

1 The importance of small island populations for the long-term 2 survival of endangered large-bodied insular mammals.

3 Sabhrina Gita Aninta^{1*#}, Rosie Drinkwater^{1,2*#}, Alberto Carmagnini², Nicolas J. Deere³, Dwi
4 Sendi Priyono⁴, Noviar Andayani⁵, Nurul L. Winarni⁶, Jatna Supriatna⁵, Matteo Fumagalli¹,
5 Greger Larson⁷, Peter H.A. Galbusera⁸, Alastair Macdonald⁹, Deborah Greer¹, Kusdiantoro
6 Mohamad¹⁰, Wahono Esthi Prasetyaningtyas¹⁰, Abdul Haris Mustari¹¹, John Lewis Williams¹²,
7 Ross Barnett¹³, Darren Shaw⁹, Gono Semiadi¹⁴, James Burton¹⁵, David J. I. Seaman¹⁶, Maria
8 Voigt¹⁶, Matthew Struebig¹⁶, Selina Brace¹⁷, Stephen Rossiter¹, Laurent Frantz^{1,2*}.

9 ¹School of Biological and Behavioural Sciences, Queen Mary University of London, London,
10 UK

11 ²Palaeogenomics group, Faculty of Veterinary Medicine, Ludwig Maximilian University Munich

12 ³Durrell Institute of Conservation and Ecology (DICE), University of Kent, Canterbury, CT2
13 7NR, UK

14 ⁴Department of Tropical Biology, Faculty of Biology, Universitas Gadjah Mada, Sleman,
15 55281, Special Region of Yogyakarta, Indonesia.

16 ⁵Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Indonesia,
17 Depok, 16424, Indonesia

18 ⁶Research Center for Climate Change, University of Indonesia, Depok, Indonesia

19 ⁷The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for
20 Archaeology and History of Art, University of Oxford, Oxford, UK

21 ⁸Antwerp Zoo Centre for Research and Conservation, Royal Zoological Society of Antwerp,
22 Antwerp, Belgium

23 ⁹Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian EH25
24 9RG

25 ¹⁰School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia

26 ¹¹Department of Forest Resources Conservation, Faculty of Forestry and Environment, IPB
27 University, Bogor, Indonesia

28 ¹²Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, via
29 Emilia Parmense, 84, 29122 Piacenza, Italy

30 ¹³Durham Evolution and Ancient DNA, Department of Archaeology, University of Durham,
31 Durham, United Kingdom

32 ¹⁴Research Centre for Biosystematics and Evolution, National Research and Innovation
33 Agency (BRIN), Cibinong 16911, Indonesia

34 ¹⁵IUCN SSC Asian Wild Cattle Specialist Group

35 ¹⁶Durrell Institute of Conservation and Ecology (DICE), University of Kent, Canterbury, CT2
36 7NR

37 ¹⁷Department of Earth Sciences, Natural History Museum, London, England, United Kingdom,
38 SW7 5BD, UK.

39 [#]Equally contributed

40 **Corresponding authors:** Sabhrina Gita Aninta, Rosie Drinkwater, Laurent Frantz.

41 **E-mail:** sagitaninta@gmail.com; r.drinkwater@lmu.de; laurent.frantz@lmu.de

42 **Author Contributions:** S.G.A., R.D., S.R., S.B., L.F.: Conceptualization; S.G.A., R.D.,
43 N.J.D., M.V., D.F., D.S., R.B., A.M., G.L., P.H.A.G., J.B., M.S.: Data Curation; S.G.A., R.D.,
44 A.C., L.F.: Formal Analysis; N.L.W., N.A., J.S., M.S., S.R., S.B., L.F.: Funding Acquisition;
45 S.G.A., R.D., K.M., W.E.P., A.H.M, J.L.W., J.B.: Investigation; S.G.A., R.D., A.C., N.J.D.,
46 M.V., M.F., D.J.I.S., D.G., M.S.: Methodology; S.G.A., R.D., D.S.P., N.L.W.. J.B., N.A., J.S.,
47 M.S., S.B., S.R., L.F.: Project Administration; M.S., D.S., K.M., W.E.P., J.L.W., R.B., A.M.,
48 G.L., P.H.A.G., J.B., M.S., L.F: Resources; S.G.A., R.D., A.C., N.J.D., M.F., D.G., L.F.:

49 Software; S.G.A., R.D., S.B., S.R., L.F.: Supervision; S.G.A., R.D., A.C., L.F.: Validation;
50 S.G.A., R.D., L.F.: Visualization; S.G.A., R.D., S.R., S.B., L.F.: Writing - original draft; all
51 authors contribute to review and edit part of writing.

52 **Competing Interest Statement:** The authors declare no competing interests.

53 **Keywords:** conservation genomics, endemic species, genetic load, inbreeding, habitat
54 suitability modelling.

55 **This PDF file includes:**

56 Main Text
57 Figures 1 to 4

58

59 **Significance statement**

60 Within tropical archipelagos, such as the Wallacea biodiversity hotspot, larger islands
61 experience greater resource exploitation compared to smaller ones, highlighting the potential
62 of smaller islands as refuges for conservation. To investigate the genetic health of populations
63 on small islands, we used genomic, occurrence, and environmental data from a system of
64 replicated populations of anoa and babirusa across islands of varying sizes. In contrast to
65 larger islands like Sulawesi, our results demonstrate that smaller offshore islands not only
66 provide higher-quality habitats but also support populations that have efficiently purged
67 harmful mutations. Thus, despite their known vulnerability over geological time-frames, small
68 island populations can provide long term insurance against human-driven extinction and
69 conservation efforts should prioritise habitat management over translocations.

70

71 **Abstract**

72 Island populations of large vertebrates have experienced higher extinction rates than
73 mainland populations over long timescales due to demographic stochasticity, genetic drift and
74 inbreeding. Conversely, small island populations often experience relatively less
75 anthropogenic habitat degradation than populations on larger islands, making them potential
76 targets for conservation interventions such as genetic rescue to improve their overall genetic
77 diversity. Here we determine the consequences and conservation implications of long-term
78 isolation and recent human activities on genetic diversity of island populations of two forest-
79 dependent mammals endemic to the Wallacea archipelago: the anoa (*Bubalus* spp.) and
80 babirusa (*Babyrousa* spp.). Using genomic analyses and habitat suitability models, we show
81 that, compared to closely related species, populations on mainland Sulawesi exhibit low
82 heterozygosity, high inbreeding, and a high proportion of deleterious alleles. In contrast,
83 populations on smaller islands possess fewer deleterious mutations despite exhibiting lower
84 heterozygosity and higher inbreeding. Site frequency spectra indicate that these patterns
85 reflect stronger, long-term purging in smaller island populations. Our results thus suggest that
86 conservation efforts should focus on protecting small island habitats and avoiding
87 translocations from mainland populations. This study highlights the crucial role of small
88 offshore islands for the long-term survival of Wallacea's iconic and indigenous mammals in
89 the face of development on the mainland.

90

91 **Introduction**

92 Throughout the Quaternary period, island populations of large vertebrates have experienced
93 higher rates of extinction than their mainland counterparts¹. This pattern can be attributed to
94 demographic stochasticity, as well as the strong effects of genetic drift that operate in small
95 populations of slow-reproducing species, and the associated negative consequences for
96 fitness and adaptability^{2,3}.

97

98 In the past century, these long-term threats to island populations have been further
99 compounded by human activities such as urbanisation, the introduction of invasive species,
100 land conversion for agriculture, mining, and hunting⁴. These anthropogenic pressures often
101 vary across islands, with smaller and more isolated populations typically facing less intense
102 exploitation compared to larger, more accessible ones^{5,6}. Consequently, while populations on

103 small islands may be more prone to extinction over geological timescales, they can be less
104 affected by habitat degradation.

105
106 Among the strategies available to conservation managers of small populations, one of the
107 most valuable is genetic rescue. In this approach, individuals from nearby, larger populations
108 are translocated and introduced into a population to increase genetic diversity, thereby
109 reducing inbreeding depression, mitigating the impact of recessive deleterious alleles on
110 fitness, and potentially introducing beneficial alleles⁷⁻⁹. Although this procedure has achieved
111 notable successes, recent empirical studies¹⁰ and simulations¹¹ suggest that it may not
112 always be suitable. While relocating individuals from larger populations can introduce
113 beneficial alleles and reduce inbreeding, it also risks introducing harmful recessive alleles,
114 potentially causing long-term negative consequences. This highlights the need for careful
115 genetic management¹², especially in historically small populations where natural selection has
116 likely eliminated many harmful alleles, but which still face fitness challenges due to inbreeding
117 and low genetic diversity.

118
119 The island archipelago of Wallacea in Indonesia provides a natural laboratory in which to
120 determine the combined effects of long-term isolation and recent human activity on island
121 population genetic structure and viability. Due to its long geological history of isolation,
122 Wallacea is a global hotspot for endemism. In recent years, it has emerged as a frontier
123 region for development in Indonesia, and its ecosystems and unique species face increasing
124 pressures from deforestation and mineral extraction^{5,6,13}. To date, human activities have been
125 concentrated in the more accessible lowland areas on Sulawesi, whereas some smaller
126 offshore islands have remained less disturbed.

127
128 Here we determine the consequences and conservation implications of long-term isolation
129 and recent human activities on the genomic diversity of island populations of two forest-
130 dependent mammals, the anoa (*Bubalus depressicornis* and *B. quarlesi*) and babirusa
131 (*Babyrousa* spp.) (Figure 1). Both taxa that are endemic to Wallacea and are broadly co-
132 distributed on islands of different sizes across the archipelago. Previous work suggests they
133 underwent range expansions approximately 2 Mya¹⁴, however, current populations are highly
134 fragmented following several decades of population declines and local extinctions due to
135 habitat loss and hunting.

136
137 As endangered and endemic mammals, the anoa and babirusa are the focus of ex-situ
138 breeding programmes and viewed as potential candidates for conservation programmes
139 aimed at increasing the size and genetic diversity of wild populations. Through a combination
140 of population genomic analyses and habitat suitability models, we demonstrate that small
141 island populations have persisted over long timeframes in high-quality habitats. In contrast,
142 some populations on the larger island (Sulawesi; Figure 1) have suffered from reduced
143 habitat quality due to intensive resource exploitation. Thus, conservation strategies for anoa
144 and babirusa should focus on preserving high-quality habitats on small islands and avoid
145 translocating individuals from degraded mainland populations. Our findings underscore the
146 critical role of small offshore islands in ensuring the long-term survival of Wallacea's iconic
147 mammals amidst ongoing land-use changes on the Sulawesi mainland.

148
149 **Results and Discussion**

150 We generated short-read genome sequence data from samples of anoa and babirusa
151 collected from across their respective ranges in Wallacea. To determine broad population
152 genetic structure, we mapped short reads of each taxon to a reference genome of a
153 conspecific, or, in the case of the anoa, the water buffalo (*Bubalus bubalis*). Using datasets of
154 3,762,790 unlinked SNPs for anoa, and 3,920,000 unlinked SNPs for babirusa, we performed
155 principal component analysis (Figure 1C), phylogenetic reconstructions, and admixture
156 analyses (Figure S2). These analyses revealed concordant patterns of population structure
157 across both taxa (Figure 1C), in which three distinct lineages were identified corresponding to
158 individuals from North Sulawesi, Southeast Sulawesi, and the small offshore islands of Buton
159 (anoa) or Togean (babirusa). This pattern of population structure, which broadly supports
160 previous findings based on mitochondrial and microsatellite data¹⁴, was then used to define
161 populations in subsequent analyses.

162

163 **Populations on smaller island are less genetically diverse than on mainland Sulawesi**
164 To determine the consequences of long-term isolation, we quantified levels of genetic
165 diversity in populations on Sulawesi and smaller nearby islands (Buton and Togean). To do
166 so, we computed genome-wide Watterson's θ using ROHan¹⁶, an unbiased estimator of
167 heterozygosity in a single diploid individual under the infinite sites model¹⁷. We found that θ
168 on the small islands of Togean (babirusa: mean=0.29 x 10⁻³, SE=0.02 x 10⁻³) and Buton
169 (anoa: mean=0.58 x 10⁻³, SE=0.02 x 10⁻³) was ~2 to ~6 fold lower than in populations from
170 mainland Sulawesi (babirusa: mean=1.85 x 10⁻³, SE=0.1 x 10⁻³; anoa: mean=1.33 x 10⁻³,
171 SE=0.1 x 10⁻³), indicating that small island populations contain less genetic diversity than
172 populations on the larger island of Sulawesi (Figure 2A). On Sulawesi, however, we found
173 that babirusa from the Southeast Sulawesi possessed lower θ (mean=1.17 x 10⁻³, SE=0.04 x
174 10⁻³) compared to those found on the Northern peninsula (mean=2.17 x 10⁻³, SE=0.06 x 10⁻³).
175

176 We then tested whether anoa and babirusa populations are characterised by more variable
177 levels of genetic diversity compared to related species that do not occur on islands of varying
178 size. To address this, we compared levels of genetic variability (Watterson's θ) and
179 inbreeding (ROHs) among anoa and babirusa populations to those observed in 19 closely
180 related taxa (52 individuals in total), including highly endangered species such as the pygmy
181 hog (*Porcula salvianus*), the Javan warty pig (*Sus verrucosus*) and banteng (*Bos javanicus*).
182 Levels of genetic diversity (Watterson's θ) were on average lower in anoa than in other bovid
183 species (Figure 2A). The same was observed in babirusa, which aside from the North
184 Sulawesi population, possessed lower levels of genetic diversity than most other suids. Lower
185 levels of genetic diversity in the Wallacean endemics is likely the result of smaller effective
186 population sizes resulting from their island habitats and/or recent bottleneck(s).
187

188 To assess whether populations showed signs of recent bottlenecks, we analysed runs of
189 homozygosity (ROHs) using ROHan (Supplementary Information). Analyses of ROHs showed
190 that inbreeding levels and genetic diversity were more variable among anoa and babirusa
191 populations than in different species (Figure 2B). Small island populations of anoa (Buton)
192 and babirusa (Togean) possessed higher levels of inbreeding than most other species (Figure
193 2B). Buton contained longer ROHs than those sampled on mainland Sulawesi, consistent with
194 higher inbreeding levels on small offshore islands (Figure 2C).
195

196 Among suids, however, we found that Southeast Sulawesi babirusa possessed more ROHs
197 and had a larger portion of their genome in ROH than any other population of babirusa and
198 any other suid species (Figure 2B). Interestingly, despite this high level of inbreeding,
199 Southeast Sulawesi babirusa possessed average levels of genetic diversity when compared
200 to other suid species (Figure 2A). Their level of genetic diversity, however, was significantly
201 higher when excluding ROHs ($p<0.001$; Figure 2B). The significant change in genetic diversity
202 when excluding ROHs implies that babirusa living in Southeast Sulawesi were part of a
203 historically large population which underwent a recent bottleneck.
204

205 Similar levels of genetic diversity within and outside ROHs in anoa and babirusa living on
206 small islands (Togean and Buton) indicate they form part of a historically small, yet stable
207 population that inhabits a highly suitable habitat, as demonstrated by our species distribution
208 model (Figure 1D, Figure S4, Table S2). Altogether, this suggests that although they are not
209 as genetically diverse as their large island counterparts, small island populations are likely to
210 have been stable over geological time scales, and potentially since their expansion ~2Mya¹⁴.
211

212 **Impact of anthropogenic disturbances on demography**

213 To address whether the dramatic bottleneck in Southeast Sulawesi babirusa is consistent with
214 a recent decrease of suitable habitat in the area, we constructed an ensemble species
215 distribution model¹⁸ based on bioclimatic variables and forest cover^{5,15} (Supplementary
216 Information). Our models, for both anoa and babirusa, indicate that there is proportionally
217 more suitable habitat (i.e. top 20% of all suitable habitat; see Supplementary Text) on smaller
218 islands (i.e. Togean and Buton) compared to mainland Sulawesi (~1.5 fold more highly
219 suitable area for anoa and ~1.6 for babirusa relative to North Sulawesi; Figure 1D, Table S3).
220

221 For both species, we related the distribution of suitable habitat to different land use classes
222 and found considerable overlap with areas that have protected status (Figure S4). This

223 highlights the effectiveness of the protected area network for conserving habitat for
224 Wallacea's endemic mammals. On the mainland, the availability of suitable habitat was higher
225 in the North compared to the Southeast for both taxa (Table S3). This trend is consistent with
226 recent deforestation rates (between 2000-2017), which were higher in Southeast Sulawesi
227 compared to the North¹⁹, suggesting that deforestation has led to the reduced habitat
228 availability detected by our models. These data, combined with previously reported high rates
229 of poaching²⁰, imply that population bottlenecks in babirusa in Southeast Sulawesi have been
230 driven by relatively recent anthropogenic disturbances, rather than longer term evolutionary
231 processes.

232

233 **More deleterious alleles segregate on Sulawesi than on small islands**

234 Recent studies of several large-bodied mammals indicate that small populations with long
235 histories of isolation (e.g. Channel Island foxes²¹, Iberian lynx²², Indian tigers²³, mammoths²⁴)
236 show evidence of accumulation of mildly deleterious alleles, while naturally purging strongly
237 deleterious recessive variants. To evaluate how small island populations of anoa and
238 babirusa purge deleterious alleles compared to their mainland populations, we computed
239 genetic load in individual genomes, using three conservation scores: SIFT, PhyloP and
240 phastCons (Supplementary Information). To allow cross-species comparisons, we estimated
241 genetic load for loci that show one-to-one orthology between the pig and cow genomes
242 (Supplementary Information). We first computed a load score by summing conservation
243 scores, weighted by genotype probability for derived alleles found at homozygous states
244 across the genome (see Supplementary Methods). This homozygous load represents the
245 minimum impact of deleterious alleles on fitness (i.e. assumes that all deleterious alleles are
246 recessive). We also computed the load by summing the impact of alleles found at both
247 homozygous and heterozygous states (total load) across the genome. The total load
248 represents the maximum impact of deleterious alleles on fitness (i.e. assumes that all
249 deleterious alleles are dominant).

250

251 Both total and homozygous load were significantly lower in anoa than in babirusa ($p<0.001$;
252 see Supplementary Materials) (Figure 3A & B). Mean total load, calculated for all individuals
253 from the same population, was also significantly higher in large populations found on
254 mainland Sulawesi than in smaller island populations such as Togean (babirusa) and Buton
255 (anoa; Figure 3C, Table S1). This result indicates that deleterious alleles are more abundant
256 in larger, mainland, populations than in smaller, island populations.

257

258 Mean homozygous load, however, was significantly higher in small island populations than in
259 larger island populations (Figure 3D). Altogether these results indicate that large populations
260 possess more deleterious recessive alleles overall, most of which are found in heterozygous
261 state and therefore hidden from selection. Thus, although large populations possess more
262 deleterious alleles, the overall fitness impact of deleterious alleles is likely to be higher in
263 smaller island populations which possess more deleterious alleles in homozygous state.

264

265 **Small island populations efficiently purge deleterious alleles**

266 The difference between the total and homozygous load observed in small and large
267 populations could be due to either lower levels of heterozygosity, or the lower efficiency of
268 purifying selection in small populations (Figure 2B). To assess the efficiency of purifying
269 selection across different populations, we first built unfolded site frequency spectra (SFS)
270 using ANGSD²⁵, based on alleles that have been assigned different impact ratings by the
271 Variant Effect Predictor (VEP)²⁶, i.e. low, modifier, moderate, and high (Figure 4,
272 Supplementary Information). Comparing SFS provides the opportunity to assess the impact of
273 purifying selection on the full frequency range of deleterious alleles in a population, not just
274 those in heterozygous and homozygous states.

275

276 These SFS show an excess of low frequency deleterious alleles in mainland populations that
277 have not experienced bottleneck(s), such as populations of anoa in Southeast Sulawesi
278 (Figure 4A & B) and of both taxa in North Sulawesi. This pattern is consistent with the effect
279 of purging reducing the frequency of deleterious alleles in a population²¹⁻²³. The persistence of
280 deleterious alleles at low frequency in these large, highly heterozygous, populations is likely
281 due to their recessive nature which means they are less likely to be exposed to selection than
282 in smaller, less heterozygous, populations

283
284 In contrast, we found fewer deleterious alleles at low frequency in the recently bottlenecked
285 Southeast Sulawesi babirusa, compared to in the North Sulawesi population. This is likely due
286 to a weaker effect of purging, and stronger drift in Southeast Sulawesi babirusa than in the
287 North Sulawesi. Both small island populations, however, possessed many fixed deleterious
288 alleles, but had fewer deleterious alleles at low frequency than in large populations and in the
289 recently bottlenecked Southeast babirusa population. The high degree of fixed deleterious
290 alleles is likely to be the result of strong genetic drift in small populations. Reduced
291 heterozygosity in these island populations likely explains the near absence of low-frequency
292 deleterious alleles, a result of long-term purging where recessive alleles are exposed to
293 selection. This is in contrast with large populations, in which deleterious alleles persist at low
294 frequency despite purging.
295

296 To quantitatively compare the shape of the SFS across four impact ratings, we used a
297 composite likelihood (CL) approach adapted from Nielsen *et al*⁷. Large differences in CL
298 values across impact ratings point to contrasting shapes of the SFS. As the low impact alleles
299 are less likely to be affected by selection compared to the other three impact ratings (modifier,
300 moderate, high), we used the SNPs in this rating as the expected SFS. For each impact rating
301 we obtained 1000 CL values across bootstrap replicates (see supplementary methods), which
302 were normalised using the mean of the bootstrap value of the low impact CL. In large island
303 populations, normalised CL distributions (across bootstrap replicates) of the three higher
304 impact ratings were centred around one (Figure 4A, B, D, E). This indicates that the SFS of
305 the higher impact ratings were not quantitatively different from that of the SFS built using low
306 impact ratings. In contrast, in small island populations, the mean CL across the three higher
307 impact ratings was higher than one, indicating that the shape of the SFS of the higher impact
308 alleles are quantitatively different from the shape of the SFS built using low impact alleles
309 (Figure 4C & D).
310

311 These differences in the shape of the SFS across different impact ratings in the small island
312 populations suggests that although they are smaller than their mainland counterparts, purging
313 is having a stronger distorting effect on the SFS of more impactful alleles. This could be the
314 result of recessive deleterious alleles that are more likely to be exposed to selection in a less
315 heterozygous population. Over time, this will lead to a reduction in frequency for the most
316 deleterious alleles in small populations, consistent with our total load scores (Figure 3A) and
317 previous simulation studies¹¹.
318

319 **Conclusions**

320 Our analyses show that anoa and babirusa populations on small islands have remained
321 sufficiently stable to efficiently purge deleterious alleles. These populations also occupy high-
322 quality habitats, often within protected areas (e.g. 45% of the Togean islands are protected as
323 a national park). Small island ecosystems may thus offer a long-term solution to preserve
324 these species. In contrast, we show that some populations on the larger island of Sulawesi,
325 such as in the Southeast, occupy lower quality habitat due to a higher degree of
326 anthropogenic disturbance, and show signs of strong bottlenecks and weaker purifying
327 selection. These findings imply that recent anthropogenic disturbances on larger islands may
328 be reshaping the extinction dynamics during the Quaternary, a period during which
329 populations on smaller islands have been generally presumed to be more vulnerable. Our
330 results suggest a reversal of this trend, which when combined with a greater human impact
331 could make large island populations more susceptible to extinction than their smaller island
332 counterparts.
333

334 The introduction of individuals from the mainland could be a solution to increase genetic
335 diversity on small islands with high habitat quality and low anthropogenic pressures. Our
336 genomic data, however, indicate that individuals from mainland populations possess more
337 deleterious alleles, which, if translocated to smaller, less heterozygous, island populations
338 could result in fitness decline and increased risk of extinction¹⁰. We therefore suggest that,
339 unless the population size of babirusa and anoa drops dramatically on smaller islands,
340 conservation efforts should focus on maintaining forest habitat, without the need for a possibly
341 counterproductive, and onerous, translocation programme. Translocations, however, could
342 also become useful in this case if the degree of fixed deleterious alleles, which is higher in

343 smaller island populations (Figure 4), starts having a strong impact on fitness, as purifying
344 cannot remove these alleles once they are fixed, or to enhance immune function by
345 introducing new alleles. Altogether, our study demonstrates the benefit of combining genomic
346 information with species distribution modelling to help predict future anthropogenic threats
347 and inform species conservation planning for island systems.

348

349 **Materials and Methods**

350 Samples used for this study were obtained from a previous study¹⁴ totalling to 67 anoa (29
351 from North Sulawesi, 15 from Southeast Sulawesi, and 23 from Buton) and 46 babirusa (24
352 from North Sulawesi, 14 from Southeast Sulawesi, and 8 from Togean). Detailed descriptions
353 of the samples used for this study are presented in SI Appendix. DNA was extracted either
354 from hair follicles from tails or tissue scraps from skeletal remains using the DNeasy Blood
355 and Tissue kit (Qiagen) with the final extract eluted in 100 µL of TE buffer. Double indexed
356 standard illumina libraries were built by Novogene (in 2020) or Macrogen (in 2021) (Data S1).
357 Libraries were pooled equimolarly and sequenced on a Illumina Novaseq S4 platform (150 bp
358 PE). To compare with other taxa that are closely related, we downloaded 25 genomes from
359 European Nucleotide Archive (ENA) and 26 genomes from Sequence Read Archive (SRA)
360 comprising 8 species of Suidae and 10 species of Bovidae (Data S2) that were also
361 sequenced using Illumina (150 bp PE). Each paired end fastq files sample was trimmed with
362 AdapterRemoval²⁸ and aligned to the using the BWA MEM²⁹ to a closely related reference
363 genome, i.e. water buffalo and babirusa, and distantly related reference genome, i.e. cow and
364 pig, for anoa and babirusa, respectively, constructing each to a set of close relative alignment
365 and distant relative alignment (see SI Text). Other than the population structure and genetic
366 load analyses that use the distant relative alignment to get gene annotation information, all
367 downstream analyses were conducted using the close relative alignment. Only genomes with
368 mean reads depth of at least 5x were analysed. Habitat suitability models were generated
369 using anoa and babirusa occurrence data and environmental covariates (see SI text).
370 Ensemble distribution models³⁰ were generated and analysed in R³¹ and QGIS³². Further
371 details for computational analyses used in this study are provided in SI Appendix.
372

373

374 **Acknowledgement**

375 This research was funded by the NERC-Ristekdikti Newton Wallacea joint research
376 programme (grant number NE/S007067/1; Ristekdikti Grant No: NKB-
377 1799/UN2.R3.1/HKP.05.00/2019 “Biodiversity, Environmental Change, and Land-use Policy
378 in Sulawesi and Maluku”). We thank the Indonesian Ministry of Environment and Forestry
379 (KLHK), Sulawesi’s Provincial Forestry Departments (BKSDA), and Indonesia’s National
380 Research and Innovation Agency (BRIN, formerly LIPI) for granting research and export
381 permits. This work is a continuation of research under the permit from Ministry of Forestry no
382 188/Kpts-IV/2001 and 2918/Kpts-IV/2002, now extended under permit no.
383 SK.18/KSDAE/SET-3/KSA-2/I/2024. This research was supported by computational and data
384 resources provided by the Leibniz Supercomputing Centre (LRZ; www.lrz.de). We thank
385 Athena Syarifa for her support during the start of the project, and Gabriel Renaud for
386 assistance in ROH analysis. SGA was supported by QMUL and GCRF. RD is supported by
387 NERC and Humboldt Foundation. MV, NJD and MJS were supported by a Leverhulme
388 Research Leadership Grant Awarded to MJS. SB, SR, and LF were supported by NERC
389 Newton Fund Wallacea. JB was supported by University of Edinburgh, Rufford Grant, and
390 Stichting Dierentuin Helpen Grant. PG acknowledges the structural support of the Flemish
391 government.

392

393 **Data sharing**

394 All sequences used in this study are stored in European Nucleotide Archive accession
395 ERS10527733-ERS10527854. All codes used for analyses in this paper is openly available in
396 <https://github.com/sagitaninta/Wallacea> (see Supplementary Information)

396

397 **References**

398 1. R. Rozzi *et al.*, Dwarfism and gigantism drive human-mediated extinctions on islands.
399 *Science* **379**, 1054–1059 (2023).

400 2. M. Lynch, J. Conery, R. Burger, Mutation accumulation and the extinction of small
401 populations. *Am. Nat.* **146**, 489–518 (1995).

402 3. J. Romiguier *et al.*, Comparative population genomics in animals uncovers the
403 determinants of genetic diversity. *Nature* **515**, 261–263 (2014).

404 4. J.C. Russell, C. Kueffer, Island biodiversity in the Anthropocene. *Annu. Rev. Environ.*
405 *Resour.* **44**, 31–60 (2019).

406 5. M. Voigt, *et al.*, Emerging threats from deforestation and forest fragmentation in the
407 Wallacea centre of endemism. *Environ. Res. Lett.* **16**, 094048 (2021).

408 6. M. J. Strubig, *et al.*, Safeguarding Imperiled Biodiversity and Evolutionary Processes in
409 the Wallacea Center of Endemism. *BioScience* **72**, 1118–1130 (2022).

410 7. R. Frankham, Genetic rescue of small inbred populations: meta-analysis reveals large
411 and consistent benefits of gene flow. *Mol. Ecol.* **24**, 2610–2618 (2015).

412 8. P.A. Scott, L.J. Allison, K.J. Field, R.C. Averill-Murray, H.B Shaffer, Individual
413 heterozygosity predicts translocation success in threatened desert tortoises. *Science*
414 **370**, 1086–1089 (2020).

415 9. K. Ralls, P. Sunnucks, R. C. Lacy, R. Frankham, Genetic rescue: A critique of the
416 evidence supports maximizing genetic diversity rather than minimizing the introduction of
417 putatively harmful genetic variation. *Biological Conservation* **251**, 108784 (2020).

418 10. P.W. Hedrick, J.A. Robinson, R.O. Peterson, J.A. Vucetich, Genetics and extinction and
419 the example of Isle Royale wolves. *Anim. Conserv.* **22**, 302–309 (2019).

420 11. C.C. Kyriazis, R.K. Wayne, K.E. Lohmueller, Strongly deleterious mutations are a
421 primary determinant of extinction risk due to inbreeding depression. *Evol. Lett.* **5**, 33–47
422 (2021).

423 12. L.D. Bertola *et al.*, Genetic guidelines for translocations: Maintaining intraspecific
424 diversity in the lion (*Panthera leo*). *Evol. Appl.* **15**, 22–39 (2022).

425 13. Exploring Energy and Mineral Resources of Indonesia,
426 <https://geoportal.esdm.go.id/minerba/>

427 14. L.A.F. Frantz *et al.*, Synchronous diversification of Sulawesi's iconic artiodactyls driven
428 by recent geological events. *Proc. Biol. Sci.* **285**, 20172566 (2018).

429 15. M.C. Hansen *et al.*, High-resolution global maps of 21st-century forest cover change.
430 *Science* **342**, 850–853 (2013).

431 16. G. Renaud, K. Hanghøj, T.S. Korneliussen, E. Willerslev, L. Orlando, Joint estimates of
432 heterozygosity and runs of homozygosity for modern and ancient samples. *Genetics* **212**,
433 587–614 (2019).

434 17. Watterson G A, On the number of segregating sites in genetical models without
435 recombination. *Theor. Popul. Biol.* **7**: 256–276. (1975)

436 18. S. Schmitt, R. Pouteau, D. Justeau, F. De Boissieu, P. Birnbaum, ssdm: An R package
437 to predict distribution of species richness and composition based on stacked species
438 distribution models. *Methods Ecol. Evol.* **8**, 1795–1803 (2017).

439 19. J. Supriatna *et al.*, Deforestation on the Indonesian island of Sulawesi and the loss of
440 primate habitat. *Glob. Ecol. Conserv.* **24**, e01205 (2020).

441 20. I.S. Rejeki, Wildlife conservation strategy: An assessment of wildlife hunting activities in
442 Sulawesi. (Doctoral dissertation, IPB (Bogor Agricultural University), 2018).

443 21. J.A. Robinson, C. Brown, B.Y. Kim, K.E. Lohmueller, R.K. Wayne, Purgling of strongly
444 deleterious mutations explains long-term persistence and absence of inbreeding
445 depression in island foxes. *Curr. Biol.* **28**, 3487–3494 (2018).

446 22. D. Kleinman-Ruiz *et al.*, Purgling of deleterious burden in the endangered Iberian lynx.
447 *Proc. Natl. Acad. Sci.* **119**, e2110614119 (2022).

448 23. A. Khan *et al.*, Genomic evidence for inbreeding depression and purging of deleterious
449 genetic variation in Indian tigers. *Proc. Natl. Acad. Sci.* **118**, e2023018118 (2021).

450 24. M. Dehasque, *et al.*, Temporal dynamics of woolly mammoth genome erosion prior to
451 extinction, *Cell.* **187**, 3531-3540.e13 (2024).

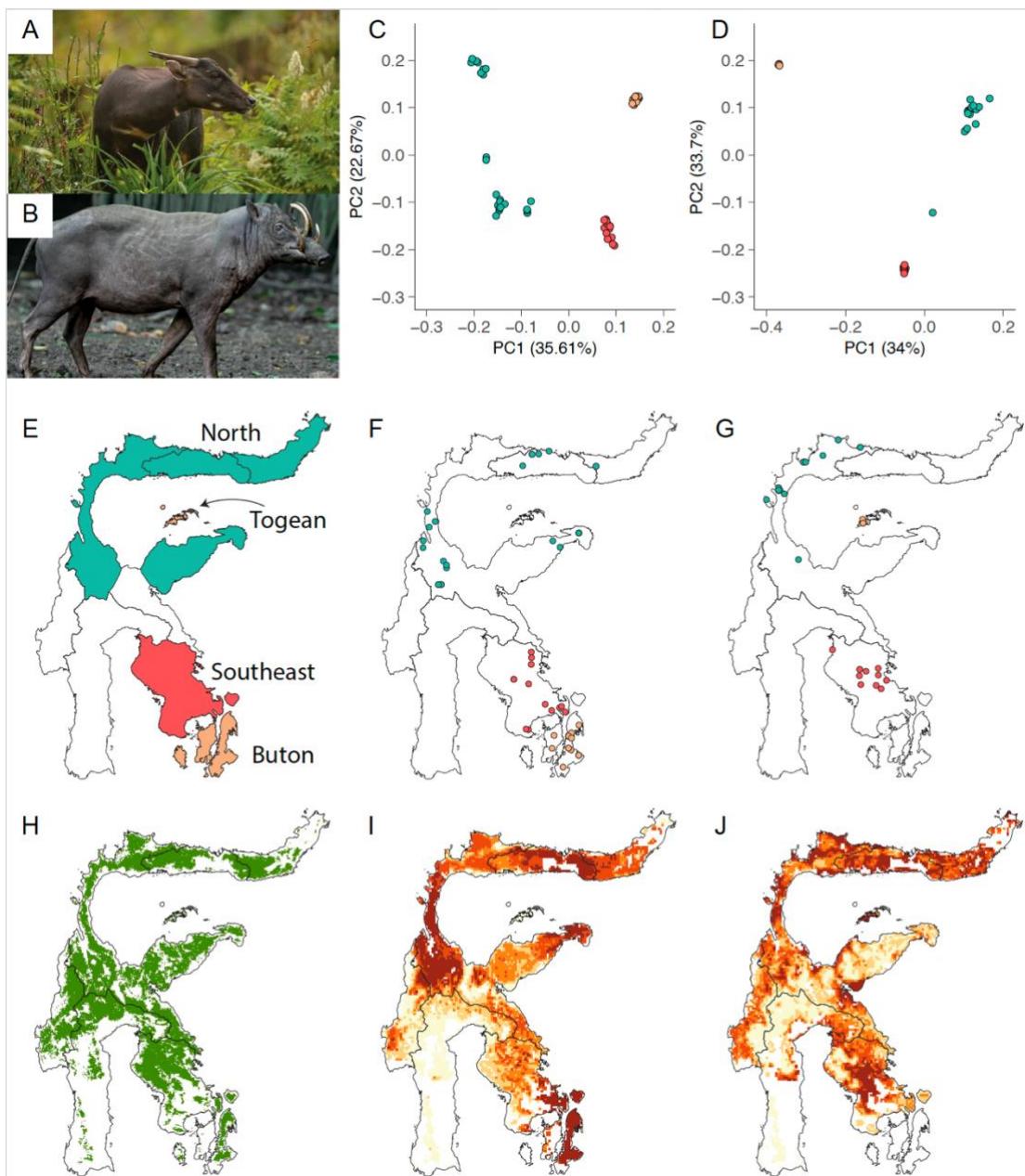
452 25. T.S. Korneliussen, A. Albrechtsen, R. Nielsen, ANGSD: Analysis of next generation
453 sequencing data. *BMC Bioinform.* **15**, 1–13 (2014).

454 26. W. McLaren *et al.*, The Ensembl variant effect predictor. *Genome Biol.* **17**, 1–14 (2016).

455 27. R. Nielsen *et al.*, Genomic scans for selective sweeps using SNP data. *Genome Res.*
456 **15**, 1566–1575 (2005).

457 28. Schubert, M., Lindgreen, S., & Orlando, L. (2016). AdapterRemoval v2: rapid adapter
458 trimming, identification, and read merging. *BMC Res. Notes*, **9**, 1-7.

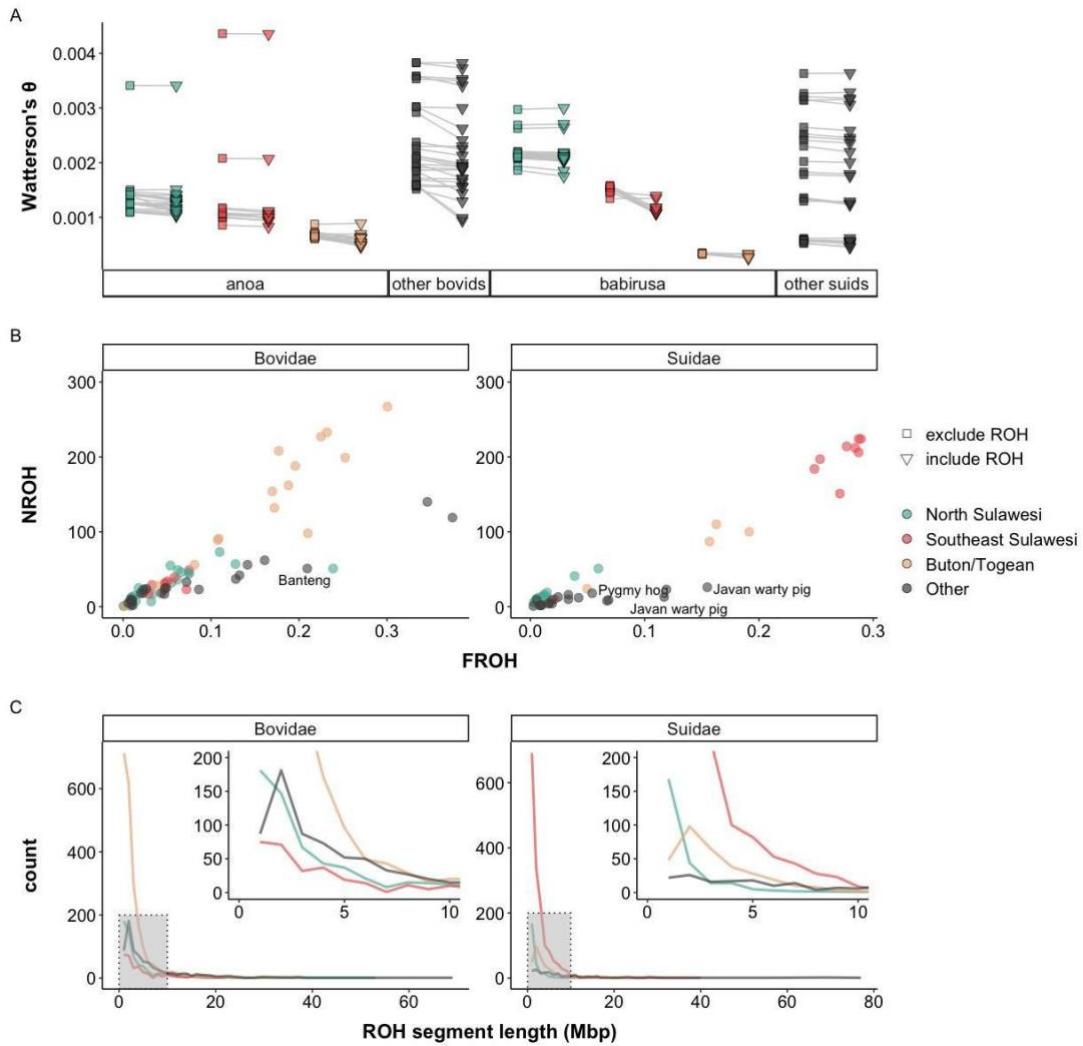
459 29. H. Li, Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM,
460 Preprint at arXiv 1303.3997 (2013).


461 30. S. Schmitt, R. Pouteau, D. Justeau, F. De Boissieu, P. Birnbaum, ssdm: An R package to
462 predict distribution of species richness and composition based on stacked species
463 distribution models. *Methods Ecol. Evol.* **8**, 1795–180 (2017).

464 31. R Core Team, R: A Language and Environment for Statistical Computing, Vienna, Austria:
465 R Foundation for Statistical Computing, available at: <https://www.r-project.org/> (2024).

466 32. QGIS.org (2021). QGIS Geographic Information System. QGIS Association.
467 <http://www.qgis.org>.

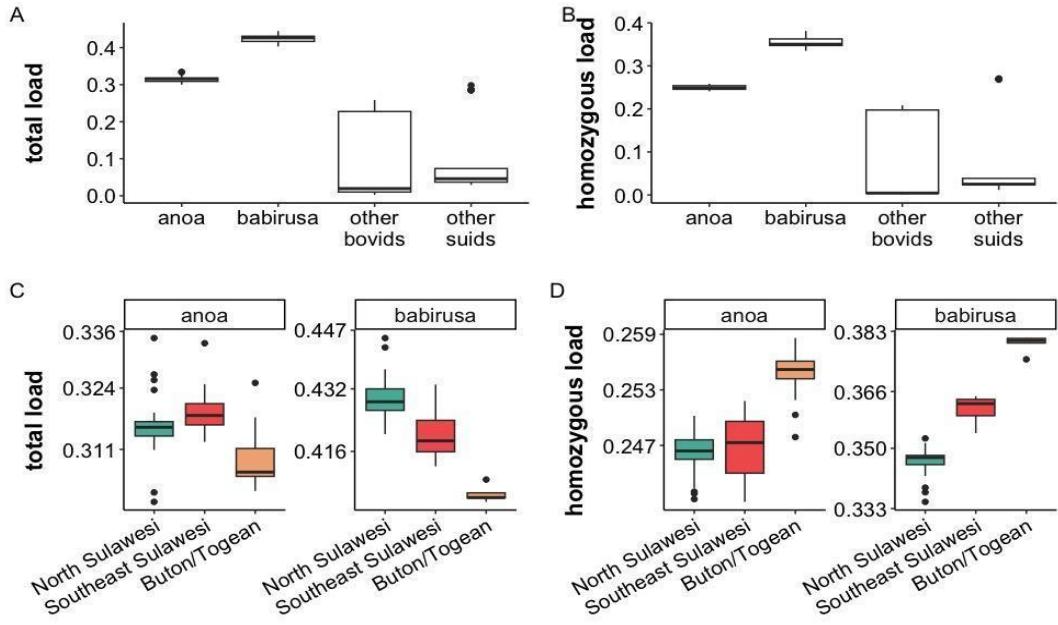
468 **Figures:**


469

470

471

Figure 1. Population structure and habitat suitability. **(A)** Photographs of anoa (top, credit: Chester Zoo) and babirusa (bottom, photo credit: S.L. Mitchell). **(B)** Locations of samples for anoa (left), babirusa (right) coloured based on population structure (Figure S2). **(C)** Zones of endemism (right) based on Frantz *et al*¹⁴ (left) Principal component analysis (PCA) based on SNPs from genomes (>5x) for anoa (middle, 53 individuals; 1,053,534 SNPs) and babirusa (right, 37 individuals; 1,011,533 SNPs), **(D)** Sulawesi, and offshore islands, showing the 2018 forest cover (Global Forest Change repository, v1.6, Hansen *et al*¹⁵, processed in Voight *et al*¹¹) in green used to constrain the ensemble distribution models of habitat suitability for anoa (middle) and babirusa (right) categorised by the habitat suitability score quantile (class one = least suitable habitat, class five = most suitable habitat).

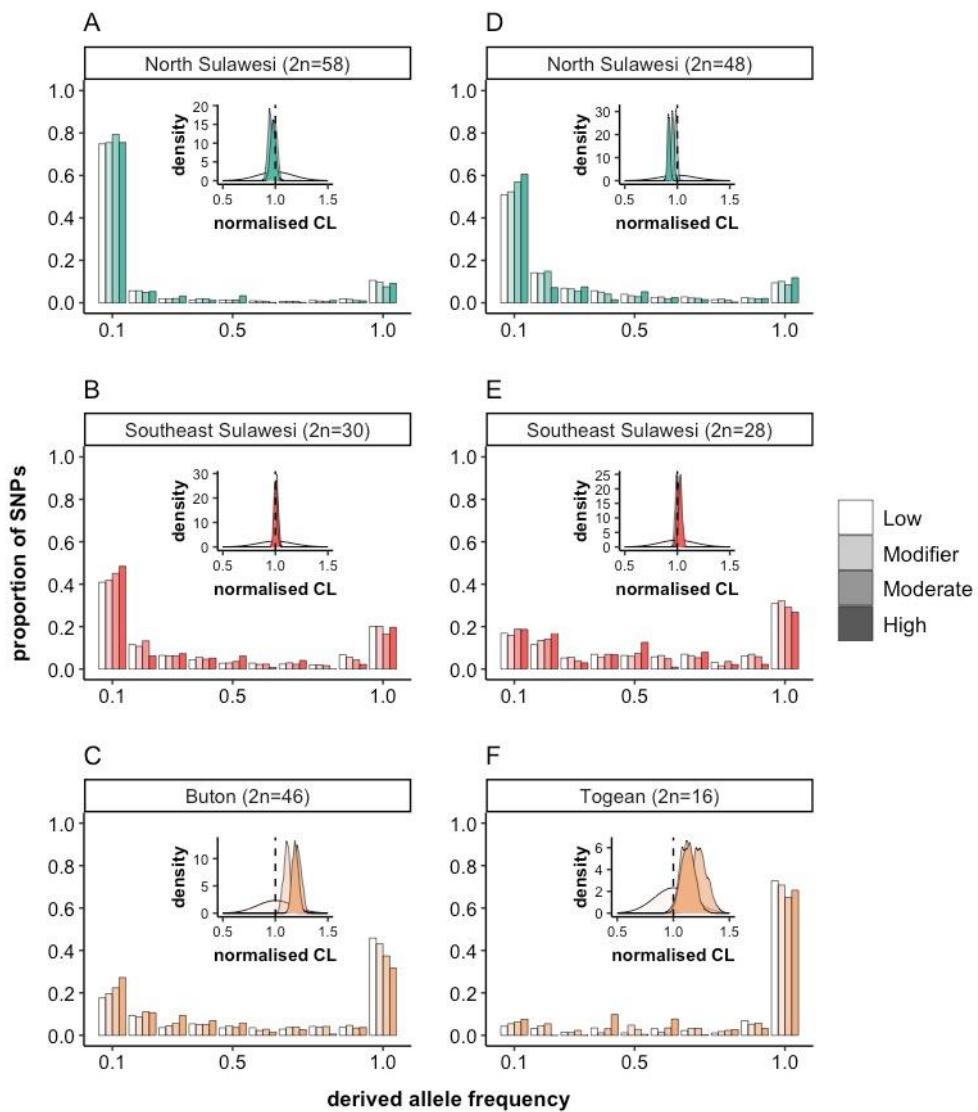

482

483 **Figure 2. Population-level genetic diversity and runs of homozygosity (ROHs).**

484 (A) Genome-wide Watterson's θ computed across the whole genome (triangle) and
485 excluding ROH (square) in anoa, babirusa, and their respective close relatives, (B)
486 Sum of size of ROH segments across the genome (NROH) and proportion of ROH
487 across the genome (FROH) (C) distribution of ROH segment length.

488

489


490

491 **Figure 3. Genetic load in babirusa, anoa and closely related species. (A)** Total
492 load computed in individual genomes using SIFT scores for alleles found at both
493 heterozygous and homozygous states in anoa, babirusa, and their close relatives.
494 **(B)** Homozygous load computed in individual genomes using SIFT scores for alleles
495 found at homozygous states in anoa, babirusa, and their close relatives. **(C)** Inter-
496 island comparison of total load and **(D)** homozygous load within the populations of
497 anoa and babirusa.

498

499

500

501

502 **Figure 4. Site frequency spectra (SFS) of deleterious alleles across anoa and**
503 **babirusa populations.** Site frequency spectra of alleles with four different impact
504 ratings (low, modifier, moderate, high) across populations of anoa **(A-C)** and
505 babirusa **(D-F)** with a corresponding 1000 bootstrap of composite likelihood (CL)
506 values within each SFS graph representing differences between the shape of the
507 SFS across the four impact ratings using low impact rating as the expected
508 likelihood.