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ABSTRACT 

Mutational signatures are characteristic patterns of mutations caused by 

endogenous mutational processes or by exogenous mutational exposures. There 

has been little benchmarking of approaches for determining which signatures are 

present in a sample and estimating the number of mutations due to each signature. 

This problem is referred to as “signature attribution”. We show that there are often 

many combinations of signatures that can reconstruct the patterns of mutations in a 

sample reasonably well, even after encouraging sparse solutions. We benchmarked 

thirteen approaches to signature attribution, including a new approach called 

Presence Attribute Signature Activity (PASA), on large synthetic data sets (2,700 

synthetic samples in total). These data sets recapitulated the single-base, insertion-

deletion, and doublet-base mutational signature repertoires of 9 cancer types. For 

single-base substitution mutations, PASA and MuSiCal outperformed other 

approaches on all the cancer types combined. However, the ranking of approaches 

varied by cancer type. For doublet-base substitutions and small insertions and 

deletions, while PASA outperformed the other approaches in most of the nine cancer 

types, the ranking of approaches again varied by cancer type. We believe this 

variation reflects inherent difficulties in signature attribution. These difficulties stem 

from the fact that there are often many attributions that can reasonably explain the 

pattern of mutations in a sample and from the combinatorial search space due to the 

need to impose sparsity. Tables herein can provide guidance on the selection of 

mutational signature attribution approaches that are best suited to particular cancer 

types and study objectives. 
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INTRODUCTION 

Different mutational processes can generate characteristic patterns of mutations; 

these are termed mutational signatures [1]. The causes of mutations can be 

endogenous, e.g. deamination of genomic 5-methyl cytosines [2] or defective 

polymerase epsilon proofreading [3], or exogenous, e.g., exposure to aristolochic 

acid [4,5] or tobacco smoke [6]. Mutational signatures can provide insight into 

disease processes that stem from mutagenesis and into the exposures or biological 

processes, including aging, that lead to mutations. For cancer, mutational signatures 

can serve as biomarkers for mutagenic exposures that increase cancer risk and can 

shed light on cancer causes, prognosis, and prevention [5,7–9]. Mutational signature 

analysis can also provide insights into the mechanisms of DNA damage and repair 

[10–13].  

This study is set in the broader context of the computational analysis of mutational 

signatures in general. One aspect of this analysis is the use of machine learning 

methods to discover mutational signatures in large databases of somatic mutations 

from tumors [1,14]. This process is often referred to as signature extraction. This 

analysis depends on the model that a mutational spectrum can be explained as a 

linear combination of mutations generated by mutational signatures (Figure 1). The 

number of mutations due to a particular signature is referred to as the signature’s 

activity. Signature extraction discovers mutational signatures as latent variables that 

can parsimoniously explain sets of mutational spectra [15–17]. In many cases, the 

broader goal is to identify the mutagens or mutagenic processes that generate the 

mutational signatures. Several benchmarking studies have systematically examined 

the accuracy of different approaches to signature extraction [17–20]. To-date, 
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experimental methods and in silico signature extraction together have identified > 

100 reference mutational signatures [21]. 

In addition to the discovery of mutational signatures, another important task is to 

estimate the presence of existing mutational signatures and their activities in a 

mutational spectrum, a task that is commonly called signature attribution. Absent 

critical review of output, signature attribution can generate results that are useless 

for understanding the underlying biology of mutagenesis and its consequences. For 

example, one study reported that nearly 50% of lung tumors in never smokers 

(mostly adenocarcinomas) have the SBS3 signature (Fig. 4 in reference [22]). SBS3 

is the result of deficient homologous-recombination-based DNA damage repair, and 

the same study (contradictorily) reported that HRDetect [12] detected homologous 

recombination deficiency in only 16% of the tumors (Extended Data Fig. 8a in 

reference [22]). If indeed SBS3 is caused by homologous recombination deficiency 

and is not a purely mathematical construct, then the presence of SBS3 and 

HRDetect’s determination of homologous recombination deficiency should be mostly 

concordant. However, in this case, the SBS3 attributions and HRDetect’s 

determinations are highly discordant. There are > 3 times as many tumors with 

purported SBS3 activity than are estimated to have homologous recombination 

deficiency by HRDetect. Furthermore, Alexandrov et al. [1] detected SBS3 in only 

8% of lung adenocarcinomas. SBS3 is especially prone to this kind of error, which is 

also shown in Extended Data Fig. 3a in reference [23], in which high proportions of 

tumors of almost all cancer types have SBS3, an implausible result in light of the 

actual prevalences of homologous recombination deficiency across cancer types. A 

related issue is that signature attribution software often includes small activities of 

signatures due to implausible exposures. For example, one study reported the 
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signature of UV exposure not only in cells from skin melanomas and in skin 

fibroblasts, but also in cells from every tissue, including kidney, liver and skeletal 

muscle (Fig. 3b in reference [24]). Furthermore, beyond these sorts of implausible 

results, challenges remain. We show below that it is often possible to reconstruct the 

mutational spectrum of a sample using dozens or more different combinations of 

signatures, all of which yield reasonably good reconstructions. 

Despite the importance of mutational signature attribution, there has been little 

benchmarking of software for this task [18,25,26]. In addition, previous studies of 

which we are aware studied only single-base substitution (SBS) mutational 

signatures and neglected doublet-base substitution (DBS) signatures and insertion-

deletion (ID) signatures. 

Here, we present benchmarking results for 13 mutational signature attribution tools 

[14,25,27–36], including PASA (Presence-based Attribution of Signature Activity), a 

new, statistically-grounded algorithm for signature attribution. Table 1 lists the 13 

tools and their input arguments. We present benchmarking results based on 

synthetic SBS, DBS, and ID data from 900 tumors representing 9 cancer types, for a 

total of 2,700 synthetic spectra. We have released the synthetic data on which the 

benchmarking was based as well as the code for generating the synthetic data. 

 

MATERIALS AND METHODS 

Preliminary definitions 

The mutational spectrum of one sample (tumor) is a 1-column matrix, 𝐷 ∈ 𝑁≥0
𝑘×1 =

[𝑑1 𝑑2 …𝑑𝑘]
𝑇, where 𝑘 is the number of mutation types and each 𝑑𝑘 is the number of 

mutations of that type. For example, for the common case of single-base 
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substitutions in the context of preceding and following bases, the mutation types are 

ACA→AAA, ACC→AAC, …, CCA→CAA, …, TTT→TGT. By convention, a mutated 

base is represented by the pyrimidine of the Watson-Crick base pair, and therefore 

there are six substitution subtypes: C→A, C→G, C→T, T→A, T→C, and T→G. There 

are altogether 96 types of single-base substitutions in the context of preceding and 

following bases (6 types of substitutions x 4 types of preceding base x 4 types of 

following base). The term “SBS signature” is usually understood to mean the 

signature of single-base substitutions in the context of preceding and following 

bases. The classification of doublet-base substitutions (DBS) is detailed at 

https://cancer.sanger.ac.uk/signatures/documents/3/DBS-doublet-base-substitution-

classification.xlsx. For small insertions and deletions (ID), the classification is 

described at 

https://cancer.sanger.ac.uk/signatures/documents/4/PCAWG7_indel_classification_2

021_08_31.xlsx. 

A mutational signature is a multinomial probability vector ℎ⃗ ∈ 𝑅≥0
𝑘 , , i.e., a real, non-

negative vector of length 𝑘, and with ∑ ℎ𝑖
𝑘
𝑖=1 . Elements of ℎ⃗  represent the 

characteristic proportions of the corresponding mutation types that are generated by 

one mutational process. Each element inside ℎ⃗  is the probability of observing one 

mutation of that particular mutation type. In this model, each mutational process 

generates mutations of different mutation types by sampling from the multinomial 

distribution that is the process’s signature. Since in general multiple mutational 

processes generate mutations in a tumor, in this model, the spectrum, 𝐷, is the sum 

of mutations in each mutation type generated by different processes. 
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Given a matrix 𝐻 ∈ 𝑅≥0
𝑘×𝑔

= [ ℎ1
⃗⃗⃗⃗   ℎ2

⃗⃗⃗⃗ … ℎ𝑔
⃗⃗⃗⃗  ] of 𝑔 mutational signatures, the task of 

signature attribution is to find a non-negative activity matrix 𝐴 ∈ 𝑅≥0
𝑔×1

=

[𝑎1 𝑎2  …  𝑎𝑔]
𝑇
that approximately reconstructs the original tumor spectrum using input 

signatures 𝐻, i.e. such that 𝐷 ≈ 𝐻 × 𝐴. Many approaches seek to minimize the L2 

norm of 𝐷 −   (𝐻 × 𝐴), sometimes under some constraints to promote sparsity in 𝐴. 

However, the PASA method, detailed below, seeks to find an attribution, 𝐴, that 

maximizes 𝑃(𝐷|(𝐻 × 𝐴)), under some regularization constraints that depend on 

likelihood ratio tests, as detailed below. 

Running  approaches to signature attribution 

The code for benchmarking all approaches to signature attribution and all raw 

outputs are available at https://github.com/Rozen-

Lab/sig_attribution_paper_code/tree/master/analysis/. Importantly, for every 

approach and every cancer type, we allowed attribution with only the set of 

signatures previously observed in that cancer type as reported in reference [1]. Table 

1 lists the software versions and input arguments used for each approach. 

 

Generation of synthetic mutation data 

We used COSMIC [21] v3.4 (https://cancer.sanger.ac.uk/signatures/) reference 

mutational signatures and the signature activities estimated by Alexandrov et al. [1] 

to generate synthetic SBS, DBS, and ID mutational spectra. Detailed methods are 

described in our previous publication [17]. Briefly, for each of the SBS, DBS, and ID 

mutation types, we generated 100 synthetic spectra for each of nine cancer types. To 

generate one synthetic spectrum of a particular cancer type, the code first selects 

the signatures present in the spectrum and the ground-truth activities of each 
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signature as random draws from the distributions of these estimated from [1]. The 

distribution of exposures for each cancer type was modeled as a negative-binomial 

distribution with parameters matching the distribution in [1], as computed by the R 

package fitdistrplus [37], and described in [17]. Once the activities of a signature are 

selected, the numbers of each mutation type due to that signature are selected from 

a negative binomial distribution that is centered on the overall number of mutations 

due to the signature times the proportion of mutations of that mutation type in the 

signature. For each signature we selected a negative-binomial dispersion parameter 

“that resulted in spectrum-reconstruction accuracies similar to those seen in real 

data” [17]. For example, for SBSs, the actual data and the synthetic data have 

median spectrum-reconstruction cosine similarities of 0.969 and 0.974, respectively 

(Tables S1, S2). Given the slightly higher cosine similarities of the synthetic data, we 

believe these do not overestimate the sampling variance in the actual data, and we 

take them as our best estimate of this variance. At the suggestion of a reviewer, we 

also generated a data set with a binomial dispersion parameter that generated 

substantially less sampling variance, resulting in a median cosine similarity of 0.986 

(Table S2).  

Table S3 shows the mean, median, and standard deviations of mutation counts for 

each mutation type in each cancer type. For the synthetic data set based on our best 

estimate of sampling variance, for all cancer types together, means and standard 

deviations were 43,353, 140,140, 571, 1,471, 3,566, and 15,964 for SBS, DBS, and 

ID mutation types. 

Code to generate the synthetic mutational spectra and the synthetic spectra 

themselves is at https://github.com/Rozen-

Lab/sig_attribution_paper_code/tree/master/synthetic_data/, and for synthetic 
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spectra with underestimated sampling variance, at https://github.com/Rozen-

Lab/sig_attribution_low_variance/tree/main/synthetic_data/SBS/. 

Definition of evaluation measures  

For a given synthetic spectrum with given ground truth activities, let 𝑃 be the number 

of signatures which have activity > 0. Let 𝑇𝑃 (true positive) be the number of 

signatures with activity > 0 that also have estimated activities > 0. Let 𝐹𝑃 (false 

positive) be the number of signatures with 0 activity, but that have estimated 

activity > 0 

The evaluation measures for attribution of signatures for a synthetic spectrum of a 

given cancer type are: 

Precision = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃) 

Recall = Sensitivity =  𝑇𝑃 / 𝑃 

Scaled Manhattan distance = ∑ |𝑋𝑖 − 𝑌𝑖|/𝑀𝑖 , where the 𝑋𝑖 are the ground truth 

activities of all signatures, 𝑖, known to occur in the given cancer type, the 𝑌𝑖 

are the estimated activities, and 𝑀 is the number of mutations in the sample 

Combined Score = (1 – Scaled Manhattan distance) + Precision + Recall 

Specificity = = 𝑇𝑁/(𝑇𝑁 + 𝐹𝑃), where 𝑇𝑁 is the number signatures that were not 

present and were not selected for signature attribution  

Scaled L2 distance = √∑ |𝑋𝑖 − 𝑌𝑖|
2

𝑖 /𝑀, where 𝑖, 𝑋𝑖, 𝑌𝑖, and 𝑀 are as above 

KL divergence = ∑ 𝑋𝑖𝑖 log2[𝑋𝑖/(𝑌𝑖 + 𝜀)] where 𝑖, 𝑋𝑖, and 𝑌𝑖, are as above, and 

𝜀 =  0.001, as implemented in the R function 

philentropy::kullbak_leibler_distance. 
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PASA algorithm 

Motivated by the absence of statistical perspective in most existing approaches to 

mutational signature attribution, we sought to develop an algorithm which used the 

statistical likelihoods of possible attributions as a means choose between them, 

including, importantly, as a means to exclude attributions that are not statistically 

needed to explain an observed mutational spectrum. We are aware of only two other 

signature attribution approaches that use likelihoods in mutational signature 

attribution: sigLASSO and MuSiCal [33,34]. Both use in likelihoods different ways, 

and neither uses a likelihood ratio test. We describe the differences between PASA 

and these other approaches in the Discussion. 

Our work on PASA was inspired by concepts in the mSigAct signature presence test, 

which uses a likelihood ratio test to assess statistically whether one specific 

signature is needed to explain a given mutational spectrum [8]. This is useful in 

cancer epidemiology, for example, when deciding how often the signature of a 

particular mutagen is present in a group of tumors. PASA extends the likelihood ratio 

tests used in the signature presence test to address the problem of estimating an 

entire set of signatures that can parsimoniously and accurately explain a given 

mutational signature, i.e. to the problem of signature attribution. 

The likelihood ratio test in PASA takes a mutational spectrum, 𝐷, and two 

attributions, 𝐴1 and 𝐴2, in which the signatures in 𝐴2 constitute a proper subset of 

those in 𝐴1. The null hypothesis is that the likelihood of 𝐴1, 𝑃(𝐷|𝐴1), is the same as 

the likelihood of 𝐴2, 𝑃(𝐷|𝐴2). The test then depends on the test statistic 𝜆 =

−2(log 𝑃(𝐷|𝐴2) − log 𝑃(𝐷|𝐴1)), which follows a chi-squared distribution with degrees 
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of freedom = |𝐴1|  −  |𝐴2|, where |𝐴1| and |𝐴2| are the sizes of the two sets of 

signatures. A 𝑝 value can be determined from this distribution [38]. If the 𝑝 value is 

below the significance level, we reject the null hypothesis and consider that 𝐴1 

provides a better reconstruction than 𝐴2, implying that the signatures in 𝐴1 –  𝐴2 are 

plausibly needed to explain 𝐷.  

The PASA algorithm proceeds in 2 steps. In Step 1, the likelihoods, 𝑃(𝐷|𝐴), are 

based on multinomial distributions, and in Step 2, they are based on negative 

binomial distributions.  

Likelihoods under multinomial distributions are computed as follows. Let 𝑐 =

 𝐻 × 𝐴 = [𝑐1 𝑐2 …𝑐𝑘]
𝑇 be the vector of mutation counts expected given an attribution, 

𝐴, of the signatures, 𝐻, and let 𝐷 = [𝑑1 𝑑2 …𝑑𝑘]
𝑇 be the observed mutational 

spectrum as introduced above. We convert 𝑐  to a multinomial distribution parameter 

vector 𝜋⃗ = [𝜋1 𝜋2 …𝜋𝑘]
𝑇 by dividing each element 𝑐𝑖 by the total number of mutation 

counts ∑ 𝑐𝑖
𝑘
𝑖=1 , i.e. 𝜋𝑖 =

𝑐𝑖

∑ 𝑐𝑖
𝑘
𝑖=1

 , then the log likelihood of 𝐷 given 𝐴 is computed as  

log[
(∑ 𝑑𝑖

𝑘
𝑖=1 )!

𝑑1!𝑑2!…𝑑𝑘!
𝜋1

𝑑1𝜋2
𝑑2 …𝜋𝑘

𝑑𝑘]. 

Likelihoods under negative binomial distributions are computed as follows. Let 𝑐 =

 𝐻 × 𝐴 = [𝑐1 𝑐2 …𝑐𝑘]
𝑇 again be the vector of mutation counts expected given an 

attribution, 𝐴, of the signatures,𝐻,   and let 𝐷 = [𝑑1 𝑑2 …𝑑𝑘]
𝑇 again be the observed 

mutational spectrum. Then the log likelihood of 𝐷 given 𝐴 is computed as 

∑ log 𝑃(𝑑𝑖|𝑐𝑖)
𝑘
𝑖=1 , where 𝑃(𝑑𝑖|𝑐𝑖) is the probability of the observed count, 𝑑𝑖, predicted 

by the attribution (model), 𝐴 by assuming that each 𝑑𝑖 follows a negative binomial 

distribution with mean 𝑐𝑖 and same dispersion parameter.  

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted January 9, 2025. ; https://doi.org/10.1101/2024.05.20.594967doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.20.594967
http://creativecommons.org/licenses/by/4.0/


13 
 

The PASA algorithm for signature attribution takes as input a mutational spectrum, 𝐷, 

to be reconstructed from a set of 𝑔 possible signatures represented by a matrix 𝐻, as 

above. Also as above, the algorithm returns a column matrix, 𝐴, of signature 

activities that can reconstruct 𝐷. For signature attribution in a given cancer, 𝐻 in 

many use cases consists of the set of signatures previously observed in that cancer 

type. Pragmatic issues arise when the set of reference signatures is updated. We 

address possible approaches to dealing with this and other pragmatic issues in the 

Discussion. 

The algorithm promotes sparsity in two ways. In STEP 1, it uses signature presence 

tests to remove from consideration signatures that are unlikely to be necessary for a 

statistically plausible reconstruction of the target spectrum. In STEP 2, it starts with 

an empty set of signatures, and then, in each iteration of an outer FOR loop, it adds 

the signature that improves the reconstruction the most. The algorithm stops when 

the reconstruction is “good enough” as assessed by a likelihood ratio test, or when 

there are no more signatures to be added. 

 

The two steps of the PASA algorithm are as follows.  

Step 1: Signature presence tests to remove candidate signatures 

In Step 1, PASA conducts a signature presence test for each signature ℎ𝑖
⃗⃗  ⃗ ∈ 𝐻 to 

exclude signatures that are not statistically likely to be present in the tumor sample. 

The presence test consists of a likelihood ratio test of (i) the attribution that gives the 

highest likelihood using the full set minus ℎ𝑖
⃗⃗  ⃗ [𝑎𝑟𝑔𝑚𝑎𝑥 

𝐴
𝑙𝑜𝑔𝑃(𝐷|𝐴,𝐻 ∖ ℎ𝑖

⃗⃗  ⃗)] versus (ii) 

the attribution that gives the highest likelihood using the full set of signatures 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted January 9, 2025. ; https://doi.org/10.1101/2024.05.20.594967doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.20.594967
http://creativecommons.org/licenses/by/4.0/


14 
 

[𝑎𝑟𝑔𝑚𝑎𝑥 
𝐴

𝑙𝑜𝑔𝑃(𝐷|𝐴,𝐻)]. If the 𝑝 value of the likelihood ratio test is less than the 

significance level, the algorithm considers that ℎ𝑖
⃗⃗  ⃗  is necessary, and ℎ𝑖

⃗⃗  ⃗  will be in the 

final set of signatures passed to Step 2. Thus, the output of Step 1 is the set of 

signatures, 𝑉 = [ 𝑣1⃗⃗⃗⃗   𝑣2⃗⃗⃗⃗ … 𝑣𝑡⃗⃗  ⃗ ], 𝑡 ≤ 𝑔, that survived the signature presence test. 

Because each signature is tested against all other signatures, 𝑉 does not depend on 

the order of testing.   
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Step 2: Forward search from the empty set of signatures 

See Algorithm STEP 2 of PASA. Briefly, this step consists of a single greedy forward 

search that adds signatures, starting with the empty set of signatures, to find a 

minimal set of mutational signatures to reconstruct a mutational spectrum. The set is 

minimal in the sense that removing any signature results in a likelihood ratio test 

giving a 𝑝 value < 𝛼, where 𝛼 is the significance level.  

We note that the algorithm does not depend on the order in which signatures are 

considered in the outer or inner FOR loop, since the inner loop always considers all 

remaining signatures, and the outer loop always selects the signature that improves 

the likelihood the most. The main stopping criterion is the statement “IF 

𝑝𝑉𝑎𝑙𝑢𝑒𝑠[𝑖𝑛𝑑𝑒𝑥] > 𝛼”. 
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Algorithm: STEP 2 of PASA  

INPUT      𝐷 ∈ 𝑁≥0
𝑘×1                 // The mutational spectrum of one sample as a 1-column matrix 

                 𝑉 ∈ 𝑅≥0
𝑘×𝑡                 // A matrix of 𝑡 signatures from which to reconstruct 𝐷, from Step 1 

                 𝛼                             // Significance level for comparing reconstruction of a spectrum 
                                                // using a set of signatures versus using a proper subset of that set 
 

OUTPUT  𝐴 ∈ 𝑅>0
𝑢×1        // Non-0 activities of  𝑢 ≤ 𝑡 signatures from 𝑉 that can plausibly reconstruct 

                                       // 𝐷, in the sense that the likelihood ratio test for reconstructing 𝐷 from 𝐴  

                                       // versus reconstructing 𝐷 from 𝑉 is not significant at significance level 𝛼 
 

 
𝑙𝑜𝑔𝑙ℎmax , 𝐴𝑎𝑙𝑙 = OptimizeActivity (𝐷, 𝑉)                                                    // See definition below 

𝑋 = 𝑉 

𝑊 = [    ]                                       // We will be moving signatures from 𝑋 to 𝑊 in a greedy search 
                                                    // until 𝑊 has enough signatures to provide an adequate 

                                                    // reconstruction of 𝐷, where being adequate is determined by a 

                                                    // likelihood-ratio test with 𝑝 value > 𝛼 
FOR 𝑠𝑡𝑒𝑝 in 1 to 𝑡 − 1 

 𝑝𝑉𝑎𝑙𝑢𝑒𝑠 =  [    ] 

 FOR 𝑗 in 1 to 𝑛𝑢𝑚𝐶𝑜𝑙𝑠(𝑋) 

  𝑌 = [𝑊; 𝑋[ , 𝑗]]                                              // We will test a matrix of signatures, 𝑌,  

                                                                      // consisting of 𝑊 and the 𝑗th signature of 𝑋 

  𝑙𝑜𝑔𝑙ℎ , 𝐴 = OptimizeActivity (𝐷, 𝑌 ) 

  𝑝𝑉𝑎𝑙𝑢𝑒𝑠[𝑗] = 𝐿𝑅𝑇(𝑙𝑜𝑔𝑙ℎmax, 𝑙𝑜𝑔𝑙ℎ, 𝑑𝑓 = 𝑡 − 𝑠𝑡𝑒𝑝)   // Perform a likelihood ratio test                        

                                                                    // comparing reconstruction of 𝐷 with 𝑉 

                                                                    // versus reconstruction with 𝑌 =  [𝑊; 𝑋[ , 𝑗]] 

 ENDFOR  

 𝑖𝑛𝑑𝑒𝑥 = 𝑤ℎ𝑖𝑐ℎ𝑚𝑎𝑥(𝑝𝑉𝑎𝑙𝑢𝑒𝑠)                                    // Find the index of the signature that  

                                                                                   // improves the reconstruction the most 

 𝑊 = [𝑊; 𝑋[ , 𝑖𝑛𝑑𝑒𝑥]]                       // Add the signature with the largest 𝑝 value to 𝑊 

 𝑋 = 𝑋[ , −𝑖𝑛𝑑𝑒𝑥]                             // Remove the signature with the largest p value from 𝑋 

 IF 𝑝𝑉𝑎𝑙𝑢𝑒𝑠[𝑖𝑛𝑑𝑒𝑥] > 𝛼                   // Reconstruction of 𝐷 with 𝑉 is not significantly better than 

                                                       // reconstruction with 𝑊. Paraphrased informally, 𝑊 is 

                                                       // good enough. Otherwise, if 𝑝 value ≤ 𝛼 then reconstruction 

                                                       // with the signatures in 𝑊 is not good enough, so 
                                                       // continue adding signatures to 𝑊 (the outer FOR loop) 
 

  𝑙𝑜𝑔𝑙ℎopt , 𝐴𝑜𝑝𝑡 = OptimizeActivity (𝐷, 𝑊)     // Recalculate the activity matrix for  

                                                                         // reconstruction with the signatures in 𝑊 

  RETURN 𝐴𝑜𝑝𝑡 

 ENDIF 

ENDFOR 

RETURN 𝐴𝑎𝑙𝑙 

FUNCTION OptimizeActivity (𝐷, 𝑉) 

 𝑙𝑜𝑔𝑙ℎ , 𝐴 = 𝑁𝐿𝑜𝑝𝑡(𝐷, 𝑉)         // Use non-linear numerical optimization to find activities, 𝐴,  

                                               // that maximize 𝑙𝑜𝑔𝑙ℎ = 𝑙𝑜𝑔(𝑃(𝐷|𝐴, 𝑉)); 𝐴 is a 1-column matrix 

 RETURN 𝑙𝑜𝑔𝑙ℎ , 𝐴  

ENDFUNCTION OptimizeActivity 
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RESULTS 

Factors that make mutational signature attribution difficult 

The goal of this subsection is not to propose a practical method of signature 

attribution, but rather to illustrate, by concrete example, the factors that make 

signature attribution difficult. The example shows that one factor is that there are 

often many different reasonable attributions that can reconstruct a spectrum. 

Furthermore, simply adding more signatures to an attribution usually improves the 

similarity of the reconstruction to the given spectrum, but often the numbers of 

mutations explained by these additional signatures are implausibly small. 

Consequently, many signature attribution algorithms impose various sparsity 

constraints. Indeed, many differences between approaches depend on how they 

search the space of sparse solutions and the criteria that enforce sparsity. 

Nevertheless, even with sparsity constraints, there can be multiple attributions that 

can adequately reconstruct a given spectrum. We use as examples the 75 stomach 

cancer SBS spectra and signature attributions from [1]. 

Specifically, we investigated how many different attributions can give a reasonable 

reconstruction of each spectrum. We consider a reconstruction to be reasonable if its 

cosine similarity to the spectrum is greater than the median cosine similarity provided 

by the attributions in real mutational spectra in [1]. As noted above, this threshold is 

0.969 (Table S1).  

There are 20 signatures attributed to stomach spectra in [1], yielding 220 – 1 possible 

non-empty combinations of signatures. For each of these, we optimized exposure 

using the quadratic programming implementation of non-negative least squares from 

[31] to minimize the Frobenius norm of the distance from the reconstructed spectrum 
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to the actual spectrum. Absent sparsity constraints (other than the exclusion of 

attributions containing signatures with no activity), the 75 spectra had a median of 

11,189 distinct attributions that generated reconstructions with similarity above the 

similarity threshold of 0.969 (Figure 2A). One possible sparsity constraint would be to 

omit attributions containing signatures responsible for fewer than a certain fraction of 

the mutations, for example, 3%. However, even at this threshold, 61 of 75 tumors 

had > 1 attribution, while 11 had 0 attributions meeting the cosine similarity 

threshold. The mean number of attributions meeting both constraints was 447.4. 

For illustration, we use as an example the spectrum of one stomach cancer, 

Stomach-AdenoCA::SP85251, from [1]. This spectrum had 120 possible attributions 

with reconstructions exceeding the cosine similarity threshold and with all signatures 

accounting for ≥ 3% of the mutations (Table S4). Figure 2B-F shows the spectrum 

and the 4 reconstructions from these attributions with the highest similarity to the 

spectrum.  

Perhaps one could simply take the attribution with the highest similarity to a given 

spectrum as the most likely true attribution for that spectrum. We explored this 

question by examining all attributions for each of the 100 synthetic Stomach-

AdenoCA spectra in this study. For 99 of these spectra, the ground-truth attribution 

was inferior to the best alternative attribution before excluding any attributions with 

exposures accounting for < 3% of the mutations (Table S5). Restricting attention to 

alternative attributions in which all exposures accounted for ≥ 3% of the mutations, 

the attribution generating the most similar reconstruction was correct for only 13 

spectra. Over the 100 spectra, the mean number of false negative signatures was 

1.17 and the mean number of false positive signatures was 0.82. 
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Alternative attributions superior to the ground-truth attribution can exist because, 

although the number of mutations due to a given signature was known for each 

synthetic spectrum, the distribution of counts due to that signature across different 

mutation types (e.g. ACA → AAA, …, CTG → CAG, …, TTT → TGT), was sampled 

randomly. This was designed to simulate a model in which a mutational process 

generates a certain number of mutations according to a fixed multinomial distribution 

across mutation types, but the count of mutations of each mutation type varies due 

to random sampling. 

 

Accuracy on SBS (single-base substitution) mutational spectra 

We assessed the accuracy of SBS mutational signature attributions produced by 13 

approaches [14,25,27–36] (Table 1, Figures 3, S1, and S2, and Tables S6-S9). The 

Combined Scores of PASA and MuSiCal across all 900 synthetic SBS spectra were 

similar (means 2.64 and 2.62, respectively, p = 0.072, 2-sided Wilcoxon rank-sum 

test). The Combined Scores of both PASA and MuSiCal were significantly higher 

than the Combined Score of FitMS (Table S6, mean 2.57, 𝑝 < 3.7 × 10−8 and 

𝑝 <  2.2 × 10−5, respectively, 2-sided Wilcoxon rank-sum tests). The Combined 

Scores of the remaining approaches were lower still. In response to a reviewer’s 

request, we assessed FitMS’s sensitivity to the threshold for rare signatures. Its 

ranking was not affected by this threshold (Tables S6 and S10). 

The Combined Score incorporates a scaled Manhattan distance between the 

numbers of mutations ascribed to each mutational signature in the attribution and in 

the ground truth of the synthetic data. For some use cases this may not be an 

important consideration. Therefore, we also assessed the 13 approaches according 
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to F1 scores and the sums of recall and specificity (Tables S6, S7, and S9). By these 

two measures, MuSiCal ranked 1st and PASA ranked 2nd. PASA had the 2nd lowest 

standard deviation, after sigfit, which, however, ranked 12th by Combined Score. 

Of note, the rankings for the signature attribution approaches varied across cancer 

type (Figure S2, Table S8). PASA ranked 1st by mean Combined Score in 4 of the 9 

cancer types, MuSiCal ranked 1st in 3 cancer types, and FitMS ranked 1st in 2 

cancer types. As another example, the ranks of MutationalPatterns ranged from 4 

(Kidney-RCC and Ovary-AdenoCA) to 12 (Skin-Melanoma). Figures S1 and S2 and 

Tables S6-S8 show all components of the Combined Score (1 – scaled Manhattan 

distance, precision, and recall [sensitivity]) as well as specificity, 1 – scaled L2 

distance, and Kullback-Leibler divergence of the inferred signature activities from 

ground truth signature activities. 

We also observed that, across tumor types, 11 of the 13 approaches had the lowest 

or second-lowest Combined Scores for Skin-Melanoma, mainly due to low recall 

(Figure S2A, Table S7). We originally hypothesized that presence of SBS7a might 

interfere with detection of SBS7b, since both are dominated by C → T mutations 

thought to be caused by exposure to ultraviolet radiation. In fact, however, SBS5 and 

SBS1 were the most common false negatives in Skin-Melanoma (Table S11). For 7 

out of the 13 approaches, SBS1 was a false negative in over half of the Skin-

Melanoma spectra in which it was actually present. 

We also benchmarked the 13 approaches on synthetic data with underestimated 

sampling variance (Tables S6-S9 and Figure S3). Benchmarked on these data, all 

approaches had Combined Scores that were slightly higher than in the synthetic data 

with the best-estimate sampling variance. On these data, MuSiCal ranked 1st and 
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PASA ranked 2nd. The remaining tools had ranks similar to their ranks in the 

synthetic data with best-estimate sampling variance (Table S6). 

Accuracy on DBS (doublet-base substitution) mutational spectra 

Tables S12-S15 summarize results for DBS signatures. On synthetic DBS spectra, 

PASA had the highest Combined Score, which was significantly higher than that of 

FitMS, which had the next highest (mean 2.78 versus 2.74, 𝑝 < 9.9 × 10−9, 2-sided 

Wilcoxon rank-sum test, Figure 4, S5, Table S12). The Combined Scores of the other 

approaches were much lower, with 3rd-ranked MuSiCal having a mean Combined 

Score of 2.57, significantly lower that of FitMS (𝑝 <  3.9 × 10−44, 2-sided Wilcoxon 

rank-sum test). . The sigLASSO approach cannot analyze DBS data. 

Recall (sensitivity) for DBS attributions was significantly better than for SBSs for 10 

of the approaches (Benjamini-Hochberg false discovery rates < 0.1 based on 2-sided 

paired Wilcoxon signed-rank tests over recall in SBS versus recall in DBS.) While 

SigProfilerAssignment (SigPro) performed well on synthetic SBS data (Figure 3), on 

synthetic DBS data it had high precision but lower recall than the other approaches, 

and its recall was significantly lower for DBS data (Benjamini-Hochberg false 

discovery rate based on 2-sided paired Wilcoxon signed-rank test, 1.2 × 10−4). 

As we did for SBS signatures, for DBS signatures we also assessed the 13 

approaches by F1 scores and by the sums of recall and specificity (Tables S12, S13, 

and S15). As was the case for ranking by Combined Score, by these two measures, 

PASA ranked 1st and FitMS ranked 2nd. As was the case for SBS signatures, PASA 

had the 2nd lowest standard deviation, after sigfit, which again ranked 12th by 

Combined Score. 
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For DBS spectra, as was the case for SBS spectra, there was variation in the 

ranking of the approaches across cancer types (Figure S5, Tables S13 and S14). 

Based on Combined Scores, PASA ranked 1st in 6 of the 9 cancer types and its 

lowest rank was 4 (in Breast-AdenoCA and Skin-Melanoma). As another example, 

deconstructSigs and SigPro tied for 1st in Skin-Melanoma but were both ranked 12th 

in several cancer types. 

Figures 4, S4, and S5 and Tables S12-S14 show all components of the Combined 

Score (1 – scaled Manhattan distance, precision, and recall [sensitivity]) as well as 

specificity, 1 – scaled L2 distance, and Kullback-Leibler divergence of the inferred 

signature activities from ground truth signature activities. 

 

Accuracy on ID (insertion and deletion) mutational spectra 

Tables S16-S19 summarize results for ID signatures. On synthetic ID spectra, PASA 

had the largest Combined Score, which was significantly higher than that of FitMS, 

which had the next highest (Figure 5, S6, Table S16, mean 2.81 versus 2.73, 

𝑝 <  3.5 × 10−11, 2-sided Wilcoxon rank-sum test). The Combined Scores of the 

remaining tools were much lower. For example, the mean Combined Score of the 3rd 

ranked approach, MuSiCal, at 2.68 was significantly lower than that of FitMS 

(𝑝 <  3.8 × 10−8, by 2-sided Wilcoxon rank-sum test) 

As we did for SBS and DBS signatures, for ID signatures we also assessed the 13 

approaches by F1 scores and by the sums of recall and specificity (Tables S16, S17, 

and S19). By these two measures PASA, still ranked 1st, and FitMS still ranked 2nd. 

As was the case for SBS and DBS signatures, PASA had the 2nd lowest standard 

deviation, after sigfit, which again ranked 12th by Combined Score. 
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For ID spectra, as was the case for SBS and DBS spectra, there was variation in the 

ranking of the approaches across cancer types (Figure S7, Tables S17 and S18). 

PASA ranked 1st in 8 of the 9 cancer types by mean Combined Score and ranked 

2nd in ColoRect-AdenoCA.  

Figures 5, S6, and S7, and Tables S16-S17 show all components of the Combined 

Score (1 – scaled Manhattan distance, precision, and recall [sensitivity]) as well as 

specificity, 1 – scaled L2 distance, and Kullback-Leibler divergence of the inferred 

signature activities from ground truth signature activities. 

 

CPU usage 

We calculated the total CPU time used by the process and its children when running 

each approach to mutational signature attribution (Figure 6 and Tables S20-S22). On 

all three types of synthetic spectra (SBS, DBS, and ID), MSA required > 5 orders of 

magnitude more CPU time than the least resource-intensive approaches, 

SignatureEstimation and SigsPack. This is mainly because the MSA algorithm 

creates simulations of the input data and then tests using each of 4 pre-specified 

thresholds (program parameter “weak_thresholds”) to select the threshold for final 

signature attribution. For each proposed threshold, MSA evaluates results on at least 

1,000 simulated spectra. After a threshold is selected, MSA calculates confidence 

intervals for signature attribution by bootstrapping for each input spectrum. All these 

factors contributed to the substantial CPU resources required by MSA. 

PASA also required substantial CPU time, > 4 orders of magnitude more than the 

least resource-intensive approaches. Of the two most accurate approaches for SBS 
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data, PASA and MuSiCal, MuSiCal required approximately an order of magnitude 

less CPU time. 

The running times of most approaches seemed insensitive to the number of possible 

signatures for a given cancer type (Figures S8-S10, Table S23). The exceptions 

included MutationalPatterns and MSA for DBS and ID signatures, as well as 

deconstructSigs, SignatureEstimation, sigfit, and YAPSA for DBS signatures, and 

FitMS and PASA for ID signatures. 

 

DISCUSSION 

We have presented the first (to our knowledge) systematic benchmarking of 

signature attribution on all three of SBS, DBS, and ID mutational signatures, and we 

have presented a new method that is based on finding an attribution that maximizes 

the likelihood of a target spectrum and that uses likelihood ratio tests to promote 

sparsity. We assessed the accuracy of 13 approaches [14,25,27–36], including the 

new method, PASA, on a total of 2,700 synthetic spectra encompassing SBS, DBS, 

and ID mutation types.  

While some previous studies [18,25,26] benchmarked accuracy on the SBS 

mutational signatures, we are not aware of any that have benchmarked attribution 

accuracy for DBS or ID signatures. We also point out that two of these studies did 

not examine accuracy from the point of view of precision or recall, and instead used 

mean squared error [18] or a variation on the scaled Manhattan distance [26] 

between the spectrum reconstructed from the attribution and the target spectrum. 

These reconstruction-accuracy measures are uninformative regarding the numbers 

of false-positive or false-negative signatures in the attribution. In fact, reconstruction-
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accuracy-based measures tend to favor false positives, because adding small 

exposures to multiple signatures often improves reconstruction accuracy. We 

propose that understanding the propensity of approaches to include false positive 

signatures or exclude false negatives is important for most applications of signature 

attribution. These would include molecular cancer epidemiology, for which one might 

want to determine with certainty whether the signature of a particular mutagen is 

enriched in a particular group of cancers [5,7–9]. They would also include efforts to 

understand the mutational exposures or processes responsible for oncogenic 

mutations [8,11]. In addition, the accuracy measures in [18] and [26] may have little 

power to distinguish the accuracy of different signature attribution methods, because 

of the numerous alternative attributions that can generate reasonable 

reconstructions of an observed spectrum. For example, [18] stated that "[a]ll 

methods give almost identical results"; see also Fig. 9 in [18]. 

We also demonstrated that attribution is a challenging task. First, we showed that, 

for a given spectrum, there are often multiple possible alternative attributions that 

yield reasonably good similarity to the spectrum (Figure 2, Table S4). 

Second, we showed that, for a given synthetic spectrum, there can be many 

incorrect attributions that provide more similar reconstructions than the correct, 

ground-truth attribution (Table S5). This explains the high recall (sensitivity) but low 

precision in the results of 3 approaches that rely on non-negative-least-squares 

(NNLS) optimization without any sparsity constraints: SignatureEstimation, 

SigsPack, and mutSignatures. For example, for SBS signatures these were recall 

(sensitivity) of 0.943 and precision < 0.615. Furthermore, we showed that a uniform 

threshold requiring that a signature included in an attribution must account for a 

minimum proportion of mutations does not fully resolve this issue, and often results 
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in false negatives. In line with this, deconstructSigs, which relies on this kind of 

threshold, ranks in the lower half among approaches for all mutation types (Figures 3 

to 5). This was in large part because of low recall (sensitivity), which was also 

reported, for SBS only, in [25,26]. 

For DBS and ID mutational signatures, across all cancer types together, the new 

algorithm presented here, PASA, was more accurate than the other 12 approaches 

[14,25,27–36] (Figures 4, 5, Table S6). This held true not only for the Combined 

Score but also for measures such as the F1 score that did not include the accuracy 

of the number of mutations ascribed to each signature (the scaled Manhattan 

distance, Tables S15 and S19). For SBS mutational signatures, PASA and MuSiCal 

were essentially tied based on Combined Score, and MuSiCal scored higher on F1 

score and on the sum of recall and specificity. In addition, MuSiCal uses substantially 

fewer computational resources (Figure 6). 

However, for all mutation types, the ranking for different approaches to signature 

varied by cancer type. For example, for SBS signatures, PASA was the most 

accurate approach in 4 of the 9 cancer types (Figure S2, Tables S7, S8). We 

speculate that this is partly because many incorrect attributions can yield more 

accurate reconstructions than the correct, ground-truth attribution, making it difficult 

to choose the correct attribution. However, many approaches never ranked > 4th for 

any cancer type. For SBS, the approaches that ranked > 4th for at least one cancer 

type were FitMS, MSA, MuSiCal, PASA, and SigPro. The ranks of approaches varied 

especially widely across cancer types for DBS signatures, and in fact the ranks of 3 

approaches varied from 1st to 12th (Table S14). 
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Because the rankings of the approaches varied across cancer types, users analyzing 

tumors from a single cancer type might consider using an approach that ranked high 

for that cancer type. We refer the reader to Tables S7, S8 for SBS signatures, Tables 

S12, S13 for DBS signatures, and Tables S17, S18 for ID signatures. These tables 

provide information on the performance of approaches by various measures for each 

cancer type. They are Excel tables that can be filtered to specific cancer types and 

sorted by performance measure of interest. Alternatively, many of the approaches 

have arguments that govern their output, especially the balance between recall and 

precision (Table S24). Thus, it may be possible to select arguments tuned to specific 

cancer types.  

Here we restricted the benchmarking task to attributing signatures previously 

observed in that cancer type, which is standard practice for most use cases. This 

presents pragmatic issues when the reference profiles of mutational signatures 

change over time, with the split of SBS40 into SBS40a, SBS40b, and SBS40c as a 

recent example [39]. Since there is no tissue distribution information on the new, 

subdivided SBS40 signatures on the COSMIC web site 

(https://cancer.sanger.ac.uk/signatures/ [21]), an approach suitable for many 

purposes would be to continue to use the previous signature, SBS40, rather than the 

signatures. Alternatively, if one were specifically interested in the presence or 

absence of one of the new signatures SBS40a, SBS40b, or SBS40c, then in tumor 

types where SBS40 had previously been observed, one could offer the three new 

signatures. 

Three of the benchmarked approaches made use of the likelihoods of attributions in 

some way: PASA, sigLASSO and MuSiCal. More specifically, these approaches use 

the likelihood of an observed spectrum given the reconstruction expected from an 
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attribution. However, these likelihoods are used differently by each approach. PASA 

uses likelihoods as its objective function and as part of the likelihood ratio tests that 

is uses to encourage sparsity. sigLASSO jointly optimizes a multinomial likelihood 

and an NNLS fit that incorporates L2 regularization. MuSiCal starts with NNLS 

optimization to generate an initial attribution. It then iteratively removes signatures 

until the decrease in the multinomial likelihood exceeds a threshold. PASA and 

MuSiCal were among the top-ranked approaches, which hints that the use of 

likelihoods may be a promising direction for future mutational-signature research. In 

this context, we also note that [40] uses likelihoods in the discovery of mutational 

signatures. 

Signature attribution remains an open area, and advances might depend partly on 

integrating data from all three mutation types (SBS, DBS, ID) or on incorporating 

prior evidence on signature prevalence and activity in different cancer types. 

 

DATA AND CODE AVAILABILITY 

The R code for the PASA algorithm is freely available at 

https://github.com/steverozen/mSigAct. The version reported here is the V3.0.1-

branch, which can be installed with the R call  

remotes::install_github(repo = "steverozen/mSigAct", ref = "v3.0.1-branch") 

The PASA algorithm is implemented in the function 

mSigAct::PresenceAttributeSigActivity. The mSigAct package provides several other 

functions for analysis of mutational signature activity. These include the function 

mSigAct::SignaturePresenceTest, first described in [8], which does not estimate 
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signature attributions, but instead estimates a 𝑝-value for the presence of one 

specific mutational signature in the mutational spectrum of a sample. 

All other code and data for this paper are freely available at 

https://github.com/Rozen-Lab/sig_attribution_paper_code and 

https://github.com/Rozen-Lab/sig_attribution_low_variance. 
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KEY POINTS 

• The paper illustrates, by concrete example, factors that make signature 

attribution difficult, including the fact there are often many alternative 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted January 9, 2025. ; https://doi.org/10.1101/2024.05.20.594967doi: bioRxiv preprint 

https://github.com/Rozen-Lab/sig_attribution_paper_code
https://github.com/Rozen-Lab/sig_attribution_low_variance
https://doi.org/10.1101/2024.05.20.594967
http://creativecommons.org/licenses/by/4.0/


30 
 

attributions that generate reconstructions of the target spectrum with 

practically indistinguishable accuracy. 

• The paper presents the Presence Attribute Signature Activity (PASA) 

algorithm for signature attribution, which aims to find an attribution with 

maximum likelihood given the target spectrum. 

• The paper presents benchmarking results of 13 approaches to mutational 

signature attribution, including PASA, on synthetic mutation data comprising 

2,700 synthetic spectra including SBS (single-base substitution), DBS 

(doublet-base substitution) and ID (insertion-deletion) mutation types. 

• While PASA ranked first across all synthetic cancer types together for SBS, 

DBS, and ID signatures, variation in rankings of different benchmarked 

approaches across cancer types suggests that mutational signature attribution 

requires more study. 

• Tables herein can provide guidance on the selection of mutational signature 

attribution approaches that are best suited to particular cancer types and 

study objectives. 
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Table 1: Software and input arguments benchmarked

Software Abbrev-iation
Main function or main 

execution file
Arguments Source of code Version

deconstructSigs DeconSig
deconstructSigs:: 

whichSignatures
signature.cutoff = 0.06

https://github.com/raerose01/

deconstructSigs
1.9.0

FitMS FitMS signature.tools.lib::FitMS

Defaults; we considered 

signatures with prevalence 

< 0.01 "rare" 

https://github.com/Nik-

Zainal-

Group/signature.tools.lib

signature.tools.lib 

2.4.5 according to 

GitHub tag 

(DESCRIPTION file 

has 2.4.4)

Mutational Signature 

Calculator
MuSiCal musical.refit.refit thresh = 0.001

https://github.com/parklab/Mu

SiCal
1.0.0

Mutational Signature 

Attribution
MSA

Invoked by running  nextflow on 

file 

run_auto_optimised_analysis.nf

Defaults; we report 

"pruned" output based on 

a reviewer's suggestion, 

which generated much 

better results than the 

unpruned option

https://gitlab.com/s.senkin/MS

A

GitLab tag 2.2 (note 

that Dockerfile and 

nextflow.config file 

show 2.1)

MutationalPatterns MutPat
MutationalPatterns:: 

fit_to_signatures_strict
Defaults Bioconductor 3.14.0

mutSignatures mutSig
mutSignatures:: 

resolveMutSignatures
Defaults CRAN 2.1.1

PASA PASA
mSigAct:: 

PresenceAttributeSigActivity
Defaults

https://github.com/steverozen

/mSigAct
3.0.1

sigfit sigfit sigfit::fit_signatures Defaults https://github.com/kgori/sigfit 2.2.0

sigLASSO sigLASSO
siglasso::siglasso (can only 

analyze SBS signatures)
Defaults

https://github.com/gersteinlab

/siglasso
1.1

SignatureEstimation SigEstQP
SignatureEstimation:: 

decomposeQP
Defaults

https://www.ncbi.nlm.nih.gov/

CBBresearch/Przytycka/softwa

re/signatureestimation/Signatu

reEstimation.tar.gz

1.0.0  according to 

DESCRIPTION file

SigProfilerAssignment SigPro
SigProfilerAssignment. 

cosmic_fit
Defaults

https://github.com/Alexandrov

Lab/SigProfilerAssignment
0.1.7

SigsPack SigsPack SigsPack:: signature_exposure Defaults Bioconductor 1.18.0

YAPSA YAPSA YAPSA::LCD
in_per_sample_cutoff = 

0.06
Bioconductor 1.30.0
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FIGURE LEGENDS 

 

Figure 1. The task of mutational signature attribution is to find signatures that can reconstruct the mutational 

spectrum well. (A) Example of an SBS spectrum that can be reconstructed with a cosine similarity of 0.988 

from four signatures. The bar at the left shows that mutational signature SBS4 contributed the most mutations 

to this spectrum. This signature is associated with tobacco smoking. (B) The DBS spectrum from the same 

tumor can be reconstructed with a cosine similarity of 0.989 from two signatures. The bar at the left shows 

that mutational signature DBS2, which is also associated with tobacco smoking, contributed the most 

mutations to this spectrum. (C) The ID spectrum from the same tumor can be reconstructed with a cosine 

similarity of 0.982 from three signatures. The bar at the left shows that mutational signature ID3 contributed 

the most mutations to this spectrum. Like the SBS signature SBS4, this ID signature is also associated with 

tobacco smoking. Spectra from Lung-AdenoCA::SP52667 [1]. The x axes of all panels follow the conventions 

described at https://cancer.sanger.ac.uk/signatures/. 

 

Figure 2. Many mutational spectra have numerous distinct attributions with cosine similarity > 0.969. 

Shown here is the example of stomach adenocarcinomas (Stomach-AdenoCA) from the Pan Cancer 

Analysis of Whole Genomes mutation data analyzed in [1]. (A) The number of distinct attributions with 

cosine similarity to the spectrum > 0.969. The height of each bar indicates the number of spectra with the 

number of distinct attributions indicated on the x axis. By distinct attributions we mean attributions with 

different sets of signatures with non-zero activity. (B) One example spectrum from those analyzed in panel 

A. The x axis of this and the following panels follow the conventions described at 

https://cancer.sanger.ac.uk/signatures/. (C-F) Several example attributions that have cosine similarity to the 

spectrum in panel B > 0.969. Code for this figure and the attributions are available at 

https://github.com/Rozen-Lab/sig_attribution_paper_code/ 

 

Figure 3. Accuracy of mutational signature attribution approaches on synthetic SBS spectra. (A-D) 

Accuracy measures over all synthetic SBS spectra. Combined Score is the sum of (1 – scaled Manhattan 

distance), precision and recall. The scaled Manhattan distance is calculated by dividing the Manhattan 

distance between the spectrum and the reconstructed spectrum by the total mutation count. Dark horizontal 

lines indicate medians, red diamonds indicate means. The attribution approaches are ordered by 

descending mean of the Combined Score for all cancer types from highest to lowest. Abbreviations for 

attribution approaches are listed in Table 1.  

 

Figure 4. Accuracy of signature attribution approaches on synthetic DBS spectra. Abbreviations are as in 

Figure 3. 

 

Figure 5. Accuracy of signature attribution approaches on synthetic ID (small insertion and deletion) 

spectra. Abbreviations are as in Figure 3. 

 

Figure 6. Total CPU time for running approaches to signature attribution on synthetic (A) SBS, (B) DBS 

and (C) ID mutational spectra. Abbreviations for attribution approaches are as in Figure 3. 
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