ferences based on corresponding genomes). To investigate
this effect, BS-seq reads of each accession were mapped
to TAIR10 (REF) and to the accession-specific genomes
(OWN), and the unique and de-duplicated alignments were
used to summarize the context-dependent methylation. Dif-
ferentially methylated regions (DMRs) between two acces-
sions were identified based on mapping to REF and mapping
to OWN, respectively. For each comparison, say Acc1 vs
Acc2, four analyses were performed including Acc1 REF,

Acc2 REF, Acc1 OWN and Acc2 OWN. Mappings from
accession-specific analyses (i.e. Acc1 OWN and Acc2 OWN
here) were aligned to the TAIR10 genome, and only aligned
regions with a 1-to-1 correspondence were considered further.
Only regions covered by at least 3 reads in both REF (ei-
ther Acc1 REF or Acc2 REF) and OWN (either Acc1 OWN
or Acc2 OWN) were retained, and DMRs between two
accessions were identified based on REF (Acc1 REF vs
Acc2 REF, DMR REF) and OWN genomes (Acc1 OWN
and Acc2 OWN, DMR OWN). Cytosines were grouped into
100 bp non-overlapping windows, and a fast Fisher’s ex-
act test (https://github.com/al2na/methylKit/
issues/96) was used to identify DMRs (P ≤ 0.01) by
summing all reads supporting methylation of all cytosines
(allC) and total coverage in a given window. The analyses
were repeated for individual cytosine contexts (CG, CHG,
and CHH) (Supplementary Fig. 17B). Windows with zero
read coverage (Cov = 0) in one accession, but over three
methylated reads (mC ≥ 3) in the other, were manually as-
signed as DMRs (P = 1E−4). The same analysis was ap-
plied to both REF and OWN analysis, and for various con-
texts: all Cs (allC), only CG, CHG, and CHH.

To determine the enrichment overlapping with annotations
of potential False Discovery DMRs (FDR DMR) from REF-
based analysis, continuous FDR DMRs were first grouped to-
gether, and the obtained intervals in REF were used to mea-
sure the overlap with annotations. A permutation overlap
analysis (same interval size and number in each chromosome
were simulated for each genome comparison, with 100 re-
peats; implemented with bedtools shuffle was consid-
ered as background. The median fold change (in log2, 0
overlap was assigned to 0.2 for log calculation) of the ob-
served annotation overlapping the 100 permutations was ob-
tained as an indication of enrichment of each annotation in
every genome comparison, and the enrichment of each anno-
tation in all 10 sample comparisons (vs. the other one) were
measured as a general trend (Supplementary Fig. 17C).
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Supplementary Figure 17 – Reference bias: methylation. A. Differences in cytosine content between TAIR10 and genomes newly
assembled in this study due to sequence variation: “ uniq” indicates unaligned sequences from insertions, deletions, duplications, etc.;
“1v1 sameCtx” represents aligned cytosines with conserved CG/CHG/CHH context; and “1v1 diffCtx” have aligned cytosines in a different
context. Values are median across 11 samples. B. Differentially methylated regions (DMRs) between accessions were identified in 100-bp
windows by mapping BS-seq reads to TAIR10 (x-axis) or to an accessions’s own genome (y-axis). The red squares are FPs identified only
when using the TARIR10 reference genome. Plots show results for comparison of all accessions to accession 6966. The blue line above
shows the fraction of DMRs at a given p-value threshold (along the x-axis) with higher p-values in the TAIR10 reference analysis. The
red line shows the fraction of reference-based DMRs that are also significant at P < 0.01 in the own-genome analysis. C. FP DMRs
(P < 0.01 only in the reference-based analysis) are strongly enriched for TEs based on the annotations from the TAIR10. D. Most of the
identified FP DMRs are unique to a specific accession.
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