

Genomic analyses in *Drosophila* do not support the classic allopatric model of speciation.

Leeban H. Yusuf,^{1,*} Dominik R. Laetsch,² Konrad Lohse^{2,*} and Michael G. Ritchie^{1,*}

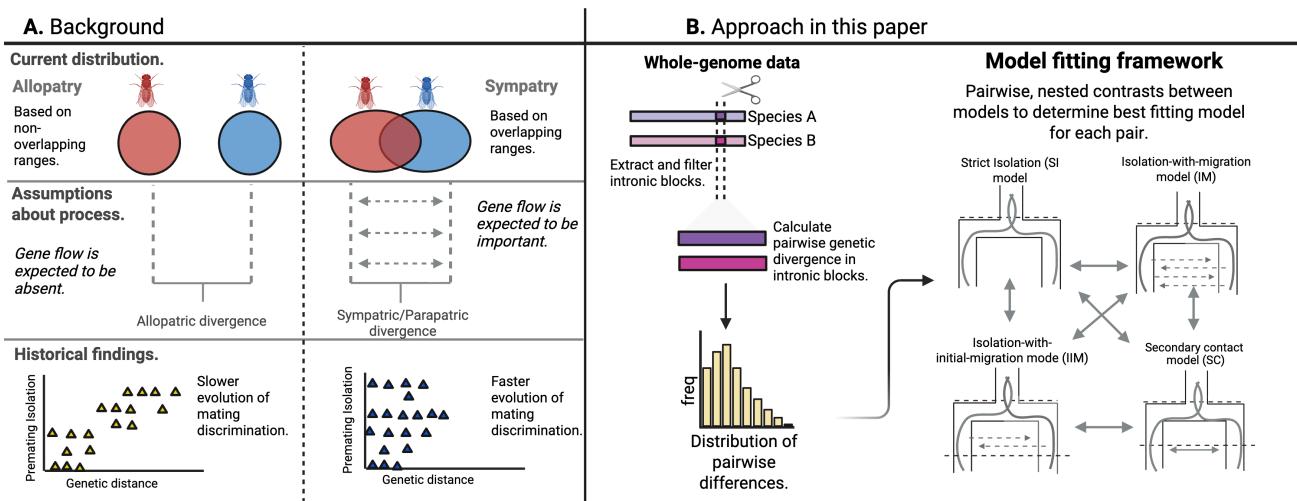
¹Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews KY16 9TH, Scotland and ²Institute of Ecology and Evolution, University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL, Scotland.

*Corresponding author. ly36@st-andrews.ac.uk, konrad.lohse@ed.ac.uk, mgr@st-andrews.ac.uk

K.L.(Konrad Lohse) and M.G.R (Michael G. Ritchie) contributed equally to this work.

Abstract

The allopatric model of speciation has dominated our understanding of speciation biology and biogeography since the Modern Synthesis. It is uncontroversial because reproductive isolation may readily emerge as a by-product of evolutionary divergence during allopatry unopposed by gene flow. Recent genomic studies have found that gene flow between species is common, but whether allopatric speciation is common has rarely been systematically tested across a continuum of closely-related species. Here, we fit a range of demographic models of evolutionary divergence to whole-genome sequence data from 93 pairs of *Drosophila* species to infer speciation histories and levels of post-divergence gene flow. We find that speciation with gene flow is common, even between currently allopatric pairs of species. Estimates of historical gene flow are not predicted by current range overlap. Whilst evidence for secondary contact is generally limited, a few sympatric pairs showed strong support for a secondary contact model. Our analyses suggest that most speciation processes involve some long-term gene flow, perhaps due to repeated cycles of allopatry and contact, without requiring an extensive allopatric phase.


Key words: Speciation, Gene flow, Biogeography

1 The idea that speciation processes can be classified into distinct
2 geographic modes (allopatric, parapatric, and sympatric)
3 emerged during the Modern Synthesis and continues to
4 be a central theme of evolutionary research [48, 15, 47].
5 Allopatric speciation is thought to be common and is often
6 considered a null model of speciation [15, 51]. Allopatric
7 speciation appears uncontroversial both empirically given the
8 widespread prevalence of 'geographic' varieties and species
9 (which influenced Darwin and Mayr), and conceptually
10 due to the ease with which the absence of gene flow
11 facilitates the build-up of reproductive isolation (RI) due
12 to genetic drift, natural, or sexual selection. Much of the
13 debate over other modes of speciation revolves around the
14 appearance of different forms of RI in the face of potentially
15 homogenising gene flow. If and when species come into
16 secondary contact after an allopatric phase, natural selection
17 to reduce competition (but see [3]) or to prevent maladaptive
18 hybridization ('reinforcement') may lead to complete isolation
19 or the formation of stable hybrid zones [1].

20 Comparisons between currently sympatric and allopatric
21 species pairs have provided apparently axiomatic evidence for
22 reinforcement. In particular, analyses that contrast estimates
23 of pre- and postzygotic RI between currently allopatric
24 and sympatric species pairs of *Drosophila* demonstrated
25 convincingly that mate discrimination evolves more rapidly
26 between sympatric species [13, 14]. Alongside other comparative
27 surveys [63, 64, 52, 23, 58], these patterns were interpreted

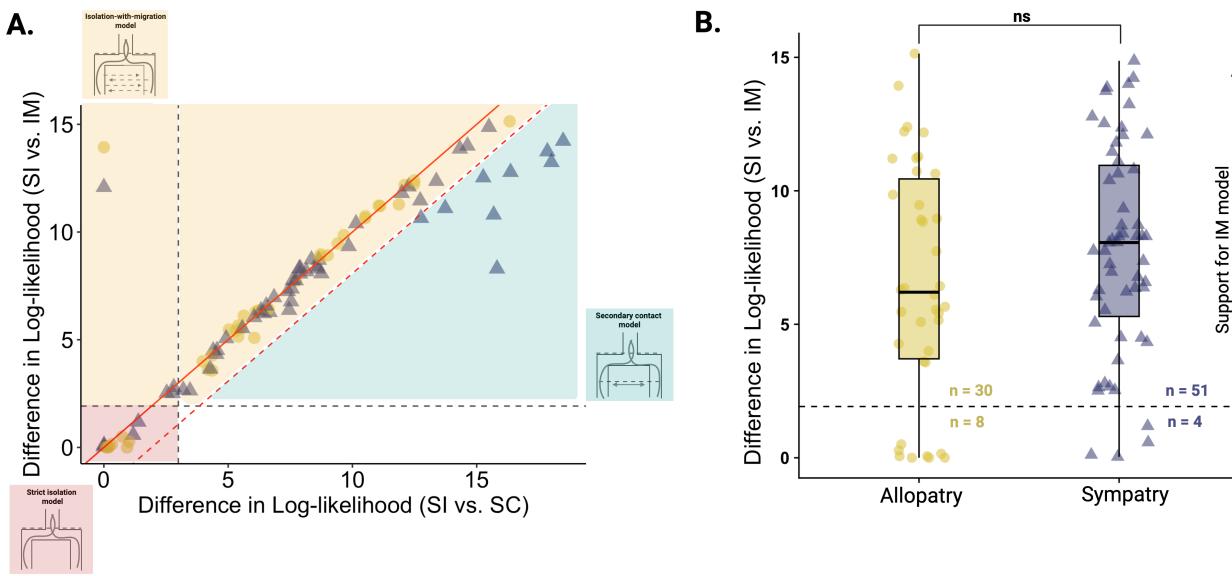
as evidence that incompatibilities which arose during an allopatric phase lead to reinforcement after secondary contact [45]. However, classifying closely related species based on their current geographic ranges assumes that these in part reflect the geographical context during the key phases of their speciation history [39, 5, 29]. It has been acknowledged that allopatry and sympatry are ends of a spectrum [20, 44, 9], and an increasing number of genomic studies suggest that historical and contemporary gene flow is more prevalent than the architects of the modern synthesis had envisaged [56, 18, 21, 53, 17]. Additionally, gene flow may diminish gradually without the need for extended periods of allopatry during divergence [51]. It is therefore, unclear whether most speciation processes involve a strictly allopatric phase, and how common allopatric speciation versus speciation with gene flow is.

Here, we take advantage of the wealth of genomic data available for one of the best-studied groups of species, *Drosophila*. Population genetic analyses of *Drosophila* species pairs have spurred the development of inference methods that model the joint effects of incomplete lineage sorting and gene flow on local genealogies. These methods integrate over all possible genealogies sampled from short blocks of sequence across the genome, enabling maximum likelihood estimation of contrasting, nested models of species divergence and gene flow [31, 40, 33]. For small samples it is possible to calculate likelihoods analytically [61, 38], which allows efficient inference of simple demographic histories even from

Fig. 1. A) Background and **B)** our approach to understanding biogeographic modes of speciation. **A)** Previous comparative surveys on the evolution of reproductive isolation categorized species pairs by geography. This assumes that current range overlap is informative about the underlying speciation process, e.g. sympatric pairs are more likely to have exchanged migrants than allopatric taxa. **B)** Our approach uses whole-genome data to test to what extent levels of long-term gene flow differ between taxon pairs with and without current range overlap. We summarized genome-wide divergence in short, intronic blocks in terms of the distributions of pairwise differences. We fitted demographic models of speciation representing strictly allopatric speciation and different models of speciation with gene flow, to each pair and assessed their relative support in a likelihood framework.

55 a single genome per species [61, 62]. While gene flow analyses
 56 in *Drosophila* have demonstrated its prevalence [56], we lack
 57 a systematic evaluation of the relationship between inferred
 58 historical demography and current range overlap in the genus.

59 We analyse the pairwise distribution of sequence differences
 60 (which is a function of the distribution of pairwise coalescence
 61 times) in putatively neutral, short intronic blocks in 93
 62 *Drosophila* species pairs to estimate the relative support
 63 for allopatric species divergence and speciation with gene
 64 flow. Sampling a single intronic block per gene justifies the
 65 assumption of statistical independence between blocks and
 66 allows us to calculate support for alternative demographic
 67 models of species divergence and parameter estimates in a
 68 likelihood framework [61, 62]. Our focal species pairs are a
 69 subset of the species pairs originally studied by Coyne and Orr
 70 [13, 14] and include currently allopatric and sympatric species
 71 spanning a range of genomic divergence ($0.01 < d_{xy} < 0.05$
 72) (Supplementary table 2, and Supplementary Fig. 1 and
 73 2). While our choice of taxon pairs was determined by the
 74 availability of whole genome sequence data, we note that our
 75 focal taxa cover a wide taxonomic and geographic range within
 76 the *Drosophila* genus [19]. Furthermore, the classic result of
 77 Coyne and Orr [13, 14] (faster evolution of pre-zygotic isolation
 78 for sympatric pairs) holds for this subset (Supplementary Fig.
 79 1). In fact, both premating and postzygotic RI are higher in
 80 sympatric compared to allopatric pairs (two-sample Wilcoxon
 81 tests: $W = 638.5$, $p = 0.004$ and $W = 94.5$, $p = 0.009$), a
 82 pattern already reported by [63, 46].


83 We fitted alternative demographic models of strict allopatric
 84 divergence versus divergence with gene flow and secondary
 85 contact [61, 62] (Fig. 1) to ask the following questions: (1)
 86 How much support for (historical or contemporary) gene flow
 87 is there and does this differ between currently sympatric
 88 or allopatric species pairs? (2) Do currently sympatric and
 89 allopatric pairs differ in their species divergence time and/or
 90 ancestral population size? (3) Finally, do sympatric pairs show
 91 greater support for secondary contact histories than allopatric

92 pairs? We conclude that speciation involving a low rate of long-
 93 term gene flow is ubiquitous in *Drosophila*, and therefore that
 94 there is little support for allopatric speciation in this group.

Results

Speciation with gene flow is common across *Drosophila* pairs

To assess support for gene flow in each focal species pair of *Drosophila*, we compared four speciation models: (1) a strict isolation model (SI), where a pair of species diverge from an ancestral population of size N_e at some time T_0 and remain in strict allopatry, (2) an isolation-with-migration model (IM), where divergence occurred with symmetric migration at a constant rate $M = 2N_e m$ per generation from T_0 until the present and (3) a secondary contact model (SC) where divergence occurred without gene flow initially, but where the pair experiences an instantaneous burst of bidirectional gene flow that transfers a fraction f of lineages at time T_1 (see SI Appendix section 1.4 for details). The latter may reflect a 'reinforcement' scenario where gene flow only occurs transiently following secondary contact. We restrict analyses to these relatively simple models both because previous comparative surveys of speciation demography have considered the same scenarios [53] and because more complex models are unlikely to be identifiable from the pairwise distribution of differences. In particular, we also considered an isolation-with-initial-migration model (IIM) where gene flow occurred at the onset of divergence but stopped at time T_1 . However, since only one taxon pair (*D. lummei* - *D. littoralis*) had significantly support for IIM, we concluded that this scenario is either not identifiable or not sufficiently supported by the data and so restricted comparison of demographic histories to SI, IM and SC models. Note also that our gene flow estimates are effective parameters which incorporate any selection against early generation hybrids (see Discussion).

Fig. 2. Evidence for gene flow across allopatric and sympatric *Drosophila* pairs. This plot summarises which pairs best-fit the SC model (right bottom, teal) IM (top right, yellow) and SI (bottom corner, red). The vast majority of pairs fall into regions supporting gene flow. **A.** The difference in log-likelihood between strict isolation (SI) and isolation-with-migration (IM) histories against the difference in log-likelihood between strict isolation (SI) and secondary contact (SC) histories. Black-dashed lines are the critical value thresholds for the SI v.s. IM (horizontal line at $2\Delta \ln L > 3.84$, 1 d.f.) and SI v.s. SC (vertical line at $2\Delta \ln L > 5.99$, 2 d.f.). The red solid line is the line of equality ($y=x$), showing correlated support for gene flow models regardless of whether gene flow is continuous or an instantaneous event. Points to the right of the dashed red line represent pairs where support for the SC model exceeds (a critical value of $2\Delta \ln L > 3.84$) the support for an IM model, with the exception of a single pair which best fits an IIM history better than both the IM and SC models. Two pairs fit the IM model considerably better than the SC model (top left). Shaded areas denote best-fitting models in our comparative framework. **B.** The difference in relative support for an IM history, against a SI history, for currently sympatric and allopatric species pairs. The vertical dashed line indicates the critical value ($p < 0.05$). The numbers of species pairs that fit or do not fit an IM model significantly better than an SI model are shown on either side of the vertical line.

126 Assigning a best-fitting but minimally complex model to
 127 every species pair reveals overwhelming support for speciation
 128 histories that involve gene flow: out of the 93 *Drosophila* pairs,
 129 only 12 pairs best fit an SI model, i.e. neither IM nor SC give a
 130 significant improvement in model fit (Fig. 2A), and four of these
 131 are sympatric. For the majority of species pairs (76) both IM
 132 and SC scenarios fit significantly better than a SI history and
 133 relative support for either model is highly correlated (Fig. 2A).
 134 Given that the SC model is more complex than the IM model (a
 135 total of four instead of three parameters), we only accepted it
 136 as the best and most parsimonious history when the relative
 137 support for it exceeded a critical value of $2\Delta \ln L > 3.841$.
 138 We also used this threshold (which is equivalent to assuming
 139 a χ^2 distribution with 1 d.f.) to compare nested models that
 140 differ by one parameter (IM vs SI and IIM vs IM). Given these
 141 model selection criteria, we find that an SC history is the best
 142 supported model for eight pairs and accept the IM model as
 143 the best-fitting history for 72 pairs (Fig. 2A).

144 No difference in support for historic gene flow 145 between sympatric and allopatric *Drosophila* pairs

146 If current range is indicative of the mode of speciation, we
 147 would expect allopatric pairs to best fit a history of strict
 148 isolation (SI) with no significant improvement in fit when
 149 including gene flow. In contrast, we may expect currently
 150 sympatric pairs to fit an isolation-with-migration (IM) model
 151 better than an SI model. Alternatively, if sympatry is recent
 152 (and associated with secondary gene flow), we may expect
 153 sympatric pairs to be associated with histories of secondary
 154 contact (SC) ('recent sympatry' hypothesis).

155 We find no difference in relative support (as measured by
 156 $\Delta \ln L$) for an IM model over an SI model between allopatric
 157 and sympatric pairs (two-sample Wilcoxon test: $W = 867$, $p = 0.165$) (Fig. 2A). However, we do find that the 12 pairs
 158 that do not show support for any gene flow scenario, i.e. that
 159 best fit an SI history, include more allopatric than sympatric
 160 pairs (one-tailed Fisher exact test: $p = 0.064$). Interestingly,
 161 these SI pairs almost entirely belong to the *Drosophila* nasuta
 162 group, including the species pair *D. albomicans* and *D. nasuta*,
 163 which in previous analyses also did not show evidence for post-
 164 divergence gene flow [4]. All eight pairs that best fit a secondary
 165 contact (SC) model are currently sympatric species, consistent
 166 with our 'recent-sympatry' hypothesis (one-tailed Fisher exact
 167 test: $p = 0.019$) (Fig. 2A)

168 Current range overlap poorly predicts the 169 demography of speciation

170 To test whether historical gene flow differs between allopatric
 171 and sympatric pairs, we converted estimates of the scaled
 172 effective rate of gene flow (i.e. the number of migrants per
 173 generation M) under the IM model, into a per lineage
 174 probability of gene flow: e.g. given an estimated duration of
 175 gene flow between species T , the probability that the ancestry
 176 of an individual haplotype at a random position in the genome
 177 is affected by migration is $1 - e^{-MT_0}$. This conversion allows for
 178 a direct comparison between estimates of continuous (IM) and
 179 discrete (SC) gene flow. We find a lower long-term probability
 180 of gene flow for allopatric pairs (mean probability of gene flow:
 181 66%) compared to sympatric pairs (mean probability of gene
 182 flow: 74%). When assuming the best-fitting gene flow model

184 for each pair, this difference is not significant (two-sample
185 Wilcoxon test: $W = 934$, $p = 0.387$) (Fig. 3A). Hence, there
186 is evidence of less gene flow between allopatric species, though
187 the extent is still high. Note that the IM model, although
188 accepted as the best supported model for 72 taxon pairs yielded
189 nonsensical parameter estimates in 22 pairs, i.e. we obtained
190 arbitrarily high estimates of either gene flow (M) or divergence
191 time T_0 . This suggests either poor model fit and/or parameter
192 non-identifiability (see Discussion) and we have removed these
193 estimates from subsequent analyses. Excluding the 22 pairs
194 with non-identifiable migration parameters did not change the
195 lack of difference in long-term gene flow probability between
196 sympatric and allopatric pairs (two-sample Wilcoxon test: W
197 = 603, $p = 0.847$).

198 Additionally, we find that currently allopatric and sympatric
199 pairs do not differ in the onset of divergence (measured in
200 generations), but do differ in ancestral effective population
201 size (Fig. 3B and C). While sympatric pairs are younger on
202 average than allopatric pairs, this difference is not significant
203 (two-sample Wilcoxon test: $W = 1219$, $p = 0.175$) (Fig.
204 3B). However, sympatric pairs have larger ancestral effective
205 population sizes than allopatric pairs (two-sample Wilcoxon
206 test: $W = 768$, $p = 0.03$). Note that this difference is not
207 significant when we exclude the 22 species pairs with non-
208 identifiable parameters (two-sample Wilcoxon test: $W = 458$, p
209 = 0.06).

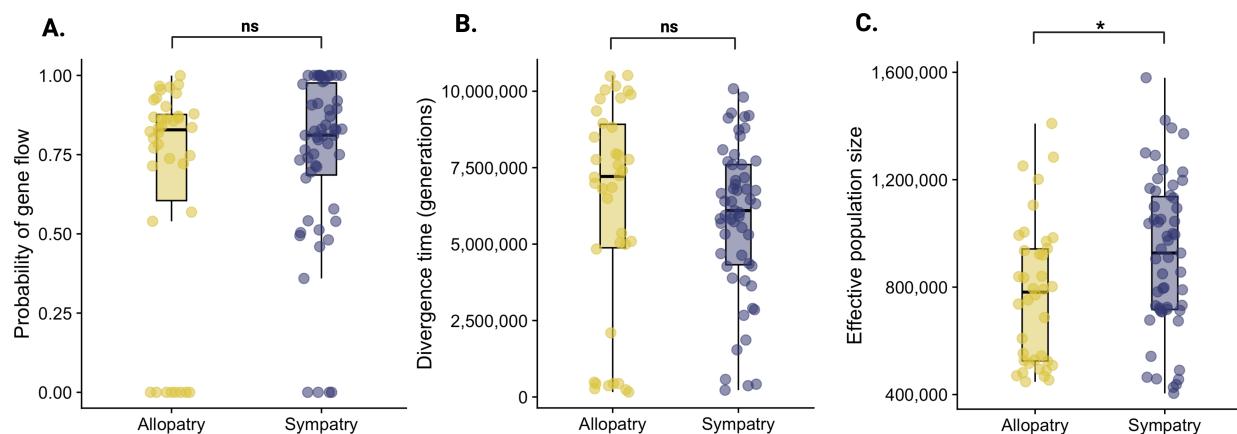
210 Secondary contact pairs do not have greater 211 pre-mating isolation

212 Reinforcement is frequently invoked to explain enhanced
213 mating discrimination in sympatry relative to allopatry [49,
214 15]. We asked whether the eight pairs that fit a secondary
215 contact (SC model) substantially better than an isolation-
216 with-migration (IM) model ($2\Delta \ln L > 3.841$) show greater
217 premating isolation, than pairs for which IM is the best fitting
218 model ($\Delta \ln L > 0$; $n = 72$). We find no significant difference in
219 premating isolation for SC pairs (mean pre-mating isolation: 0.90)
220 compared to pairs that best fit an IM model (mean pre-
221 mating isolation: 0.88) (two-sample Wilcoxon test: $W = 294.5$,
222 $p = 0.816$).

223 Discussion

224 Allopatric speciation is considered the most common mode of
225 speciation because the evolution of RI is unhindered once gene
226 flow has ceased completely [15]. Analysing genomic data for 93
227 *Drosophila* species pairs in a hierarchical modelling framework,
228 we find that most pairs show evidence for post-divergence gene
229 flow. Perhaps surprisingly, while we find some evidence for
230 increased gene flow between currently sympatric pairs, our
231 main finding is that some level of post-divergence gene flow
232 is common, even between currently allopatric pairs. While
233 sympatric pairs show overall greater support for secondary
234 contact histories and very recent gene flow as expected, there
235 is little or no difference in statistical support for histories
236 involving gene flow between pairs that are currently sympatric
237 or allopatric.

238 These results have implications for interpreting classic
239 comparative surveys of speciation in *Drosophila* and other
240 taxa. Mating discrimination has been shown to evolve more
241 rapidly in currently sympatric *Drosophila* species pairs relative
242 to allopatric pairs, and this observation has been interpreted
243 as support for reinforcement [15, 45, 54, 50]. The fact that


244 we find significantly greater support for secondary contact
245 histories for sympatric compared to allopatric species pairs
246 is compatible with a role of reinforcement in speciation and
247 shows that our analyses are extracting genuine signals of gene
248 flow. In order to understand which aspects of the data allow
249 us to distinguish between SC and IM models, it is helpful to
250 inspect their absolute fit to the observed distribution of pairwise
251 differences: taxon pairs that best fit an SC history show a
252 characteristic excess of monomorphic blocks ($S = 0$) in the
253 data (Supplementary Figs 13-15). While this high frequency
254 of monomorphic blocks can be explained by a recent burst
255 of admixture upon secondary contact, it is incompatible with
256 histories of continuous gene flow (i.e. the IM model).

257 Limits and robustness of demographic inference

258 Our core finding that overall levels of historic gene flow differ
259 little between currently sympatric and allopatric *Drosophila*
260 pairs is perhaps surprising. It is important to stress that our
261 coalescence-based inference of demographic history is based
262 on minimal sampling of a single haplotype per species and is
263 therefore limited to a small set of simplistic models. The fact
264 that IM and SC models, which assume symmetric migration
265 and ignore heterogeneity in N_e , already provide a good
266 absolute fit to the observed S distributions suggests that more
267 realistic models that include multiple phases of gene flow or
268 account for asymmetry are not identifiable. Future population
269 genomic analyses that include data on intraspecific diversity
270 will undoubtedly be able to fit more realistic demographic
271 models of species divergence.

272 There are, however, fundamental limits to demographic
273 inference that do not depend on the sample sizes and data
274 summaries used: estimates of gene flow and ancestral N_e
275 between taxon pairs are potentially confounded by ghost
276 admixture into one or both focal taxa from a third taxon [6].
277 Furthermore, periods of high gene flow (or low N_e) erase the
278 genomic footprints of older demographic events and inference is
279 limited to long-term rates of gene flow that are sufficiently low
280 ($M < 10$). Importantly, this means that periods of gene flow
281 that are high enough for reinforcement selection to act may be
282 indistinguishable from panmixia.

283 Given the simplicity of our data summary, an important
284 question is to what extent our finding of pervasive historic
285 gene flow in *Drosophila* hinges on the ability to accurately
286 estimate the frequency of monomorphic blocks. This may be
287 difficult for two reasons: firstly, intronic sequence may be
288 incompletely annotated in some taxa and including conserved
289 regulatory sequence in introns will inflate the frequency of
290 monomorphic blocks. Secondly, many of the sequence data
291 we analyse are from isofemale lines with a history of lab
292 culture and it is perhaps feasible that in some pairs recent
293 admixture may have occurred as a result of lab contamination.
294 To assess the dependence of our results on the frequency of
295 monomorphic blocks, we estimated the fit of SI, IM and SC
296 models for all pairs when monomorphic blocks are excluded.
297 This involves conditioning on only observing blocks that differ
298 between species in a pair by maximizing the conditioned log
299 likelihood $\ln \frac{P[S=k]}{1-P[S=0]}$. We find that while conditioning on
300 $S > 0$ – unsurprisingly – decreases support for IM and SC
301 histories (relative to SI) overall (see Supplementary Fig 13-15;
302 SI model: 15 (allopatric) and 24 (sympatric) pairs; IM model:
303 23 (allopatric) and 31 (sympatric) pairs; SC model: 0; IIM
304 model: 0), our main qualitative result of a signature of gene
305 flow in most taxa ($n = 54$) without any systematic difference

Fig. 3. Sympatric and allopatric pairs show similar divergence times, effective population size and levels of long-term gene flow. Current range overlap does not reflect inferred historical demography. **A.** We find no difference in long-term rates of gene flow between allopatric and sympatric pairs. Gene flow was calculated for each pair using parameter estimates from the best-fitting model. **B.** and **C.** We find no difference in scaled divergence time, but we find a difference in effective population size (the best-fitting model for each pair) between allopatric and sympatric pairs. ‘ns’ indicates no significant difference and ‘*’ indicates $p < 0.05$ via Mann-Whitney U test.

306 between sympatric and allopatric pairs is unaffected ($\Delta \ln L$
 307 between SI v.s. IM models; two-sample Wilcoxon test: $W =$
 308 1242, $p = 0.124$).

309 Finally, a power analysis based on data simulated under
 310 plausible parameters for *Drosophila* shows that the overall
 311 greater support for speciation histories involving a low level
 312 of gene flow is unlikely to reflect biases that arise from the fact
 313 that our multilocus inference framework ignores recombination
 314 within blocks (see simulation results in Supplementary section
 315 1.5 and Supplementary Fig. 8). Additionally, when we use
 316 a simple phylogenetic correction to account for the non-
 317 independence of some species pairs, we still find consistent
 318 evidence of gene flow across nodes in the *Drosophila* phylogeny
 319 [2](Supplementary section 1.6; Supplementary Fig. 11 and 12).
 320 Thus, there is a still pervasive signal of post-divergence gene
 321 flow in *Drosophila* pairs, even between currently allopatric
 322 pairs, and across all of our sensitivity analyses.

323 Speciation with gene flow is the rule not the 324 exception

325 Our results strongly imply that speciation does not require
 326 an extended allopatric phase to allow the build-up of RI.
 327 Instead, a low level of gene flow at all stages of speciation
 328 appears to be relatively common in *Drosophila*. Numerous
 329 other studies have inferred gene flow between ‘good’ species
 330 without explicitly testing if this is greater in sympatric species
 331 [41, 65, 56, 53]. It appears that speciation in the face of gene
 332 flow is common and the traditional classification into distinct
 333 geographic modes of speciation, with allopatry taken as the
 334 default, is outdated [44, 9, 20, 42]. The importance of ‘strict
 335 isolation’ to the Biological Species Concept has diminished
 336 greatly over the last few decades, partly as a result of genomic
 337 analyses of introgression. Moreover, it is generally accepted that
 338 speciation is a continuous process [55, 43] and that complete
 339 RI is not necessary between species. Instead, our results
 340 suggest that speciation more often involves extended periods of
 341 genetic exchange and incomplete RI rather than an abrupt and
 342 complete cessation of gene flow. Of course, this widens the ‘grey
 343 zone’ where species barriers remain permeable long after species

divergence has become irreversible [43, 7]. Genomic analyses of
 344 speciation with gene flow clearly demonstrate that levels of gene
 345 flow can vary widely across the genome [34, 22]. The extent
 346 to which this variation reflects clustered genetic architectures
 347 for barriers to gene flow that have arisen as a consequence
 348 of speciation with gene flow or simply pre-existing variation
 349 in recombination, perhaps owing to structural rearrangements
 350 such as inversions, is an open question. Nevertheless, it is clear
 351 that species barriers can build up and reach tipping points in
 352 the face of on-going gene flow without any extended period of
 353 strict allopatry.

354 However, it is important to emphasise that our suggestion
 355 that a strict allopatric model of speciation is probably
 356 uncommon in *Drosophila* does not suggest that allopatry
 357 is unimportant or plays no role. Studies of phylogeography,
 358 ancient DNA and niche modelling recognise that species
 359 ranges may be dynamic over timescales that are short relative
 360 to speciation processes. Within the limits of our modeling
 361 approach we have demonstrated that some amount of long
 362 term gene flow during species divergence is almost ubiquitous.
 363 However, estimating the timing and duration of individual
 364 episodes of gene flow is arguably a much more difficult task.
 365 The Pleistocene climate history has been dominated by cycles
 366 of ice ages and warmer interglacials. Thus, species both in the
 367 temperate zones [30, 28] and the tropics [26, 11] have undergone
 368 repeated periods of allopatry and secondary contact and gene
 369 flow. Such complex histories would be challenging to model
 370 explicitly (and are impossible to infer from the distribution
 371 of pairwise differences). By contrast, the IM model assumes a
 372 single long term (over the scale of N_e generations) rate of gene
 373 flow. This parameter therefore reflects a long term average of
 374 genetic exchange over many Pleistocene cycles of range shifts.

375 Another important consideration is how applicable our
 376 results are to other taxa. *Drosophila* is highly vagile, flighted
 377 and long distance dispersal has been demonstrated in some
 378 species [12]. However, many *Drosophila* species have specialised
 379 niches, so successful dispersal requires either movement of host
 380 plants, commensalism or switches to novel hosts. One may
 381 expect larger, less vagile, organisms to show less dynamic range

383 changes. However, phylogeographic patterns of diversity that
384 imply rapid range shift in response to glacial cycles have been
385 recognised in vastly diverse taxa, including plants and larger
386 vertebrates [30]. We therefore see no reason to suppose that
387 our result that current range overlap is essentially uncorrelated
388 with historic gene flow during species divergence is limited to
389 *Drosophila*.

390 We stress that demographic analyses of larger genomic
391 datasets (preferably from wild-caught samples and known areas
392 of range overlap) that make use of intraspecific variation will
393 allow to fit more realistic models of divergence and may help
394 to answer new questions. For example, rather than assuming
395 that gene flow during species divergence is symmetric – as we
396 have done here – it would be fascinating to test which traits
397 and population genetic processes correlate with the direction of
398 gene flow. There is clearly also a need for similar comparative
399 analyses of speciation histories for taxa that have richer
400 geographic range and life history information than *Drosophila*
401 to contextualise the evolution of RI and the extent, timing and
402 direction of gene flow at different points along the speciation
403 continuum.

404 Methods

405 Data sampling and quality control

406 We collated data on genetic distance, reproductive isolation
407 (RI) and range overlap for 93 pairs of *Drosophila* species from
408 published datasets [63, 64, 13, 14] (see Supplementary table 5
409 for RI data). These pairs are relatively phylogenetically broad,
410 as we include species pairs from the melanogaster, repleta,
411 virilis, immigrans, obscura, and willistoni groups. According
412 to a recent *Drosophila* phylogenies [32, 19], these lineages are
413 well distributed across the genus. We augmented these with
414 analyses of demographic history for each species pair using
415 genomic data to test key assumptions about the relationship
416 between current range overlap and speciation history. To do
417 this, we obtained one genome assembly (based mostly on
418 long read data) per species pair and whole-genome sequencing
419 (WGS) data (Illumina, short read) for each species from
420 publicly available datasets via NCBI (Supplementary table 3).
421 We only included WGS data with similar coverage, removed
422 pool-sequenced or experimentally manipulated samples, and
423 prioritised data obtained from wild-caught individuals (rather
424 than lab lines). For WGS datasets that met these criteria,
425 we randomly assigned one resequencing dataset to represent
426 each species. Full filtering details can be found in SI Appendix
427 (section 1.1). Details on genome assemblies and WGS datasets
428 sampled can be found in Supplementary table 3 and 4 in the SI
429 Appendix.

430 Genome annotation, mapping and variant calling

431 We annotated each genome separately using BRAKER2
432 (v2.1.6) and *D. melanogaster* protein sequences as evidence [8].
433 Raw reads for each WGS dataset were trimmed using fastp [10],
434 aligned using bwa-mem2 [36, 59], and finally sorted and filtered
435 using sambamba [57] and picard. Both WGS datasets of each
436 species pair were mapped to the annotated genome (belonging
437 to one of the two species) in the pair. Variants were called using
438 freebayes and filtered for missing genotypes, read mapping bias
439 and depth using bcftools and gIMble[24, 35, 34, 16]. For full
440 details on annotation, mapping and filtering see SI Appendix
441 (section 1.2).

442 Sampling intronic blocks

443 We opted to use intronic sequences for demographic analyses
444 since introns can be more reliably annotated than intergenic
445 regions but show much less functional constraint than protein-
446 coding genes. Functional constraint across introns can be
447 variable, so we implemented a range of filtering strategies to
448 keep intronic segments most likely to be selectively neutral[27,
449 25]. To ensure we minimised linkage between intronic regions,
450 we only sampled one intronic block per gene. Intronic blocks
451 of a fixed, species-specific length were sampled from callable
452 variants after filtering. This means that blocks could span
453 intronic sequence (within a single intron) that were excluded
454 because quality or coverage filters. Our filtering strategy is
455 described in full detail and can be found in the Supplementary
456 Material (section 1.3 and Supplementary Fig. 9). As a sanity
457 check on our filtering strategy we compared d_{XY} in the
458 filtered intron dataset to d_{XY} calculated across all sites in the
459 genome (Supplementary Fig. 10). This confirms that selective
460 constraint on the intronic sequences included in our analyses is
461 low compared to the genome-wide average.

462 Extracting genomic DNA for a single *Drosophila* sample for
463 sequencing often requires pooling multiple individuals from an
464 isofemale line. Even when a single individual can be sequenced,
465 the heterozygosity in the resulting WGS data reflects both
466 the effective size (N_e) at the species level and the history of
467 lab culture. We therefore restrict our analysis to the most
468 minimal sampling scheme of a single haplotype per species and
469 base inference on the distribution of pairwise differences (S)
470 between species. The S distribution in short intronic block
471 is a vector of counts $\bar{k} = n_1, n_2 \dots n_{k_{\max}}$. We assumed that
472 the heterozygous sites in each block can be randomly assigned
473 to haplotypes using a simple binomial sampling procedure
474 (implemented in *Mathematica* v12.3) that considers all ways
475 of phasing heterozygous sites: e.g. a block containing two
476 fixed differences between species and a single heterozygous site
477 contributes probabilities $\frac{1}{2}$ each to $S = 2$ and 3. Likewise, a
478 block with two fixed differences and two heterozygous sites
479 contributes probabilities $\frac{1}{4}$, $\frac{1}{2}$ and $\frac{1}{4}$ to $S = 2$, 3 and 4
480 respectively. To account for differences in the number of blocks
481 between species pairs, we normalised S distributions by $500/n_i$
482 (where n_i is the number of blocks in pair i).

483 Modelling speciation histories across *Drosophila*

484 To understand demographic histories and the degree of gene
485 flow for species pairs, we fitted a range of models of
486 demographic history to the distribution of pairwise differences
487 in short intronic blocks between species: (a) a strict isolation
488 (SI) model (most consistent with strict allopatric speciation)
489 characterised as an instantaneous split of an ancestral
490 population at T_0 without gene flow, (b) isolation with migration
491 (IM), where an ancestral population diverges with symmetric
492 migration ($M = 4N_e m$ migrants per generation, where N_e is
493 the ancestral population) between the time of divergence and
494 the present, (c) an isolation with initial migration model (IIM),
495 where an ancestral population diverges with an initial period
496 of symmetric migration and gene flow ceases at T_1 and (d) a
497 secondary contact (SC) model, where an ancestral population
498 diverges in allopatry, and an instantaneous recent, pulse of gene
499 flow, i.e. a total proportion (f) of the population is introgressed
500 at time T_1 . This secondary contact model differs from the other
501 SC models in the literature in that gene flow is modeled as
502 a short bidirectional pulse rather than continuous migration
503 from T_1 to the present [53], reflecting the expectation that

504 reinforcement rapidly halts gene flow during secondary contact.
505 In all cases, we assumed a single N_e parameter that is shared
506 between the ancestral population and the daughter species. See
507 Supplementary Figure 7 for visualisations of each model.

508 Analytic solutions derived in [61, 38, 62] allow efficient
509 maximum likelihood estimation of parameters under the IM
510 and IIM model from the S distribution. We use the expression
511 for the probability of seeing k differences between a pair of
512 sequences sampled from different populations under the IM
513 model and IIM model $P[S = k]$ [61, eq. 24] and [62, eq. 29].
514 We assumed a single N_e parameter $\theta = 4N_e\mu$ for the ancestor
515 and the two daughter species and a fixed mutation rate across
516 all blocks. The likelihood expression for the secondary contact
517 model was adapted from [37]. For each model and species pair
518 we maximized the log likelihood across blocks:

$$\ln L[T_0, T_1, M, \theta | \bar{k}] = \sum_{k=0}^{k_{\max}} \ln P[S = k] \times n_k \quad (1)$$

519 This likelihood calculation was implemented in **Mathematica**;
520 we used the function `FindMaximum` to maximise eq. 1 and
521 obtained maximum likelihood estimates (MLE) of parameters
522 under each model and for each species pair. Given that the SI,
523 IM and IIM models are nested, we used likelihood ratio tests
524 (assuming the $2\Delta \ln L$ follows a χ^2 distribution) to determine
525 relative model support for each species pair. Since the IIM and
526 SC models have the same number of parameters, we compared
527 them simply in terms of relative log-likelihood. A detailed
528 description of our rationale for evaluation of model support can
529 be found in Supplementary Material (section 1.4.1 and 1.4.2).

530 To scale parameter estimates, we used the spontaneous
531 mutation rate estimate of $\mu = 3.32 \times 10^{-9}$ per base and
532 generation for *D. melanogaster* and additionally included the
533 95% confidence intervals (2.52×10^{-9} - 4.30×10^{-9}) of this
534 estimate (26).

535 Simulations

536 A key assumption of our inference framework is that it
537 is possible to sample neutrally evolving variation in short
538 block of sequence within which recombination can be ignored.
539 Violations of this assumption can lead to biases in parameter
540 estimates and could result in erroneous support for histories
541 of gene flow[60]. To rule out this possibility, we simulated S
542 distributions for each pair in our dataset using the maximum
543 likelihood parameter estimates under a SI model and realistic
544 rates of recombination ($r = 1.03$ cM/Mb) and mutation $3.32 \times$
545 10^{-9} (38). Comparing $\Delta \ln L$ between SI and IM histories for
546 simulated datasets suggest a maximum false positive rate of
547 25 %, far below the proportion of species pairs that support
548 a history of gene flow (87 %). Moreover, we find that the
549 IM model has considerably higher relative support in the real
550 data compared to data simulated under a null model with
551 recombination but no gene flow. Full details can be found in
552 SI Appendix (section 1.5).

553 Acknowledgments

554 We thank the reviewer and the associate editor for their
555 feedback. We thank Sam Ebdon for bioinformatic advice.
556 Additionally, we thank Roger K. Butlin and Jim Mallet for
557 helpful feedback that improved the manuscript, and Cher Chow
558 for assistance with figures. LY was supported by a University
559 of St Andrews studentship. KL was supported by a fellowship
560 from the Natural Environment Research Council (NERC,

561 NE/L011522/1) and a European Research Council starting
562 grant (ModelGenomLand 757648) which also supported DRL.
563 MGR was supported by a grant from the Natural Environment
564 Research Council (NE/V001566/1).

565 Author contributions

566 Conceptualisation: LHY, KL, MGR. Analysis: LHY, DRL, KL.
567 Writing (original draft): LHY, KL, MGR. Writing (review and
568 editing): LHY, KL, MGR.
569 The authors declare that they have no competing interests.

570 References

1. R. Abbott, D. Albach, S. Ansell, J. W. Arntzen, S. J. Baird, N. Bierne, J. Boughman, A. Brelsford, C. A. Buerkle, and R. Buggs. Hybridization and speciation. *Journal of evolutionary biology*, 26(2):229–246, 2013. Publisher: Blackwell Publishing Ltd Oxford, UK.
2. S. A. Anderson, S. Kaushik, and D. R. Matute. The comparative analysis of lineage-pair traits. *Systematic Biology*, page syaf061, 2025.
3. S. A. Anderson and J. T. Weir. The role of divergent ecological adaptation during allopatric speciation in vertebrates. *Science*, 378(6625):1214–1218, 2022.
4. D. Bachtrog. The speciation history of the *Drosophila* nasuta complex. *Genetics Research*, 88(1):13–26, 2006. Publisher: Cambridge University Press.
5. T. G. Barraclough and A. P. Vogler. Detecting the Geographical Pattern of Speciation from Species-Level Phylogenies. *The American Naturalist*, 155(4):419–434, Apr. 2000.
6. P. Beerli. Effect of unsampled populations on the estimation of population sizes and migration rates between sampled populations. *Molecular Ecology*, 13(4):827–836, 2004.
7. G. Bisschop, D. Setter, M. Rafajlović, S. J. Baird, and K. Lohse. The impact of global selection on local adaptation and reproductive isolation. *Philosophical Transactions of the Royal Society B*, 375(1806):20190531, 2020.
8. T. Brna, K. J. Hoff, A. Lomsadze, M. Stanke, and M. Borodovsky. Braker2: automatic eukaryotic genome annotation with genemark-ep+ and augustus supported by a protein database. *NAR genomics and bioinformatics*, 3(1):lqaa108, 2021.
9. R. K. Butlin, J. Galindo, and J. W. Grahame. Sympatric, parapatric or allopatric: the most important way to classify speciation? *Philosophical Transactions of the Royal Society B: Biological Sciences*, 363(1506):2997–3007, 2008.
10. S. Chen, Y. Zhou, Y. Chen, and J. Gu. fastp: an ultra-fast all-in-one fastq preprocessor. *Bioinformatics*, 34(17):i884–i890, 2018.
11. H. Cheng, A. Sinha, F. W. Cruz, X. Wang, R. L. Edwards, F. M. d'Horta, C. C. Ribas, M. Vuille, L. D. Stott, and A. S. Auler. Climate change patterns in amazonia and biodiversity. *Nature communications*, 4(1):1411, 2013.
12. J. A. Coyne, I. A. Bousy, T. Prout, S. H. Bryant, J. Jones, and J. A. Moore. Long-distance migration of drosophila. *The American Naturalist*, 119(4):589–595, 1982.
13. J. A. Coyne and H. A. Orr. PATTERNS OF SPECIATION IN DROSOPHILA. *Evolution*, 43(2):362–381, Mar. 1989.
14. J. A. Coyne and H. A. Orr. ” Patterns of speciation in Drosophila” revisited. *Evolution*, pages 295–303, 1997. Publisher: JSTOR.

620 15. J. A. Coyne and H. A. Orr. *Speciation*. Sinauer Associates, 621 2004.

622 16. P. Danecek, J. K. Bonfield, J. Liddle, J. Marshall, V. Ohan, 623 M. O. Pollard, A. Whitwham, T. Keane, S. A. McCarthy, 624 R. M. Davies, et al. Twelve years of samtools and bcftools. 625 *Gigascience*, 10(2):giab008, 2021.

626 17. A. De Jode, A. Le Moan, K. Johannesson, R. Faria, 627 S. Stankowski, A. M. Westram, R. K. Butlin, M. Rafajlović, 628 and C. Fraïsse. Ten years of demographic modelling 629 of divergence and speciation in the sea. *Evolutionary 630 Applications*, 16(2):542–559, Feb. 2023.

631 18. N. B. Edelman, P. B. Frandsen, M. Miyagi, B. Clavijo, 632 J. Davey, R. B. Dikow, G. García-Accinelli, S. M. 633 Van Belleghem, N. Patterson, D. E. Neafsey, R. Challis, 634 S. Kumar, G. R. P. Moreira, C. Salazar, M. Chouteau, 635 B. A. Counterman, R. Papa, M. Blaxter, R. D. Reed, 636 K. K. Dasmahapatra, M. Kronforst, M. Joron, C. D. 637 Jiggins, W. O. McMillan, F. Di Palma, A. J. Blumberg, 638 J. Wakeley, D. Jaffe, and J. Mallet. Genomic architecture 639 and introgression shape a butterfly radiation. *Science*, 640 366(6465):594–599, Nov. 2019.

641 19. C. Finet, V. A. Kassner, A. B. Carvalho, H. Chung, J. P. 642 Day, S. Day, E. K. Delaney, F. C. De Ré, H. D. Dufour, 643 E. Dupim, et al. Drosophila: resources for drosophilid 644 phylogeny and systematics. *Genome biology and evolution*, 645 13(8):evab179, 2021.

646 20. B. M. Fitzpatrick, J. A. Fordyce, and S. Gavrilets. Pattern, 647 process and geographic modes of speciation. *Journal of 648 evolutionary biology*, 22(11):2342–2347, 2009. Publisher: 649 Blackwell Publishing Ltd Oxford, UK.

650 21. M. C. Fontaine, J. B. Pease, A. Steele, R. M. Waterhouse, 651 D. E. Neafsey, I. V. Sharakhov, X. Jiang, A. B. Hall, 652 F. Catteruccia, E. Kakani, S. N. Mitchell, Y.-C. Wu, H. A. 653 Smith, R. R. Love, M. K. Lawniczak, M. A. Slotman, S. J. 654 Emrich, M. W. Hahn, and N. J. Besansky. Extensive 655 introgression in a malaria vector species complex revealed 656 by phylogenomics. *Science*, 347(6217):1258524, Jan. 2015.

657 22. C. Fraïsse, I. Popovic, C. Mazoyer, B. Spataro, S. Delmotte, 658 J. Romiguier, E. Loire, A. Simon, N. Galtier, L. Duret, 659 et al. Dils: Demographic inferences with linked selection by 660 using abc. *Molecular Ecology Resources*, 21(8):2629–2644, 661 2021.

662 23. D. J. Funk, P. Nosil, and W. J. Etges. Ecological divergence 663 exhibits consistently positive associations with reproductive 664 isolation across disparate taxa. *Proceedings of the National 665 Academy of Sciences*, 103(9):3209–3213, Feb. 2006.

666 24. E. Garrison and G. Marth. Haplotype-based variant 667 detection from short-read sequencing. *arXiv preprint 668 arXiv:1207.3907*, 2012.

669 25. P. R. Haddrill, B. Charlesworth, D. L. Halligan, and 670 P. Andolfatto. Patterns of intron sequence evolution in 671 drosophila are dependent upon length and gc content. 672 *Genome biology*, 6(8):R67, 2005.

673 26. J. Haffer. Speciation in amazonian forest birds: most species 674 probably originated in forest refuges during dry climatic 675 periods. *Science*, 165(3889):131–137, 1969.

676 27. D. L. Halligan and P. D. Keightley. Ubiquitous selective 677 constraints in the drosophila genome revealed by a genome- 678 wide interspecies comparison. *Genome research*, 16(7):875– 679 884, 2006.

680 28. R. G. Harrison and E. L. Larson. Hybridization, 681 introgression, and the nature of species boundaries. *Journal of 682 Heredity*, 105(S1):795–809, 2014.

683 29. G. M. Hewitt. Some genetic consequences of ice ages, and 684 their role in divergence and speciation. *Biological journal 685 of the Linnean Society*, 58(3):247–276, 1996.

686 30. G. M. Hewitt. Genetic consequences of climatic oscillations 687 in the quaternary. *Philosophical Transactions of the 688 Royal Society of London. Series B: Biological Sciences*, 689 359(1442):183–195, 2004.

690 31. J. Hey and R. Nielsen. Multilocus methods for estimating 691 population sizes, migration rates and divergence time, with 692 applications to the divergence of *Drosophila pseudoobscura* 693 and *D. persimilis*. *Genetics*, 167(2):747–760, 2004. 694 Publisher: Oxford University Press.

695 32. B. Y. Kim, H. R. Gellert, S. H. Church, A. Suvorov, S. S. 696 Anderson, O. Barmina, S. G. Beskid, A. A. Comeault, 697 K. N. Crown, S. E. Diamond, S. Dorus, T. Fujichika, J. A. 698 Hemker, J. Hrcek, M. Kankare, T. Katoh, K. N. Magnacca, 699 R. A. Martin, T. Matsunaga, M. J. Medeiros, D. E. Miller, 700 S. Pitnick, M. Schiffer, S. Simoni, T. E. Steenwinkel, Z. A. 701 Syed, A. Takahashi, K. H.-C. Wei, T. Yokoyama, M. B. 702 Eisen, A. Kopp, D. Matute, D. J. Obbard, P. M. O’Grady, 703 D. K. Price, M. J. Toda, T. Werner, and D. A. Petrov. 704 Single-fly genome assemblies fill major phylogenomic gaps 705 across the *Drosophilidae* Tree of Life. *PLOS Biology*, 706 22(7):e3002697, July 2024.

707 33. R. M. Kliman, P. Andolfatto, J. A. Coyne, F. Depaulis, 708 M. Kreitman, A. J. Berry, J. McCarter, J. Wakeley, and 709 J. Hey. The population genetics of the origin and divergence 710 of the *drosophila simulans* complex species. *Genetics*, 711 156(4):1913–1931, 2000.

712 34. D. R. Laetsch, G. Bisschop, S. H. Martin, S. Aeschbacher, 713 D. Setter, and K. Lohse. Demographically explicit scans 714 for barriers to gene flow using gimble. *PLoS genetics*, 715 19(10):e1010999, 2023.

716 35. H. Li. A statistical framework for snp calling, 717 mutation discovery, association mapping and population 718 genetical parameter estimation from sequencing data. 719 *Bioinformatics*, 27(21):2987–2993, 2011.

720 36. H. Li. Aligning sequence reads, clone sequences 721 and assembly contigs with bwa-mem. *arXiv preprint 722 arXiv:1303.3997*, 2013.

723 37. K. Lohse and L. A. Frantz. Neandertal admixture in 724 Eurasia confirmed by maximum-likelihood analysis of three 725 genomes. *Genetics*, 196(4):1241–1251, 2014. Publisher: 726 Oxford University Press.

727 38. K. Lohse, R. J. Harrison, and N. H. Barton. A general 728 method for calculating likelihoods under the coalescent 729 process. *Genetics*, 189(3):977–987, 2011.

730 39. J. B. Losos and R. E. Glor. Phylogenetic comparative 731 methods and the geography of speciation. *Trends in 732 Ecology & Evolution*, 18(5):220–227, 2003. Publisher: 733 Elsevier.

734 40. C. A. Machado, R. M. Kliman, J. A. Markert, and J. Hey. 735 Inferring the history of speciation from multilocus dna 736 sequence data: the case of *drosophila pseudoobscura* and 737 close relatives. *Molecular biology and evolution*, 19(4):472– 738 488, 2002.

739 41. D. Mai, M. J. Nalley, and D. Bachtrog. Patterns of genomic 740 differentiation in the *drosophila nasuta* species complex. 741 *Molecular biology and evolution*, 37(1):208–220, 2020.

742 42. J. Mallet. Speciation in the 21st century. *Heredity*, 743 95(1):105–109, 2005.

744 43. J. Mallet. Hybridization, ecological races and the 745 nature of species: empirical evidence for the ease of 746 speciation. *Philosophical Transactions of the Royal*

747 *Society B: Biological Sciences*, 363(1506):2971–2986, 2008. 811

748 44. J. Mallet, A. Meyer, P. Nosil, and J. L. Feder. Space, 812
749 sympatry and speciation. *Journal of evolutionary biology*, 813
750 22(11):2332–2341, 2009. 814

751 45. D. R. Matute and B. S. Cooper. Comparative studies 815
752 on speciation: 30 years since Coyne and Orr. *Evolution*, 816
753 75(4):764–778, Apr. 2021. 817

754 46. D. R. Matute and B. S. Cooper. Reinforcement alone does 818
755 not explain increased reproductive isolation in sympatry. 819
756 *bioRxiv*, pages 2021–05, 2021. 820

757 47. E. Mayr. *Animal Species and Evolution*. Harvard 821
758 University Press, Feb. 1963. 822

759 48. E. Mayr. *Systematics and the origin of species, from the 823
760 viewpoint of a zoologist*. Harvard University Press, 1999. 824

761 49. M. A. Noor. Reinforcement and other consequences of 825
762 sympatry. *Heredity*, 83(5):503–508, 1999. Publisher:
763 Nature Publishing Group.

764 50. M. A. Noor. Reinforcement and other consequences of 811
765 sympatry. *Heredity*, 83(5):503–508, 1999. 812

766 51. P. Nosil. *Ecological Speciation*. Oxford University Press, 813
767 2012. 814

768 52. P. Nosil. Degree of sympatry affects reinforcement in 815
769 *Drosophila*. *Evolution*, 67(3):868–872, 2013. Publisher:
770 Blackwell Publishing Inc Malden, USA. 816

771 53. C. Roux, C. Fraisse, J. Romiguier, Y. Anciaux, N. Galtier, 817
772 and N. Bierne. Shedding light on the grey zone of speciation 818
773 along a continuum of genomic divergence. *PLoS biology*, 819
774 14(12):e2000234, 2016. Publisher: Public Library of Science
775 San Francisco, CA USA. 820

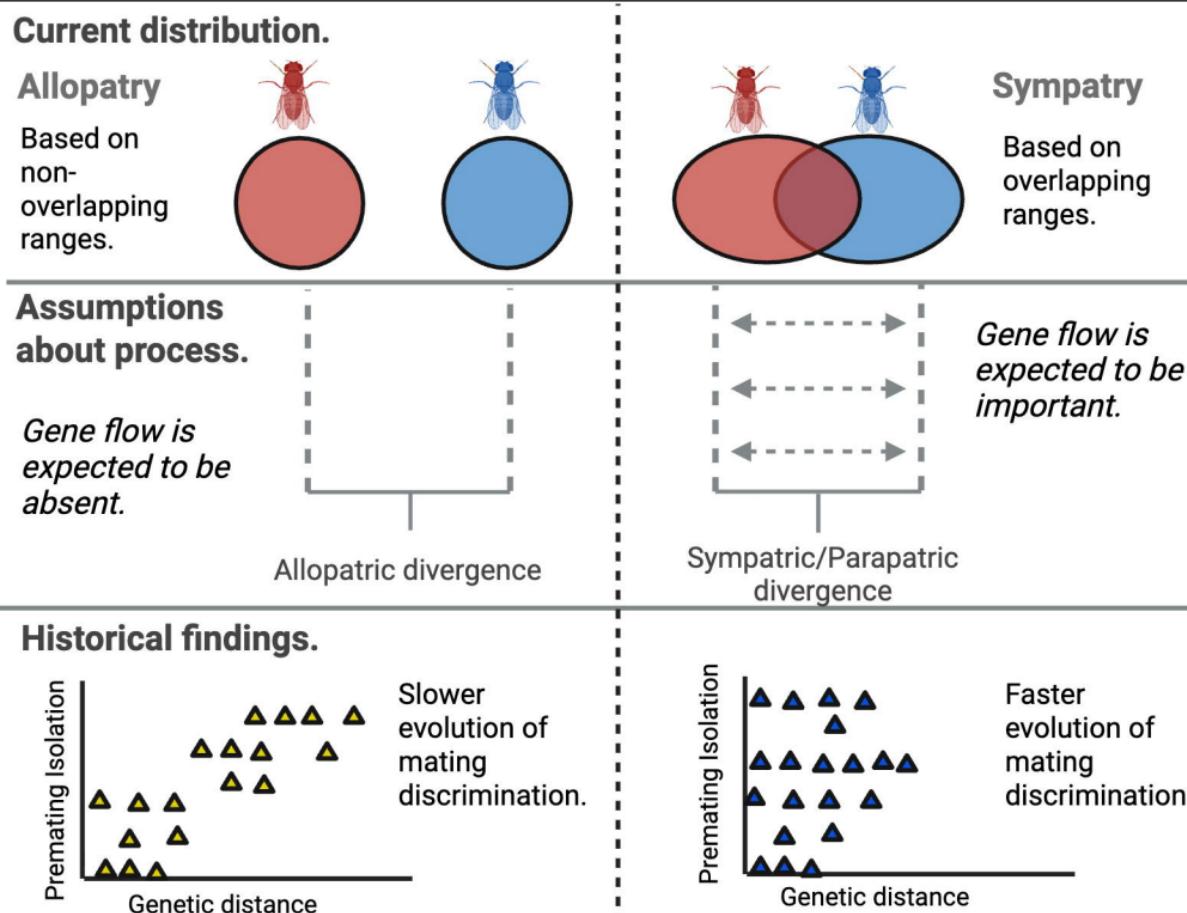
776 54. S. Singhal, G. E. Derryberry, G. A. Bravo, E. P. Derryberry, 821
777 R. T. Brumfield, and M. G. Harvey. The dynamics of 822
778 introgression across an avian radiation. *Evolution Letters*, 823
779 5(6):568–581, 2021. 824

780 55. S. Stankowski and M. Ravinet. Defining the speciation 825
781 continuum. *Evolution*, 75(6):1256–1273, 2021.

782 56. A. Suvorov, B. Y. Kim, J. Wang, E. E. Armstrong, 811
783 D. Peede, E. R. D'agostino, D. K. Price, P. J. Waddell, 812
784 M. Lang, and V. Courtier-Orgogozo. Widespread 813
785 introgression across a phylogeny of 155 *Drosophila* genomes. 814
786 *Current Biology*, 32(1):111–123, 2022. Publisher: Elsevier. 815

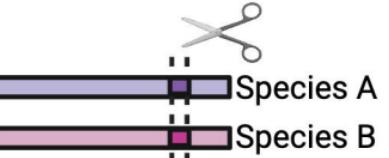
787 57. A. Tarasov, A. J. Vilella, E. Cuppen, I. J. Nijman, and 816
788 P. Prins. Sambamba: fast processing of ngs alignment 817
789 formats. *Bioinformatics*, 31(12):2032–2034, 2015. 818

790 58. M. Turelli, J. R. Lipkowitz, and Y. Brandvain. 819
791 On the Coyne and Orr-igin of species: effects of 820
792 intrinsic postzygotic isolation, ecological differentiation, X
793 chromosome size, and sympatry on *Drosophila* speciation. 821
794 *Evolution*, 68(4):1176–1187, 2014. Publisher: Blackwell
795 Publishing Inc Malden, USA. 822

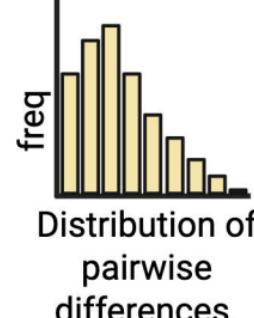

796 59. M. Vasimuddin, S. Misra, H. Li, and S. Aluru. Efficient 823
797 architecture-aware acceleration of bwa-mem for multicore 824
798 systems. In *2019 IEEE international parallel and 825
799 distributed processing symposium (IPDPS)*, pages 314–
800 324. IEEE, 2019.

801 60. J. D. Wall. Detecting ancient admixture in humans using 811
802 sequence polymorphism data. *Genetics*, 154(3):1271–1279, 812
803 2000. 813

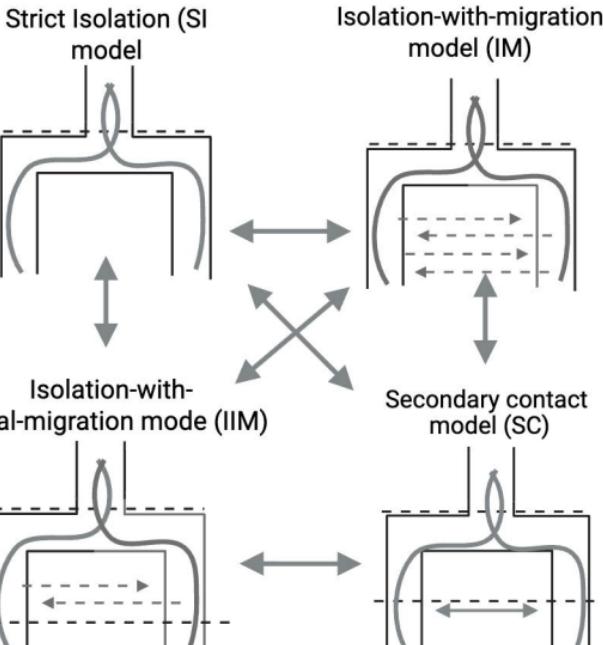
804 61. H. M. Wilkinson-Herbots. The distribution of the 814
805 coalescence time and the number of pairwise nucleotide 815
806 differences in the “isolation with migration” model. 816
807 *Theoretical Population Biology*, 73(2):277–288, 2008. 817
808 Publisher: Elsevier.

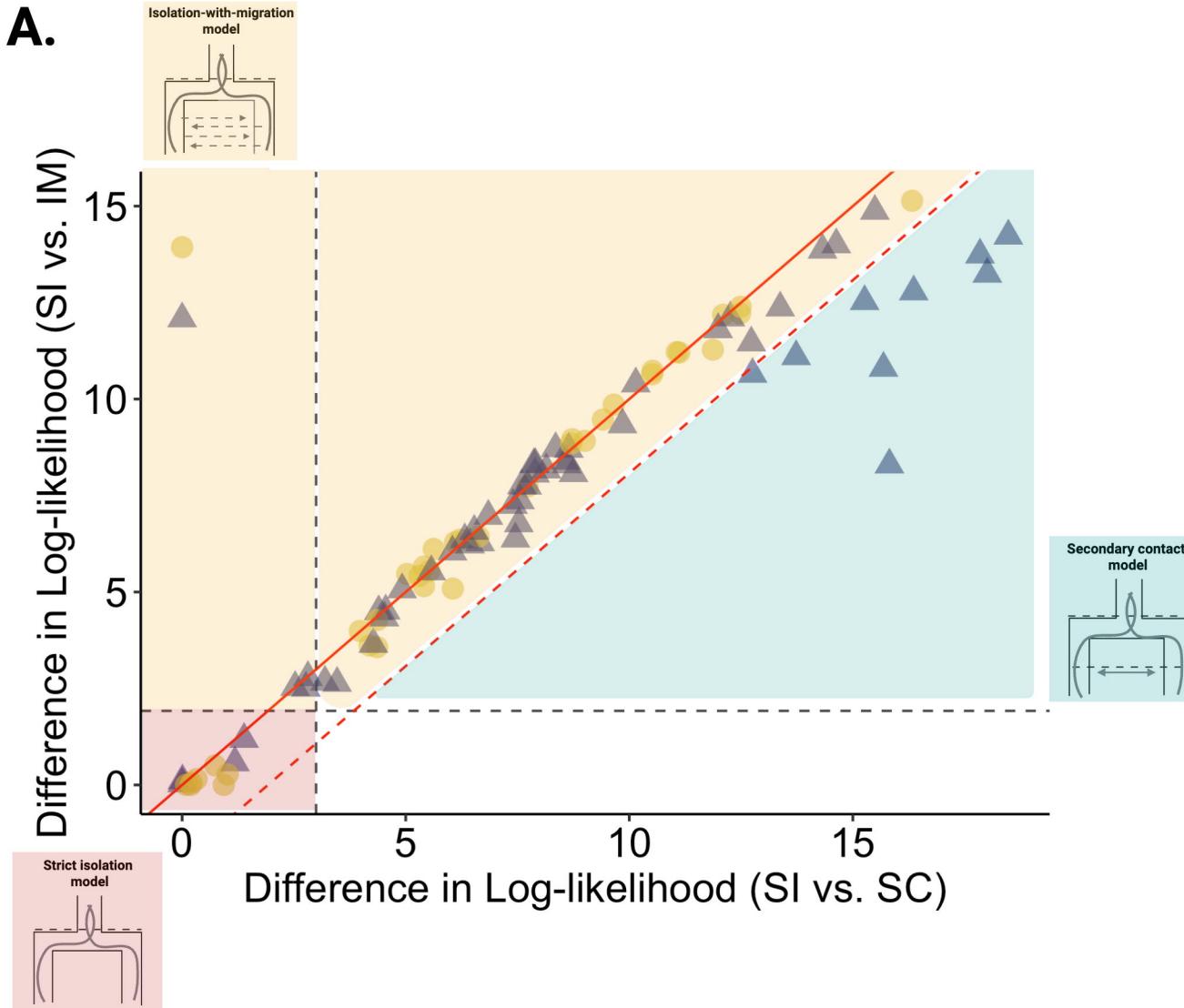
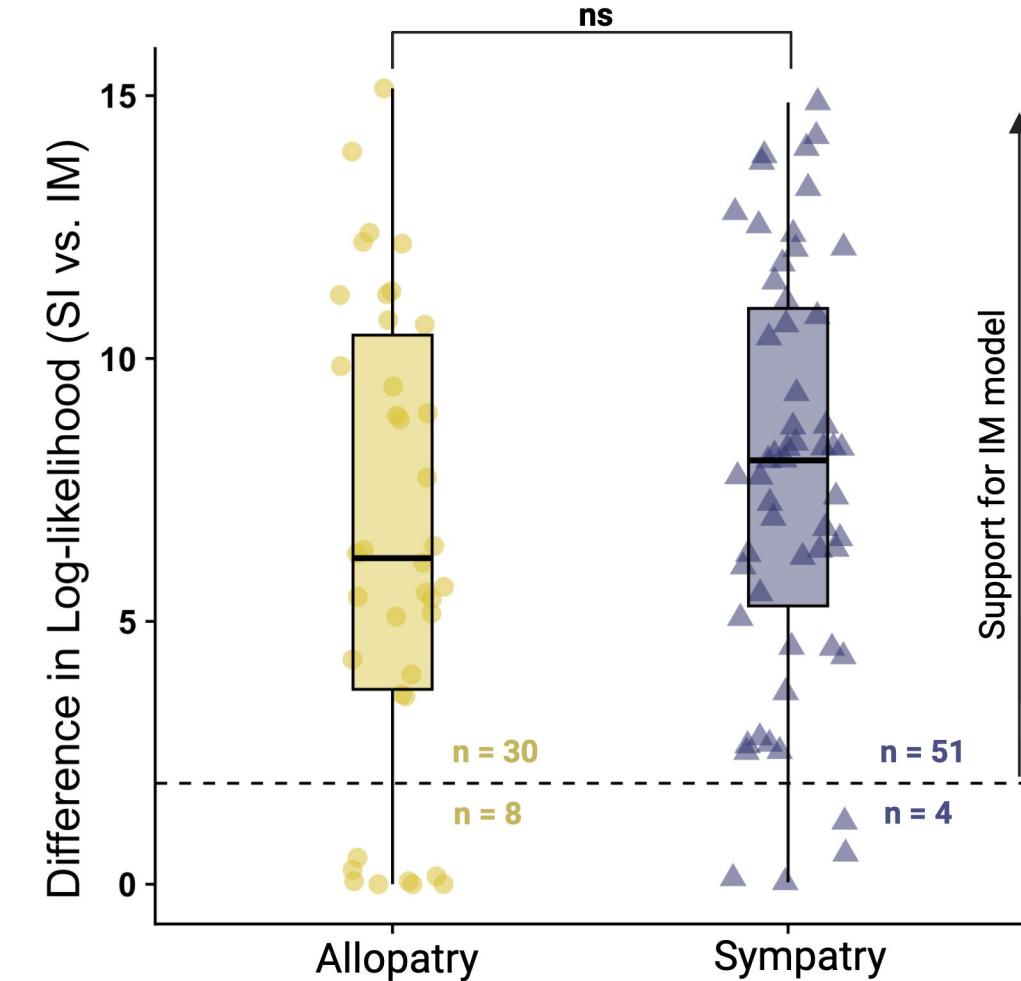

809 62. H. M. Wilkinson-Herbots. The distribution of the 818
810 coalescence time and the number of pairwise nucleotide 819

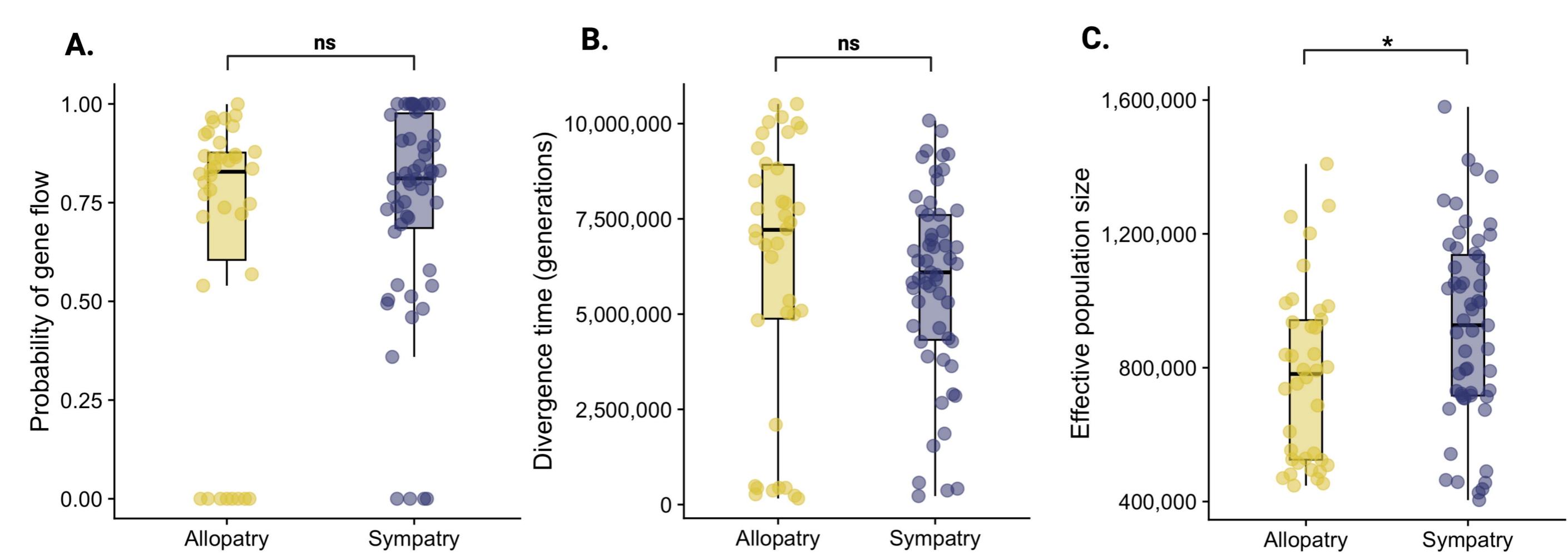
A) Background


B) Approach in this paper

Whole-genome data


Extract and filter
intronic blocks.



Calculate pairwise genetic divergence in intronic blocks.



Model fitting framework

Pairwise, nested contrasts between models to determine best fitting model for each pair.

A.**B.**

