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ABSTRACT

Mutational signatures are characteristic patterns of mutations caused by
endogenous mutational processes or by exogenous mutational exposures. There
has been little benchmarking of approaches for determining which signatures are
present in a sample and estimating the number of mutations due to each signature.
This problem is referred to as “signature attribution”. We show that there are often
many combinations of signatures that can reconstruct the patterns of mutations in a
sample reasonably well, even after encouraging sparse solutions. We benchmarked
thirteen approaches to signature attribution, including a new approach called
Presence Attribute Signature Activity (PASA), on large synthetic data sets (2,700
synthetic samples in total). These data sets recapitulated the single-base, insertion-
deletion, and doublet-base mutational signature repertoires of 9 cancer types. For
single-base substitution mutations, PASA and MuSiCal outperformed other
approaches on all the cancer types combined. However, the ranking of approaches
varied by cancer type. For doublet-base substitutions and small insertions and
deletions, while PASA outperformed the other approaches in most of the nine cancer
types, the ranking of approaches again varied by cancer type. We believe this
variation reflects inherent difficulties in signature attribution. These difficulties stem
from the fact that there are often many attributions that can reasonably explain the
pattern of mutations in a sample and from the combinatorial search space due to the
need to impose sparsity. Tables herein can provide guidance on the selection of
mutational signature attribution approaches that are best suited to particular cancer

types and study objectives.
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INTRODUCTION

Different mutational processes can generate characteristic patterns of mutations;
these are termed mutational signatures [1]. The causes of mutations can be
endogenous, e.g. deamination of genomic 5-methyl cytosines [2] or defective
polymerase epsilon proofreading [3], or exogenous, e.g., exposure to aristolochic
acid [4,5] or tobacco smoke [6]. Mutational signatures can provide insight into
disease processes that stem from mutagenesis and into the exposures or biological
processes, including aging, that lead to mutations. For cancer, mutational signatures
can serve as biomarkers for mutagenic exposures that increase cancer risk and can
shed light on cancer causes, prognosis, and prevention [5,7-9]. Mutational signature
analysis can also provide insights into the mechanisms of DNA damage and repair

[10-13].

This study is set in the broader context of the computational analysis of mutational
signatures in general. One aspect of this analysis is the use of machine learning
methods to discover mutational signatures in large databases of somatic mutations
from tumors [1,14]. This process is often referred to as signature extraction. This
analysis depends on the model that a mutational spectrum can be explained as a
linear combination of mutations generated by mutational signatures (Figure 1). The
number of mutations due to a particular signature is referred to as the signature’s
activity. Signature extraction discovers mutational signatures as latent variables that
can parsimoniously explain sets of mutational spectra [15-17]. In many cases, the
broader goal is to identify the mutagens or mutagenic processes that generate the
mutational signatures. Several benchmarking studies have systematically examined

the accuracy of different approaches to signature extraction [17-20]. To-date,
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experimental methods and in silico signature extraction together have identified >

100 reference mutational signatures [21].

In addition to the discovery of mutational signatures, another important task is to
estimate the presence of existing mutational signatures and their activities in a
mutational spectrum, a task that is commonly called signature attribution. Absent
critical review of output, signature attribution can generate results that are useless
for understanding the underlying biology of mutagenesis and its consequences. For
example, one study reported that nearly 50% of lung tumors in never smokers
(mostly adenocarcinomas) have the SBS3 signature (Fig. 4 in reference [22]). SBS3
is the result of deficient homologous-recombination-based DNA damage repair, and
the same study (contradictorily) reported that HRDetect [12] detected homologous
recombination deficiency in only 16% of the tumors (Extended Data Fig. 8a in
reference [22]). If indeed SBS3 is caused by homologous recombination deficiency
and is not a purely mathematical construct, then the presence of SBS3 and
HRDetect’'s determination of homologous recombination deficiency should be mostly
concordant. However, in this case, the SBS3 attributions and HRDetect’s
determinations are highly discordant. There are > 3 times as many tumors with
purported SBS3 activity than are estimated to have homologous recombination
deficiency by HRDetect. Furthermore, Alexandrov et al. [1] detected SBS3 in only
8% of lung adenocarcinomas. SBS3 is especially prone to this kind of error, which is
also shown in Extended Data Fig. 3a in reference [23], in which high proportions of
tumors of almost all cancer types have SBS3, an implausible result in light of the
actual prevalences of homologous recombination deficiency across cancer types. A
related issue is that signature attribution software often includes small activities of

signatures due to implausible exposures. For example, one study reported the
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signature of UV exposure not only in cells from skin melanomas and in skin
fibroblasts, but also in cells from every tissue, including kidney, liver and skeletal
muscle (Fig. 3b in reference [24]). Furthermore, beyond these sorts of implausible
results, challenges remain. We show below that it is often possible to reconstruct the
mutational spectrum of a sample using dozens or more different combinations of

signatures, all of which yield reasonably good reconstructions.

Despite the importance of mutational signature attribution, there has been little
benchmarking of software for this task [18,25,26]. In addition, previous studies of
which we are aware studied only single-base substitution (SBS) mutational
signatures and neglected doublet-base substitution (DBS) signatures and insertion-

deletion (ID) signatures.

Here, we present benchmarking results for 13 mutational signature attribution tools
[14,25,27-36], including PASA (Presence-based Attribution of Signature Activity), a
new, statistically-grounded algorithm for signature attribution. Table 1 lists the 13
tools and their input arguments. We present benchmarking results based on
synthetic SBS, DBS, and ID data from 900 tumors representing 9 cancer types, for a
total of 2,700 synthetic spectra. We have released the synthetic data on which the

benchmarking was based as well as the code for generating the synthetic data.

MATERIALS AND METHODS

Preliminary definitions

The mutational spectrum of one sample (tumor) is a 1-column matrix, D € NX}1 =
[dy d, ...d,]", where k is the number of mutation types and each d,, is the number of
mutations of that type. For example, for the common case of single-base
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substitutions in the context of preceding and following bases, the mutation types are
ACA->AAA, ACC>AAC, ..., CCA->CAA, ..., TTT>TGT. By convention, a mutated
base is represented by the pyrimidine of the Watson-Crick base pair, and therefore
there are six substitution subtypes: C2>A, C>G, C>T, T2>A, T2>C, and T=>G. There
are altogether 96 types of single-base substitutions in the context of preceding and
following bases (6 types of substitutions x 4 types of preceding base x 4 types of
following base). The term “SBS signature” is usually understood to mean the
signature of single-base substitutions in the context of preceding and following
bases. The classification of doublet-base substitutions (DBS) is detailed at

https://cancer.sanger.ac.uk/signatures/documents/3/DBS-doublet-base-substitution-

classification.xIsx. For small insertions and deletions (ID), the classification is

described at

https://cancer.sanger.ac.uk/signatures/documents/4/PCAWG7 indel classification 2

021 08 31.xlsx.

A mutational signature is a multinomial probability vector he Rk, ,i.e., areal, non-

negative vector of length k, and with Y¥_, h;. Elements of h represent the

characteristic proportions of the corresponding mutation types that are generated by

one mutational process. Each element inside his the probability of observing one
mutation of that particular mutation type. In this model, each mutational process
generates mutations of different mutation types by sampling from the multinomial
distribution that is the process’s signature. Since in general multiple mutational
processes generate mutations in a tumor, in this model, the spectrum, D, is the sum

of mutations in each mutation type generated by different processes.
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Given a matrix H € R¥;? = [ by h; ... h, | of g mutational signatures, the task of
signature attribution is to find a non-negative activity matrix A € ng“ =

[a1 a .. ag]Tthat approximately reconstructs the original tumor spectrum using input

signatures H, i.e. such that D = H x A. Many approaches seek to minimize the L2
norm of D — (H x A), sometimes under some constraints to promote sparsity in A.
However, the PASA method, detailed below, seeks to find an attribution, A, that
maximizes P(D|(H x A)), under some regularization constraints that depend on

likelihood ratio tests, as detailed below.

Running approaches to signature attribution

The code for benchmarking all approaches to signature attribution and all raw
outputs are available at https://github.com/Rozen-
Lab/sig_attribution_paper_code/tree/master/analysis/. Importantly, for every
approach and every cancer type, we allowed attribution with only the set of
signatures previously observed in that cancer type as reported in reference [1]. Table

1 lists the software versions and input arguments used for each approach.

Generation of synthetic mutation data

We used COSMIC [21] v3.4 (https://cancer.sanger.ac.uk/signatures/) reference

mutational signatures and the signature activities estimated by Alexandrov et al. [1]
to generate synthetic SBS, DBS, and ID mutational spectra. Detailed methods are
described in our previous publication [17]. Briefly, for each of the SBS, DBS, and ID
mutation types, we generated 100 synthetic spectra for each of nine cancer types. To
generate one synthetic spectrum of a particular cancer type, the code first selects

the signatures present in the spectrum and the ground-truth activities of each
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signature as random draws from the distributions of these estimated from [1]. The
distribution of exposures for each cancer type was modeled as a negative-binomial
distribution with parameters matching the distribution in [1], as computed by the R
package fitdistrplus [37], and described in [17]. Once the activities of a signature are
selected, the numbers of each mutation type due to that signature are selected from
a negative binomial distribution that is centered on the overall number of mutations
due to the signature times the proportion of mutations of that mutation type in the
signature. For each signature we selected a negative-binomial dispersion parameter
“that resulted in spectrum-reconstruction accuracies similar to those seen in real
data” [17]. For example, for SBSs, the actual data and the synthetic data have
median spectrum-reconstruction cosine similarities of 0.969 and 0.974, respectively
(Tables S1, S2). Given the slightly higher cosine similarities of the synthetic data, we
believe these do not overestimate the sampling variance in the actual data, and we
take them as our best estimate of this variance. At the suggestion of a reviewer, we
also generated a data set with a binomial dispersion parameter that generated
substantially less sampling variance, resulting in a median cosine similarity of 0.986

(Table S2).

Table S3 shows the mean, median, and standard deviations of mutation counts for
each mutation type in each cancer type. For the synthetic data set based on our best
estimate of sampling variance, for all cancer types together, means and standard
deviations were 43,353, 140,140, 571, 1,471, 3,566, and 15,964 for SBS, DBS, and

ID mutation types.

Code to generate the synthetic mutational spectra and the synthetic spectra
themselves is at https://github.com/Rozen-
Lab/sig_attribution_paper_code/tree/master/synthetic_data/, and for synthetic

9
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spectra with underestimated sampling variance, at https://github.com/Rozen-

Lab/sig_attribution_low_variance/tree/main/synthetic_data/SBS/.

Definition of evaluation measures

For a given synthetic spectrum with given ground truth activities, let P be the number
of signatures which have activity > 0. Let TP (true positive) be the number of
signatures with activity > 0 that also have estimated activities > 0. Let FP (false
positive) be the number of signatures with 0 activity, but that have estimated

activity > 0

The evaluation measures for attribution of signatures for a synthetic spectrum of a

given cancer type are:
Precision =TP/(TP + FP)
Recall = Sensitivity = TP / P

Scaled Manhattan distance = }}; |X; — Y;|/M, where the X; are the ground truth
activities of all signatures, i, known to occur in the given cancer type, the Y;

are the estimated activities, and M is the number of mutations in the sample
Combined Score = (1 — Scaled Manhattan distance) + Precision + Recall

Specificity ==TN /(TN + FP), where TN is the number signatures that were not

present and were not selected for signature attribution

Scaled L2 distance = /Y ;|X; — Y;|? /M, where i, X;, Y;, and M are as above

KL divergence =}, X; log,[X;/(Y; + )] where i, X;, and Y;, are as above, and
e = 0.001, as implemented in the R function

philentropy::kullbak_leibler_distance.

10
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PASA algorithm

Motivated by the absence of statistical perspective in most existing approaches to
mutational signature attribution, we sought to develop an algorithm which used the
statistical likelihoods of possible attributions as a means choose between them,
including, importantly, as a means to exclude attributions that are not statistically
needed to explain an observed mutational spectrum. We are aware of only two other
signature attribution approaches that use likelihoods in mutational signature
attribution: sigLASSO and MuSiCal [33,34]. Both use in likelihoods different ways,
and neither uses a likelihood ratio test. We describe the differences between PASA

and these other approaches in the Discussion.

Our work on PASA was inspired by concepts in the mSigAct signature presence test,
which uses a likelihood ratio test to assess statistically whether one specific
signature is needed to explain a given mutational spectrum [8]. This is useful in
cancer epidemiology, for example, when deciding how often the signature of a
particular mutagen is present in a group of tumors. PASA extends the likelihood ratio
tests used in the signature presence test to address the problem of estimating an
entire set of signatures that can parsimoniously and accurately explain a given

mutational signature, i.e. to the problem of signature attribution.

The likelihood ratio test in PASA takes a mutational spectrum, D, and two
attributions, A1 and A2, in which the signatures in A2 constitute a proper subset of
those in A1. The null hypothesis is that the likelihood of A1, P(D|A1), is the same as
the likelihood of A2, P(D|A2). The test then depends on the test statistic 4 =

—2(log P(D|A2) —log P(D|A1)), which follows a chi-squared distribution with degrees

1
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of freedom = |A1| — |A2]|, where |A1| and |A2]| are the sizes of the two sets of
signatures. A p value can be determined from this distribution [38]. If the p value is
below the significance level, we reject the null hypothesis and consider that A1
provides a better reconstruction than A2, implying that the signatures in A1 - A2 are

plausibly needed to explain D.

The PASA algorithm proceeds in 2 steps. In Step 1, the likelihoods, P(D|A), are
based on multinomial distributions, and in Step 2, they are based on negative

binomial distributions.

Likelihoods under multinomial distributions are computed as follows. Let ¢ =

H XA = [c; ¢y ...c,,]T be the vector of mutation counts expected given an attribution,

A, of the signatures, H, and let D = [d, d, ...d;]" be the observed mutational

spectrum as introduced above. We convert ¢ to a multinomial distribution parameter

vector 7 = [, m, ...m,]T by dividing each element ¢; by the total number of mutation
Ci

counts ¥¥ . ¢;, i.e. m; = S then the log likelihood of D given A is computed as

i=1Ci

! [m 117T22...7tk 1.

Likelihoods under negative binomial distributions are computed as follows. Let ¢ =
H XA = [c; c, ...c,,]T again be the vector of mutation counts expected given an
attribution, A, of the signatures, H, and let D = [d, d, ...d,]” again be the observed
mutational spectrum. Then the log likelihood of D given A is computed as

k log P(d;|c;), where P(d;|c;) is the probability of the observed count, d;, predicted
by the attribution (model), A by assuming that each d; follows a negative binomial

distribution with mean c; and same dispersion parameter.
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The PASA algorithm for signature attribution takes as input a mutational spectrum, D,
to be reconstructed from a set of g possible signatures represented by a matrix H, as
above. Also as above, the algorithm returns a column matrix, A, of signature
activities that can reconstruct D. For signature attribution in a given cancer, H in
many use cases consists of the set of signatures previously observed in that cancer
type. Pragmatic issues arise when the set of reference signatures is updated. We
address possible approaches to dealing with this and other pragmatic issues in the

Discussion.

The algorithm promotes sparsity in two ways. In STEP 1, it uses signature presence
tests to remove from consideration signatures that are unlikely to be necessary for a
statistically plausible reconstruction of the target spectrum. In STEP 2, it starts with
an empty set of signatures, and then, in each iteration of an outer FOR loop, it adds
the signature that improves the reconstruction the most. The algorithm stops when
the reconstruction is “good enough” as assessed by a likelihood ratio test, or when

there are no more signatures to be added.

The two steps of the PASA algorithm are as follows.

Step 1: Signature presence tests to remove candidate signatures

In Step 1, PASA conducts a signature presence test for each signature E EHto
exclude signatures that are not statistically likely to be present in the tumor sample.

The presence test consists of a likelihood ratio test of (i) the attribution that gives the

highest likelihood using the full set minus h, [argmax logP(D|A, H \ h,)] versus (i)
A

the attribution that gives the highest likelihood using the full set of signatures

13
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[argmax logP(D|A, H)]. If the p value of the likelihood ratio test is less than the
A

significance level, the algorithm considers that E) is necessary, and E will be in the
final set of signatures passed to Step 2. Thus, the output of Step 1 is the set of
signatures, V = [v; v, ... 7 ], t < g, that survived the signature presence test.
Because each signature is tested against all other signatures, V does not depend on

the order of testing.

14
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Step 2: Forward search from the empty set of signatures

See Algorithm STEP 2 of PASA. Briefly, this step consists of a single greedy forward
search that adds signatures, starting with the empty set of signatures, to find a
minimal set of mutational signatures to reconstruct a mutational spectrum. The set is
minimal in the sense that removing any signature results in a likelihood ratio test

giving a p value < a, where « is the significance level.

We note that the algorithm does not depend on the order in which signatures are
considered in the outer or inner FOR loop, since the inner loop always considers all
remaining signatures, and the outer loop always selects the signature that improves
the likelihood the most. The main stopping criterion is the statement “IF

pValues[index] > a”.

15
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Algorithm: STEP 2 of PASA

INPUT D e NK? /I The mutational spectrum of one sample as a 1-column matrix
V € R}t /I A matrix of t signatures from which to reconstruct D, from Step 1
a /I Significance level for comparing reconstruction of a spectrum

/I using a set of signatures versus using a proper subset of that set

OUTPUT 4 € R¥;! /l Non-0 activities of u < t signatures from V that can plausibly reconstruct
/I D, in the sense that the likelihood ratio test for reconstructing D from A
Il versus reconstructing D from V is not significant at significance level «

loglhpax » Aqy = OptimizeActivity (D, V) /I See definition below
X=V
w=[] /I We will be moving signatures from X to W in a greedy search

/I until W has enough signatures to provide an adequate
/I reconstruction of D, where being adequate is determined by a
/I likelihood-ratio test with p value > a

FORstepin1tot—1

pValues = [ ]
FOR j in 1 to numCols(X)
Y=[W;X[,jl] /I We will test a matrix of signatures, Y,

Il consisting of W and the jth signature of X
loglh , A = OptimizeActivity (D, Y )
pValues[j] = LRT(loglhy.x, loglh, df =t — step) [/ Perform a likelihood ratio test
/I comparing reconstruction of D with V
/Il versus reconstruction with Y = [W; X[, j]]

ENDFOR
index = whichmax (pValues) /I Find the index of the signature that
/l improves the reconstruction the most
W = [W; X[, index]] /l Add the signature with the largest p value to W
X = X[,—index] /l Remove the signature with the largest p value from X
IF pValues[index] > a /I Reconstruction of D with V is not significantly better than

/I reconstruction with W. Paraphrased informally, W is

/I good enough. Otherwise, if p value < a then reconstruction
/I with the signatures in W is not good enough, so

/I continue adding signatures to W (the outer FOR loop)

loglhgpt » Aope = OptimizeActivity (D, W)  // Recalculate the activity matrix for
// reconstruction with the signatures in W
RETURN 4,,,
ENDIF
ENDFOR
RETURN 4,
FUNCTION OptimizeActivity (D, V)
loglh , A = NLopt(D, V) /l ' Use non-linear numerical optimization to find activities, 4,
/l that maximize loglh = log(P(D|A,V)); A is a 1-column matrix

RETURN loglh , A
ENDFUNCTION OptimizeActivity

16
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RESULTS

Factors that make mutational signature attribution difficult

The goal of this subsection is not to propose a practical method of signature
attribution, but rather to illustrate, by concrete example, the factors that make
signature attribution difficult. The example shows that one factor is that there are
often many different reasonable attributions that can reconstruct a spectrum.
Furthermore, simply adding more signatures to an attribution usually improves the
similarity of the reconstruction to the given spectrum, but often the numbers of
mutations explained by these additional signatures are implausibly small.
Consequently, many signature attribution algorithms impose various sparsity
constraints. Indeed, many differences between approaches depend on how they
search the space of sparse solutions and the criteria that enforce sparsity.
Nevertheless, even with sparsity constraints, there can be multiple attributions that
can adequately reconstruct a given spectrum. We use as examples the 75 stomach

cancer SBS spectra and signature attributions from [1].

Specifically, we investigated how many different attributions can give a reasonable
reconstruction of each spectrum. We consider a reconstruction to be reasonable if its
cosine similarity to the spectrum is greater than the median cosine similarity provided
by the attributions in real mutational spectra in [1]. As noted above, this threshold is

0.969 (Table S1).

There are 20 signatures attributed to stomach spectra in [1], yielding 22°— 1 possible
non-empty combinations of signatures. For each of these, we optimized exposure
using the quadratic programming implementation of non-negative least squares from

[31] to minimize the Frobenius norm of the distance from the reconstructed spectrum
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to the actual spectrum. Absent sparsity constraints (other than the exclusion of
attributions containing signatures with no activity), the 75 spectra had a median of
11,189 distinct attributions that generated reconstructions with similarity above the
similarity threshold of 0.969 (Figure 2A). One possible sparsity constraint would be to
omit attributions containing signatures responsible for fewer than a certain fraction of
the mutations, for example, 3%. However, even at this threshold, 61 of 75 tumors
had > 1 attribution, while 11 had 0 attributions meeting the cosine similarity

threshold. The mean number of attributions meeting both constraints was 447.4.

For illustration, we use as an example the spectrum of one stomach cancer,
Stomach-AdenoCA::SP85251, from [1]. This spectrum had 120 possible attributions
with reconstructions exceeding the cosine similarity threshold and with all signatures
accounting for > 3% of the mutations (Table S4). Figure 2B-F shows the spectrum
and the 4 reconstructions from these attributions with the highest similarity to the

spectrum.

Perhaps one could simply take the attribution with the highest similarity to a given
spectrum as the most likely true attribution for that spectrum. We explored this
question by examining all attributions for each of the 100 synthetic Stomach-
AdenoCA spectra in this study. For 99 of these spectra, the ground-truth attribution
was inferior to the best alternative attribution before excluding any attributions with
exposures accounting for < 3% of the mutations (Table S5). Restricting attention to
alternative attributions in which all exposures accounted for > 3% of the mutations,
the attribution generating the most similar reconstruction was correct for only 13
spectra. Over the 100 spectra, the mean number of false negative signatures was

1.17 and the mean number of false positive signatures was 0.82.
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Alternative attributions superior to the ground-truth attribution can exist because,
although the number of mutations due to a given signature was known for each
synthetic spectrum, the distribution of counts due to that signature across different
mutation types (e.g. ACA 2> AAA, ..., CTG = CAG, ..., TTT = TGT), was sampled
randomly. This was designed to simulate a model in which a mutational process
generates a certain number of mutations according to a fixed multinomial distribution
across mutation types, but the count of mutations of each mutation type varies due

to random sampling.

Accuracy on SBS (single-base substitution) mutational spectra

We assessed the accuracy of SBS mutational signature attributions produced by 13
approaches [14,25,27-36] (Table 1, Figures 3, S1, and S2, and Tables S6-S9). The
Combined Scores of PASA and MuSiCal across all 900 synthetic SBS spectra were
similar (means 2.64 and 2.62, respectively, p = 0.072, 2-sided Wilcoxon rank-sum
test). The Combined Scores of both PASA and MuSiCal were significantly higher
than the Combined Score of FitMS (Table S6, mean 2.57, p < 3.7 x 1078 and

p < 2.2 x 1075, respectively, 2-sided Wilcoxon rank-sum tests). The Combined
Scores of the remaining approaches were lower still. In response to a reviewer’s
request, we assessed FitMS’s sensitivity to the threshold for rare signatures. Its

ranking was not affected by this threshold (Tables S6 and S10).

The Combined Score incorporates a scaled Manhattan distance between the
numbers of mutations ascribed to each mutational signature in the attribution and in
the ground truth of the synthetic data. For some use cases this may not be an

important consideration. Therefore, we also assessed the 13 approaches according
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to F1 scores and the sums of recall and specificity (Tables S6, S7, and S9). By these
two measures, MuSiCal ranked 1t and PASA ranked 2"9. PASA had the 2nd lowest

standard deviation, after sigfit, which, however, ranked 12t by Combined Score.

Of note, the rankings for the signature attribution approaches varied across cancer
type (Figure S2, Table S8). PASA ranked 1st by mean Combined Score in 4 of the 9
cancer types, MuSiCal ranked 1st in 3 cancer types, and FitMS ranked 1st in 2
cancer types. As another example, the ranks of MutationalPatterns ranged from 4
(Kidney-RCC and Ovary-AdenoCA) to 12 (Skin-Melanoma). Figures S1 and S2 and
Tables S6-S8 show all components of the Combined Score (1 — scaled Manhattan
distance, precision, and recall [sensitivity]) as well as specificity, 1 — scaled L2
distance, and Kullback-Leibler divergence of the inferred signature activities from

ground truth signature activities.

We also observed that, across tumor types, 11 of the 13 approaches had the lowest
or second-lowest Combined Scores for Skin-Melanoma, mainly due to low recall
(Figure S2A, Table S7). We originally hypothesized that presence of SBS7a might
interfere with detection of SBS7b, since both are dominated by C - T mutations
thought to be caused by exposure to ultraviolet radiation. In fact, however, SBS5 and
SBS1 were the most common false negatives in Skin-Melanoma (Table S11). For 7
out of the 13 approaches, SBS1 was a false negative in over half of the Skin-

Melanoma spectra in which it was actually present.

We also benchmarked the 13 approaches on synthetic data with underestimated
sampling variance (Tables S6-S9 and Figure S3). Benchmarked on these data, all
approaches had Combined Scores that were slightly higher than in the synthetic data

with the best-estimate sampling variance. On these data, MuSiCal ranked 15t and
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PASA ranked 2". The remaining tools had ranks similar to their ranks in the

synthetic data with best-estimate sampling variance (Table S6).

Accuracy on DBS (doublet-base substitution) mutational spectra

Tables S12-S15 summarize results for DBS signatures. On synthetic DBS spectra,
PASA had the highest Combined Score, which was significantly higher than that of
FitMS, which had the next highest (mean 2.78 versus 2.74, p < 9.9 x 10~°, 2-sided
Wilcoxon rank-sum test, Figure 4, S5, Table S12). The Combined Scores of the other
approaches were much lower, with 3rd-ranked MuSiCal having a mean Combined
Score of 2.57, significantly lower that of FitMS (p < 3.9 x 10~**, 2-sided Wilcoxon

rank-sum test). . The sigLASSO approach cannot analyze DBS data.

Recall (sensitivity) for DBS attributions was significantly better than for SBSs for 10
of the approaches (Benjamini-Hochberg false discovery rates < 0.1 based on 2-sided
paired Wilcoxon signed-rank tests over recall in SBS versus recall in DBS.) While
SigProfilerAssignment (SigPro) performed well on synthetic SBS data (Figure 3), on
synthetic DBS data it had high precision but lower recall than the other approaches,
and its recall was significantly lower for DBS data (Benjamini-Hochberg false

discovery rate based on 2-sided paired Wilcoxon signed-rank test, 1.2 x 107%).

As we did for SBS signatures, for DBS signatures we also assessed the 13
approaches by F1 scores and by the sums of recall and specificity (Tables S12, S13,
and S15). As was the case for ranking by Combined Score, by these two measures,
PASA ranked 15t and FitMS ranked 2nd. As was the case for SBS signatures, PASA
had the 2nd lowest standard deviation, after sigfit, which again ranked 12t by

Combined Score.
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For DBS spectra, as was the case for SBS spectra, there was variation in the
ranking of the approaches across cancer types (Figure S5, Tables S13 and S14).
Based on Combined Scores, PASA ranked 1st in 6 of the 9 cancer types and its
lowest rank was 4 (in Breast-AdenoCA and Skin-Melanoma). As another example,
deconstructSigs and SigPro tied for 15t in Skin-Melanoma but were both ranked 12t

in several cancer types.

Figures 4, S4, and S5 and Tables S12-S14 show all components of the Combined
Score (1 — scaled Manhattan distance, precision, and recall [sensitivity]) as well as
specificity, 1 — scaled L2 distance, and Kullback-Leibler divergence of the inferred

signature activities from ground truth signature activities.

Accuracy on ID (insertion and deletion) mutational spectra

Tables S16-S19 summarize results for ID signatures. On synthetic ID spectra, PASA
had the largest Combined Score, which was significantly higher than that of FitMS,
which had the next highest (Figure 5, S6, Table S16, mean 2.81 versus 2.73,

p < 3.5 x 10711, 2-sided Wilcoxon rank-sum test). The Combined Scores of the
remaining tools were much lower. For example, the mean Combined Score of the 3™
ranked approach, MuSiCal, at 2.68 was significantly lower than that of FitMS

(p < 3.8 x 1078, by 2-sided Wilcoxon rank-sum test)

As we did for SBS and DBS signatures, for ID signatures we also assessed the 13
approaches by F1 scores and by the sums of recall and specificity (Tables S16, S17,
and S19). By these two measures PASA, still ranked 1%, and FitMS still ranked 2nd.
As was the case for SBS and DBS signatures, PASA had the 2nd lowest standard

deviation, after sigfit, which again ranked 12th by Combined Score.
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For ID spectra, as was the case for SBS and DBS spectra, there was variation in the
ranking of the approaches across cancer types (Figure S7, Tables S17 and S18).
PASA ranked 1st in 8 of the 9 cancer types by mean Combined Score and ranked

2nd in ColoRect-AdenoCA.

Figures 5, S6, and S7, and Tables $S16-S17 show all components of the Combined
Score (1 — scaled Manhattan distance, precision, and recall [sensitivity]) as well as
specificity, 1 — scaled L2 distance, and Kullback-Leibler divergence of the inferred

signature activities from ground truth signature activities.

CPU usage

We calculated the total CPU time used by the process and its children when running
each approach to mutational signature attribution (Figure 6 and Tables S20-S22). On
all three types of synthetic spectra (SBS, DBS, and ID), MSA required > 5 orders of
magnitude more CPU time than the least resource-intensive approaches,
SignatureEstimation and SigsPack. This is mainly because the MSA algorithm
creates simulations of the input data and then tests using each of 4 pre-specified
thresholds (program parameter “weak_thresholds”) to select the threshold for final
signature attribution. For each proposed threshold, MSA evaluates results on at least
1,000 simulated spectra. After a threshold is selected, MSA calculates confidence
intervals for signature attribution by bootstrapping for each input spectrum. All these

factors contributed to the substantial CPU resources required by MSA.

PASA also required substantial CPU time, > 4 orders of magnitude more than the

least resource-intensive approaches. Of the two most accurate approaches for SBS
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data, PASA and MuSiCal, MuSiCal required approximately an order of magnitude

less CPU time.

The running times of most approaches seemed insensitive to the number of possible
signatures for a given cancer type (Figures S8-S10, Table S23). The exceptions
included MutationalPatterns and MSA for DBS and ID signatures, as well as
deconstructSigs, SignatureEstimation, sigfit, and YAPSA for DBS signatures, and

FitMS and PASA for ID signatures.

DISCUSSION

We have presented the first (to our knowledge) systematic benchmarking of
signature attribution on all three of SBS, DBS, and ID mutational signatures, and we
have presented a new method that is based on finding an attribution that maximizes
the likelihood of a target spectrum and that uses likelihood ratio tests to promote
sparsity. We assessed the accuracy of 13 approaches [14,25,27-36], including the
new method, PASA, on a total of 2,700 synthetic spectra encompassing SBS, DBS,

and ID mutation types.

While some previous studies [18,25,26] benchmarked accuracy on the SBS
mutational signatures, we are not aware of any that have benchmarked attribution
accuracy for DBS or ID signatures. We also point out that two of these studies did
not examine accuracy from the point of view of precision or recall, and instead used
mean squared error [18] or a variation on the scaled Manhattan distance [26]
between the spectrum reconstructed from the attribution and the target spectrum.
These reconstruction-accuracy measures are uninformative regarding the numbers

of false-positive or false-negative signatures in the attribution. In fact, reconstruction-
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accuracy-based measures tend to favor false positives, because adding small
exposures to multiple signatures often improves reconstruction accuracy. We
propose that understanding the propensity of approaches to include false positive
signatures or exclude false negatives is important for most applications of signature
attribution. These would include molecular cancer epidemiology, for which one might
want to determine with certainty whether the signature of a particular mutagen is
enriched in a particular group of cancers [5,7-9]. They would also include efforts to
understand the mutational exposures or processes responsible for oncogenic
mutations [8,11]. In addition, the accuracy measures in [18] and [26] may have little
power to distinguish the accuracy of different signature attribution methods, because
of the numerous alternative attributions that can generate reasonable
reconstructions of an observed spectrum. For example, [18] stated that "[a]ll

methods give almost identical results"; see also Fig. 9 in [18].

We also demonstrated that attribution is a challenging task. First, we showed that,
for a given spectrum, there are often multiple possible alternative attributions that

yield reasonably good similarity to the spectrum (Figure 2, Table S4).

Second, we showed that, for a given synthetic spectrum, there can be many
incorrect attributions that provide more similar reconstructions than the correct,
ground-truth attribution (Table S5). This explains the high recall (sensitivity) but low
precision in the results of 3 approaches that rely on non-negative-least-squares
(NNLS) optimization without any sparsity constraints: SignatureEstimation,
SigsPack, and mutSignatures. For example, for SBS signatures these were recall
(sensitivity) of 0.943 and precision < 0.615. Furthermore, we showed that a uniform
threshold requiring that a signature included in an attribution must account for a
minimum proportion of mutations does not fully resolve this issue, and often results
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in false negatives. In line with this, deconstructSigs, which relies on this kind of
threshold, ranks in the lower half among approaches for all mutation types (Figures 3
to 5). This was in large part because of low recall (sensitivity), which was also

reported, for SBS only, in [25,26].

For DBS and ID mutational signatures, across all cancer types together, the new
algorithm presented here, PASA, was more accurate than the other 12 approaches
[14,25,27-36] (Figures 4, 5, Table S6). This held true not only for the Combined
Score but also for measures such as the F1 score that did not include the accuracy
of the number of mutations ascribed to each signature (the scaled Manhattan
distance, Tables S15 and S19). For SBS mutational signatures, PASA and MuSiCal
were essentially tied based on Combined Score, and MuSiCal scored higher on F1
score and on the sum of recall and specificity. In addition, MuSiCal uses substantially

fewer computational resources (Figure 6).

However, for all mutation types, the ranking for different approaches to signature
varied by cancer type. For example, for SBS signatures, PASA was the most
accurate approach in 4 of the 9 cancer types (Figure S2, Tables S7, S8). We
speculate that this is partly because many incorrect attributions can yield more
accurate reconstructions than the correct, ground-truth attribution, making it difficult
to choose the correct attribution. However, many approaches never ranked > 4t for
any cancer type. For SBS, the approaches that ranked > 4" for at least one cancer
type were FitMS, MSA, MuSiCal, PASA, and SigPro. The ranks of approaches varied
especially widely across cancer types for DBS signatures, and in fact the ranks of 3

approaches varied from 15t to 12" (Table S14).
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Because the rankings of the approaches varied across cancer types, users analyzing
tumors from a single cancer type might consider using an approach that ranked high
for that cancer type. We refer the reader to Tables S7, S8 for SBS signatures, Tables
S12, S13 for DBS signatures, and Tables S17, S18 for ID signatures. These tables
provide information on the performance of approaches by various measures for each
cancer type. They are Excel tables that can be filtered to specific cancer types and
sorted by performance measure of interest. Alternatively, many of the approaches
have arguments that govern their output, especially the balance between recall and
precision (Table S24). Thus, it may be possible to select arguments tuned to specific

cancer types.

Here we restricted the benchmarking task to attributing signatures previously
observed in that cancer type, which is standard practice for most use cases. This
presents pragmatic issues when the reference profiles of mutational signatures
change over time, with the split of SBS40 into SBS40a, SBS40b, and SBS40c as a
recent example [39]. Since there is no tissue distribution information on the new,
subdivided SBS40 signatures on the COSMIC web site

(https://cancer.sanger.ac.uk/signatures/ [21]), an approach suitable for many

purposes would be to continue to use the previous signature, SBS40, rather than the
signatures. Alternatively, if one were specifically interested in the presence or
absence of one of the new signatures SBS40a, SBS40b, or SBS40c, then in tumor
types where SBS40 had previously been observed, one could offer the three new

signatures.

Three of the benchmarked approaches made use of the likelihoods of attributions in
some way: PASA, sigLASSO and MuSiCal. More specifically, these approaches use
the likelihood of an observed spectrum given the reconstruction expected from an
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attribution. However, these likelihoods are used differently by each approach. PASA
uses likelihoods as its objective function and as part of the likelihood ratio tests that
is uses to encourage sparsity. sigLASSO jointly optimizes a multinomial likelihood
and an NNLS fit that incorporates L2 regularization. MuSiCal starts with NNLS
optimization to generate an initial attribution. It then iteratively removes signatures
until the decrease in the multinomial likelihood exceeds a threshold. PASA and
MuSiCal were among the top-ranked approaches, which hints that the use of
likelihoods may be a promising direction for future mutational-signature research. In
this context, we also note that [40] uses likelihoods in the discovery of mutational

signatures.

Signature attribution remains an open area, and advances might depend partly on
integrating data from all three mutation types (SBS, DBS, ID) or on incorporating

prior evidence on signature prevalence and activity in different cancer types.

DATA AND CODE AVAILABILITY

The R code for the PASA algorithm is freely available at

https://github.com/steverozen/mSigAct. The version reported here is the V3.0.1-

branch, which can be installed with the R call

remotes::install_github(repo = "steverozen/mSigAct", ref = "v3.0.1-branch")

The PASA algorithm is implemented in the function
mSigAct::PresenceAttributeSigActivity. The mSigAct package provides several other
functions for analysis of mutational signature activity. These include the function

mSigAct::SignaturePresenceTest, first described in [8], which does not estimate
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signature attributions, but instead estimates a p-value for the presence of one

specific mutational signature in the mutational spectrum of a sample.

All other code and data for this paper are freely available at

https://qithub.com/Rozen-Lab/sig attribution paper code and

https://qithub.com/Rozen-Lab/sig attribution low variance.
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KEY POINTS

e The paper illustrates, by concrete example, factors that make signature

attribution difficult, including the fact there are often many alternative
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attributions that generate reconstructions of the target spectrum with
practically indistinguishable accuracy.

e The paper presents the Presence Attribute Signature Activity (PASA)
algorithm for signature attribution, which aims to find an attribution with
maximum likelihood given the target spectrum.

e The paper presents benchmarking results of 13 approaches to mutational
signature attribution, including PASA, on synthetic mutation data comprising
2,700 synthetic spectra including SBS (single-base substitution), DBS
(doublet-base substitution) and ID (insertion-deletion) mutation types.

¢ While PASA ranked first across all synthetic cancer types together for SBS,
DBS, and ID signatures, variation in rankings of different benchmarked
approaches across cancer types suggests that mutational signature attribution
requires more study.

e Tables herein can provide guidance on the selection of mutational signature
attribution approaches that are best suited to particular cancer types and

study objectives.

REFERENCES

1. Alexandrov LB, Kim J, Haradhvala NJ, et al. The repertoire of mutational
signatures in human cancer. Nature 2020; 578:94—-101

2. Cooper DN, Mort M, Stenson PD, et al. Methylation-mediated deamination of 5-
methylcytosine appears to give rise to mutations causing human inherited disease in
CpNpG trinucleotides, as well as in CpG dinucleotides. Human Genomics 2010;
4:406

3. Rayner E, van Gool IC, Palles C, et al. A panoply of errors: polymerase
proofreading domain mutations in cancer. Nat Rev Cancer 2016; 16:71-81

4. Hoang ML, Chen C-H, Chen P-C, et al. Aristolochic Acid in the Etiology of Renal
Cell Carcinoma. Cancer Epidemiology, Biomarkers & Prevention 2016; 25:1600—
1608

30


https://doi.org/10.1101/2024.05.20.594967
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.20.594967; this version posted January 9, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

5. Poon SL, Pang S-T, McPherson JR, et al. Genome-Wide Mutational Signatures of
Aristolochic Acid and Its Application as a Screening Tool. Science Translational
Medicine 2013; 5:197ra101-197ra101

6. Alexandrov LB, Ju YS, Haase K, et al. Mutational signatures associated with
tobacco smoking in human cancer. Science 2016; 354:618—622

7. Huang MN, Yu W, Teoh WW, et al. Genome-scale mutational signatures of
aflatoxin in cells, mice, and human tumors. Genome Res. 2017;

8. Ng AWT, Poon SL, Huang MN, et al. Aristolochic acids and their derivatives are
widely implicated in liver cancers in Taiwan and throughout Asia. Science
Translational Medicine 2017; 9:eaan6446

9. Dziubanska-Kusibab PJ, Berger H, Battistini F, et al. Colibactin DNA-damage
signature indicates mutational impact in colorectal cancer. Nat Med 2020; 26:1063—
1069

10. Volkova NV, Meier B, Gonzalez-Huici V, et al. Mutational signatures are jointly
shaped by DNA damage and repair. Nat Commun 2020; 11:2169

11. Boot A, Liu M, Stantial N, et al. Recurrent mutations in topoisomerase lla cause a
previously undescribed mutator phenotype in human cancers. Proceedings of the
National Academy of Sciences 2022; 119:e2114024119

12. Davies H, Glodzik D, Morganella S, et al. HRDetect is a predictor of BRCA1 and
BRCAZ2 deficiency based on mutational signatures. Nat Med 2017; 23:517-525

13. Grolleman JE, De Voer RM, Elsayed FA, et al. Mutational Signature Analysis
Reveals NTHL1 Deficiency to Cause a Multi-tumor Phenotype. Cancer Cell 2019;
35:256-266.e5

14. Degasperi A, Zou X, Dias Amarante T, et al. Substitution mutational signatures in
whole-genome—sequenced cancers in the UK population. Science 2022,
376:abl9283

15. Alexandrov LB, Nik-Zainal S, Wedge DC, et al. Signatures of mutational
processes in human cancer. Nature 2013; 500:415-421

16. Roberts, Nicola D. Patterns of somatic genome rearrangement in human cancer.
PhD thesis, https://doi.org/10.17863/CAM.22674. 2018;

17. Liu M, Wu Y, Jiang N, et al. mSigHdp: hierarchical Dirichlet process mixture
modeling for mutational signature discovery. NAR Genom Bioinform 2023; 5:lgad005
18. Omichessan H, Severi G, Perduca V. Computational tools to detect signatures of
mutational processes in DNA from tumours: A review and empirical comparison of
performance. PLOS ONE 2019; 14:e0221235

19. Wu Y, Chua EHZ, Ng AWT, et al. Accuracy of mutational signature software on
correlated signatures. Sci Rep 2022; 12:390

20. Islam SMA, Diaz-Gay M, Wu Y, et al. Uncovering novel mutational signatures by
de novo extraction with SigProfilerExtractor. Cell Genomics 2022; 2:100179

21. Tate JG, Bamford S, Jubb HC, et al. COSMIC: the Catalogue Of Somatic
Mutations In Cancer. Nucleic Acids Res 2019; 47:D941-D947

22. Zhang T, Joubert P, Ansari-Pour N, et al. Genomic and evolutionary classification
of lung cancer in never smokers. Nat Genet 2021; 53:1348-1359

23. Priestley P, Baber J, Lolkema MP, et al. Pan-cancer whole-genome analyses of
metastatic solid tumours. Nature 2019; 575:210-216

24. Franco |, Helgadottir HT, Moggio A, et al. Whole genome DNA sequencing
provides an atlas of somatic mutagenesis in healthy human cells and identifies a
tumor-prone cell type. Genome Biology 2019; 20:285

31


https://doi.org/10.1101/2024.05.20.594967
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.20.594967; this version posted January 9, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

25. Diaz-Gay M, Vangara R, Barnes M, et al. Assigning mutational signatures to
individual samples and individual somatic mutations with SigProfilerAssignment.
Bioinformatics 2023; 39:btad756

26. Medo M, Ng CKY, Medova M. A comprehensive comparison of tools for fitting
mutational signatures. Nat Commun 2024; 15:9467

27. Senkin S. MSA: reproducible mutational signature attribution with confidence
based on simulations. BMC Bioinformatics 2021; 22:540

28. Manders F, Brandsma AM, de Kanter J, et al. MutationalPatterns: the one stop
shop for the analysis of mutational processes. BMC Genomics 2022; 23:134

29. Hibschmann D, Jopp-Saile L, Andresen C, et al. Analysis of mutational
signatures with yet another package for signature analysis. Genes Chromosomes
Cancer 2021; 60:314-331

30. Rosenthal R, McGranahan N, Herrero J, et al. deconstructSigs: delineating
mutational processes in single tumors distinguishes DNA repair deficiencies and
patterns of carcinoma evolution. Genome Biology 2016; 17:31

31. Huang X, Wojtowicz D, Przytycka TM. Detecting presence of mutational
signatures in cancer with confidence. Bioinformatics 2018; 34:330-337

32. Fantini D, Vidimar V, Yu Y, et al. MutSignatures: an R package for extraction and
analysis of cancer mutational signatures. Sci Rep 2020; 10:18217

33. Jin H, Gulhan DC, Geiger B, et al. Accurate and sensitive mutational signature
analysis with MuSiCal. Nat Genet 2024; 56:541-552

34. Li S, Crawford FW, Gerstein MB. Using sigLASSO to optimize cancer mutation
signatures jointly with sampling likelihood. Nat Commun 2020; 11:3575

35. Gori K, Baez-Ortega A. sigdfit: flexible Bayesian inference of mutational
signatures. 2020; 372896

36. Schumann F, Blanc E, Messerschmidt C, et al. SigsPack, a package for cancer
mutational signatures. BMC Bioinformatics 2019; 20:450

37. Delignette-Muller ML, Dutang C. fitdistrplus: An R Package for Fitting
Distributions. Journal of Statistical Software 2015; 64:1-34

38. Held L, Sabanés Bové D. Applied Statistical Inference: Likelihood and Bayes.
2014;

39. Senkin S, Moody S, Diaz-Gay M, et al. Geographic variation of mutagenic
exposures in kidney cancer genomes. Nature 2024; 629:910-918

40. Kiciatovas D, Guo Q, Kailas M, et al. Identification of multiplicatively acting
modulatory mutational signatures in cancer. BMC Bioinformatics 2022; 23:522

32


https://doi.org/10.1101/2024.05.20.594967
http://creativecommons.org/licenses/by/4.0/

Table 1: Software and input arguments benchmarked

Main function or main

Software Abbrev-iation o Arguments Source of code Version
execution file
deconstructSigs:: https://github.com/raerose01/
deconstructSigs DeconSig . g signature.cutoff = 0.06 ps:/lg i 1.9.0
whichSignatures deconstructSigs
signature.tools.lib
Defaults; we considered  https://github.com/Nik- 2.4.5 according to
FitMS FitMS signature.tools.lib::FitMS signatures with prevalence |Zainal- GitHub tag
<0.01"rare" Group/signature.tools.lib (DESCRIPTION file
has 2.4.4)
Mutational Signature https://github.com/parklab/Mu
g MusSiCal musical.refit.refit thresh =0.001 ps:ilg . P 1.0.0
Calculator SiCal
Defaults; we report
. "pruned" output based on GitLab tag 2.2 (note
. . Invoked by running nextflow on . . ) . .
Mutational Signature MSA file areviewer's suggestion, https://gitlab.com/s.senkin/MS| that Dockerfile and
Attribution o . which generated much A nextflow.config file
run_auto_optimised_analysis.nf
better results than the show 2.1)
unpruned option
. MutationalPatterns:: .
MutationalPatterns MutPat . . . Defaults Bioconductor 3.14.0
fit_to_signatures_strict
. . mutSignatures::
mutSignatures mutSig X Defaults CRAN 211
resolveMutSignatures
mSigAct:: https://github.com/steverozen
PASA PASA ) ) . Defaults ) 3.0.1
PresenceAttributeSigActivity /mSigAct
sigfit sigfit sigfit::fit_signatures Defaults https://github.com/kgori/sigfit 2.2.0
. . siglasso::siglasso (can only https://github.com/gersteinlab
sigLASSO sigLASSO ) Defaults ) 1.1
analyze SBS signatures) /siglasso
https://www.ncbi.nlm.nih.gov/
. L i SignatureEstimation:: CBBresearch/Przytycka/softwa| 1.0.0 according to
SignatureEstimation SigEstQP Defaults . . . . )
decomposeQP re/signatureestimation/Signatu; DESCRIPTION file
reEstimation.tar.gz
SigProfilerAssignment. https://github.com/Alexandrov
SigProfilerAssignment SigPro g L g Defaults P g i X 0.1.7
cosmic_fit Lab/SigProfilerAssignment
SigsPack SigsPack |SigsPack:: signature_exposure |Defaults Bioconductor 1.18.0
in_per_sample_cutoff = .
YAPSA YAPSA YAPSA::LCD Bioconductor 1.30.0

0.06
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FIGURE LEGENDS

Figure 1. The task of mutational signature attribution is to find signatures that can reconstruct the mutational
spectrum well. (A) Example of an SBS spectrum that can be reconstructed with a cosine similarity of 0.988
from four signatures. The bar at the left shows that mutational signature SBS4 contributed the most mutations
to this spectrum. This signature is associated with tobacco smoking. (B) The DBS spectrum from the same
tumor can be reconstructed with a cosine similarity of 0.989 from two signatures. The bar at the left shows
that mutational signature DBS2, which is also associated with tobacco smoking, contributed the most
mutations to this spectrum. (C) The ID spectrum from the same tumor can be reconstructed with a cosine
similarity of 0.982 from three signatures. The bar at the left shows that mutational signature ID3 contributed
the most mutations to this spectrum. Like the SBS signature SBS4, this ID signature is also associated with
tobacco smoking. Spectra from Lung-AdenoCA::SP52667 [1]. The x axes of all panels follow the conventions
described at https://cancer.sanger.ac.uk/signatures/.

Figure 2. Many mutational spectra have numerous distinct attributions with cosine similarity > 0.969.
Shown here is the example of stomach adenocarcinomas (Stomach-AdenoCA) from the Pan Cancer
Analysis of Whole Genomes mutation data analyzed in [1]. (A) The number of distinct attributions with
cosine similarity to the spectrum > 0.969. The height of each bar indicates the number of spectra with the
number of distinct attributions indicated on the x axis. By distinct attributions we mean attributions with
different sets of signatures with non-zero activity. (B) One example spectrum from those analyzed in panel
A. The x axis of this and the following panels follow the conventions described at
https://cancer.sanger.ac.uk/signatures/. (C-F) Several example attributions that have cosine similarity to the
spectrum in panel B > 0.969. Code for this figure and the attributions are available at
https://github.com/Rozen-Lab/sig attribution paper code/

Figure 3. Accuracy of mutational signature attribution approaches on synthetic SBS spectra. (A-D)
Accuracy measures over all synthetic SBS spectra. Combined Score is the sum of (1 — scaled Manhattan
distance), precision and recall. The scaled Manhattan distance is calculated by dividing the Manhattan
distance between the spectrum and the reconstructed spectrum by the total mutation count. Dark horizontal
lines indicate medians, red diamonds indicate means. The attribution approaches are ordered by
descending mean of the Combined Score for all cancer types from highest to lowest. Abbreviations for
attribution approaches are listed in Table 1.

Figure 4. Accuracy of signature attribution approaches on synthetic DBS spectra. Abbreviations are as in
Figure 3.

Figure 5. Accuracy of signature attribution approaches on synthetic ID (small insertion and deletion)
spectra. Abbreviations are as in Figure 3.

Figure 6. Total CPU time for running approaches to signature attribution on synthetic (A) SBS, (B) DBS
and (C) ID mutational spectra. Abbreviations for attribution approaches are as in Figure 3.


https://cancer.sanger.ac.uk/signatures/
https://cancer.sanger.ac.uk/signatures/
https://github.com/Rozen-Lab/sig_attribution_paper_code/
https://doi.org/10.1101/2024.05.20.594967
http://creativecommons.org/licenses/by/4.0/

A

f|g tg(oinv preprint doi: https://doi.org/10.1101/2024.05.20.594967; this version posted January 9, 2025. The copyright holder for this preprint
which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
d :

SBS Spectrum

Reconstructed
Spectrum
, H—
29
o 2
s
H—
B
DBS Spectrum
Reconstructed
Spectrum
83
5% __~
”n o
(@]
C
ID Spectrum
Reconstructed
Spectrum
g3 y
fo =
s /

available under aCC-BY 4.0 International cense.

T>C T>G
III 1 IIIIII-Il TOCPPETTIE PP [N PPN T P PR 11 T P
II Cosine similarity : 0.988
III I II.IIIII. nlN _Buw_wnn_ulls IIIIIII nal. 0yl III.I Lalaisn
SBS1
_,I, 1 1 .
SBS
II_|3||_|.|_|.I_|I|,II|_||..||I,|||_|II_|I|,|.|_...|..I||..||.|.|
SBS4|
1.1 |-|||..II.I __________________ Cmm_moo e eea- B
SBS5
Ee_mmmo= Be o mmE_ HEa_ EaE_Eaa_ = alo mmmnbonannluneene oo ... -
AC>NN > CC>NN > CT>NN > TA>NN TG>NN >
Cosine similarity : 0.989
DBS2
DBS6
1bp 1bp >1bp deletions >1bp insertions Deletions with
deletions insertions at repeats at repeats microhomology
C C 2 + 2 3 4 i+ 23 4 i+
Ilnnnsn alls 1 " n
Cosine similarity : 0.982
lonis Al & n L
ID3
os
L S ) ) | ) I PP
ID9


https://doi.org/10.1101/2024.05.20.594967
http://creativecommons.org/licenses/by/4.0/

vy)

Mutation
counts

O

Mutation
counts

O

Mutation
counts

m

Mutation
counts

-

Mutation
counts

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.20.594967; this version posted January 9, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a Iicenss.to (ﬂsplay the preprint in perpetuity. It is
o — _made available under aCC-BY 4.0 International licensd1Q

q-_ — —

Number of stomach
adenocarcinoma spectra

B0 1 [

0 10000 20000 30000 40000 50000 60000 70000

Number of attributions based on distinct sets of signatures
that yield cosine similarity to spectrum > 0.969

C>A C>G C>T T>A T>C T>G
original spectrum, SP85251
1236 403 3122 651 960 455

512
384
256

128I I III | I
0

reconstruction cosine sim = 0.98531 6827 | s .
1245 546 2907 547 1043 547 Signature
520 5120 = SBS58
390 SBS41
= SBS40
260 TN, e
130 = SBS15
0 1707 = SBSS
= mSBS2
SBS1
0
reconstruction cosine sim = 0.98421 6827 .
1239 558 2893 538 1055 540 Signature
520 5120 SBS41
390 = SBS40
m SBS18
260 3414 |m— m SBS15
130 m SBS5
0 |_|_._|_I_|_._|_I_L._|_I_LJ_L|._|_|_I._I_._-__|_I_L_I_I_L 1707 = SBS2
— SBS1
0
reconstruction cosine sim = 0.98305 6827 .
1268 575 2930 490 1032 526 Signature
520 5120 = SBS40
390 = SBS18
B " SBS15
260 3414[mmmm @ SBS5
13o| I I I I I I . = SBS2
0 1707 SBS1
0
reconstruction cosine sim = 0.98291 [y — )

. 1230 550 2879 595 1114 460 Signature
512 s = sBsss
384 — SBS41

m SBS18

256 3414. = SBS15
128 = SBS5
0 1707 SBS3
==== mSBS2
SBS1


https://doi.org/10.1101/2024.05.20.594967
http://creativecommons.org/licenses/by/4.0/

fig 3 - SBS

T

1.00 =g=

o
Q

-—

it

1) o 0
™~ 0 N
o o o

o
o

o

Ossvbis
wbis
Bisinw
Noedsbis
dois3bis
VSdVA
Bisuoosg
jediniN
0idbis
VSIN
SIALE|
[eDISNIN
VSvd

aoue)SIp ueneyuel pajeds — |

Q
)

0 Q 0
N N ~
91008 pauIquio)

e
=

Ossv1bis
wbis
BiSinw
Noedsbis
dois3bis
VSdVA
Biguooeg
jedinN
oidbis
VSIN
SIS
[eDISNIN
VSvd

*#

-

[ {1

Yo}
N

o o o
(Ayanisuag) ([eoay

RN
[ b |
L b |
EO—
C—
_

|

*

?

0.75

o
0
o

uolsioald

N
o

0.00

0.00

Ossv16is
1b1s
Bisinw
3oedsbis
dois3bis
VSdVA
Bisuoosg
jediniN
0idbis
VSN
SIALE|
[eDISNIA
VSvd

Ossv1bis
Wbis
Bisinw
yoedsbis
dois3bis
VSdVA
Bisuooag
jediniN
0idbis
VSN
SALE|
[eDISNA
VSvd


https://doi.org/10.1101/2024.05.20.594967
http://creativecommons.org/licenses/by/4.0/

Pl Wbis { Wbis
— e —" oedsbis |+ yoedsbig
— e — dois36iS | dois361S
— I+ —— Bisinu I Bisinu
H [eDISNI | [DISNIN
1Ie— SE [« — SIIE
o 0 o ‘el o o 0 o 'e] o
S ~ & o 9 S ~ ® o 9
~ o o o o ~ o o o o
90UE)SIP UBJEYUB|\ POeds — | (Ananisueg) |jeosy
o0 o
|_”m_| WbIs “ m “ wbis
o R dosabis T — dOIs30Is
m |_ _ﬁ _‘ Biguooe( _H_| Bisucosq
> | » VSdVA
|+ 1ediniy
edin
-+ [EOISN
| S
|
.| Sheid 3 VSvd
I[+] e g e g 8 s
™ N - - o o o o

< 8100g pauIquo) O uolsioald


https://doi.org/10.1101/2024.05.20.594967
http://creativecommons.org/licenses/by/4.0/

T

o T o 0
Q ™~ 0 N
- o o o

o
o

o

wbis
oldbis
Biginw
yoedsbis
dois3bis
Biguooaqg
VSdVA
Jediniy
VS
[eQISNN
SE!
VSvd

aoue]SIp ueneyue pajess — |

11]

fig5 - ID

Bliauie

Q 0 Q 0
™ N N ~
9100S pauIquo)

Q
~

Wb1s
oldbis
Bisinw

Yoedsbis

dois3bis

Biguooag
VSdVA
Jediniy

VS
[eQISNIA

SE]

VSvd

’?

|

|

by

I

1.00

Yo
N~

o
0

0
N

o o o
(Ayasuag) ([eoay

K3

i

1.00 =o= =p=

7o)
™~
o

o
0
o

uolsioald

¥

o)
N
o

wbis
oidbis
Bisinw
Yoedsbis
dois3bis
BiguooaQg
VSdVA
ediniy
VS
[eQISNIN
SHE!
vSvd

0.00

Wbis
oidbis
Bisinw

yoedsbig

doisabis

BiSuooaQg
VSdVA
ediniy

VSN

[eQISNIN

SIME|

VSvd

0.00


https://doi.org/10.1101/2024.05.20.594967
http://creativecommons.org/licenses/by/4.0/

ID

DBS

SBS

fig 6

< N
(1L + spuodas NdD) 0l aseq 6o

< N
(1 + spuo2as NdD) 0l oseq bo

< N
(1L + spuo2as NdD) 0l oseq bo

o

VSN
VSvd
mb1s
[eDISNIA|
01461
BiguooaQ
SINNA
lediniy
BiSinw
doisabis
VSdVA
Yoedsbis

VSIN
VSvd
Wb1s
[edISniA
oidbis
Bisuooag
1edinin
S ANE]
BiSinw
VSdVA
dois36is
Noedsbis

VSIN
VSvd
Wb1s
[eDISNIAl
0.db1s
ossvibis
BiguooaQg
SINNA
1edini\l
Bisinw
VSdVA
yoedsbig
doisabis


https://doi.org/10.1101/2024.05.20.594967
http://creativecommons.org/licenses/by/4.0/

	jiang-wu-rozen-main-text-2024-12-29
	table1-2024-12-29
	jiang-wu-rozen-main-text-figs-2024-12-29
	main-figure-legends-2024-11-05
	figure1_mutograph
	figure2
	fig_3_SBS_all_cancer_types
	fig_4_DBS_all_cancer_types
	fig_5_ID_all_cancer_types
	fig_6_cpu_time


