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Abstract

Rapid advancements in single-cell RNA-sequencing (scRNA-seq) technologies revealed the richness of
myriad attributes encompassing cell identity. However, the complexity of the data hinders tasks focusing
on a specific biological signal. To address this challenge, we introduce biolB, a framework based on the
Information Bottleneck method, designed to extract an interpretable compressed representation of
scRNA-seq data, optimally-informative with respect to a desired biological signal, such as developmental
stage or disease state. Provided with cellular labels representing the signal of interest, biolB generates
weighted gene clusters, termed metagenes, that compress the data, while maximizing signal-specific
information. Following the Information Bottleneck principle, biolB identifies an optimal trade-off
between data compression and retaining target information. Further, biolB provides the hierarchical
structure of the metagenes, revealing the interconnections between the corresponding biological
processes and cellular populations, such as the developmental hierarchy of hematopoietic cell types. We
showcase biolB’s applicability to diverse biological contexts, including Alzheimer’s Disease,
epithelial-to-mesenchymal transition, immune development and hematopoiesis, demonstrating that the
compressed representations capture signal-associated molecular pathways and expose cellular
subpopulations with prominent phenotypes such as transition states and disease association.
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Main text

Introduction

Cellular gene expression profiles encapsulate a wealth of information regarding a cell’s identity, defined
by a variety of biological factors, such as cell type, disease state, and developmental stage. Single-cell
RNA-sequencing (scRNA-seq) technologies, quantifying gene expression levels at single-cell resolution,
are invaluable for revealing these facets, allowing to study the different factors encompassing a cell’s
identity’. However, exposing such factors poses a computational challenge due to the complexity and
high dimensionality of scRNA-seq. While datasets typically comprise thousands of gene profiles across
thousands to hundreds of thousands of cells, any reduction in dimensionality will in general result in loss
of information®. Specifically, when aiming to uncover factors associated with a specific biological signal
(e.g. gene programs associated with disease progression), the challenge can be framed as a trade-off
between reducing the complexity of the data (compression) while retaining as much relevant
information as possible regarding the signal of interest. The Information bottleneck (IB) theory® allows us
to reason mathematically about this trade-off. Given a dataset (e.g. sScRNA-seq measurements) and a
variable of interest encoded in the data (e.g. healthy vs. disease samples), IB provides a reduced data
representation which is maximally informative about the variable of interest*. Since it was first
introduced, 1B has been successfully applied in diverse fields, such as text clustering’, image analysis®’,
language processing®, neuroscience® and computational biology'®™2.

Here, we present biolB, a single-cell tailored method based on the IB algorithm, providing a compressed,
signal-specific representation of single-cell data. The compressed representation is given by metagenes,
which are probabilistic clusters of genes. The probabilistic construction preserves gene-level
interpretability, allowing biological characterization of each metagene.

Previous approaches for extracting gene signatures from single-cell data include unsupervised
dimensionality reduction methods, such as NMF*and LDVAE™, tools supervised by prior knowledge of
signal-specific molecular pathways, marker genes and gene interactions, such as f-scLVM™, net-NMFsc?®,
Spectra®’, and label-aware techniques for group-specific signature detection, such as scGeneFit'® and
scANVI™. By considering the trade-off between compression and relevant information, biolB differs from
the above methods in several aspects (Table 1). Key unique aspects of biolB include its simultaneous
ability to extract gene signatures specific to a signal of interest, its independence from prior biological
knowledge, and its flexibility in the number of extracted signatures or metagenes. In addition to
achieving optimal signal-aware clustering of genes via metagenes, biolB stands out from other gene
program discovery tools by providing a hierarchy of metagenes, reflecting the inherent data structure
relative to the signal of interest. The biolB hierarchy facilitates the interpretation of metagenes,
elucidating their significance in distinguishing between biological labels and revealing their interrelations
with one another and the underlying cellular populations.

We demonstrate that metagenes generated by biolB are biologically meaningful, capturing molecular
pathways differentially activated between signal-specific cell groups. First, using a scRNA-seq dataset of
neurons with and without Alzheimer’s Disease (AD) associated neurofibrillary tangles®®, we show that
biolB metagenes capture relevant molecular pathways enriched in each group and in the intermediate
transcriptomic state, elucidating more signal-related genes compared to competing methods and
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clustering them in agreement with known biological pathways. We further demonstrate that biolB
metagenes capture cells in the transition state in the context of epithelial-to-mesenchymal transition
(EMT) scRNA-seq dataset®’. Next, applying biolB to an atlas of differentiating macrophages®, and using
either organ-of-origin or developmental stage as signals of interest, we show that biolB extracts distinct,
signal-specific metagene hierarchies and associated biological processes. We also demonstrate how
biolB can be used to identify a cellular subpopulation of disease-associated astrocytes in a single nucleus
RNA-seq (snRNA-seq) dataset?® from murine Alzheimer’s Disease models. Finally, we showcase that biolB
metagene hierarchy for a dataset of differentiating hematopoietic cell types® reflects the developmental
hierarchy of the corresponding cellular populations. biolB is available as an open-source software

package, along with documentation and tutorials (https://github.com/nitzanlab/biolB).

Table 1. Qualitative comparison of biolB with alternative methods for the generation of gene
signatures from single-cell data.

Method Method Signal-specific Control over the Option of hierarchical
output number of gene representation of
signatures gene factors
biolB Probabilistic @ Yes O Yes O Yes
gene
signatures e Generating signal-or e Elucidating ¢ Revealing the
condition- associated intermediate and biological
gene signatures transition signatures interconnections
(Figures 2 — 6) (Figures 2,3) between the gene
factors, as well as
e Separating interconnections
condition-specific between the
cellular subpopulations underlying cellular
(Figures 4,5) subpopulations
(Figures 4-6)
scGeneFit Gene O Yes O No Q) No
markers
SCANVI Condition- O Yes A No Q) No
specific gene
rankings
NMF Weighted A No O Yes & No
gene
signatures
LDVAE Weighted A No O Yes A No
gene
signatures
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Results

biolB elucidates signal-specific metagenes and their structure

The biolB representation is computed for a given dataset and signal of interest, provided as cell labels.
The representation is composed of metagenes which are probabilistic aggregation of the genes into
clusters, representing the major patterns of gene expression variation underlying the labeled signal.

. A . NXG
The input to biolB includes a count matrix D € R “of N cells by G genes, and a vector of cell labels

related to the signal of interest, S € RNXl, where for example, each cell is labeled as sampled from
either a healthy or diseased population (Methods; Figure 1A). This input is used to estimate the
distributions required for the IB algorithm. We thus define three categorical random variables,
C~Cat({c1, cN}), X~Cat({x1, xG}), Y~Cat({y1, yK}) , respectively representing the N

cells, G genes and K cell states of interest. Normalizing the input matrix D by the total number of counts,
we obtain a joint probability distribution p(c, x). Next, summing p(c, x) across the cells, we obtain p(x),
such that an entry [p(x)]i represents the marginal probability of sampling the transcript of gene X
Using Bayes theorem, we obtain the conditional probability:

p(clx) = L2 [1]

Here, an entry [p(c|x)]ij represents the probability that a randomly sampled cell from D is the cell c,
Nx1
given that it expresses gene xj. The provided cellular annotation vector S € R " allows us to define the

conditional distribution of Y (representing the K cell states of interest) given that we observed a cell in D
. By definition p(y|c) is an indicator function, defined by S, namely, for a cell c, p(y|cl,) = 1if Sl, =y

and zero otherwise:

[pGylo],; =1 [2]

At last, we can obtain the conditional distribution of cell states of interest given that we observed a

Sj=y[,

certain gene in D:

N
p(ylx) = le(ylcj)p(cjlx)- [3]
The conditional probability matrix of cell states]given the genes p(y|x) and the gene probability vector
p(x) are used as input to the core of the biolB method, the IB algorithm.
The IB yields the optimal probabilistic mapping, p(;|x) from the genes’ random variable, X, to the
categorical random variable representing the metagenes 3(\~Cat({;1, . ;M}), (for [M| <= |G|). The
mapping is optimal with respect to the tradeoff between compression and information about the signal
of interest Y according to a given threshold parameter 3 (Figure 1C). This is achieved by optimizing for:X\
that minimizes the mutual information with the input genes X, I(X, 3(\), while maximizing the mutual

information with Y, I(X, Y) (Methods; Figure 1C):
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X = argmin;(I(X, X) — BIX, Y)). [4]
The resulting metagenes are probabilistic clusters of genes capturing the shared expression patterns
amongst cell states relative to Y (Figure 1D). The metagenes are defined by two probabilistic matrices,

Lol ~ GxM LD
one linking metagenes to genes (p(x|x) € R ) ) and another - linking metagenes to cell states of

interest (p(ylz) € RKXM). In the flat clustering mode, biolB generates M metagenes, where M is defined
by the user (Methods). Additionally, biolB can obtain a hierarchy of metagenes by gradually decreasing 3
through a reverse-annealing process® (Methods). In the hierarchical mode, the number of metagenes M
is roughly determined by the threshold parameter 3, ranging from the original representation (no

compression, B = oo; X = X) to full compression to a single cluster (3 = 0). The probabilistic output

mapping, p(y|;), reflects the amount of information each metagene holds regarding the different
labels, whereas the hierarchical structure reveals the interdependence between the metagenes, and the
underlying cellular populations they correspond to (Figure 1E). As an illustrative example, we construct a
toy dataset composed of cells belonging to one of two cell types, which act as the signal of interest Y
(Supplementary Figure 1A-D). The biolB hierarchy is revealed by plotting the conditional probabilities

p(yl/J;) of a particular label given every metagene, across [3 values that define the compression level
(Supplementary Figure 1C-D). The hierarchical structure reflects the interconnections among the
metagenes and the specified cell types of interest (Y), while the bifurcation order is dictated by the
informativity of the generated metagenes relative to Y. biolB can also capture the relationships between
related cell types, defined as distinct labels of interest (Y). Given a toy model with four related cell types,
biolB hierarchy reflects the two distinct pairs of linked cell types by two branches. Further splits
correspond to higher-resolution separation to different cell types, eventually resulting in cell
type-specific metagenes (Supplementary Figure 1E-G). Progressing to simulated data that more
realistically reflects the characteristics of scRNA-seq®”, we show that biolB outperforms competing
methods (including scGeneFit*®, scANVI*®, NMF* and LDVAE") in identifying underlying signal-specific
genes (Supplementary Figure 2). Furthermore, biolB is robust to batch effects, class imbalance,
erroneous cellular annotations, and cell subsampling (Supplementary Figures 3-6).
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Figure 1. Elucidating meaningful, signal-specific metagenes using biolB. A-D) The biolB pipeline. A)
Input; biolB takes as input a gene count matrix and a cellular annotation vector, labeling every cell with a
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state, representing the signal of interest. For example, if the signal of interest is cell type, these labels
annotate every cell with the corresponding cell type. B) Distributions extraction; The provided count
matrix and the cellular annotation vector are used to estimate the distributions of the random variables
representing the genes (X) and the cell states of interest (Y). C) Information Bottleneck (IB); The
probabilities obtained in (B) are used as input for the IB algorithm, which yields the optimal mapping of
genes to metagenes, by optimizing the trade-off between compression, linking genes (X) and metagenes

(X), and relevant information, linking metagenes (X) and the cell states of interest (Y). This is achieved by
optimizing for X that minimizes the mutual information with the input genes X, I(X, X), while

maximizing the mutual information with Y, 1(3(\, Y). D) Output; The output of biolB is a probabilistic
mapping between genes and metagenes, scoring all the genes measured in the input matrix by their
contribution to each metagene. biolB also provides a cell-to-metagene compressed representation of the
input matrix, summarizing the expression of metagenes in single cells. E) Possible downstream
applications of the compressed data achieved by biolB: elucidating transition signatures, identifying
signal-associated cellular subpopulations with distinct transcriptional profiles, disentangling distinct
label-specific representations, and characterizing the hierarchical interconnections between metagenes
and the corresponding cell types. Figure was created with BioRender.com.

biolB elucidates a spectrum of gene programs underlying the gradual development of the
pathological phenotype in Alzheimer’s Disease neurons

|26 |27,28

Both clinical® and pathologica manifestations of Alzheimer’s Disease (AD) suggest that it is a
continuum with a gradual development of the pathological phenotype. Here we show that by tuning the
number of metagenes, biolB reveals a spectrum of gene signatures underlying the gradual
transformation associated with Alzheimer’s Disease (AD). We applied biolB to a scRNA-seq expression
profiles of excitatory neurons with and without the neurofibrillary tangles (NFT)? to elucidate molecular
pathways underlying neuronal vulnerability in AD. Given the cellular labels indicating the presence or
absence of tau pathology (NFT-bearing vs. NFT-free, respectively; Figure 2A), the three metagenes
generated by biolB (Methods) revealed a gradual shift in expression levels with metagenes 0 and 2
overrepresented in NFT-free and NFT-bearing neurons, respectively, and metagene 1 representing an
intermediate state signature between the two populations (Figure 2B, Supplementary Tables 1,2). By
dividing cells to metagene-associated clusters based on their relative metagene expression
(Supplementary Figure 7A; Methods), and assessing the phenotype progression stage using the
NFT-associated gene markers® (Figure 2C, Supplementary Figure 7B), we found that indeed, the
NFT-linked marker genes gradually increased in expression from metagene 0, associated with NFT-free
neurons, through the ‘intermediate state’ metagene 1, to metagene 2, associated with NFT-bearing
neurons (Figure 2C, Supplementary Figure 7B). Next, the direct link between biolB’s metagenes to genes
(Figure 2D) allowed us to interpret the biological identity of each metagene (Figure 2E; Methods,
Supplementary Table 3). Metagene 0, associated with the NFT-free cells, was enriched for axon guidance,

an essential pathway of neuronal homeostasis®®. Metagene 2, associated with NFT-bearing cells, was
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333 enriched in synaptic

represented by multiple genes linked to Alzheimer’s Disease progression
plasticity and neurotransmitter secretion, in agreement with previous findings® (Figure 2E). Finally,
metagene 1, representing the intermediate state, is enriched for oxidative phosphorylation, reported to
be damaged at the early stages of the disease® (Figure 2E).

We defined a set of benchmark tasks aimed to assess the biological interpretability of outputs of
different methods by quantifying their similarity to the molecular signatures of neuronal vulnerability®
(Supplementary Table 4, Methods). First, we compared the fraction of recovered informative genes
(characterized as part of the neuronal vulnerability signatures) captured within the top (300/500)
markers of the produced metagenes, or gene factors. biolB outperforms competing methods in
recovering informative genes given three and five gene signatures that expose the intermediate
condition, and performs similarly to scGeneFit while outperforming other baselines given two gene
signatures (one signature per condition, Figure 2G). We additionally evaluated the correspondence
between produced metagenes or factors and previous division of genes to biological pathways®
(Supplementary Table 4). biolB outperforms competing methods in informative pathway recovery given
three and five gene signatures, and performs similarly to scGeneFit while outperforming other baselines
given two gene signatures (Figure 2H, Supplementary Figure 8, Methods).

biolB’s low runtime and moderate memory usage make it suitable for running on CPUs, even with large
datasets, especially when restricted to highly variable genes, as recommended (Figure 2F, Supplementary
Figure 9, Supplementary Table 5). At last, biolB is robust to initialization parameters and noisy data
(Supplementary Figures 10, 11).
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Figure 2. biolB elucidates a spectrum of gene programs underlying the development of the
pathological cellular phenotype in Alzheimer’s Disease neurons. A) UMAP representation of the original
data® (left) and of the biolB compressed data (right), colored by the input labels indicating the presence
of NFT pathology. B) UMAP representation of the biolB compressed data, colored by the expression
levels of the resulting metagenes (Methods). C) Heatmap featuring normalized expression of
NFT-associated gene markers (as previously defined®) in cells clustered by relatively maximized
metagene expression (Methods). D) Heatmap featuring the top 10 genes representing each of the
metagenes and their corresponding probabilistic metagene-to-gene mapping. E) Barplot showing the top
significant pathways (GO Biological Process, KEGG pathways) enriched within the top 100 markers of
each metagene. F) CPU Runtime as a function of the number of genes (given 10,955 cells; top) and
number of cells (given 3,000 highly variable genes; bottom) for biolB, scGeneFit, scANVI, NMF and
LDVAE. The experiment was repeated n = 10 times. G) Fraction of ground-truth informative genes,
shown in (C) (Methods) recovered within top 300-500 gene markers of two (left), three (middle) and five
(right) gene signatures generated by biolB, scGeneFit, scANVI, NMF and LDVAE. Statistical significance
was assessed using the Wllcoxon signed rank test (non-parametric), with * indicating p<0.01, in
comparison to the biolB scores. H) Correspondence between the division of genes to signatures and
ground-truth pathways for two (left), three (middle) and five (right) gene signatures generated by biolB,
scGeneFit, scANVI, NMF and LDVAE. For each method, the correspondence scores were normalized to
the scores of shuffled signatures, per pathway (Methods). Statistical significance was assessed using the
Mann—Whitney U-test (non-parametric), with * indicating p<0.01, in comparison to the biolB
correspondence scores. In box plots middle line, median; box boundary, interquartile range (IQR);
whiskers, 1.5*IQR; gray dots, points beyond the minimum or maximum whisker. *MG — metagene.

biolB identifies cells at the transition state between epithelial and mesenchymal phenotypes

Biological signals often represent gradual transition processes, with the cellular labels signifying their
correspondence to the end-point phenotypes. In this scenario, apart from the state-specific binary
markers, the transition genes expressed along the trajectory are of particular interest. We studied this
setting in the context of the epithelial-to-mesenchymal transition (EMT) by applying biolB to the analysis
of a scRNA-seq data from primary human mammary epithelial cells*. Given the cellular annotation
(epithelial or mesenchymal), we used biolB to generate three metagenes, with two metagenes enriched
in either mesenchymal or epithelial states (metagenes 0 and 1, respectively), and one metagene
enriched in a transition stage (metagene 2; Figure 3A; Supplementary Tables 6,7). Notably, the
state-specific metagenes exhibited a gradual expression change, correlated with the EMT transition. In
particular, the expression of metagene 0 monotonically decreases (increases) with mean marker
expression of epithelial (mesenchymal) marker genes (Spearman correlation coefficients -0.43 and 0.7,
respectively) (Figure 3B). On the contrary, the expression of metagene 1 monotonically increases
(decreases) with the epithelial (mesenchymal) marker expression (Spearman correlation coefficients 0.54
and -0.58, respectively) (Figure 3B). Metagene 2 exhibited weaker correlation with markers of both
phenotypes (Spearman correlation coefficients 0.22 and -0.13 for epithelial and mesenchymal markers,
respectively). Consequently, cells maximizing metagene 0 (metagene 1) feature a differentiated
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mesenchymal (epithelial) phenotype, whereas cells maximizing metagene 2 represent a transition state
between the two phenotypes (Figure 3C), and express intermediate levels of epithelial and mesenchymal
marker genes (Figure 3D). Furthermore, the transition (metagene 2) signature is enriched for categories
related to p53 pathway, Myc signaling and translation (Figure 3E, Methods), in agreement with previous

findings®'.
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Figure 3. biolB identifies cell states along the epithelial to mesenchymal transition. A) UMAP
representation of the original data, colored by the input labels of epithelial and mesenchymal
phenotypes (left), and by the relative expression of biolB metagenes (right). B) The mean expression
level of epithelial (left column) and mesenchymal (right column) marker genes as a function of the
expression level ranks of metagene O (top row), metagene 1 (middle row) and metagene 2 (bottom row),
per cell. C) UMAP representation of the original data colored by the relatively maximized metagene. D)
Heatmap showing the relative expression levels of epithelial and mesenchymal markers in three
metagene-associated cellular populations shown in (C). E) Barplot with the enriched GO Biological
Processes and MSigDB Hallmark pathways within the top 100 markers of metagene 2, representing the
transition signature. *MG — metagene.

biolB extracts distinct molecular signatures in macrophages for developmental stage and organ
residence across development

Gene expression data in scRNA-seq experiments contain signatures associated with multiple overlapping
biological signals or conditions. How can we identify gene signatures associated with a specific source of
heterogeneity in the data? We demonstrate biolB’s approach to this challenge in the context of a
scRNA-seq atlas of the developing immune system, which contains cells from multiple organs spanning
weeks 4 to 17 after conception® (Figure 4A). We focused on the macrophages population, due to the
variability of their gene expression across organs and throughout the gestation stages, with specific
subpopulations, differentially abundant both between different organs and across development®
(Supplementary Figure 12). Here we demonstrate that biolB metagenes are associated with specific
macrophage subpopulations, and that the biolB hierarchy reveals their interconnections with respect to
the signal of interest.

Using the hierarchical mode of biolB via a reverse-annealing process (Methods), we gradually compress
the data, subsequently merging the metagenes carrying similar biological information about the selected
signal of interest and thus exposing a signal-specific hierarchy of gene programs. The biolB hierarchy is
based on the probabilistic mapping between cellular labels and metagenes across a range of 3 values,
representing the clustering resolution, or the number of metagenes (Methods).

We first applied biolB with Y, the signal of interest, set to be the developmental stage, after aggregating
cells, each assigned either ‘Early’ (8-12 gestational weeks) or "Late’ (>14 gestational weeks) label. The
resulting biolB representation comprised four macrophage-specific metagenes (Methods,
Supplementary Figure 13), enhancing the target signal of the developmental stage (Figure 4B;
Supplementary Tables 8,9). These four metagenes were organized into two branches: two metagenes (0,
1) associated with the early stage, and two metagenes (2, 3) associated with the intermediate stage (2)
and the late stage (3) (Figure 4D,E; Supplementary Figure 13, Methods). The stage-specific metagenes
(0,1,3) were upregulated in the relevant macrophage subpopulations (Figure 4H). The early
stage-associated metagenes 0 and 1 are enriched in LYVE-high, proliferating macrophages and
TREM2-positive macrophages, respectively, while the late stage-associated metagene 3 is enriched in
iron-recycling and MHCII-high macrophages, in agreement with previous findings®>. The intermediate
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metagene 2 was found to be enriched both in all early stage-associated subpopulations (LYVE-high,
proliferating and TREM2-positive macrophages), as well as in the late stage-associated iron recycling
macrophages. Finally, comparing the metagene expression between cellular groups divided both by the
developmental stage and the organ-of-origin supported the specificity of biolB metagenes to the
selected signal of interest (Figure 4J). Indeed, metagenes 1 and 3 are respectively overrepresented in
early and late cells of all organs, revealing stage-specific gene programs, common to multiple organs.
Furthermore, metagene O represents a distinct signature of early stage-associated genes, specifically
increased in yolk sac. Thus, biolB can both capture the dominant signal-associated transcriptional
patterns shared across cells and identify subpopulations that deviate from these common patterns.
When Y is set to be the organ-of-origin (Figure 4C), the biolB hierarchy exposes both the organ-specific
and the shared transcriptional programs, revealing the macrophage subpopulations with similar
phenotypes across different organs (Figure 4F,G; Supplementary Tables 10, 11). The yolk sac branch
(metagenes 0, 1) differentiates between a yolk sac-specific signature enriched in macrophages from
LIVE-high, proliferating and TREM2-positive populations (metagene 0), and an additional gene program
shared between the yolk sac and the liver macrophages, enriched in proliferating and iron-recycling
populations, reflecting the shared hematopoietic properties of the yolk sac and the liver®*® (metagene 1)
(Figure 4F,G,|,K). In parallel, while metagene 4 represents a liver-specific signature, metagene 3
elucidates a transcriptional signature shared between the liver and the spleen, also enriched in
iron-recycling macrophages, in agreement with previous findings®> (Figure 4FG,|K). Finally, the
organ-specific metagenes elucidate the genes associated with particular organs or organ groups, and
appear to be generally common across developmental stages (Figure 4K).
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Figure 4. biolB extracts distinct molecular signatures underlying the signals related to developmental
stage and organ-of-origin in developing macrophages.

A) Schematic representation of the analyzed scRNA-seq data®* of macrophages from 5 distinct organs
(kidney, liver, skin, spleen, yolk sac) and 11 gestational weeks (4, 7-12, 14-17). Figure created with
Biorender.com. B,C) UMAP representation of the data compressed by biolB with Y set either to (B)
developmental stage (Early: < 14 weeks; Late: >= 14 weeks) or (C) organ-of-origin, colored by the
developmental stage (top) or by organ-of-origin (bottom). D,F) Metagene hierarchy inferred from biolB
with Y set either to (D) developmental stage or (F) organ-of-origin. Each metagene is labeled with the
associated cell group(s) of interest and three top representative genes (Methods). E,G) Heatmaps
showing the probabilistic mappings between biolB metagenes and cell groups of interest (top) and genes
(bottom) with Y set either to (E) developmental stage or (G) organ-of-origin. H,l) Heatmaps representing
the relative expression of biolB metagenes generated with Y set to (H) developmental stage or (I)
organ-of-origin, in macrophage subpopulations defined by the original analysis®>. J,K) Heatmaps
representing the relative expression of biolB metagenes generated with Y set to (J) developmental stage
or (K) organ-of-origin, in cellular clusters divided by organ-of-origin and developmental stage. *MG —
metagene.

biolB metagenes identify Alzheimer’s Disease associated astrocytes

A key challenge in scRNA-seq analysis is to identify specific cellular subpopulations affected by a certain
condition, such as disease. The standard pipeline, commonly implemented for this task, involves
unsupervised clustering of cells, which exposes the downstream analysis to clustering-related bias.
BiolB can overcome such limitations and detect disease-associated cells within a heterogeneous cellular
population, which we demonstrate in the context of Alzheimer’s disease (AD) - associated astrocytes. To
do so, we re-analyzed single-nucleus RNA-seq measurements of astrocytes from an AD mouse model and
wild-type (WT) mice?® (Figure 5A).

BiolB analysis with the signal of interest set as the genotype (AD/WT) resulted in a hierarchy of six
metagenes (Supplementary Tables 13,14) capturing informative transcriptomic signatures differentiating
between AD and WT cells (Figure 5B,C, Supplementary Figure 16A). Furthermore, biolB metagenes
captured a higher-resolution structure within the data; the main branch of metagenes associated with
AD genotype is composed of metagenes 0,1,2, each associated in turn with a distinct subpopulation of
AD astrocytes (Figure 5D,E). To interpret their biological identities, we extracted a set of representative
genes for each metagene (Methods). Metagene 0, whose representative gene set includes genes
involved in morphology regulation (GFAP, THY1, VIM, B2M, PSEN1), is enriched for the cellular projection
development process, consistent with general astrocyte activation®’** (Supplementary Figure 16B,C).
Metagenes 1 and 2 represent pathways more tightly associated with the disease: , the representative
gene set of metagene 1 is enriched with immune genes®, such as CLQA* and CTSS*, and metagene 2 is
represented by established markers of AD pathology, TYROBP and SERPINA3N***’. Meta-analysis of the
AD-associated transcriptome® revealed that metagenes 1 and 2 are the only metagenes that are
exclusively represented by AD-associated genes (Figure 5F; Methods). Characterization of the WT-related
metagene 5 can be found in Supplementary Figure 16D.
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While metagene 0 is expressed in the majority of AD astrocytes, metagenes 1 and 2 characterize distinct
cellular subpopulations among the AD cells (Figure 5D,E), which we hypothesized to correspond to
disease-associated astrocytic signatures. To support our interpretation, we quantified the expression of
biolB metagenes in six astrocytic clusters defined in?®, which included two homeostatic clusters, two
GFAP-high clusters of reactive astrocytes which are not specific to the disease, and two
disease-associated clusters®®. We found that while biolB metagene 0 is highly expressed both in
disease-associated clusters and in reactive GFAP-high clusters, metagenes 1 and 2 are specifically
enriched in the disease-associated cluster, most abundant in AD* (Figure 5G; Supplementary Figure
16E). The two WT-associated metagenes (4,5) are correspondingly enriched in the homeostatic clusters
(Figure 5G). In summary, biolB allows to directly uncover the cellular subpopulations differentially
affected by the disease.
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Figure 5. biolB metagenes reveal AD-associated astrocytes. A) Schematic representation of the
snRNA-seq dataset of astrocytes, derived from a murine model of AD %. The data was analyzed using
biolB with Y set to genotype (WT/AD), which resulted in identification of a specific subpopulation of
disease-associated astrocytes. Figure created with Biorender.com. B) BiolB metagene hierarchy produced
given the preprocessed snRNA-seq data, relating to the AD group. The defined metagenes exhibit
differential expression patterns between AD and WT, with metagenes 0, 1 and 2 overexpressed in AD
cells (Fold change increase in metagenes 0, 1, 2: 1.9, 3.9, 6, respectively), a neutral metagene 3 (Fold
change increase in metagene 3 = 0.91), and metagenes 4 and 5 overexpressed in WT cells (Fold change
increase in metagenes 4, 5: 0.3, 0.66, respectively; Supplementary Table 15). C) UMAP representation of
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the original data (left) and of the biolB compressed data (right). D) Heatmap showing scaled expression
of metagenes 0,1,2 in individual cells of AD genotype, sorted by maximal normalized metagene
expression. E) UMAPs of the biolB-compressed data, colored by the expression of AD-associated
metagenes 0,1,2. F) Fractions of representative genes of metagenes 0-5 that were found to be
differentially expressed in at least 7 studies in the meta-analysis of the AD-associated transcriptome®®
(Methods). G) Heatmap of scaled expression values of six biolB metagenes in six transcriptional clusters
of astrocytes, defined in ref®. *MG — metagene.

biolB metagene hierarchy reflects developmental connections between hematopoietic cell
types

scRNA-seq datasets expose a striking diversity of cell types and states, whose interconnections carry
important biological information about cell state identity. For example, the hierarchical differentiation
tree of hematopoietic stem and progenitor cells (HSPCs) reveals the phenotype and function of mature
hematopoietic cells*. BiolB metagene hierarchy can capture the developmental hierarchical structure of
cell types, as we demonstrate here for scRNA-seq data of HSPCs differentiation® (Figure 6A). BiolB is
applied given the cell type signal over a subset of the data containing six major hematopoietic cell types
— monocytes, neutrophils, mast cells, basophils, megakaryocytes and erythroid cells. This analysis
produced 11 metagenes, where each of the six cell types is uniquely characterized by at least one
metagene, maximizing its expression level within that particular cell type (Figure 6B, Supplementary
Tables 16,17). In addition, there are metagenes representing a transcriptional program shared by several
developmentally linked cell types (Figure 6B,C; Supplementary Figure 17A). For example, metagenes 0
and 2 are specifically expressed in monocytes and neutrophils, respectively, while metagene 1 is
activated in both (Figure 6B,C). The biolB metagenes are biologically informative, uniting genes and
processes characteristic of the corresponding cell types (Supplementary Figure 17B,C). Hence, metagene
0, specifically representing monocytes, features monocyte marker genes such as FABP5* and
WFDC17°%** (Figure 6C,D), and is associated with pro-inflammatory macrophage activation, characteristic
of monocytes function®® (Figure 6E). Similarly, metagene 2, specifically characterizing neutrophils,
includes markers like ITGB21%** CAMP, LTF, and ELANE® (Figure 6C,D) and is statistically enriched for
neutrophil mediated immunity and neutrophil activation (Figure 6E).

The hierarchical representation of the metagenes generated by biolB induces a hierarchy of cell types
that reflects the developmental links between them (Figure 6F,G; Supplementary Figure 17D). In
particular, the first bifurcation in the metagene hierarchy generates two metagenes corresponding to the
two major branches in the developmental hierarchy?* (Figure 6A), one which includes Monocytes and
Neutrophils, and another which includes Mast cells, Basophils, Megakaryocytes and Erythroid cells
(Figure 6F,G). The second bifurcation splits the latter into two additional specific metagenes, one
including Mast cells and Basophils, and another - Megakaryocytes and Erythroid cells (Figure 6F,G). The
third bifurcation further splits the metagene corresponding to the Mast-Baso branch to two separate
metagenes that are more specific to either Mast cells or Basophils. Similarly, the fourth bifurcation splits
the metagene corresponding to the Monocyte-Neutrophil branch to two separate Monocyte and
Neutrophil associated metagenes. Finally, the last bifurcations split the metagene corresponding to the
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Megakaryocyte-Erythroid branch to four metagenes distinguishing between Megakaryocytes and
Erythroid cells.

In conclusion, biolB metagenes characterize distinct biological processes linked to the underlying cellular
populations, while the metagene hierarchy unveils the biological relationships interconnecting these
populations.
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Figure 6. biolB metagene hierarchy reflects the connections between the developmentally linked
hematopoietic cell types. A) Schematic representation of the scRNA-seq dataset of differentiating
hematopoietic cell types®* with their associated developmental hierarchy. Figure created with
Biorender.com. B) Heatmap showing the scaled expression (z-score) of the biolB metagenes across cell
types. C) Heatmap showing scaled expression of the top representative genes of metagenes 0,1,2 across
monocytes and neutrophils. Metagenes 0 and 2 are specifically expressed in monocytes and neutrophils,
respectively, while metagene 1 is expressed in both. D) SPRING>* visualizations of the hematopoietic
dataset (embedding as provided in®*), colored by cell type (left panel) and by the expression of
metagenes 0-2 (three panels on the right). E) Gene Ontology enrichment results showing biological
process categories significantly enriched in metagene 0 (left) and 2 (right). F) Bifurcation plots of further
compression of the 11 metagenes shown in (B) relative to Monocytes, Mast cells and Megakaryocytes.
Metagenes characterizing developmentally linked cell types are linked in the metagene hierarchy. For
example, metagene 0 representing monocytes diverges from the same branch as metagene 2,
representing Neutrophils. Bifurcation plots relative to Neutrophils, Basophils and Erythroid cells are
provided in Supplementary Figure 4D. G) Metagene hierarchy inferred from the biolB reverse annealing
output shown in (F) and in Supplementary Figure 4D. The cell type associated with every metagene is the

one maximizing the conditional probability (maxyp(y|x)) of a cell type y given this metagene, x. *MG —

metagene.

Discussion

We introduced biolB, a scRNA-seq tailored framework for clustering genes with respect to a set of known
cellular labels, based on the Information Bottleneck method. We have shown that biolB metagenes,
which are biologically interpretable, provide a meaningful compressed representation which exposes
signal-specific molecular pathways underlying the biological variance between the cellular populations of
interest. BiolB simultaneously extracts pathways associated with a specific label and exposes
signal-associated gene programs, such as intermediate states, as shown in the context of AD neurons,
and transition signatures, as demonstrated in the context of the EMT. Given single-cell data from human
differentiating macrophages, with overlapping signals of organ-of-origin and developmental time, biolB
successfully extracted two distinct compressed data representations, each depicting the respective
biological processes. biolB also identified a subpopulation of disease-associated astrocytes in
single-nucleus data from an AD mouse model, providing the genotype as the signal of interest. At last,
we have shown that the metagene hierarchical structure, produced by the iterative application of the IB
algorithm, exposes interconnections between metagenes and their respective cell types. We showcased
this in the context of differentiating hematopoietic cells, where the biolB hierarchical structure matched
the expected developmental hierarchy of hematopoietic cell types.

BiolB stands out among available methods for supervised gene program discovery due to its ability to
generate multiple informative gene signatures, associated with the specific cellular division of interest.
This feature is particularly valuable for uncovering pathways linked to signal characteristics, such as
intermediate states, transition signatures, and subpopulations with distinct phenotypes. Furthermore, as
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opposed to existing methods, biolB can provide a hierarchical structure of the produced gene signatures,
revealing the interconnections between the underlying cellular populations.

We conducted a comprehensive analysis of the framework’s robustness and stability, showing that biolB
metagenes remain highly consistent across random initializations, hyperparameter tuning, and under
data perturbations, such as cell subsampling. Since biolB is based on mutual information, its output is
sensitive to the representation of each cell cluster in the data, both in terms of the cluster size and the
number of enriched genes in it. That being said, we demonstrated that given a strong transcriptional
signature differentiating the underrepresented cluster, biolB remains robust to its signal, extracting the
relevant gene programs despite class imbalance. Furthermore, while by design biolB relies on input
cellular labels, which might be a limitation when annotations are ambiguous, we show that when
supervised with a small proportion of incorrect labels biolB does not overfit and its output remains
aligned with the true transcriptional signal.

As with a majority of computational methods, the biolB output depends on a hyperparameter, (3,
controlling the level of compression. This is analogous to setting the number of clusters in a clustering
algorithm, making this value data-specific. Here, the interpretability of the obtained metagenes allows
the user to tune 3 to obtain the desired number of informative metagenes. We showed that the choice
of B does not affect the structure of the compressed representation, such that the gene-to-metagene
mapping at the corresponding compression levels remains highly stable. The current hierarchical biolB
formulation is limited in its scalability to data size, as it relies on the exact solution to the IB problem.
This can be overcome, as we have done in this study, by focusing the analysis on highly informative
genes. A natural extension to biolB to overcome this limitation more generally in future work is using an
existing variational IB solver which relies on neural approximation>™’.

In future work biolB can be extended to extract multiple related data representations with respect to
several variables of interest, based on the multivariate information bottleneck framework®. This
paradigm might be particularly useful in analyzing gene expression data, allowing to simultaneously
extract multiple encoded signals and analyze the corresponding biological processes. Furthermore, biolB
could be extended to produce signal-specific cell clusters, or metacells, retaining maximal possible
information about a target gene subset, such as disease biomarkers.

Here we demonstrated that biolB can provide efficient characterization of signals of interest encoded in
single-cell data, such as cell type, disease state or organ-of-origin. BiolB can be generalized beyond
single-cell gene expression data to additional types of biological data, such as bulk RNA-seq and
proteomics data, to expose signal-specific optimally compressed representations. In summary, biolB is
expected to enrich biological data analysis by revealing the hierarchical, signal-specific structure encoded
in complex datasets.
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Materials and methods

The biolB algorithm

The biolB algorithm provides a compressed representation of scRNA-seq data with respect to a signal of

NXG
interest. To do so it takes as input a cell (N) by gene (G) scRNA-seq measurements matrix, D € R 8 ;
following standard practice we suggest providing log-normalized counts as input. Additional input to

biolB is a vector of cell labels related to the signal of interest S € RNXl, labeling every cell with one of K
possible cell states of interest defined using Y = [1, .., K], such that Y = {S}. Given this input, the
biolB pipeline is composed of two main steps: (1) obtaining a probabilistic representation of the count
matrix, and (2) using this representation as input for the Information Bottleneck (IB) algorithm.

1. Obtaining a probabilistic data representation

We use the input count matrix D and signal of interest S to obtain the relevant probability distributions
required for the IB algorithm; the conditional probability matrix of cell states given the genes p(y|x) and
the gene probability vector p(x). To convert to probability space, we define the random variables of
C~Cat({c1, . CN}), X~Cat({x1, . xG}), Y~Cat({y1, . yK}) , respectively representing the N

cells, G genes and K cell states of interest. The empirical distributions of these are then constructed
using the input data (see Equations 1-3).

2. The IB algorithm

The obtained probabilistic representations, p(y|x) € R®% and p(x) € R® are the input for the
Information Bottleneck (IB) algorithm.

IB® is a dimensionality reduction method, designed to extract the information from data X that is
relevant for the prediction of another related variable Y, such that the choice of Y determines the
relevant components of the signal encoded in X. Mutual information (Ml) is used to evaluate both the

N
extent of compression, I(X, X), and the level of relevant information preserved in the compressed data,

through I(X,Y). A trade-off parameter [ is introduced to control the amount of compression
(distortion) allowed. Formally, the IB objective is given by,

X = argminQ(I(X, X) — BI(X, Y)).
Notably, when B = 0, all genes are merged into one cluster (full compression), and when B = oo, the
compressed data is identical to the original full data, so every cluster is associated with one particular

gene, X = X. For every value of 3, the algorithm yields the conditional probability matrix of M gene

A AN

. . -~ MXG .
clusters, which we term metagenes, x € X, given the genes, x € X, p(x|x) €R X , representing the
optimal mapping of genes to metagenes, and the conditional probability matrix of cell states given the
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metagenes p(ylz) e R™™. For the full mathematical description and the associated proofs for the
information bottleneck algorithm, see refs**.

There are many ways to solve the IB objective (including neural approximators introduced recently®*™’).
Here we will focus on the Blahut-Arimoto algorithm®, described below. IB can provide either a series of
solutions at different compression levels, using a reverse-annealing process, or a single solution with a
flat division of the data points to a predefined number of clusters.

a. Blahut arimoto

While True:

p () -BD, POOIPGID] A~ A~
: e P pyx,VxEX,VxEX,

A
-> x|x) = =
pi+1( | ) ~ —BD,, [pOIDp(I0]
3p,,,(0e
X

- pi+1(x) = pr(x) pi+1(x|x), vVx € X.

~ 1 ~ ~ -~
> p, 0% :—(;)pri+1(x|x) p(x,y), Vx € X,Vy € Y.

i+1

IfVx€X, JS [pi“(;lx), pl.(;Ix)] S g

N
272

Break.

Here, € is a threshold parameter used to define convergence based on the difference between previous
and current iterations. For a given B, the algorithm converges into a stable solution, providing two

output probability matrices that define X, p(x|x) and p(y|x). p(x|x) determines the mapping between
the original data points x € X to data clusters x € X, whereas p(y|x) defines the association between

the data clusters, x € X, and the groupings of the signal of interest, y € Y.
b. Flat Clustering

To achieve the division of the data points x € X to a defined number of clusters M, we follow previous
work? and initialize the IB algorithm with a random mapping of X to M clusters, generating a binary

conditional probability matrix p(;|x) e R The corresponding p(;) and p(y|;) are obtained, using
basic probability rules and Bayes Theorem. Since this process introduces a dependence of the output on
the initialization, we randomly initialize the algorithm n = 100 times and select the mapping that
minimizes the objective function (Eq.4).

c. Reverse-annealing
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For the hierarchical mode of biolB, in the process of reverse-annealing the IB algorithm is initialized with

a compressed representation X that is identical to the original data X and with a large value of 3:

o p(xlx) = IIXI

o p(® = p®
e plx) = pylx)
° Bmax - 0

Next, we run the algorithm iteratively, while reducing . Upon convergence, we initialize the next

iteration with the final p(x|x) mapping achieved in the previous step, and with § — A, for a small step
size A.  Following this procedure we achieve a series of solutions for every value of f:
VB € {Bm_ B+ A ., Bmax}. At the end of this process Bmin — 0, corresponding to maximal

in’ Vmin
compression, where 3(\ consists of a single point, uniting all the original data points in X.
Reverse-annealing ultimately yields a hierarchical structure that mirrors several important aspects of the
identified clusters, such as their informativity for discrimination between the labels of interest Y, as well
as the interconnections among them. It is important to note that Emax controls the maximal number of

metagenes, namely the number of end-nodes in the hierarchy, and modifying it does not affect the
hierarchical structure itself, with consistent metagene-to-gene mapping at the corresponding hierarchy
resolutions (Supplementary Figure 14). Furthermore, as opposed to flat biolB clustering, hierarchical
biolB does not include a random initialization, and therefore its input is identical when consequently
applied to the same data. While hierarchical biolB is more computationally demanding than flat
clustering, biolB supports GPU acceleration for increased efficiency (Supplementary Figure 15,
Supplementary Table 12).

Downstream analyses

~ -~

1. Identifying representative genes: The representative genes x € X for a given metagene X, eEX
are identified as the ones that maximize p(x|xl_). Specifically, for a given metagene, we first

order the genes by their conditional probability p(x|xi) (p(x1|xi) > p(x2|xi) >..). For a given
T € [0, 1], the set of j representative genes {xl, Xy oo xj} is chosen as the minimal set such

that:

J ~
3 p(xJx) > .
k=1
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2. Recovering single-cell metagene expression: The biolB output provides the mapping of the
. . NXG | . N NxM .
original count matrix D € R “toits compressed representation D € R “ Namely, we obtain

the weighted expression of genes, x € X, using the mapping p(x|x)., given by,

Dij = %Dikp(xk|xj).

. R NxM
As a result, we obtain a cell (N) by metagene (M) compressed data matrix, D € R X , such that

Dij represents the expression level of metagene j in cell i.

3. Clustering cells based on the relative metagene expression: Based on single-cell metagene
expression, each cell can be assigned to a metagene-associated cluster by identifying the
metagene with the highest relative expression in that cell, given by:

—

D —u
m, = argmaxj(—”G—L) ,
J
Where m, is the metagene-associated cluster label of cell i, uj is the average expression of

metagene j expression over all cells, and oj is the standard deviation of metagene j expression

over all cells.

4. Extracting the metagene hierarchy: The biolB reverse-annealing output provides a series of
" - . -~ GXG ~ KxG .

conditional probability matrices: p(x|x) € R ** and p(ylx) ER *" for each B. Since we

initialize the reverse-annealing process with X = X, these matrices include N metagenes, but

only M of them are unique. We first identify the most representative gene x of each metagene X,

, using p(x|x):

N
x~ = argmax p(x|x)
X x t

i

Next, we extract the metagene hierarchy by identifying the merging points of the most

~

N
representative genes for each metagene across decreasing 3 . For example, metagenes X, and X,

are considered merged at Bmerge if vy, p(y|x/\)B = p(y|3a)B . The identified merging
X X

i ~merge j = merge
points are recorded using a format of the scipy.cluster.hierarchy.linkage() output linkage matrix
and plotted using scipy.cluster.hierarchy.dendrogram(). The code and the documentation for the
relevant biolB functions are provided in the biolB package at https://github.com/nitzanlab/biolB.

5. Linking metagenes to cell types: Metagenes, x € X, are linked to cell types, y € Y, using p(y|x)
mapping, given by,
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y~ = argmax p(y|x).
X, y U
Metagene X, is identified as an intermediate metagene if its maximal probability is close to the

uniform distribution, namely if abs(maxyp(y|xi) - %) < € , where € stands for a similarity

threshold (by default, e = 0.15).

Datasets

NFT-free and NFT-bearing neurons from Alzheimer’s Disease (AD) human brains

Data preprocessing

We obtained the dataset of single-cell RNA-seq of NFT-free and NFT-bearing AD neurons from ref.%,
available at https://cellxgene.cziscience.com/collections/b953c942-f5d8-434f-9da7-e726ba7c1481. We
downloaded the dataset of excitatory cells and further filtered it to include only cells of Ex2 subtype, out
of considerations of total cell number, similar frequencies of NFT-free and NFT-bearing neurons, and
total number of differentially expressed genes? resulting in 10,955 cells. Following basic preprocessing
using scanpy’s sc.pp.normalize_per_cell() and sc.pp.loglp(), the data was further reduced to 3000 highly
variable genes using scanpy’s sc.pp. highly _variable_genes() with the default parameters.

Method application

We applied biolB to generate m metagenes using bioib.flat_clustering(m) with default parameters, for
m = [2, 3], as for higher m additional metagenes showed no statistically significant enrichment in the
gene set enrichment analysis. The gene set enrichment analysis was performed using gseapy’s enrichr()
with GO_Biological_Process_2025 and KEGG_2021_Human gene sets.

Benchmarking

The ground-truth genes and pathways were obtained from the Supplementary Table 4 of ref.*’ Out of all
the identified pathways, we selected 150 pathways, enriched in the analyzed cluster Ex2, including 94
unique genes, appearing in the analyzed 3,000 top highly variable genes (the filtered genes and
pathways are provided in Figure 2C and in Supplementary Table 4). The Proportion of recovered
ground-truth genes was calculated as the proportion of top representative inferred genes that appear in
the list of 94 genes representing the ground-truth pathways (Figure 2F).

We additionally benchmarked the correspondence between the gene signatures generated by different
methods, and the ground-truth pathways. For this analysis, we used a deterministic version of gene
signatures, where they were composed for each method by the top 500 inferred representative genes
per signature, resulting in deterministic gene clusters of equal size. Pathway correspondence score c,

between pathway i, Pi, and a set of gene signatures Mj € M, was calculated as follows:
[xeEP. N xeEM|
—_—

c. = max
i j( lxeP|
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Thus, this score reflects the maximal proportion of genes in pathway Pi that represent the same gene

signature M. For example, if the whole pathway is represented by the same signature, this pathway
receives a maximal score of 1. We adjust for the underrepresented pathways, as follows: if |[x € Pi| <1

= 0. We further aimed to correct the scores for the baseline correspondence, which depends on the

total number of signatures and the total number of ground-truth genes, identified by different methods
within the top 500 representative genes. For each pathway, we normalized each method’s performance
by the mean correspondence score of the identified genes randomly assigned to the same number of
signatures over 10 iterations (Figure 2G, Supplementary Figure 6).

We compared biolB performance to scGeneFit, scANVI, NMF and LDVAE. We applied scGeneFit with
default parameters (method="centers’, redundancy=0.25). We identified 600 total markers and then
divided them into signatures based on the fold change between NFT-free and NFT-bearing neurons. For
each signature, we inferred top representative genes based on expression fold change between different
cellular groups clustered by input labels. scANVI was trained with default parameters, generating 10
latent representations in a fully supervised mode. The group-associated gene signatures were obtained
with integrated gradients, as explained here -
https://docs.scvi-tools.org/en/stable/tutorials/notebooks/use cases/interpretability.html. ScanVI gene

signatures were defined as top marker genes with the highest attribution means per cell group. NMF was
applied with the default parameters using ‘sklearn.decomposition.NMF(). The NMF gene signatures
were defined as genes with top coefficients per factor, stored in nmf.components_. LDVAE was trained
with the default parameters, generating m latent representations with m = 2, 3,5, similarly to biolB.
The LDVAE gene signatures were obtained as genes with top loading scores per factor, assessed via
model.get_loadings(), as explained here-
https://docs.scvi-tools.org/en/stable/tutorials/notebooks/scrna/linear_decoder.html.

EMT dataset from human mammary epithelial cells

Data preprocessing
We obtained the dataset of the human mammary eplthellal cells across the epithelial-to-mesenchymal
transition from ref.”, available at https:

further used the same preprocessing and annotation pipeline, as in ref®®. The final analyzed dataset
included 17,632 cells of HUMEC cell line and 5,000 top highly variable genes.

Method application

We applied biolB to the obtained dataset to generate 3 metagenes using bioib.flat_clustering(3) with
default parameters. The gene set enrichment analysis was performed using gseapy’s enrichr() with
GO_Biological_Process_2025 and MSigDB_Hallmark_2020 gene sets, in alighment with the original
study?’.

Multi-organ atlas of human differentiating macrophages

Data preprocessing
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We obtained the dataset of the multi-organ atlas of human differentiating macrophages from ref.?,
available at https://developmental.cellatlas.io/fetal-immune. We downloaded the dataset of myeloid
cells and further filtered the data to include only cells of macrophage cell types. Using the gestational
week label we assigned the cells into two groups, “Early” and “Late” (Early: < 14 weeks; Late: >= 14
weeks). In order to avoid bias towards less represented organ groups, we filtered out cells which
originated from organs with less than 2800 total cells, resulting in cells originating from five organs:
kidney (KI), liver (LI), skin (SK), spleen (SP) and yolk sac (YS). Following basic preprocessing for low-quality
cells using scanpy’s®® “sc.pp.filter_cells(min_genes=200) ", the data used for biolB analysis included
108,197 cells. We further reduced the data to 500 highly variable genes using scanpy’s™
‘sc.pp.highly_variable_genes()® with the default parameters.

Method application
We applied biolB to the obtained dataset twice, (1) setting Y as the development stage (
Y = [Early, Late]), and (2) setting Y as the organ-of-origin (

Y = [Kidney, Liver, Skin, Spleen, Yolk Sac]). In both analyses we initialized the reverse-annealing
process with Bmax = 30. With Y set to be the development stage, biolB initially produced five

metagenes, with metagene 4 mostly represented by the marker genes of T-cells and B-cells and being
enriched in only 229 out of 108,197 cells in the dataset (Supplementary Figure 13). Furthermore, we
found that cells maximizing metagene 4 feature significantly higher doublet scores than cells maximizing
the other four biolB metagenes (Supplementary Figure 13). Therefore, we concluded that metagene 4
has identified a doublet subpopulation and excluded it from the downstream analysis.

Astrocytes from a murine model of Alzheimer’s Disease (AD)

Data preprocessing
We obtained single-nucleus RNA-seq measurements from astrocytes from AD mouse model and
wild-type (WT) mice from ref.?, available at

.cgi?acc=GSE143758. Following  normalization and
log-transformation, we performed leiden clustering using Scanpy’s “sc.tl.leiden()’ function with default
parameters. Following this, we retained the cell clusters with enriched expression of the astrocytic
markers Gfap and Sicla3, resulting in n=7036 cells. As a last step we extracted highly informative genes
with respect to the signal of interest, or disease state, encoded by the provided genotype annotation
Y = [AD, WT]. This was done by retaining the 1000 genes with the highest information gain (IG) values,
where the IG is defined using the mutual information between the gene expression probability p(x) and
the genotype probability p(y),

IG (x) = p(x) D, (%) [ P(¥) )-

Method application
We applied biolB with Y set as the mouse genotype: Y = [AD, WT]. The reverse-annealing process was
initialized with Bmax = 150.
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Constructing a list of AD-related genes

AD-associated genes were defined as differentially expressed genes in at least 7 of the 15 AD-APP mouse
model studies as part of the AD meta-analysis resource, which has summarized and compared the
differential expression results from a wide range of AD transcriptomic studies®.

Hematopoiesis dataset

Data preprocessing

We obtained the dataset of the differentiating hematopoietic cell types collected by ref.?* and processed
by ref.”. Data was downloaded using the Cospar package
(https://cospar.readthedocs.io/en/latest/index.html) using the function ‘cs.datasets.hematopoiesis()’).
We filtered out the undifferentiated cells, as well as the differentiated cell types with less than 300 total
cells, resulting in a data subset of 27387 cells. We further reduced the data to the highly variable genes

using scanpy’s®! sc.pp.highly_variable_genes()’ with the default parameters, resulting in 1803 genes.

Method application
We calculated the IG values (as above) for the highly variable genes and used as input for biolB the 300
genes with the highest IG values.

Simulated Data

For biolB evaluation and benchmarking, we applied it to simulated datasets, generated using Splatter®.
The cellular division to groups of interest was done using method="groups’. The simulation parameters
are provided in figure captions of the corresponding Supplementary Figures (1-4).

Data availability

The datasets analyzed in the current study are available at:
e Immune macrophage atlas:
h : velopmental.cellatlas.io/fetal-immun
® Alzheimer’s Disease astrocytes:

e Hematopoiesis:
https://cospar.readthedocs.io/en/latest/index.html

Code availability
Software is available at https://github.com/nitzanlab/biolB.
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