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Abstract  

Rapid advancements in single-cell RNA-sequencing (scRNA-seq) technologies revealed the richness of 

myriad attributes encompassing cell identity. However, the complexity of the data hinders tasks focusing 

on a specific biological signal. To address this challenge, we introduce bioIB, a framework based on the 

Information Bottleneck method, designed to extract an interpretable compressed representation of 

scRNA-seq data, optimally-informative with respect to a desired biological signal, such as developmental 

stage or disease state. Provided with cellular labels representing the signal of interest, bioIB generates 

weighted gene clusters, termed metagenes, that compress the data, while maximizing signal-specific 

information. Following the Information Bottleneck principle, bioIB identifies an optimal trade-off 

between data compression and retaining target information. Further, bioIB provides the hierarchical 

structure of the metagenes, revealing the interconnections between the corresponding biological 

processes and cellular populations, such as the developmental hierarchy of hematopoietic cell types. We 

showcase bioIB’s applicability to diverse biological contexts, including Alzheimer’s Disease, 

epithelial-to-mesenchymal transition, immune development and hematopoiesis, demonstrating that the 

compressed representations capture signal-associated molecular pathways and expose cellular 

subpopulations with prominent phenotypes such as transition states and disease association.  
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Main text 

Introduction 

Cellular gene expression profiles encapsulate a wealth of information regarding a cell’s identity, defined 

by a variety of biological factors, such as cell type, disease state, and developmental stage. Single-cell 

RNA-sequencing (scRNA-seq) technologies, quantifying gene expression levels at single-cell resolution, 

are invaluable for revealing these facets, allowing to study the different factors encompassing a cell’s 

identity1. However, exposing such factors poses a computational challenge due to the complexity and 

high dimensionality of scRNA-seq. While datasets typically comprise thousands of gene profiles across 

thousands to hundreds of thousands of cells, any reduction in dimensionality will in general result in loss 

of information2.  Specifically, when aiming to uncover factors associated with a specific biological signal 

(e.g. gene programs associated with disease progression), the challenge can be framed as a trade-off 

between reducing the complexity of the data (compression) while retaining as much relevant 

information as possible regarding the signal of interest. The Information bottleneck (IB) theory3 allows us 

to reason mathematically about this trade-off. Given a dataset (e.g. scRNA-seq measurements) and a 

variable of interest encoded in the data (e.g. healthy vs. disease samples), IB provides a reduced data 

representation which is maximally informative about the variable of interest3,4. Since it was first 

introduced, IB has been successfully applied in diverse fields, such as text clustering5, image analysis6,7, 

language processing8, neuroscience9 and computational biology10–12.  

Here, we present bioIB, a single-cell tailored method based on the IB algorithm, providing a compressed, 

signal-specific representation of single-cell data. The compressed representation is given by metagenes, 

which are probabilistic clusters of genes. The probabilistic construction preserves gene-level 

interpretability, allowing biological characterization of each metagene.  

Previous approaches for extracting gene signatures from single-cell data include unsupervised 

dimensionality reduction methods, such as NMF13and LDVAE14, tools supervised by prior knowledge of 

signal-specific molecular pathways, marker genes and gene interactions, such as f-scLVM15, net-NMFsc16, 

Spectra17, and label-aware techniques for group-specific signature detection, such as  scGeneFit18 and 

scANVI19. By considering the trade-off between compression and relevant information, bioIB differs from 

the above methods in several aspects (Table 1). Key unique aspects of bioIB include its simultaneous 

ability to extract gene signatures specific to a signal of interest, its independence from prior biological 

knowledge, and its flexibility in the number of extracted signatures or metagenes. In addition to 

achieving optimal signal-aware clustering of genes via metagenes, bioIB stands out from other gene 

program discovery tools by providing a hierarchy of  metagenes, reflecting the inherent data structure 

relative to the signal of interest. The bioIB hierarchy facilitates the interpretation of metagenes, 

elucidating their significance in distinguishing between biological labels and revealing their interrelations 

with one another and the underlying cellular populations.  

We demonstrate that metagenes generated by bioIB are biologically meaningful, capturing molecular 

pathways differentially activated between signal-specific cell groups. First, using a  scRNA-seq dataset of 

neurons with and without Alzheimer’s Disease (AD) associated neurofibrillary tangles20, we show that 

bioIB metagenes capture relevant molecular pathways enriched in each group and in the intermediate 

transcriptomic state, elucidating more signal-related genes compared to competing methods and 
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clustering them in agreement with known biological pathways. We further demonstrate that bioIB 

metagenes capture cells in the transition state in the context of epithelial-to-mesenchymal transition 

(EMT) scRNA-seq dataset21. Next, applying bioIB to an atlas of differentiating macrophages22 , and using 

either organ-of-origin or developmental stage as signals of interest, we show that bioIB extracts distinct, 

signal-specific metagene hierarchies and associated biological processes. We also demonstrate how 

bioIB can be used to identify a cellular subpopulation of disease-associated astrocytes in a single nucleus 

RNA-seq (snRNA-seq) dataset23 from murine Alzheimer’s Disease models. Finally, we showcase that bioIB 

metagene hierarchy for a dataset of differentiating hematopoietic cell types24 reflects the developmental 

hierarchy of the corresponding cellular populations. bioIB is available as an open-source software 

package, along with documentation and tutorials (https://github.com/nitzanlab/bioIB). 

 

Table 1. Qualitative comparison of bioIB with alternative methods for the generation of gene 

signatures from single-cell data. 

Method Method 
output 

Signal-specific Control over the 
number of gene 
signatures 

Option of hierarchical 
representation of 
gene factors 

bioIB Probabilistic 
gene 
signatures 

🅥 Yes​
 
• Generating signal- or 
condition- associated 
gene signatures 
(Figures 2 – 6) 

🅥 Yes 
 
• Elucidating 
intermediate and 
transition signatures 
(Figures 2,3) 
 
• Separating 
condition-specific 
cellular subpopulations 
 (Figures 4,5) 
 

🅥 Yes​
 
• Revealing the 
biological 
interconnections 
between the gene 
factors, as well as 
interconnections 
between the 
underlying cellular 
subpopulations 
(Figures 4-6) 

scGeneFit Gene 
markers 

🅥 Yes 🚫 No 🚫 No 

scANVI Condition-​
specific gene 
rankings 

🅥 Yes 🚫 No 🚫 No 

NMF Weighted 
gene 
signatures 

🚫 No 🅥 Yes 🚫 No 

LDVAE Weighted 
gene 
signatures 

🚫 No 🅥 Yes 🚫 No 
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Results 

bioIB elucidates signal-specific metagenes and their structure 

 

The bioIB representation is computed for a given dataset and signal of interest, provided as cell labels. 

The representation is composed of metagenes which are probabilistic aggregation of the genes into 

clusters, representing the major patterns of gene expression variation underlying the labeled signal.  

The input to bioIB includes a count matrix of N cells by G genes, and a vector of cell labels 𝐷 ∈  𝑅𝑁×𝐺

related to the signal of interest, , where for example, each cell is labeled as sampled from 𝑆 ∈ 𝑅𝑁×1

either a healthy or diseased population (Methods; Figure 1A). This input is used to estimate the 

distributions required for the IB algorithm. We thus define three categorical random variables, 

, respectively representing the  𝐶 ~𝐶𝑎𝑡({𝑐
1
,  ...,  𝑐

𝑁
}) ,  𝑋 ~𝐶𝑎𝑡({𝑥

1
,  ...,  𝑥

𝐺
}),  𝑌 ~𝐶𝑎𝑡({𝑦

1
,  ...,  𝑦

𝐾
}) 𝑁

cells,  genes and  cell states of interest. Normalizing the input matrix  by the total number of counts, 𝐺 𝐾 𝐷
we obtain a joint probability distribution . Next, summing  across the cells, we obtain , 𝑝 𝑐, 𝑥( ) 𝑝 𝑐, 𝑥( ) 𝑝(𝑥)
such that an entry  represents the marginal probability of sampling the transcript of gene . [𝑝(𝑥)]

𝑖
𝑥

𝑖

Using Bayes theorem, we obtain the conditional probability:  

. ​ ​ ​ ​ ​ [1] 𝑝 𝑐|𝑥( ) = 𝑝(𝑐,𝑥)
𝑝(𝑥)

Here, an entry  represents the probability that a randomly sampled cell from   is the cell , [𝑝(𝑐|𝑥)]
𝑖𝑗

𝐷 𝑐
𝑖

given that it expresses gene . The provided cellular annotation vector  allows us to define the 𝑥
𝑗

𝑆 ∈ 𝑅𝑁×1 

conditional distribution of  (representing the  cell states of interest) given that we observed a cell in 𝑌 𝐾 𝐷
. By definition  is an indicator function, defined by ,  namely, for a cell ,   if  𝑝(𝑦|𝑐) 𝑆 𝑐

𝑖
𝑝(𝑦|𝑐

𝑖
) =  1 𝑆

𝑖
= 𝑦

and zero otherwise: 

 

.​ ​ ​ ​ ​ [2] [𝑝(𝑦|𝑐)]
𝑖𝑗

= 𝟙
𝑆

𝑗
=𝑦

𝑖

 

At last, we can obtain the conditional distribution of cell states of interest given that we observed a 

certain gene in :  𝐷

.​ ​ ​ ​ ​ [3] 𝑝(𝑦|𝑥) =
𝑗=1

𝑁

∑ 𝑝(𝑦|𝑐
𝑗
)𝑝(𝑐

𝑗
|𝑥)

The conditional probability matrix of cell states given the genes  and the gene probability vector 𝑝(𝑦|𝑥)
 are used as input to the core of the bioIB method, the IB algorithm.  𝑝(𝑥)

The IB yields the optimal probabilistic mapping,  from the genes’ random variable, ,  to the 𝑝(𝑥|𝑥) 𝑋

categorical random variable representing the metagenes  (for ). The  𝑋 ~𝐶𝑎𝑡({𝑥
1
,  ...,  𝑥

𝑀
}), |𝑀| <= |𝐺|

mapping is optimal with respect to the tradeoff between compression and information about the signal 

of interest  according to a given threshold parameter  (Figure 1C).  This is achieved by optimizing for  𝑌 β 𝑋

that minimizes the mutual information with the input genes X, , while maximizing the mutual 𝐼(𝑋,  𝑋)

information with ,  (Methods; Figure 1C): 𝑌 𝐼(𝑋,  𝑌)
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.​ ​ ​ ​ ​ [4] 𝑋 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑋

(𝐼(𝑋,  𝑋) − β 𝐼(𝑋,  𝑌))

The resulting metagenes are probabilistic clusters of genes capturing the shared expression patterns 

amongst cell states relative to  (Figure 1D). The metagenes are defined by two probabilistic matrices, 𝑌

one linking metagenes to genes  ( ) and another - linking metagenes to cell states of 𝑝(𝑥|𝑥) ∈ 𝑅𝐺×𝑀

interest ( ).  In the flat clustering mode, bioIB generates  metagenes, where  is defined 𝑝(𝑦|𝑥) ∈ 𝑅𝐾×𝑀 𝑀 𝑀
by the user (Methods). Additionally, bioIB can obtain a hierarchy of metagenes by gradually decreasing  β
through a reverse-annealing process4 (Methods). In the hierarchical mode, the number of metagenes  𝑀
is roughly determined by the threshold parameter , ranging from the original representation (no β

compression, ;  ) to full compression to a single cluster ( ). The probabilistic output β → ∞ 𝑋 = 𝑋 β = 0

mapping, , reflects the amount of information each metagene holds regarding the different 𝑝 𝑦 | 𝑥( )
labels, whereas the hierarchical structure reveals the interdependence between the metagenes, and the 

underlying cellular populations they correspond to (Figure 1E). As an illustrative example, we construct a 

toy dataset composed of cells belonging to one of two cell types, which act as the signal of interest Y 

(Supplementary Figure 1A-D). The bioIB hierarchy is revealed by plotting the conditional probabilities 

 of a particular label given every metagene, across  values that define the compression level 𝑝(𝑦|𝑥) β
(Supplementary Figure 1C-D). The hierarchical structure reflects the interconnections among the 

metagenes and the specified cell types of interest ( ), while the bifurcation order is dictated by the 𝑌
informativity of the generated metagenes relative to . bioIB can also capture the relationships between 𝑌
related cell types, defined as distinct labels of interest ( ). Given a toy model with four related cell types, 𝑌
bioIB hierarchy reflects the two distinct pairs of linked cell types by two branches. Further splits 

correspond to higher-resolution separation to different cell types, eventually resulting in cell 

type-specific metagenes (Supplementary Figure 1E-G). Progressing to simulated data that more 

realistically reflects the characteristics of scRNA-seq25, we show that bioIB outperforms competing 

methods (including scGeneFit18, scANVI19, NMF13 and LDVAE14) in identifying underlying signal-specific 

genes (Supplementary Figure 2). Furthermore, bioIB is robust to batch effects, class imbalance, 

erroneous cellular annotations, and cell subsampling (Supplementary Figures 3-6).  
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Figure 1. Elucidating meaningful, signal-specific metagenes using bioIB. A-D) The bioIB pipeline. A) 

Input; bioIB takes as input a gene count matrix and a cellular annotation vector, labeling every cell with a 
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state, representing the signal of interest. For example, if the signal of interest is cell type, these labels 

annotate every cell with the corresponding cell type. B) Distributions extraction; The provided count 

matrix and the cellular annotation vector are used to estimate the distributions of the random variables 

representing the genes ( ) and the cell states of interest ( ). C) Information Bottleneck (IB); The 𝑋 𝑌
probabilities obtained in (B) are used as input for the IB algorithm, which yields the optimal mapping of 

genes to metagenes, by optimizing the trade-off between compression, linking genes ( ) and metagenes 𝑋

( ), and relevant information, linking metagenes ( ) and the cell states of interest ( ). This is achieved by 𝑋 𝑋 𝑌

optimizing for  that minimizes the mutual information with the input genes X, , while 𝑋 𝐼(𝑋,  𝑋)

maximizing the mutual information with , . D) Output; The output of bioIB is a probabilistic 𝑌 𝐼(𝑋,  𝑌)
mapping between genes and metagenes, scoring all the genes measured in the input matrix by their 

contribution to each metagene. bioIB also provides a cell-to-metagene compressed representation of the 

input matrix, summarizing the expression of metagenes in single cells. E) Possible downstream 

applications of the compressed data achieved by bioIB: elucidating transition signatures, identifying 

signal-associated cellular subpopulations with distinct transcriptional profiles, disentangling distinct 

label-specific representations, and characterizing the hierarchical interconnections between metagenes 

and the corresponding cell types. Figure was created with BioRender.com.  

 

bioIB elucidates a spectrum of gene programs underlying the gradual development of the 

pathological phenotype in Alzheimer’s Disease neurons 

 

Both clinical26 and pathological27,28 manifestations of Alzheimer’s Disease (AD) suggest that it is a 

continuum with a gradual development of the pathological phenotype.  Here we show that by tuning the 

number of metagenes, bioIB reveals a spectrum of gene signatures underlying the gradual 

transformation associated with Alzheimer’s Disease (AD). We applied bioIB to a scRNA-seq expression 

profiles of excitatory neurons with and without the neurofibrillary tangles (NFT)20 to elucidate molecular 

pathways underlying neuronal vulnerability in AD. Given the cellular labels indicating the presence or 

absence of tau pathology (NFT-bearing vs. NFT-free, respectively; Figure 2A), the three metagenes 

generated by bioIB (Methods) revealed a gradual shift in expression levels with metagenes 0 and 2 

overrepresented in NFT-free and NFT-bearing neurons, respectively, and metagene 1 representing an 

intermediate state signature between the two populations (Figure 2B, Supplementary Tables 1,2).  By 

dividing cells to metagene-associated clusters based on their relative metagene expression 

(Supplementary Figure 7A; Methods), and assessing the phenotype progression stage using the 

NFT-associated gene markers20 (Figure 2C, Supplementary Figure 7B), we found that indeed, the 

NFT-linked marker genes gradually increased in expression from metagene 0, associated with NFT-free 

neurons, through the ‘intermediate state’ metagene 1, to metagene 2, associated with NFT-bearing 

neurons (Figure 2C, Supplementary Figure 7B). Next, the direct link between bioIB’s metagenes to genes 

(Figure 2D) allowed us to interpret the biological identity of each metagene (Figure 2E; Methods, 

Supplementary Table 3). Metagene 0, associated with the NFT-free cells, was enriched for axon guidance, 

an essential pathway of neuronal homeostasis29. Metagene 2, associated with NFT-bearing cells, was 
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represented by multiple genes linked to Alzheimer’s Disease progression30–33 enriched in synaptic 

plasticity and neurotransmitter secretion, in agreement with previous findings20 (Figure 2E). Finally, 

metagene 1, representing the intermediate state, is enriched for oxidative phosphorylation, reported to 

be damaged at the early stages of the disease34 (Figure 2E).  

We defined a set of benchmark tasks aimed to assess the biological interpretability of outputs of 

different methods by quantifying their similarity to the molecular signatures of neuronal vulnerability20 

(Supplementary Table 4, Methods). First, we compared the fraction of recovered informative genes 

(characterized as part of the neuronal vulnerability signatures) captured within the top (300/500) 

markers of the produced metagenes, or gene factors. bioIB outperforms competing methods in 

recovering informative genes given three and five gene signatures that expose the intermediate 

condition, and performs similarly to scGeneFit while outperforming other baselines given two gene 

signatures (one signature per condition, Figure 2G). We additionally evaluated the correspondence 

between produced metagenes or factors and previous division of genes to biological pathways20 

(Supplementary Table 4). bioIB outperforms competing methods in informative pathway recovery given 

three and five gene signatures, and performs similarly to scGeneFit while outperforming other baselines 

given two gene signatures (Figure 2H, Supplementary Figure 8, Methods).  

 

bioIB’s low runtime and moderate memory usage make it suitable for running on CPUs, even with large 

datasets, especially when restricted to highly variable genes, as recommended (Figure 2F, Supplementary 

Figure 9, Supplementary Table 5). At last, bioIB is robust to initialization parameters and noisy data 

(Supplementary Figures 10, 11).  
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Figure 2. bioIB elucidates a spectrum of gene programs underlying the development of the 

pathological cellular phenotype in Alzheimer’s Disease neurons. A) UMAP representation of the original 

data20 (left) and of the bioIB compressed data (right), colored by the input labels indicating the presence 

of NFT pathology. B) UMAP representation of the bioIB compressed data, colored by the expression 

levels of the resulting metagenes (Methods). C) Heatmap featuring normalized expression of 

NFT-associated gene markers (as previously defined20) in cells clustered by relatively maximized 

metagene expression (Methods). D) Heatmap featuring the top 10 genes representing each of the 

metagenes and their corresponding probabilistic metagene-to-gene mapping. E) Barplot showing the top 

significant pathways (GO Biological Process, KEGG pathways) enriched within the top 100 markers of 

each metagene. F) CPU Runtime as a function of the number of genes (given 10,955 cells; top) and 

number of cells (given 3,000 highly variable genes; bottom)  for bioIB, scGeneFit, scANVI, NMF and 

LDVAE. The experiment was repeated  times. G) Fraction of ground-truth informative genes, 𝑛 = 10
shown in (C) (Methods) recovered within top 300-500 gene markers of two (left), three (middle) and five 

(right) gene signatures generated by bioIB, scGeneFit, scANVI, NMF and LDVAE. Statistical significance 

was assessed using the WIlcoxon signed rank test (non-parametric), with * indicating p < 0.01, in 

comparison to the bioIB scores.  H) Correspondence between the division of genes to signatures and 

ground-truth pathways for two (left), three (middle) and five (right) gene signatures generated by bioIB, 

scGeneFit, scANVI, NMF and LDVAE. For each method, the correspondence scores were normalized to 

the scores of shuffled signatures, per pathway (Methods). Statistical significance was assessed using the 

Mann–Whitney U-test (non-parametric), with * indicating p < 0.01, in comparison to the bioIB 

correspondence scores. In box plots middle line, median; box boundary, interquartile range (IQR); 

whiskers, 1.5*IQR; gray dots, points beyond the minimum or maximum whisker. *MG – metagene. 

 

bioIB identifies cells at the transition state between epithelial and mesenchymal phenotypes 

 

Biological signals often represent gradual transition processes, with the cellular labels signifying their 

correspondence to the end-point phenotypes. In this scenario, apart from the state-specific binary 

markers, the transition genes expressed along the trajectory are of particular interest. We studied this 

setting in the context of the epithelial-to-mesenchymal transition (EMT) by applying bioIB to the analysis 

of a scRNA-seq data from primary human mammary epithelial cells21. Given the cellular annotation 

(epithelial or mesenchymal), we used bioIB to generate three metagenes, with two metagenes  enriched 

in either mesenchymal or epithelial states (metagenes 0 and 1, respectively), and one metagene 

enriched in a transition stage (metagene 2; Figure 3A; Supplementary Tables 6,7). Notably, the 

state-specific metagenes exhibited a gradual expression change, correlated with the EMT transition. In 

particular, the expression of metagene 0 monotonically decreases (increases) with mean marker 

expression of epithelial (mesenchymal) marker genes (Spearman correlation coefficients -0.43 and 0.7, 

respectively) (Figure 3B). On the contrary, the expression of metagene 1 monotonically increases 

(decreases) with the epithelial (mesenchymal) marker expression (Spearman correlation coefficients 0.54 

and -0.58, respectively) (Figure 3B). Metagene 2 exhibited weaker correlation with markers of both 

phenotypes (Spearman correlation coefficients 0.22 and -0.13 for epithelial and mesenchymal markers, 

respectively). Consequently, cells maximizing metagene 0 (metagene 1) feature a differentiated 
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mesenchymal (epithelial) phenotype, whereas cells maximizing metagene 2 represent a transition state 

between the two phenotypes (Figure 3C), and express intermediate levels of epithelial and mesenchymal 

marker genes (Figure 3D). Furthermore, the transition (metagene 2) signature is enriched for categories 

related to p53 pathway, Myc signaling and translation (Figure 3E, Methods), in agreement with previous 

findings21.  
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Figure 3. bioIB identifies cell states along the epithelial to mesenchymal transition. A) UMAP 

representation of the original data, colored by the input labels of epithelial and mesenchymal 

phenotypes (left), and by the relative expression of bioIB metagenes (right). B) The mean expression 

level of epithelial (left column) and mesenchymal (right column) marker genes as a function of the 

expression level ranks of metagene 0 (top row), metagene 1 (middle row) and metagene 2 (bottom row), 

per cell. C) UMAP representation of the original data colored by the relatively maximized metagene. D) 

Heatmap showing the relative expression levels of epithelial and mesenchymal markers in three 

metagene-associated cellular populations shown in (C). E) Barplot with the enriched GO Biological 

Processes and MSigDB Hallmark pathways within the top 100 markers of metagene 2, representing the 

transition signature.  *MG – metagene. 

 

bioIB extracts distinct molecular signatures in macrophages for developmental stage and organ 

residence across development 

 

Gene expression data in scRNA-seq experiments contain signatures associated with multiple overlapping 

biological signals or conditions. How can we identify gene signatures associated with a specific source of 

heterogeneity in the data? We demonstrate bioIB’s approach to this challenge in the context of a 

scRNA-seq atlas of the developing immune system, which contains cells from multiple organs spanning 

weeks 4 to 17 after conception22 (Figure 4A). We focused on the macrophages population, due to the 

variability of their gene expression across organs and throughout the gestation stages, with specific 

subpopulations, differentially abundant both between different organs and across development22 

(Supplementary Figure 12). Here we demonstrate that bioIB metagenes are associated with specific 

macrophage subpopulations, and that the bioIB hierarchy reveals their interconnections with respect to 

the signal of interest.  

Using the hierarchical mode of bioIB via a reverse-annealing process (Methods), we gradually compress 

the data, subsequently merging the metagenes carrying similar biological information about the selected 

signal of interest and thus exposing a signal-specific hierarchy of gene programs. The bioIB hierarchy is 

based on the probabilistic mapping between cellular labels and metagenes across a range of  values, β
representing the clustering resolution, or the number of metagenes (Methods).  

We first applied bioIB with , the signal of interest, set to be the developmental stage, after aggregating 𝑌
cells, each assigned either  ‘Early’ (8-12 gestational weeks) or `Late’ (>14 gestational weeks) label. The 

resulting bioIB representation comprised four macrophage-specific metagenes (Methods, 

Supplementary Figure 13), enhancing the target signal of the developmental stage (Figure 4B; 

Supplementary Tables 8,9). These four metagenes were organized into two branches: two metagenes (0, 

1) associated with the early stage, and two metagenes (2, 3) associated with the intermediate stage (2) 

and the late stage (3) (Figure 4D,E; Supplementary Figure 13, Methods). The stage-specific metagenes 

(0,1,3) were upregulated in the relevant macrophage subpopulations (Figure 4H). The early 

stage-associated metagenes 0 and 1 are enriched in LYVE-high, proliferating macrophages and 

TREM2-positive macrophages, respectively, while the late stage-associated metagene 3 is enriched in 

iron-recycling and MHCII-high macrophages, in agreement with previous findings22. The intermediate 
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metagene 2 was found to be enriched both in all early stage-associated subpopulations (LYVE-high, 

proliferating and TREM2-positive macrophages), as well as in the late  stage-associated iron recycling 

macrophages. Finally, comparing the metagene expression between cellular groups divided both by the 

developmental stage and the organ-of-origin supported the specificity of bioIB metagenes to the 

selected signal of interest (Figure 4J). Indeed, metagenes 1 and 3 are respectively overrepresented in 

early and late cells of all organs, revealing stage-specific gene programs, common to multiple organs. 

Furthermore, metagene 0 represents a distinct signature of early stage-associated genes, specifically 

increased in  yolk sac. Thus, bioIB can both capture the dominant signal-associated transcriptional 

patterns shared across cells and identify subpopulations that deviate from these common patterns. 

When  is set to be the organ-of-origin (Figure 4C), the bioIB hierarchy exposes both the organ-specific 𝑌
and the shared transcriptional programs, revealing the macrophage subpopulations with similar 

phenotypes across different organs (Figure 4F,G; Supplementary Tables 10, 11). The yolk sac branch 

(metagenes 0, 1) differentiates between a yolk sac-specific signature enriched in macrophages from 

LIVE-high, proliferating and TREM2-positive populations (metagene 0), and an additional gene program 

shared between the yolk sac and the liver macrophages, enriched in proliferating and iron-recycling 

populations, reflecting the shared hematopoietic properties of the yolk sac and the liver35 (metagene 1) 

(Figure 4F,G,I,K). In parallel, while metagene 4 represents a liver-specific signature, metagene 3 

elucidates a transcriptional signature shared between the liver and the spleen, also enriched in 

iron-recycling macrophages, in agreement with previous findings22 (Figure 4F,G,I,K). Finally, the 

organ-specific metagenes elucidate the genes associated with particular organs or organ groups, and 

appear to be generally common across developmental stages (Figure 4K).  
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Figure 4. bioIB extracts distinct molecular signatures underlying the signals related to developmental 
stage and organ-of-origin in developing macrophages. 

A) Schematic representation of the analyzed scRNA-seq data22 of macrophages from 5 distinct organs 

(kidney, liver, skin, spleen, yolk sac) and 11 gestational weeks (4, 7-12, 14-17). Figure created with 

Biorender.com. B,C) UMAP representation of the data compressed by bioIB with Y set either to (B) 

developmental stage (Early: < 14 weeks; Late: >= 14 weeks) or (C) organ-of-origin, colored by the 

developmental stage (top) or by organ-of-origin (bottom). D,F) Metagene hierarchy inferred from bioIB 

with Y set either to (D) developmental stage or (F) organ-of-origin. Each metagene is labeled with the 

associated cell group(s) of interest and three top representative genes (Methods). E,G) Heatmaps 

showing the probabilistic mappings between bioIB metagenes and cell groups of interest (top) and genes 

(bottom) with Y set either to (E) developmental stage or (G) organ-of-origin. H,I) Heatmaps representing 

the relative expression of bioIB metagenes generated with  set to (H) developmental stage or (I) 𝑌
organ-of-origin, in macrophage subpopulations defined by the original analysis22. J,K) Heatmaps 

representing the relative expression of bioIB metagenes generated with  set to (J) developmental stage 𝑌
or (K) organ-of-origin, in cellular clusters divided by organ-of-origin and developmental stage.  *MG – 

metagene. 

 

bioIB metagenes identify Alzheimer’s Disease associated astrocytes 

A key challenge in scRNA-seq analysis is to identify specific cellular subpopulations affected by a certain 

condition, such as disease. The standard pipeline, commonly implemented for this task, involves 

unsupervised clustering of cells, which exposes the downstream analysis to clustering-related bias36. 

BioIB can overcome such limitations and detect disease-associated cells within a heterogeneous cellular 

population, which we demonstrate in the context of  Alzheimer’s disease (AD) - associated astrocytes. To 

do so, we re-analyzed single-nucleus RNA-seq measurements of astrocytes from an AD mouse model and 

wild-type (WT) mice23 (Figure 5A). 

BioIB analysis with the signal of interest set as the genotype (AD/WT) resulted in a hierarchy of six 

metagenes (Supplementary Tables 13,14) capturing informative transcriptomic signatures differentiating 

between AD and WT cells (Figure 5B,C, Supplementary Figure 16A). Furthermore, bioIB metagenes 

captured a higher-resolution structure within the data; the main branch of metagenes associated with 

AD genotype is composed of metagenes 0,1,2, each associated in turn with a  distinct subpopulation of 

AD astrocytes (Figure 5D,E).  To interpret their biological identities, we extracted a set of representative 

genes for each metagene (Methods). Metagene 0, whose representative gene set includes genes 

involved in morphology regulation (GFAP, THY1, VIM, B2M, PSEN1), is enriched for the cellular projection 

development process, consistent with general astrocyte activation37–42 (Supplementary Figure 16B,C). 

Metagenes 1 and 2 represent pathways more tightly associated with the disease: , the representative 

gene set of metagene 1 is enriched with immune genes43, such as C1QA44 and CTSS45, and metagene 2 is 

represented by established markers of AD pathology, TYROBP and SERPINA3N46,47. Meta-analysis of the 

AD-associated transcriptome48 revealed that metagenes 1 and 2 are the only metagenes that are 

exclusively represented by AD-associated genes (Figure 5F; Methods). Characterization of the WT-related 

metagene 5 can be found in Supplementary Figure 16D.  
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While metagene 0 is expressed in the majority of AD astrocytes, metagenes 1 and 2 characterize distinct 

cellular subpopulations among the AD cells (Figure 5D,E), which we hypothesized to correspond to 

disease-associated astrocytic signatures. To support our interpretation, we quantified the expression of 

bioIB metagenes in six astrocytic clusters defined in23, which included two homeostatic clusters, two 

GFAP-high clusters of reactive astrocytes which are not specific to the disease, and two 

disease-associated clusters23. We found that while bioIB metagene 0 is highly expressed both in 

disease-associated clusters and in reactive GFAP-high clusters, metagenes 1 and 2 are specifically 

enriched in the disease-associated cluster, most abundant in AD23 (Figure 5G; Supplementary Figure 

16E). The two WT-associated metagenes (4,5) are correspondingly enriched in the homeostatic clusters 

(Figure 5G). In summary, bioIB allows to directly uncover the cellular subpopulations differentially 

affected by the disease. 
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Figure 5.  bioIB metagenes reveal AD-associated astrocytes. A) Schematic representation of the 

snRNA-seq dataset of astrocytes, derived from a murine model of AD 23. The data was analyzed using 

bioIB with  set to genotype (WT/AD), which resulted in identification of a specific subpopulation of 𝑌
disease-associated astrocytes. Figure created with Biorender.com. B) BioIB metagene hierarchy produced 

given the preprocessed snRNA-seq data, relating to the AD group.  The defined metagenes exhibit 

differential expression patterns between AD and WT, with metagenes 0, 1 and 2 overexpressed in AD 

cells (Fold change increase in metagenes 0, 1, 2: 1.9, 3.9, 6, respectively), a neutral metagene 3 (Fold 

change increase in metagene 3 = 0.91), and metagenes 4 and 5 overexpressed in WT cells (Fold change 

increase in metagenes 4, 5: 0.3, 0.66, respectively; Supplementary Table 15). C) UMAP representation of 
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the original data (left) and of the bioIB compressed data (right). D) Heatmap showing scaled expression 

of metagenes 0,1,2 in individual cells of AD genotype, sorted by maximal normalized metagene 

expression. E) UMAPs of the bioIB-compressed data, colored by the expression of AD-associated 

metagenes 0,1,2. F) Fractions of representative genes of metagenes 0-5 that were found to be 

differentially expressed in at least 7 studies in the meta-analysis of the AD-associated transcriptome48 

(Methods). G) Heatmap of scaled expression values of six bioIB metagenes in six transcriptional clusters 

of astrocytes, defined in ref23.  *MG – metagene. 

  

bioIB metagene hierarchy reflects developmental connections between hematopoietic cell 

types 

scRNA-seq datasets expose a striking diversity of cell types and states, whose interconnections carry 

important biological information about cell state identity. For example, the hierarchical differentiation 

tree of hematopoietic stem and progenitor cells (HSPCs) reveals the phenotype and function of mature 

hematopoietic cells49. BioIB metagene hierarchy can capture the developmental hierarchical structure of 

cell types, as we demonstrate here for scRNA-seq data of HSPCs differentiation24 (Figure 6A). BioIB is 

applied given the cell type signal over a subset of the data containing six major hematopoietic cell types 

– monocytes, neutrophils, mast cells, basophils, megakaryocytes and erythroid cells. This analysis 

produced 11 metagenes, where each of the six cell types is uniquely characterized by at least one 

metagene, maximizing its expression level within that particular cell type (Figure 6B, Supplementary 

Tables 16,17). In addition, there are metagenes representing a transcriptional program shared by several 

developmentally linked cell types (Figure 6B,C; Supplementary Figure 17A). For example, metagenes 0 

and 2 are specifically expressed in monocytes and neutrophils, respectively, while metagene 1 is 

activated in both (Figure 6B,C). The bioIB metagenes are biologically informative, uniting genes and 

processes characteristic of the corresponding cell types (Supplementary Figure 17B,C). Hence, metagene 

0, specifically representing monocytes, features monocyte marker genes such as FABP524 and 

WFDC1750,51 (Figure 6C,D), and is associated with pro-inflammatory macrophage activation, characteristic 

of monocytes function52 (Figure 6E). Similarly, metagene 2, specifically characterizing neutrophils, 

includes markers like ITGB2124 CAMP, LTF, and ELANE53 (Figure 6C,D) and is statistically enriched for 

neutrophil mediated immunity and neutrophil activation (Figure 6E). 

The hierarchical representation of the metagenes generated by bioIB induces a hierarchy of cell types 

that reflects the developmental links between them (Figure 6F,G; Supplementary Figure 17D). In 

particular, the first bifurcation in the metagene hierarchy generates two metagenes corresponding to the 

two major branches in the developmental hierarchy24 (Figure 6A), one which includes Monocytes and 

Neutrophils, and another which includes Mast cells, Basophils, Megakaryocytes and Erythroid cells 

(Figure 6F,G). The second bifurcation splits  the latter into two additional specific metagenes, one 

including Mast cells and Basophils, and another -  Megakaryocytes and Erythroid cells (Figure 6F,G). The 

third bifurcation further splits the metagene corresponding to the Mast-Baso branch to two separate 

metagenes that are more specific to either Mast cells or Basophils. Similarly, the fourth bifurcation splits 

the metagene corresponding to the Monocyte-Neutrophil branch to two separate Monocyte and 

Neutrophil associated metagenes. Finally, the last bifurcations split the metagene corresponding to the 
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Megakaryocyte-Erythroid branch to four metagenes distinguishing between Megakaryocytes and 

Erythroid cells.  

In conclusion, bioIB metagenes characterize distinct biological processes linked to the underlying cellular 

populations, while the metagene hierarchy unveils the biological relationships interconnecting these 

populations.  
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Figure 6. bioIB metagene hierarchy reflects the connections between the developmentally linked 

hematopoietic cell types. A) Schematic representation of the scRNA-seq dataset of differentiating 

hematopoietic cell types24 with their associated developmental hierarchy. Figure created with 

Biorender.com. B) Heatmap showing the scaled expression (z-score) of the bioIB metagenes across cell 

types. C) Heatmap showing scaled expression of the top representative genes of metagenes 0,1,2 across 

monocytes and neutrophils. Metagenes 0 and 2 are specifically expressed in monocytes and neutrophils, 

respectively, while metagene 1 is expressed in both. D) SPRING54 visualizations of the hematopoietic 

dataset (embedding as provided in24), colored by cell type (left panel) and by the expression of 

metagenes 0-2 (three panels on the right). E) Gene Ontology enrichment results showing biological 

process categories significantly enriched in metagene 0 (left) and 2 (right). F) Bifurcation plots of further 

compression of the 11 metagenes shown in (B) relative to Monocytes, Mast cells and Megakaryocytes. 

Metagenes characterizing developmentally linked cell types are linked in the metagene hierarchy. For 

example, metagene 0 representing monocytes diverges from the same branch as metagene 2, 

representing Neutrophils. Bifurcation plots relative to Neutrophils, Basophils and Erythroid cells are 

provided in Supplementary Figure 4D. G) Metagene hierarchy inferred from the bioIB reverse annealing 

output shown in (F) and in Supplementary Figure 4D. The cell type associated with every metagene is the 

one maximizing the conditional probability ( ) of a cell type  given this metagene, .  *MG – 𝑚𝑎𝑥
𝑦
𝑝(𝑦|𝑥) 𝑦 𝑥

metagene. 

  

Discussion 

 

We introduced bioIB, a scRNA-seq tailored framework for clustering genes with respect to a set of known 

cellular labels, based on the Information Bottleneck method. We have shown that bioIB metagenes, 

which are biologically interpretable, provide a meaningful compressed representation which exposes 

signal-specific molecular pathways underlying the biological variance between the cellular populations of 

interest. BioIB simultaneously extracts pathways associated with a specific label and exposes 

signal-associated gene programs, such as intermediate states, as shown in the context of AD neurons, 

and transition signatures, as demonstrated in the context of the EMT.  Given single-cell data from human 

differentiating macrophages, with overlapping signals of organ-of-origin and developmental time, bioIB 

successfully extracted two distinct compressed data representations, each depicting the respective 

biological processes.  bioIB also identified a subpopulation of disease-associated astrocytes in 

single-nucleus data from an AD mouse model, providing the genotype as the signal of interest. At last, 

we have shown that the metagene hierarchical structure, produced by the iterative application of the IB 

algorithm, exposes interconnections between metagenes and their respective cell types. We showcased 

this in the context of differentiating hematopoietic cells, where the bioIB hierarchical structure matched 

the expected developmental hierarchy of hematopoietic cell types. 

BioIB stands out among available methods for supervised gene program discovery due to its ability to 

generate multiple informative gene signatures, associated with the specific cellular division of interest. 

This feature is particularly valuable for uncovering pathways linked to signal characteristics, such as 

intermediate states, transition signatures, and subpopulations with distinct phenotypes. Furthermore, as 
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opposed to existing methods, bioIB can provide a hierarchical structure of the produced gene signatures, 

revealing the interconnections between the underlying cellular populations.  

We conducted a comprehensive analysis of the framework’s robustness and stability, showing that bioIB 

metagenes remain highly consistent across random initializations, hyperparameter tuning, and under 

data perturbations, such as cell subsampling. Since bioIB is based on mutual information, its output is 

sensitive to the representation of each cell cluster in the data, both in terms of the cluster size and the 

number of enriched genes in it.  That being said, we demonstrated that given a strong transcriptional 

signature differentiating the underrepresented cluster, bioIB remains robust to its signal, extracting the 

relevant gene programs despite class imbalance. Furthermore, while by design bioIB relies on input 

cellular labels, which might be a limitation when annotations are ambiguous, we show that when 

supervised with a small proportion of incorrect labels bioIB does not overfit and its output remains 

aligned with the true transcriptional signal.  

As with a majority of computational methods, the bioIB output depends on a hyperparameter, , β
controlling the level of compression. This is analogous to setting the number of clusters in a clustering 

algorithm, making this value data-specific. Here, the interpretability of the obtained metagenes allows 

the user to tune  to obtain the desired number of informative metagenes. We showed that the choice β
of  does not affect the structure of the compressed representation, such that the gene-to-metagene β
mapping at the corresponding compression levels remains highly stable. The current hierarchical bioIB 

formulation is limited in its scalability to data size, as it relies on the exact solution to the IB problem. 

This can be overcome, as we have done in this study, by focusing the analysis on highly informative 

genes. A natural extension to bioIB to overcome this limitation more generally in future work is using an 

existing variational IB solver which relies on neural approximation55–57. 

In future work bioIB can be extended to extract multiple related data representations with respect to 

several variables of interest, based on the multivariate information bottleneck framework58. This 

paradigm might be particularly useful in analyzing gene expression data, allowing to simultaneously 

extract multiple encoded signals and analyze the corresponding biological processes. Furthermore,  bioIB 

could be extended to produce signal-specific cell clusters, or metacells, retaining maximal possible 

information about a target gene subset, such as disease biomarkers. 

Here we demonstrated that bioIB can provide efficient characterization of signals of interest encoded in 

single-cell data, such as cell type, disease state or organ-of-origin. BioIB can be generalized beyond 

single-cell gene expression data to additional types of biological data, such as bulk RNA-seq and 

proteomics data, to expose signal-specific optimally compressed representations. In summary, bioIB is 

expected to enrich biological data analysis by revealing the hierarchical, signal-specific structure encoded 

in complex datasets.  
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Materials and methods 

The bioIB algorithm 

 

The bioIB algorithm provides a compressed representation of scRNA-seq data with respect to a signal of 

interest. To do so it takes as input a cell ( ) by gene ( ) scRNA-seq measurements matrix, ; 𝑁 𝐺 𝐷 ∈  𝑅𝑁×𝐺

following standard practice we suggest providing log-normalized counts as input. Additional input to 

bioIB is  a vector of cell labels related to the signal of interest ,  labeling every cell with one of  𝑆 ∈ 𝑅𝑁×1 𝐾
possible cell states of interest defined using , such that . Given this input, the 𝑌 = [1,  ...,  𝐾] 𝑌 = {𝑆}
bioIB pipeline is composed of two main steps: (1) obtaining a probabilistic representation of the count 

matrix, and (2) using this representation as input for the Information Bottleneck (IB) algorithm. 

 

1.​  Obtaining a probabilistic data representation 

 

We use the input count matrix  and signal of interest  to obtain the relevant probability distributions 𝐷 𝑆
required for the IB algorithm; the conditional probability matrix of cell states given the genes  and 𝑝(𝑦|𝑥)
the gene probability vector . To convert to probability space, we define the random variables of 𝑝(𝑥)

, respectively representing the  𝐶 ~𝐶𝑎𝑡({𝑐
1
,  ...,  𝑐

𝑁
}) ,  𝑋 ~𝐶𝑎𝑡({𝑥

1
,  ...,  𝑥

𝐺
}),  𝑌 ~𝐶𝑎𝑡({𝑦

1
,  ...,  𝑦

𝐾
}) 𝑁

cells,  genes and  cell states of interest. The empirical distributions of these are then constructed 𝐺 𝐾
using the input data (see Equations 1-3).      

 

2.​ The IB algorithm 

The obtained probabilistic representations,   and   are the input for the 𝑝(𝑦|𝑥) ∈ 𝑅𝐾×𝐺 𝑝(𝑥) ∈ 𝑅𝐺

Information Bottleneck (IB) algorithm.  

IB3 is a dimensionality reduction method, designed to extract the information from data  that is 𝑋
relevant for the prediction of another related variable , such that the choice of  determines the 𝑌 𝑌
relevant components of the signal encoded in . Mutual information (MI) is used to evaluate both the 𝑋

extent of compression,  , and the level of relevant information preserved in the compressed data, 𝐼(𝑋, 𝑋)

through . A trade-off parameter   is introduced to control the amount of compression 𝐼(𝑋, 𝑌) β
(distortion) allowed. Formally, the IB objective is given by, 

.​ ​ ​ ​ ​  𝑋 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑋

(𝐼(𝑋,  𝑋) − β 𝐼(𝑋,  𝑌))

Notably, when , all genes are merged into one cluster (full compression), and when , the β = 0 β = ∞
compressed data is identical to the original full data, so every cluster is associated with one particular 

gene, . For every value of , the algorithm yields the conditional probability matrix of  gene 𝑋 = 𝑋 β 𝑀

clusters, which we term metagenes,  given the genes, , , representing the 𝑥 ∈ 𝑋, 𝑥 ∈ 𝑋  𝑝(𝑥|𝑥) ∈ 𝑅𝑀×𝐺

optimal mapping of genes to metagenes, and the conditional probability matrix of cell states given the 
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metagenes .  For the full mathematical description and the associated proofs for the 𝑝(𝑦|𝑥) ∈ 𝑅𝐾×𝑀

information bottleneck algorithm, see refs3,4.  

 

There are many ways to solve the IB objective (including neural approximators introduced recently55–57). 

Here we will focus on the Blahut-Arimoto algorithm59, described below. IB can provide either a series of 

solutions at different compression levels, using a reverse-annealing process, or a single solution with a 

flat division of the data points to a predefined number of clusters.  

 

a.​ Blahut arimoto 

 

 𝑊ℎ𝑖𝑙𝑒 𝑇𝑟𝑢𝑒:

➔​  𝑝
𝑖+1

(𝑥|𝑥) =
𝑝

𝑖
(𝑥)

𝑥

∑𝑝
𝑖+1

(𝑥)𝑒
−β𝐷

𝐾𝐿
[𝑝(𝑦|𝑥)||𝑝(𝑦|𝑥)]

 𝑒
−β𝐷

𝐾𝐿
[𝑝(𝑦|𝑥)||𝑝(𝑦|𝑥)]

,  ∀ 𝑥 ∈ 𝑋,  ∀ 𝑥 ∈ 𝑋,

➔​ . 𝑝
𝑖+1

(𝑥) = Σ
𝑥
𝑝(𝑥) 𝑝

𝑖+1
(𝑥|𝑥),  ∀ 𝑥 ∈  𝑋

➔​  𝑝
𝑖+1

(𝑦|𝑥) = 1

𝑝
𝑖+1

(𝑥)
Σ

𝑥
 𝑝

𝑖+1
(𝑥|𝑥) 𝑝(𝑥, 𝑦),  ∀ 𝑥 ∈  𝑋,  ∀ 𝑦 ∈  𝑌.

 

 𝐼𝑓 ∀ 𝑥 ∈ 𝑋,   𝐽𝑆 1
2 , 1

2
[𝑝

𝑖+1
(𝑥|𝑥),  𝑝

𝑖
(𝑥|𝑥)] ≤ ε,

 𝐵𝑟𝑒𝑎𝑘.
 

Here,  is a threshold parameter used to define convergence based on the difference between previous ε
and current iterations.  For a given , the algorithm converges into a stable solution, providing two β

output probability matrices that define ,  and .   determines the mapping between 𝑋 𝑝(𝑥|𝑥) 𝑝(𝑦|𝑥) 𝑝(𝑥|𝑥)

the original data points  to data clusters  , whereas  defines the association between 𝑥 ∈ 𝑋 𝑥 ∈ 𝑋 𝑝(𝑦|𝑥)

the data clusters,  , and the groupings of the signal of interest, .  𝑥 ∈ 𝑋 𝑦 ∈ 𝑌
 

b.​ Flat Clustering 

 

To achieve the division of the data points  to a defined number of clusters , we follow previous 𝑥 ∈ 𝑋 𝑀
work4 and initialize the IB algorithm with a random mapping of  to  clusters, generating a binary 𝑋 𝑀

conditional probability matrix . The corresponding  and  are obtained, using  𝑝(𝑥|𝑥) ∈ 𝑅𝑀×𝐺 𝑝(𝑥) 𝑝(𝑦|𝑥)
basic probability rules and Bayes Theorem. Since this process introduces a dependence of the output on 

the initialization, we randomly initialize the algorithm  times and select the mapping that 𝑛 = 100
minimizes the objective function (Eq.4). 

 

c.​ Reverse-annealing  
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For the hierarchical mode of bioIB, in the process of reverse-annealing the IB algorithm is initialized with 

a compressed representation  that is identical to the original data  and with a large value of : 𝑋 𝑋 β

●​  𝑝(𝑥|𝑥) = 𝐼
|𝑋|

●​  𝑝(𝑥) = 𝑝(𝑥)

●​  𝑝(𝑦|𝑥) = 𝑝(𝑦|𝑥)
●​   β

𝑚𝑎𝑥
→ ∞

 

Next, we run the algorithm iteratively, while reducing . Upon convergence, we initialize the next  β

iteration  with the final  mapping achieved in the previous step, and with , for a small step 𝑝(𝑥|𝑥)  β − ∆ 
size .  Following this procedure we achieve a series of solutions for every value of : ∆ β

. At the end of this process  , corresponding to maximal ∀β ∈ β
𝑚𝑖𝑛

, β
𝑚𝑖𝑛

+ ∆,  ...,  β
𝑚𝑎𝑥{ } β

𝑚𝑖𝑛
→ 0

compression, where  consists of a single point, uniting all the original data points in . 𝑋 𝑋
Reverse-annealing ultimately yields a hierarchical structure that mirrors several important aspects of the 

identified clusters, such as their informativity for discrimination between the labels of interest , as well 𝑌
as the interconnections among them. It is important to note that  controls the maximal number of β

𝑚𝑎𝑥

metagenes, namely the number of end-nodes in the hierarchy, and modifying it does  not affect the 

hierarchical structure itself, with consistent metagene-to-gene mapping at the corresponding hierarchy 

resolutions (Supplementary Figure 14). Furthermore, as opposed to flat bioIB clustering, hierarchical 

bioIB does not include a random initialization, and therefore its input is identical when consequently 

applied to the same data. While hierarchical bioIB is more computationally demanding than flat 

clustering, bioIB supports GPU acceleration for increased efficiency (Supplementary Figure 15, 

Supplementary Table 12).  

 

Downstream analyses 

 

1.​ Identifying representative genes: The representative genes  for a given metagene  𝑥 ∈ 𝑋 𝑥
𝑖

∈ 𝑋

are identified as the ones that maximize . Specifically, for a given metagene,  we first 𝑝(𝑥|𝑥
𝑖
)

order the genes by their conditional probability  ( ). For a given 𝑝(𝑥|𝑥
𝑖
) 𝑝(𝑥

1
|𝑥

𝑖
) > 𝑝(𝑥

2
|𝑥

𝑖
) >..

, the set of  representative genes  is chosen as the minimal set such τ ∈ 0, 1[ ] 𝑗 {𝑥
1
,  𝑥

2
,  ...,  𝑥

𝑗
}

that: 

.  
𝑘=1

𝑗

∑ 𝑝(𝑥
𝑘
|𝑥

𝑖
) > τ
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2.​ Recovering single-cell metagene expression: The bioIB output provides the mapping of the 

original count matrix  to its compressed representation .  Namely, we obtain 𝐷 ∈ 𝑅𝑁×𝐺 𝐷 ∈ 𝑅𝑁×𝑀

the weighted expression of genes, , using the mapping   given by, 𝑥 ∈ 𝑋 𝑝(𝑥|𝑥).,

. 𝐷
𝑖𝑗

=
𝑘
∑ 𝐷

𝑖𝑘
𝑝 𝑥

𝑘
|𝑥

𝑗( )
 

 

As a result, we obtain a cell ( ) by metagene ( ) compressed data matrix, , such that   𝑁 𝑀 𝐷 ∈ 𝑅𝑁×𝑀

 represents the expression level of metagene  in cell . 𝐷
𝑖𝑗

 𝑗 𝑖

 

3.​ Clustering cells based on the relative metagene expression: Based on single-cell metagene 

expression, each cell can be assigned to a metagene-associated cluster by identifying the 

metagene with the highest relative expression in that cell, given by: 

, 𝑚
𝑖

= 𝑎𝑟𝑔𝑚𝑎𝑥
𝑗
(

𝐷
𝑖𝑗

−µ
𝑗

σ
𝑗 

) 

Where  is the metagene-associated cluster label of cell ,  is the average expression of 𝑚
𝑖

𝑖 µ
𝑗

metagene  expression over all cells, and  is the standard deviation of metagene  expression 𝑗 σ
𝑗

𝑗

over all cells.  

 

4.​ Extracting the metagene hierarchy: The bioIB reverse-annealing output provides a series of 

conditional probability matrices:  and  for each . Since we  𝑝(𝑥|𝑥) ∈ 𝑅𝐺×𝐺 𝑝(𝑦|𝑥) ∈ 𝑅𝐾×𝐺 β

initialize the reverse-annealing process with , these matrices include  metagenes, but 𝑋 = 𝑋 𝑁

only  of them are unique. We first identify the most representative gene  of each metagene 𝑀 𝑥 𝑥
𝑖

, using : 𝑝(𝑥|𝑥)

 𝑥
𝑥

𝑖

= 𝑎𝑟𝑔𝑚𝑎𝑥
𝑥
𝑝(𝑥|𝑥

𝑖
)

Next, we extract the metagene hierarchy by identifying the merging points of the most 

representative genes for each metagene across decreasing  . For example, metagenes  and  β 𝑥
𝑖

𝑥
𝑗

are considered merged at  if   , .  The identified merging β
𝑚𝑒𝑟𝑔𝑒

∀𝑦 𝑝(𝑦|𝑥
𝑥

𝑖

)
β

𝑚𝑒𝑟𝑔𝑒 

= 𝑝(𝑦|𝑥
𝑥

𝑗

)
β

𝑚𝑒𝑟𝑔𝑒 

points are recorded using a format of the scipy.cluster.hierarchy.linkage() output linkage matrix 

and plotted using  scipy.cluster.hierarchy.dendrogram(). The code and the documentation for the 

relevant bioIB functions are provided in the bioIB package at https://github.com/nitzanlab/bioIB. ​
 

5.​ Linking metagenes to cell types: Metagenes,  are linked to cell types, , using  𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 𝑝(𝑦|𝑥)
mapping, given by, 
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​

. 𝑦
𝑥

𝑖 

= 𝑎𝑟𝑔𝑚𝑎𝑥
𝑦
𝑝(𝑦|𝑥

𝑖
)

Metagene  is identified as an intermediate metagene if  its maximal probability is close to the 𝑥
𝑖

uniform distribution, namely if  , where  stands for a similarity 𝑎𝑏𝑠(𝑚𝑎𝑥
𝑦
𝑝(𝑦|𝑥

𝑖
) − 1

𝐾 ) ≤ ϵ ϵ

threshold (by default, ). ϵ = 0. 15

Datasets 

NFT-free and NFT-bearing neurons from Alzheimer’s Disease (AD) human brains 

Data preprocessing 

We obtained the dataset of single-cell RNA-seq of NFT-free and NFT-bearing AD neurons from ref.20, 

available at https://cellxgene.cziscience.com/collections/b953c942-f5d8-434f-9da7-e726ba7c1481. We 

downloaded the dataset of excitatory cells and further filtered it to include only cells of Ex2 subtype, out 

of considerations of total cell number,  similar frequencies of NFT-free and NFT-bearing neurons, and 

total number of differentially expressed genes20 resulting in 10,955 cells. Following basic preprocessing 

using scanpy’s sc.pp.normalize_per_cell() and sc.pp.log1p(), the data was further reduced to 3000 highly 

variable genes using scanpy’s sc.pp. highly_variable_genes() with the default parameters. 

 

Method application 

We applied bioIB to generate  metagenes using bioib.flat_clustering( ) with default parameters, for 𝑚 𝑚
, as for higher  additional metagenes showed no statistically significant enrichment in the 𝑚 = [2, 3] 𝑚

gene set enrichment analysis. The gene set enrichment analysis was performed using gseapy’s enrichr() 

with GO_Biological_Process_2025 and KEGG_2021_Human gene sets.  

 

Benchmarking 

The ground-truth genes and pathways were obtained from the Supplementary Table 4 of ref.20 Out of all 

the identified pathways, we selected 150 pathways, enriched in the analyzed cluster Ex2, including 94 

unique genes, appearing in the analyzed 3,000 top highly variable genes (the filtered genes and 

pathways are provided in Figure 2C and in Supplementary Table 4). The Proportion of recovered 

ground-truth genes was calculated as the proportion of top representative inferred genes that appear in 

the list of 94 genes representing the ground-truth pathways (Figure 2F).  

We additionally benchmarked the correspondence between the gene signatures generated by different 

methods, and the ground-truth pathways. For this analysis, we used a deterministic version of gene 

signatures, where they were composed for each method by the top 500 inferred representative genes 

per signature, resulting in deterministic gene clusters of equal size. Pathway correspondence score  𝑐
𝑖

between pathway , , and a set of gene signatures , was calculated as follows: 𝑖 𝑃
𝑖

𝑀
𝑗

∈ 𝑀

. 𝑐
𝑖

= 𝑚𝑎𝑥
𝑗
(

|𝑥 ∈ 𝑃
𝑖
 ∩  𝑥 ∈ 𝑀

𝑗
|

|𝑥 ∈ 𝑃
𝑖
| ) 
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Thus, this score reflects the maximal proportion of genes in pathway that represent the same gene 𝑃
𝑖
 

signature . For example, if the whole pathway is represented by the same signature, this pathway 𝑀
receives a maximal score of 1. We adjust for the underrepresented pathways, as follows: if , |𝑥 ∈ 𝑃

𝑖
| ≤ 1

 We further aimed to correct the scores for the baseline correspondence, which depends on the 𝑐
𝑖

= 0.

total number of signatures and the total number of ground-truth genes, identified by different methods 

within the top 500 representative genes. For each pathway, we normalized each method’s performance 

by the mean correspondence score of the identified genes randomly assigned to the same number of 

signatures over 10 iterations (Figure 2G, Supplementary Figure 6).  

We compared bioIB performance to scGeneFit, scANVI, NMF and LDVAE. We applied scGeneFit with 

default parameters (method=’centers’, redundancy=0.25). We identified 600 total markers and then 

divided them into signatures based on the fold change between NFT-free and NFT-bearing neurons. For 

each signature, we inferred top representative genes based on expression fold change between different 

cellular groups clustered by input labels. scANVI was trained with default parameters, generating 10 

latent representations in a fully supervised mode. The group-associated gene signatures were obtained 

with integrated gradients, as explained here - 

https://docs.scvi-tools.org/en/stable/tutorials/notebooks/use_cases/interpretability.html. ScanVI gene 

signatures were defined as top marker genes with the highest attribution means per cell group. NMF was 

applied with the default parameters using ‘sklearn.decomposition.NMF()’. The NMF gene signatures 

were defined as genes with top coefficients per factor, stored in nmf.components_. LDVAE was trained 

with the default parameters, generating  latent representations with , similarly to bioIB. 𝑚 𝑚 = 2, 3, 5
The LDVAE gene signatures were obtained as genes with top loading scores per factor, assessed via 

model.get_loadings(), as explained here- 

https://docs.scvi-tools.org/en/stable/tutorials/notebooks/scrna/linear_decoder.html.  

 

EMT dataset from human mammary epithelial cells 

Data preprocessing 

We obtained the dataset of the human mammary epithelial cells across the epithelial-to-mesenchymal 

transition from ref.21, available at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE114687. We 

further used the same preprocessing and annotation pipeline, as in ref60. The final analyzed dataset 

included 17,632 cells of HuMEC cell line and 5,000 top highly variable genes.   

 

Method application 

We applied bioIB to the obtained dataset to generate 3 metagenes using bioib.flat_clustering(3) with 

default parameters. The gene set enrichment analysis was performed using gseapy’s enrichr() with 

GO_Biological_Process_2025 and MSigDB_Hallmark_2020 gene sets, in alignment with the original 

study21.  

Multi-organ atlas of human differentiating macrophages 

Data preprocessing 
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We obtained the dataset of the multi-organ atlas of human differentiating macrophages from ref.22, 

available at https://developmental.cellatlas.io/fetal-immune. We downloaded the dataset of myeloid 

cells and further filtered the data to include only cells of macrophage cell types. Using the gestational 

week label we assigned the cells into two groups, “Early” and “Late” (Early: < 14 weeks; Late: >= 14 

weeks). In order to avoid bias towards less represented organ groups, we filtered out cells which 

originated from organs with less than 2800 total cells, resulting in cells originating from five organs: 

kidney (KI), liver (LI), skin (SK), spleen (SP) and yolk sac (YS). Following basic preprocessing for low-quality 

cells using scanpy’s61 `sc.pp.filter_cells(min_genes=200)`, the data used for bioIB analysis included 

108,197 cells. We further reduced the data to 500 highly variable genes using scanpy’s61 

`sc.pp.highly_variable_genes()` with the default parameters.  

 

Method application 

We applied bioIB to the obtained dataset twice, (1) setting  as the development stage (𝑌
), and (2) setting  as the organ-of-origin (𝑌 = [𝐸𝑎𝑟𝑙𝑦,  𝐿𝑎𝑡𝑒] 𝑌

. In both analyses we initialized the reverse-annealing 𝑌 = [𝐾𝑖𝑑𝑛𝑒𝑦,  𝐿𝑖𝑣𝑒𝑟,  𝑆𝑘𝑖𝑛,  𝑆𝑝𝑙𝑒𝑒𝑛,  𝑌𝑜𝑙𝑘 𝑆𝑎𝑐])
process with  . With  set to be the development stage, bioIB initially produced five β

𝑚𝑎𝑥
= 30 𝑌

metagenes, with metagene 4 mostly represented by the marker genes of T-cells and B-cells and being 

enriched in only 229 out of 108,197 cells in the dataset (Supplementary Figure 13). Furthermore, we 

found that cells maximizing metagene 4 feature significantly higher doublet scores than cells maximizing 

the other four bioIB metagenes (Supplementary Figure 13). Therefore, we concluded that metagene 4 

has identified a doublet subpopulation and excluded it from the downstream analysis.  

 

Astrocytes from a murine model of Alzheimer’s Disease (AD) 

Data preprocessing 

We obtained single-nucleus RNA-seq measurements from astrocytes from AD mouse model and 

wild-type (WT) mice from ref.23, available at 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE143758. Following normalization and 

log-transformation, we performed leiden clustering using Scanpy’s `sc.tl.leiden()’ function with default 

parameters. Following this, we retained the cell clusters with enriched expression of the astrocytic 

markers Gfap and Slc1a3, resulting in n=7036 cells. As a last step we extracted highly informative genes 

with respect to the signal of interest, or disease state, encoded by the provided genotype annotation  

 This was done by retaining the 1000 genes with the highest information gain (IG) values, 𝑌 = [𝐴𝐷,  𝑊𝑇].
where the IG is defined using the mutual information between the gene expression probability  and 𝑝(𝑥)
the genotype probability ,  𝑝(𝑦)

. 𝐼𝐺 (𝑥) = 𝑝(𝑥) 𝐷
𝐾𝐿

 (𝑝(𝑦|𝑥) || 𝑝(𝑦) )

 

Method application 

We applied bioIB with  set as the mouse genotype:  The reverse-annealing process was 𝑌 𝑌 = [𝐴𝐷,  𝑊𝑇].
initialized with  .  β

𝑚𝑎𝑥
= 150
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Constructing a list of AD-related genes 

AD-associated genes were defined as differentially expressed genes in at least 7 of the 15 AD-APP mouse 

model studies as part of the AD meta-analysis resource, which has summarized and compared the 

differential expression results from a wide range of AD transcriptomic studies48. 

 

Hematopoiesis dataset 

Data preprocessing 

We obtained the dataset of the differentiating hematopoietic cell types collected by ref.24 and processed 

by ref.49. Data was downloaded using the Cospar package 

(https://cospar.readthedocs.io/en/latest/index.html) using the function `cs.datasets.hematopoiesis()`). 

We filtered out the undifferentiated cells, as well as the differentiated cell types with less than 300 total 

cells, resulting in a data subset of 27387 cells. We further reduced the data to the highly variable genes 

using scanpy’s61 `sc.pp.highly_variable_genes()` with the default parameters, resulting in 1803 genes. 

 

Method application 

We calculated the IG values (as above) for the highly variable genes and used as input for bioIB the 300 

genes with the highest IG values. 

 

Simulated Data 

For bioIB evaluation and benchmarking, we applied it to simulated datasets, generated using Splatter25.  

The cellular division to groups of interest was done using method=’groups’. The simulation parameters 

are provided in figure captions of the corresponding Supplementary Figures (1-4).  

 

Data availability 

The datasets analyzed in the current study are available at: 

●​ Immune macrophage atlas:​
https://developmental.cellatlas.io/fetal-immune 

●​ Alzheimer’s Disease astrocytes:​
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE143758 

●​ Hematopoiesis:​
https://cospar.readthedocs.io/en/latest/index.html 

Code availability 

Software is available at https://github.com/nitzanlab/bioIB.  
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