

1 **The novel role of Kallistatin in linking metabolic syndromes and**
2 **cognitive memory deterioration by inducing amyloid- β plaques**
3 **accumulation and tau protein hyperphosphorylation**

4 Weiwei Qi^{1,2#}, Yanlan Long^{3#}, Ziming Li^{4#}, Zhen Zhao¹, Jinhui Shi¹, Wanting Xie¹,
5 Laijian Wang⁴, Yandan Tan¹, Ti Zhou¹, Minting Liang¹, Ping Jiang^{5*}, Bin Jiang^{4*}, Xia
6 Yang^{1,6*}, Guoquan Gao^{1,7,8,9*}

7 ¹ Department of Biochemistry and molecular biology, Zhongshan School of
8 Medicine, Sun Yat-sen University, Guangzhou, China

9 ² Advanced Medical Technology Center, The First Affiliated Hospital,
10 Zhongshan School of Medicine, Sun Yat-sen University

11 ³ Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of
12 Biomaterials, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy
13 of Sciences (CAS), Shenzhen, China

14 ⁴ Guangdong Province Key Laboratory of Brain Function and Disease, School of
15 Medicine, Sun Yat-sen University, Shenzhen, China

16 ⁵ Department of Clinical Medical Laboratory, Guangzhou First People Hospital,
17 School of Medicine, South China University of Technology, Guangzhou, China

18 ⁶ China Key Laboratory of Tropical Disease Control (Sun Yat-sen University),
19 Ministry of Education, Guangzhou, China

20 ⁷ Guangdong Engineering & Technology Research Center for Gene Manipulation
21 and Biomacromolecular Products (Sun Yat-sen University), Guangzhou, China

⁸ Guangdong Province Key Laboratory of Brain Function and Disease,

23 Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China

24 ⁹ Guangdong Provincial Key Laboratory of Diabetology& Guangzhou Municipal

25 Key Laboratory of Mechanistic and Translational Obesity Research, Medical Center

26 for Comprehensive Weight Control, The Third Affiliated Hospital of Sun Yat-sen

27 University Guangzhou, Guangdong, China

28 #These authors contributed equally to this study.

*Corresponding author: Gao GQ: gaogq@mail.sysu.edu.cn; Yang X:

30 yangxia@mail.sysu.edu.cn; Jiang B: jiangb3@mail.sysu.edu.cn; Ping J:

31 jiangp45@mail2.sysu.edu.cn

32

33 **Highlights**

34 ● Kallistatin-transgenic (KAL-TG) mice defined its cognitive memory impairment

phenotype accompanied by increased A β deposition and tau phosphorylation.

36 • Kallistatin could directly bind to the Notch1 receptor and thereby upregulate

37 BACE1 expression by inhibiting PPAR γ signaling.

38 ● Fenofibrate could alleviate cognitive memory impairment and down-regulate the

39 serum Kallistatin level.

40

41 Abstract

42 Accumulation of amyloid β (A β) peptides and hyperphosphorylated tau proteins

43 in the hippocampus triggers cognitive memory decline in Alzheimer's disease (AD).

44 The incidence and mortality of sporadic AD were tightly associated with diabetes and

45 hyperlipidemia, while the exact linked molecular is uncertain. Here, we reported that

46 serum Kallistatin concentrations were meaningfully higher in AD patients, with a

47 higher concentration of fasting blood glucose and triglyceride. In addition, the

48 constructed Kallistatin-transgenic (KAL-TG) mice defined its cognitive memory

49 impairment phenotype and lower LTP in hippocampal CA1 neurons accompanied by

50 increased A β deposition and tau phosphorylation. Mechanistically, Kallistatin could

51 directly bind to the Notch1 receptor and thereby upregulate BACE1 expression by

52 inhibiting PPAR γ signaling, resulting in A β cleavage and production. Besides,

53 Kallistatin could promote the phosphorylation of tau by activating GSK-3 β .

54 Fenofibrate, a hypolipidemic drug, could alleviate cognitive memory impairment by

55 down-regulating A β and tau phosphorylation of KAL-TG mice. Collectively, our data

56 clarified a novel mechanism for A β accumulation and tau protein

57 hyperphosphorylation regulation by Kallistatin, which might play a crucial role in

58 linking metabolic syndromes and cognitive memory deterioration, and suggested that

59 fenofibrate might have the potential for treating metabolism-related AD.

60 **Key words:** Alzheimer's disease, Kallistatin, A β 42, BACE1, Diabetes

61

62 Introduction

63 Alzheimer's disease (AD), the most prevalent irreversible neurodegenerative
64 disorder associated with dementia in elderly individuals, is marked by a gradual
65 decline in cognitive memory. Pathologically, AD is identified by the presence of
66 extracellular amyloid- β (A β) plaques and intracellular neurofibrillary tangles (NFTs)¹,
67 ^{2, 3}. The A β cascade and tau protein hyperphosphorylation are the two primary
68 hypotheses concerning AD. According to the A β cascade hypothesis, the excessive
69 production of A β disrupts normal cellular functions, leading to synaptic dysfunction,
70 neurodegeneration, tau hyperphosphorylation, and neuroinflammation, which
71 ultimately result in memory impairment in individuals with AD and dementia^{4, 5}. A β
72 peptides are derived from the sequential cleavage of amyloid precursor protein (APP)
73 by β -secretase (β -site APP cleaving enzyme 1, BACE1) and γ -secretase, thus making
74 this cleavage process significant in AD pathology^{6, 7}. BACE1 is considered a highly
75 promising therapeutic target. Several potent BACE1 inhibitors have progressed to
76 advanced stages in clinical trials, emphasizing the role of BACE1 in A β production^{8, 9},
77 ¹⁰. Tau, a microtubule-associated protein, naturally occurs in axons and regulates
78 microtubule dynamics and axonal transport¹¹. In AD, tau undergoes a multistep
79 transformation from a natively unfolded monomer to large aggregated forms, such as
80 NFTs, another defining feature of AD^{12, 13}. Glycogen synthase kinase-3 (GSK3) is a
81 key kinase involved in the initial steps of tau phosphorylation, with Wnt signaling

82 being crucial in activating GSK-3 β and GSK-3 β -mediated tau phosphorylation ¹⁴. The
83 physiological mechanisms underlying their interaction remain poorly understood.

84 There is a close relationship between metabolic disorders and cognitive
85 impairment across the AD spectrum ^{15, 16}. Nearly 95% of AD patients are categorized
86 as sporadic patients, whose increasing incidence and mortality are strongly associated
87 with type 2 diabetes mellitus (T2DM), obesity, and hyperlipidemia ^{17, 18, 19}. About 37%
88 of comorbidities between AD and diabetes have been reported in the Alzheimer's
89 Association Report ^{20, 21}. As a result of the strong association and shared mechanism
90 between AD and T2DM, AD has been termed "type 3 diabetes" by some researchers
91 ^{22, 23, 24, 25}. Several studies have demonstrated that diabetes confers a 1.6-fold increased
92 risk of developing dementia ^{26, 27}. Similarly, central obesity and high body mass index
93 (BMI) during middle age are associated with an about 3.5-fold increased risk of
94 dementia later in life ²⁸. Therefore, controlling blood glucose and lipids is expected to
95 be a strategy for preventing or moderating cognitive decline during aging.
96 Nevertheless, the exact link and key associated regulators between metabolic
97 abnormalities and AD are still unclear.

98 Kallistatin is a serine proteinase inhibitor previously identified as a tissue
99 kallikrein-binding protein ²⁹. It is produced predominantly in the liver and is widely
100 expressed in body tissues, where it has antiangiogenic, antifibrotic, antioxidative
101 stress, and antitumor effects ^{30, 31}. Furthermore, Kallistatin was found to be increased
102 in patients with obesity, prediabetes, and diabetes ^{32, 33, 34}. The concentration of

103 Kallistatin was positively correlated with the triglyceride glucose index ³⁵, which was
104 proven to be an independent risk factor for dementia ³⁶. In addition, our previous
105 study revealed that the concentration of serum Kallistatin in T2DM patients was
106 significantly increased and further revealed that Kallistatin suppressed wound healing
107 in T2DM patients by promoting local inflammation, which suggested that Kallistatin
108 plays a critical role in the progression of T2DM ³⁷. Furthermore, our recent research
109 revealed that Kallistatin can cause memory and cognitive dysfunction by disrupting
110 the glutamate-glutamine cycle ³⁸.

111 To explore the relationships among T2DM, AD and Kallistatin, we constructed
112 Kallistatin transgenic (KAL-TG) mice to explore whether Kallistatin could cause
113 cognitive impairment through the upregulation of A β production. Taken together, our
114 results suggest that a novel regulatory mechanism of A β production and tau protein
115 hyperphosphorylation by Kallistatin is involved in the progression of metabolic
116 abnormality-related AD.

117

118 **Results**

119 **Kallistatin increases in AD patients and AD model mice**

120 To explore the relevance of AD in T2DM, a GAD disease enrichment analysis
121 was initially conducted on differentially expressed genes in neurons of T2DM patients
122 and normal controls, revealing a close relationship between AD and T2DM
123 (GSE161355) (Fig. S1A). Additionally, PFAM analysis using the DAVID database

124 identified enrichment of the Serpin family protein domain (Fig. S1B)

125 (<https://david.ncifcrf.gov/>). Our previous studies revealed that Kallistatin (serpin

126 family a member 4) was elevated in the serum of T2DM patients and was associated

127 with an adverse prognosis of diabetes complications ⁴⁴. We collected 11 serum

128 samples from dementia patients at Sun Yat-sen Memorial Hospital and reported that

129 the concentration of Kallistatin was greater than that in normal controls³⁸. In this study,

130 56 AD patients and 61 healthy controls were enrolled from four hospitals in

131 Guangdong Province to further investigate the potential relevance of Kallistatin and

132 AD. The clinical and biochemical characteristics of the participants are provided in

133 Tables S1 and S2. In addition, the serum Kallistatin ($12.78 \pm 2.80 \mu\text{g/mL}$) content in

134 patients with AD was greater than that in normal controls ($9.78 \pm 1.93 \mu\text{g/mL}$) (Fig.

135 1A). Similarly, fasting blood glucose (FBG) and triglyceride (TG) levels were greater

136 in AD patients than in healthy controls (Fig. 1B). We further grouped all the AD

137 patients according to diabetes status and found that the Kallistatin (13.79 ± 3.05

138 $\mu\text{g/mL}$) and TG contents were further elevated in AD patients with diabetes (Fig. 1C-

139 D). Similarly, Kallistatin expression was increased in the hippocampus of the AD

140 model mouse SAMP8 compared with that in the control mouse SAMR1 (Fig. S1C-D).

141 Taken together, these results indicate that the Kallistatin concentration is increased in

142 metabolic abnormality-related AD patients.

143 **Kallistatin impairs cognitive memory in mice**

144 The above experiments demonstrated that Kallistatin was increased in AD
145 patients and AD model mice. We subsequently generated KAL-TG mice and assessed
146 their behavioral performance through the Morris water maze (MWM) and Y maze
147 tests. Notably, the latency to escape the platform was longer, and the number of
148 platform crossings, percentage of time spent, and spontaneous alternation were
149 significantly lower in KAL-TG mice than in age-matched WT mice (Fig. 1E-I).
150 Furthermore, long-term potentiation (LTP) was measured using whole-cell voltage-
151 clamp recordings of CA1 neurons in acute hippocampal slices from KAL-TG and WT
152 mice to assess changes in hippocampal synapses. The LTP in KAL-TG mice was
153 significantly reduced compared to that in WT mice (Fig. 1J). These results showed
154 that Kallistatin could impair cognitive memory in mice.

155 **Kallistatin promotes A β deposition and tau phosphorylation**

156 We evaluated A β deposition and tau phosphorylation in these experimental
157 mouse hippocampal tissues via immunohistochemistry (IHC) and western blotting.
158 Predictably, the plaque density and tau phosphorylation in KAL-TG mice were much
159 greater than those in age-matched WT mice (Fig. 2A-C, 3A-D). Consistent with these
160 results, ELISA detection of the A β 42 content in hippocampal tissue revealed that A β
161 production was extraordinarily increased in KAL-TG mice compared with WT mice
162 (Fig. 2D). These results suggested that Kallistatin promoted A β deposition and tau
163 phosphorylation.

164 **Kallistatin positively regulates A β generation by promoting β -secretase rather**

165 **than γ -secretase**

166 Western blot and ELISA analyses revealed that the A β levels in primary
167 hippocampal neurons (immunofluorescence identified with the neural marker MAP2,
168 Fig. S2G) infected with the Kallistatin adenovirus were greater than those in the
169 control groups (Fig. 2E-G), as were those in the HT22 cells (Fig. S2A-C). Amyloid-
170 beta precursor protein (APP) undergoes proteolytic processing to generate peptide
171 fragments ⁴⁵. β -Secretase (BACE1) and γ -secretase, which are composed of presenilin
172 1 (PS1), nicastrin, and Pen-2, are crucial enzymes for A β generation ^{46, 47}. We
173 determined the levels of APP, BACE1, and PS1 in hippocampal tissue. Compared
174 with those in WT mice, BACE1 protein and mRNA levels were greater in KAL-TG
175 mice (Fig. 4A-C, S2D), whereas no significant difference in APP, PS1, or α -secretase
176 (ADAM9, ADAM10, or ADAM17) expression was detected (Fig. 4A, S2E).
177 Consistent with the above results, the activity of BACE1 increased (Fig. 4D), whereas
178 PS1 activity did not change (Fig. S2F). Similarly, the expression and activity of
179 BACE1 were found to be increased in primary mouse neurons and HT22 cells
180 transfected with Kallistatin adenovirus (Fig. 5A-C, S3A-C), while PS1 expression and
181 activity remained unchanged (Fig. 5A, 5D, S3A). Additionally, the effect of
182 Kallistatin was attenuated by the BACE1 inhibitor verubecestat or siBACE1 03,
183 which was the most effective (Fig. 5E-F, S3D). These results indicate that Kallistatin
184 can promote A β generation through the upregulation of BACE1 expression.

185 **Kallistatin suppresses PPAR γ activation to promote BACE1 expression**

186 The transcription factors SP1, YY1, and PPAR reportedly regulate BACE1
187 expression at the transcriptional level. Among them, PPAR γ can downregulate
188 BACE1 expression ^{48, 49, 50}. PPAR γ decreased in the hippocampal tissue of KAL-TG
189 mice, as detected by western blot and immunohistochemical analysis (Fig. 5G-J).
190 However, no significant differences in YY1 or SP1 expression were detected (Fig.
191 5G). In addition, Kallistatin downregulated the expression of PPAR γ in primary
192 hippocampal neurons and HT22 cells, thus increasing BACE1 and A β expression (Fig.
193 5K, S3E). Treatment with rosiglitazone, a PPAR γ agonist, reversed the decrease in
194 PPAR γ caused by Kallistatin (Fig. 5K-L). Predictably, rosiglitazone inhibited the
195 ability of Kallistatin to promote BACE1 and A β (Fig. 5K and Fig. S3E).

196 **Kallistatin promotes A β production *via* direct binding to the Notch1 receptor and
197 activating the Notch1 pathway**

198 Our results indicated that Notch1 was highly expressed in the hippocampal
199 tissues of KAL-TG mice (Fig. 6A-D). Furthermore, Notch1 expression was
200 upregulated in primary hippocampal neurons and HT22 cells infected with adenovirus
201 expressing Kallistatin *in vitro* (Fig. S4A-B). Additionally, Kallistatin could directly
202 bind to the Notch1 receptor and activate the Notch1 pathway (Fig. 6E-F and Fig. S4C-
203 D). Treatment with siNotch1 03, which was the most effective (Fig. S4E), to knock
204 down Notch1 inhibited the effect of Kallistatin on the activation of the Notch1
205 signaling pathway, leading to the downregulation of HES1, upregulation of PPAR γ ,
206 and downregulation of BACE1 and A β (Fig. 6G). HES1, an essential downstream

207 effector of the Notch1 signaling pathway, has been reported to suppress the expression
208 of *PPARG* (the gene name of PPAR γ) in neurons ^{51,52}. Similarly, HES1 shRNA 1, the
209 most effective (Fig. S4F), upregulated PPAR γ and decreased the production of
210 BACE1 and A β when neurons were infected with adenovirus to overexpress
211 Kallistatin (Fig. 6H). These results suggest that Kallistatin promotes A β production
212 *via* direct binding to the Notch1 receptor and activating the Notch1 pathway.

213 **Kallistatin promotes the phosphorylation of tau by activating the Wnt signaling
214 pathway.**

215 Glycogen synthase kinase3- β (GSK-3 β) is a crucial element in the
216 phosphorylation of tau ⁵³. When Wnt signaling is activated, the LRP6 PPPSPxS motif
217 can directly interact with GSK-3 β and phosphorylate it ⁵⁴. Consequently, when Wnt
218 signaling is inhibited, GSK-3 β becomes activated and dephosphorylated, allowing
219 nonphosphorylated GSK-3 β to add phosphate groups to serine/threonine residues of
220 tau ¹⁴. Kallistatin has already been reported as a competitive inhibitor of the canonical
221 Wnt signaling pathway ⁵⁵. Consistent with previous reports, our results demonstrated
222 that GSK-3 β was activated in the hippocampus of KAL-TG mice (Fig. 7A-B).
223 Moreover, an increase in tau phosphorylation was observed with the activation of
224 GSK-3 β induced by Kallistatin overexpression (Fig. 7C-D, Fig. S5A), which was
225 reversed by LiCl, an inhibitor of GSK-3 β (Fig. 7E-F, Fig. S5B). These findings
226 confirmed that Kallistatin promoted tau phosphorylation by activating the Wnt
227 signaling pathway.

228 **Fenofibrate alleviates memory and cognitive impairment in KAL-TG mice**

229 Hyperlipidemia and hyperlipidemia account for the development of AD ^{56, 57}.

230 Here, a hypolipidemic drug (fenofibrate) and a hypoglycemic drug (rosiglitazone)

231 were used to treat KAL-TG mice (Fig. 8A). Compared with that of the KAL-TG

232 group, the behavioral performance of the treated group was improved, as measured by

233 the MWM and Y-maze tests. The latency to reach the escape platform on the fifth

234 training day was significantly decreased (Fig. 8B), and the number of platform

235 crossings (Fig. 8C), percentage of time spent (Fig. 8D), and spontaneous alternation

236 (Fig. 8F) were significantly greater in the fenofibrate-treated group than in the

237 rosiglitazone-treated group. Similarly, the path trace heatmap indicated that the mice

238 in the fenofibrate-treated group stayed in the target quadrant longer (Fig. 8E). In

239 addition, decreased serum Kallistatin levels, A β and BACE1 levels, phosphorylation

240 of tau, and activation of GSK3 β were detected in the fenofibrate-treated KAL-TG

241 group (Fig. 8G-K). However, there was no significant difference between the

242 rosiglitazone-treated group and the KAL-TG group (Fig. 8G-K).

243 **Mechanism summary**

244 In patients with metabolic abnormality-related AD, the concentration of

245 Kallistatin is elevated, which could increase A β deposition through the

246 Notch1/HES1/PPAR γ /BACE1 pathway and induce tau hyperphosphorylation by

247 activating GSK-3 β . Consequently, elevated Kallistatin impaired cognitive memory by

248 inducing A β deposition and tau hyperphosphorylation (Fig. S5C).

249

250 **Discussion**

251 This study demonstrated that Kallistatin is a novel regulator of amyloid- β plaque
252 accumulation, tau protein hyperphosphorylation, and metabolic abnormality-related
253 cognitive memory impairment. It was shown that Kallistatin levels were increased in
254 the serum of patients with AD and diabetes-related AD, as well as in the hippocampus
255 of AD model mice. Additionally, the KAL-TG mice exhibited cognitive memory
256 impairment and lower LTP in hippocampal CA1 neurons, along with increased A β
257 deposition and tau phosphorylation. Mechanistically, Kallistatin transcriptionally
258 upregulates BACE1 expression by suppressing the transcriptional repressor PPAR γ ,
259 leading to A β cleavage and production. Most importantly, our studies revealed that
260 Kallistatin could bind directly to the Notch1 receptor and activate the Notch1/HES1
261 pathway, causing a decrease in PPAR γ , overproduction of BACE1, and increased
262 A β 42 generation. Moreover, Kallistatin can induce tau phosphorylation by activating
263 GSK-3 β , which results from the inhibition of LRP6. Finally, prolonged stimulation
264 with high concentrations of Kallistatin impaired cognitive memory in mice. Finally,
265 the hypolipidemic drug fenofibrate decreased A β expression, tau phosphorylation, and
266 the serum Kallistatin level in KAL-TG mice, alleviating memory and cognitive
267 impairment. For the first time, these observations establish an association between
268 high Kallistatin levels and metabolic abnormality-related AD and provide a new drug
269 candidate (fenofibrate) for AD patients with metabolic syndromes.

270 Increasing evidence suggests that diabetes mellitus and AD are closely linked.

271 About 80% of AD patients are insulin resistant or have T2DM ⁵⁸; additionally, T2DM
272 patients have a higher risk of up to 73% dementia than healthy controls do ²⁶. In line
273 with these observations, the process of cognitive decline in T2DM patients appears to
274 begin in the prediabetic phase of insulin resistance ^{59, 60}. A GAD disease enrichment
275 analysis of differentially expressed genes in the neurons of T2DM patients and normal
276 controls revealed a close relationship between AD and T2DM. Additionally, PFAM
277 analysis identified an enrichment of the Serpin family protein domain (Fig. S1A, B).
278 We and other researchers reported that the level of Kallistatin (which belongs to the
279 serpin family) was increased in T2DM patients ^{32, 37}. Although the relationship
280 between Kallistatin and AD has not been reported to date, we speculate that
281 Kallistatin might be a critical molecule that could establish a relationship between
282 Alzheimer's disease and diabetes. Our data indicated that AD patients exhibit
283 metabolic disorders and elevated Kallistatin levels (Fig. 1A-D, S1C-D). Additionally,
284 KAL-TG mice showed impaired memory, cognitive function, and synaptic plasticity
285 (Fig. 1E-J). These results suggest that Kallistatin represents a novel connection
286 between AD and diabetes.

287 A hallmark of AD is the aggregation of A β into amyloid plaques and tau
288 phosphorylation in patients' brains. A β , a small peptide with a high propensity to form
289 aggregates, is widely believed to be central and initial to the pathogenesis of this
290 disease ⁶¹. Correspondingly, it was discovered that Kallistatin could lead to A β
291 overproduction through the Notch1/HES1/PPAR γ /BACE1 signaling pathway. GSK-

292 3 β , a vital kinase that regulates the process of tau phosphorylation ⁵³, can be activated
293 by inhibiting the Wnt signaling pathway. Kallistatin has been identified as a
294 competitive inhibitor of LRP6, the Wnt receptor ⁵⁵. Consistent with previous reports,
295 Kallistatin increased tau phosphorylation by activating GSK-3 β . It was demonstrated
296 for the first time that Kallistatin promoted AD by increasing A β production and tau
297 phosphorylation in the central nervous system.

298 Previous studies have shown that Notch signaling is closely related to AD. For
299 example, a NOTCH mutation was reported to cause AD-like pathology ⁶². In addition,
300 the level of Notch1 was found to be increased in AD patients ⁶³. In addition, the
301 Notch1/HES1 signaling pathway has been reported to suppress the expression of
302 PPAR γ ⁶⁴. Our previous studies demonstrated that Kallistatin can activate Notch1
303 signaling ³⁷. Consequently, we detected Notch1 in our animal and cell models. Indeed,
304 Notch1 was upregulated by Kallistatin (Fig. 6, S4), as was A β deposition. Notch
305 signaling is initiated by receptor-ligand interactions at the cell surface. In mammals,
306 there are five ligands encoded by JAG1, JAG2, DLL1, DLL3, and DLL4 ⁶⁵. Here, our
307 results revealed that Kallistatin could activate Notch1 by binding directly to it,
308 indicating that Kallistatin is a new ligand of the Notch1 receptor.

309 The treatment of AD has always been a prominent and challenging issue in
310 neurology. Multiple strategies have been proposed to reduce the pathogenicity of A β
311 and tau. Unfortunately, several A β -targeted therapies tested in phase III clinical trials
312 have failed to slow cognitive decline, although they can effectively reduce the A β load

313 66, 67, 68, 69, 70, 71. BACE1 inhibitors have not only failed to improve the cognitive
314 function of AD patients but have also resulted in clinical deterioration and liver
315 function impairment 72, 73, 74. Two possible reasons for the failure of clinical trials with
316 BACE1 inhibitors are: first, the reduction in BACE1 activity could lead to the
317 accumulation of full-length APP 75; second, the size of the BACE1 active site is
318 relatively large, and the use of a small molecule may not be sufficient to occupy the
319 active site 76. Consequently, synaptic damage caused by BACE1 inhibitors or their
320 insufficient effect may lead to the failure of clinical trials. Therapeutic strategies
321 targeting tau include tau aggregation blockers (TRx0014, TRx0237), antibody vaccine
322 therapy (e.g., RO7105705, BIIB092), the inhibition of tau phosphorylation (Anavex2-
323 73), and the use of microtubule stabilizers (Anavex2-73) 77. Some of these drugs have
324 been partially discontinued, while others are still undergoing clinical testing and have
325 shown protective benefits. Nonetheless, several obstacles remain to the
326 commercialization of tau treatments when they reach maturity.

327 Because of the failure of clinical trials, some researchers have proposed
328 alternative options for AD therapeutics to address modifiable risk factors for the
329 development of AD, such as type 2 diabetes 78, 79, 80. Previous studies revealed that
330 Kallistatin is a multifunctional protein strongly associated with diabetes and that a
331 Kallistatin neutralizing antibody improves diabetic wound healing 44. This study
332 demonstrated that Kallistatin induced memory-related cognitive dysfunction by
333 promoting A β deposition and tau phosphorylation. Thus, it is speculated that

334 increased Kallistatin could be a promising candidate for T2DM-related AD therapy.

335 PPAR γ is a ligand-activated transcription factor and a master modulator of glucose

336 and lipid metabolism, organelle differentiation, and inflammation ^{81, 82}. Growing

337 evidence revealed that PPAR γ agonists (rosiglitazone) could rescue memory

338 impairment of AD model mice ^{83, 84, 85}. In clinical trials, it is controversial whether

339 rosiglitazone has a protective effect on memory cognitive function ^{86, 87, 88}. In this

340 study, although A β expression had a downward trend, the memory and cognition of

341 KAL-TG mice were unchanged after treatment with rosiglitazone for a month (Fig.8).

342 This might be caused by insufficient treatment time and the unchanged Kallistatin

343 level.

344 Fenofibrate is a fibric acid derivative for clinically lowering blood lipids, mainly

345 triglycerides ⁸⁹. Studies showed that fenofibrate could prevent memory disturbances,

346 maintain hippocampal neurogenesis, and protect against Parkinson's disease (PD) ^{90, 91}.

347 Specifically, fenofibrate has a neuroprotective effect on memory impairment induced

348 by A β through targeting α - and β - secretase ⁹². Recently, our study proved that the

349 fenofibrate could repair the disrupted glutamine-glutamate cycle by upregulating

350 glutamine synthetase, while there is currently no fenofibrate treatment of AD in

351 clinical trials³⁸. In this study, we proved fenofibrate was beneficial for memory and

352 cognitive impairment of KAL-TG mice. In addition, A β , BACE1, phosphorylated tau,

353 and serum Kallistatin level of KAL-TG mice could be downregulated after the

354 treatment of fenofibrate. All of these suggested that fenofibrate might be helpful for

355 metabolic abnormalities-related AD patients. Therefore, fenofibrate administration in
356 patients with metabolic syndrome play an early role in preventing and treating AD.

357 In summary, we affirmed that Kallistatin concentrations were increased in
358 diabetes-related AD patients. In addition, our study demonstrated for the first time that
359 Kallistatin positively regulated A β 42 through Notch1/HES1/PPAR γ /BACE1, and
360 increased phosphorylated tau through inhibition of the Wnt signaling pathway.
361 Kallistatin might play a crucial role in linking diabetes and cognitive memory
362 deterioration. Moreover, fenofibrate could decrease the serum Kallistatin level,
363 BACE1, A β , and phosphorylated tau of KAL-TG mice, leading to alleviating memory
364 and cognitive impairment. These findings might provide new insight into AD and
365 possibly other neurodegenerative disorders.

366

367 **Materials and methods**

368 **Ethics approval and consent to participate**

369 All patients involved in this study gave their informed consent. This study
370 obtained the institutional review board approval of Medical Ethics of Zhongshan
371 Medical College No. 072 in 2021 and Animal Experiment Ethics of Zhongshan
372 Medical College, Approval No.: SYSU-IACUC-2019-B051.

373 **Human Subjects**

374 The study was approved by the experimental ethics committee of Guangdong
375 Academy of Medical Sciences and Sun Yat-sen University and carried out in strict

376 accordance with the ethical principles, and each participant was provided written
377 informed consent before collecting samples. We certify that the study was performed
378 in accordance with the 1964 declaration of HELSINKI and later amendments. We
379 collected 61 normal human samples, 56 AD patient samples, of whom 36 normal
380 human samples were from the Zhongshan City People's Hospital; 14 normal human
381 samples and 22 AD patient samples were from Zhongshan Third People's Hospital ;
382 11 normal human samples and 14 AD patient samples were from Sun Yat-sen
383 Memorial Hospital. AD patient was clinically diagnosed according to ICD-10
384 (International Classification of Diseases) and NINCDS-ADRDA (the National
385 Institute of Neurological and Communicative Disorders and Stroke and the
386 Alzheimer's Disease and Related Disorders Association) criteria, and 20 AD patient
387 samples were clinically diagnosed according to MMSE (Mini-Mental State
388 Examination), were collected from Guangdong Provincial People's Hospital. All
389 subjects' Clinical characteristics were presented in Supplementary Tables (Table S1-2).

390 **Experimental Animals and Protocols**

391 All animal experiment procedures were carried out in an environment without
392 specific pathogens (Specific pathogen free, SPF) with the approval of the Animal
393 Care and Use Committee of Sun Yat-sen University (approval ID: SYXK 2015-0107).
394 The wild type mice (WT, C57BL/6) were purchased from the Animal Center of
395 Guangdong Province (Production license No.: SCXK 2013-0002, Guangzhou, China).
396 The SAMR1 and SAMP8 mice (7 months old) were purchased from Tianjin

397 University of Traditional Chinese Medicine (Tianjin, China). Kallistatin transgenic
398 mice (KAL-TG) were C57BL/6 strain provided by Dr. Jianxing Ma (University of
399 Oklahoma Health Sciences Center)³⁹. The KAL-TG mice genotype was identified by
400 PCR technology (forward primer: 5'-AGGGAAG-ATTGTGGATTGG-3', reverse
401 primer: 5'-ATGAAGATACCAGTGATGCTC-3'). KAL-TG mice aged 6 months were
402 randomly divided into three groups: control group (KAL-TG), fenofibrate-treated
403 group (KAL-TG-Feno, 0.3□g/kg/d), and rosiglitazone-treated group (KAL-TG-RSG,
404 0.005□ g/kg/d). Fenofibrate (Sigma-Aldrich, cat. no. F6020) and rosiglitazone
405 (Selleck, cat. no. S2556) were administered to mice by oral gavage. In three groups,
406 the serum Kallistatin were examined in the 0 week and 4 week after drug treatment
407 from the blood taken from mouse orbit. In addition, the Morris water maze and Y-
408 maze test were performed one week after the second blood collection.

409 **Morris water maze (MWM)**

410 The KAL-TG and WT mice were employed for the Morris water maze test
411 including the behavioral test, latency experiment (for 6 days), and the probe test (the
412 7th day). In addition, the MWM was performed as described previously⁴⁰. Mice were
413 brought into the testing room and handled for 1 day before the training experiment. In
414 the 6-day training experiment, each mouse was trained with four daily trials. The mice
415 facing the wall were placed into the maze, exploring the maze from different
416 directions (east, south, west, and north). This trial was completed as soon as the
417 mouse found the platform, or 90 s elapsed. If the mice could discover and climb the

418 submerged platform within 90 s, the system would automatically record the latency
419 time and path immediately, and then the mouse was guided to and placed on the
420 submerged platform for extra 20 s. On day 7, the platform was removed, and a probe
421 test was performed to examine the strength and integrity of the animal spatial memory
422 24 h after the last testing trial. During the probe test, the mice were gently brought
423 into the water from the fixed monitoring point, and the mice were allowed to swim for
424 90 s without the platform. Finally, all of the measured behavioral parameters were
425 analyzed using SMART software.

426 **Y-maze test**

427 A Y maze test was performed to assess the mice's spatial memory. The Y maze
428 was separated by 120°, consisting of three identical arms (30 cm long, 7 cm wide, and
429 15 cm high) made of blue PVC. The mice were placed first in one of the arms, and
430 over the next 10 minutes, the sequence and number of their entry into the three arms
431 were monitored. An alternation is defined when a mouse visits three straight arms
432 (namely, ABC, BCA, or CAB, but not ABA, BAB, or CAC). Spontaneous alternation
433 (%) = [(number of alternations)/(total number of arms-2)] × 100.

434 **Electrophysiology**

435 Hippocampal slices (300-400 µm) from KAL-TG and WT mice were cut as
436 described ⁴¹. Coronal slices from hippocampus (400 µm thick) were prepared from
437 different age groups KAL-TG mice and their WT littermates using a tissue slicer
438 (Vibratome 3000; Vibratome) in ice-cold dissection buffer containing the following

439 (in mM): 212.7 sucrose, 3 KCl, 1.25 NaH₂PO₄, 3 MgCl₂, 1 CaCl₂, 26 NaHCO₃, and
440 10 dextrose, bubbled with 95% O₂/5% CO₂. The slices were immediately transferred
441 to ACSF at 35 °C for 30 min before recordings. The recipe of ACSF was similar to the
442 dissection buffer, except that sucrose was replaced with 124 mM NaCl, and the
443 concentrations of MgCl₂ and CaCl₂ were changed to 1 mM and 2 mM, respectively.
444 All recordings were performed at 28-30 °C. Pyramidal cells in CA1 areas were
445 identified visually under infrared differential interference contrast optics based on
446 their pyramidal somata and prominent apical dendrites. Whole-cell was performed
447 using an Integrated Patch-Clamp Amplifier (Sutter Instrument, Novato, CA, USA)
448 controlled by Igor 7 software (WaveMetrics, Portland, OR, USA) filtered at 5□kHz
449 and sampled at 20□kHz. Igor 7 software was also used for acquisition and analysis.
450 Only cells with series resistance <20 MΩ and input resistance >100 MΩ were studied.
451 Cells were excluded if input resistance changed >15% or series resistance
452 changed >10% over the experiment. A concentric bipolar stimulating electrode with a
453 tip diameter of 125 μm (FHC) was placed in the stratum radiatum. The recording and
454 stimulating electrode distances were kept at 50-100 μm. Patch pipettes (2-4MΩ) were
455 filled with the internal solution consisting of the following (in mM): 120 Cs-
456 methylsulfonate, 10 Na-phosphocreatine, 10 HEPES, 4 ATP, 5 lidocaine N-ethyl
457 bromide (QX-314), 0.5 GTP; the pH of the solution was 7.2–7.3, and the osmolarity
458 was 270-285 mOsm.

459 To induce LTP, a pairing protocol was applied. In brief, conditioning stimulation
460 consisted of 360 pulses at 2 Hz paired with continuous postsynaptic depolarization
461 (180 s) to 0 mV. 50 μ M picrotoxin was added to the recording bath to suppress
462 excessive polysynaptic activity, and the concentration of Ca^{2+} and Mg^{2+} was elevated
463 to 4 mM to reduce the recruitment of polysynaptic responses. A test pulse was
464 delivered at 0.067 Hz to monitor baseline amplitude for 10 min before and 30 min
465 following paired stimulation. To calculate LTP, the EPSC amplitude was normalized
466 to the mean baseline amplitude during 10 min baseline. Potentiation was defined as
467 the mean normalized EPSC amplitude 25–40 min after paired stimulation.

468 **ELISA**

469 To quantify serum Kallistatin, the collected samples were centrifuged at 4 \square for
470 10min at 5000 rpm. It was detected using the KBP ELISA kit (#DY1669, R&D
471 systems, MN, USA) as per the instructions of the manufacturer. The levels of $\text{A}\beta$ 42 in
472 brain tissue produced from mouse primary neuron cells and HT22 cells were
473 measured with a mouse $\text{A}\beta$ 42 Elisa Kit (27721, IBL, Germany). To measure $\text{A}\beta$ 42 in
474 brain tissue, 0.05 g of mouse brain tissues were weighed and homogenized using 2ml
475 PBS with a protease inhibitor (cocktail, IKM1020, Solarbio). After centrifugalization
476 at 4 \square for 30 min at 12000 g, the extracts' supernatants were analyzed using the
477 ELISA method after total protein quantification. To quantify levels of $\text{A}\beta$ 42 produced
478 from primary neuron cells, the cell supernatants were ultrafiltrated with an
479 Ultrafiltration tube (4-kD Millipore), centrifugalization, and testing. Cell homogenate

480 was prepared in 1ml PBS with cocktail and quantified using the BCA method before
481 being measured by ELISA.

482 **Immunohistochemistry**

483 Tissue slices were prepared as described before ⁴². The sections were incubated
484 with A β (ab201060, Abcam, Cambridge, UK), BACE1 (#5606S, Cell Signaling
485 Technology, Boston, USA), PPAR γ (#2435, Cell Signaling Technology, Boston, USA),
486 Notch1 (#3608, Cell Signaling Technology, Boston, USA), p-tau S202 (ab108387,
487 Abcam, Cambridge, UK), p-tau T231(ab151559, Abcam, Cambridge, UK), p-tau
488 S396 (ab109390, Abcam, Cambridge, UK), tau (ab75714, Abcam, Cambridge, UK)
489 antibodies overnight at 4°C and then incubated with Alexa Fluor 488-donkey anti-
490 rabbit IgG (H \square +L) (1:200, Life Technologies, Gaithersburg, MD, USA, #A21208)
491 for 1h, then incubated with a biotin-conjugated secondary antibody for 30 \square min,
492 followed by incubation with DAB for 10 \square s and hematoxylin staining for 30 \square s. The
493 IHC signals were analyzed using ImageJ.

494 **Cell culture experiments**

495 HT22 cells were purchased from the Cell Bank of the Chinese Academy of
496 Sciences (Shanghai, China). HT22 cells were cultured and grown to confluence in
497 DMEM supplemented with 10% FBS (Gibco BRL), 100 U/mL penicillin, and 100
498 U/mL streptomycins (Gibco BRL).

499 **Primary culture of hippocampal neurons**

500 Primary neurons were obtained from the hippocampus of C57/BL6J mice at age
501 1-3 days. Before culturing, the newborn pup was euthanized and dipped into 70%
25

502 ethanol for 3 min. First, the infant pup hippocampus was isolated with eye tweezers
503 observed under the stereomicroscope, and excess soft tissue was removed. Second,
504 hippocampal tissue in PBS buffer was cut up with scissors gently and blown with a
505 1ml pipette until it was not visible. Next, the cell suspension was transferred to a 15ml
506 centrifuge tube and centrifuged at 1000 rpm for 5 min at room temperature. Cell
507 precipitation was suspended and cultured with 2-3mL primary neural stem cell (NSC)
508 suspension (Thermo Fisher Scientific, 21103049) in a 37 °C, 5% CO₂ cell incubator
509 for 3 days, changing half medium every 2 days. After 7 days, the cell suspension was
510 transferred to a 15ml centrifuge tube, centrifuged, and recultured with neurobasal,
511 10%FBS, 1:50 B27(Thermo Fisher Scientific, A3582801), and 1:100 bFGF (Thermo
512 Fisher Scientific, #RP-8626). One day later, the medium was changed to neurobasal
513 (2%FBS, 1:50 B27, and 1:100 bFGF), culturing for 21 more days. The
514 immunofluorescence technique was used with the neuron-specific marker (MAP2,
515 #4542, Cell Signaling Technology, Boston, USA) to determine the purity of neurons.

516 **siRNA, shRNA, and adenovirus transfection**

517 Notch1 siRNA and control siRNA were purchased from RiboBio (Guangzhou,
518 China). HES1 shRNA and control shRNA were purchased from Qingke (Guangzhou,
519 China). Green fluorescent protein-adenovirus (Ad-GFP) and Kallistatin-adenovirus
520 (Ad-KAL) were provided by Dr. Jianxing Ma (University of Oklahoma Health
521 Sciences Center). According to the manufacturer's instructions, the transfections were
522 performed at approximately 60% confluency using Lipofectamine®3000 transfection

523 reagent (Invitrogen) or RNAiMAX. After 24 h, interference confirmation was
524 conducted using real-time quantitative PCR (RT-qPCR) and Western blot.

525 **RNA isolation and quantitative RT-PCR**

526 Total RNA extraction, reverse transcription of cDNA, and real-time quantitative
527 PCR were performed as described previously ⁴³. BACE1 forward:
528 GGAGCCCTTCTTGACTCCC; BACE1 reverse: CAATGATCATGCTCCCTCCA;
529 ADAM9 forward: GGAAGGCTCCCTACTCTCTGA; ADAM9 reverse: CAATTCC-
530 AAAACTGGCATTCTCC; ADAM10 forward: ATGGTGTTGCCGACAGTGTGTTA;
531 ADAM10 reverse: GTTGCGCACGCTGGTGTGTTT; ADAM17 forward: GGAT-
532 CTACAGTCTGCGACACA; ADAM17 reverse: TGAAAAGCGTTCGGTACTTGAT;
533 β -actin forward: GCACTCTCCAGCTTCCTT; β -actin reverse:
534 GTTGGCGTACAG-GTCTTGCG.

535 **Western blot**

536 Western blot was performed as described previously ^{40, 43}. Equal amounts of
537 protein were subjected to western blot analysis. Blots were probed with antibodies
538 against Kallistatin (ab187656, Abcam, Cambridge, UK), A β (ab201060, Abcam,
539 Cambridge, UK), Presenilin-1 (ab76083, Abcam, Cambridge, UK), BACE1 (#5606S,
540 Cell Signaling Technology, Boston, USA), APP (#2452S, Cell Signaling Technology,
541 Boston, USA), MAP2 (#4542, Cell Signaling Technology, Boston, USA), PPAR γ
542 (#2435, Cell Signaling Technology, Boston, USA), SP1 (#9389, Cell Signaling
543 Technology, Boston, USA), YY1 (#46395, Cell Signaling Technology, Boston,

544 USA), Notch1 (#3608, Cell Signaling Technology, Boston, USA), Hes1 (#11988,
545 Cell Signaling Technology, Boston, USA), p-tau S202 (ab108387, Abcam,
546 Cambridge, UK), p-tau T231(ab151559, Abcam, Cambridge, UK), p-tau S396
547 (ab109390, Abcam, Cambridge, UK), tau (ab75714, Abcam, Cambridge, UK),
548 GSK3 β (#70109S, Cell Signaling Technology, Boston, USA), p-GSK3 β Ser9 (#9323,
549 Cell Signaling Technology, Boston, USA), β -actin (A5441-2ml, Sigma, CA, USA),
550 Caveolin-1(SZ02-01, Huabio, China), GAPDH (200306-7E4, Zen-bio, China), anti-
551 Mouse (#PI200, Vector Laboratories, Burlingame, CA, USA), anti-Rabbit (#PI1000,
552 Vector Laboratories, Burlingame, CA, USA). The signal intensity was quantified
553 using ImageJ (NIH).

554 **Statistical Analysis**

555 The results are expressed as mean \pm SD. Student's *t*-test was applied for
556 comparisons of parametric data between two groups, and one-way ANOVA followed
557 by LSD *t*-test was used to compare differences between more than two different
558 groups (GraphPad Prism software). A *P* value less than 0.05 was considered statistical
559 significance.

560 **List of abbreviations**

A β	amyloid β
p-tau	hyperphosphorylated tau
AD	Alzheimer's disease
T2DM	type 2 diabetes mellitus

FBG	fasting blood glucose
TG	triglyceride
KAL-TG	Kallistatin-transgenic
WT	wild type mice
APP	amyloid precursor protein
BACE1	β -site APP cleaving enzyme 1
BMI	body mass index
ICD-10	The International Statistical Classification of Diseases and Related Health Problems 10th Revision
NINCDS-	the National Institute of Neurological and Communicative
ADRDA	Disorders and Stroke and the Alzheimer's Disease and Related Disorders Association
MMSE	mini-Mental State Examination
KAL-TG-RSG	rosiglitazone-treated group
KAL-TG-Feno	fenofibrate-treated group
MWM	morris water maze
RT-qPCR	real-time quantitative PCR

561 **Declarations**

562 **Ethics approval and consent to participate**

563 All patients involved in this study gave their informed consent. This study
564 obtained the institutional review board approval of Medical Ethics of Zhongshan
565 Medical College No. 072 in 2021 and Animal Experiment Ethics of Zhongshan
566 Medical College, Approval No.: SYSU-IACUC-2019-B051.

567 **Consent for publication**

568 Not applicable.

569 **Availability of data and materials**

570 All the data supporting the conclusions of the current study are presented in the
571 figures and they are available from the corresponding authors upon reasonable request.

572 There are no restrictions on data availability. Source data are provided with this paper.

573 **Competing interests**

574 The authors declare that they have no competing interests.

575 **Acknowledgements**

576 We are thankful to Zhongshan City People's Hospital, Zhongshan Third People's
577 Hospital, Guangdong Provincial People's Hospital, and Sun Yat-sen Memorial
578 Hospital for kindly providing serum samples for the analyses of this manuscript. We
579 thank Professor Boxing Li for his valuable advice on our study.

580 **Funding**

581 This study was supported by The National Natural Science Foundation of China
582 (Grants 82070888, 82070882, 82100917, 82273116, 82203661, 81901557, 81870869,
583 and 32071101); Guangdong Natural Science Fund (Grant 2022A1515012423,
584 2021A1515010434, 2023A1515010316, and 2023A1515010214); Key Sci-Tech
585 Research Project of Guangzhou Municipality, China (Grants 202201010820,
586 202102020955); Key Project of Nature Science Foundation of Guangdong Province,
587 China (Grant 2019B1515120077); National Key R&D Program of China (Grant

588 2018YFA0800403); Guangdong Special Support Program for Young Top Scientist
589 (Grant 201629046); China Postdoctoral Science Foundation (Grant 2021M703679,
590 2022M713594, BX20220360); Health Commission of Guangdong Province (Grants
591 A2022161) ; Guangzhou Municipal Science and Technology Bureau (Grants
592 SL2022A04J01575); Guangdong Key Project in “Development of new tools for
593 diagnosis and treatment of Autism” (2018B030335001), Research and Development
594 Plan of Key Areas of Guangzhou Science and Technology Bureau (2020070030001),
595 Open Research Funds of State Key Laboratory of Ophthalmology (2020KF03);
596 Guangzhou Key Laboratory for Metabolic Diseases(20210210004); The Science and
597 Technology Planning Project of Guangdong Province 2023B1212060018.

598

599 **References**

- 600 1. Grundke-Iqbali I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI. Abnormal
601 phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology.
602 *Proceedings of the National Academy of Sciences of the United States of America* 1986, **83**(13):
603 4913-4917.
- 604 2. Haass C, Selkoe DJ. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s
605 amyloid beta-peptide. *Nature Reviews Molecular Cell Biology* 2007, **8**(2): 101-112.
- 606 3. Holtzman DM, Morris JC, Goate AM. Alzheimer’s Disease: The Challenge of the Second Century.
607 *Science Translational Medicine* 2011, **3**(77).
- 608 4. Leng F, Edison P. Neuroinflammation and microglial activation in Alzheimer disease: where do we
609 go from here? *Nature Reviews Neurology* 2021, **17**(3): 157-172.
- 610 5. De Strooper B, Karan E. The Cellular Phase of Alzheimer’s Disease. *Cell* 2016, **164**(4): 603-615.
- 611 6. Tomita T. Molecular mechanism of intramembrane proteolysis by gamma-secretase. *Journal of*
612 *Biochemistry* 2014, **156**(4): 195-201.

618

619 7. LaFerla FM, Green KN, Oddo S. Intracellular amyloid-beta in Alzheimer's disease. *Nature Reviews Neuroscience* 2007, **8**(7): 499-509.

620

621

622 8. Das B, Yan R. A Close Look at BACE1 Inhibitors for Alzheimer's Disease Treatment. *Cns Drugs* 2019, **33**(3): 251-263.

623

624

625 9. Crunkhorn, Sarah. Alzheimer disease: BACE1 inhibitor reduces β -amyloid production in humans. *Nature Reviews Drug Discovery* 2016, **16**(1): 18-18.

626

627

628 10. Yan R, Vassar R. Targeting the β secretase BACE1 for Alzheimer's disease therapy. *Lancet Neurology* 2014, **13**(3): 319-329.

629

630

631 11. Wang Y, Mandelkow E. Tau in physiology and pathology. *Nature reviews Neuroscience* 2016, **17**(1): 5-21.

632

633

634 12. Hauersrat TJ, Janiesch PC, Breiden P, Lutz D, Hoffmeister-Ullerich S, Hermans-Borgmeyer I, et al. Disruption of tubulin-alpha4a polyglutamylation prevents aggregation of hyper-phosphorylated tau and microglia activation in mice. *Nature communications* 2022, **13**(1): 4192.

635

636

637

638 13. Braak E, Braak H, Mandelkow EM. A sequence of cytoskeleton changes related to the formation of neurofibrillary tangles and neuropil threads. *Acta neuropathologica* 1994, **87**(6): 554-567.

639

640

641 14. Boonen RA, van Tijn P, Zivkovic D. Wnt signaling in Alzheimer's disease: up or down, that is the question. *Ageing Res Rev* 2009, **8**(2): 71-82.

642

643

644 15. Biessels GJ, Despa F. Cognitive decline and dementia in diabetes mellitus: mechanisms and clinical implications. *Nature Reviews Endocrinology* 2018, **14**(10): 591-604.

645

646

647 16. Li W, Huang E, Gao S. Type 1 Diabetes Mellitus and Cognitive Impairments: A Systematic Review. *Journal of Alzheimers Disease* 2017, **57**(1): 29-36.

648

649

650 17. Cardoso SM, Correia SC, Carvalho C, Moreira PI. Mitochondria in Alzheimer's Disease and Diabetes-Associated Neurodegeneration: License to Heal! In: Singh H, Sheu SS (eds). *Pharmacology of Mitochondria*, vol. 240, 2017, pp 281-308.

651

652

653

654 18. Schipper HM. Apolipoprotein E: Implications for AD neurobiology, epidemiology and risk assessment. *Neurobiology of Aging* 2011, **32**(5): 778-790.

655

656

657 19. Folch J, Patraca I, Martinez N, Pedros I, Petrov D, Ettcheto M, et al. The role of leptin in the sporadic form of Alzheimer's disease. Interactions with the adipokines amylin, ghrelin and the pituitary hormone prolactin. *Life Sciences* 2015, **140**: 19-28.

658

659

660
661 20. Association As. 2016 Alzheimer's disease facts and figures. *Alzheimer's & Dementia* 2016, **12**(4):
662 459-509.
663
664 21. Baglietto-Vargas D, Shi J, Yaeger DM, Ager R, LaFerla FM. Diabetes and Alzheimer's disease
665 crosstalk. *Neuroscience & Biobehavioral Reviews* 2016, **64**: 272-287.
666
667 22. Kandimalla R, Thirumala V, Reddy PH. Is Alzheimer's disease a Type 3 Diabetes? A critical
668 appraisal. *Biochimica Et Biophysica Acta-Molecular Basis of Disease* 2017, **1863**(5): 1078-1089.
669
670 23. Zhang Y, Huang N-q, Yan F, Jin H, Zhou S-y, Shi J-s, et al. Diabetes mellitus and Alzheimer's
671 disease: GSK-3 beta as a potential link. *Behavioural Brain Research* 2018, **339**: 57-65.
672
673 24. Steen E, Terry BM, Rivera EJ, Cannon JL, Neely TR, Tavares R, et al. Impaired insulin and insulin-
674 like growth factor expression and signaling mechanisms in Alzheimer's disease - is this type 3
675 diabetes? *Journal of Alzheimers Disease* 2005, **7**(1): 63-80.
676
677 25. Candasamy M, Mohamed Elhassan SA, Kumar Bhattamisra S, Hua WY, Sern LM, Binti Busthamin
678 NA, et al. Type 3 diabetes (Alzheimer's disease): new insight for promising therapeutic avenues.
679 *Panminerva Medica* 2020, **62**(3): 155-163.
680
681 26. Koekkoek PS, Kappelle LJ, van den Berg E, Rutten GE, Biessels GJ. Cognitive function in patients
682 with diabetes mellitus: guidance for daily care. *The Lancet Neurology* 2015, **14**(3): 329-340.
683
684 27. Hildreth KL, Van Pelt RE, Schwartz RS. Obesity, insulin resistance, and Alzheimer's disease.
685 *Obesity (Silver Spring, Md)* 2012, **20**(8): 1549.
686
687 28. Anjum I, Fayyaz M, Wajid A, Sohail W, Ali A. Does obesity increase the risk of dementia: a
688 literature review. *Cureus* 2018, **10**(5).
689
690 29. Ma C, Luo C, Yin H, Zhang Y, Xiong W, Zhang T, et al. Kallistatin inhibits lymphangiogenesis and
691 lymphatic metastasis of gastric cancer by downregulating VEGF-C expression and secretion.
692 *Gastric Cancer* 2018, **21**(4): 617-631.
693
694 30. Yang Y, He X, Cheng R, Chen Q, Shan C, Chen L, et al. Diabetes-induced upregulation of
695 Kallistatin levels exacerbates diabetic nephropathy via RAS activation. *Faseb Journal* 2020, **34**(6):
696 8428-8441.
697
698 31. Ma C, Yin H, Zhong J, Zhang Y, Luo C, Che D, et al. Kallistatin exerts anti-lymphangiogenic
699 effects by inhibiting lymphatic endothelial cell proliferation, migration and tube formation.
700 *International Journal of Oncology* 2017, **50**(6): 2000-2010.
701

702 32.El-Asrar MA, Andrawes NG, Ismail EA, Salem SMH. Kallistatin as a marker of microvascular
703 complications in children and adolescents with type 1 diabetes mellitus: Relation to carotid intima
704 media thickness. *Vascular Medicine* 2015, **20**(6): 509-517.

705

706 33.Gateva A, Assyov Y, Velikova T, Kamenov Z. Increased Kallistatin levels in patients with obesity
707 and prediabetes compared to normal glucose tolerance. *Endocrine Research* 2017, **42**(2): 163-168.

708

709 34.Campbell DJ, Kladis A, Zhang Y, Jenkins AJ, Prior DL, Yii M, *et al.* Increased tissue kallikrein
710 levels in type 2 diabetes. *Diabetologia* 2010, **53**(4): 779-785.

711

712 35.Nowicki GJ, Ślusarska B, Polak M, Naylor K, Kocki T. Relationship between Serum Kallistatin and
713 Afamin and Anthropometric Factors Associated with Obesity and of Being Overweight in Patients
714 after Myocardial Infarction and without Myocardial Infarction. *Journal of clinical medicine* 2021,
715 **10**(24).

716

717 36.Hong S, Han K, Park CY. The insulin resistance by triglyceride glucose index and risk for dementia:
718 population-based study. *Alzheimer's research & therapy* 2021, **13**(1): 9.

719

720 37.Feng J, Dong C, Long YL, Mai LF, Ren M, Li LY, *et al.* Elevated Kallikrein-binding protein in
721 diabetes impairs wound healing through inducing macrophage M1 polarization. *Cell
722 Communication and Signaling* 2019, **17**.

723

724 38.Long Y, Zhao Z, Xie W, Shi J, Yang F, Zhu D, *et al.* Kallistatin leads to cognition impairment via
725 downregulating glutamine synthetase. *Pharmacol Res* 2024, **202**: 107145.

726

727 39.McBride JD, Jenkins AJ, Liu XC, Zhang B, Lee K, Berry WL, *et al.* Elevated Circulation Levels of
728 an Antiangiogenic SERPIN in Patients with Diabetic Microvascular Complications Impair Wound
729 Healing through Suppression of Wnt Signaling. *Journal of Investigative Dermatology* 2014, **134**(6):
730 1725-1734.

731

732 40.Huang M, Qi WW, Fang SH, Jiang P, Yang C, Mo YS, *et al.* Pigment Epithelium-Derived Factor
733 Plays a Role in Alzheimer's Disease by Negatively Regulating A beta 42. *Neurotherapeutics* 2018,
734 **15**(3): 728-741.

735

736 41.Guo D, Peng Y, Wang L, Sun X, Wang X, Liang C, *et al.* Autism-like social deficit generated by
737 Dock4 deficiency is rescued by restoration of Rac1 activity and NMDA receptor function. *Mol
738 Psychiatry* 2021, **26**(5): 1505-1519.

739

740 42.Li C, Huang Z, Zhu L, Yu X, Gao T, Feng J, *et al.* The contrary intracellular and extracellular
741 functions of PEDF in HCC development. *Cell Death & Disease* 2019, **10**.

742

743 43.Jiang P, Huang M, Qi WW, Wang FH, Yang TY, Gao TX, *et al.* FUBP1 promotes neuroblastoma

744 proliferation via enhancing glycolysis-a new possible marker of malignancy for neuroblastoma.
745 *Journal of Experimental & Clinical Cancer Research* 2019, **38**(1).

746

747 44.Feng J, Dong C, Long Y, Mai L, Ren M, Li L, *et al.* Elevated Kallikrein-binding protein in diabetes
748 impairs wound healing through inducing macrophage M1 polarization. *Cell Communication and*
749 *Signaling* 2019, **17**.

750

751 45.De Strooper B, Annaert W. Proteolytic processing and cell biological functions of the amyloid
752 precursor protein. *Journal of Cell Science* 2000, **113**(11): 1857-1870.

753

754 46.LaFerla FM, Oddo S. Alzheimer's disease: A beta, tau and synaptic dysfunction. *Trends in*
755 *Molecular Medicine* 2005, **11**(4): 170-176.

756

757 47.Scheuner D, Eckman C, Jensen M, Song X, Citron M, Suzuki N, *et al.* Secreted amyloid beta-
758 protein similar to that in the senile plaques of Alzheimer's disease is increased in vivo by the
759 presenilin 1 and 2 and APP mutations linked to familial Alzheimer's disease. *Nature Medicine* 1996,
760 **2**(8): 864-870.

761

762 48.Christensen MA, Zhou WH, Qing H, Lehman A, Philipsen S, Song WH. Transcriptional regulation
763 of BACE1, the beta-amyloid precursor protein beta-secretase, by Sp1. *Molecular and Cellular*
764 *Biology* 2004, **24**(2): 865-874.

765

766 49.Lin N, Chen L-m, Pan X-d, Zhu Y-g, Zhang J, Shi Y-q, *et al.* Tripchlorolide Attenuates beta-amyloid
767 Generation via Suppressing PPAR gamma-Regulated BACE1 Activity in N2a/APP695 Cells.
768 *Molecular Neurobiology* 2016, **53**(9): 6397-6406.

769

770 50.Nowak K, Lange-Dohna C, Zeitschel U, Gunther A, Luscher B, Robitzki A, *et al.* The transcription
771 factor Yin Yang 1 is an activator of BACE1 expression. *Journal of Neurochemistry* 2006, **96**(6):
772 1696-1707.

773

774 51.Maniati E, Bossard M, Cook N, Candido JB, Emami-Shahri N, Nedospasov SA, *et al.* Crosstalk
775 between the canonical NF- κ B and Notch signaling pathways inhibits Ppary expression and promotes
776 pancreatic cancer progression in mice. *The Journal of clinical investigation* 2011, **121**(12): 4685-
777 4699.

778

779 52.Herzig S, Hedrick S, Morantte I, Koo SH, Galimi F, Montminy M. CREB controls hepatic lipid
780 metabolism through nuclear hormone receptor PPAR-gamma. *Nature* 2003, **426**(6963): 190-193.

781

782 53.Kanno T, Tsuchiya A, Tanaka A, Nishizaki T. Combination of PKC ϵ Activation and PTP1B
783 Inhibition Effectively Suppresses A β -Induced GSK-3 β Activation and Tau Phosphorylation. *Mol*
784 *Neurobiol* 2016, **53**(7): 4787-4797.

785

786 54.Piao S, Lee SH, Kim H, Yum S, Stamos JL, Xu Y, *et al.* Direct inhibition of GSK3beta by the
787 phosphorylated cytoplasmic domain of LRP6 in Wnt/beta-catenin signaling. *PLoS One* 2008, **3**(12):
788 e4046.

789

790 55.Liu X, Zhang B, McBride JD, Zhou K, Lee K, Zhou Y, *et al.* Antiangiogenic and
791 antineuroinflammatory effects of Kallistatin through interactions with the canonical Wnt pathway.
792 *Diabetes* 2013, **62**(12): 4228-4238.

793

794 56.Kubis-Kubiak A, Wiatrak B, Piwowar A. Hyper-glycemia and insulinemia induce morphological
795 changes and modulate secretion of S100B, S100A8, amyloid β 1-40 and amyloid β 1-42, in a model
796 of human dopaminergic neurons. *Biomedicine & pharmacotherapy = Biomedecine &*
797 *pharmacotherapie* 2022, **156**: 113869.

798

799 57.Rivas-Domínguez A, Mohamed-Mohamed H, Jimenez-Palomares M, García-Morales V, Martínez-
800 López L, Orta ML, *et al.* Metabolic Disturbance of High-Saturated Fatty Acid Diet in Cognitive
801 Preservation. *International journal of molecular sciences* 2023, **24**(9).

802

803 58.Suzanne M. Type 3 diabetes is sporadic Alzheimer's disease: mini-review. *European
804 Neuropsychopharmacology* 2014, **24**(12): 1954-1960.

805

806 59.Biessels GJ, Reagan LP. Hippocampal insulin resistance and cognitive dysfunction. *Nature reviews
807 Neuroscience* 2015, **16**(11): 660-671.

808

809 60.Xu W, Caracciolo B, Wang HX, Winblad B, Bäckman L, Qiu C, *et al.* Accelerated progression from
810 mild cognitive impairment to dementia in people with diabetes. *Diabetes* 2010, **59**(11): 2928-2935.

811

812 61.Selkoe DJ. Toward a comprehensive theory for Alzheimer's disease - Hypothesis: Alzheimer's
813 disease is caused by the cerebral accumulation and cytotoxicity of amyloid beta-protein. In:
814 Khachaturian ZS, Mesulam MM (eds). *Alzheimers Disease: A Compendium of Current Theories*,
815 vol. 924, 2000, pp 17-25.

816

817 62.Thijs V, Robberecht W, De Vos R, Sciot R. Coexistence of CADASIL and Alzheimer's disease.
818 *Journal of Neurology Neurosurgery and Psychiatry* 2003, **74**(6): 790-792.

819

820 63.Brai E, Raio NA, Alberi L. Notch1 hallmarks fibrillary depositions in sporadic Alzheimer's disease.
821 *Acta Neuropathologica Communications* 2016, **4**.

822

823 64.Liu B, Wang D, Xiong T, Liu Y, Jing X, Du J, *et al.* Inhibition of Notch Signaling Promotes the
824 Differentiation of Epicardial Progenitor Cells into Adipocytes. *Stem Cells Int* 2021, **2021**: 8859071.

825

826 65.D'Souza B, Meloty-Kapella L, Weinmaster G. CANONICAL AND NON-CANONICAL NOTCH
827 LIGANDS. In: Kopan R (ed). *Notch Signaling*, vol. 92, 2010, pp 73-129.

828

829 66. Salloway S, Sperling R, Fox NC, Blennow K, Klunk W, Raskind M, *et al.* Two Phase 3 Trials of
830 Bapineuzumab in Mild-to-Moderate Alzheimer's Disease. *New England Journal of Medicine* 2014,
831 **370**(4): 322-333.

832

833 67. Ostrowitzki S, Lasser RA, Dorflinger E, Scheltens P, Barkhof F, Nikolcheva T, *et al.* A phase III
834 randomized trial of gantenerumab in prodromal Alzheimer's disease. *Alzheimers Research &*
835 *Therapy* 2017, **9**.

836

837 68. Honig LS, Vellas B, Woodward M, Boada M, Bullock R, Borrie M, *et al.* Trial of Solanezumab for
838 Mild Dementia Due to Alzheimer's Disease. *New England Journal of Medicine* 2018, **378**(4): 321-
839 330.

840

841 69. Henley D, Raghavan N, Sperling R, Aisen P, Raman R, Romano G. Preliminary Results of a Trial of
842 Atabecestat in Preclinical Alzheimer's Disease. *New England Journal of Medicine* 2019, **380**(15):
843 1483-1485.

844

845 70. Egan MF, Kost J, Voss T, Mukai Y, Aisen PS, Cummings JL, *et al.* Randomized Trial of
846 Verubecestat for Prodromal Alzheimer's Disease. *New England Journal of Medicine* 2019, **380**(15):
847 1408-1420.

848

849 71. Panza F, Lozupone M, Logroscino G, Imbimbo BP. A critical appraisal of amyloid-beta targeting
850 therapies for Alzheimer disease. *Nature Reviews Neurology* 2019, **15**(2): 73-88.

851

852 72. Wessels AM, Lines C, Stern RA, Kost J, Voss T, Mozley LH, *et al.* Cognitive outcomes in trials of
853 two BACE inhibitors in Alzheimer's disease. *Alzheimer's & dementia : the journal of the*
854 *Alzheimer's Association* 2020, **16**(11): 1483-1492.

855

856 73. Novak G, Streffer JR, Timmers M, Henley D, Brashear HR, Bogert J, *et al.* Long-term safety and
857 tolerability of atabecestat (JNJ-54861911), an oral BACE1 inhibitor, in early Alzheimer's disease
858 spectrum patients: a randomized, double-blind, placebo-controlled study and a two-period extension
859 study. *Alzheimers Res Ther* 2020, **12**(1): 58.

860

861 74. Timmers M, Streffer JR, Russu A, Tominaga Y, Shimizu H, Shiraishi A, *et al.* Pharmacodynamics of
862 atabecestat (JNJ-54861911), an oral BACE1 inhibitor in patients with early Alzheimer's disease:
863 randomized, double-blind, placebo-controlled study. *Alzheimers Res Ther* 2018, **10**(1): 85.

864

865 75. Nigam SM, Xu S, Ackermann F, Gregory JA, Lundkvist J, Lendahl U, *et al.* Endogenous APP
866 accumulates in synapses after BACE1 inhibition. *Neuroscience research* 2016, **109**: 9-15.

867

868 76. Citron M. Emerging Alzheimer's disease therapies: inhibition of beta-secretase. *Neurobiol Aging*
869 2002, **23**(6): 1017-1022.

870

871 77. Long JM, Holtzman DM. Alzheimer Disease: An Update on Pathobiology and Treatment Strategies.
872 *Cell* 2019, **179**(2): 312-339.

873

874 78. Livingston G, Sommerlad A, Orgeta V, Costafreda SG, Huntley J, Ames D, *et al.* Dementia
875 prevention, intervention, and care. *Lancet* 2017, **390**(10113): 2673-2734.

876

877 79. Butterfield DA, Di Domenico F, Barone E. Elevated risk of type 2 diabetes for development of
878 Alzheimer disease: A key role for oxidative stress in brain. *Biochimica Et Biophysica Acta-
879 Molecular Basis of Disease* 2014, **1842**(9): 1693-1706.

880

881 80. Arnold SE, Arvanitakis Z, Macauley-Rambach SL, Koenig AM, Wang H-Y, Ahima RS, *et al.* Brain
882 insulin resistance in type 2 diabetes and Alzheimer disease: concepts and conundrums. *Nature
883 Reviews Neurology* 2018, **14**(3): 168-181.

884

885 81. Zhao QY, Wu XH, Yan S, Xie XF, Fan YH, Zhang JQ, *et al.* The antidepressant-like effects of
886 pioglitazone in a chronic mild stress mouse model are associated with PPAR gamma-mediated
887 alteration of microglial activation phenotypes. *Journal of neuroinflammation* 2016, **13**.

888

889 82. Guo M, Li C, Lei Y, Xu S, Zhao D, Lu XY. Role of the adipose PPAR gamma-adiponectin axis in
890 susceptibility to stress and depression/anxiety-related behaviors. *Molecular Psychiatry* 2017, **22**(7):
891 1056-1068.

892

893 83. Toledo EM, Inestrosa NC. Activation of Wnt signaling by lithium and rosiglitazone reduced spatial
894 memory impairment and neurodegeneration in brains of an APPswe/PSEN1DeltaE9 mouse model
895 of Alzheimer's disease. *Mol Psychiatry* 2010, **15**(3): 272-285, 228.

896

897 84. Escribano L, Simón AM, Gimeno E, Cuadrado-Tejedor M, López de Maturana R, García-Osta A, *et
898 al.* Rosiglitazone rescues memory impairment in Alzheimer's transgenic mice: mechanisms
899 involving a reduced amyloid and tau pathology. *Neuropsychopharmacology : official publication of
900 the American College of Neuropsychopharmacology* 2010, **35**(7): 1593-1604.

901

902 85. O'Reilly JA, Lynch M. Rosiglitazone improves spatial memory and decreases insoluble A β (1-42) in
903 APP/PS1 mice. *Journal of neuroimmune pharmacology : the official journal of the Society on
904 NeuroImmune Pharmacology* 2012, **7**(1): 140-144.

905

906 86. Watson GS, Cholerton BA, Reger MA, Baker LD, Plymate SR, Asthana S, *et al.* Preserved
907 cognition in patients with early Alzheimer disease and amnestic mild cognitive impairment during
908 treatment with rosiglitazone: a preliminary study. *The American journal of geriatric psychiatry :
909 official journal of the American Association for Geriatric Psychiatry* 2005, **13**(11): 950-958.

910

911 87. Tzimopoulou S, Cunningham VJ, Nichols TE, Searle G, Bird NP, Mistry P, *et al.* A multi-center

912 randomized proof-of-concept clinical trial applying [¹⁸F]FDG-PET for evaluation of metabolic
913 therapy with rosiglitazone XR in mild to moderate Alzheimer's disease. *Journal of Alzheimer's*
914 *disease : JAD* 2010, **22**(4): 1241-1256.

915

916 88. Harrington C, Sawchak S, Chiang C, Davies J, Donovan C, Saunders AM, *et al.* Rosiglitazone does
917 not improve cognition or global function when used as adjunctive therapy to AChE inhibitors in
918 mild-to-moderate Alzheimer's disease: two phase 3 studies. *Current Alzheimer research* 2011, **8**(5):
919 592-606.

920

921 89. Keating GM, Croom KF. Fenofibrate: a review of its use in primary dyslipidaemia, the metabolic
922 syndrome and type 2 diabetes mellitus. *Drugs* 2007, **67**(1): 121-153.

923

924 90. Barbiero JK, Santiago R, Tonin FS, Boschen S, da Silva LM, Werner MF, *et al.* PPAR- α agonist
925 fenofibrate protects against the damaging effects of MPTP in a rat model of Parkinson's disease.
926 *Prog Neuropsychopharmacol Biol Psychiatry* 2014, **53**: 35-44.

927

928 91. Ouk T, Gautier S, Pétrault M, Montaigne D, Maréchal X, Masse I, *et al.* Effects of the PPAR- α
929 agonist fenofibrate on acute and short-term consequences of brain ischemia. *Journal of Cerebral*
930 *Blood Flow & Metabolism* 2014, **34**(3): 542-551.

931

932 92. Assaf N, El-Shamarka ME, Salem NA, Khadrawy YA, El Sayed NS. Neuroprotective effect of
933 PPAR alpha and gamma agonists in a mouse model of amyloidogenesis through modulation of the
934 Wnt/beta catenin pathway via targeting alpha- and beta-secretases. *Prog Neuropsychopharmacol*
935 *Biol Psychiatry* 2020, **97**: 109793.

936

937

938 **Authors' contributions**

939 G. Gao, X Yang, B Jiang, and P Jiang were involved in the concept and design of
940 the study. W. Qi, Y. Long, Z. Li, Z. Zhao J. Shi, D Zhu, Z Zhao, W. Xie, L. Wang, T
941 Zhou, Mingting Liang were responsible for conducting the experiments. W. Qi, Y.
942 Long and T Zhou drafted the manuscript and G. Gao revised the manuscript. P Jiang,
943 Y. Long and Z. Li were responsible for data analysis. All authors contributed to the
944 interpretation of data and provided revisions to the manuscript. G. Gao will act as

945 guarantor for the study. All authors read and approved the final manuscript. W. Qi, Y.

946 Long and Z. Li contributed equally to this study.

947

948 **Figure legend**

949 **Fig.1 Increased Kallistatin was presented in AD patients and could impair**

950 **cognitive memory in mice.** (A-B) Serum Kallistatin(A), fasting blood glucose (FBG),

951 triglyceride (TG), and total cholesterol (TC) (B) of AD patients and their

952 corresponding normal control subjects. (C-D) Serum Kallistatin(C), TG, and TC(D) of

953 AD patients with DM and their corresponding normal control subjects (Student's *t*-

954 test). (E-J) The behavioral performance of KAL-TG mice was assessed through the

955 Morris water maze test, Y-maze test, and electrophysiology. (E)The escape latency

956 time of different months of KAL-TG mice (3M, 6M, 9M, 12M) and corresponding

957 WT mice were presented during 1-6 day (two-way ANOVA). (F-H) Cognitive

958 functions were evaluated by spatial probe test at day 7 (Student's *t*-test), the

959 representative each group mice traces were shown (F), then analyzing each group

960 mice crossing platform times (G) and time percent in the targeted area (H), n=4 to 9

961 per group. (I) Spontaneous alternation of Y-maze test. (J) LTP was measured by

962 whole-cell voltage-clamp recordings of CA1 neurons in acute hippocampal slices of

963 KAL-TG (3M, 6M, 12M) and WT mice (Student's *t*-test, n=6-12 cells from 3 mice

964 per group). Error bars represent the standard deviation (SD); one asterisk, *p* < 0.05,

965 two asterisks, *p* < 0.01; four asterisks, *p* < 0.0001.

966

967 **Fig.2 Kallistatin promoted A β generation.** (A-B) Immunohistochemistry staining of

968 A β (A) was carried out in KAL-TG and WT mice hippocampal tissue. *Scale bar*,

969 100 μ m. The statistical analysis of A β plaques (B) in hippocampal tissue of KAL-TG
970 and WT mice, n=4-5 per group. (C) Protein levels of A β were tested by western blot
971 analysis in hippocampal tissue, n=3 per group, then statistically analyzed the above
972 results. (D) Hippocampal tissue A β 42 contents were performed by ELISA in KAL-TG
973 and WT groups, n=3 per group. (E) Primary mouse neurons were isolated, then
974 infected with adenovirus to overexpress Kallistatin for 72h. A β 42 concentration of
975 primary hippocampal neurons supernate and cell lysate were quantified by ELISA,
976 n=3 per group. (F-G) Western blot analysis of A β protein level in primary
977 hippocampal neurons infected with overexpressing Kallistatin adenovirus and control
978 groups, then statistical analysis of A β protein levels, n=3 per group. Error bars
979 represent the standard deviation (SD); one asterisk, $p < 0.05$; two asterisks, $p < 0.01$;
980 three asterisks, $p < 0.001$; Student's t -test.

981

982 **Fig.3 Kallistatin promoted tau phosphorylation.** (A-B) Immunohistochemistry
983 staining of phosphorylated tau (p-tau S396, p-tau T231, p-tau S202) and tau(A) was
984 carried out in KAL-TG and WT mice hippocampal tissue. Scale bar, 100 μ m. The
985 statistical analysis of phosphorylated tau(B) in hippocampal tissue of KAL-TG and
986 WT mice, n=3 per group. (C-D) Protein levels of phosphorylated tau (p-tau S396, p-
987 tau T231, p-tau S202) and tau were tested by western blot analysis in hippocampal
988 tissue, then statistically analyzed the above results. Error bars represent the standard
989 deviation (SD); one asterisk, $p < 0.05$; two asterisks, $p < 0.01$; three asterisks, $p <$

990 0.001; Student's t-test.

991 **Fig.4 Kallistatin transgenic mice exhibited increased BACE1 expression and**
992 **activity in the hippocampus.** (A) Western blot analysis of relevant proteins, such as
993 APP, PS1, and BACE1 during A β generation in hippocampal tissue of each time point
994 (6M, 9M, 12M) KAL-TG mice and corresponding WT control groups, n=3 per group,
995 then statistical analysis of APP, PS1 and BACE1 protein levels. (B)
996 Immunohistochemistry staining of BACE1 was carried out in KAL-TG and WT mice
997 hippocampal tissue at each time point (6M, 9M, 12M). n=3 to 5 per group. *Scale bar*,
998 100 μ m. (C) Statistical analysis of BACE1 immunohistochemistry staining, n=3 to 4
999 per group. (D) ELISA measured the β -secretase activity of each group's hippocampal
1000 tissue, n=3 per group. Error bars represent the standard deviation (SD); one asterisk, p
1001 < 0.05 , two asterisks, $p < 0.01$; Student's t-test.

1002

1003 **Fig.5 In vitro, Kallistatin promoted BACE1 expression to augment A β by**
1004 **suppressing PPAR γ activation.** (A) The relevant protein levels in primary mouse
1005 neurons infected with overexpressing Kallistatin adenovirus during A β generation
1006 were determined by western blot analysis. (B) Statistical analysis of BACE1
1007 expression in primary neurons. (C-D) β -secretase(C) and γ - secretase(D) activity of
1008 primary hippocampal neurons infected with overexpressing Kallistatin adenovirus and
1009 control adenovirus was measured by ELISA. (E) Primary hippocampal neurons were
1010 treated with BACE1 inhibitor verubecestat (50nM), then infected with adenovirus to

1011 overexpress Kallistatin. Western blot analysis of A β , BACE1, and Kallistatin protein
1012 levels, β -actin served as a loading control. (F) HT22 cells were infected with BACE1
1013 siRNA, then infected with adenovirus to overexpress Kallistatin. Western blot
1014 analysis of A β and BACE1 protein levels, β -actin served as a loading control. (G) The
1015 relevant proteins involved in BACE1 transcriptional expressions, such as PPAR γ ,
1016 YY1, and SP1 were measured by western blot analysis in hippocampal tissue. β -actin
1017 served as a loading control. (H) Statistical analysis of PPAR γ in hippocampal tissue of
1018 each group. (I) The representative diagrams of PPAR γ expression in hippocampal
1019 tissue were presented in the above graphs. *Scale bar*, 100 μ m. (J) Statistical analysis of
1020 PPAR γ immunohistochemistry staining in hippocampal tissue of each group, n=3 to 4
1021 per group. (K) Primary hippocampal neurons were treated with PPAR γ agonist
1022 rosiglitazone (10nM) for 12h, then infected with adenovirus to overexpress Kallistatin
1023 for 72h. Western blot analysis of A β and BACE1 protein levels. β -actin served as a
1024 loading control. (L) Statistical analysis of PPAR γ protein levels in each group. Error
1025 bars represent the standard deviation (SD), one asterisk, $p < 0.05$, two asterisks, $p <$
1026 three asterisks, $p < 0.001$; ns means no significant difference; Student's *t*-test.
1027

1028 **Fig.6 Kallistatin directly bonded to the Notch1 receptor, which activated the**
1029 **Notch1 pathway to promote A β production.** (A) Notch1 expression was measured
1030 by western blot analysis in hippocampal tissue. β -actin served as a loading control. (B)
1031 Statistical analysis of Notch1 in hippocampal tissue of each group. (C) The

1032 representative diagrams of Notch1 expression in hippocampal tissue were presented in
1033 the above graphs. Scale bar, 100 μ m. (D) Statistical analysis of Notch1
1034 immunohistochemistry staining in hippocampal tissue of each group. (E-F) Primary
1035 hippocampal neurons were infected with overexpressing Kallistatin adenovirus for
1036 72h, then Co-IP analysis (E) and membrane extraction experiment (F) was performed
1037 to verify whether Kallistatin can bind to the Notch1 receptor. β -actin served as a
1038 loading control. (G-H) HT22 cells were treated with siRNA (Notch1) and shRNA
1039 (HES1) to knock down Notch1 and HES1 for 12h, then infected with adenovirus to
1040 overexpress Kallistatin for 24h. Western blot analysis was used to detect the Notch1
1041 signaling pathway. Error bars represent the standard deviation (SD), one asterisk, $p <$
1042 0.05; Student's t-test.

1043

1044 **Fig.7 Kallistatin promoted phosphorylation of tau by suppressing Wnt signaling**
1045 **pathway.** (A-B) GSK-3 β and p-GSK-3 β expression was measured by western blot
1046 analysis in hippocampal tissue, then statistically analyzed the above results. (C-D)
1047 Primary hippocampal neurons were treated with overexpressing Kallistatin adenovirus
1048 for 72h, then western blot analysis was used to detect the content of GSK-3 β , p-GSK-
1049 3 β , tau, p-tau (Ser9, T231, S396), and statistically analyzed the above results. (E-F)
1050 Primary hippocampal neurons were treated with overexpressing Kallistatin adenovirus
1051 for 48h, then treated with LiCl (10mM) for 24h, western blot analysis was used to
1052 detect the content of GSK-3 β , p-GSK-3 β , p-tau (Ser9, T231, S396), and statistical

1053 analysis of the above results. Error bars represent the standard deviation (SD), two
1054 asterisk, $p < 0.01$; three asterisk, $p < 0.001$; Student's t-test.

1055

1056 **Fig.8 Fenofibrate could alleviate memory and cognitive impairment of KAL-TG**

1057 **mice.** (A) Illustration of experimental protocols. Fenofibrate (0.3 g/kg/d \times 5 week, i.g.)

1058 or rosiglitazone (5mg/kg/d \times 5 week, i.g.) were given to KAL-TG mice. The serum for

1059 Kallistatin measuring was collected at week 0 and week 4. And Morris water maze

1060 and Y-maze test were performed at week 5. (B-E) Behavioral performance was

1061 assessed through the Morris water maze test and the Y-maze test. (B) The escape

1062 latency time was presented during 1-5 day. (C-E) Cognitive functions were evaluated

1063 by spatial probe test at day 6, then analyzing each group of mice crossing platform

1064 times(C), time percent in the targeted area (D), and the path traces heatmap (E), $n=5$

1065 to 6 per group. (F) Spontaneous alternation of Y-maze test. (G) Kallistatin decreased

1066 ratio was calculated by dividing the serum Kallistatin concentration of KAL-TG mice

1067 before Fenofibrate/ rosiglitazone treatment by the serum Kallistatin concentration of

1068 KAL-TG mice after a-month treatment, and serum Kallistatin concentration was

1069 measured by ELISA. (H-I) Protein levels of A β and BACE1 were tested by western

1070 blot analysis in hippocampal tissue, then statistically analyzing the above results. (J-K)

1071 Protein levels of p-tau(231), tau, p-GSK-3 β (Ser9) and GSK-3 β were tested by western

1072 blot analysis in hippocampal tissue , then statistically analyzing the above results.

1073 Error bars represent the standard deviation (SD); one asterisk, $p < 0.05$; Student's t-

1074 test.

1075

1076 Table.S1 Clinical characteristic of AD patients

	NC	AD	<i>p value</i> (Dementia vs NC)
N	61	56	NA
Age	49-82	52-85	****
Average age	64±8.53	73.02±9.43	NA
Male	29	25	NS
Female	32	31	
GLU (mmol/L)	5.07±0.65	6.73±2.81	****
TC (mmol/L)	4.63±0.58	4.50±1.12	NS
TG (mmol/L)	1.09±0.50	1.41±0.65	**

1077 N is an abbreviation for number; GLU is an abbreviation for glucose; TC is an

1078 abbreviation for total cholesterol; TG is an abbreviation for triglyceride; NA indicates

1079 not available; NS indicates no significance. two asterisk, $p < 0.01$, four asterisk, $p <$

1080 0.0001.

1081

1082 Table.S2 Clinical characteristic of AD patients with DM

	NC	AD + DM	<i>p value</i> (Dementia+DM vs NC)
N	61	26	NA
Age	49-82	52-92	****
Average age	64±8.53	76.77±8.69	NA
Male	29	15	NS
Female	32	11	
GLU (mmol/L)	5.07±0.65	8.12±3.05	****

TC (mmol/L)	4.63±0.58	4.29±1.04	NS
TG (mmol/L)	1.08±0.50	1.69±0.68	****

1083 N is an abbreviation for number; GLU is an abbreviation for glucose; TC is an
1084 abbreviation for total cholesterol; TG is an abbreviation for triglyceride; NA indicates
1085 not available; NS indicates no significance. four asterisk, $p < 0.0001$.

1086

1087 Figure legend

1088 Fig.S1 (A-B) GAD disease enrichment analysis (A) and PFAM analysis (B) result.

1089 Differentially expressed genes in neurons were obtained from GSE161355, and GAD
1090 disease enrichment was analyzed on David database. (C-D) Western blot analysis of
1091 Kallistatin expression in aging model SAMP8 and corresponding control SAMR1
1092 mice hippocampal tissue samples, then statistically analyzing the above results. β -
1093 Actin served as a loading control. Error bars represent the standard deviation (SD);
1094 one asterisks, $p < 0.05$.

1095

1096 Fig.S2 (A) HT22 cells were infected with adenovirus to overexpress Kallistatin for
1097 48h. A β 42 concentration of supernate and cell lysate was quantified by ELISA. (B-C)
1098 Western blot analysis of A β protein level in HT22 cells infected with overexpressing
1099 Kallistatin adenovirus and control groups for 48h, then statistical analysis of
1100 Kallistatin protein levels. (D) BACE1 mRNA expression in hippocampal tissue. (E) α -
1101 secretases (ADAM9, ADAM10, ADAM17) mRNA expression in hippocampal tissue.

1102 (F) γ -secretase activity of each group's hippocampal tissue was measured by ELISA.

1103 (G) Primary hippocampal neurons were identified with MAP2. Error bars represent

1104 the standard deviation (SD), one asterisk, $p < 0.05$, two asterisks, $p < 0.01$.

1105

1106 Fig.S3 (A) The relevant protein levels in HT22 cells infected with overexpressing

1107 Kallistatin adenovirus during A β generation were determined by western blot analysis.

1108 (B) Statistical analysis of BACE1 expression in HT22 cells. (C) β -secretase activity of

1109 HT22 cells infected with overexpressing Kallistatin adenovirus and control

1110 adenovirus was measured by ELISA. (D) Primary hippocampal neurons were infected

1111 with BACE1 siRNA for 72h. Western blot analysis of BACE1 protein levels. (E)

1112 HT22 cells were treated with PPAR γ agonist rosiglitazone (10nM) for 12h, then

1113 infected with adenovirus to overexpress Kallistatin for 48h. Western blot analysis of

1114 A β and BACE1 protein levels. β -actin served as a loading control. Error bars

1115 represent the standard deviation (SD), two asterisks, $p < 0.01$.

1116

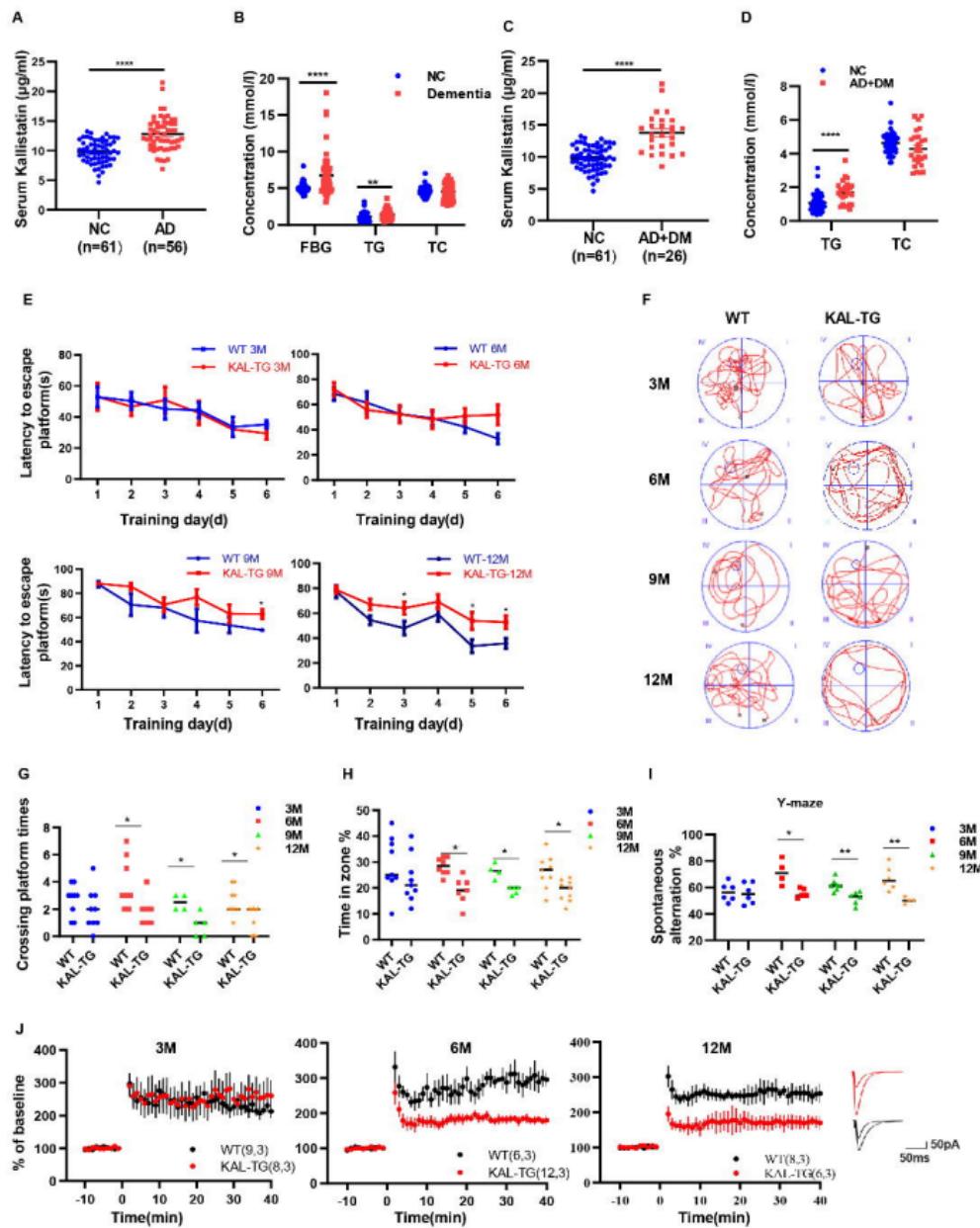
1117 Fig.S4 (A-B) Western blot analysis of Notch1 protein level in primary hippocampal

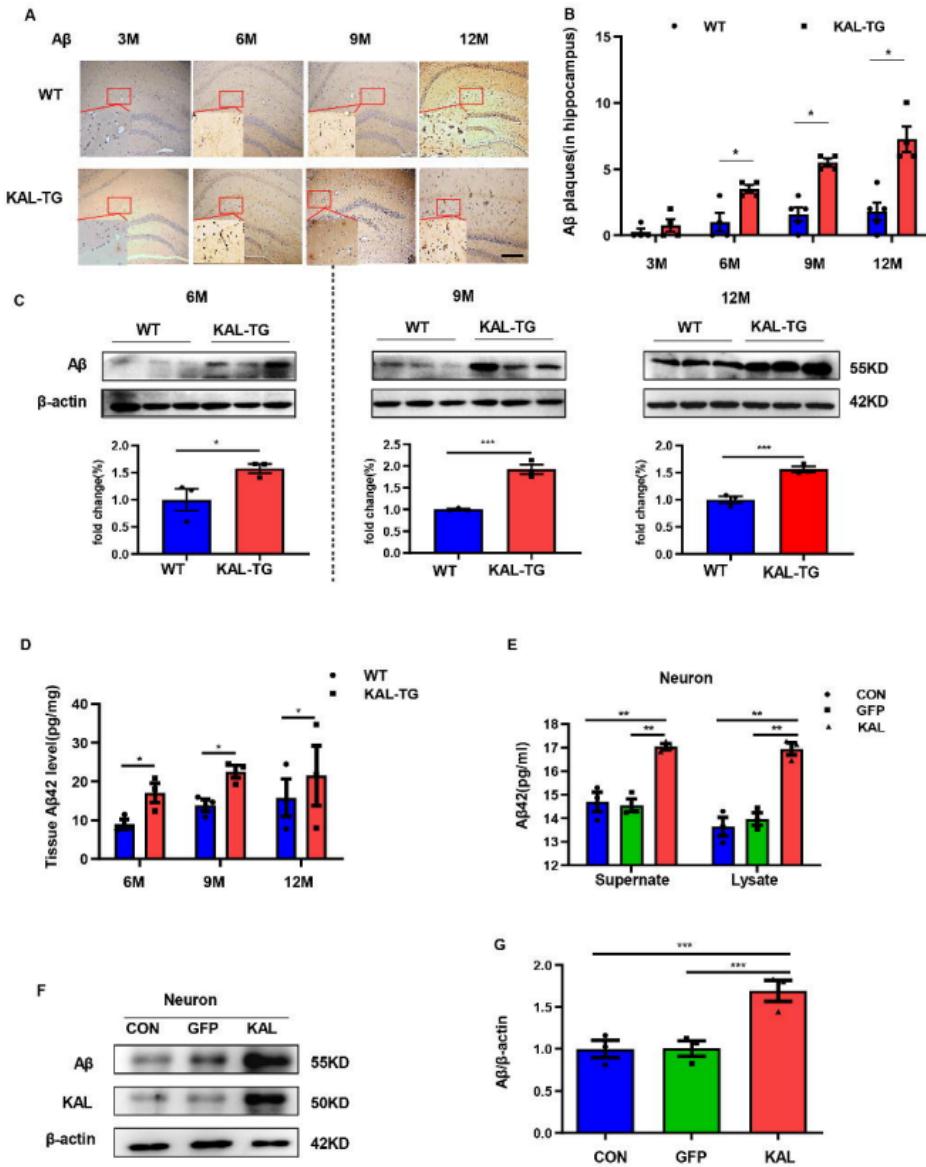
1118 neurons and HT22 cells infected with overexpressing Kallistatin adenovirus and

1119 control groups. (C) HT22 cells were infected with overexpressing Kallistatin

1120 adenovirus for 48h, and Co-IP analysis was conducted to verify whether Kallistatin

1121 can bind to the Notch1 receptor. β -actin served as a loading control. (D) Primary


1122 hippocampal neurons were treated with Kallistatin protein for 72h, then IP analysis.

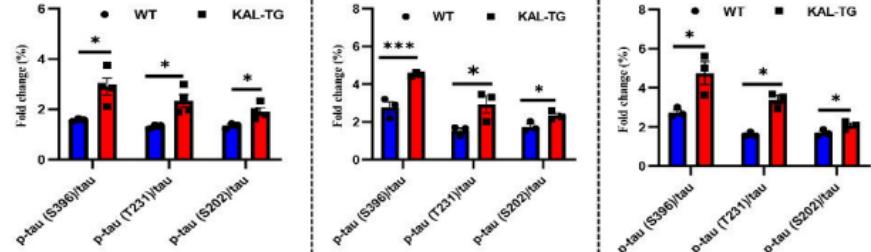
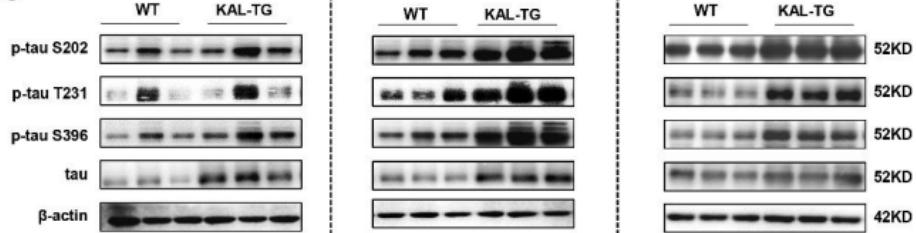
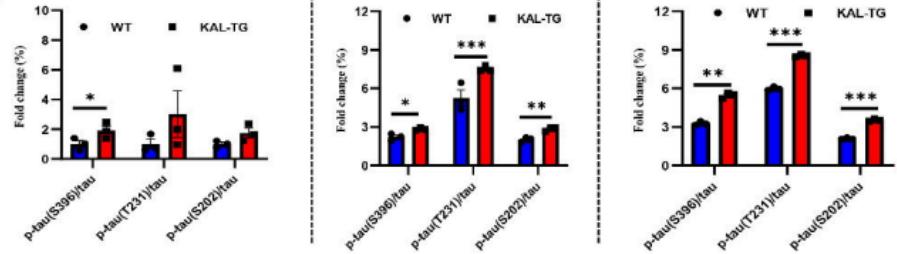

1123 (E) Primary hippocampal neurons were infected with Notch1 siRNA for 72h. Western
1124 blot analysis of BACE1 protein levels. (F) HT22 cells were infected with HES1
1125 shRNA for 48h. Western blot analysis of HES1 protein levels.

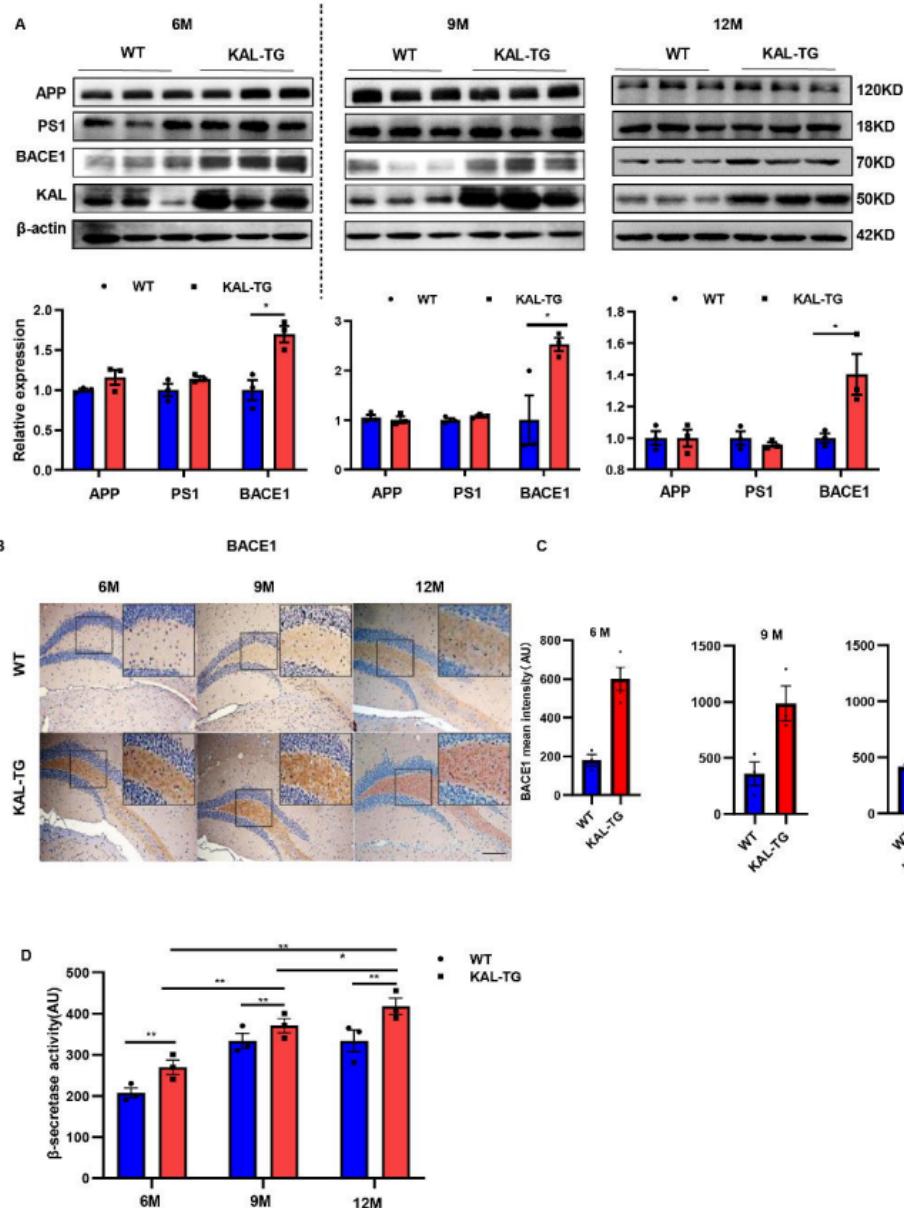
1126

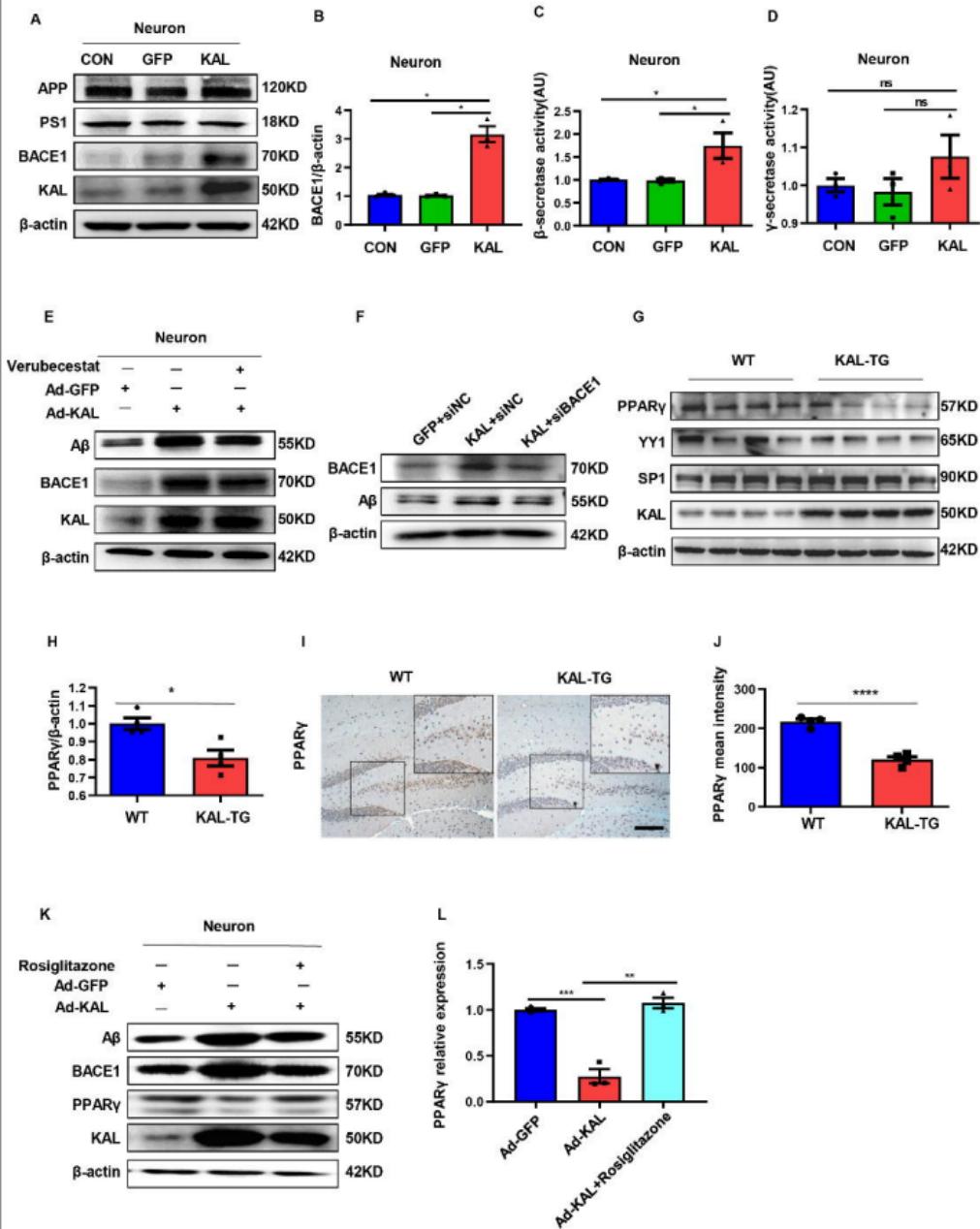
1127 Fig.S5 (A) Western blot analysis of GSK-3 β , p-GSK-3 β , tau, p-tau(Ser9, T231, S396)
1128 in HT22 cells infected with overexpressing Kallistatin adenovirus and control groups.
1129 (B) Western blot analysis of GSK-3 β , p-GSK-3 β , p-tau(Ser9, T231, S396) in HT22
1130 cells infected with overexpressing Kallistatin adenovirus and control groups for 24h,
1131 then treated with LiCl(10 mM) for 24h. (C) Simplified model depicting the pathway
1132 of A β regulated by Kallistatin.

1133

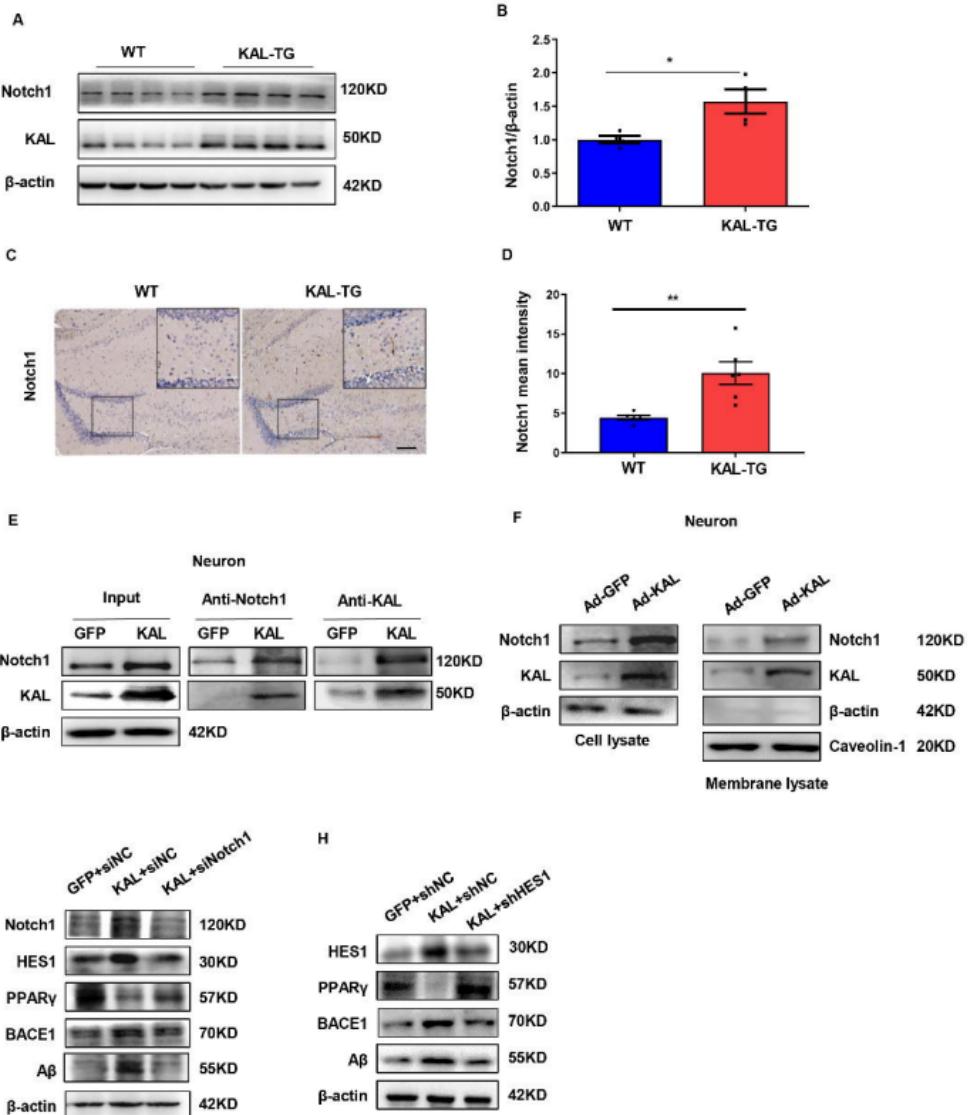
Fig.1




Fig.2


Fig.3


6M

9M


12M

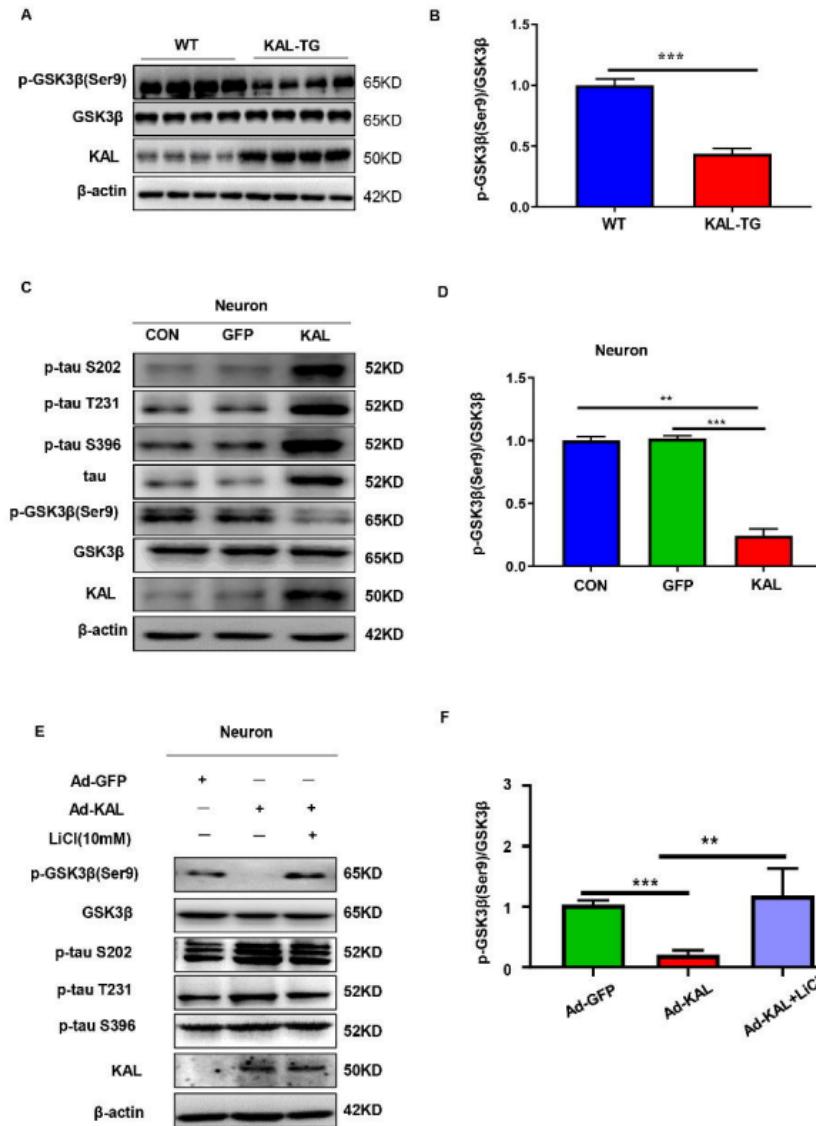
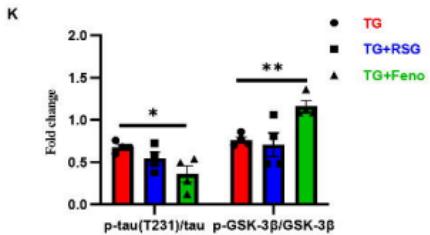
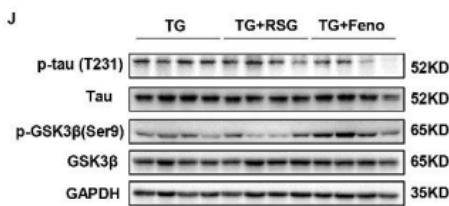
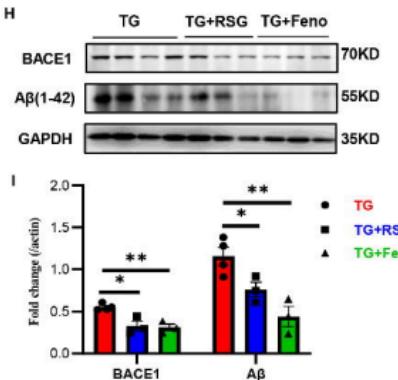
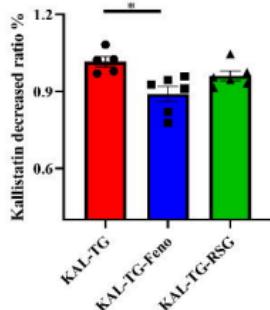
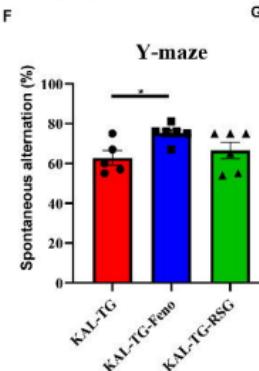
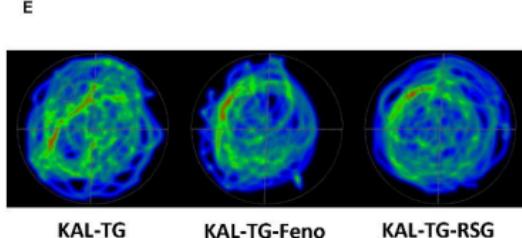
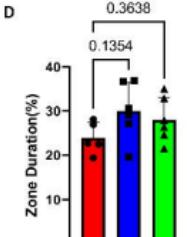
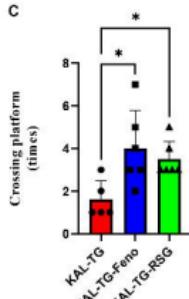
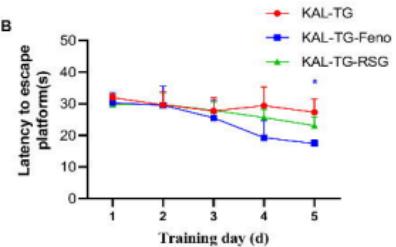
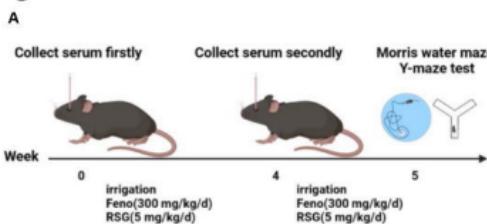
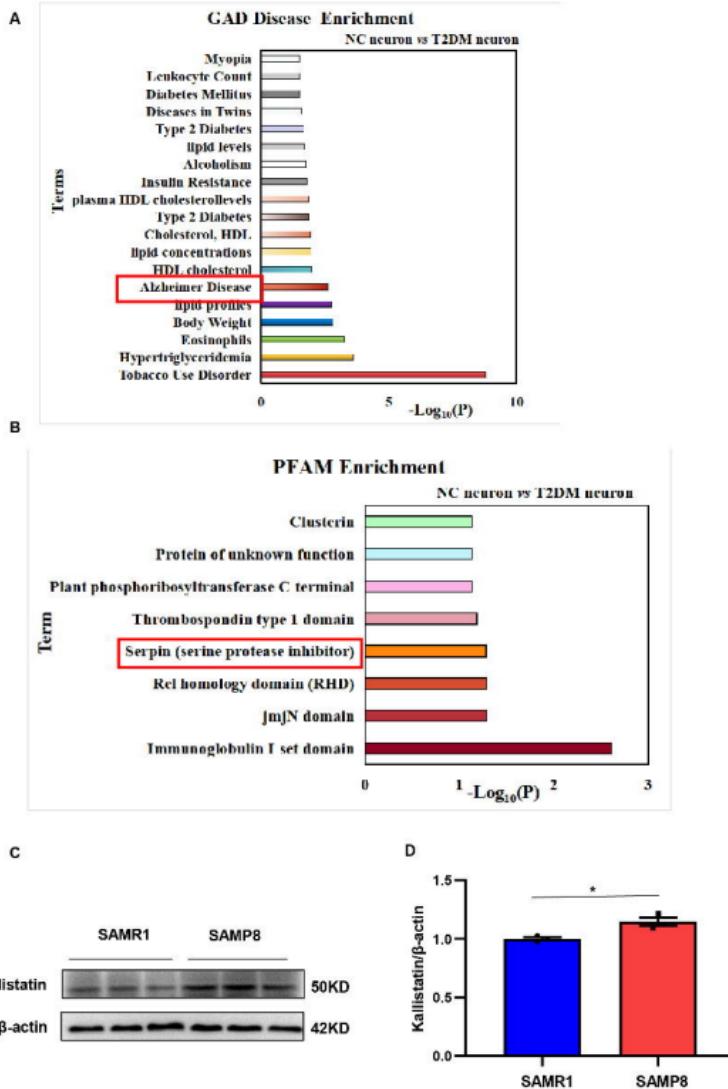
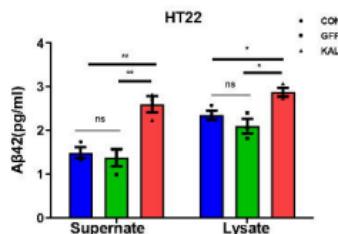
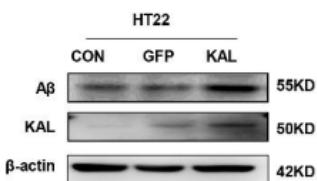
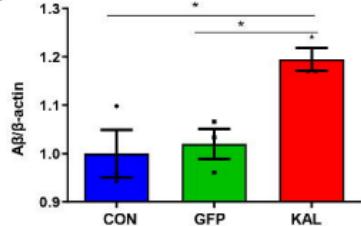
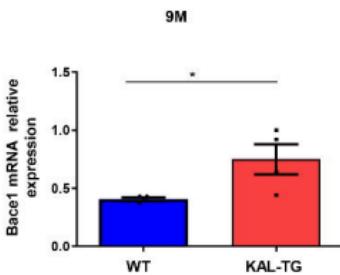
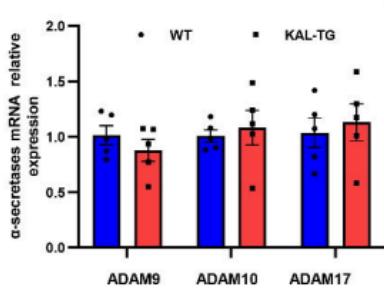
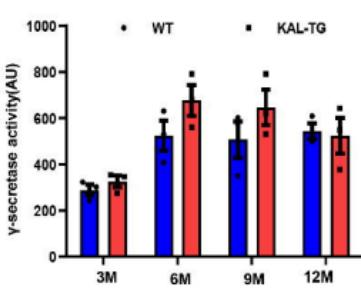
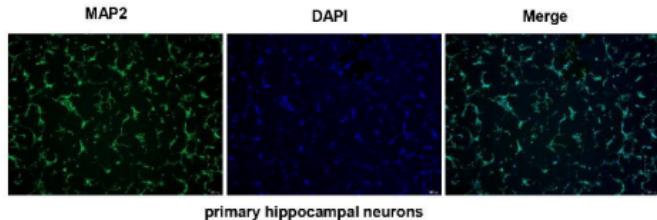

A**B****C****D**

Fig.4











Fig.5


Fig.6

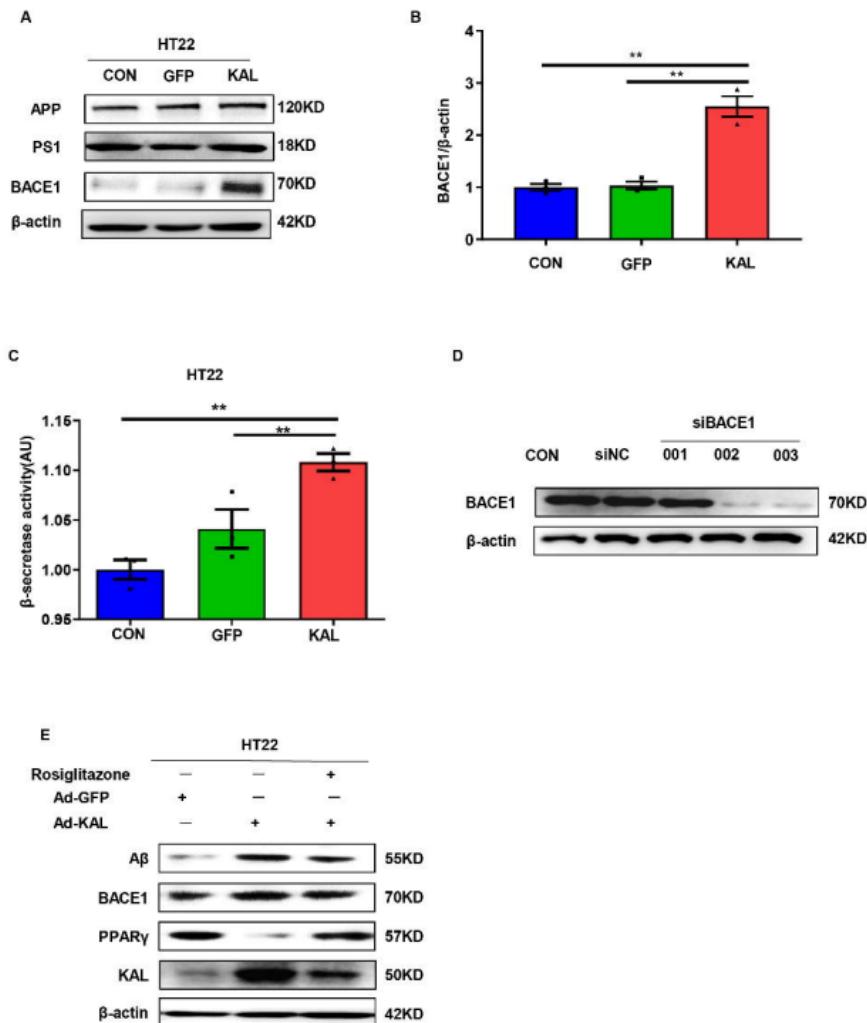
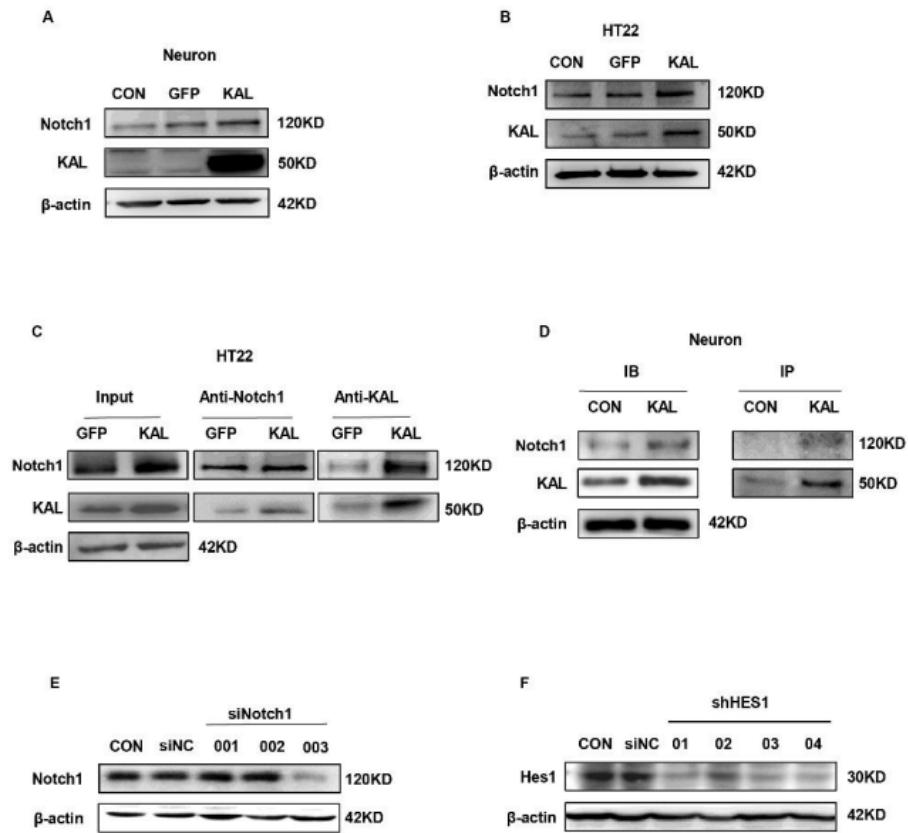
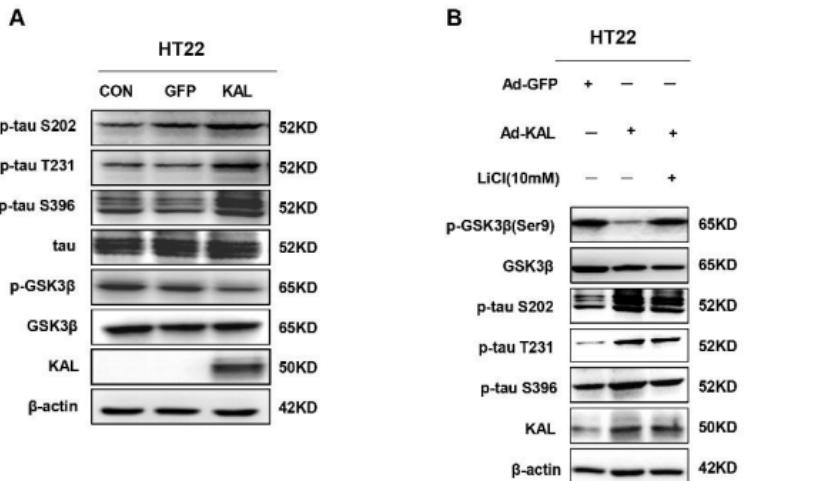

Fig.7

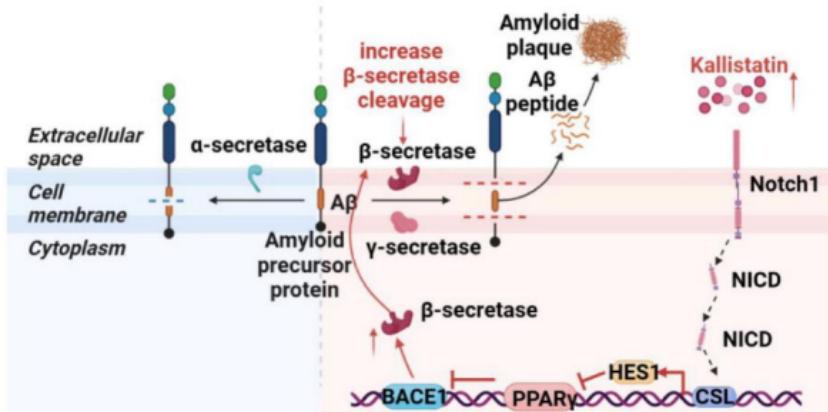
Fig.8

Fig.S1

Fig.S2**A****B****C****D****E****F****G**

Fig.S3



Fig.S4


Fig.S5

C

Normal cleavage of APP

Abnormal concentration of kallistatin leading to excess amyloid accumulation

