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Abstract: Aerosol-producing global catastrophes such as nuclear war, super-volcano eruption, or 15 

asteroid strike, although rare, pose a serious threat to human survival. Light-absorbing aerosols 16 

would sharply reduce temperature and solar radiation reaching the earth’s surface, decreasing 17 

crop productivity including for locally adapted traditional crop varieties, i.e. landraces. Here, we 18 

test post-catastrophic climate impacts on barley, maize, rice, and sorghum, four crops with 19 

extensive landrace cultivation, under a range of nuclear war scenarios that differ in the amount of 20 

black carbon aerosol (soot) injected into the climate model. We used a crop growth model to 21 

estimate gradients of environmental stressors that drive local adaptation. We then fit genotype 22 

environment associations using high density genomic markers with gradient forest offset (GF 23 

offset) methods and predicted maladaptation through time. As a validation, we found that our GF 24 

models successfully predicted local adaptation of maize landraces in multiple common gardens 25 

across Mexico. We found strong concordance between GF offset and disruptions in climate, and 26 

landraces of all tested crop species were predicted to be the most maladapted across space and 27 

time where soot-induced climate change was the greatest. We further used our GF models to 28 

identify landrace varieties best matched to specific post-catastrophic conditions, indicating 29 

potential substitutions for agricultural resilience. We found the best landrace genotype was often 30 

far away or in another nation, though countries with more climatic diversity had better within-31 

country substitutions. Our results highlight that a soot-producing catastrophe would result in the 32 

global maladaptation of landraces and suggest that current landrace adaptive diversity is 33 

insufficient for agricultural resilience in the case of the soot scenarios with the greatest change to 34 

climate.  35 
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Introduction 36 

Environmental variability due to changing climate poses one of the greatest threats to 37 

agricultural productivity1. Increasingly, researchers aim to predict the effects of changing climate 38 

on agriculture, projecting constraints on crop production and anticipated decreases in yield2,3. For 39 

regions and crop species identified as vulnerable under future climates, strategies to increase 40 

agricultural resilience may include adapting management practices and substituting varieties or 41 

crop species4.  42 

A catastrophic incident is defined by the National Response Framework as, “any natural 43 

or manmade incident, including terrorism, that results in extraordinary levels of mass casualties, 44 

damage, or disruption severely affecting the population, infrastructure, environment, economy, 45 

national morale, and/or government functions”.  Aerosol-producing global catastrophic events, 46 

such as nuclear war, asteroid strike, or super-volcano explosion, are expected to produce 47 

significant climate change5 through deflecting solar radiation, preventing sunlight from reaching 48 

the Earth’s surface and causing global cooling. Since the spread of nuclear weapons during the 49 

twentieth century, there has been significant focus on assessing the consequences of a nuclear 50 

conflict on both society and the environment6. Published climate models have been used to 51 

consider the impacts of nuclear wars on the growth of major grain crops7–9 and summarize the 52 

degree to which the rapid environmental change induced by a black carbon aerosol (soot) 53 

producing catastrophe would impact global crop production. To date, the impact of such a soot-54 

producing catastrophe on agricultural systems has not accounted for intraspecific diversity 55 

present in crop species, including landraces, and how this diversity may aid in increasing 56 

agricultural resilience. Cereal crops account for the most calories consumed by humans10 and 57 

maintaining their production post-global catastrophe is of the utmost importance.  58 
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Crop landraces (local traditional varieties) contain most of the genetic diversity within 59 

many crops, much of which is not represented in modern breeding varieties11 and are still widely 60 

cultivated in the developing world. The continual cultivation and selection of crops by farmers 61 

gives rise to these local varieties that often carry locally adapted alleles and phenotypes12. 62 

Historically, landraces have contributed to plant breeding through the identification of traits and 63 

alleles for adaptation to stressful environments (e.g. water stress, salinity, and high 64 

temperatures)13. Many thousands of landrace varieties are now stored in germplasm banks and 65 

represent untapped adaptive diversity that may increase agricultural resilience under changing 66 

environments14. 67 

The genetic basis of adaptation to local environments can be characterized through 68 

geographic associations between genotype and environment, known as genotype-environment 69 

associations15. Genotype-environment associations have been used to study the adaptive 70 

potential of species16, estimate optimal range shifts17, and identify genes that may be 71 

advantageous for organisms under future climates18. Genotype-environment associations may 72 

also give insights into which specific environmental pressures drive local adaptation19–21. For 73 

landraces, a large portion of genomic variation can be explained by environments of origin22–24, 74 

making them good systems for considering the environmental gradients driving local 75 

adaptation25 and the geographic distribution of locally adapted alleles26,27.  76 

An emerging approach for predicting adaptation to novel environments is first fitting 77 

genotype-environment models that describe how current allele frequencies change across 78 

environments under an assumption of local adaptation. Next, the fitted model is applied to a 79 

novel environment to determine the change in genomic composition required for adaptation to 80 

that environment, known as genomic offset (reviewed in 28). The genotype-environment models 81 
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can further be extended to identify optimal genotypes or varieties for specific environments24,29 82 

and guide movement of genotypes to minimize maladaptation to the novel climates. Such 83 

modeling methods capture long-term signals of adaptation and may provide insights into 84 

genotypes that are the most vulnerable/sources of resilience to climatic variability30. 85 

We studied the climate impacts of a soot-producing catastrophe on broadly distributed 86 

globally important cereal crops for which landrace cultivation is important for smallholder 87 

farmers: Sorghum bicolor (L.) Moench (sorghum), Zea mays L. (maize), Oryza sativa L. subsp. 88 

indica and japonica (rice), and Hordeum vulgare L. (barley). These crops represent four of the 89 

top five cereal species in global production31. For each crop species included in this study, we 90 

independently implemented crop growth models to identify environmental stressors and genomic 91 

models to estimate the degree of disruption to current landrace adaptation under several post-92 

catastrophic scenarios differing in the amount of soot injected into the climate model. We 93 

validated our genomic models through comparing predicted local adaptation and published 94 

maize landrace performance data collected in common gardens across diverse climates in 95 

Mexico. We further extended our genomic models to identify landrace varieties best matched to 96 

specific post-catastrophic conditions, supporting the management strategy of substituting 97 

vulnerable landrace genotypes for more resilient ones.   98 

Our study aims to evaluate the environmental forces that have historically shaped 99 

genomic variation in landraces and to assess how landrace adaptation may be disrupted by novel 100 

catastrophic events. There is little research investigating the impacts of changing climate on 101 

diverse genotypes of multiple species. Thus, the literature may be oversimplifying climate 102 

change effects on agricultural and ecological systems. Utilizing a multi-species genomics 103 

approach allows us to confront this challenge, acknowledging the distinct impacts on various 104 
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species that are vital for food production. We hypothesized that the magnitude of maladaptation 105 

would be largely determined by the magnitude of environmental change, that substitutions of 106 

genotypes from different locations could partially ameliorate effects of climate change, and that 107 

countries with greater climatic diversity would have better adapted genotype substitutions within 108 

their borders compared to less climatically diverse countries. Finally, the approach developed in 109 

this study may be extended to and prove valuable for understanding impacts of greenhouse gas 110 

induced climate change.  111 

 112 

Results 113 

Climate scenarios. We studied disruptions to current landrace adaptation for six nuclear war 114 

scenarios that simulate the impact of varying amounts of stratospheric soot on global climate 115 

(Fig. 1b) using previously published climate simulation data6,32. The published weather files 116 

describe the climate impacts for five India-Pakistan nuclear war scenarios (soot injections of 5 117 

Tg, 16 Tg, 27.3 Tg, 37 Tg, and 46.8 Tg), one United States-Russia scenario with a soot injection 118 

of 150 Tg, and a control run that describes normal fluctuations in climate. 119 

 120 

Genotyped landrace accessions. To assess maladaptation in cereal crop landraces following a 121 

soot-producing catastrophe, we identified species for which landrace relatives are currently 122 

grown in the developing world that also had publicly available, high quality sequencing data of 123 

geographically diverse accessions. From these criteria, we selected four crop species: barley (n = 124 

215), maize (n = 3,404), rice (n = 677 of the subsp. indica; n = 309 of the subsp. japonica), and 125 

sorghum (n = 1,779). The distribution of accessions covered most of the agricultural areas in the 126 

developing world (Fig. S1a) across diverse climate regimes. 127 
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 128 

Using crop growth models to estimate integrated local climatic stressors under control and 129 

post-war conditions. Traditional implementations of genotype-environment associations 130 

typically use off-the-shelf climate parameters without connection to organismal biology and 131 

without consideration of phenology. However, actual climate-driven stress likely emerges from a 132 

combination of conditions (e.g. precipitation and temperature) and depends on organismal 133 

phenology and development. To address these issues, we used the Cycles agroecosystem 134 

model2,33 to simulate growth and stress parameters for our full set of genotyped, georeferenced 135 

landrace accessions (n = 6,384) under control and six nuclear war conditions that differed in the 136 

quantity of stratospheric soot simulated (5 Tg, 16 Tg, 27 Tg, 37 Tg, 47 Tg, 150 Tg). Cycles 137 

simulations selected a planting date in a designated planting window when the weather and soil 138 

conditions are suitable for the specific crop, and simulated crop growth until the time of harvest 139 

or termination, using parameters specific to each of our four species. Cycles simulations that 140 

accounted for species-specific growth parameters were run independently for each crop species 141 

and climate scenario (control and six soot scenarios). 142 

 143 

We used outputs from Cycles simulations to infer emergent environmental, growth, and stress 144 

values experienced during key phenological stages of crop, constrained to the growing period for 145 

each simulated accession under the different climate scenarios (Table S1). Thus, the selected 146 

model outputs characterized differences in environment and potential stress experienced by a 147 

given landrace accession under control and post-war climates, while accounting for crop-specific 148 

growth parameters. For each climate scenario and accession, we extracted 13 Cycles-derived 149 

variables representative of average temperature, coldest temperature, water stress, and solar 150 
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radiation experienced by simulated landrace accessions across the vegetative, reproductive, and 151 

total growth and days to reach maturity (hereafter, Cycles-derived environmental variables, Fig. 152 

2, Table S1). While in reality landrace accessions likely exhibit variation in response to 153 

environmental variability, modeling this genetic variation was not our goal at this stage. Rather, 154 

our goal was to use Cycles to estimate integrative environmental stressors through space and 155 

time for later use in modeling genotype-environment associations.  156 

As described by other groups, in all war scenarios regardless of detonation location, 157 

produced soot spreads globally and causes disruptions to solar radiation reaching the earth’s 158 

surface, resulting in global cooling6,32. Stratospheric soot from each post-war scenario dissipated 159 

over the course of a decade and the climate anomalies caused by atmospheric soot decreased 160 

proportionally, with respect to severity of the scenario. Across all scenarios, surface shortwave 161 

radiation reached its all-time low two years post-war, corresponding to the point at which Cycles 162 

modeled crops were simulated with the lowest average solar radiation (Fig. 2). Consequently, 163 

global surface temperature immediately and rapidly declined after the catastrophe and on average 164 

reached its lowest point in the third year post-war, with more extreme cooling in the Northern 165 

Hemisphere6,34. Our crop models summarized this cooling trend. Daily average temperature for 166 

landraces modeled by Cycles reached its lowest point two to three years post catastrophe. Barley, 167 

our crop with a primary distribution in the Northern Hemisphere, experienced the coolest post-168 

war temperatures (Fig. 1a; Fig. 2). In the coolest year of the 150 Tg Russia-US scenario, daily 169 

average temperature of the growing season across all simulated accessions decreased by  11.3 °C 170 

for maize and sorghum,  13.1 °C for rice subsp. japonica,  14.3 °C for rice subsp. indica, and 171 

12.1 °C for barley as compared to the averaged control daily temperature across years, indicating 172 

the severity of this scenario. 173 
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For maize, rice, and sorghum, whose landraces modeled in this study were mostly 174 

tropical, declines in temperature across the simulated growing season led to an increase in the 175 

number of days required for a plant to reach maturity. The strength of this relationship increased 176 

with the more severe soot scenarios (Fig. S1). Failure to accumulate enough thermal time during 177 

the growing season was recorded as the crop not reaching maturity. As the Cycles set up did not 178 

account for genetic and adaptive variation among landraces, an individual not projected to reach 179 

maturity can be interpreted as environmental conditions that are relatively inhibitory for growth. 180 

The simulated number of days to maturity generally corresponded to the severity of the climate 181 

anomaly of the post-war soot scenario. The most extreme environmental effects of the 150 Tg 182 

scenarios at least doubled the number of days to reach maturity for all tropical crops (Fig. 2). In 183 

the second post-war year of this scenario, 90% of barley, 62% of rice subsp. indica, 51% of rice 184 

subsp. japonica, 54% of maize, and 33% of sorghum accessions were projected to not reach 185 

maturity.  186 

 187 

Identification of environmentally adaptive genetic loci. For each crop species, we acquired 188 

published genotype data of landrace accessions used in Cycles simulations above for use in 189 

modeling and predicting disruptions to current genotype-environment relationships. The final set 190 

included 6,384 accessions with genotype data represented by various sequencing and genotyping 191 

methods: 215 barley accessions with exome sequencing (1,688,807 single nucleotide 192 

polymorphisms, (SNPs))35, 3,404 maize accessions with genotyping-by-sequencing (GBS) 193 

(946,072 SNPs)36, 986 rice accessions with whole genome resequencing (WGS) (677 subsp. 194 

indica, 309 subsp. japonica; 9.78 million SNPs)22, and 1,779 sorghum accessions with GBS 195 

(459,304 SNPs)37. Though differences in genotyping methods and the distribution of genotyped 196 
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accessions may influence our ability to model adaptation, we sought to identify datasets that 197 

most represented the diversity of genotypes and environments that landraces of our focal species 198 

originate from and are likely adapted to. 199 

We built gradient forest (GF) models that were used to represent current genotype-200 

environment relationships and for predicting maladaptation in crop landraces following post-war 201 

soot induced change in climate. For use in GF models, we first identified a subset of genomic 202 

loci that we hypothesized were more likely to underlie local adaptation. Specifically, we 203 

identified genetic loci that were associated with landrace climate of origin and flowering time 204 

quantitative trait loci (QTL) for use in GF models. Following methods described in 38 and for 205 

each crop species, we used partial redundancy analysis (pRDA) to identify the top 1,000 genetic 206 

loci associated with variation in 13 Cycles-derived environmental variables under the control 207 

scenario while also accounting for population structure (methods; Fig. S2). To ensure potentially 208 

critical phenology QTL were accounted for in our models, we further identified single nucleotide 209 

polymorphisms (SNPs) of loci found within and in cis-regulatory regions (+/- 5 kilobase (kb) 210 

pairs) of known flowering time network genes (Table S2). We identified loci known to be 211 

involved in flowering time for each crop species by literature review, obtained gene coordinates 212 

for each flowering time gene, extracted all SNPs that overlapped within and in cis-regulatory 213 

regions of the genomic region, and filtered each species’ set of flowering time loci to account for 214 

patterns of linkage disequilibrium. The number of flowering time SNPs included in our GF 215 

models for each of our focal species included 636 for barley, 608 for maize, 314 for rice subsp. 216 

indica, 323 for rice subsp. japonica, and 116 for sorghum (differences in number are a product of 217 

marker density). In total, the final genetic dataset used to build each species’ GF model included 218 
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the top 1,000 SNPs associated with variation in the control Cycles-derived environmental 219 

variables identified by pRDA and the SNPs found in and near flowering time network genes. 220 

 221 

Control scenario GF models describe existing genome-environment associations. We built 222 

GF models representative of current genotype-environment associations using the loci described 223 

above and Cycles-derived environmental variables of the control simulation, averaged across all 224 

years of Cycles-simulated growth, for each crop species. GF is a nonparametric multivariate 225 

approach that fits an ensemble of regression trees using Random Forest39 and models changes in 226 

allele frequency along environmental gradients40. GF’s functions provide a means to rescale 227 

environmental predictors from their normal units (e.g., °C, mm) into a unit of cumulative 228 

importance for describing variation in a genetic dataset. For all GF models, the emergent 229 

environmental parameter of simulated days to maturity was in the top five most important 230 

predictors for describing variation in the genetic dataset of loci we hypothesized  to contribute to 231 

environmental adaptation (Fig. S3).  Across all crop species, no single environmental variable 232 

was substantially more related to turnover in allele frequencies of tested loci, indicating that GF 233 

models captured genome-wide relationships to multiple environmental gradient signals rather 234 

than a high impact at a single locus30. The differing importance of environmental variables 235 

specific to a growth stage of plants (variable constrained to the vegetative or reproductive stage 236 

of growth) indicated that stress experienced by plants changes across the different phenological 237 

stages of growth and genetic variation can be associated with life-stage specific stress. 238 

 239 

GF models capture adaptation in landraces. To test if GF models (constructed using Cycles-240 

derived environmental outputs from the control scenario and the set of loci we hypothesized to 241 
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be important in local adaptation) captured current environmental adaptation in landraces, we 242 

compared published performance data of 11,762 maize landraces grown across 13 common 243 

gardens in Mexico27,36 to predicted GF offset of genotype-environment relationships of landraces 244 

grown in common gardens. The common gardens maize landraces were grown and phenotyped 245 

in spanned geographic and environmental range of maize cultivation (Fig. S4A). We predicted 246 

how ‘adapted’ maize landraces accessions were to the common gardens they were grown in 247 

through calculation of GF offset. We calculated GF offset for each maize landrace accession 248 

grown in each common garden as the Euclidean distance between the accession’s control GF 249 

modeled genotype-environment association (representing current genotype-environment 250 

relationships) and the expected genomic composition at the common garden (representing the 251 

optimal genotype-environment relationship for a common garden). As offsets are calculated from 252 

current genotype-environment relationships in the GF model, they are weighted by the 253 

contribution of different loci that are involved in current landrace adaptation and indicate what 254 

amount of genetic change would be required for adaptation to a common garden. Accessions 255 

with a low GF offset are expected to be better adapted to the conditions at the common garden, 256 

as they require less genetic change to be adapted to the environment of a common garden. We 257 

found that, indeed, accessions performed best (height and yield measures) when grown in sites 258 

where they had low GF offset (Fig. 3A; Fig. S4B). Furthermore, anthesis silking interval (ASI, 259 

synchronicity of male and female flower maturity) was reduced when accessions were grown at 260 

sites in which they had lower GF offset. ASI is a reliable predictor of stress in maize41, indicating 261 

maize landraces were less stressed when grown in common gardens to which they were predicted 262 

to be adapted (lower GF offset).  263 

 264 
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The degree of GF offset post-catastrophe follows the magnitude of climate disruption. After 265 

confirming the fitted control GF models captured adaptation in landraces, we then used GF 266 

models to predict the expected locally-adapted genomic composition for landraces across space 267 

and time under the six post-war scenarios. To predict the magnitude of maladaptation, we 268 

calculated GF offset as the Euclidean distance between a given landrace source location’s 269 

expected genomic composition between control (representing current genotype-environment 270 

relationships) and the six soot scenarios (representing the optimal genotype-environment 271 

relationship for a soot scenario) separately. High GF offset values corresponded to a greater 272 

degree of maladaptation and represented a greater shift in allelic composition required for 273 

adaptation to persist in the climate produced by the soot scenario. For all crops and scenarios, GF 274 

offset values followed the trend in post-war climate disruptions, with a sharp increase and 275 

gradual recovery after 10 to 15 years (Fig. 3B-F; Fig. S5).  GF offset for all crops reached its 276 

highest point two to three years post-catastrophe, indicating that crops were expected to have the 277 

highest degree of maladaptation when global solar radiation and temperatures reached their all-278 

time low. Maximum GF offset of each target scenario linearly corresponded to the amount of 279 

soot simulated for the 5 Tg to 47 Tg soot scenarios. In the most extreme 150 Tg scenario, the 280 

trend was more pronounced and deviated from the linear pattern (Fig. 3 B-F). Across all crop 281 

species, we detected a strong latitudinal pattern associated with GF offset values, equatorial 282 

regions which experienced less adverse climate impacts were predicted to be less maladapted to 283 

post-war conditions (Fig. 4).  284 

 285 

Identification of landrace substitutions for post-catastrophe adaptation. We next leveraged 286 

our GF models to identify landrace genotypes best matched to specific post-catastrophic 287 
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conditions, indicating potential varietal substitutions for locations with landraces that were the 288 

most maladapted to post-catastrophic climates. Under post-catastrophic conditions, many 289 

locations will not have climate suitable for the cultivation of crops and we constrained our 290 

analyses to only look for substitutions for locations that were projected to have a crop reach 291 

maturity in the worst year (year 2 post-strike) of the 150 Tg scenario. After filtering for locations 292 

that were not expected to be suitable for agriculture, 10% of barley, 38% of rice subsp. indica, 293 

49% of rice subsp. japonica, 46% of maize, and 67% of sorghum landraces source locations 294 

were retained to search for a suitable substitution. For the remaining locations, we identified the 295 

most vulnerable locations as those with the highest GF offset (predicted maladaptation). We then 296 

searched for the most optimal substitution globally as well as the best within country 297 

substitution, identifying the landrace accession with the lowest GF offset to the post-catastrophic 298 

climate in the vulnerable location (Fig. 5). Though the identification of landraces with lower 299 

levels of maladaptation to post-catastrophic conditions may be valuable for finding the genotypes 300 

most resilient to post-catastrophic climates, it is important to note that our calculation of 301 

maladaptation is a relative metric and to approach these findings with caution. The post-302 

catastrophic climate of the 150 Tg scenario may be sufficiently extreme to dramatically reduce 303 

the absolute production of accessions that is identified as a suitable substitution and predicted to 304 

have a low GF offset to the novel climate conditions. 305 

Across all crops, the most optimal substitution was often far away (~1000 to ~10,000 km) 306 

and across country borders. For many locations, the best substitution still had a high degree of 307 

GF offset, indicating that there was not a genotype that was expected to be adapted to the post-308 

catastrophic climate at the vulnerable location included in our dataset (Fig. 5A, C, E, G, I). This 309 

could be due to the severity of the novel climate at the vulnerable location, the absence of a 310 
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landrace accession that was expected to be adapted to the novel environment, or some 311 

combination of both. For all crops, the best substitution trajectories typically moved landrace 312 

accessions from poles and high elevations towards the equator and low elevations, indicating that 313 

landrace germplasm adapted to currently cooler climates may be sources of resilience for 314 

locations that may be more likely to support agriculture post-catastrophe. For all crop species, 315 

there were instances where one genotype was the most optimal substitution for multiple 316 

vulnerable locations, suggesting genotypes that may be particularly valuable for post-317 

catastrophic agriculture.  318 

In the case of a catastrophe, substitutions across long distances may not be possible due 319 

to socioeconomic disruptions, e.g. in transport and trade. We further searched for the optimal 320 

within-country substitution. For all crops, within country substitutions with a low GF offset were 321 

rare; within country substitutions always had a higher GF offset, corresponding to higher 322 

expected maladaptation, than the optimal global substitution (Fig. 5B, D, F, H, J). Though 323 

maintaining a high degree of maladaptation (GF offset), most within-country substitutions 324 

included trajectories moving individuals towards the equator and lower elevations.  325 

The within-country current diversity of environments to which landraces are adapted may 326 

be important for finding a suitable substitution. To test this hypothesis, we compared the GF 327 

offset for the 25% most maladapted locations within each country after using global substitutions 328 

versus within-country substitutions. We focused on sorghum because it was the crop with the 329 

most countries having viable cultivation in year 2 of the 150 Tg scenario, giving power to 330 

compare countries. As expected, all 31 countries with at least 5 sorghum accessions had greater 331 

GF offset for the most maladapted locations when only using within-country substitutions, 332 

compared to the global substitutions. The proportional inferiority of within-country compared to 333 
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global substitutions was only weakly related to the number of landraces from each country (r = 334 

0.27, p = 0.14). We next tested if the control climate mean and variance influenced the inferiority 335 

of within-country substitutions in a multiple regression, while accounting for the number of 336 

landraces in each country. We found that the countries with less variance among landraces in 337 

cold stress and greater mean cold stress had significantly worse within-country substitutions 338 

compared to global (linear model, mean cold t = 3.99 p = 0.0005, variance in cold t = 2.54 p = 339 

0.0173, number of landraces t = 0.37 p = 0.7173, R2 = 0.45). This highlights the potential future 340 

value of diversity for regions and nations housing landraces adapted to diverse climates. 341 

 342 

Discussion  343 

The resilience of agricultural systems to changing climate determines global food 344 

security. In this study we used information on landrace genetic variation and environment of 345 

origin for agronomically important cereal crops to predict disruptions to their 346 

adaptation/cultivation and to explore if the diversity of landraces may be beneficial sources of 347 

resilience in the case of a soot-producing climate catastrophe. Consistent with other groups who 348 

have investigated the consequences of a soot-producing catastrophe on global agriculture7,9 and 349 

fisheries34, we find the climate impacts would be devastating to global subsistence agriculture, 350 

many locations would become unsuitable for agriculture, and for the most extreme soot scenario, 351 

the locations that remain suitable may not have sufficient local landrace diversity within a 352 

species to enable a successful substitution of a resilient variety.  353 

Our crop model results correspond to previous estimates of the climate impacts of soot-354 

producing catastrophes6,7,9,32,34,42 while also providing an assessment of the diversity of 355 

environments to which crop landraces of globally important cereal crops are adapted. Increases 356 
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in the number of days simulated to reach maturity corresponded to the climate anomalies of 357 

reduced daily temperature and solar radiation. In the years and locations with the greatest climate 358 

impacts, landraces in higher latitudes rarely achieved full maturity. Colder temperatures slow 359 

down phenological development, and can diminish photosynthetic activity and damage tissue.  360 

We built GF models to summarize current landrace genotype-environment relationships 361 

and validated that GF models captured real adaptive differences through use of phenotypic data 362 

collected for a broad diversity panel of maize landraces grown in common gardens across 363 

Mexico. We show that predicted maladaptation, in the form of GF offset, is associated with 364 

height, yield, and stress-related traits, demonstrating a new test of these tools23. Landrace 365 

accessions had classic phenotypic patterns of local adaptation when grown in common gardens 366 

they had low GF offset (maladaptation) to, suggesting GF models captured broad adaptation of 367 

landraces’ local environments43. However, landrace performance was not perfectly predicted by 368 

our genotype-environment model. This inability to completely predict adaptation may be 369 

attributable to limitations of genotype-environment association approaches or to the maintenance 370 

of diversity within environments. In general, reciprocal transplants and common gardens often 371 

find mixed evidence for local adaptation44. Genotypes from the same environment may differ in 372 

performance in a given common garden environment if processes like migration or 373 

environmental fluctuations maintain diversity within populations or if important selective forces 374 

are not present in experimental conditions. Our validation methodology confirms that GF offset 375 

can be a powerful tool to capture current genotype-environment relationships though our 376 

inability to perfectly predict adaptation likely highlights a potential importance of maintaining 377 

genetic diversity within a site, which may complicate our ability to model these relationships. 378 
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When environments change and populations are not able to track the environmental 379 

change through plasticity or rapid shifts in genetic composition, populations may become 380 

maladapted and have reduced fitness in a novel climate45. In our case, landraces were predicted 381 

to be the most maladapted, or have the highest GF offset, in the locations where climate was the 382 

most disrupted from long-term averages, corresponding to the most extreme soot scenarios and 383 

the years post-war where atmospheric soot was the most abundant. The strong relationship we 384 

observed between GF offset and soot-induced change in climate is perhaps unsurprising. GF 385 

models are trained using current genotype-environment associations and any shift in the 386 

environment will likely require a change in genomic composition to track adaptation to a novel 387 

climate. The ability to interpret the magnitude of offsets derived from GF-derived functions in an 388 

ecologically meaningful way has recently become a point of discussion. Genetic-based 389 

quantifications of adaptation38 and offset46 can be biased for unsampled areas or if the projected 390 

environment exceeds what is used to train the model. Though we have a broad sampling of 391 

landrace accessions for each focal crop species that are adapted to a diversity of environments 392 

and used in GF genotype-environment models, the extremeness and novelty of post-war climates 393 

used in this study likely make predicting maladaptation difficult47. At the same time, though the 394 

true magnitude of maladaptation may be difficult to quantify, our GF models allow us to 395 

incorporate measures of climate-associated genomic variation for the identification of the most 396 

vulnerable locations that will likely require a varietal substitution. Additionally, our GF models 397 

provide insights to the aspects of the environment that may be most related to a crop’s current 398 

adaptation, which is likely related to the evolutionary history and cultivation practices of the 399 

crop. For example, GF identified average temperature and solar radiation experienced in the 400 

reproductive growth phase as most related to rice subsp. indica genome-wide allelic turnover, 401 
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suggesting these variables may be important in driving local adaptation within this species. Rice 402 

landraces of the indica variety are traditionally cultivated in warm, tropical to subtropical 403 

locations and may have limited cold tolerance48. While cold and solar radiation are the variables 404 

most altered by nuclear winter, perhaps suggesting vulnerability of this species, the GF model 405 

also suggests that indica genotypes vary in their adaptation to temperature and light, suggesting 406 

there is some mitigation possible with genotype substitutions. 407 

Crop diversity has been suggested as a potential solution to mitigate climate impacts on 408 

agriculture24,49. For all crops included in this study, we found that landraces accessions with a 409 

distribution farther from the equator were most maladapted to post-catastrophic climates and 410 

were most often selected as the best varieties for substitutions. Most substitutions that were well 411 

matched to vulnerable locations required long migration distances and for many locations, a 412 

landrace adapted to the novel environment at the vulnerable location does not exist within our 413 

dataset. Substitutions that maintained a high level of GF offset indicated landrace varieties that 414 

may remain maladapted to the novel climate, and no other varieties were better adapted to the 415 

vulnerable, tested location. At the same time, for locations where the cultivation of crops remains 416 

possible, the identification of multiple suitable genotypes may be important for the maintenance 417 

of crop diversity within a site. For smallholders, the development of elite farmer-preferred 418 

varieties and the introgression of alleles adapted to novel climates is a priority50, and genotype 419 

substitutions identified here could be potential donors of such alleles. For vulnerable locations 420 

that were not predicted to have a well-adapted substitution, switching cultivation to faster-421 

maturing crop varieties, or other non-cereal crop species that tolerate lower temperatures (e.g. 422 

potato)51, may be a strategy for increased resilience. However, the adoption of a new crop 423 

species requires a significant investment by farmers and substantial modifications of farmer and 424 
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consumer behavior52. It is worth noting that there may be some diversity in response to post-425 

catastrophic conditions in modern elite crop varieties cultivated in wealthier nations, which are 426 

not accounted for in this study. Other studies have considered changes to global crop 427 

productivity under nuclear conflict, including Jagermeyer et al. (2020) who showed that even a 428 

relatively small nuclear strike (e.g., 5 Tg of soot) would drastically impact crop production.  429 

Though our study highlights maladaptation in cereal crop landraces following a soot-430 

producing catastrophe, methodology used in this study can also be leveraged to understand 431 

disruptions to adaptation and possible genotype substitutions (also known as assisted gene flow) 432 

given any change in climate, including greenhouse gas induced climate change53. Our results 433 

indicate that for the landrace populations most vulnerable to a climate catastrophe, the within-434 

species genetic diversity in a country may not be sufficient for resilience and substitutions across 435 

country borders of further distances may be required. 436 

 437 

Methods  438 

We used landraces to characterize global disruptions to adaptation and identify resilient 439 

accessions in the case of a climate catastrophe that produces soot. Selected landrace crop species 440 

fulfilled two criteria - 1. Landrace relatives of the species account for a large portion of 441 

accessions currently grown and 2. High quality sequencing data of geographically diverse 442 

accessions were publicly available. From these criteria, we selected four cereal crop species- 443 

Hordeum vulgare L. (barley), Oryza sativa L. (rice) subsp. indica and japonica, Zea mays L. 444 

(maize), and Sorghum bicolor (L.) Moench (sorghum). For all analyses, the rice subsp. indica 445 

and japonica were run separately. Altogether, the species cover most of the agricultural areas of 446 

the globe and are cultivated in and adapted to diverse climate regimes. 447 
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 448 

Weather data. Previously published weather data described in Toon et al. (2019) and Coupe et 449 

al (2019) simulate the climate impacts of India-Pakistan and US-Russia wars using the 450 

Community Earth System Model (CESM, version 1.3) with the Whole Atmosphere Community 451 

Climate Model Version 4 (WACCM4, version 4) as the atmospheric component, or CESM-452 

WACCM454.  To more accurately represent the evolution of smoke injection, the Community 453 

Aerosol and Radiation Model for Atmospheres (CARMA;55,56) is coupled with WACCM to 454 

simulate the injection, lofting, advection, and removal of soot aerosols42,57. 455 

The climate impacts of nuclear war were simulated by injecting varying quantities of black 456 

carbon aerosol (soot) into the stratosphere in a layer between 100 and 300 hPa over a 1-week 457 

period starting on 15 May above the U.S. and Russia, or the South Asian subcontinent6,32,42. In 458 

total, six nuclear war scenarios were simulated, and we refer to the year soot was injected as year 459 

“0”. For the five India-Pakistan nuclear war scenarios (soot injections of 5 Tg, 16 Tg, 27.3 Tg, 460 

37 Tg, and 46.8 Tg, representing a range of arsenal sizes) simulations were each run for 19 years. 461 

One United States-Russia scenario with a 150 Tg soot injection was also considered, and the 462 

simulation was run for 21 years. This scenario assumes both countries use most of their nuclear 463 

arsenals58 and is still possible given modern nuclear arsenals. Additionally, a single control run 464 

that repeats the climate forcing of 2000 was simulated for 20 years to represent normal 465 

atmospheric circulations6,32. 466 

 467 

Cycles. The Cycles agroecosystem model was used to infer growth and stress variables of 468 

landrace accessions’ point of origin using conditions accessions are expected to be adapted to 469 

(control scenario) and post-catastrophe (six post-nuclear war soot scenarios). Cycles is a process-470 
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based multi-year and multi-species agroecosystem model2,33 that requires a number of input files 471 

to simulate crop growth. All simulations were carried out using Cycles v0.13.0 472 

(https://github.com/PSUmodeling/Cycles). The crop description file defines the physiological 473 

and management parameters that control the growth and harvest of crops used in the simulation. 474 

For each of our crop species, we used Cycles default crop parameters from the default crop 475 

description file. The management (operation) file defines the daily management operations to be 476 

used in a simulated crop rotation. We activated conditional planting where Cycles “plants” a 477 

simulated crop once certain soil moisture and temperature levels are satisfied within a window of 478 

planting dates. For many of the scenarios where planting conditions are not met (i.e. daily 479 

temperature remains too low) Cycles forced planting on the last day of the planting window. We 480 

turned on the automatic nitrogen fertilization option and set planting density to 67% for all crops 481 

in the simulation to be grown without nitrogen limitations so that stress observed in model 482 

outputs was due entirely to climatic factors. Weather files were built using the CESM-WACCM4 483 

outputs as described in 32 and 6 for one control and six post-nuclear soot scenarios, formatted for 484 

use in Cycles. The weather files were generated by aggregating the three-hourly CESM output to 485 

daily time steps at all CESM grids, which have a 1.9° latitude × 2.5° longitude resolution. 486 

Weather files were matched to landrace point of origin for each simulated accession, where the 487 

climatic parameters used to simulate growth match the location accessions were sourced from. 488 

Weather files included variables describing variation in daily precipitation, temperature, solar 489 

radiation, humidity, and wind. Soil physical parameters were obtained from the ISRIC SoilGrids 490 

global database59 via the HydroTerre data system60–62 for all simulation locations. Soil files were 491 

also matched to landrace point of origin for each simulated accession and describe the average 492 

soil characteristics and land use for crop cultivation types. For accessions designated as paddy 493 
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rice by 22 we used the irrigated or post-flooding land use type. Rainfed land use type was used 494 

for all other simulated crop accessions. 495 

For all simulated accessions of each crop species, seven Cycles simulations, including the 496 

control scenario and six soot scenarios were implemented separately. Cycles models simulated 497 

20 years of crop growth for the control scenario, 15 years of crop growth after impact for the 498 

India-Pakistan scenarios (5 Tg, 16 Tg, 27 Tg, 37 Tg, 47 Tg, and 150 Tg), and 17 years of crop 499 

growth for the US-Russia scenario (150 Tg). From the outputs of each Cycles simulation and for 500 

each year growth was simulated, we extracted variables summarizing the environmental stress 501 

and simulated growth plants experienced for each of our focal crop species (Cycles-derived 502 

environmental variables). Variables included information on the number of days to reach 503 

maturity, water stress, cold stress, and light stress experienced across simulated plant growth and 504 

when in the vegetative and reproductive phase (Table S1). For accessions not projected to reach 505 

maturity, certain environmental summary variables were not extractable, and we imputed the 506 

95% stress of the variable for each accession with missing environmental values, specific to crop 507 

species and the year growth was simulated for. 508 

 509 

Genotyped datasets. As differences in genotyping resolution across species might influence the 510 

detection of genomic signals of adaptation, we selected datasets with  high density genomic 511 

markers and a distribution of sequenced landraces accessions that most represented the 512 

environments that landraces of our focal species originate from and are likely adapted to. 513 

Advances in technology have made low-coverage whole-genome sequencing (WGS) relatively 514 

inexpensive, providing datasets that are particularly well-suited for research exploring polygenic 515 

signals. All genotype files were processed in PLINK, an established software for analyzing and 516 
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filtering genotypic data37. For each landrace species, raw genotype files were filtered for minor 517 

allele frequency (MAF) removing all SNPs with lower than 5% MAF and for linkage 518 

disequilibrium (LD) to reduce the number of SNP candidates we tested for environmental 519 

association. As the initial genotype files differed in size, the LD filter step included different 520 

conditions to thin files. We used --indep-pairwise 30 10 .1 for both rice subsp. (indica and 521 

japonica) and sorghum, and --indep-pairwise 100 10 .05 for the maize and barley data files. This 522 

filtering step resulted in 74,430 SNPs for barley, 43,818 SNPs for rice subsp. japonica, 61,430 523 

SNPs for rice subsp. indica, 67,522 SNPs for maize, and 20,387 SNPs for sorghum to test for 524 

association to the species-specific Cycles-derived environmental variables. 525 

 526 

Genome scan for environmentally related SNPs. Genotype-environment associations test for 527 

genetic variation that is statistically correlated to environmental predictors. We followed partial 528 

redundancy analysis (pRDA) methods developed by 38 to identify loci putatively involved in 529 

environmental selection for our focal crop species. For each crop species, pRDA models were 530 

built using population allele frequencies (population defined as accessions from the same 531 

geocoordinates) from the filtered genetic dataset as response variables and the 13 Cycles-derived 532 

environmental variables from the control simulation, averaged across the 20 years of modeled 533 

growth as explanatory variables. Neutral genetic structure was accounted for by including the 534 

first three axes of a population PCA as conditional covariables. Using the rdapat function 535 

described in 63, we identified the top environmentally related (outlier) loci based on the 536 

extremeness of their loading along a Mahalanobis distance distribution calculated between each 537 

marker and the center of the first two pRDA axes. P-values for each marker were derived as this 538 

distance, corrected for the inflation factor using a chi-squared distribution with two degrees of 539 
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freedom. We then selected the top 1,000 markers with the lowest P-values as candidate outliers 540 

to represent loci that may be important for  environmental adaptation. The analysis was carried 541 

out using R/vegan64.  542 

To assess whether the top loci selected by pRDA are unique to the method, we further 543 

implemented Bayesian-information and Linkage-disequilibrium Iteratively Nested Keyway 544 

(BLINK) and compared the significant loci as identified by BLINK and pRDA for sorghum. 545 

BLINK is a package commonly used for genome-wide association studies (GWAS) and 546 

improves upon traditional GWAS methods by addressing limitations such as computational 547 

inefficiency and reduced statistical power65. We ran BLINK separately for the same 13 Cycles-548 

derived environmental variables used in the sorghum pRDA model and extracted the set of 549 

significant loci (p-value < 0.05) for each BLINK model that were built separately for each 550 

climate variable. For all BLINK models, the first three axes of a population PCA were used as 551 

covariates to account for population structure. We then compared the set of BLINK-identified 552 

significant loci across all 13 models (8,728 unique SNPs) to the 1,000 most significant loci as 553 

identified by pRDA and found that 556 SNPs were present in both datasets. Thus, the overlap 554 

between genotype-environment association methods for identifying loci that are related to 555 

variation in environmental gradients confirm that the results are not highly sensitive to the 556 

approach.  557 

 558 

Identification of flowering time SNPs. We further accounted for genetic variation that may 559 

capture important plant phenological processes by including SNPs of known flowering time 560 

network loci for each focal crop species. We conducted a literature search to identify genes 561 

known to be involved in the flowering time network for each crop (Table S2). Gene coordinates 562 
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of each flowering time gene were gathered from the gff3 files that corresponded to each 563 

reference genome used to call SNPs (maize (reference B73v2, 564 

https://figshare.com/articles/dataset/GTF_and_GFF_for_maize/895628);  rice (reference R498 565 

IGDBv3,  http://mbkbase.org/R498/); sorghum (reference S. bicolorv3.1, https://phytozome-566 

next.jgi.doe.gov/info/Sbicolor_v3_1_1)66–68. For maize, rice subsp. indica and japonica, and 567 

sorghum we also included SNPs found +/- 5 kilobase (kb) of each flowering time gene to 568 

account for variation in cis-regulatory elements. Barley sequence information was reported as 569 

contigs and we extracted SNPs located in contigs previously identified to overlap with homologs 570 

of well-characterized genes in Arabidopsis thaliana35. Gene coordinates for the location of each 571 

flowering time gene region or flowering time related contig extracted using --extract in PLINK69. 572 

To account for patterns of linkage disequilibrium, we further filtered each species’ set of 573 

flowering time loci (gene and sites up and downstream of the gene) and only retained SNPs with 574 

an r² value less than 0.2 within the flowering-time genic window and flanking region.  575 

 576 

Gradient forest models and calculation of offset. Gradient forest (GF) is a machine learning 577 

algorithm extended from random forest which searches for genotypic patterns as associated with 578 

environmental descriptors. Using R/gradientForest::gradientForest40, we built GF models to 579 

associate current adaptive allelic diversity (the combined set of pRDA-identified 580 

environmentally related loci and flowering time network loci) with Cycles-derived 581 

environmental variables from the control simulation, averaged across the 20 years of modeled 582 

growth (hereafter, control GF model). Models were built separately for each of our focal crop 583 

species to describe control species-specific genotype-environment relationships. The control GF 584 

model parameters were tuned to increase the number of trees built to ntree = 500.  585 
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Genomic offset (also known as genomic vulnerability) is one metric used to characterize 586 

maladaptation with a genomic context (reviewed in 28). The distance between current and 587 

expected genotype-environment associations under some change in environment is 588 

representative of the genomic offset, or the genetic shift required in a population to adapt to the 589 

future climate. Comparing the control genotype-environment association captured by GF models 590 

(control GF model), and the projected genotype-environment association for different scenarios 591 

(common garden, target scenarios, vulnerable locations) we made several measurements of GF 592 

offset to summarize predicted maladaptation. For all GF offset calculations, we followed 593 

methods described in 24 . 594 

To validate that our control GF models captured current genotype-environment 595 

associations, we first used the maize control GF model to predict the genomic composition 596 

expected at common gardens maize landraces had been phenotyped in for a previous study36. 597 

Here, the GF offset was defined as the Euclidean distance of current genotype-environment 598 

relationships at the common garden site from the genotype-environment relationship of each 599 

landrace’s point of origin. This measure summarized how genetically well matched a landrace 600 

was to the common garden it was grown in (measure of predicted maladaptation to a common 601 

garden) and was compared to the phenotypic breeding values for each landrace grown in a 602 

common garden. 603 

 604 

Validation of gradient forest-predicted adaptation. We used phenotypic data of maize 605 

landraces grown in 23 trials across 13 common garden locations over 2 years to confirm that our 606 

control GF models captured real differences in current landrace genotype-environment 607 
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relationships. We restricted our analysis to include the phenotypic data of landraces accessions 608 

that were simulated in Cycles models.  609 

Briefly, phenotyped accessions are a part of the broader SeeD evaluation of the maize 610 

landrace collection36. Accessions were planted in multiple environments under a replicated F1 611 

crossing. Importantly, two features of the crossing design ensure that phenotype data is not 612 

overly biased by elevational adaptation. Crossed plants were preferentially grown in locations 613 

that were of similar adaptation (highland tropical, sub-tropical or lowland tropical) to their home 614 

environment and each plant was crossed to a tester that was adapted to the environment that the 615 

F1 seeds were grown in. These design features allowed for comparison of a larger sample of 616 

accessions, but also led to an unbalanced experimental design. As a further consequence of the 617 

experimental design, apparent adaptive differences among landraces may be reduced and make 618 

phenotypic estimates of adaptation more conservative27. We extracted phenotypic information 619 

capturing differences in plant height (PH), the total weight of ears (kernels and cob) measured in 620 

the field (field weight; FW), bare cob weight (BCW), moisture adjusted grain weight per hectare 621 

(GWH), days to anthesis (DA), days to silking (DS), and anthesis-silking interval (ASI) for 622 

plants grown in trials (https://data.cimmyt.org/dataset.xhtml?persistentId=hdl:11529/10548233). 623 

The phenotypic datasets ranged from having n = 4,851 (BCW) to n = 11,762 (ASI) across the 624 

field sites. Following methods from Gates et al., (2019) and Romero Navarro et al., (2017), we 625 

estimated breeding values controlling for tester, checks, and field position in a complete nested 626 

model. We further accounted for the random effect of tester and year.  627 

 628 

Calculation of offset under post-catastrophic conditions. Once we confirmed that our maize 629 

control GF model captured phenotypic differences representative of adaptation to common 630 
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gardens with conditions most like the source locations landraces are sourced from, we extended 631 

our control GF models to predict maladaptation in crop landraces under the six post-war target 632 

climate scenarios. Here, GF offset was calculated as the Euclidean distance between the current 633 

predicted genotype-environment association (control GF model) and for each soot scenation, the 634 

future projected genotype-environment association across all 13 Cycles-derived environmental 635 

variables. 636 

We confirmed that GF offset values were correlated to relative changes in environment 637 

that were most related to genotype-environment associations, as summarized by the control GF 638 

model, by comparing the difference in GF offset (target subtracted from control) versus the 639 

change in Cycles-derived environmental variables (Fig. S6). Environmental variables were 640 

scaled and adjusted by their relative contribution to GF models. 641 

 642 

Identification of landrace substitutions for post-catastrophe adaptation. To understand if 643 

existing landrace diversity may be a source of resilience following a climate catastrophe, we 644 

used our GF models to identify the best suited substitutions for locations with the landraces that 645 

are the most maladapted24,29 under the most extreme target scenario (150 Tg) and for the year 646 

where climate is the most disrupted (year 2 after soot injection). We first excluded all locations 647 

not predicted to reach maturity, so as not to identify substitutions to locations where agriculture 648 

would not likely be possible. For the remaining locations, we defined the most vulnerable 649 

locations as those with the highest GF offset to search for both the most optimal and the best 650 

within-country substitution. Clusters of vulnerable pixels were identified using 651 

R/DBscan::dbscan70, which groups pixels based off proximity. Clustering was based on the 652 
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geographic distance between vulnerable pixels measured with R/geosphere::distm71. Only 653 

clusters separated by <1000 km were retained for further analysis.  654 

For each vulnerable cluster, a GF offset (i.e., Euclidean distance) was calculated between 655 

the projected genotype-environment association of the vulnerable location under the 150 Tg 656 

target scenario and the control GF modeled genotype-environment association (control GF 657 

model) across all landrace accessions included in the model. The lowest GF offset was defined as 658 

the minimum Euclidean distance and identified the current landrace accession predicted to be 659 

best adapted to the future climate conditions of the vulnerable area. For landrace accessions that 660 

were not perfectly adapted to the locations they were substituted to (i.e GF offset is higher than 661 

0), this measure represented the genomic gap that still needs to be filled for the migrated 662 

varieties to be fully adapted to the conditions of their new location (assuming current genotype-663 

environment relationships are representative of perfect adaptation). High GF offset indicated 664 

substitutions where accessions are not predicted to be well adapted to the locations they were 665 

substituted to, and no other landraces included in the model were better adapted to the projected 666 

climate of the vulnerable area. 667 

Data availability  668 

The  Community  Earth  System  Model  is  freely  available  from  the  NCAR  but  requires  669 

registration  at  www. cesm.ucar.edu/models/cesm1.2. Additionally, atmospheric model output 670 

for the 150 Tg case (Coupe et al.,  2019) is available at https://doi.org/10.6084/ 671 

m9.figshare.7742735.v1. The full model outputs for all simulations are very large and stored on 672 

the PetaLibrary  at the University of Colorado, which is not available to the public. However, 673 

additional data from these runs can  be provided upon request.  674 

Code Availability 675 

The scripts for the bioinformatics analysis are publicly available in GitHub at GitHub Repo. 676 
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695 

Figure 1 a) Global distribution of genotyped landrace accessions used in the study (All 696 

accessions, n = 6,384; Barley, n = 215; Maize, n = 3,404; Rice subsp. indica, n = 677; Rice 697 

subsp. japonica n = 309; Sorghum, n = 1779). b) Modeling and statistical pipeline used in this 698 

study. 699 

 700 

 701 

(next page) Figure 2 Cycles-derived environmental variables for A) barley B) maize C) rice 702 

subsp. indica D) rice subsp. japonica and E) sorghum. Control lines are plotted as the average 703 

value across all accessions that were projected to reach maturity. The shading around averaged 704 

control represents the standard deviation of yearly averages, indicating yearly fluctuations in 705 

environmental variables. For all soot scenarios, lines are plotted as yearly averaged values across 706 

accessions that were projected to reach maturity. The vertical dotted line indicates the time of 707 

soot injection into the climate models.  708 
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710 

Figure 3 GF models capture current genotype-environment associations in maize landraces and 711 

were used to predict maladaptation (GF offset) under post-catastrophic climate scenarios. A) 712 

Phenotypic residuals (remaining variation after accounting for experimental design) plotted 713 

against the logged GF offset of maize landrace accessions grown in common gardens. GF offset 714 

is calculated for each phenotyped accession as the Euclidean distance of the expected genotype-715 

environment relationship at a common garden common vs the genotype-environment 716 

relationship from the accessions’ point of origin. Points with a more negative logged GF offset 717 

indicate maize landrace accessions that are expected to be adapted to the common garden they 718 

were grown in. Yearly logged GF offset for B) maize C) barley D) rice subsp. indica E) rice 719 

subsp. japonica and F) sorghum. The control line shows the mean logged GF offset across all 720 

years, with the shaded region representing the standard deviation of yearly means to indicate 721 

fluctuations in maladaptation (GF offset) due to normal variability in climate. Soot scenario lines 722 

are averaged logged GF offset across all accessions of a species and colored by soot scenario. 723 

The vertical dotted line indicates the time of soot injection into the climate models. Inlaid scatter 724 

plots are the averaged logged GF offset across all accessions of a species two years after the 725 

incident. 726 
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 727 

Figure 4 Global distribution of logged GF offset (predicted maladaptation) under the 150 Tg 728 

scenario 2, 9, and 16 years after the incident for landraces (filled black circles, with overlaid 729 

open colored circles indicating offset). Higher GF offset values correspond to a larger degree of 730 

predicted maladaptation under the post-war scenario.  731 
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Figure 5 Substitution trajectories for the most vulnerable landrace populations in year 2 of the 733 

150 Tg scenario. For each crop, arrows connect the source location of a landrace accession that is 734 

the most optimal to the vulnerable location (arrowhead) and are colored by the remaining GF 735 

offset (maladaptation) of the substitution. Substitutions are colored by how well-matched the 736 

moved landrace is to the vulnerable location, where colors corresponding to lower GF offset of 737 

substitution indicate a substitution that has a low degree of maladaptation to the novel 738 

environment. For each crop, substitution trajectories are provided for the most optimal 739 

substitution across all available germplasm and the best within-country substitution. Inlaid 740 

histograms represent the frequency of substitutions of different distances and are colored by the 741 

remaining GF offset (maladaptation) of the substitution.  742 
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765 

Figure S1 The relationship between simulated days to reach maturity and change in daily 766 

temperature for all landrace accessions across all years simulated, colored by soot scenario. 767 

Points are masked from the plots for years where landrace accessions were not projected to reach 768 

maturity. The frequency of crop failure (points that are masked from the plot) for the year with 769 

the most extreme climate impacts are given here as percentages for the 5 Tg, 6 Tg, 27 Tg, 37 Tg, 770 

47 Tg, 150 Tg scenarios. Barley: 6%, 8%, 13%, 22%, 24%, 90%. Maize: 0%, 0%, 0%, 0.5%, 771 

4%, 54%. Rice subsp. indica: 0.5%, 1%, 2%, 3%, 5%, 62%. Rice subsp. japonica: 3%, 5%, 12%, 772 

19%, 20%, 51%. Sorghum: 0, 0.5%, 0.5%, 2%, 4%, 33%. 773 

 774 

 775 

 776 

 777 

 778 

 779 

(next page) Figure S2 pRDA loading plots for the identification of loci with significant 780 

association to Cycles-derived environmental variables of the control simulation for use in 781 

gradient forest (GF) models. Percent variation explained by the first two pRDA axes (represented782 

as a percentage next to the respective axis) is calculated as the percent variation described by the 783 

constrained pRDA axis divided by the variation across all unconstrained axes. Environmentally 784 

related (outlier) loci are defined as the 1,000 sites with the most extreme loading along a 785 

Mahalanobis distance distribution, calculated between each marker and the center of the first two 786 

pRDA axes. For each species, loci identified as “outlier” were retained for use in GF models. 787 
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793 

Figure S3 R2 importance plots of Cycles-derived environmental and growth variables used to 794 

build each species’ control GF model for A) barley B) maize C) rice subsp. indica D) rice subsp. 795 

japonica and E) sorghum. Variables are ordered by their relative contribution in describing 796 

genome-wide diversity of loci included in each respective GF model. 797 
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Figure S4 GF models of control genotype-environment associations in maize landraces capture 801 

signals of local adaptation. A) Large red points denote sites of common gardens. Black points 802 

denote the source locations of landrace accessions grown in common gardens. B) Phenotypic 803 

residuals (remaining variation after accounting for experimental design) plotted against the 804 

logged GF offset of maize landraces grown in common gardens. GF offset is calculated for each 805 

phenotyped accession grown in a common garden as the Euclidean distance of the expected 806 

genotype-environment relationship at a common garden common vs the genotype-environment 807 

relationship from the landrace accessions’ point of origin. Points with a more negative logged 808 

GF offset indicate landrace accessions that are expected to be adapted to conditions at the 809 

common garden. 810 
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 812 

Figure S5 Variation in logged GF offset for A) barley B) maize C) rice subsp. indica D) rice 813 

subsp. japonica and E) sorghum by scenario. Each black line represents the logged GF offset for 814 

a modeled landrace accession. The colored line is the average across all individuals by soot 815 

scenario. Averaged logged GF offset by soot scenario is the same as shown in Figure 3 B-F. 816 

 817 

 818 

 819 

Figure S6 Change in GF offset corresponds to relative changes in climate for maize landrace 820 

accessions. Distance between predicted genotype-environment relationships for the 150 Tg 821 

“target” scenario and the control scenario vs the environmental change between the 150 Tg target822 

and control scenario.  823 
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Table S1 Description of environmental and growth variables obtained for Cycles simulated 834 

landrace accessions (Cycles-derived environmental variables). For a given landrace accession, 835 

each variable was extracted separately for each simulation year and climate scenario (control, 5 836 

Tg, 6 Tg, 27 Tg, 37 Tg, 47 Tg, 150 Tg). 837 

Variable  Description 
Average temperature (°C)  
vegetative, reproductive, cumulative 

The daily average temperature for each day crop 
growth was simulated across the entire growth 
period (cumulative) or for specific phenological 
growth stages (vegetative, reproductive). 

Coldest temperature (°C) 
vegetative, reproductive, cumulative 

The daily minimum temperature for each day 
crop growth was simulated across the entire 
growth period (cumulative) or for specific 
phenological growth stages (vegetative, 
reproductive). 

Solar radiation (MJ m-2/day) 
vegetative, reproductive, cumulative 

Daily solar radiation for each day crop growth 
was simulated across the entire growth period 
(cumulative) or for specific phenological growth 
stages (vegetative, reproductive). 

Water Stress (%)  
vegetative, reproductive, cumulative 

Daily water stress for each day crop growth was 
simulated across the entire growth period 
(cumulative) or for specific phenological growth 
stages (vegetative, reproductive). 

Maturity days  Simulated days to reach physiological maturity. 
 838 

 839 
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 841 
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 843 

 844 

 845 

 846 

 847 

 848 

 849 

 850 

Table S2 Flowering time genes used in GF models ordered by species. For each flowering time 851 

gene, the GeneID for each species’ reference genome is included. 852 

Species Gene  
GeneID within 
reference genome 

Maize CCA1  GRMZM2G014902 
 CCT1  GRMZM2G381691 
 CCT11  GRMZM2G135446 
 CCT4  GRMZM2G033962 
 CCT2  GRMZM2G004483 
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 CONZ1  GRMZM2G405368 
 D8  GRMZM2G144744  
 D9  GRMZM2G024973 
 DLE1 GRMZM5G859316  
 DLF1  GRMZM2G067921 
 Gi1  GRMZM2G107101 
 Gi2 GRMZM5G844173 
 GL15 GRMZM2G160730 
 ID1  GRMZM2G011357 
 MADS1  GRMZM2G171365 
 MADS69  GRMZM2G171650 
 PEBP2 GRMZM2G156079 
 PEBP24  GRMZM2G440005 
 PEBP4  GRMZM2G075081 
 PEBP8 GRMZM2G179264 
 PRRTF1  GRMZM2G095727 
 RAP2  GRMZM2G700665 
 ZAG6 GRMZM2G026223 
 ZCN8  GRMZM2G019993  
 LHY  GRMZM2G474769 
 MADS4  GRMZM2G032339  
 TOC1a  GRMZM2G020081 
Barley CCA1 Hvcontig_1567295 
 CEN Hvcontig_274284  
 COL1 Hvcontig_138334  
 COL2 Hvcontig_6805  
 ELF3 Hvcontig_80895/67536  
 EL F4-/ike3 Hvcontig_42805 
 FKF1 Hvcontig_38586  
 FT Hvcontig_54983  
 GI Hvcontig_58270/1580005 
 GRP7 Hvcontig_1578172 
 LHY Hvcontig_1567295 
 LUX Hvcontig_2548416 
 PRR9(5) Hvcontig_46739  
 PRR5(9) Hvcontig_41351  
 PRR7/37 Hvcontig_94710  
 TOCI Hvcontig_37494 
 ZTL Hvcontig_273830  
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Rice DTH2 OsR498G0204681300.01 
 DTH3 OsR498G0305144600.01 
 DTH8 OsR498G0815298200.01 
 E OsR498G1018858200.01 
 E1 OsR498G0713935400.01 
 E2 OsR498G0713935400.01 
 E3 OsR498G0307088600.01 
 Ehd1 OsR498G1018858200.01 
 Ehd2 OsR498G1018735700.01 
 Ehd4 OsR498G0305108900.01 
 GHd7 OsR498G0713935400.01 
 Hd1  OsR498G0612090700.01 
 Hd16 OsR498G0307192700.01 
 Hd17 OsR498G0611607800.01 
 Hd18 OsR498G0815152000.01 
 Hd3a  OsR498G0611656900.01 
 Se OsR498G0612090600.01 
Sorghum CO  Sobic.004G007400  
 CN12  Sobic.003G295300 
 CRY1-b1 Sobic.004G188400  
 CRY2-2 Sobic.006G101600 
 D8 Sobic.001G120900  
 Ehd1  Sobic.010G238700.1 
 ELF3 Sobic.009G257300.2 
 FT1 Sobic.010G045100 
 HD6 Sobic.002G010300 
 LHY-4 Sobic.004G279300 
 Ma2 Sobic.002G302700 
 Ma3  Sobic.001G394400.1 
 Ma5  Sobic.001G087100.1 
 TOC1 Sobic.004G216700.1 
 Zfl1 Sobic.006G201600 
 853 
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1036 

Figure 1 a) Global distribution of genotyped landrace accessions used in the study (All 1037 

accessions, n = 6,384; Barley, n = 215; Maize, n = 3,404; Rice subsp. indica, n = 677; Rice 1038 

subsp. japonica n = 309; Sorghum, n = 1779). b) Modeling and statistical pipeline used in this 1039 

study. 1040 
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Figure 2 Cycles-derived environmental variables for A) barley B) maize C) rice subsp. indica D) 1042 

rice subsp. japonica and E) sorghum. Control lines are plotted as the average value across all 1043 

accessions that were projected to reach maturity. The shading around averaged control represents 1044 

the standard deviation of yearly averages, indicating yearly fluctuations in environmental 1045 

variables. For all soot scenarios, lines are plotted as yearly averaged values across accessions that1046 

were projected to reach maturity. The vertical dotted line indicates the time of soot injection into 1047 

the climate models.  1048 

 1049 

 1050 

1051 

Figure 3 GF models capture current genotype-environment associations in maize landraces and 1052 

were used to predict maladaptation (GF offset) under post-catastrophic climate scenarios. A) 1053 

Phenotypic residuals (remaining variation after accounting for experimental design) plotted 1054 

against the logged GF offset of maize landrace accessions grown in common gardens. GF offset 1055 

is calculated for each phenotyped accession as the Euclidean distance of the expected genotype-1056 

environment relationship at a common garden common vs the genotype-environment 1057 

relationship from the accessions’ point of origin. Points with a more negative logged GF offset 1058 

indicate maize landrace accessions that are expected to be adapted to the common garden they 1059 

were grown in. Yearly logged GF offset for B) maize C) barley D) rice subsp. indica E) rice 1060 

subsp. japonica and F) sorghum. The control line shows the mean logged GF offset across all 1061 

years, with the shaded region representing the standard deviation of yearly means to indicate 1062 

fluctuations in maladaptation (GF offset) due to normal variability in climate. Soot scenario lines 1063 

are averaged logged GF offset across all accessions of a species and colored by soot scenario. 1064 

The vertical dotted line indicates the time of soot injection into the climate models. Inlaid scatter 1065 

plots are the averaged logged GF offset across all accessions of a species two years after the 1066 

incident. 1067 
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 1068 

Figure 4 Global distribution of logged GF offset (predicted maladaptation) under the 150 Tg 1069 

scenario 2, 9, and 16 years after the incident for landraces (filled black circles, with overlaid 1070 

open colored circles indicating offset). Higher GF offset values correspond to a larger degree of 1071 

predicted maladaptation under the post-war scenario.  1072 
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Figure 5 Substitution trajectories for the most vulnerable landrace populations in year 2 of the 1074 

150 Tg scenario. For each crop, arrows connect the source location of a landrace accession that is 1075 

the most optimal to the vulnerable location (arrowhead) and are colored by the remaining GF 1076 

offset (maladaptation) of the substitution. Substitutions are colored by how well-matched the 1077 

moved landrace is to the vulnerable location, where colors corresponding to lower GF offset of 1078 

substitution indicate a substitution that has a low degree of maladaptation to the novel 1079 

environment. For each crop, substitution trajectories are provided for the most optimal 1080 

substitution across all available germplasm and the best within-country substitution. Inlaid 1081 

histograms represent the frequency of substitutions of different distances and are colored by the 1082 

remaining GF offset (maladaptation) of the substitution.  1083 
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