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1 Abstract

Background: Polygenic risk scores (PRSs) have emerged as a powerful tool in precision medicine,
enabling personalized risk assessments for complex diseases. However, the use of sensitive genomic
data in PRS calculations raises concerns about privacy and security. Fully homomorphic encryption
(FHE) offers a promising solution by allowing computations on encrypted data, preserving the
privacy of both genomic information and PRS models.

Methods: Here, we present an application of FHE for encrypted PRS calculations using a
particular protocol (CKKS) within the Lattigo library. Our approach involves a three-party
system: clients (clinicians handling sensitive genetic data), modelers developing a PRS (aca-
demics or companies), and evaluators (a local hospital running the models while maintaining
data confidentiality). We demonstrate the feasibility and accuracy of our approach by apply-
ing it to synthetic datasets of various sizes and to a robust 110k–single-nucleotide polymorphism
(SNP) model for schizophrenia. The complete codebase and a sample dataset are available at
https://github.com/gersteinlab/HEPRS.

Results: The difference between traditional plaintext and encrypted PRS calculation results
is negligible: the R2 is 0.999 and the mean squared error is 2.27 × 10−6. Moreover, while the
encrypted calculation is roughly 1,000 times slower than conventional non-encrypted ones (when
considering only the core PRS calculation), the computation remains feasible on a single-CPU
node. For example, processing ∼1,100 individuals with ∼110k SNPs took six minutes and ∼65
GB of memory on a laptop computer. In addition, we investigated the impact of the encryption
parameters on the computational time and accuracy in detail, showing the expected slowdown with
higher security settings.

Conclusion: Our approach showcases the applicability and feasibility of using FHE on real-
world PRS models. With the pressing need for privacy-preserving solutions in the era of precision
medicine, our work serves as a pilot application, offering a simple use case and providing a detailed
comparison and evaluation in terms of accuracy, cost, and scalability.

2 Introduction

Advances in genetic sequencing technologies have significantly reduced both time and cost, making
sequencing a commonly used practice in biomedical research and precision medicine [1]. Genomic
sequencing data have the potential to provide valuable insights into biological processes and clinical
treatment, especially with the multitude of associations established between genomic loci and traits
or diseases through genome-wide association studies (GWAS) [2]. Such studies hold promise for
various clinical applications, from more accurate molecular diagnosis to drug target prioritization
[3] [4]. A meaningful clinical advance stemming from GWAS is the development of polygenic risk
scores (PRSs), which are statistical models that utilize genetic variants to predict an individual’s
risk of having a particular trait or condition, such as disease, height, or intelligence [5]. PRSs have
the potential to bring personalized approaches to health and wellness, from early detection and
prevention through lifestyle changes or medical interventions to more effective and individualized
care. PRSs can also identify subgroups of individuals more likely to respond to certain medications
or treatments, improving patient outcomes [6]. For example, a recent study found that PRSs can
indicate future heart attack risk, prioritizing patients for preventive statin treatments [7]. Similarly,
PRSs for breast cancer can identify subgroups of individuals with high predicted incidence for early
screening interventions [8], further highlighting the utility of PRSs in a clinical setting.

GWAS for most common traits (such as height) and diseases (such as breast cancer) typi-
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cally require genomic data from tens of thousands of individuals at hundreds of thousands of loci
for accurate results [9] [10]. The sheer amount and complexity of these genetic data can strain
local computational resources and often require the involvement of third parties or cloud-based
infrastructures, thereby increasing the risk of genetic privacy violations [11]. For example, the
UK Biobank contains more than 400k samples, whose data are often too large to be fully down-
loaded, requiring the use of the DNANexus platform for downstream analysis [12]. Protection of
patient genomic data is particularly important for PRS calculation, where an individual’s genome
is compared against summary results derived from a large, often external cohort. In the face of
quantum computing advancements, quantum-secure encryption has become important in ensuring
the privacy of data transfers across systems [13]. As genomic data become increasingly important
in a healthcare setting, hospitals must adopt advanced encryption solutions to ensure the privacy
and security of patient data, especially genomic data, while also reducing costs and improving the
efficiency of clinical research. Thus, advanced encryption methods are needed to protect sensitive
genomic data from unauthorized access and misuse while allowing physicians to calculate and access
their patients’ PRSs securely and confidentially. With the increasing use of PRS models trained on
confidential patient information, establishing model security is also critical to protect clinical data
and prevent potential model inversion attacks [14].

Despite the potential of PRSs in clinical applications, ensuring the privacy of genomic data
remains a challenge. Various methods have been proposed to address genomic privacy concerns,
including cryptographic techniques such as homomorphic encryption. Previous applications of fully
homomorphic encryption (FHE) in healthcare have set the stage for advancing patient data privacy.
For example, [15] initially leveraged this technology to securely handle vital sign data from medi-
cal devices. Later, [16] extended the use of FHE to protect genetic data within hospital systems,
enabling researchers to access GWAS summary statistics without compromising patient privacy.
Naveed et al. [17] provided a comprehensive survey of privacy-preserving methods in genomics,
highlighting cryptographic approaches to enhance data security. Similarly, Bonomi et al. [18] dis-
cussed the privacy challenges in genomic data sharing and suggested homomorphic encryption as a
promising solution for secure computations on genomic data, although they did not implement it in
their study. Previous work has also applied homomorphic encryption to genomic data analysis tasks
other than PRS calculation. Kim and Lauter [19] utilized the Brakerski-Gentry-Vaikuntanathan
(BGV) and Yet Another Somewhat Homomorphic Encryption (YASHE) homomorphic encryption
schemes to securely compute minor allele frequencies and chi-squared statistics in GWAS, as well
as to calculate Hamming and approximate edit distances between DNA sequences. Their experi-
ments with datasets containing up to 5,000 DNA sequences demonstrated the feasibility of using
homomorphic encryption in genomic analysis, although PRS calculations were not performed. In
clinical settings, McLaren et al. [20] used homomorphic encryption to securely evaluate specific
genetic loci associated with drug resistance or treatment response in HIV patients. This approach
pioneered privacy-preserving genomic testing but did not extend to PRSs. Blatt et al. [21] built a
privacy-preserving pipeline for large-scale GWAS using an optimized variant of the CKKS homo-
morphic encryption scheme. The scheme allows researchers to obtain GWAS summary statistics
without ever seeing an individual’s genomic data, as the encrypted genomic data reside only in the
cloud. The authors noted that PRSs can be computed once the odds ratios are decrypted, but a
fully end-to-end encrypted pipeline for PRS was left for future work. Implementing FHE in PRS
calculation could significantly enhance data security by maintaining patient genomes in encrypted
formats, potentially reducing vulnerabilities and costs when facilitating the secure transfer and
manipulation of encrypted genomic data.

Homomorphic encryption is a promising solution to the problem of preserving confidentiality
while enabling important computations on sensitive genomic data. This type of encryption allows
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third parties to perform computational functions on encrypted data (ciphertext) without first de-
crypting it. It addresses privacy concerns in digital communication by preserving confidentiality
during data manipulation without exposing it to unintended parties [22]. There are several types of
homomorphic encryption, including partially homomorphic, somewhat homomorphic, leveled fully
homomorphic, and FHE, each offering varying degrees of computation on encrypted data [22]. Many
commonly used homomorphic encryption schemes rely on the Ring Learning With Errors (RLWE)
problem, which deliberately introduces a small, controlled amount of noise into ciphertexts to guar-
antee security as each computational operation is performed (with addition contributing less noise
than multiplication). The noise accumulates, and the RLWE framework ensures that this noise
cannot be reversed or ”subtracted out” without the secret key, thereby preventing backward re-
construction of the original plaintext. However, different types of homomorphic encryption have
limitations regarding the set of circuits, or the range and complexity of computational sequences
that can be performed on encrypted data, and the types of gates, or basic operations (such as
addition or multiplication), that are supported in these computations [23] [24].

Here, we apply FHE specifically to genotype data for secure PRS calculation and phenotype
prediction. Utilizing the CKKS protocol for FHE within the Lattigo library [25], we present a novel
approach that allows for the computation of PRSs directly on encrypted genetic datasets, obtain-
ing results securely and privately. Our approach entails the propagation of encrypted data across
three parties (clients with sensitive genetic data, modelers with existing PRS models, and evalua-
tors to interpret PRS findings), preserving both model and genomic privacy when communicating
PRS results back to patients [26]. While other studies have proposed homomorphic encryption
of PRS models and provided proof-of-concept on limited artificial datasets [27], we take advan-
tage of the scalability of FHE to preserve the privacy of robust PRS models that contain a larger
number of significant single-nucleotide polymorphisms (SNPs). In addition to robust assessment
with synthetic datasets to show how our model scales with increased SNP numbers, we apply our
FHE-based protocol to a 110k–SNP PRS model for schizophrenia [28], which demonstrates accu-
racy in predicting schizophrenia risk in a cohort of over 1,200 individuals, with minimal decrease
in performance compared to non-encrypted PRS. We also thoroughly investigate the trade-offs as-
sociated with encryption parameters that influence computational accuracy, memory, and time for
large PRS models, which are relevant for real-world healthcare applications. Our FHE protocol
can preserve PRS while operating within a reasonable timeframe; in fact, evaluating the PRS of
one individual with the 110k–SNP model required only 4.9 seconds and 3.3 GB of memory with
optimal parameters, while calculations for 1,000 genotypes took less than five minutes and used
130 GB of memory on a conventional laptop (Macbook Pro 2021). By using FHE to obtain mean-
ingful results from realistic PRS models while maintaining the security of the underlying genomic
datasets, our study provides valuable insights into the potential applications of FHE in genomics
and healthcare. An implementation of our FHE protocol is available as an open-source software
package called HEPRS at https://github.com/gersteinlab/HEPRS.

3 Methods

3.1 Method Overview

Our work establishes a novel privacy-preserving protocol utilizing homomorphic encryption to pre-
dict phenotype risk from genomic data by involving three independent parties: the client, the
modeler, and the evaluator (Fig. 1). Our protocol delineates distinct roles—clinicians could be
clients providing genomic data, researchers or private companies could serve as modelers creating
the PRS, and hospitals or centralized systems could act as evaluators processing the encrypted
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genomes. This approach ensures effective use of genomic information while prioritizing patient
confidentiality.

This protocol utilizes the CKKS encryption scheme [29], which is quantum-secure and allows
for a broader range of bootstrapped computations on encrypted data than other homomorphic en-
cryption methods. Using both synthetic and real genomic datasets, we showed that our encryption
scheme efficiently calculates PRS values without sacrificing privacy or accuracy compared with tra-
ditional non-encrypted PRS methods. We further systematically analyzed the various encryption
parameters used in our method to report their effects on accuracy (R-squared and area under the
receiver operating characteristic curve [AUROC]), memory usage, and computational time. Over-
all, our findings underscore the practicality of employing FHE in clinical genomics, particularly for
PRS calculations where data privacy is paramount, without compromising computational integrity.

3.1.1 Evaluation Strategy

Figure 1: Schematic illustration of the encryption setting. The public encryption key (pk), public
relinearization key (r1), public rotation key (r2), and secret key (sk) are generated by the client.
The public keys (pk, r1, r2) are shared with all three parties, while the secret key is only known
to the client. The client performs homomorphic encryption of their sensitive genetic data using
the public key, and the modeler encrypts their model using the same public key. The clients’ ge-
nomic data and the model are sent to the evaluator in an encrypted form. The evaluator cannot
decrypt the data or the model without the secret key. However, the evaluator is able to evaluate
the genetic data and obtain model predictions, which remain encrypted. The encrypted pheno-
type predictions are reported back to the client, who can decrypt the data using the secret key
and read the predictions.

The FHE encryption framework involves the client, the modeler, and the evaluator [26] (Fig. 1).
The roles within our protocol can be adapted to various configurations, aligning with the operational
structures of clinical genomics environments. For instance, the client could be a clinician tasked
with diagnosing or treating a patient, ensuring that the genomic data are utilized effectively while
maintaining patient confidentiality. The modeler could represent a centralized data repository,
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akin to the UKBiobank resource, which manages PRS calculations and the underlying summary
statistics for various disorders. The evaluator could be a hospital’s biobank, which can securely
access and process a patient’s encrypted genome in conjunction with their electronic health record.
In this case, the client has genomic data and wants phenotype predictions, the modeler trains a
model for predictions, and the evaluator evaluates the model using the client’s data and reports
the forecast to the client.

Privacy is protected throughout the framework using homomorphic encryption, where the
client’s data and model are encrypted, and computations (i.e., calculating the PRS) are performed
only in an encrypted form (Fig. 1). Specifically, the client first generates a public key and a secret
key and encrypts the data using the public key. The client then shares the public key with the
modeler and the evaluator, and the modeler encrypts their model using the same public key. The
client and modeler both share their encrypted data with the evaluator. The evaluator performs
the computation using the encrypted model, encrypted data, and public key. Finally, the evaluator
returns the encrypted predictions to the client, who then decrypts the results with their secret key.
We assume no cross-talk between the client and the evaluator. It is also pertinent to acknowledge
that the modeler, in handling GWAS summary statistics, is a custodian of sensitive information,
as minor allele frequencies could allow for identifying individuals in the study [30]. In this context,
the modeler must trust that the evaluator will not share the encrypted model with the client. In
this way, all data are encrypted and only the client can access the plaintext predictions (Fig. 1).

3.2 Technical Overview of Key Aspects of FHE for PRS

We use the CKKS encryption scheme, implemented in the Lattigo library [25], as the FHE method
in our encrypted PRS calculation framework. The CKKS scheme gains NP-hard security by lever-
aging the RLWE problem. Homomorphic evaluation allows the scheme to perform a specific set of
operations on ciphertexts, such as addition and multiplication, and produce a new ciphertext as a
result. The CKKS scheme is classified as lattice-based cryptography and is quantum-secure [29].
Our parameter set meets 2128 classical and quantum gate complexity, satisfying NIST category
one security[31]. Although lattice problems do admit a quadratic speed-up in quantum models,
this does not translate into a large reduction in security levels. As shown in the Homomorphic
Encryption Standard [32] and the CIC/IACR guidelines [33], the difference between classical and
quantum estimates is only a few bits. For example, parameters yielding ∼128 bits of classical
security typically yield 124-127 bits quantum, not a large drop.

Table 1 outlines each important parameter and its meaning in the context of the encrypted
PRS pipeline. We first encode the model β and the genotype vector of each individual Xi for J
individuals as CKKS plaintexts; CKKS packs a real vector Xi into a polynomial of degree N with

coefficients in the ring
ZQ[X]

XN+1
(this is also stored in vector format Xe,i). These plaintexts are then

encrypted to produce the ciphertext matrices used in the subsequent homomorphic computations
(see Methods 3.6 for details).

Figure 2 outlines how we encode the genomic vector into the encrypted domain to prepare for
FHE evaluation. During encoding, we break each individual’s genome vector Xi with dimension
1×M into a matrix of dimensionK×N/2. This becomes matrixXe,i with dimensionK×N/2. After
performing this process for each individual, we generate a three-dimensional tensor of dimension
J ×K ×N/2. We repeat this process for vector β to obtain matrix βe with dimension K x N/2.
We ultimately compute the calculation Xi × β = yi, where yi is the scalar output from the PRS
model. We outline our algorithm in Algorithm 1 with a greater explanation of the individual steps
in Methods Section 3.6.

In Table 2, we highlight the important parameters that customize the CKKS encryption scheme
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Data type Symbol Description Dimension

Input data

M number of SNPs included in PRS model scalar

J number of individuals scalar

Xi genomic data vector (M)

β unencrypted model vector (M)

security chosen security NIST category

Dependent on
security

+ M

QP extended modulus (allows for more depth
of computation with security compro-
mise)

scalar

N ring dimension (determines slot capacity
and chosen to meet target security for
given qmax)

scalar

slots maximum vector size (N/2) scalar

K number of encryption vectors per one
genome M/(N/2)

scalar

Calculated
values

Xe,i encrypted genomic matrix (K, N/2)

βe encrypted PRS model matrix (K, N/2)

Ye,i encrypted result vector (N/2)

yi unencrypted result scalar

Table 1: N is the ring dimension, which determines the slot capacity. The modulus budget QP
allows for more depth of computation and is bounded by security for a given N. Slots represents
the maximum of N/2 values that can be encoded at once, or in other words, the maximum vector
size for the given ring dimension. M is the number of SNPs included in the PRS calculation. J
is the number of individuals tested. K is the number of encrypted vectors that comprise one en-
crypted genome (1 + M−1

slots ). Xi is the genomic vector for individual i, and Xe,i is the encrypted
genomic matrix for individual i. β is the vector containing model weights for the PRS and βe is
the model matrix with encrypted weights. Ye,i is the encrypted results vector and yi is the unen-
crypted result scalar that communicates an individual’s risk for disease.

Algorithm 1 Multiply vectors and add together

Input: Xe,i: fixed-length matrix ckks.Ciphertext βe: fixed-length matrix ckks.Ciphertext K:
integer

1: result = vector(length = N/2) ▷ this initializes a new ciphertext vector
2: for h in 1:K do
3: vh = multiply Xe,i[h] with βe[h] elementwise ▷ len(vh) = len(Xe,i[h])
4: Ye,i = Ye,i + vh ▷ addition step
5: end for
6: Ye,i = polynomial rotational addition of (Ye,i) ▷ InnerSumLog() with log2(N/2) rotations
7: return (Ye,i[0]) ▷ return the first element of the result vector (complex scalar)
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Figure 2: This schematic shows how we encode the genomic vector Xi into a genomic matrix in
the encrypted domain Xe,i. Green hash denotes encrypted. Blue denotes the padding.

for optimal results for a given task. The parameter N , in the context of CKKS (and other homomor-
phic encryption schemes), represents the degree of the polynomial ring over which the encryption
operates. CKKS encodes vectors into polynomials of a degree defined by N (we provide further
explanations in the Methods section). The ring dimension N is chosen to satisfy a greater than
128-bit classical security for a given log2(Q). The value of N is typically chosen to be a power of 2
for efficient implementation, mainly because fast Fourier transform algorithms, which are used for
polynomial multiplication, are most efficient when operating on sequence lengths that have a power
of 2. The values of Q and P determine the lowest possible value of N to maintain security (as larger
N increases computational cost). The genomic vectors are converted into a matrix when encoded
into the encrypted domain defined by a cyclotomic polynomial, whose domain is defined by Q and
N . Q determines the precision of encrypted genetic data, ensuring accurate PRS computation
without loss of data integrity. P is critical during the relinearization step post-multiplication to
safeguard the computation’s accuracy. We describe each parameter in Table 2.

log2N 13

log2(Q) 33 27 27 27 27 27

log2(P ) 34

log2(QP ) 202

Default Scale 227

Table 2: Explanation of encryption parameters. We work in the cyclotomic ring R =
ZQ[X]/(XN + 1). Here N is the ring dimension; Q =

∏
i qi is the ciphertext modulus (each

qi ≡ 1 mod 2N); and P is an auxiliary prime used during key switching and relinearization. In
our setup, log2N = 13 (N = 8192), log2(qi) ∈ {33, 27, 27, 27, 27, 27}, and log2(P ) = 34, so
the largest modulus used at any point is qmax = QP = 2202. Security for RLWE based HE
is assessed against N and the largest modulus q that appears during the computation. With
N = 8192 the HE Standard’s 128bit recommendations allow roughly log2(q) = 218 for classi-
cal and log2(q) = 202 quantum [31]. The default scale specifies the amount to scale the plain-
text during the encoding process, which impacts the precision and maximum depth. We use a
pretested parameter configuration specified by the Lattigo package.
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3.3 Key Generation

The key generation step is implemented using the Encrypt input function in the Lattigo library.
In this function, we employ the CKKS parameters to create a new key generator through the
”NewKeyGenerator” method provided in the CKKS library within Lattigo. The ”GenKeyPair”
method generates a public-private key pair (pk and sk), and the ”GenRelinearizationKey” method
creates the relinearization key that enables efficient computation on encrypted data. This method
requires the secret key and max level parameters, the latter of which we set to 2 (to support addi-
tion and subtraction calculations). Finally, the ”GenRotationKeysForInnerSum” method generates
rotation keys, which allow operations to include rotations of encrypted data (for instance, during
the inner product calculation). The function returns the generated keys and parameters for further
use in the encryption and evaluation steps of the homomorphic encryption scheme.

3.4 Implementation of Homomorphic Encryption

To implement FHE, we first load and encrypt the genotype data on the client side. During this
step, the client generates the secret decryption key (sk), which is then used to derive the public
encryption key (pk), the public relinearization key (r1), and the public rotation key (r2). These
public keys are shared with all parties. The client then encrypts the genotype data (Xi) to transform
each individual’s genotype into a two-dimensional ciphertext matrix (Xe,i). The chosen parameters
determine the dimensions of the vector.

Next, the modeler loads and encrypts the PRS model β using the public encryption key (pk)
provided by the client. A similar scheme, dependent on the parameters, saves each model as a
two-dimensional ciphertext matrix βe.

After this, the evaluator loads and evaluates the encrypted model βe on the encrypted genomes
Xe,i. In this arrangement, we assume that the evaluator and client are both trustworthy and
cannot collude; the encrypted model is never shared with the client. The evaluator uses the public
relinearization key r1 and rotation key r2 provided by the client, along with the encrypted model
βe and genome Xe,i, to perform a polynomial evaluation and obtain the encrypted phenotype (i.e.,
PRS value Ye,i[0]). This step involves an inner product calculation performed using homomorphic
encryption, as detailed below.

Finally, once the client receives the encrypted phenotype result Ye,i[0] (risk score for disease),
the client decrypts the result with the secret key sk, producing the final PRS yi.

We implemented the protocol using Golang. Golang’s suitability for cryptography is under-
scored by its comprehensive standard library, which includes support for common cryptographic
algorithms, along with features such as concurrency support, inherent memory safety, and strong
typing with compile-time checks.

3.5 Implementation of Inner Product Using Homomorphic Encryption

We first encode both the model β and Xi genome for J individuals using the CKKS plaintext
encoding scheme. During encoding, the integer-based plaintext vector Xi (representing genotype

values of 0, 1, or 2) is encoded into the domain
ZQ[X]

XN+1
. This requires us to represent our vectors as

polynomials where all coefficients are ∈ ZQ and all operations are performed as mod XN + 1.
In the following section, we focus on the calculation of a single individual’s PRS. Here, the

encrypted genomic data matrix Xe,i encapsulates the genotypes, while the model matrix βe holds
the beta values. Both matrices have dimensions K×N/2, aligning with the encryption parameters
outlined in Figure 2.
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Algorithm 1 is instrumental in the PRS calculation by implementing the dot product of en-
crypted vectors. Within the for-loop, each row vector from the genomic data matrix Xe,i is
element-wise multiplied with the corresponding row from the model matrix βe using the MulRe-
linNew() function from Lattigo[25]. This multiplication yields new vectors, vh = Xe,i[h]*βe[h],
representing the weighted contribution of each genotype to the PRS (here * represents an element-
wise multiplication). The resulting vector aggregates these products, accumulating the combined
effect of genotypes and beta values on the PRS. The Lattigo InnerSumLog() function subsequently
sums the polynomial terms within the result vector, reflecting the final summation of individual
genetic risk factors. The InnerSumLog() operation is called once at the end, outside of the loop
with log2(N/2) rotations. This process effectively translates the encrypted genomic information
and model predictions into a single PRS value for each individual. This function fails to perform
some specialized processes currently executed by more advanced calculation methods such as the
plink2 clump function [34]; however, this process calculates a sufficient PRS that differs from the
Plink 2 model by only 0.000129%.

3.6 Synthetic Data Generation and Ridge Regression

Hapgen2 [35] is a simulation method that resamples known haplotypes quickly and efficiently to
produce samples with linkage disequilibrium (LD) patterns that mimic those in real data. Hap-
gen2 is based on the Li and Stephens model [36] of LD. The method takes in a reference panel of
haplotypes as input and generates genotype encodings based on the haplotypes. We used Hapgen2
to simulate genotype encodings for 40,000 individuals across a varying number of SNP sizes, (30k,
50k, 100k, and 130k), based on the 1000 Genomes project reference panel. We later split these indi-
viduals into training and testing groups for ridge regression of sizes 30,000 and 2,000, respectively,
for each SNP size.

We considered a high-dimensional regression framework for polygenic modeling and prediction

Y = Xβ + ϵ (1)

where Y is an N × 1 vector of phenotype values with Yi ∈ R and N is the number of individuals in
the dataset. The parameter XN×M is the genotype encoding matrix with Xim ∈ {0, 1, 2} and M is
the number of SNPs in the genotype encoding. The corresponding effect size of each SNP m is βm.
The parameter ϵ is a vector of residual effects for each individual. We are interested in estimating
β. We assign a Gaussian prior on each βm.

βj ∼ N(0,
√
h2/(Mp)) (2)

,
where p is the percentage of SNPs with non-null effect size, and h2 is the total SNP-heritability.

Hence, we assume that each SNP with a non-zero effect size explains an equal portion of the total
SNP-heritability. To model the impact of SNPs with zero effect size, we select M(1 − p) random
SNP effect size locations in the β vector and set the value at those indexes equal to zero. Each
of the three artificial phenotypes were generated under the assumption that approximately 90% of
the SNPs had non-zero effect size, or p = 0.9, a level of sparsity generally consistent with realistic
human data [37]. The three levels of SNP heritability used were h2 = 0.3, 0.6, 0.9.

We used multiple SNP sizes, (30k, 50k, 100k, and 130k), for our simulation data to show that
the FHE scheme would apply well to real-world settings where the SNP size varies depending on
which traits are being studied. Both values of p and h2 were fixed across the training and testing
populations to maintain consistency across the two data populations. The population count of the
training dataset was N = 30, 000, and for the testing data the count was N = 2, 000.
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Recall that the estimator of Ridge Regression β̂ is equal to the mean of the posterior distribution
under a Gaussian prior. Hence, the choice of a Gaussian prior on β in this PRS setting naturally
leads us to use ridge regression. Moreover, an extra column of 1s was added for the intercept
term. We note that ridge regression is one of many models researchers use for calculating PRS.
More advanced models, such as Bayesian hierarchical models using Gibbs sampling or variational
inference, may be more accurate because they have relaxed assumptions on the parameters of the
training data. Although we sacrifice computational accuracy in using ridge regression, we gain
faster time complexity. In real-world settings, this trade-off is not as important since the model
is built once off of training data and not repeatedly calculated. It is important to note that the
sacrifice on accuracy is made in the model selection and not in the FHE scheme. Hence, the FHE
scheme’s performance should be judged purely on the accuracy of the decrypted prediction values
compared to the ciphertext prediction values.

3.7 Schizophrenia PRS Generation

We calculated schizophrenia PRSs for 1,146 individuals from the PsychENCODE Consortium study,
including 493 individuals diagnosed with schizophrenia and 653 controls [38]. Imputed genotypes
and metadata for these individuals were downloaded from the PsychENCODE Consortium data
portal [38], with more than 4.3M imputed SNPs available for each individual. Schizophrenia GWAS
summary statistics were selected from a recent Psychiatric Genomics Consortium (PGC) study
of more than 320,000 individuals and were downloaded from the PGC portal [28]. Using these
inputs, we implemented a standardized data processing pipeline for calculating PRSs based on
best practice guidelines [39]. We first performed quality control filtering on the GWAS summary
statistics by removing SNPs with INFO scores less than 0.8, as well as ambiguous and duplicate
SNPs. Next, after lifting over coordinates and fixing alleles of the PsychENCODE genotypes to
the hg38 reference genome, we performed strand-flipping using the snpflip software package [40].
We removed SNPs with minor allele frequency <0.05 or Hardy-Weinberg equilibrium p < 1× 10−6

(resulting in more than 2.6M SNPs per sample) and removed individuals with >3 SD genotype
heterozygosity rate (F coefficient, calculated using SNPs in 200 kb windows with LD r2 > 0.25).
An additional strand-flipping step was performed using snpflip to match alleles between the sample
genotypes and summary statistic SNPs. Finally, six genotype principal components (PCs) were
calculated for each sample using the –pca command in PLINK2 [41].

We used the LDpred2 function within the bigsnpr software package to calculate PRSs for each
individual [42]. After filtering for SNPs present in the HapMap3 dataset, we calculated LD scores for
110,258 matching SNPs between the PsychENCODE genotypes and summary statistics using the
snp cor function and centimorgan map units from the 1000 Genomes project. We then regressed the
LD scores against the log-scaled summary beta values using the snp ldsc function and calculated
a baseline heritability estimate based on the output (h2 est, here equal to 0.1270). Using these
modified summary statistics, we calculated PRSs for each individual using the infinitesimal and
grid models of LDpred2. For the grid model, we assessed combinations of (a) 17 input SNP p-value
filters ranging from 1.0×10-4 to 1.0, (b) three potential values of h2 (0.7, 1.0, and 1.4×h2 est),
and (c) sparse or non-sparse grid models, for a total of 102 PRS outputs. (We note that the
LDpred2-auto model did not converge for our datasets and thus was not used in our analysis.)
To assess the performance of each PRS model, we generated logistic regression models for PRSs
towards the binary schizophrenia diagnosis of each individual, with sex, age, and six genotype PCs
included as covariates. We then calculated Nagelkerke pseudo-R2 values for each regression model,
and compared them with those for a null logistic regression model consisting solely of the sex, age,
and genotype PC covariates.
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Overall, we found that both the infinitesimal model (pseudo-R2=0.2008) and best-performing
grid model (pseudo-R2=0.2229; at p=0.32, h2=0.7×h2 est, and sparse grid model) performed sub-
stantially better than the null model (pseudo-R2=0.0809). We selected PRS outputs derived from
the best-performing grid model for comparison with encrypted PRS calculations. The correlations
and AUROC calculations performed in this analysis were completed in Python using the sklearn
library.

In contrast to the LDpred2 model, our PRS calculation approach used for the homomorphic
encryption protocol performs SNP filtering as a preprocessing measure. In this way, we ensure that
the input to our model consists of already filtered SNPs. Additionally, our model does not explicitly
manage LD in the same detailed manner. Instead, it operates similarly to a straightforward PRS
model, which assumes that the selected SNPs are representative of all SNPs that contribute to a
phenotype and have been pre-processed to mitigate LD concerns.

4 Results

4.1 Implementation Results

We evaluated the performance of our FHE-based PRS calculation method using both synthetic
datasets and a real dataset for schizophrenia risk. We first applied our method to a synthetic
dataset created using Hapgen2 [35], which contained 2,000 individuals and a range of SNPs for
three artificial phenotypes (referred to as phenotypes 0, 1, and 2). We then applied our method
to a dataset of over 1,100 individuals from the PsychENCODE Consortium [38], evaluated against
a 110K–SNP PRS model for schizophrenia [28]. We compared the performance of our encrypted
PRS with the non-encrypted PRS in terms of score correlation (Pearson r) and mean squared error
(MSE) in phenotypic variance explained by the scores.

4.1.1 Overview of PRS Derivations

We used two complementary approaches to assess the performance of our homomorphic encryption-
based PRS calculations. We first generated synthetic datasets using Hapgen2 [35], a simulation
method that produces genotypes with realistic LD patterns, to further evaluate our approach under
various conditions. We simulated datasets with varying numbers of SNPs (10k to 130k) and sample
sizes (200 to 2,000 individuals) and calculated PRSs for three artificial phenotypes with different
levels of heritability using ridge regression. By assessing our FHE method on both real and synthetic
data, we demonstrated its versatility and potential for secure and private PRS calculations in
diverse scenarios. We also applied our method to a real-world dataset for schizophrenia, utilizing
PRSs derived from a recent GWAS of the PGC of more than 320,000 individuals [28]. Specifically,
we calculated PRS for 1,146 individuals (493 cases and 653 controls) from the PsychENCODE
Consortium [38], using a standardized data processing pipeline based on best practice guidelines
[39], followed by LDpred2 for PRS calculation [42]. The resulting PRS model contained 110,258
SNPs and achieved a pseudo-R² value of 0.2229 in predicting schizophrenia diagnosis.

For both approaches, we found that our FHE procedure introduced only a trivial amount of
error compared to the inherent uncertainty of the PRS value as determined from non-encrypted
approaches, despite the framework’s computational and memory limitations with increasing data
size. Specifically, the variability of the phenotype explained by PRS (R2) from our homomorphic
encryption framework closely matched that of the underlying PRS models for both synthetic and
real data, indicating that the explained variance in the phenotype within the population remained
consistent after encryption. For example, we observed a small MSE (<1.5× 10−8) when applying
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Phenotype Ring
Dimension

R2 of plaintext
model

R2 of encrypted
model

MSE between
plaintext and
encrypted model

0 213 0.18892353 0.18892715 1.397e-08
1 213 0.46645884 0.4664542 8.085e-09
2 213 0.8226163 0.8226161 1.168e-08

Table 3: Performance of encrypted PRS models with ring dimension 213 across three phenotypes
with varying heritability (h2 = 0.3, 0.6, 0.9). The R2 of the encrypted model and MSE relative
to the corresponding plaintext model are shown.

FHE with varying R2 values to the synthetic datasets (Table 3). After ridge regression analysis on
the encrypted data, the R2 values obtained for the three artificial phenotypes were 0.189, 0.466,
and 0.822, respectively (compared with the preset values of 0.3, 0.6, and 0.9). Similarly, using the
110K SNP dataset for schizophrenia PRS, our encrypted PRS values had an R2 value of 0.2232
(with PRS, sex, age, and genotype PCs as covariates), compared with 0.2226 for the non encrypted
model (Supplementary Table 5). This corresponded to an MSE of 2.27 × 10−6 between the non
encrypted PRS and the encrypted PRS (for ring dimension 213). This minimal MSE demonstrated
that the encrypted PRS data yielded comparable R2 values to those obtained without encryption,
suggesting that our FHE method introduces only a small error that would not lead to changes in the
derived PRS. Figure 3A demonstrates that the LDpred2 and encrypted PRS methods both achieved
an AUROC of 0.61. Additionally, Figure 3B shows a Pearson correlation of r > 0.999 between the
encrypted and non-encrypted schizophrenia PRS. In terms of computational cost, Figure 3C shows
that the majority of time is spent on input encryption and encrypted computation, while model
encryption and result decryption require comparatively little time.

4.2 Effects of Input Data Size on Runtime and Memory for Encrypted PRS

While several parameters may affect runtime and memory usage, our method was able to quickly
and accurately calculate PRSs using encrypted genotypes and PRS models, even when implemented
on a personal laptop. For instance, using a MacBook Pro (M1, 2020), our method required about
10 seconds and 3 GB of memory to calculate PRSs for one individual sample using the 110K
schizophrenia PRS model (ring dimension 213). Calculating PRSs for a larger cohort of 1,146
samples on a single CPU (Intel 6234) required 6 minutes and about 65 GB of memory when using
the 110K SNP model with the ring dimension 213 (Supplementary Table 5). The run time for
2,000 samples in the 10K SNP synthetic dataset took about 2 minute for any of the three synthetic
phenotypes..

Supplementary Table 5 demonstrates that the protocol utilizing homomorphic encryption for
dot product calculation was roughly three orders of magnitude slower than plaintext calculations
(on a single CPU node Intel 6234). When we implemented the dot product calculation in Golang,
it took 0.303 seconds; however, a more common way to calculate the PRS is with LDpred2 in
R, which took only 0.073 seconds. When comparing the dot product calculation method within
Golang, the homomorphic encryption calculation (248.3 seconds) took around 800 times longer.
Compared to standard methods of calculating the PRS, the encrypted calculation took 3,400 times
longer. This contrast highlights the computational burden introduced by encryption protocols and
the possible time added by the Golang language.

Using a synthetic dataset allowed us to vary both the input sample size and the number of
SNPs of the underlying PRS model to determine their effects on the performance of our method.
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Figure 3: (A) Receiver operating characteristic curves for prediction of schizophrenia phenotypes
based on non-encrypted schizophrenia PRSs (calculated with LDpred2) and PRSs calculated
from HEPRS using the ring dimension parameter 213. PRS accuracy was assessed by considering
individuals with > 0.5 percentile scores for each calculation to have schizophrenia, and comparing
with the actual phenotypes. AUROC values were equal across all methods. (B) Pearson corre-
lations between encrypted schizophrenia PRSs with the ring dimension parameter 213 and non-
encrypted PRSs calculated with LDpred2 each show a high correlation (r > 0.999). (C) Break-
down of computation time into different steps of the homomorphic encryption process using the
ring dimension parameter 213. The time was calculated by assessing PRSs of 1,146 individuals
using the 110K SNP schizophrenia model on a 6234 CPU.

We first assessed the influence of the number of SNPs on the time taken to calculate PRSs using
FHE for 50 samples (Fig. 4). We observed a direct correlation between the increase in SNP
numbers, from 10,000 to 130,000, and the computational time required, from 5 seconds to 36
seconds, demonstrating an approximately linear relationship under the conditions tested (Fig. 4
A). Figure 4B expands on this by showing that memory requirements also rise in a similar linear
fashion (from 0.8 GB to 9 GB) with the increase in SNP count, which is a critical consideration for
the practical application of FHE in clinical settings.

Next, we varied the number of individuals for which we performed the encrypted PRS calcula-
tions, using a constant genome size of 130K SNPs and predicting for artificial phenotype 0. Similar
to the number of input SNPs, we found that the number of individuals included in a batch had a
linear relationship with the time to completion (Fig. 4C), ranging from about 1.5 minutes for 200
individuals to 12.5 minutes for 2,000 individuals. The required memory also positively correlated
with the batch size, from 17 GB for 200 individuals to 125 GB for 2,000 individuals (Fig. 4D).
These data point to a predictable increase in analysis time with larger cohorts, reinforcing the scal-
ability of our FHE protocol for PRS calculation in real-world scenarios with substantial genomic
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Figure 4: Homomorphic encryption computation time and memory usage scale approximately
linearly with the number of SNPs and individuals. (A) Computation time and (B) memory us-
age as a function of the number of SNPs, generated using synthetic datasets containing a range
of SNP sizes created by Hapgen2. The runs were performed using a ring dimension 213, a sam-
ple size of 50 individuals, and phenotype 0 (as specified in Table 1 and Table 4). (C) Computa-
tion time and (D) memory usage as a function of the number of individuals, using the synthetic
dataset with 130,000 SNPs and varying only the number of individuals for each run. A ring di-
mension of 213 and phenotype 0 were used for these experiments. Error bars indicate the stan-
dard deviation from 10 independent trials tested on a random choice from a 6234 CPU.

datasets.

5 Discussion

In this work, we implemented an FHE-based method for accurate and efficient PRS calculations
without compromising patient privacy. We show that the marginal error introduced by the en-
cryption scheme does not affect the overall error of the PRS model. We also demonstrate that
different parameters affect the accuracy of results and the trade-off between accuracy and time
within the FHE framework. Although FHE substantially increases the computational burden for
PRS calculation compared to plaintext models, roughly three orders of magnitude slower, the cost
remains within a reasonable range for practical applications. These findings suggest that our FHE-
based method is viable for securely computing PRSs while maintaining a balance between privacy,
accuracy, and computational efficiency.
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The bulk of our PRS calculation is performed within our function HE inner product(). While
this operation is a simple calculation, the nature of large genomic data requires some reworking of
encrypted data storage and the computation sequence to arrive at an accurate phenotype prediction
without excessive time or memory consumption. In the Methods section, we provide an intuitive
explanation of how we utilize RLWE to compute the dot product.

As explained in the Methods, the modeler must share the encrypted model with the evaluator;
if the evaluator were to share this encrypted model with the client, the client could decrypt the
model without the modeler’s consent, thus violating privacy requirements. The assumption that
the evaluator and client never collude is reasonable if we consider the evaluator to be a healthcare
entity (e.g., a hospital or healthcare insurance institution). These organizations might be associated
with a research group that owns the model. We assume the evaluator would want to maintain a
good relationship with the modelers and not erode trust. However, the trust between the modeler
and evaluator poses a vulnerability in the framework.

Approximately 4–7% of an average healthcare system’s IT budget is spent on cybersecurity.
This means that from 2020 to 2025, healthcare organizations will allocate $125B to cybersecurity
[43]. While hospitals use a large portion of this budget to defend the Internet of Things, some of
this capital is spent protecting healthcare data, which increasingly includes patient genomic data.
Our protocol could significantly reduce vulnerabilities if patient genomes were stored in encrypted
formats and only the decryption keys were maintained under high security. Such an encryption
framework would reduce vulnerabilities because only encrypted genomic data would be transferred,
rather than raw genomic data. However, privacy could still be breached if the evaluator and client
colluded to reveal the underlying PRS weights.

As our pipeline assumes a single decryption authority (the client), we use one public/secret key
pair shared by all parties for encryption and evaluation. This is optimal when only the genotype
owner needs access to the plaintext result and the PRS model owner (researcher) trusts the evalua-
tor. Specifically, our protocol involves three logical roles (client, modeler, evaluator), all operating
under a single CKKS public key generated by the client (Fig. 1). This “single-key, many-party”
layout is a natural match for the encrypted inference use case we target: the client (e.g., a clinician)
requests phenotype predictions on a patient’s genotype without revealing raw variants to the cloud
evaluator; the evaluator and model provider do not receive access to genotypic information; and
the evaluator cannot decrypt the model or genotype. Thus, this method relies on the assumption
that the evaluator and client will not collude to reveal the model parameters and assumes trust
between the evaluator and modeler. However, many genomic workflows involve multiple mutually
distrustful custodians, such as a consortium of hospitals storing data for a subset of patients, or
two companies wishing to jointly train a PRS without exposing proprietary cohorts. In such cases,
a multiparty (collective-key) CKKS scheme would remove the need to trust any single organization
with the full secret key. In this context, the secret key is additionally shared across the parties; no
single party can decrypt, but a quorum can run a threshold-decryption (or key-switch) protocol.
This mitigates the “evaluator and modeler trust” assumption at the cost of increased interaction
and computation. True multiparty CKKS (collective-key or MPC-FHE) requires interactive key
generation and online key-switch refreshes, introducing >3x communication overhead. This would
add runtime and complexity, which is unnecessary in our current context where only the client
requires decryption capability. However, a multiparty-FHE PRS pipeline is a possible next step
and could be valuable in different contexts where a federated learning process is desired, such as
when there are multiple modelers or when the model provider and evaluator do not trust each
other.

In this work, we demonstrated the feasibility and practicality of generating PRS model pre-
dictions without revealing a genome. We showed how memory requirements increase with higher
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accuracy specifications, and how runtime scales roughly linearly with the number of SNPs included
in the model. Lastly, we showed that the error introduced by homomorphic encryption is negligible
compared to the inherent error in the model itself.

6 Conclusion

Considering recent advances in FHE, we view PRSs as an exciting new avenue for applying this
technology. The strategic use of genomic information has the potential to significantly contribute
to personalized healthcare to enhance health outcomes and elevate care standards. The necessity
for patients to undergo genomic sequencing is paramount for realizing this technology’s benefits.
Concurrently, the escalation of genetic data mandates stringent security and privacy measures.
The challenges of applying analytical models to decipher relevant information from the large-scale
data required for genome encoding are non-trivial. Our research offers a solution that addresses
these multifaceted issues. While our focus is on PRSs, the principles of FHE can potentially be
applied to a spectrum of genomic computations. The generalizability of FHE to other areas in
clinical genomics, such as variant annotation, genotype imputation, and more complex predictive
modeling, warrants further investigation. This work takes an initial step toward exploring such
applications.
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[9] Löıc Yengo and et al. “A saturated map of common genetic variants associated with human
height”. In: Nature 610 (7933 2022), pp. 704–712. doi: 10.1038/s41586-022-05275-y.

[10] Haoyu Zhang and et al. “Genome-wide association study identifies 32 novel breast cancer
susceptibility loci from overall and subtype-specific analyses”. In: Nature Genetics 52 (6
2020), pp. 572–581. doi: 10.1038/s41588-020-0609-2.

[11] Xinghua Shi and Xintao Wu. “An overview of human genetic privacy”. In: Annals of the New
York Academy of Sciences 1387.1 (Jan. 2017), pp. 61–72. issn: 0077-8923. doi: 10.1111/
nyas.13211.

[12] C. Bycroft et al. “The UK Biobank resource with deep phenotyping and genomic data”. In:
Nature 562 (2018), pp. 203–209. doi: 10.1038/s41586-018-0579-z.

[13] Karl Freund. “IBM Announces Two Innovations To Advance Quantum Computing”. In:
Forbes (2022). url: https://www.forbes.com/sites/karlfreund/2022/11/10/ibm-
announces-two-innovations-to-advance-quantum-computing/?sh=5d2fa5421b60.

[14] Yue Wang, Cheng Si, and Xintao Wu. “Regression model fitting under differential privacy and
model inversion attack”. In: Proceedings of the 24th International Conference on Artificial
Intelligence. IJCAI’15. Buenos Aires, Argentina: AAAI Press, 2015, pp. 1003–1009. isbn:
9781577357384.

18

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 8, 2025. ; https://doi.org/10.1101/2024.05.26.595961doi: bioRxiv preprint 

https://doi.org/10.1101/cshperspect.a036798
https://doi.org/10.1101%2Fcshperspect.a036798
https://doi.org/10.1101%2Fcshperspect.a036798
https://doi.org/10.1038/s43586-021-00056-9
https://doi.org/10.1038%2Fs43586-021-00056-9
https://doi.org/10.1038%2Fs43586-021-00056-9
https://doi.org/10.1038/nrg3523
2013 Jul 9
https://doi.org/10.1126/scitranslmed.aag1166
https://doi.org/10.1126/scitranslmed.aag1166
2017 Mar 29
https://doi.org/10.1186/s13073-020-00742-5
2020 May 18
https://doi.org/10.1001/jama.2019.3893
https://doi.org/10.1001/jamacardio.2022.4466
https://doi.org/10.1016/j.ajhg.2018.11.002
2018 Dec 13
https://doi.org/10.1038/s41586-022-05275-y
https://doi.org/10.1038/s41588-020-0609-2
https://doi.org/10.1111/nyas.13211
https://doi.org/10.1111/nyas.13211
https://doi.org/10.1038/s41586-018-0579-z
https://www.forbes.com/sites/karlfreund/2022/11/10/ibm-announces-two-innovations-to-advance-quantum-computing/?sh=5d2fa5421b60
https://www.forbes.com/sites/karlfreund/2022/11/10/ibm-announces-two-innovations-to-advance-quantum-computing/?sh=5d2fa5421b60
https://doi.org/10.1101/2024.05.26.595961
http://creativecommons.org/licenses/by-nc-nd/4.0/


[15] Mostefa Kara et al. “A fully homomorphic encryption based on magic number fragmentation
and El-Gamal encryption: Smart healthcare use case”. In: Expert Systems 39.5 (2022), e12767.
doi: https://doi.org/10.1111/exsy.12767. eprint: https://onlinelibrary.wiley.
com/doi/pdf/10.1111/exsy.12767. url: https://onlinelibrary.wiley.com/doi/abs/
10.1111/exsy.12767.

[16] Jean Louis Raisaro et al. “Protecting Privacy and Security of Genomic Data in i2b2 with
Homomorphic Encryption and Differential Privacy”. In: IEEE/ACM Transactions on Com-
putational Biology and Bioinformatics 15.5 (Sept. 2018), pp. 1413–1426. doi: 10.1109/TCBB.
2018.2854782.

[17] Muhammad Naveed et al. “Privacy in the Genomic Era”. In: ACM Computing Surveys 48.1
(Aug. 2015), Article 6 (44 pages). doi: 10.1145/2767007.

[18] Luca Bonomi, Yuan Huang, and Lucila Ohno-Machado. “Privacy challenges and research
opportunities for genomic data sharing”. In: Nature Genetics 52.7 (June 2020), pp. 646–654.
doi: 10.1038/s41588-020-0651-0.

[19] Miran Kim and Kristin Lauter. “Private Genome Analysis through Homomorphic Encryp-
tion”. In: Proceedings of the 14th International Conference on Financial Cryptography and
Data Security. Springer, 2015, pp. 239–256. doi: 10.1007/978-3-662-48185-7_14.

[20] Paul J. McLaren et al. “Privacy-Preserving Genomic Analysis for Personalized HIV Treat-
ment”. In: Proceedings of the 7th International Workshop on Data Privacy in Healthcare.
ACM, 2016, pp. 1–10. doi: 10.1145/2983655.2983659.

[21] Marcelo Blatt et al. “Secure large-scale genome-wide association studies using homomor-
phic encryption”. In: Proceedings of the National Academy of Sciences 117.21 (May 2020),
pp. 11608–11613. doi: 10.1073/pnas.1918257117.

[22] Aaruni Kaushik. Investigating Resilience of Levelled Fully Homomorphic Encryption System
Against Data Scientific Attacks. Master’s thesis. Available at https://akaushik.edufor.
me/resources/MasterThesis.pdf. Erwin-Schrödinger-Straße 52, 67663 Kaiserslautern, Ger-
many, Feb. 2023.

[23] Sarezh Paevl Nyland. Implemention and Evaluation of a Private Set Intersection Protocol
Built With Fully Homomorphic Encryption. Master’s thesis. Available at https://uis.

brage.unit.no/uis-xmlui/handle/11250/3089847. Kjell Arholms gate 41, 4021 Stavanger,
Norway, Sept. 2023.

[24] Gamze Gursoy et al. “Privacy-preserving Genotype Imputation with Fully Homomorphic
Encryption”. In: BMC Genomics 22.1 (2021), p. 101. doi: 10.1186/s12864-021-07512-3.

[25] Lattigo v5. Online: https://github.com/tuneinsight/lattigo. EPFL-LDS, Tune Insight
SA. Nov. 2023.

[26] Human Genome Privacy Challenge 2022. Accessed: September 2022. 2022. url: http://
www.humangenomeprivacy.org/2022/.
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6.1 Ring Dimension Affects Accuracy and Runtime for PRS Calculation

We showed above that increasing the ring dimension N parameter of the CKKS encryption scheme
will decrease the errors introduced in the encrypted calculations. However, increasing the ring
dimension will also increase the model runtime.

Figure 5: The effect of ring dimension on computation time and memory usage in homomorphic
encryption for a schizophrenia PRS model generated from real data. The model contains 1,146
individuals and 110,258 SNPs. The range of tested ring dimension is from 213 to 216. (A) Total
computation time as a function of ring dimension. (B) Breakdown of computation time into dif-
ferent steps of the homomorphic encryption process. (C) Memory usage as a function of ring di-
mension. Error bars indicate the standard deviation calculated from 10 independent trials tested
on a 6234, 6240, or 6346 CPU.

From the results obtained with the 110K–SNP schizophrenia PRS model, we observed that
the time required for the encrypted model to generate PRS predictions increased with the ring
dimension (Fig. 5A). Evaluating PRSs for 1,146 individuals using the 110K–SNP model in plaintext
(infinitesimal mode of LDpred2 for only the evaluation part) typically takes 0.07 seconds on a single
CPU (Intel 6234) (Table 5), while for FHE, even using the smallest ring dimension 213 takes about
6 minutes (Fig. 5A), and the time further increases to 20 minutes for the ring dimension 216. When
breaking down the time cost into different stages of the encryption calculation, we find that most

22

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 8, 2025. ; https://doi.org/10.1101/2024.05.26.595961doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.26.595961
http://creativecommons.org/licenses/by-nc-nd/4.0/


of the time is spent after the encryption step and during the model operation phase, corresponding
to the actual computation of the encrypted PRS (Fig. 5B).

Fig. 5C presents the memory allocation for running the program across different ring dimen-
sions. Contrary to what we expected, the memory usage remains largely invariant through repeated
experiments, ranging from 60 GB to 80 GB, which only introduces a moderate increase in memory
usage compared to the plaintext model, which is 50 GB. Thus, our FHE method for PRS calculation
allows end users to account for the trade-off between protocol time and error mitigation according
to their needs by customizing the ring dimension parameter.

Figure 6: (A) Receiver operating characteristic curves for prediction of schizophrenia phenotypes
based on non-encrypted schizophrenia PRSs (calculated with LDpred2) and PRSs calculated
from HEPRS using four different ring dimension parameters. PRS accuracy was assessed by con-
sidering individuals with > 0.5 percentile scores for each calculation to have schizophrenia, and
comparing with the actual phenotypes. AUROC) values were equal across all methods. (B) Pear-
son correlations between encrypted schizophrenia PRSs with four different dimension parameters
and non-encrypted PRSs calculated with LDpred2 each show a high correlation (r > 0.999).

For both synthetic and real datasets, we observe a decrease in MSE as we increase the ring
dimension N of the encryption scheme from 213 to 216, which suggests a reduction in computational
error with higher ring dimension. For example, the MSE reduces to 1.43×10−6 for the real dataset
with a ring dimension of 216 (Table 5). This suggests that a higher ring dimension can mitigate
computational errors introduced by the encryption. Furthermore, we show in Figure 6A that
all calculation methods maintain a nearly constant AUROC. In Figure 6B, we show a Pearson
correlation with r >0.999 between the encrypted and non-encrypted schizophrenia PRS regardless
of the ring dimension.

23

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 8, 2025. ; https://doi.org/10.1101/2024.05.26.595961doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.26.595961
http://creativecommons.org/licenses/by-nc-nd/4.0/


Phenotype Ring
Dimention

R2 of plaintext
model

R2 of encrypted
model

MSE between plaintext
and encrypted model

0 212 0.1889256 1.59e-09
213 0.18892715 1.397E-08
214 0.18892446 7.778E-10
215 0.18892441 0
216 0.18892353 0.18892443 0

1 212 0.4664603 7.088e-09
213 0.4664542 8.085E-09
214 0.46646012 1.920E-10
215 0.46645956 0
216 0.46645884 0.46645956 0

2 212 0.8226161 1.878e-09
213 0.82261809 1.168E-08
214 0.82261557 1.426E-09
215 0.82261601 0
216 0.8226163 0.822616 0

Table 4: Accuracy comparison of PRS generated from plaintext ridge regression models and en-
crypted models. Data were generated using Hapgen2, including three phenotypes correspond-
ing to different levels of SNP heritability (h2=0.3, 0.6, 0.9), which we refer to as phenotype 0, 1
and 2. The R2 between simulated phenotypes and PRS predicted by the plaintext and encrypted
models are shown. MSE values are shown to compare the predictions with and without encryp-
tion. Statistics shown derive from a model with 10,000 SNPs and 2,000 individuals.
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