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Abstract: Aerosol-producing global catastrophes such as nuclear war, super-volcano eruption, or
asteroid strike, although rare, pose a serious threat to human survival. Light-absorbing aerosols
would sharply reduce temperature and solar radiation reaching the earth’ s surface, decreasing
crop productivity including for locally adapted traditional crop varieties, i.e. landraces. Here, we
test post-catastrophic climate impacts on barley, maize, rice, and sorghum, four crops with
extensive landrace cultivation, under a range of nuclear war scenarios that differ in the amount of
black carbon aerosol (soot) injected into the climate model. We used a crop growth model to
estimate gradients of environmental stressors that drive local adaptation. We then fit genotype
environment associations using high density genomic markers with gradient forest offset (GF
offset) methods and predicted maladaptation through time. As a validation, we found that our GF
models successfully predicted local adaptation of maize landraces in multiple common gardens
across Mexico. We found strong concordance between GF offset and disruptionsin climate, and
landraces of all tested crop species were predicted to be the most maladapted across space and
time where soot-induced climate change was the greatest. We further used our GF models to
identify landrace varieties best matched to specific post-catastrophic conditions, indicating
potential substitutions for agricultural resilience. We found the best landrace genotype was often
far away or in another nation, though countries with more climatic diversity had better within-
country subgtitutions. Our results highlight that a soot-producing catastrophe would result in the
global maladaptation of landraces and suggest that current landrace adaptive diversity is
insufficient for agricultural resilience in the case of the soot scenarios with the greatest change to
climate.
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Introduction

Environmental variability due to changing climate poses one of the greatest threatsto
agricultural productivity®. Increasingly, researchers aim to predict the effects of changing climate
on agriculture, projecting constraints on crop production and anticipated decreasesin yield®>. For
regions and crop species identified as vulnerable under future climates, strategies to increase
agricultural resilience may include adapting management practices and substituting varieties or
crop species’,

A catastrophic incident is defined by the National Response Framework as, “any natural
or manmade incident, including terrorism, that resultsin extraordinary levels of mass casualties,
damage, or disruption severely affecting the population, infrastructure, environment, economy,
national morale, and/or government functions’. Aerosol-producing global catastrophic events,
such as nuclear war, asteroid strike, or super-volcano explosion, are expected to produce
significant climate change® through deflecting solar radiation, preventing sunlight from reaching
the Earth’ s surface and causing global cooling. Since the spread of nuclear weapons during the
twentieth century, there has been significant focus on assessing the consequences of a nuclear
conflict on both society and the environment®. Published climate models have been used to
consider the impacts of nuclear wars on the growth of major grain crops’™ and summarize the
degree to which the rapid environmental change induced by a black carbon aerosol (soot)
producing catastrophe would impact global crop production. To date, the impact of such a soot-
producing catastrophe on agricultural systems has not accounted for intraspecific diversity
present in crop species, including landraces, and how this diversity may aid in increasing
agricultural resilience. Cereal crops account for the most calories consumed by humans™ and

maintaining their production post-global catastropheis of the utmost importance.
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Crop landraces (local traditional varieties) contain most of the genetic diversity within
many crops, much of which is not represented in modern breeding varieties™ and are still widely
cultivated in the devel oping world. The continual cultivation and selection of crops by farmers
gives rise to these local varieties that often carry locally adapted alleles and phenotypes'.
Historically, landraces have contributed to plant breeding through the identification of traits and
alleles for adaptation to stressful environments (e.g. water stress, salinity, and high
temperatures)™*. Many thousands of landrace varieties are now stored in germplasm banks and
represent untapped adaptive diversity that may increase agricultural resilience under changing
environments'™,

The genetic basis of adaptation to local environments can be characterized through
geographic associations between genotype and environment, known as genotype-environment
associations™. Genotype-environment associations have been used to study the adaptive
potential of species'™, estimate optimal range shifts™’, and identify genes that may be
advantageous for organisms under future climates'®. Genotype-environment associations may
also give insights into which specific environmental pressures drive local adaptation’®2. For
landraces, alarge portion of genomic variation can be explained by environments of origin®2*,
making them good systems for considering the environmental gradients driving local
adaptation® and the geographic distribution of locally adapted alleles®?’,

An emerging approach for predicting adaptation to novel environmentsisfirst fitting
genotype-environment models that describe how current allel e frequencies change across
environments under an assumption of local adaptation. Next, the fitted model is applied to a
novel environment to determine the change in genomic composition required for adaptation to

that environment, known as genomic offset (reviewed in ®). The genotype-environment models
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82  can further be extended to identify optimal genotypes or varieties for specific environments®*?
83  and guide movement of genotypes to minimize maladaptation to the novel climates. Such
84  modeling methods capture long-term signals of adaptation and may provide insights into
85  genotypes that are the most vulnerable/sources of resilience to climatic variability™.
86 We studied the climate impacts of a soot-producing catastrophe on broadly distributed
87  globally important cereal crops for which landrace cultivation isimportant for smallholder
88 farmers. Sorghumbicolor (L.) Moench (sorghum), Zea mays L. (maize), Oryza sativa L. subsp.
89 indica and japonica (rice), and Hordeum wvulgare L. (barley). These crops represent four of the
90  top five cereal speciesin global production®. For each crop species included in this study, we
91 independently implemented crop growth models to identify environmental stressors and genomic
92  modelsto estimate the degree of disruption to current landrace adaptation under several post-
93 catastrophic scenarios differing in the amount of soot injected into the climate model. We
94  validated our genomic models through comparing predicted local adaptation and published
95  maize landrace performance data collected in common gardens across diverse climatesin
96 Mexico. We further extended our genomic models to identify landrace varieties best matched to
97  gpecific post-catastrophic conditions, supporting the management strategy of substituting
98 vulnerable landrace genotypes for more resilient ones.
99 Our study aims to evaluate the environmental forces that have historically shaped
100 genomic variation in landraces and to assess how |landrace adaptation may be disrupted by novel
101  catastrophic events. Thereislittle research investigating the impacts of changing climate on
102  diverse genotypes of multiple species. Thus, the literature may be oversimplifying climate
103  change effects on agricultural and ecological systems. Utilizing a multi-species genomics

104  approach allows usto confront this challenge, acknowledging the distinct impacts on various
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105  speciesthat arevital for food production. We hypothesi zed that the magnitude of maladaptation
106  would be largely determined by the magnitude of environmental change, that substitutions of
107  genotypes from different locations could partially ameliorate effects of climate change, and that
108 countries with greater climatic diversity would have better adapted genotype substitutions within
109  their borders compared to less climatically diverse countries. Finally, the approach developed in
110 thisstudy may be extended to and prove valuable for understanding impacts of greenhouse gas
111  induced climate change.

112

113  Results

114  Climate scenarios. We studied disruptions to current landrace adaptation for six nuclear war
115  scenariosthat simulate the impact of varying amounts of stratospheric soot on global climate
116  (Fig. 1b) using previously published climate simulation data®*. The published weather files

117  describe the climate impacts for five India-Pakistan nuclear war scenarios (soot injections of 5
118 Tg, 16 Tg, 27.3Tg, 37 Tg, and 46.8 Tg), one United States-Russia scenario with a soot injection
119  of 150 Tg, and acontrol run that describes normal fluctuations in climate.

120

121  Genotyped landrace accessions. To assess maladaptation in cereal crop landraces following a
122  soot-producing catastrophe, we identified species for which landrace relatives are currently

123  grown in the developing world that also had publicly available, high quality sequencing data of
124  geographically diverse accessions. From these criteria, we selected four crop species. barley (n =
125  215), maize (n = 3,404), rice (n = 677 of the subsp. indica; n = 309 of the subsp. japonica), and
126  sorghum (n=1,779). The distribution of accessions covered most of the agricultural areasin the

127  developing world (Fig. S1a) across diverse climate regimes.


https://doi.org/10.1101/2024.05.18.594591
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.18.594591; this version posted February 20, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

128

129  Using crop growth modelsto estimate integrated local climatic stressorsunder control and
130 post-war conditions. Traditional implementations of genotype-environment associations

131  typicaly use off-the-shelf climate parameters without connection to organismal biology and

132 without consideration of phenology. However, actual climate-driven stress likely emerges from a
133  combination of conditions (e.g. precipitation and temperature) and depends on organismal

134  phenology and development. To address these issues, we used the Cycles agroecosystem

135  model®>* to simulate growth and stress parameters for our full set of genotyped, georeferenced
136  landrace accessions (n = 6,384) under control and six nuclear war conditions that differed in the
137  quantity of stratospheric soot ssmulated (5 Tg, 16 Tg, 27 Tg, 37 Tg, 47 Tg, 150 Tg). Cycles

138  simulations selected a planting date in a designated planting window when the weather and soil
139  conditions are suitable for the specific crop, and ssmulated crop growth until the time of harvest
140  or termination, using parameters specific to each of our four species. Cycles simulations that

141  accounted for species-specific growth parameters were run independently for each crop species
142  and climate scenario (control and six soot scenarios).

143

144  We used outputs from Cycles simulations to infer emergent environmental, growth, and stress
145  values experienced during key phenological stages of crop, constrained to the growing period for
146  each smulated accession under the different climate scenarios (Table S1). Thus, the selected

147  model outputs characterized differences in environment and potential stress experienced by a
148  given landrace accession under control and post-war climates, while accounting for crop-specific
149  growth parameters. For each climate scenario and accession, we extracted 13 Cycles-derived

150 variables representative of average temperature, coldest temperature, water stress, and solar
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151 radiation experienced by simulated landrace accessions across the vegetative, reproductive, and
152  total growth and days to reach maturity (hereafter, Cycles-derived environmental variables, Fig.
153 2, Table S1). Whilein reality landrace accessions likely exhibit variation in response to

154  environmental variability, modeling this genetic variation was not our goal at this stage. Rather,
155  our goal was to use Cycles to estimate integrative environmental stressors through space and
156  timefor later use in modeling genotype-environment associations.

157 As described by other groups, in all war scenarios regardless of detonation location,

158  produced soot spreads globally and causes disruptionsto solar radiation reaching the earth’s

159  surface, resulting in global cooling®®

. Stratospheric soot from each post-war scenario dissipated
160 over the course of a decade and the climate anomalies caused by atmospheric soot decreased

161  proportionally, with respect to severity of the scenario. Across all scenarios, surface shortwave
162  radiation reached its all-time low two years post-war, corresponding to the point at which Cycles
163  modeled crops were simulated with the lowest average solar radiation (Fig. 2). Consequently,
164  global surface temperature immediately and rapidly declined after the catastrophe and on average
165 reached itslowest point in the third year post-war, with more extreme cooling in the Northern
166  Hemisphere®**. Our crop models summarized this cooling trend. Daily average temperature for
167 landraces modeled by Cycles reached its lowest point two to three years post catastrophe. Barley,
168  our crop with aprimary distribution in the Northern Hemisphere, experienced the coolest post-
169  war temperatures (Fig. 1a; Fig. 2). In the coolest year of the 150 Tg Russia-US scenario, daily
170  averagetemperature of the growing season across all simulated accessions decreased by 11.3 °C
171  for maize and sorghum, 13.1 °C for rice subsp. japonica, 14.3 °C for rice subsp. indica, and

172 12.1 °Cfor barley as compared to the averaged control daily temperature across years, indicating

173  the severity of this scenario.
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174 For maize, rice, and sorghum, whose landraces modeled in this study were mostly

175  tropical, declinesin temperature across the simulated growing season led to an increase in the
176  number of daysrequired for a plant to reach maturity. The strength of this relationship increased
177  with the more severe soot scenarios (Fig. S1). Failure to accumulate enough thermal time during
178  the growing season was recorded as the crop not reaching maturity. As the Cycles set up did not
179  account for genetic and adaptive variation among landraces, an individual not projected to reach
180  maturity can be interpreted as environmental conditionsthat are relatively inhibitory for growth.
181  The simulated number of daysto maturity generally corresponded to the severity of the climate
182  anomaly of the post-war soot scenario. The most extreme environmental effects of the 150 Tg
183  scenariosat least doubled the number of days to reach maturity for all tropical crops (Fig. 2). In
184  the second post-war year of this scenario, 90% of barley, 62% of rice subsp. indica, 51% of rice
185  subsp. japonica, 54% of maize, and 33% of sorghum accessions were projected to not reach

186  maturity.

187

188 Identification of environmentally adaptive genetic loci. For each crop species, we acquired
189  published genotype data of landrace accessions used in Cycles simulations above for usein

190 modeling and predicting disruptions to current genotype-environment relationships. The final set
191 included 6,384 accessions with genotype data represented by various sequencing and genotyping
192  methods: 215 barley accessions with exome sequencing (1,688,807 single nucleotide

193  polymorphisms, (SNPs))®, 3,404 maize accessions with genotyping-by-sequencing (GBS)

194 (946,072 SNPs)®, 986 rice accessions with whole genome resequencing (WGS) (677 subsp.

195 indica, 309 subsp. japonica; 9.78 million SNPs)%, and 1,779 sorghum accessions with GBS

196 (459,304 SNPs)*. Though differences in genotyping methods and the distribution of genotyped
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197  accessions may influence our ability to model adaptation, we sought to identify datasets that

198 most represented the diversity of genotypes and environments that landraces of our focal species
199 originate from and are likely adapted to.

200 We built gradient forest (GF) models that were used to represent current genotype-

201  environment relationships and for predicting maladaptation in crop landraces following post-war
202  soot induced change in climate. For use in GF models, we first identified a subset of genomic
203 loci that we hypothesized were more likely to underlie local adaptation. Specifically, we

204 identified genetic loci that were associated with landrace climate of origin and flowering time
205 quantitativetrait loci (QTL) for usein GF models. Following methods described in * and for
206  each crop species, we used partial redundancy analysis (pRDA) to identify the top 1,000 genetic
207  loci associated with variation in 13 Cycles-derived environmental variables under the control
208  scenario while also accounting for population structure (methods; Fig. S2). To ensure potentially
209 critical phenology QTL were accounted for in our models, we further identified single nucleotide
210  polymorphisms (SNPs) of loci found within and in cis-regulatory regions (+/- 5 kilobase (kb)
211 pairs) of known flowering time network genes (Table S2). We identified loci known to be

212 involved in flowering time for each crop species by literature review, obtained gene coordinates
213 for each flowering time gene, extracted all SNPs that overlapped within and in cis-regulatory
214  regions of the genomic region, and filtered each species’ set of flowering time loci to account for
215  patterns of linkage disequilibrium. The number of flowering time SNPsincluded in our GF

216  modelsfor each of our focal speciesincluded 636 for barley, 608 for maize, 314 for rice subsp.
217  indica, 323 for rice subsp. japonica, and 116 for sorghum (differences in number are a product of

218 marker density). In total, the final genetic dataset used to build each species GF model included
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219 thetop 1,000 SNPs associated with variation in the control Cycles-derived environmental

220 variablesidentified by pRDA and the SNPs found in and near flowering time network genes.
221

222 Control scenario GF models describe existing genome-environment associations. We built
223  GF models representative of current genotype-environment associations using the loci described
224  above and Cycles-derived environmental variables of the control simulation, averaged across all
225  years of Cycles-simulated growth, for each crop species. GF is a nonparametric multivariate
226  approach that fits an ensemble of regression trees using Random Forest™ and models changesin
227  alelefrequency along environmental gradients™. GF's functions provide ameansto rescale
228  environmental predictors from their normal units (e.g., °C, mm) into a unit of cumulative

229  importance for describing variation in a genetic dataset. For all GF models, the emergent

230 environmental parameter of ssmulated days to maturity was in the top five most important

231  predictorsfor describing variation in the genetic dataset of loci we hypothesized to contribute to
232 environmental adaptation (Fig. S3). Across all crop species, no single environmental variable
233  was substantially more related to turnover in allele frequencies of tested loci, indicating that GF
234  models captured genome-wide relationships to multiple environmental gradient signals rather
235  than ahighimpact at asingle locus®. The differing importance of environmental variables

236  specific to agrowth stage of plants (variable constrained to the vegetative or reproductive stage
237  of growth) indicated that stress experienced by plants changes across the different phenological
238  stages of growth and genetic variation can be associated with life-stage specific stress.

239

240 GF models capture adaptation in landraces. To test if GF models (constructed using Cycles-

241  derived environmental outputs from the control scenario and the set of loci we hypothesized to

10
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242 beimportant in local adaptation) captured current environmental adaptation in landraces, we
243  compared published performance data of 11,762 maize landraces grown across 13 common

244  gardensin Mexico®"®

to predicted GF offset of genotype-environment relationships of landraces
245  grown in common gardens. The common gardens maize landraces were grown and phenotyped
246 in spanned geographic and environmental range of maize cultivation (Fig. S4A). We predicted
247  how ‘adapted’ maize landraces accessions were to the common gardens they were grown in

248  through calculation of GF offset. We calculated GF offset for each maize landrace accession

249  grown in each common garden as the Euclidean distance between the accession’s control GF

250 modeled genotype-environment association (representing current genotype-environment

251  reationships) and the expected genomic composition at the common garden (representing the
252  optimal genotype-environment relationship for acommon garden). As offsets are calculated from
253  current genotype-environment relationships in the GF model, they are weighted by the

254  contribution of different loci that are involved in current landrace adaptation and indicate what
255  amount of genetic change would be required for adaptation to a common garden. Accessions

256  with alow GF offset are expected to be better adapted to the conditions at the common garden,
257  asthey require less genetic change to be adapted to the environment of a common garden. We
258  found that, indeed, accessions performed best (height and yield measures) when grown in sites
259  wherethey had low GF offset (Fig. 3A; Fig. $4B). Furthermore, anthesis silking interval (ASI,
260  synchronicity of male and female flower maturity) was reduced when accessions were grown at
261  sitesin which they had lower GF offset. AS| is areliable predictor of stressin maize®, indicating
262  maize landraces were less stressed when grown in common gardens to which they were predicted
263  to be adapted (lower GF offset).

264

11
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265 Thedegreeof GF offset post-catastr ophe follows the magnitude of climate disruption. After
266  confirming the fitted control GF models captured adaptation in landraces, we then used GF

267 modelsto predict the expected locally-adapted genomic composition for landraces across space
268  and time under the six post-war scenarios. To predict the magnitude of maladaptation, we

269 calculated GF offset as the Euclidean distance between a given landrace source location’s

270  expected genomic composition between control (representing current genotype-environment
271  relationships) and the six soot scenarios (representing the optimal genotype-environment

272  relationship for a soot scenario) separately. High GF offset values corresponded to a greater

273 degree of maladaptation and represented a greater shift in allelic composition required for

274  adaptation to persist in the climate produced by the soot scenario. For all crops and scenarios, GF
275  offset values followed the trend in post-war climate disruptions, with a sharp increase and

276  gradua recovery after 10 to 15 years (Fig. 3B-F; Fig. S5). GF offset for al crops reached its
277  highest point two to three years post-catastrophe, indicating that crops were expected to have the
278  highest degree of maladaptation when global solar radiation and temperatures reached their all-
279  timelow. Maximum GF offset of each target scenario linearly corresponded to the amount of
280  soot simulated for the5 Tg to 47 Tg soot scenarios. In the most extreme 150 Tg scenario, the
281  trend was more pronounced and deviated from the linear pattern (Fig. 3 B-F). Across all crop
282  species, we detected a strong latitudinal pattern associated with GF offset values, equatorial

283  regions which experienced less adverse climate impacts were predicted to be less maladapted to
284  post-war conditions (Fig. 4).

285

286 ldentification of landrace substitutionsfor post-catastrophe adaptation. We next leveraged

287  our GF modelsto identify landrace genotypes best matched to specific post-catastrophic

12
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288  conditions, indicating potential varietal substitutions for locations with landraces that were the
289  most maladapted to post-catastrophic climates. Under post-catastrophic conditions, many

290 locationswill not have climate suitable for the cultivation of crops and we constrained our

291 analysesto only look for substitutions for locations that were projected to have a crop reach

292  maturity in the worst year (year 2 post-strike) of the 150 Tg scenario. After filtering for locations
293  that were not expected to be suitable for agriculture, 10% of barley, 38% of rice subsp. indica,
294  49% of rice subsp. japonica, 46% of maize, and 67% of sorghum landraces source locations

295  wereretained to search for a suitable subgtitution. For the remaining locations, we identified the
296  most vulnerable locations as those with the highest GF offset (predicted maladaptation). We then
297  searched for the most optimal substitution globally as well as the best within country

298  substitution, identifying the landrace accession with the lowest GF offset to the post-catastrophic
299  climatein the vulnerable location (Fig. 5). Though the identification of landraces with lower

300 levels of maladaptation to post-catastrophic conditions may be valuable for finding the genotypes
301 most resilient to post-catastrophic climates, it isimportant to note that our calculation of

302 maladaptation is arelative metric and to approach these findings with caution. The post-

303 catastrophic climate of the 150 Tg scenario may be sufficiently extreme to dramatically reduce
304 theabsolute production of accessionsthat isidentified as a suitable subgtitution and predicted to
305 havealow GF offset to the novel climate conditions.

306 Across al crops, the most optimal substitution was often far away (~1000 to ~10,000 km)
307 and across country borders. For many locations, the best substitution still had a high degree of
308 GF offset, indicating that there was not a genotype that was expected to be adapted to the post-
309 catastrophic climate at the vulnerable location included in our dataset (Fig. 5A, C, E, G, I). This

310  could be dueto the severity of the novel climate at the vulnerable location, the absence of a

13
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311 landrace accession that was expected to be adapted to the novel environment, or some

312  combination of both. For all crops, the best substitution trajectories typically moved landrace
313  accessions from poles and high elevations towards the equator and low elevations, indicating that
314 landrace germplasm adapted to currently cooler climates may be sources of resilience for

315 locationsthat may be more likely to support agriculture post-catastrophe. For all crop species,
316 therewere instances where one genotype was the most optimal substitution for multiple

317 vulnerable locations, suggesting genotypes that may be particularly valuable for post-

318 catastrophic agriculture.

319 In the case of a catastrophe, substitutions across long distances may not be possible due
320 to socioeconomic disruptions, e.g. in transport and trade. We further searched for the optimal

321  within-country substitution. For all crops, within country substitutions with alow GF offset were
322 rare; within country substitutions always had a higher GF offset, corresponding to higher

323  expected maladaptation, than the optimal global substitution (Fig. 5B, D, F, H, J). Though

324  maintaining a high degree of maladaptation (GF offset), most within-country substitutions

325 included trajectories moving individuals towards the equator and lower elevations.

326 The within-country current diversity of environmentsto which landraces are adapted may
327  beimportant for finding a suitable substitution. To test this hypothesis, we compared the GF

328  offset for the 25% most maladapted locations within each country after using global substitutions
329  versuswithin-country substitutions. We focused on sorghum because it was the crop with the
330 most countries having viable cultivation in year 2 of the 150 Tg scenario, giving power to

331 compare countries. As expected, all 31 countries with at least 5 sorghum accessions had greater
332  GF offset for the most maladapted locations when only using within-country substitutions,

333  compared to the global subgtitutions. The proportional inferiority of within-country compared to
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334 global substitutions was only weakly related to the number of landraces from each country (r =
335 0.27, p=0.14). We next tested if the control climate mean and variance influenced the inferiority
336  of within-country substitutions in a multiple regression, while accounting for the number of

337 landracesin each country. We found that the countries with less variance among landracesin
338  cold stress and greater mean cold stress had significantly worse within-country substitutions
339 compared to global (linear model, mean cold t = 3.99 p = 0.0005, variancein coldt =254 p =
340  0.0173, number of landracest = 0.37 p = 0.7173, R? = 0.45). This highlights the potential future
341 vaueof diversity for regions and nations housing landraces adapted to diverse climates.

342

343 Discussion

344 Theresilience of agricultural systems to changing climate determines global food

345  security. In this study we used information on landrace genetic variation and environment of
346  origin for agronomically important cereal cropsto predict disruptionsto their

347  adaptation/cultivation and to explore if the diversity of landraces may be beneficial sources of
348 resiliencein the case of a soot-producing climate catastrophe. Consistent with other groups who
349  haveinvestigated the consequences of a soot-producing catastrophe on global agriculture”® and
350 fisheries*, we find the climate impacts would be devastating to global subsistence agriculture,
351  many locations would become unsuitable for agriculture, and for the most extreme soot scenario,
352 thelocations that remain suitable may not have sufficient local landrace diversity within a

353  gpeciesto enable a successful substitution of aresilient variety.

354 Our crop model results correspond to previous estimates of the climate impacts of soot-
355  producing catastrophes®” #3342 while also providing an assessment of the diversity of

356  environments to which crop landraces of globally important cereal crops are adapted. Increases
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357 inthe number of days simulated to reach maturity corresponded to the climate anomalies of

358 reduced daily temperature and solar radiation. In the years and locations with the greatest climate
359 impacts, landracesin higher latitudes rarely achieved full maturity. Colder temperatures slow
360 down phenological development, and can diminish photosynthetic activity and damage tissue.
361 We built GF models to summarize current landrace genotype-environment relationships
362 and validated that GF models captured real adaptive differences through use of phenotypic data
363  collected for abroad diversity panel of maize landraces grown in common gardens across

364 Mexico. We show that predicted maladaptation, in the form of GF offset, is associated with

365 height, yield, and stress-related traits, demonstrating a new test of these tools®. Landrace

366  accessions had classic phenotypic patterns of local adaptation when grown in common gardens
367 they had low GF offset (maladaptation) to, suggesting GF models captured broad adaptation of
368 landraces local environments™. However, landrace performance was not perfectly predicted by
369  our genotype-environment model. Thisinability to completely predict adaptation may be

370  attributable to limitations of genotype-environment associati on approaches or to the maintenance
371  of diversity within environments. In general, reciprocal transplants and common gardens often
372 find mixed evidence for local adaptation®’. Genotypes from the same environment may differ in
373  performance in agiven common garden environment if processes like migration or

374  environmental fluctuations maintain diversity within populations or if important selective forces
375 arenot present in experimental conditions. Our validation methodology confirms that GF offset
376  can be apowerful tool to capture current genotype-environment relationships though our

377  inability to perfectly predict adaptation likely highlights a potential importance of maintaining

378  genetic diversity within a site, which may complicate our ability to model these relationships.
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379 When environments change and popul ations are not able to track the environmental

380 change through plasticity or rapid shiftsin genetic composition, populations may become

381  maladapted and have reduced fitnessin anovel climate®. In our case, landraces were predicted
382  to bethe most maladapted, or have the highest GF offset, in the locations where climate was the
383  most disrupted from long-term averages, corresponding to the most extreme soot scenarios and
384  theyears post-war where atmospheric soot was the most abundant. The strong relationship we
385  observed between GF offset and soot-induced change in climate is perhaps unsurprising. GF
386 models are trained using current genotype-environment associations and any shift in the

387  environment will likely require a change in genomic composition to track adaptation to a novel
388 climate. The ability to interpret the magnitude of offsets derived from GF-derived functionsin an
389  ecologically meaningful way has recently become a point of discussion. Genetic-based

390  quantifications of adaptation® and offset* can be biased for unsampled areas or if the projected
391  environment exceeds what is used to train the model. Though we have a broad sampling of

392 landrace accessions for each focal crop species that are adapted to adiversity of environments
393  and used in GF genotype-environment models, the extremeness and novelty of post-war climates
394  used in this study likely make predicting maladaptation difficult*’. At the sametime, though the
395 true magnitude of maladaptation may be difficult to quantify, our GF models alow usto

396 incorporate measures of climate-associated genomic variation for the identification of the most
397 vulnerable locations that will likely require a varietal substitution. Additionally, our GF models
398 provideinsightsto the aspects of the environment that may be most related to a crop’s current
399 adaptation, which islikely related to the evolutionary history and cultivation practices of the
400 crop. For example, GF identified average temperature and solar radiation experienced in the

401  reproductive growth phase as most related to rice subsp. indica genome-wide allelic turnover,
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402  suggesting these variables may be important in driving local adaptation within this species. Rice
403 landraces of the indica variety are traditionally cultivated in warm, tropical to subtropical

404  locations and may have limited cold tolerance™. While cold and solar radiation are the variables
405 most altered by nuclear winter, perhaps suggesting vulnerability of this species, the GF model
406  also suggests that indica genotypes vary in their adaptation to temperature and light, suggesting
407  thereis some mitigation possible with genotype substitutions.

408 Crop diversity has been suggested as a potential solution to mitigate climate impacts on
409  agriculture®*. For al cropsincluded in this study, we found that landraces accessions with a
410 digtribution farther from the equator were most maladapted to post-catastrophic climates and
411  were most often selected as the best varieties for substitutions. Most substitutions that were well
412  matched to vulnerable locations required long migration distances and for many locations, a
413  landrace adapted to the novel environment at the vulnerable location does not exist within our
414  dataset. Substitutions that maintained a high level of GF offset indicated landrace varieties that
415  may remain maladapted to the novel climate, and no other varieties were better adapted to the
416  vulnerable, tested location. At the same time, for locations where the cultivation of crops remains
417  possible, the identification of multiple suitable genotypes may be important for the maintenance
418  of crop diversity within asite. For smallholders, the development of elite farmer-preferred

419  varieties and the introgression of alleles adapted to novel climatesisa priority®, and genotype
420 substitutionsidentified here could be potential donors of such alleles. For vulnerable locations
421  that were not predicted to have a well-adapted substitution, switching cultivation to faster-

422  maturing crop varieties, or other non-cereal crop speciesthat tolerate lower temperatures (e.g.
423 potato)>*, may be a strategy for increased resilience. However, the adoption of a new crop

424  speciesrequires asignificant investment by farmers and substantial modifications of farmer and
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425  consumer behavior®. It isworth noting that there may be some diversity in response to post-
426  catastrophic conditionsin modern elite crop varieties cultivated in wealthier nations, which are
427  not accounted for in this study. Other studies have considered changes to global crop

428  productivity under nuclear conflict, including Jagermeyer et al. (2020) who showed that even a
429  relatively small nuclear strike (e.g., 5 Tg of soot) would drastically impact crop production.

430 Though our study highlights maladaptation in cereal crop landraces following a soot-
431  producing catastrophe, methodology used in this study can also be leveraged to understand

432  disruptionsto adaptation and possible genotype substitutions (also known as assisted gene flow)
433 given any changein climate, including greenhouse gas induced climate change™. Our results
434  indicate that for the landrace populations most vulnerable to a climate catastrophe, the within-
435  species genetic diversity in a country may not be sufficient for resilience and substitutions across
436  country borders of further distances may be required.

437

438 Methods

439 We used landraces to characterize global disruptions to adaptation and identify resilient
440 accessionsin the case of aclimate catastrophe that produces soot. Selected landrace crop species
441  fulfilled two criteria- 1. Landrace relatives of the species account for a large portion of

442  accessions currently grown and 2. High quality sequencing data of geographically diverse

443  accessions were publicly available. From these criteria, we selected four cereal crop species-
444  Hordeumwulgare L. (barley), Oryza sativa L. (rice) subsp. indica and japonica, Zea mays L.
445  (maize), and Sorghum bicolor (L.) Moench (sorghum). For all analyses, the rice subsp. indica
446  and japonica were run separately. Altogether, the species cover most of the agricultural areas of

447  theglobe and are cultivated in and adapted to diverse climate regimes.

19


https://doi.org/10.1101/2024.05.18.594591
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.18.594591; this version posted February 20, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

448

449  Weather data. Previously published weather data described in Toon et al. (2019) and Coupe et
450 & (2019) simulate the climate impacts of India-Pakistan and US-Russiawars using the

451  Community Earth System Model (CESM, version 1.3) with the Whole Atmosphere Community
452  Climate Modd Version 4 (WACCM4, version 4) as the atmospheric component, or CESM-
453  WACCM4>. To more accurately represent the evolution of smoke injection, the Community
454  Aerosol and Radiation Model for Atmospheres (CARMA ;> is coupled with WACCM to
455  simulate theinjection, lofting, advection, and removal of soot aerosols**®’.

456  The climate impacts of nuclear war were simulated by injecting varying quantities of black
457  carbon aerosol (soot) into the stratosphere in alayer between 100 and 300 hPa over a 1-week
458  period starting on 15 May above the U.S. and Russia, or the South Asian subcontinent®¥?#2 |n
459  total, six nuclear war scenarios were simulated, and we refer to the year soot was injected as year
460 “0". For the five India-Pakistan nuclear war scenarios (soot injections of 5 Tg, 16 Tg, 27.3 Tqg,
461 37 Tg, and 46.8 Tg, representing arange of arsenal sizes) simulations were each run for 19 years.
462  One United States-Russia scenario with a 150 Tg soot injection was also considered, and the

463  simulation was run for 21 years. This scenario assumes both countries use most of their nuclear
464  arsenals®® and is still possible given modern nuclear arsenals. Additionally, a single control run
465  that repeats the climate forcing of 2000 was simulated for 20 years to represent normal

466  atmospheric circulations”®.

467

468  Cycles. The Cycles agroecosystem model was used to infer growth and stress variables of

469 landrace accessions' point of origin using conditions accessions are expected to be adapted to

470  (control scenario) and post-catastrophe (six post-nuclear war soot scenarios). Cyclesis a process-
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471  based multi-year and multi-species agroecosystem model>** that requires a number of input files
472  to simulate crop growth. All simulations were carried out using Cyclesv0.13.0

473  (https://github.com/PSUmodeling/Cycles). The crop description file defines the physiological
474  and management parameters that control the growth and harvest of crops used in the simulation.
475  For each of our crop species, we used Cycles default crop parameters from the default crop

476  description file. The management (operation) file defines the daily management operations to be
477  used in asmulated crop rotation. We activated conditional planting where Cycles “plants’ a
478  simulated crop once certain soil moisture and temperature levels are satisfied within awindow of
479  planting dates. For many of the scenarios where planting conditions are not met (i.e. daily

480 temperature remainstoo low) Cycles forced planting on the last day of the planting window. We
481  turned on the automatic nitrogen fertilization option and set planting density to 67% for all crops
482  inthe simulation to be grown without nitrogen limitations so that stress observed in model

483  outputs was due entirely to climatic factors. Weather files were built using the CESM-WACCM4
484  outputs as described in ¥ and ° for one control and six post-nuclear soot scenarios, formatted for
485 usein Cycles. The weather files were generated by aggregating the three-hourly CESM output to
486 daly time steps at all CESM grids, which have a 1.9° latitude x 2.5° longitude resolution.

487  Weather files were matched to landrace point of origin for each simulated accession, where the
488  climatic parameters used to ssimulate growth match the location accessions were sourced from.
489  Weather filesincluded variables describing variation in daily precipitation, temperature, solar
490 radiation, humidity, and wind. Soil physical parameters were obtained from the ISRIC Soil Grids
491  global database™ viathe HydroTerre data system®®* for all simulation locations. Soil files were
492  also matched to landrace point of origin for each simulated accession and describe the average

493  soil characteristics and land use for crop cultivation types. For accessions designated as paddy
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494  rice by ? weused theirrigated or post-flooding land use type. Rainfed land use type was used
495  for al other smulated crop accessions.

496 For all simulated accessions of each crop species, seven Cycles simulations, including the
497  control scenario and six soot scenarios were implemented separately. Cycles models simulated
498 20 yearsof crop growth for the control scenario, 15 years of crop growth after impact for the
499 India-Pakistan scenarios (5 Tg, 16 Tg, 27 Tg, 37 Tg, 47 Tg, and 150 Tg), and 17 years of crop
500 growth for the US-Russia scenario (150 Tg). From the outputs of each Cycles simulation and for
501 each year growth was simulated, we extracted variables summarizing the environmental stress
502 and smulated growth plants experienced for each of our focal crop species (Cycles-derived

503 environmental variables). Variables included information on the number of days to reach

504 maturity, water stress, cold stress, and light stress experienced across simulated plant growth and
505 when inthe vegetative and reproductive phase (Table S1). For accessions not projected to reach
506  maturity, certain environmental summary variables were not extractable, and we imputed the
507 95% stress of the variable for each accession with missing environmental values, specific to crop
508 species and the year growth was simulated for.

509

510 Genotyped datasets. As differencesin genotyping resolution across species might influence the
511  detection of genomic signals of adaptation, we selected datasets with high density genomic

512 markers and adistribution of sequenced landraces accessions that most represented the

513  environmentsthat landraces of our focal species originate from and are likely adapted to.

514  Advancesin technology have made low-coverage whole-genome sequencing (WGS) relatively
515 inexpensive, providing datasets that are particularly well-suited for research exploring polygenic

516 signals. All genotype files were processed in PLINK, an established software for analyzing and

22


https://doi.org/10.1101/2024.05.18.594591
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.18.594591; this version posted February 20, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

517  filtering genotypic data®. For each landrace species, raw genotype files were filtered for minor
518 adlelefrequency (MAF) removing all SNPswith lower than 5% MAF and for linkage

519  disequilibrium (LD) to reduce the number of SNP candidates we tested for environmental

520 association. Astheinitial genotype files differed in size, the LD filter step included different
521  conditionsto thin files. We used --indep-pairwise 30 10 .1 for both rice subsp. (indica and

522  japonica) and sorghum, and --indep-pairwise 100 10 .05 for the maize and barley data files. This
523 filtering step resulted in 74,430 SNPsfor barley, 43,818 SNPs for rice subsp. japonica, 61,430
524  SNPsfor rice subsp. indica, 67,522 SNPs for maize, and 20,387 SNPs for sorghum to test for
525  association to the species-specific Cycles-derived environmental variables.

526

527 Genome scan for environmentally related SNPs. Genotype-environment associations test for
528 genetic variation that is statistically correlated to environmental predictors. We followed partial
529  redundancy analysis (pbRDA) methods developed by * to identify loci putatively involved in
530 environmental selection for our focal crop species. For each crop species, pPRDA models were
531  built using population allele frequencies (population defined as accessions from the same

532  geocoordinates) from the filtered genetic dataset as response variables and the 13 Cycles-derived
533  environmental variables from the control simulation, averaged across the 20 years of modeled
534  growth as explanatory variables. Neutral genetic structure was accounted for by including the
535 first three axes of a population PCA as conditional covariables. Using the rdapat function

536  described in ®, weidentified the top environmentally related (outlier) loci based on the

537 extremeness of their loading along a Mahalanobis distance distribution cal culated between each
538 marker and the center of the first two pRDA axes. P-values for each marker were derived as this

539 distance, corrected for the inflation factor using a chi-squared distribution with two degrees of
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540 freedom. We then selected the top 1,000 markers with the lowest P-values as candidate outliers
541 torepresent loci that may beimportant for environmental adaptation. The analysis was carried
542  out using Rivegan®.

543 To assess whether the top loci selected by pRDA are unique to the method, we further
544  implemented Bayesian-information and Linkage-disequilibrium Iteratively Nested Keyway
545 (BLINK) and compared the significant loci as identified by BLINK and pRDA for sorghum.
546 BLINK isa package commonly used for genome-wide association studies (GWAS) and

547  improves upon traditional GWAS methods by addressing limitations such as computational
548 inefficiency and reduced statistical power®™. We ran BLINK separately for the same 13 Cycles-
549  derived environmental variables used in the sorghum pRDA model and extracted the set of
550 gignificant loci (p-value < 0.05) for each BLINK model that were built separately for each

551 climate variable. For all BLINK models, the first three axes of a population PCA were used as
552  covariatesto account for population structure. We then compared the set of BLINK-identified
553  significant loci acrossall 13 models (8,728 unique SNPs) to the 1,000 most significant loci as
554 identified by pRDA and found that 556 SNPs were present in both datasets. Thus, the overlap
555  between genotype-environment association methods for identifying loci that are related to

556  variation in environmental gradients confirm that the results are not highly sensitive to the

557  approach.

558

559 ldentification of flowering time SNPs. We further accounted for genetic variation that may
560 capture important plant phenological processes by including SNPs of known flowering time
561 network loci for each focal crop species. We conducted a literature search to identify genes

562  known to beinvolved in the flowering time network for each crop (Table S2). Gene coordinates
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563  of each flowering time gene were gathered from the gff3 files that corresponded to each

564  reference genome used to call SNPs (maize (reference B73v2,

565  https://figshare.com/articles/dataset/GTF_and_GFF_for_maize/895628); rice (reference R498
566 IGDBvV3, http://mbkbase.org/R498/); sorghum (reference S. bicolorv3.1, https.//phytozome-
567  next.jgi.doe.gov/info/Shicolor_v3 1_1)**® For maize, rice subsp. indica and japonica, and
568  sorghum we also included SNPsfound +/- 5 kilobase (kb) of each flowering time geneto

569  account for variation in cis-regulatory elements. Barley sequence information was reported as
570  contigs and we extracted SNPs located in contigs previously identified to overlap with homologs
571  of well-characterized genesin Arabidopsis thaliana®. Gene coordinates for the location of each
572  flowering time gene region or flowering time related contig extracted using --extract in PLINK®.
573  Toaccount for patterns of linkage disequilibrium, we further filtered each species’ set of

574  flowering timeloci (gene and sites up and downstream of the gene) and only retained SNPs with
575 anr?valuelessthan 0.2 within the flowering-time genic window and flanking region.

576

577  Gradient forest modelsand calculation of offset. Gradient forest (GF) is a machine learning
578  agorithm extended from random forest which searches for genotypic patterns as associated with
579  environmental descriptors. Using R/gradientForest::gradientForest®’, we built GF models to

580 associate current adaptive alelic diversity (the combined set of pRDA-identified

581 environmentally related loci and flowering time network loci) with Cycles-derived

582  environmental variables from the control simulation, averaged across the 20 years of modeled
583  growth (hereafter, control GF model). Models were built separately for each of our focal crop
584  speciesto describe control species-specific genotype-environment relationships. The control GF

585 model parameters were tuned to increase the number of trees built to ntree = 500.
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Genomic offset (also known as genomic vulnerability) is one metric used to characterize
mal adaptation with a genomic context (reviewed in %). The distance between current and
expected genotype-environment associations under some change in environment is
representative of the genomic offset, or the genetic shift required in a population to adapt to the
future climate. Comparing the control genotype-environment association captured by GF models
(control GF model), and the projected genotype-environment association for different scenarios
(common garden, target scenarios, vulnerable locations) we made several measurements of GF
offset to summarize predicted maladaptation. For all GF offset calculations, we followed
methods described in #* .

To validate that our control GF model's captured current genotype-environment
associations, we first used the maize control GF modd to predict the genomic composition
expected at common gardens maize landraces had been phenotyped in for a previous study™.
Here, the GF offset was defined as the Euclidean distance of current genotype-environment
relationships at the common garden site from the genotype-environment relationship of each
landrace’ s point of origin. This measure summarized how genetically well matched alandrace
was to the common garden it was grown in (measure of predicted maladaptation to a common
garden) and was compared to the phenotypic breeding values for each landrace grown in a

common garden.

Validation of gradient for est-predicted adaptation. We used phenotypic data of maize

landraces grown in 23 trials across 13 common garden locations over 2 years to confirm that our

control GF models captured real differencesin current landrace genotype-environment
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608 relationships. We restricted our analysis to include the phenotypic data of landraces accessions
609 that were simulated in Cycles models.

610 Briefly, phenotyped accessions are a part of the broader SeeD evaluation of the maize
611  landrace collection®. Accessions were planted in multiple environments under areplicated F1
612  crossing. Importantly, two features of the crossing design ensure that phenotype data is not

613  overly biased by elevational adaptation. Crossed plants were preferentially grown in locations
614  that were of similar adaptation (highland tropical, sub-tropical or lowland tropical) to their home
615  environment and each plant was crossed to atester that was adapted to the environment that the
616  F1 seedswere grown in. These design features allowed for comparison of alarger sample of

617  accessions, but also led to an unbalanced experimental design. As a further consequence of the
618  experimental design, apparent adaptive differences among landraces may be reduced and make
619  phenotypic estimates of adaptation more conservative’. We extracted phenotypic information
620  capturing differencesin plant height (PH), the total weight of ears (kernels and cob) measured in
621 thefidd (field weight; FW), bare cob weight (BCW), moisture adjusted grain weight per hectare
622 (GWH), daysto anthesis (DA), daysto silking (DS), and anthesis-silking interval (ASl) for

623  plants grown in trials (https://data.cimmyt.org/dataset.xhtml ?persi stentld=hdl:11529/10548233).
624  The phenotypic datasets ranged from having n = 4,851 (BCW) to n = 11,762 (ASI) across the
625 field sites. Following methods from Gates et al., (2019) and Romero Navarro et al., (2017), we
626 estimated breeding values controlling for tester, checks, and field position in a complete nested
627  modd. We further accounted for the random effect of tester and year.

628

629 Calculation of offset under post-catastrophic conditions. Once we confirmed that our maize

630 control GF mode captured phenotypic differences representative of adaptation to common
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631 gardenswith conditions most like the source locations landraces are sourced from, we extended
632  our control GF models to predict maladaptation in crop landraces under the six post-war target
633  climate scenarios. Here, GF offset was calculated as the Euclidean distance between the current
634  predicted genotype-environment association (control GF model) and for each soot scenation, the
635  future projected genotype-environment association across all 13 Cycles-derived environmental
636 variables.

637 We confirmed that GF offset values were correlated to relative changes in environment
638 that were most related to genotype-environment associations, as summarized by the control GF
639 moded, by comparing the difference in GF offset (target subtracted from control) versus the
640 changein Cycles-derived environmental variables (Fig. S6). Environmental variables were

641 scaled and adjusted by their relative contribution to GF models.

642

643 ldentification of landrace substitutionsfor post-catastrophe adaptation. To understand if
644  existing landrace diversity may be a source of resilience following a climate catastrophe, we
645  used our GF models to identify the best suited substitutions for locations with the landraces that
646  arethe most maladapted®** under the most extreme target scenario (150 Tg) and for the year
647  where climate isthe most disrupted (year 2 after soot injection). Wefirst excluded all locations
648  not predicted to reach maturity, so as not to identify substitutions to locations where agriculture
649  would not likely be possible. For the remaining locations, we defined the most vulnerable

650 locations as those with the highest GF offset to search for both the most optimal and the best
651  within-country substitution. Clusters of vulnerable pixels were identified using

652  R/DBscan::dbscan’™, which groups pixels based off proximity. Clustering was based on the
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653  geographic distance between vulnerable pixels measured with R/geosphere::dism’. Only

654  clusters separated by <1000 km were retained for further analysis.

655 For each vulnerable cluster, a GF offset (i.e., Euclidean distance) was calculated between
656  the projected genotype-environment association of the vulnerable location under the 150 Tg

657  target scenario and the control GF modeled genotype-environment association (control GF

658 modédl) across all landrace accessionsincluded in the model. The lowest GF offset was defined as
659  the minimum Euclidean distance and identified the current landrace accession predicted to be
660  best adapted to the future climate conditions of the vulnerable area. For landrace accessions that
661  were not perfectly adapted to the locations they were substituted to (i.e GF offset is higher than
662 0), thismeasure represented the genomic gap that still needs to befilled for the migrated

663  varietiesto be fully adapted to the conditions of their new location (assuming current genotype-
664  environment relationships are representative of perfect adaptation). High GF offset indicated

665  substitutions where accessions are not predicted to be well adapted to the locations they were
666  substituted to, and no other landraces included in the model were better adapted to the projected

667 climate of the vulnerable area.

668 Dataavailability

669 The Community Earth System Model is fredy available from the NCAR but requires
670 registration at www. cesm.ucar.edu/models/cesm1.2. Additionally, atmospheric model output
671  for the 150 Tg case (Coupe et al., 2019) isavailable at https://doi.org/10.6084/

672  m9.figshare.7742735.v1. The full model outputsfor all simulations are very large and stored on
673 thePetaLibrary at the University of Colorado, which isnot available to the public. However,
674  additional data from these runs can be provided upon request.

675 Code Availability
676  The scripts for the bioinformatics analysis are publicly available in GitHub at_GitHub Repo.
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Figure 1 a) Global distribution of genotyped landrace accessions used in the study (All
accessions, n = 6,384; Barley, n = 215; Maize, n = 3,404; Rice subsp. indica, n = 677; Rice
subsp. japonica n = 309; Sorghum, n=1779). b) Modeling and statistical pipeline used in this
study.

(next page) Figure 2 Cycles-derived environmental variablesfor A) barley B) maize C) rice
subsp. indica D) rice subsp. japonica and E) sorghum. Control lines are plotted as the average
value across all accessions that were projected to reach maturity. The shading around averaged
control represents the standard deviation of yearly averages, indicating yearly fluctuationsin

environmental variables. For all soot scenarios, lines are plotted as yearly averaged values across

accessions that were projected to reach maturity. The vertical dotted line indicates the time of
soot injection into the climate models.
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711 Figure 3 GF models capture current genotype-environment associations in maize landraces and
712 were used to predict maladaptation (GF offset) under post-catastrophic climate scenarios. A)

713  Phenotypic residuals (remaining variation after accounting for experimental design) plotted

714  against the logged GF offset of maize landrace accessions grown in common gardens. GF offset
715 iscalculated for each phenotyped accession as the Euclidean distance of the expected genotype-
716  environment relationship at a common garden common vs the genotype-environment

717  relationship from the accessions' point of origin. Points with a more negative logged GF offset
718 indicate maize landrace accessions that are expected to be adapted to the common garden they
719  weregrown in. Yearly logged GF offset for B) maize C) barley D) rice subsp. indica E) rice

720  subsp. japonica and F) sorghum. The control line shows the mean logged GF offset across all
721  years, with the shaded region representing the standard deviation of yearly means to indicate

722 fluctuationsin maladaptation (GF offset) due to normal variability in climate. Soot scenario lines
723  areaveraged logged GF offset across all accessions of a species and colored by soot scenario.
724  Thevertical dotted line indicates the time of soot injection into the climate models. Inlaid scatter
725  plots are the averaged logged GF offset across all accessions of a species two years after the

726  incident.
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728 Figure4 Gl obal distribution of logged GF offset (predicted maladaptatl on) under the 150 Tg
729  scenario 2, 9, and 16 years after the incident for landraces (filled black circles, with overlaid

730  open colored circles indicating offset). Higher GF offset values correspond to a larger degree of
731  predicted maladaptation under the post-war scenario.
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733  Figure5 Substitution trajectories for the most vulnerable landrace populationsin year 2 of the
734 150 Tg scenario. For each crop, arrows connect the source location of a landrace accession that is
735  the most optimal to the vulnerable location (arrowhead) and are colored by the remaining GF
736  offset (maladaptation) of the substitution. Substitutions are colored by how well-matched the
737 moved landrace is to the vulnerable location, where colors corresponding to lower GF offset of
738  subgtitution indicate a substitution that has alow degree of maladaptation to the novel

739  environment. For each crop, substitution trajectories are provided for the most optimal

740  subdtitution across al available germplasm and the best within-country substitution. Inlaid
741  histograms represent the frequency of substitutions of different distances and are colored by the
742  remaining GF offset (maladaptation) of the substitution.
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766  Figure S1 The relationship between simulated days to reach maturity and change in daily

767  temperature for all landrace accessions across all years simulated, colored by soot scenario.

768  Points are masked from the plots for years where landrace accessions were not projected to reach
769  maturity. The frequency of crop failure (points that are masked from the plot) for the year with
770  the most extreme climate impacts are given here as percentages for the5 Tg, 6 Tg, 27 Tg, 37 Tg,
771 47 Tg, 150 Tg scenarios. Barley: 6%, 8%, 13%, 22%, 24%, 90%. Maize: 0%, 0%, 0%, 0.5%,

772 4%, 54%. Rice subsp. indica: 0.5%, 1%, 2%, 3%, 5%, 62%. Rice subsp. japonica: 3%, 5%, 12%,
773 19%, 20%, 51%. Sorghum: 0, 0.5%, 0.5%, 2%, 4%, 33%.
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780  (next page) Figure S2 pRDA loading plots for the identification of loci with significant

781  association to Cycles-derived environmental variables of the control simulation for usein

782  gradient forest (GF) models. Percent variation explained by the first two pRDA axes (represented
783  asapercentage next to the respective axis) is calculated as the percent variation described by the
784  constrained pRDA axis divided by the variation across all unconstrained axes. Environmentally
785  related (outlier) loci are defined asthe 1,000 sites with the most extreme loading along a

786  Mahalanobis distance distribution, calculated between each marker and the center of the first two
787 pRDA axes. For each species, loci identified as “outlier” were retained for use in GF models.
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Figure S3 R? importance plots of Cycles-derived environmental and growth variables used to
build each species’ control GF model for A) barley B) maize C) rice subsp. indica D) rice subsp.
japonica and E) sorghum. Variables are ordered by their relative contribution in describing
genome-wide diversity of loci included in each respective GF model.
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Figure $4 GF models of control genotype-environment associations in maize landraces capture
signals of local adaptation. A) Large red points denote sites of common gardens. Black points
denote the source locations of landrace accessions grown in common gardens. B) Phenotypic
residuals (remaining variation after accounting for experimental design) plotted against the
logged GF offset of maize landraces grown in common gardens. GF offset is calculated for each
phenotyped accession grown in acommon garden as the Euclidean distance of the expected
genotype-environment relationship at a common garden common vs the genotype-environment
relationship from the landrace accessions’ point of origin. Points with a more negative logged
GF offset indicate landrace accessions that are expected to be adapted to conditions at the
common garden.
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812

813  Figure S5 Variation in logged GF offset for A) barley B) maize C) rice subsp. indica D) rice
814  subsp. japonica and E) sorghum by scenario. Each black line represents the logged GF offset for
815 amodeled landrace accession. The colored line isthe average across al individuals by soot

816  scenario. Averaged logged GF offset by soot scenario isthe same as shown in Figure 3 B-F.
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820  Figure S6 Change in GF offset corresponds to relative changesin climate for maize landrace
821  accessions. Distance between predicted genotype-environment relationships for the 150 Tg
822  “target” scenario and the control scenario vs the environmental change between the 150 Tg target
823  and control scenario.
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834  Table Sl Description of environmental and growth variables obtained for Cycles simulated
835 landrace accessions (Cycles-derived environmental variables). For a given landrace accession,
836  each variable was extracted separately for each smulation year and climate scenario (control, 5
837 Tg,6Tg, 27 Tg, 37 Tg, 47 Tg, 150 TQ).

Variable Description
Average temperature (°C) The daily average temperature for each day crop
vegetative, reproductive, cumulative growth was simulated across the entire growth

period (cumulative) or for specific phenological
growth stages (vegetative, reproductive).
Coldest temperature (°C) The daily minimum temperature for each day
vegetative, reproductive, cumulative crop growth was simulated across the entire
growth period (cumulative) or for specific
phenological growth stages (vegetative,

reproductive).
Solar radiation (MJ m™/day) Daily solar radiation for each day crop growth
vegetative, reproductive, cumulative was simulated across the entire growth period

(cumulative) or for specific phenological growth
stages (vegetative, reproductive).

Water Stress (%) Daily water stress for each day crop growth was
vegetative, reproductive, cumulative simulated across the entire growth period
(cumulative) or for specific phenological growth
stages (vegetative, reproductive).

Maturity days Simulated days to reach physiological maturity.
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849
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851 Table S2 Flowering time genes used in GF models ordered by species. For each flowering time
852  gene, the GenelD for each species’ reference genomeisincluded.

Genel D within
Species Gene r eference genome
Maize CCAl GRMZM?2G014902
CCT1 GRMZM?2G381691
CCT11 GRMZM2G135446
CCT4 GRMZM?2G033962
CCT2 GRMZM?2G004483
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CONZ1 GRMZM?2G405368

D8 GRMZM2G144744
D9 GRMZM?2G024973
DLE1 GRMZM5G859316
DLF1 GRMZM?2G067921
Gil GRMZM2G107101
Gi2 GRMZM5G844173
GL15 GRMZM2G160730
ID1 GRMZM?2G011357

MADSIL GRMZM?2G171365
MADS59 GRMZM2G171650
PEBP2 GRMZM2G156079
PEBP24 GRMZM2G440005
PEBP4 GRMZM2G075081
PEBPS8 GRMZM?2G179264
PRRTF1 GRMZM2G095727

RAP2 GRMZM2G700665
ZAG6 GRMZM2G026223
ZCN8 GRMZM2G019993
LHY GRMZM2G474769

MAD3#A GRMZM?2G032339
TOCla GRMZM2G020081

Barley CCAl Hvcontig 1567295
CEN Hvcontig 274284
COL1 Hvcontig 138334
COL2 Hvcontig 6805
ELF3 Hvcontig 80895/67536
EL F4-/ike3 | Hvcontig 42805
FKF1 Hvcontig 38586
FT Hvcontig 54983
Gl Hvcontig 58270/1580005
GRP7 Hvcontig 1578172
LHY Hvcontig_1567295
LUX Hvcontig 2548416

PRRI(5) Hvcontig 46739
PRR5(9) Hvcontig 41351
PRR7/37 Hvcontig 94710
TOCI Hvcontig 37494
ZTL Hvcontig_ 273830
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Rice DTH2 OsR498G0204681300.01
DTH3 OsR498G0305144600.01
DTH8 OsR498G0815298200.01
E OsR498G1018858200.01
El OsR498G0713935400.01
E2 OsR498G0713935400.01
E3 OsR498G0307088600.01
Ehd1 OsR498G1018858200.01
Ehd2 OsR498G1018735700.01
Ehd4 OsR498G0305108900.01
GHd7 OsR498G0713935400.01
Hd1 OsR498G0612090700.01
Hd16 OsR498G0307192700.01
Hd17 OsR498G0611607800.01
Hd18 OsR498G0815152000.01
Hd3a OsR498G0611656900.01
Se OsR498G0612090600.01

Sorghum | CO Sobic.004G007400
CN12 Sobic.003G295300

CRY1-bl Sobic.004G188400
CRY2-2 Sobic.006G101600

D8 Sobic.001G120900
Ehdl Sobic.010G238700.1
ELF3 Sobic.009G257300.2
FT1 Sobic.010G045100
HD6 Sobic.002G010300
LHY-4 Sobic.004G279300
Ma2 Sobic.002G302700
Ma3 Sobic.001G394400.1
Mas Sobic.001G087100.1
TOC1 Sobic.004G216700.1
Zfl1 Sobic.006G201600
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1042  Figure2 Cycles-derived environmental variablesfor A) barley B) maize C) rice subsp. indica D)
1043  rice subsp. japonica and E) sorghum. Control lines are plotted as the average value across all
1044  accessions that were projected to reach maturity. The shading around averaged control represents
1045 the standard deviation of yearly averages, indicating yearly fluctuationsin environmental

1046  variables. For all soot scenarios, lines are plotted as yearly averaged values across accessions that
1047  were projected to reach maturity. The vertical dotted line indicates the time of soot injection into
1048  the climate models.
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1052  Figure 3 GF models capture current genotype-environment associations in maize landraces and
1053  were used to predict maladaptation (GF offset) under post-catastrophic climate scenarios. A)
1054  Phenotypic residuals (remaining variation after accounting for experimental design) plotted
1055 against the logged GF offset of maize landrace accessions grown in common gardens. GF offset
1056 iscalculated for each phenotyped accession as the Euclidean distance of the expected genotype-
1057  environment relationship at acommon garden common vs the genotype-environment

1058 relationship from the accessions’ point of origin. Points with a more negative logged GF offset
1059 indicate maize landrace accessions that are expected to be adapted to the common garden they
1060 weregrown in. Yearly logged GF offset for B) maize C) barley D) rice subsp. indica E) rice
1061  subsp. japonica and F) sorghum. The control line shows the mean logged GF offset across al
1062  years, with the shaded region representing the standard deviation of yearly means to indicate
1063  fluctuationsin maladaptation (GF offset) due to normal variability in climate. Soot scenario lines
1064  are averaged logged GF offset across all accessions of a species and colored by soot scenario.
1065 The vertical dotted line indicates the time of soot injection into the climate models. Inlaid scatter
1066  plots are the averaged logged GF offset across all accessions of a speciestwo years after the
1067  incident.
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1069  Figure4 Global distribution of logged GF offset (predicted maladaptation) under the 150 Tg
1070  scenario 2, 9, and 16 years after the incident for landraces (filled black circles, with overlaid
1071  open colored circlesindicating offset). Higher GF offset values correspond to a larger degree of
1072  predicted maladaptation under the post-war scenario.
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1074  Figure5 Substitution trajectories for the most vulnerable landrace populationsin year 2 of the
1075 150 Tg scenario. For each crop, arrows connect the source location of a landrace accession that is
1076  the most optimal to the vulnerable location (arrowhead) and are colored by the remaining GF
1077  offset (maladaptation) of the substitution. Substitutions are colored by how well-matched the
1078 moved landrace isto the vulnerable location, where colors corresponding to lower GF offset of
1079  subdtitution indicate a substitution that has a low degree of maladaptation to the novel

1080  environment. For each crop, substitution trajectories are provided for the most optimal

1081  subgtitution across all available germplasm and the best within-country substitution. Inlaid

1082  histograms represent the frequency of substitutions of different distances and are colored by the
1083  remaining GF offset (maladaptation) of the substitution.
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