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Abstract
Understanding the complex three-dimensional structure of cells is crucial across many disciplines in biology and es-

pecially in neuroscience. Here, we introduce a set of models including a 3D transformer (SwinUNetR) and a novel 3D
self-supervised learning method (WNet3D) designed to address the inherent complexity of generating 3D ground truth
data and quantifying nuclei in 3D volumes. We developed a Python package called CellSeg3D that provides access to
these models in Jupyter Notebooks and in a napari GUI plugin. Recognizing the scarcity of high-quality 3D ground
truth data, we created a fully human-annotated mesoSPIM dataset to advance evaluation and benchmarking in the
field. To assess model performance, we benchmarked our approach across four diverse datasets: the newly developed
mesoSPIM dataset, a 3D platynereis-ISH-Nuclei confocal dataset, a separate 3D Platynereis-Nuclei light-sheet dataset,
and a challenging and densely packed Mouse-Skull-Nuclei confocal dataset. We demonstrate that our self-supervised
model, WNet3D – trained without any ground truth labels – achieves performance on par with state-of-the-art super-
vised methods, paving the way for broader applications in label-scarce biological contexts.

Introduction
Recent advancements in three-dimensional (3D) imaging
techniques have provided unprecedented insights into cellu-
lar and tissue-level processes. In addition to confocal imag-
ing and other fluorescent techniques, imaging systems based
on light-sheet microscopy (LSM), such as the mesoscopic se-
lective plane-illumination microscopy (mesoSPIM) initiative
(1), have emerged as powerful tools for non-invasive, high-
resolution 3D imaging of biological specimens. Due to its
minimal phototoxicity and ability to capture high-resolution
3D images of thick biological samples, it has been a powerful
new approach for imaging thick samples, such as the whole
mouse brain, without the need for sectioning.

The analysis of such large-scale 3D datasets presents a signif-
icant challenge due to the size, complexity and heterogeneity
of the samples. Yet, accurate and efficient segmentation of
cells is a crucial step towards density estimates as well as
quantification of morphological features. To begin to address
this challenge, several studies have explored the use of su-
pervised deep learning techniques using convolutional neural
networks (CNNs) or transformers for improving cell segmen-
tation accuracy (2–5). Various methods now exist for per-
forming post-hoc instance segmentation on the models’ out-
puts in order to separate segmentation masks into individual
cells.

Typically, these methods use a multi-step approach, first seg-
menting cells in 2D images, optionally performing instance
segmentation, and then reconstructing them in 3D using the

volume information (3). While this can be successful in many
contexts, this approach can suffer from low recall or have
trouble retaining finer, non-convex labeling. Nevertheless,
by training on (ideally large) human-annotated datasets, these
supervised learning methods can learn to accurately segment
cells in 2D, and ample 2D datasets now exist thanks to com-
munity efforts (6).

However, directly segmenting volumes in 3D (“direct-3D”)
could limit errors and streamline processing by retaining im-
portant morphological information (2). Yet, 3D annotated
datasets are lacking (6), likely due to the fact that they are
highly time-consuming to generate. For example, to our
knowledge, no 3D segmentation datasets of cells in whole-
brain LSM volumes are available, despite the existence of
open-source microscopy database repositories (7). Thus,
here we provide the first human annotated ground truth 3D
data from mesoSPIM samples in over 2,5K neural nuclei
from the mouse neocortex. This data not only can be used
for benchmarking algorithms as they emerge, but can be used
in ongoing efforts to build foundation models for 3D mi-
croscopy.

While supervised learning is extremely powerful, it requires
ample ground truth data which is often lacking. On the other
hand, in computer vision self-supervised learning (unsuper-
vised learning), is emerging as a powerful approach for train-
ing deep neural networks without the need for explicit label-
ing of ground truth data. In the context of segmentation of
cells, several studies have explored the use of unsupervised
techniques to learn representations of cellular structures and
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Figure 1. Performance of 3D Semantic and Instance Segmentation Models. a: Raw mesoSPIM whole-brain sample, volumes and correspond-
ing ground truth labels from somatosensory (S1) and visual (V1) cortical regions. b: Evaluation of instance segmentation performance for: baseline
with Otsu thresholding only, supervised models: Cellpose, StartDist, SwinUNetR, SegResNet; and our self-supervised model WNet3D over three data
subsets. F1-score is computed from the Intersection over Union (IoU) with ground truth labels, then averaged. Error bars represent 50% Confidence
Intervals (CIs). c: View of 3D instance labels from supervised models, as noted, for visual cortex volume in b evaluation. d: Illustration of our WNet3D
architecture showcasing the dual 3D U-Net structure with our modifications (see Methods).

improve segmentation accuracy (8, 9). However, these meth-
ods rely on adversarial learning, which can be difficult to train
and have not been shown to provide accurate 3D results on
cleared tissue for LSM data, which can suffer from clearing
and other related artifacts.

Here, we developed a custom Python toolbox for direct-
3D supervised and self-supervised cell segmentation built on
state-of-the-art transformers and 3D CNN architectures (10,
11) paired with classical image processing techniques (12).
We benchmark our methods against Cellpose and StarDist
- two leading supervised cell segmentation packages with
user-friendly workflows - on our newly generated 3D ground
truth dataset, and show our supervised method can match
or outperform them (in the low data regime) in 3D seman-
tic segmentation on mesoSPIM-acquired volumes. Then, we
show that our novel self-supervised model, which we named
WNet3D, can be as good as or better than supervised mod-
els without any human labeled data for training. Lastly, we

benchmarked on three other diverse open-source 3D datasets,
one acquired with LSM (Platynereis-Nuclei), and two oth-
ers acquired with confocal imaging (Mouse-Skull-Nuclei and
Platynereis-ISH-Nuclei) (13).

Results
Whole mouse brain LSM followed by counting nuclei is
becoming an increasingly popular task thanks to advances
in imaging and tissue clearing techniques (14–16). Nu-
clear counting can be useful for c-FOS quantification, post-
hoc verification of calcium indicator imaging location, and
anatomical mapping. However, in order to develop more
robust computer vision methods for these tasks, new 3D
datasets must be developed, as none exist to date. There-
fore, we developed a 3D human-annotated dataset based on
data acquired with a mesoSPIM system (1) (Figure 1a, see
Methods and the Dataset Card). Using whole-brain data
from mice, we cropped small regions and human annotated in
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Figure 2. Benchmarking performance of WNet3D vs. supervised models with various amount of training data on our mesoSPIM dataset. a:
Semantic segmentation performance: comparison of model efficiency, indicating the volume of training data required to achieve a given performance
level. Each supervised model was trained with an increasing percentage of training data (with 10, 20, 60 or 80%, left to right/dark to light within each
model grouping, see legend); F1-Score score with an IoU >= 0 was computed on unseen test data, over three data subsets for each training/evaluation
split. Our self-supervised model (WNet3D) is also trained on a subset of the training set of images, but always without ground truth human labels. Far
right: We also show performance of the pre-trained WNet3D available in the plugin (far right), with and without cropping the regions where artifacts are
present in the image. See Methods for details. The central box represents the interquartile range (IQR) of values with the median as a horizontal line,
the upper and lower limits the upper and lower quartiles. Whiskers extend to data points within 1.5 IQR of the quartiles. b: Instance segmentation
performance comparison of Swin-UNetR and WNet3D (pretrained, see Methods), evaluated on unseen data across 3 data subsets, compared with a
Swin-UNetR model trained using labels from the WNet3D self-supervised model. Here, WNet3D was trained on separate data, producing semantic
labels that were then used to train a supervised Swin-UNetR model, still on held-out data. This supervised model was evaluated as the other models,
on 3 held-out images from our dataset, unseen during training. Error bars indicate 50% CIs. c: Workflow diagram depicting the segmentation pipeline:
either raw data can be used directly (self-supervised) or labeled and used for training, after which other data can be used for model inference. Each
stream concludes with post-hoc inspection and refinement, if needed (post-processing analysis and/or refining the model).

3D 2,632 neurons that were endogenously labeled by TPH2-
tdTomato (Figure 1a). In order to aid experts in performing
labeling we built a 3D annotator in napari, which is included
in our Python package called CellSeg3D (see Methods).

To show performance on this new dataset, we benchmarked
Cellpose (3, 17) and StarDist (2). Cellpose is a spatial-
embedding-based instance segmentation method. The net-
work predicts a flow vector at each pixel, representing the
pre-computed solution of the heat diffusion equation applied
to instance masks, with the heat source at the object center.
During inference, these learned flows guide pixel grouping,
linking those that converge to the same location. Cellpose-3D
extends Cellpose by using the trained 2D model, and process-

ing all slices of a test volume independently along the xy, xz,
and yz planes. This generates two estimates of the gradient
in x, y, and z for each point (six total predictions), which are
averaged to obtain a full set of 3D vector gradients. ROI gen-
eration then follows a 3D gradient vector tracking step, clus-
tering pixels that converge to the same fixed points. StarDist
predicts distances from each pixel (or voxel) to the boundary
of the surrounding object along predefined directions (rays).
This allows for precise instance segmentation, particularly
for objects with star-convex shapes, making StarDist one of
the most widely applied methods in this domain.

We then trained two additional models from different classes
- transformers and 3D convolutional neural networks - for su-
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Figure 3. CellSeg3D napari plugin pipeline, training, and example outputs. a: Left: 3D Platynereis-ISH-Nuclei confocal data; middle is WNet3D
semantic segmentation; right is instance segmentation. b: Instance segmentation performance (zero-shot) of the pretrained WNet3D, and supervised
models (Cellpose, StarDist) on select datasets featured in a, shown as F1-score vs IoU with ground truth labels. c: Left: 3D Platynereis-Nuclei LSM
data; middle is WNet3D semantic segmentation; right is instance segmentation. d: Instance segmentation performance (zero-shot) of the pretrained
WNet3D, and supervised models (Cellpose, StarDist) on select datasets featured in c, shown as F1-score vs IoU with ground truth labels. e: Left:
Mouse Skull-Nuclei Zeiss LSM 880 data; middle is WNet3D semantic segmentation; right is instance segmentation. A demo of using CellSeg3D to
obtain these results is available here: https://www.youtube.com/watch?v=U2a9IbiO7nE&t=12s. f: Instance segmentation performance (zero-shot) of
the pretrained WNet3D, and supervised models (Cellpose, StarDist) on select datasets featured in e, shown as F1-score vs IoU with ground truth labels.

pervised direct-3D segmentation. Specifically, we leveraged
a SwinUNetR transformer (11), and a SegResNet CNN (18)
from the MONAI project (19). SwinUNetR is a transformer-
based segmentation model that combines the Swin Trans-
former architecture with the UNet design. It leverages the
self-attention mechanism of transformers for capturing long-
range dependencies and multi-scale features in the input data.
The hierarchical structure of the Swin transformer allows
SwinUNetR to process images with variable resolutions effi-
ciently. SegResNet is a convolutional neural network (CNN)
developed for 3D medical image segmentation (18). It is
based on a ResNet-like architecture, incorporating residual
connections to improve gradient flow and model convergence
during training. SwinUNetR and SegResNet are optimized
for volumetric segmentation tasks, but not used previously in
cell segmentation tasks.

We found that our supervised models (SwinUNetR and
SegResNet) have comparable instance segmentation perfor-
mance to Cellpose and StarDist on held-out (unseen) test data
set as measured by the F1 vs. IoU threshold (see Methods,
Figure 1b, c) and thus are highly amendable to cell segmen-

tation tasks. For a fair comparison, we performed a hyper-
parameter sweep of all the models we tested (Supplemental
Figure S1a-d), and in Figure 1b and c we show the quan-
titatively and qualitatively best models. We also compared
to a non-deep learning-based baseline consisting of Otsu’s
method followed by Voronoi-Otsu instance segmentation to
generate predictions (Figure 1b). Importantly, many deep
learning-based models could achieve excellent performance
on our new dataset (Figure 1b, c), with the SwinUNetR trans-
former performing the best (Figure 1b).

While supervised models are extremely powerful when la-
beled data is available to train on, in many new applica-
tions there is limited to no human-annotated data. Thus,
self-supervised methods can be highly attractive, as they re-
quire no human annotation. Self-supervised learning for 3D
cell segmentation relies on the assumption that structural and
morphological features of cells can be inferred directly from
unlabeled data. This involves leveraging inherent proper-
ties such as spatial coherence and local contrast in imaging
volumes to distinguish cellular structures. This approach as-
sumes that meaningful representations of cellular boundaries
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and nuclei can emerge solely from raw 3D volumes. By mod-
eling these properties, algorithms can be used across varied
tissue conditions, including tissues that have some artifacts
(i.e., from LSM and the clearing processes), but such arti-
facts may need a post-processing step to filter out extra large
or small particles. To note, a strength of this approach is
that self-supervised methods are better equipped to general-
ize across diverse imaging modalities and datasets by cap-
turing underlying structural features, rather than relying on
potentially biased human labels. Thus, as with any approach,
it has its trade-offs.

Here, we built a new self-supervised model called WNet3D
for direct-3D segmentation that requires no ground truth
training data, only raw volumes. Our WNet3D model is
inspired by WNet (10) (see Methods, Figure 1b, c). Our
changes include a conversion to a fully 3D architecture and
adding the SoftNCuts loss, replacing the proposed two-step
model update with the weighted sum of the encoder and de-
coder losses, and trimming the number of weights for faster
inference (Supplemental Figure S2a, and see Methods). We
found that WNet3D could be as good or better than the fully
supervised models, especially in the low data regime, on this
dataset at semantic segmentation (Figure 2a; averaged values
across data splits are shown in Supplemental Figure S1e, and
statistical values are in Supplemental Figure S1f)).

Notably, our pre-trained WNet3D, which is trained on 100%
of raw data without any labels, achieves 0.81 ± 0.004 F1-
Score with simple filtering of artifacts (removing the slices
containing the problematic regions; Suppl. Figure S1g) and
0.74±0.12 without any filtering. To compare, we trained su-
pervised models with 10, 20, 60 or 80% of the training data
and tested on the held-out data subsets. Considering models
with 80% of the training data, the F1-Score for SwinUNetR
was 0.83±0.01, 0.76±0.03 for Cellpose tuned, 0.74±0.06
for SegResNet, 0.72 ± 0.07 for StarDist (tuned), 0.61 ± 0.07
for StarDist (default), 0.43±0.09 for Cellpose (default). For
WNet3D with 80% raw data for training was 0.71±0.03 (un-
filtered) (Figure 2a; an unfiltered example is shown in Sup-
plemental Figure S1g), which is still on-par with the top su-
pervised models.

For models with only 10% of the training data, the F1-Score
was 0.78 ± 0.07 for SwinUNetR, 0.69 ± 0.02 for StarDist
(tuned), 0.42 ± 0.13 for SegResNet, 0.39 ± 0.36 for StarDist
(default), 0.32±0.4 for Cellpose tuned, 0.20±0.35 for Cell-
pose (default), and WNet3D was 0.74 ± 0.02 (unfiltered),
which is still on-par with the top supervised model, and much
improved (2X) over most supervised baselines, most strik-
ingly at low-data regimes (Figure 2a).

Thus, on this new MesoSPIM 3D dataset (over the four dif-
ferent data subsets we tested) we find significant differences
in model performance (Kruskal-Wallis H test, H=49.21,
p=2.06e-08, n=12). With post-hoc Conover-Iman test-
ing, WNet3D showed significant performance gains over
StarDist and Cellpose (defaults) (statistics in Supplemen-
tal Figure S1f). Importantly, it is not significantly differ-
ent from the best performing supervised models (i.e., Swin-

UNetR p=1, and other competitive supervised models: Cell-
pose (tuned) p=0.21, or SegResNet p=0.076; Supplemen-
tal Figure S1f). Altogether, our self-supervised model can
perform as well as top supervised approaches on this novel
dataset.

As WNet3D is self-supervised, it therefore cannot inherently
discriminate cells vs. artifacts – it has no notion of a “cell”.
Therefore, filtering can be used to clean up artifacts when
sufficient (e.g., using rules based on label volume to remove
aberrantly small or large particles), or one could use WNet3D
to generate 3D labels, correct them, and then use these semi-
manually annotated images in order to train a suitable super-
vised model (such as Cellpose or SwinUNetR), which would
be able to distinguish artifacts from cells. This process is
called active learning, and can generally speed up data anno-
tation (Figure 2b).

To show the feasibility of this approach, we trained a Swin-
UNetR using WNet3D self-supervised generated labels (Fig-
ure 2b) and show it can be nearly as good as a fully super-
vised model that required human 3D labels (no significant
difference across F1 vs. IoU thresholds; Kruskal-Wallis H
test H=4.91, p=0.085, n=9). Labeling, training, and this ac-
tive inference learning can be completed in the CellSeg3D
napari plugin we provide (Figure 2c). Moreover the models
we present are available in Jupyter Notebooks (which can be
used locally or on Google Colab) and in a new napari plugin
we developed, with full support for labeling, training (self-
supervised or supervised), model inference, and evaluation
plus other utilities (Figure 2c). We also provide our pre-
trained WNet3D model weights for user testing, and bench-
mark the model below.

We benchmarked WNet3D, Cellpose, StarDist, plus the non-
deep learning baseline, on three other 3D datasets that were
recently developed (13). These three additional datasets have
varying cell sizes and cell density, and are collected with ei-
ther LSM or confocal microscopy (Figure 3a, c, e). We used
the pretrained Cellpose model (17), trained a StarDist model
(no suitable pretrained model existed), and used our WNet3D
model that was only pretrained on the mesoSPIM dataset we
present above. Note, this is a strong test of generalization
of our model, as it was only trained on a single dataset in
a self-supervised manner. Our pre-trained WNet3D general-
izes quite favorably on most datasets, and on average has the
highest F1-Score on each individual dataset (Table S1, Fig-
ure 3a-f). Notably, WNet3D showed strong performance on
the challenging Mouse Skull dataset (Figure 3e, f; Supple-
mental Figure S2b).

Lastly, as a worked example, we show the testing of our
pre-trained WNet3D on mouse whole-brain tissue that was
cleared and stained with cFOS then imaged with a mesoSPIM
microscope (Figure 4a, b; see Methods). We used the
BrainReg (20–22) registration toolkit to first align our sam-
ple to the Allen Institute Brain Atlas (https://mouse.
brain-map.org/). We then selected brain regions (such as
motor cortex) using our CellSeg3D package, and ran model
inference (Figure 4b).
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Figure 4. CellSeg3D napari plugin example outputs. a: Demo using a cleared and MesoSPIM imaged c-FOS mouse brain, followed by Brain-
Reg (20–22) registration to the Allen Brain Atlas (https://mouse.brain-map.org/, then processing of Regions Of Interest (ROIs) with CellSeg3D.
Here, the WNet3D was used for semantic segmentation followed by processing for instance segmentation. b: Qualitative example of WNet3D-generated
prediction (thresholded) and labels on a crop from the c-FOS-labeled whole-brain. A demo of using CellSeg3D to obtain these results is available here:
https://www.youtube.com/watch?v=3UOvvpKxEAo.

Limitations

One major limitation for the field has been the lack of 3D
data (6). We provide the first-in-kind open source ground
truth dataset of mesoSPIM mouse brain data that we hope
sparks more methods to be developed. Thus, while we put
considerable efforts here to provide a new neuron 3D dataset,
more datasets will be needed in the future to understand the
limitations of self-supervised learning for this type of data
and beyond.

Another limitation is that self-supervised methods are going
to excel in samples that have enough separation in the signal-
to-noise (i.e., clear nuclei). As discussed above, our method
works by detection, and as with any semantic segmentation
method, this then requires fine-tuning of threshold parame-
ters. With ground truth data this is straight-forward, but if
one lacks any ground truth, this can be subjective. Yet, set-
ting the threshold often can be largely guided from the sci-
entific question at hand. Therefore, while tuning such a pa-
rameter is required (which is equally the case for, i.e., Cell-
pose pre-trained models), with the tooling we provide, this
becomes easier to set the threshold based on visual inspec-
tion of the objects of interest, as long as the objects in the
volumes respects the previously mentioned assumptions. We
aimed to limit this problem by showing how active learning
can help by using this approach to generate reasonable la-
bels for downstream fine-tuning. Namely, in Figure 2b, we
show how self-supervised learning can act as a step towards
pseudo-labeling. We provide the software to then inspect and
correct these pseudo-labels. Then one can use these labels for
training and this performs on par-with top supervised meth-
ods, such as the SwinUNetR transformer approach we intro-
duce here.

While we focused our efforts on rather uncluttered nuclei,
except for the challenging mouse skull in Figure 3e where
WNet3D performs better than supervised models, we believe
that our self-supervised semantic segmentation model could
be applied to other fluorescence 3D data as it becomes avail-
able, given the limitations. However, we have never tested
our approach on electron microscopy data or for axon trac-
ing, so other tools are likely to be more suitable for this
task (23, 24). For instance segmentation, if the cells are more
overlapping, etc., more complex methods, such as the star-
convex polygons used by StarDist to approximate the shapes
of cell nuclei, could be adapted to recover higher-quality in-
stance labels (since it is agnostic to the backbone used (2)).
We believe that the benefit of fully self-supervised learning is
worth the cost of post-hoc processing for these types of easy-
to-spot and fix mistakes, given that generating a large ground
truth 3D dataset is on the order of hundreds of human-hours
of labeling efforts.

Conclusions
In summary, the CellSeg3D Python package supports high-
performance supervised and self-supervised direct-3D seg-
mentation for quantifying cells, as shown on four benchmark
datasets. Our napari plugin supports both our new pretrained
WNet3D for testing, the ability to train the WNet3D, and
to use other pretrained top supervised models presented here
(SegResNet, SwinUNetR). We also provide various tools for
pre- and post-processing as well as utilities for labeling in
3D. We additionally provide our new 2500 cell 3D dataset
intended for benchmarking 3D cell segmentation algorithms
on mesoSPIM acquired cleared-tissue (see Data Card). All
code and data is fully open-sourced at https://github.
com/AdaptiveMotorControlLab/CellSeg3D.
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Dataset Availability
Labeled 3D data are available at: https://zenodo.org/
records/11095111; see our Supplemental Data Card.

Code Availability
All code is available at: https://github.com/
AdaptiveMotorControlLab/CellSeg3D and code to repro-
duce the Figures are available at: https://github.com/
C-Achard/CellSeg3D-figures.

References
1. Fabian F. Voigt, Daniel Kirschenbaum, Evgenia Platonova,

Stéphane Pagès, Robert A. A. Campbell, Rahel Kastli, Martina
Schaettin, Ladan Egolf, Alexander van der Bourg, Philipp Bethge,
Karen Haenraets, Noémie Frézel, Thomas Topilko, Paola Perin,
Daniel Hillier, Sven Hildebrand, Anna Schueth, Alard Roebroeck,
Botond Roska, Esther T. Stoeckli, Roberto Pizzala, Nicolas Re-
nier, Hanns Ulrich Zeilhofer, Theofanis Karayannis, Urs Ziegler,
Laura Batti, Anthony Holtmaat, Christian Lüscher, Adriano Aguzzi,
and Fritjof Helmchen. The mesoSPIM initiative: open-source
light-sheet microscopes for imaging cleared tissue. Nature Meth-
ods, 16(11):1105–1108, November 2019. ISSN 1548-7105. doi:
10.1038/s41592-019-0554-0. Number: 11 Publisher: Nature Pub-
lishing Group.

2. Martin Weigert, Uwe Schmidt, Robert Haase, Ko Sugawara, and
Gene Myers. Star-convex polyhedra for 3d object detection and
segmentation in microscopy. In Proceedings of the IEEE/CVF Win-
ter Conference on Applications of Computer Vision, pages 3666–
3673, 2020.

3. Carsen Stringer, Tim Wang, Michalis Michaelos, and Marius Pachi-
tariu. Cellpose: a generalist algorithm for cellular segmentation.
Nature Methods, 18(1):100–106, January 2021. ISSN 1548-7105.
doi: 10.1038/s41592-020-01018-x. Number: 1 Publisher: Nature
Publishing Group.

4. Asim Iqbal, Asfandyar Sheikh, and Theofanis Karayannis. Denerd:
high-throughput detection of neurons for brain-wide analysis with
deep learning. Scientific Reports, 9, 2019.

5. Fabian Hörst, Moritz Rempe, Lukas Heine, Constantin Seibold,
Julius Keyl, Giulia Baldini, Selma Ugurel, Jens Siveke, Barbara
Grünwald, Jan Egger, and Jens Kleesiek. CellViT: Vision Trans-
formers for Precise Cell Segmentation and Classification, October
2023. arXiv:2306.15350 [cs, eess].

6. Jun Ma, Ronald Xie, Shamini Ayyadhury, Cheng Ge, Anubha Gupta,
Ritu Gupta, Song Gu, Yao Zhang, Gihun Lee, Joonkee Kim, Wei
Lou, Haofeng Li, Eric Upschulte, Timo Dickscheid, José Guilherme
de Almeida, Yixin Wang, Lin Han, Xin Yang, Marco Labagnara,
Vojislav Gligorovski, Maxime Scheder, Sahand Jamal Rahi, Carly
Kempster, Alice Pollitt, Leon Espinosa, Tâm Mignot, Jan Moritz Mid-
deke, Jan-Niklas Eckardt, Wangkai Li, Zhaoyang Li, Xiaochen Cai,
Bizhe Bai, Noah F. Greenwald, David Van Valen, Erin Weisbart,
Beth A. Cimini, Trevor Cheung, Oscar Brück, Gary D. Bader, and
Bo Wang. The multimodality cell segmentation challenge: toward
universal solutions. Nature Methods, pages 1–11, March 2024.
ISSN 1548-7105. doi: 10.1038/s41592-024-02233-6. Publisher: Na-
ture Publishing Group.

7. Eleanor Williams, Josh Moore, Simon W. Li, Gabriella Rustici,
Aleksandra Tarkowska, Anatole Chessel, Simone Leo, Bálint An-
tal, Richard K. Ferguson, Ugis Sarkans, Alvis Brazma, Rafael E.
Carazo Salas, and Jason R. Swedlow. Image Data Resource: a
bioimage data integration and publication platform. Nature Meth-
ods, 14(8):775–781, August 2017. ISSN 1548-7105. doi: 10.1038/
nmeth.4326. Number: 8 Publisher: Nature Publishing Group.

8. Kai Yao, Jie Sun, Kaizhu Huang, Linzhi Jing, Hang Liu, De-
jian Huang, and Curran Jude. Analyzing Cell-Scaffold Interaction
through Unsupervised 3D Nuclei Segmentation. International Jour-
nal of Bioprinting, 8(1):495, December 2021. ISSN 2424-7723. doi:
10.18063/ijb.v8i1.495.

9. Liang Han and Zhaozheng Yin. Unsupervised Network Learn-
ing for Cell Segmentation. In Marleen de Bruijne, Philippe C.
Cattin, Stéphane Cotin, Nicolas Padoy, Stefanie Speidel, Yefeng
Zheng, and Caroline Essert, editors, Medical Image Computing

and Computer Assisted Intervention – MICCAI 2021, Lecture Notes
in Computer Science, pages 282–292, Cham, 2021. Springer In-
ternational Publishing. ISBN 978-3-030-87193-2. doi: 10.1007/
978-3-030-87193-2_27.

10. Xide Xia and Brian Kulis. W-Net: A Deep Model for Fully Unsu-
pervised Image Segmentation, November 2017. arXiv:1711.08506
[cs].

11. Ali Hatamizadeh, Yucheng Tang, Vishwesh Nath, Dong Yang, An-
driy Myronenko, Bennett Landman, Holger Roth, and Daguang Xu.
UNETR: Transformers for 3D Medical Image Segmentation, Octo-
ber 2021. arXiv:2103.10504 [cs, eess].

12. Robert Haase, Loic A. Royer, Peter Steinbach, Deborah Schmidt,
Alexandr Dibrov, Uwe Schmidt, Martin Weigert, Nicola Maghelli,
Pavel Tomancak, Florian Jug, and Eugene W. Myers. CLIJ:
GPU-accelerated image processing for everyone. Nature Meth-
ods, 17(1):5–6, January 2020. ISSN 1548-7105. doi: 10.1038/
s41592-019-0650-1. Number: 1 Publisher: Nature Publishing
Group.

13. Manan Lalit, Pavel Tomancak, and Florian Jug. Embedding-based
instance segmentation of microscopy images, 2021.

14. Kwanghun Chung, Jenelle L. Wallace, Sung-Yon Kim, Sandhiya
Kalyanasundaram, Aaron S. Andalman, Thomas J. Davidson,
Julie J Mirzabekov, Kelly A. Zalocusky, Joanna Mattis, Aleksan-
dra K. Denisin, Sally Pak, Hannah Bernstein, Charu Ramakrishnan,
Logan Grosenick, Viviana Gradinaru, and Karl Deisseroth. Struc-
tural and molecular interrogation of intact biological systems. Na-
ture, 497:332–337, 2013.

15. Nicolas Renier, Zhuhao Wu, David J Simon, Jing Yang, Pablo Ariel,
and Marc Tessier-Lavigne. idisco: a simple, rapid method to im-
munolabel large tissue samples for volume imaging. Cell, 159(4):
896–910, 2014.

16. Ali Ertürk. Deep 3d histology powered by tissue clearing, omics and
ai. Nature methods, 21 7:1153–1165, 2024.

17. Carsen Stringer and Marius Pachitariu. Cellpose 2.0: how to train
your own model. Nature Methods, 19:1634 – 1641, 2022.

18. Andriy Myronenko. 3D MRI brain tumor segmentation using autoen-
coder regularization, November 2018. arXiv:1810.11654 [cs, q-bio].

19. The MONAI Consortium. Project monai. Zenodo, December 2020.
doi: 10.5281/zenodo.4323059.

20. Adam L. Tyson, Mateo Vélez-Fort, Charly V. Rousseau, Lee Cos-
sell, Chryssanthi Tsitoura, Stephen C. Lenzi, Horst A. Obenhaus,
F. Claudi, Tiago Branco, and Troy W. Margrie. Accurate determina-
tion of marker location within whole-brain microscopy images. Sci-
entific Reports, 12, 2022.

21. Christian J. Niedworok, Christian J. Niedworok, Alexander Brown,
Alexander Brown, M. Jorge Cardoso, Pavel Osten, Sébastien
Ourselin, Marc Modat, Troy W. Margrie, and Troy W. Margrie. amap
is a validated pipeline for registration and segmentation of high-
resolution mouse brain data. Nature Communications, 7, 2016.

22. F. Claudi, Luigi Petrucco, Adam L. Tyson, Tiago Branco, Troy W.
Margrie, and Ruben Portugues. Brainglobe atlas api: a common in-
terface for neuroanatomical atlases. J. Open Source Softw., 5:2668,
2020.

23. Sven Dorkenwald, Peter H. Li, Michał Januszewski, Daniel Raimund
Berger, Jeremy B. Maitin-Shepard, Agnes L. Bodor, Forrest
Collman, Casey M. Schneider-Mizell, Nuno Maçarico da Costa,
Jeff William Lichtman, and Viren Jain. Multi-layered maps of neu-
ropil with segmentation-guided contrastive learning. Nature Meth-
ods, 20:2011 – 2020, 2023.

24. Drew Friedmann, Albert Pun, Eliza L. Adams, Jan H. Lui, Justus M.
Kebschull, Sophie M. Grutzner, Caitlin Castagnola, Marc Tessier-
Lavigne, and Liqun Luo. Mapping mesoscale axonal projections in
the mouse brain using a 3d convolutional network. Proceedings of
the National Academy of Sciences, 117:11068 – 11075, 2019.

25. Yuxin Wu and Kaiming He. Group Normalization, June 2018.
arXiv:1803.08494 [cs].

26. Jianbo Shi and J. Malik. Normalized cuts and image segmen-
tation. IEEE Transactions on Pattern Analysis and Machine In-
telligence, 22(8):888–905, August 2000. ISSN 1939-3539. doi:
10.1109/34.868688. Conference Name: IEEE Transactions on Pat-
tern Analysis and Machine Intelligence.

27. Fausto Milletari, Nassir Navab, and Seyed-Ahmad Ahmadi. V-Net:
Fully Convolutional Neural Networks for Volumetric Medical Image
Segmentation, June 2016. arXiv:1606.04797 [cs].

28. Carole H. Sudre, Wenqi Li, Tom Vercauteren, Sébastien Ourselin,
and M. Jorge Cardoso. Generalised Dice overlap as a deep

7

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 13, 2025. ; https://doi.org/10.1101/2024.05.17.594691doi: bioRxiv preprint 

https://zenodo.org/records/11095111
https://zenodo.org/records/11095111
https://github.com/AdaptiveMotorControlLab/CellSeg3D
https://github.com/AdaptiveMotorControlLab/CellSeg3D
https://github.com/C-Achard/CellSeg3D-figures
https://github.com/C-Achard/CellSeg3D-figures
https://doi.org/10.1101/2024.05.17.594691
http://creativecommons.org/licenses/by/4.0/


learning loss function for highly unbalanced segmentations, 2017.
arXiv:1707.03237 [cs].

29. Seyed Sadegh Mohseni Salehi, Deniz Erdogmus, and Ali Gholipour.
Tversky loss function for image segmentation using 3D fully convo-
lutional deep networks, June 2017. arXiv:1706.05721 [cs].

30. Dominik Hirling, Ervin A. Tasnádi, Juan Caicedo, Maria V Carop-
rese, Rickard Sjögren, Marc Aubreville, Krisztian Koos, and Peter

Horvath. Segmentation metric misinterpretations in bioimage anal-
ysis. Nature Methods, 21:213 – 216, 2023.

31. Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rol-
land, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alexan-
der C. Berg, Wan-Yen Lo, Piotr Dollár, and Ross Girshick. Segment
anything, 2023.

Acknowledgments
The authors thank Martin Weigert, Jessy Lauer and members of the Mathis Lab for inputs and comments on the manuscript.
M.W.M. acknowledges the Vallee Foundation and the Wyss Institute for partly funding this work. M.W.M. is the Bertarelli
Foundation Chair for Integrative Neuroscience.

Author Contributions Statement
Conceptualization: C.A., M.W.M.; Methodology: C.A., M.V., M.F.; Software: C.A., M.V., C.H., Y.P., T.K.; Investigation:
C.A.; Dataset Acquisition: S.B.H, T.K., S.P.; Dataset Labeling: T.K.; Writing-Original Draft: M.W.M., C.A., T.K., M.F.;
Supervision: M.W.M., M.F., A.I.; Funding Acquisition: M.W.M.

Declaration of interests
The authors declare no competing interests.

Methods

Datasets
CellSeg3D mesoSPIM dataset: acquisition and labeling. The whole-brain data by Voigt et al. (1) was obtained from the
IDR platform (7); the volume consists of CLARITY cleared tissue from a TPH2-tdTomato mouse. Data was acquired with the
mesoSPIM system at a zoom of 0.63X with 561 nm excitation.

The data was cropped to several regions of the somatosensory (5 volumes, without artifacts) and visual cortex (1 volume, with
artifacts) and annotated by an expert. All volumes were annotated by hand (see Dataset Card below for more details). The
ground-truth cell count for the dataset is as follows:

Region Size Count
(pixels) (# of cells)

Sensorimotor
1 199x106x147 343
2 299x78x111 365
3 299x105x147 631
4 249x93x114 396
5 249x86x94 347
Visual 329x127x214 485

Table 1. Dataset ground-truth cell count per volume.

Additional Benchmarking Datasets from EmbedSeg. Additional datasets, used in Figure 3 were used from the GitHub
page of EmbedSeg (13). We used our pretrained WNet3D, without re-training (the model was only trained on our new
MesoSPIM dataset described above), to generate semantic segmentation. Images and labels were first cropped to contents,
discarding empty regions on the edges. We then downscaled the images and labels by a factor of two to reduce runtime. We
obtain the raw WNet3D prediction simply by adding the images to napari, and using the Inference tool of the plugin with
WNet3D, without changing any parameters from default. Note that usually one would enable thresholding, window inference,
and instance segmentation in the napari GUI to directly obtain usable instance segmentation, however, this is also possible in
Jupyter Notebooks, which we used for reproducibility to create the results shown.

Next, the channel containing the foreground was thresholded and the Voronoi-Otsu method from pyclEsperanto (12) used to
generate instance labels (for Platynereis data), with hyperparameters based on the F1-Score metric with the ground truth from
data separate to the one on which we evaluate performance. However, these parameters can also be estimated directly. This is
documented at https://c-achard.github.io/cellseg3d-figures/Figure3/self-supervised-extra.html.
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For the Mouse Skull Nuclei instance segmentation, we performed additional post-processing using pyclEsperanto (12) to
perform a morphological closing operation with radius 8 on semantic labels in order to remove small holes. The image
was then remapped to values ∈ [0;100] for convenience, before merging labels with a touching border within intensity
range between 35 and 100 using the merge_labels_with_border_intensity_within_range function. This is documented
in our linked Figures at: https://c-achard.github.io/cellseg3d-figures/Figure3/self-supervised-extra.html#
additional-mouse-skull-postprocessing.

We additionally report for these datasets the performance of the latest pretrained “nuclei" Cellpose model, and a retrained a
StarDist model (as no suitable pretrained model existed). For Cellpose, the object size parameter was estimated using the
provided size model in the GUI, and the “nuclei" pre-trained model was run to obtain instance labels. Other parameters were
kept to defaults. For StarDist, models were trained with all remaining data in the dataset (i.e. excluding volumes used to report
performance), as a training set with an 80%/20% train/validation split. All parameters and data augmentation used were the
defaults, aside from training patch size, which was set to (64,64,64), which let all objects fit within the field of view. NMS and
object thresholds were optimized after training using the provided functions. For inference on Mouse-Skull-Nuclei-CBG, the
tiled prediction mode was used to allow volumes to fit in memory. We show performance on Mouse Skull with and without the
extra post-processing, as well as a qualitative example of the effect of the post-processing. (Supplemental Figure S2b).

c-FOS Demo Dataset. For the MesoSPIM c-FOS demo, we used a wild type C57BL/6J adult mouse (17 weeks old, Female)
that was given appetitive food 90 min before deep anesthesia and intra-cardial perfusion with 4% PFA. We followed established
guidelines for iDISCO (15). In brief, the brain was dehydrated, bleached, permeabilized and stained for c-FOS using anti-c-
FOS Rat monoclonal purified IgG (Synaptic Systems, Cat. No. 226 017) followed by a Donkey anti-Rat IgG Alexa Fluor™
555 (Invitrogen A78945) secondary antibody. Then, the whole brain was imaged on a mesoSPIM (1). Imaging was performed
with a laser at a wavelength of 561 nm, with a pixel size of 5.26×5.26 µm in x,y, and a step size of 5 µm in z. All experimental
protocols adhered to the stringent ethical standards set forth by the Veterinary Department of the Canton Geneva, Switzerland,
with all procedures receiving approval and conducted under license number 33020 (GE10A).

Segmentation models and algorithms: Self-supervised semantic segmentation
WNet3D model architecture. To perform self-supervised cell segmentation, we adapted the WNet architecture proposed by
Xia and Kulis (10), an autoencoder architecture based on joining two U-Net models end-to-end. We provide a modified version
of the WNet, named WNet3D, with the following changes:

• A conversion of the architecture for fully-3D segmentation, including a 3D SoftNCuts loss
• Replacing the proposed two-step model update with the weighted sum of the encoder and decoder losses, updated in a

single backward pass
• Reducing the overall depth of the encoder and decoder, using three up/downsampling steps instead of four
• Replacing batch normalization with group normalization, tuning the number of groups based on performance

Reducing the number of layers improved overall performance by reducing overfitting and sped up training and inference.
This trimming was meant to reduce the large number of parameters resulting from a naive conversion of the original WNet
architecture to 3D, which were found to be unnecessary for the present cell segmentation task. Finally, we introduced group
normalization(25) to replace batch normalization, which improved performance in the present low batch size setting, as well as
training and inference speed.

To summarize, the model consists of an encoder Uenc and decoder Udec, as originally proposed; however, each UNet comprises
7 blocks, for a total of 14 blocks, down from 9 blocks per UNet originally. Uenc and Udec start and end with 2 3 × 3 × 3 3D
convolutional layers, in between are 5 blocks, each block being defined by two 3 × 3 × 3 3D convolutional layers, followed by
a ReLU and group normalization (25) (instead of batch normalization). Skip connections are used to propagate information
by concatenating the output of descending blocks to that of their corresponding ascending blocks. Each block is followed by
2 × 2 × 2 max pooling layers in the descending half of Uenc and Udec, the ascending half uses 2 × 2 × 2 transpose convolution
layers with stride= 2 ; Uenc is then followed by a 1×1×1 3D convolutional layer to obtain class logits, followed by a softmax,
the output of which is provided to Udec to perform the reconstruction. Udec is similarly followed by a 1×1×1 3D convolutional
layer and outputs the reconstructed volume. Refer to Figure 1 for an overview of the WNet3D architecture.

Losses. Segmentation is performed in Uenc by using an adapted 3D SoftNCuts loss Shi and Malik (26) as an objective, with
the voxel brightness differences defining the edge weight in the calculation, as proposed in the initial Ncuts algorithm.

The SoftNCuts is defined as

NcutK(V ) =
K∑

k=1

cut(Ak,V −Ak)
cut(Ak,V ) (1)
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where cut(A,B) =
∑

u∈A,v∈B w(u,v), V is the set of all pixels, Ak the set of all pixels labeled as class k (K being the number
of classes, which is set to 2 here) and w(u,v) is the weight of the edge uv in a graph representation of the image. In order to
group the voxels according to brightness, w(u,v) is defined here as

w(u,v) =

e
−∥F(u)−F(v)∥2

2
σI ∗

e
−∥X(u)−X(v)∥2

2
σX if ∥X(u)−X(v)∥ < r

0 otherwise

(2)

with F (i) = I(i) the intensity value, X the spatial position of the voxel, σI the standard deviation of the feature similarity term,
termed “intensity sigma”, σX the standard deviation of the spatial proximity term, termed “spatial sigma”, and r the radius for
the calculation of the loss, to avoid computing every pairwise value.

In our experiments, lowering the radius greatly sped up training without impacting performance, even with a radius as low as 2
voxels. For the spatial sigma, the original value of 4 was used, whereas for the intensity sigma we use a value of 1 (originally
4), after remapping voxel values in each image to the [0;100] range.

Udec then uses a suitable reconstruction loss to reconstruct the original image; we used either Mean Squared Error (MSE) or
Binary Cross Entropy (BCE) as defined in PyTorch.

WNet3D hyperparameters. To achieve proper cell segmentation, it was crucial to prevent the SoftNCuts loss from simply
separating the data in broad regions with differing overall brightness; this was achieved by adjusting the weighting of the
reconstruction loss accordingly. In our experiments, we empirically adapted the weights to equalize the contribution of each
loss term, ensuring balanced gradients in the backward pass. This proved effective for training on our provided dataset; however,
for different samples, adjusting the reconstruction weight and learning rate using the ranges specified below was necessary for
good performance; other parameters were kept constant.

The default number of classes is two, to segment background and cells, but this number may be raised to add more brightness-
grouped classes; this could be useful to mitigate the over-segmentation of cells due to brightness "halos" surrounding the
nucleus, or to help produce labels for object boundary segmentation.

We found that summing the losses, instead of iteratively updating the encoder first followed by the whole network as suggested,
improved stability and consistency of loss convergence during training; in our version the trade-off between accuracy of re-
construction and quality of segmentation is controlled by adjusting the parameters of the weighted sum instead of individual
learning rates.

This modified model was usually trained for 50 epochs, unless stated otherwise. We use a batch size of 2, 2 classes, a radius of
2 for the NCuts loss and the MSE reconstruction loss, and use a learning rate between 2 ·10−3 and 2 ·10−5 and reconstruction
loss weight between 5 ·10−3 and 5 ·10−1, depending on the data.

See Supplemental Figure S2a for an overview of the training process, including loss curves and model outputs.

Segmentation models and algorithms: Supervised semantic segmentation
Model architectures. In order to perform supervised fully-3D cell segmentation, we leveraged computer vision models and
losses implemented by the MONAI project, which offers several state-of-the-art architectures. The MONAI API was used as
the basis for our napari plugin, and we retained two of the provided models based on their performance on our dataset:

• SegResNet (18)
• SwinUNetR (11)

SegResNet is based on the Convolutional Neural Network (CNN) architecture, whereas SwinUNetR uses a transformer-based
encoder.

Several relevant segmentation losses are made available for training:

• Dice loss (27)
• Dice-Cross Entropy loss
• Generalized Dice loss (28)
• Tversky loss (29)
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The SegResNet and SwinUNetR models shown here were trained using the Generalized Dice loss for 50 epochs, with a learning
rate of 1 · 10−3, batch size of 5 (SwinUNetR) or 10 (SegResNet), and data augmentation enabled. Unless stated otherwise, a
train/test split of 80/20% was used.

The outputs were then passed through a threshold to discard low-confidence predictions; this was estimated using the training
set to find the threshold that maximized the Dice metric between predictions and ground truth. Using the training set for
this process ensures that we do not overfit the evaluation set on which we calculate the metrics. See the following notebook
for the corresponding code: https://github.com/C-Achard/cellseg3d-figures/blob/main/thresholds_opti/find_
best_thresholds.ipynb. The “Find best threshold" utility in the napari plugin allows one to perform this search immediately
between a pair of labels and prediction volumes. We provide a full demo of how to estimate thresholds on a case-by-case basis
in the following video: https://www.youtube.com/watch?v=xYbYqL1KDYE. The same process was repeated for Cellpose
(for cell probability threshold) and StarDist (non-maximum suppression (NMS) and cell probability thresholds) to ensure fair
comparisons, see “Model comparison” below and Supplemental Figure S1a,b,c,d for tuning results. Inference outputs are
processed a-posteriori to obtain instance labels, as detailed below.

Instance segmentation. Several methods for instance segmentation are available in the plugin: the connected components
and watershed algorithms (scikit-image), and the Voronoi-Otsu labeling method (clEsperanto). The latter combines an Otsu
threshold and a Voronoi tessellation to perform instance segmentation, and more readily avoids fusing clumped cells than the
former two, provided that the objects are convex, which is the case in the present task.

The Voronoi-Otsu method was therefore used to perform instance segmentation in the benchmarks, with its two parameters,
spatial sigma and outline sigma, tuned to fit the training data when relevant, and manually selected otherwise.

Model Comparisons
StarDist was retrained using the provided example notebook for 3D, using default parameters. For the model we refer to as
“Default“, we used a patch size of 8x64x64, a grid of (2,1,1), a batch size of 2 and 96 rays, as computed automatically in the
provided example code for StarDist. For the “Tuned” version (referred to simply as “StarDist”), we changed the patch size to
64x64x64 and the grid to (1,1,1).

Cellpose was retrained without pretrained weights using default parameters, except for the mean diameter which was set to
3.3 according to the provided object size estimation utility in the GUI (and visually confirmed). We investigated pretrained
models provided by Cellpose, as well as attempting transfer learning, but no pretrained model was found to be suitable for
our data. Despite Cellpose automatically resizing the data to match its training data, neither the automated estimate of object
size, nor fixing the object size value manually helped in improving performance, therefore we retrained those models with
our data. “Default” refers to automatically estimated parameters for StarDist (NMS and probability threshold, estimated on
the training data), and cell probability threshold of 0 with resampling enabled for Cellpose. For both models, inference hy-
perparameters (respectively NMS and cell probability threshold for StarDist and cell probability threshold and resampling on
CellPose) were tuned on the training set to maximize the F1-Score/Dice metric with GT labels, exactly like our models. Af-
ter tuning, we found that Cellpose achieved best performance with a cell probability threshold of −9 and resampling enabled
(see Supplemental Figure S1a and https://github.com/C-Achard/cellseg3d-figures/blob/main/thresholds_opti/
cellpose_find_thresh.ipynb) across all data subsets. For StarDist, best parameters varied across subsets (see Supplemen-
tal Figure S1d and https://github.com/C-Achard/cellseg3d-figures/blob/main/thresholds_opti/stardist_find_
thresh.ipynb), however, as this did not affect performance significantly, we used the parameters estimated automatically as
part of the training.

Models provided in the plugin (SwinUNetR, SegResNet and WNet3D), which we refer to as “pretrained”, are trained on the
entire MesoSPIM dataset to obtain best possible performance, using all images (and labels only for the supervised models).
The WNet3D model was used in Figure 1b (WNet3D), 2a (WNet3D pre-trained) and 3b, d, f (WNet3D). Hyperparameters
used are as mentioned above, except for the number of epochs, which was selected based on validation performance to avoid
overfitting.

For Figure 1b, we trained each model on a subset of the dataset (sensorimotor volumes), chunked into 64 pixels cubes us-
ing an 80/20% training/validation split, and estimated the best threshold on the same training data. Next, we used the re-
maining held-out data (visual volume) to evaluate performance. Code for thresholds optimization may be found at https:
//github.com/C-Achard/cellseg3d-figures/blob/main/thresholds_opti/find_best_thresholds.ipynb, and code
to create Figure 2 can be found at https://c-achard.github.io/cellseg3d-figures/intro.html. We also compared the
performance of all models with that of a non-learning based thresholding, by using Otsu’s threshold method followed by the
Voronoi-Otsu instance segmentation function from pyClEsperanto to generate predictions. When comparing these results ob-
tained by Otsu threshold with WNet3D results in Figure 1b, we additionally report performance on a specific subset of volumes
without regions containing artifacts, without any differences in post-processing across methods.
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Label efficiency comparison
To assess how many labeled cells are required to reach a certain performance, we trained StarDist, Cellpose, SegResNet,
SwinUNetR and WNet3D on three distinct subsets of the data, each time holding out one full volume of the full dataset for
evaluation, fragmenting the remaining volumes and labels into 64 pixels cubes, and training on distinct train/validation splits
on remaining data. We used 10%, 20%, 60% and 80% splits in order to assess how much labeled data is necessary for the
supervised models, and whether they show variability based on the data used for training. Of note, the evaluation data remained
the same for all percentages in a given data subset, ensuring a consistent performance comparison. We used 50 epochs for
all runs, and no early stopping or hyperparameter tuning was performed based on the validation performance during training.
Instead, we reused the best hyperparameters found for Figure 1b.

For example, the first subset consists of all five somatosensory cortex volumes as training/validation data, and the visual cortex
volume is held out for evaluation. For Cellpose two conditions are shown, default (cell probability threshold of 0) and fine-tuned
(threshold of -9), which improved performance.

To avoid training on data with artifacts present in the visual cortex volume, WNet3D was only trained on the first of the subsets.
Instead, the model was trained on a percentage of the first subset using three different seeds. We also avoid evaluating on
artifacts in the visual volume, as the model is not meant to handle these regions. It should be noted that this filtering does not
consist of any additional post-processing on the volume, but strictly on cropping out regions with artifacts before evaluation.

Instance labels were generated as stated above, and then converted back to semantic labels to compute the F1-Score, see
Performance Evaluation section below.

WNet3D-based retraining of supervised models
To assess whether WNet3D can generalize to unseen data when trained on a specific brain volume, we trained a WNet3D from
scratch using volumes cropped from a different mesoSPIM-acquired whole brain sample, labeled with c-FOS, imaged at 561
nm with a pixel size of 5.26×5.26µm in x and y, and a step size in z of 5µm (see Additional Datasets).

This model was then used to generate labels for our provided dataset. A SwinUNetR model was then trained using these
WNet3D generated labels, and compared to the performance of the pretrained model we provide in our napari plugin.

Performance evaluation
The models were evaluated using standard segmentation metrics (30), namely F1-Score and intersection over union (IoU ). The
equations for these evaluation metrics are shown below, with TP, FP, and FN representing true positives (TP), false positives
(FP), and false negatives (FN) respectively. The higher the F1 (precision and recall), the better the model performance.

IoU = TP
TP+FP+FN

, F1-Score = 2TP
2TP+FP+FN

, Precision = TP
TP+FP

, Recall = TP
TP+FN

We used the evaluation utilities provided by StarDist (2), specifically the code from here.

To assess performance for semantic segmentation we report the F1-Score without any IoU threshold, which is then equivalent
to the Dice score computed on the semantic labels, given the Boolean nature of the data.

The metric to assess instance segmentation accuracy can be computed as functions of several overlap thresholds; true posi-
tives are pairings of model predictions and ground-truth labels having an intersection over union (IoU ) value greater than the
specified threshold, with automated matching to prevent additional instances from being assigned to the same ground truth or
model-predicted instance of a label. We report the F1-Score over a range of IoU thresholds between 0.1 and 0.9 (step size of
0.1).
For instance segmentation, we take the model’s probability outputs and apply an intensity threshold to get semantic predictions;
this threshold ultimately affects the reported metrics therefore we discuss the procedure here. We set these thresholds based on
the training set. Specifically, to determine the optimal threshold for evaluating instance segmentation on a training fold, pairs of
predictions and corresponding labels from the training set were taken. For each pair, the threshold that maximized the F1-Score
at IoU >= 0, which is equivalent to the Dice coefficient, was computed. This process was repeated for all images within
the training fold. The resulting optimal thresholds provided the threshold used when evaluating that particular fold. The code
for each use case can be found at https://github.com/C-Achard/cellseg3d-figures/blob/main/thresholds_opti/
find_best_thresholds.ipynb. For the mesoSPIM data this threshold was empirically found to be to 0.4 (SwinUNetR), 0.3
(SegResNet) and 0.6 (WNet3D), in Figure 2. For Figure 3, the thresholds for WNet3D were: 0.45 for Mouse Skull and 0.55
for both the Platynereis datasets. We then convert these thresholded results to instance labels using the Voronoi-Otsu algorithm,
the parameters of which were chosen based on the F1-Score metric between ground truth labels and model-generated labels on
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the training set, as described in the Model Section above describing instance segmentation. If a model is not trained, i.e., for
example in Figure 3b, we set these parameters manually to threshold by eye. To reproduce the F1-Scores as shown, we used
the following values:

Dataset Outline σ Spot σ
mesoSPIM 0.65 0.65

Mouse Skull 1 15
Platynereis-ISH 0.5 2

Platynereis 0.5 2.75

Table 2. Parameters used for instance segmentation with the pyclEsperanto Voronoi-Otsu function.

CellSeg3D napari plugin workflow
To facilitate the use of our models, we provide a napari plugin where users can easily annotate data, train models, run inference,
and perform various post-processing steps. Starting from raw data, users can quickly crop regions into regions of interest, and
create training data from those. Users may manually annotate the data in napari using our labeling interface, which provides
additional interface such as orthogonal projections to better view the ongoing labeling process, as well as keeping track of
time spent labeling each slice, or alternatively train a self-supervised model to automatically perform a first iteration of the
segmentation and labeling, without annotation. Users can also try pretrained models, including the self-supervised one, to
generate labels which can then be corrected using the same labeling interface. Supervised or self-supervised models can then
be trained using the generated data. Full documentation for the plugin can be found on our GitHub website.

In the case of supervised learning, the volumes (random patches or whole images) are split into training and validation sets
according to a user-set proportion, using 80%/20% by default. Input images are normalized by setting all values above and
below the 1st and 99th percentile to the corresponding percentile value, respectively. Data augmentation can be used; by default
a random shift of the intensity, elastic and affine deformations, flipping and rotation are used.

For the self-supervised model, images are remapped to values in the [0;100] range to accommodate the intensity sigma of the
SoftNCuts loss. No percentile normalization is used and data augmentation is restricted to flipping and rotating in this case.

Deterministic training may also be enabled for all models and the random generation seed set; unless specified otherwise,
models were trained on cropped cubes with 64 pixels edges, with both data augmentation and deterministic training enabled.

We additionally provide a Colab Notebook to train our self-supervised model using the same procedure described above. The
pretrained weights for all our models are also made available through the HuggingFace platform (and automatically downloaded
by the plugin or in Colab), so that users without the recommended hardware can still easily train or try our models. All code is
open source and available on GitHub.

Statistical Methods
To confirm whether there were statistically significant differences in model performance, we pooled accuracy values across
IoU, and/or across percentage of training data used. We used Python 3.8-3.10 using the scikit_posthocs package, and we
performed a Kruskal-Wallis test to check the null hypothesis that the median of all models was equal. When this test was
significant, we used two-sided Conover-Iman post-hoc testing to test pairwise differences between models, also using the
‘scikit_posthoc‘ implementation, with the Holm-Bonferroni correction for multiple comparisons (step-down method using
Bonferroni adjustments).
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Supplemental Information

F10.1 F10.2 F10.3 F10.4 F10.5 F10.6 F10.7 F10.8 F10.9 F1MEAN

Platynereis-ISH-Nuclei-CBG:
Otsu threshold 0.872 0.847 0.817 0.772 0.706 0.605 0.474 0.246 0.026 0.596
Cellpose (supervised) 0.896 0.866 0.832 0.778 0.698 0.576 0.362 0.117 0.010 0.570
StarDist (supervised) 0.841 0.822 0.786 0.686 0.536 0.326 0.110 0.011 0. 0.458
WNet3D (zero-shot) 0.876 0.856 0.834 0.790 0.729 0.632 0.492 0.249 0.034 0.610

Platynereis-Nuclei-CBG:
Otsu threshold 0.798 0.773 0.733 0.702 0.663 0.590 0.507 0.336 0.077 0.576
Cellpose (supervised) 0.691 0.663 0.624 0.594 0.553 0.497 0.417 0.290 0.062 0.488
StarDist (supervised) 0.850 0.833 0.803 0.764 0.700 0.611 0.492 0.272 0.019 0.594
WNet3D (zero-shot) 0.838 0.808 0.778 0.739 0.695 0.617 0.512 0.338 0.059 0.598

Mouse-Skull-Nuclei-CBG (most challenging dataset)
Otsu threshold 0.667 0.634 0.596 0.566 0.495 0.427 0.369 0.276 0.097 0.458
Otsu threshold + post-processing 0.695 0.668 0.647 0.612 0.543 0.490 0.428 0.334 0.137 0.506
Cellpose (supervised) 0.137 0.111 0.077 0.054 0.038 0.028 0.020 0.014 0.006 0.054
Cellpose + post-processing 0.386 0.362 0.339 0.312 0.266 0.228 0.189 0.120 0.027 0.248
StarDist (supervised) 0.573 0.533 0.411 0.253 0.135 0.065 0.020 0.003 0.0 0.221
StarDist + post-processing 0.689 0.649 0.557 0.407 0.276 0.174 0.073 0.010 0.0 0.315
WNet3D (zero-shot) 0.766 0.732 0.669 0.572 0.455 0.355 0.254 0.175 0.033 0.446
WNet3D + post-processing 0.807 0.783 0.763 0.725 0.637 0.534 0.428 0.296 0.073 0.561

Table S1. F1-Scores for additional benchmark datasets, where we test our pretrained WNet3D, zero-shot. Kruskal-Wallis H test [dataset, statistic,
p-value]: Platynereis-ISH-Nuclei-CBG, 1.6, 0.69; Platynereis-Nuclei-CBG, 3.06, 0.38; Mouse-Skull-Nuclei-CBG (within post-processed), 10.13, 0.018;
Mouse-Skull-Nuclei-CBG (no processing), 15.8, 0.001.
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Figure S1. Hyperparameter tuning of baselines and statistics a,b,c: Hyperparameter optimisation for several supervised models. In Cellpose, the
cell probability threshold value is applied before the sigmoid, hence values between −12 and 12 were tested. CellSeg3D models return predictions
between 0 and 1 after applying the softmax, values tested were therefore in this range. Error bars show 95% CIs. d: StarDist hyperparameter
optimisation. Several parameters were tested for non-maximum suppression (NMS) threshold and cell probability threshold. Heatmap is F1-Score. e:
Pooled F1-Scores per split, related to Figure 2a, used for statistical testing shown in f. The central box represents the interquartile range (IQR) of values
with the median as a horizontal line, the upper and lower limits the upper and lower quartiles. Whiskers extend to data points within 1.5 IQR of the
quartiles. Outliers are shown separately. f: Pairwise Conover’s test p-values for the F1-Score values per model shown in e. Colors are based on level
of significance. g: Example image of WNet3D before and after artifact filtering; after also shown in Figure 1c, plus an additional example of WNet3D in
S1 cortex.
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Figure S2. Training WNet3D a: Overview of the training process of WNet3D. The loss for the encoder Uenc is the SoftNCuts, whereas the recon-
struction loss for Udec is MSE. The weighted sum of losses is calculated as indicated in Methods. For select epochs, input volumes are shown, with
outputs from encoder Uenc above, and outputs from decoder Udec below. a: Additional model inference results on Mouse Skull dataset, and example
of post-processing in order to correct holes or other artifacts, as shown with the red to white arrows.
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Dataset Card

A. Motivation. 1. For what purpose was the dataset created? Was there a specific task in mind? Was there a specific gap that
needed to be filled? Please provide a description.

The contributions of our dataset to the vision and cell biology communities are twofold: 1) We release a 3D cell segmentation
dataset of 2632 TPH2 positive cells, based on data from Voigt et al.(1). 2) It is entirely human-annotated. The dataset is one of
the first cell segmentation datasets to date created in 3D.

2. Who created the dataset (which team, research group) and on behalf of which entity (company, institution, organization)?

The human-annotated dataset was created by the Mathis Lab of Adaptive Intelligence of EPFL, who are co-authors of this
work. The raw brain data is publicly available on https://idr.openmicroscopy.org/webclient/?show=project-854.

3. Who funded the creation of the dataset? If there is an associated grant, please provide the name of the grantor and the grant
name and number.

This project was funded, in part, by the Wyss Center via a grant to PI Mathis.

4. Any other comments? No.

Composition. 1. What do the instances that comprise the dataset represent (e.g.,documents, photos, people, countries)? Are
there multiple types of instances (e.g., movies, users, and ratings; people and interactions between them; nodes and edges)?
Please provide a description.

The instances in our dataset represent 3D volumetric segments, extracted from mesoSPIM scans of mouse brains. Each instance
is essentially a three-dimensional image that has been carefully hand-cropped mainly from the somatosensory and visual cortex
of the scanned data. In each of these 3D volumes, TPH2 cells are identified and labeled.

2. How many instances are there in total (of each type, if appropriate)?

There are six 3D volumetric segments, that contain a total of 2638 TPH2 positive cells identified and labeled in 3D.

3. Does the dataset contain all possible instances or is it a sample (not necessarily random) of instances from a larger set? If
the dataset is a sample, then what is the larger set? Is the sample representative of the larger set (e.g., geographic coverage)?
If so, please describe how this representativeness was validated/verified. If it is not representative of the larger set, please
describe why not (e.g., to cover a more diverse range of instances, because instances were withheld or unavailable).

The dataset provided is a subset of the available whole-brain sample, selected from larger raw volumetric data obtained from
mesoSPIM scans of mouse brains. This selection primarily consists of 3D volumes cropped mainly from the somatosensory
and visual cortex regions, where the TPH2 cells are labeled meticulously. The broader dataset from which these instances were
extracted represents scans of whole mouse brains. However, due to the immense volume of the entire scanned data, creating a
manageable and focused dataset was key for addressing specific research questions and computational manageability.

4. What data does each instance consist of? “Raw” data (e.g., unprocessed text or images) or features? In either case, please
provide a description.

Each instance in the dataset consists of “raw” 3D volumetric data derived from mesoSPIM scans of mouse brains, specifically
focusing on the somatosensory cortex and vision cortex regions. The instances are essentially unprocessed and maintain the
integrity of the original scanned data.

5. Is there a label or target associated with each instance? If so, please provide a description.

Yes, each instance in the dataset is human-annotated with masks. There are no categories or text associated with the masks.

6. Is any information missing from individual instances? If so,please provide a description, explaining why this information
is missing (e.g., because it was unavailable). This does not include intentionally removed information, but might include, e.g.,
redacted text.

In our dataset, there is no information missing from individual instances.
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7. Are relationships between individual instances made explicit (e.g., users’ movie ratings, social network links)? If so, please
describe how these relationships are made explicit.

Not applicable.

8. Are there any errors, sources of noise, or redundancies in the dataset? If so, please provide a description.

While we have taken extensive measures to ensure the accuracy and quality of the dataset, it is challenging to rule out the
presence of minor errors or noise, especially considering the complex nature of the 3D cell segmentation task. Nonetheless, we
believe that any such inconsistencies do not compromise the overall reliability and utility of the dataset.

9. Is the dataset self-contained, or does it link to or otherwise rely on external resources (e.g., websites, tweets, other datasets)?
If it links to or relies on external resources, a) are there guarantees that they will exist, and remain constant, over time; b)
are there official archival versions of the complete dataset (i.e., including the external resources as they existed at the time the
dataset was created); c) are there any restrictions (e.g., licenses, fees) associated with any of the external resources that might
apply to a dataset consumer? Please provide descriptions of all external resources and any restrictions associated with them,
as well as links or other access points, as appropriate.

The dataset is self-contained.

10. Does the dataset contain data that might be considered confidential (e.g., data that is protected by legal privilege or by
doctor-patient confidentiality, data that includes the content of individuals’ non-public communications)? If so, please provide
a description.

No.

11. Does the dataset contain data that, if viewed directly, might be offensive, insulting, threatening, or might otherwise cause
anxiety? If so, please describe why.

No. The dataset is composed solely on scientific, non-human biological data.

12. Does the dataset identify any subpopulations (e.g., by age, gender)? If so, please describe how these subpopulations are
identified and provide a description of their respective distributions within the dataset.

Not applicable.

13. Is it possible to identify individuals (i.e., one or more natural persons), either directly or indirectly (i.e., in combination
with other data) from the dataset? If so, please describe how.

Not applicable.

14. Does the dataset contain data that might be considered sensitive in anyway (e.g., data that reveals race or ethnic origins,
sexual orientations, religious beliefs, political opinions or union memberships, or locations; financial or health data; biometric
or genetic data; forms of government identification, such as social security numbers; criminal history)? If so, please provide a
description.

No.

15. Any other comments?

No.

Collection Process. 1. How was the data associated with each instance acquired? Was the data directly observable (e.g., raw
text, movie ratings), reported by subjects (e.g., survey responses), or indirectly inferred/derived from other data (e.g., part-of-
speech tags, model-based guesses for age or language)? If the data was reported by subjects or indirectly inferred/derived from
other data, was the data validated/verified? If so, please describe how.

The data associated with each instance was acquired through mesoSPIM scans of mouse brains, providing raw, directly observ-
able 3D volumetric data. The data was not reported by subjects or indirectly inferred or derived from other data; it was directly
observed and recorded from the scientific imaging process. All collected volumes were annotated by expert human annotators.
The quality of the annotations was validated by an external expert not involved in the annotation process.
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2. What mechanisms or procedures were used to collect the data (e.g., hardware apparatuses or sensors, manual human
curation, software programs, software APIs)? How were these mechanisms or procedures validated?

The raw data is open source and provided by the Image Data Resource (IDR).

3. If the dataset is a sample from a larger set, what was the sampling strategy (e.g., deterministic, probabilistic with specific
sampling probabilities)?

Our sampling strategy was designed to select volumes where TPH2 cells are clearly discernible. We aimed to include a varied
range of volumes, from densely packed with TPH2 cells to ones more sparsely populated, ensuring a good representation of
various brain areas. Another important factor was the manageability of the volumes from an annotation perspective, to facilitate
accurate and efficient labeling.

4. Who was involved in the data collection process(e.g.,students,crowdworkers, contractors) and how were they compensated
(e.g., how much were crowdworkers paid)?

The released masks were created by research personnel of the Mathis Lab of Adaptive Intelligence, EPFL.

5. Over what timeframe was the data collected? Does this timeframe match the creation timeframe of the data associated with
the instances (e.g., recent crawl of old news articles)? If not, please describe the timeframe in which the data associated with
the instances was created.

The raw data was downloaded from the Image Data Resource (IDR) website. The labels were created between June and October

2021.

If the dataset does not relate to people, you may skip the remaining questions in this section.

Preprocessing / Cleaning / Labeling. 1. Was any preprocessing / cleaning / labeling of the data done (e.g., discretization or
bucketing, tokenization, part-of-speech tagging, SIFT feature extraction, removal of instances, processing of missing values)?
If so, please provide a description. If not, you may skip the remaining questions in this section.

Yes, extensive preprocessing, and labeling were conducted to ensure the usability and reliability of the dataset. The initial
step involved examination of the raw 3D volumetric data, where we ruled out the presence of anomalies or artefacts. During
this phase, we ensured the visibility of TPH2-positive cells within the volumetric segments. We proceeded to label the TPH2-
positive cells through a well-defined annotation process, where each cell within the selected volumes was identified and marked
by our experts. At the end of the annotation process, the quality of the work was verified by a human expert not involved in the
annotation work.

2. Was the “raw” data saved in addition to the preprocessed/cleaned/labeled data (e.g., to support unanticipated future uses)?
If so, please provide a link or other access point to the “raw” data.

The raw data is open source and available on the Image Data Resource (IDR) website.

3. Is the software that was used to preprocess/clean/label the data available? If so, please provide a link or other access point.

Yes. We used the napari interactive viewer for multidimensional images in Python and used our plugin.

Uses. 1. Has the dataset been used for any tasks already? If so, please provide a description.

The dataset was used to train segmentation models.

2. Is there a repository that links to any or all papers or systems that use the dataset? If so, please provide a link or other
access point.

Yes, the repository hosting the model weights which were trained on our data, as well as the repository for our napari plugin
for 3D cell segmentation.

3. What (other) tasks could the dataset be used for?

We intend the dataset to be used to train 3D cell segmentation models. However, we invite the research community to gather
additional annotations for mesoSPIM acquired datasets via the tools we contribute in the present publication.
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4. Is there anything about the composition of the dataset or the way it was collected and preprocessed/cleaned/labeled that
might impact future uses? For example, is there anything that a dataset consumer might need to know to avoid uses that could
result in unfair treatment of individuals or groups (e.g., stereotyping, quality of service issues) or other risks or harms (e.g.,
legal risks, financial harms)? If so, please provide a description. Is there anything a dataset consumer could do to mitigate
these risks or harms?

Not applicable.

5. Are there tasks for which the dataset should not be used? If so, please provide a description.

Full terms of use for the dataset can be found at https://github.com/AdaptiveMotorControlLab/CellSeg3D, but the
project is made open source under an MIT license.

Distribution. 1. Will the dataset be distributed to third parties outside of the entity (e.g., company, institution, organization) on
behalf of which the dataset was created? If so, please provide a description.

The dataset is released on zenodo at: https://zenodo.org/records/11095111.

2. How will the dataset will be distributed (e.g., tarball on website, API, GitHub)? Does the dataset have a digital object
identifier (DOI)?

The dataset is released on zenodo at: https://zenodo.org/records/11095111.

3. When will the dataset be distributed?

The dataset is released on zenodo at: https://zenodo.org/records/11095111 alongside the publication of this paper.

4. Will the dataset be distributed under a copyright or other intellectual property (IP) license, and/or under applicable terms of
use (ToU)? If so, please describe this license and/or ToU, and provide a link or other access point to, or otherwise reproduce,
any relevant licensing terms or ToU, as well as any fees associated with these restrictions.

The dataset is released under a MIT license.

5. Have any third parties imposed IP-based or other restrictions on the data associated with the instances? If so, please
describe these restrictions, and provide a link or other access point to, or otherwise reproduce, any relevant licensing terms, as
well as any fees associated with these restrictions.

Full terms of use and restrictions on use of the provided 3D cell segmentation dataset can be found at https://github.com/
AdaptiveMotorControlLab/CellSeg3D.

6. Do any export controls or other regulatory restrictions apply to the dataset or to individual instances? If so, please describe
these restrictions, and provide a link or other access point to, or otherwise reproduce, any supporting documentation.

The dataset is released under a MIT license.

7. Any other comments?

No.

Maintenance. 1. Who will be supporting/hosting/maintaining the dataset?

The dataset is available at https://zenodo.org/records/11095111 and maintained by the Mathis Lab of Adaptive Intelli-
gence.

2. How can the owner/curator/manager of the dataset be contacted(e.g.,email address)?

Please see contact information at https://github.com/AdaptiveMotorControlLab/CellSeg3D or write to Mackenzie
Mathis: mackenzie.mathis@epfl.ch.

3. Is there an erratum? If so, please provide a link or other access point.

No.
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4. Will the dataset be updated (e.g., to correct labeling errors, add new in- stances, delete instances)? If so, please describe
how often, by whom, and how updates will be communicated to dataset consumers (e.g., mailing list, GitHub)?

To ensure reproducibility of research this dataset won’t be updated. Any issues or errors will be publicly shared.

5. If the dataset relates to people, are there applicable limits on the retention of the data associated with the instances (e.g.,
were the individuals in question told that their data would be retained for a fixed period of time and then deleted)? If so, please
describe these limits and explain how they will be enforced.

Not applicable.

6. Will older versions of the dataset continue to be sup- ported/hosted/maintained? If so, please describe how. If not, please
describe how its obsolescence will be communicated to dataset consumers.

This is the first version.

7. If others want to extend/augment/build on/contribute to the dataset,is there a mechanism for them to do so? If so, please
provide a description. Will these contributions be validated/verified? If so, please describe how. If not, why not? Is there a
process for communicating/distributing these contributions to dataset consumers? If so, please provide a description.

We warmly encourage users to enhance the value of this project by contributing additional annotations and annotated datasets.
If you have relevant data, please consider sharing them by linking the data to our GitHub repository. For any inquiries,
suggestions, or discussions related to the project, please feel free to reach out to us on GitHub https://github.com/
AdaptiveMotorControlLab/CellSeg3D.

8. Any other comments?

No.

B. Data Annotation Card.

Task Formulation. 1. At a high level, what are the subjective aspects of your task?

Object segmentation within an image is a subjective task (31). Distinguishing between structures that represent cells and
artifacts relies on the annotator’s judgment and expertise. This can lead to variability in the quality and quantity of the masks
generated per image by different annotators. To mitigate this risk we engaged experts from our research lab, to annotate the
volumes. We insisted on the quality of annotations over their quantity; we aimed to annotate smaller volumes to ensure accurate
representation of the cell nuclei, even if it meant having fewer annotations.

2. What assumptions do you make about annotators?

Our annotator is a member of our research lab, ensuring a close understanding of the project’s goals. The team concentrated on
two main objectives. 1) Clear Understanding of Project Goals: We worked to fully understand the project’s aims and translated
them into clear and straightforward guidelines, which included visual examples. 2) Regular Sharing of Updates and Results:
we reviewed our aims and results to make ongoing improvements to the annotation process. This regular check-in helped in
quickly addressing any issues and adding new material to improve our annotation quality.

3. How did you choose the specific wording of your task instructions? What steps, if any, were taken to verify the clarity of task
instructions and wording for annotators?

The annotator was a co-creator of the annotation instructions and guidelines, which boosted their understanding. As our task
was annotations images, we crafted visual examples with step by step instructions. We collectively decide how to handle
complex and unambiguous cases, and refine the guidelines throughout the process. The project team met for feedback and
updates, while the annotator was able to give feedback on an asynchronous way at any time.

4. What, if any,risks did your task pose for annotators and were they informed of the risks prior to engagement with the task?
No identified risks.

5. What are the precise instructions that were provided to annotators?

We created clear guides on installing and using the napari annotation tool. The task was to segment every TPH2 positive cell in
a given image. The annotator created a 3D mask for each cell they identified, using the tool to precisely add or remove areas of
the mask around the cell. In simpler terms, they had to isolate each cell in 3D using the tool, making sure it was accurate down
to the pixel-level.

21

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 13, 2025. ; https://doi.org/10.1101/2024.05.17.594691doi: bioRxiv preprint 

https://github.com/AdaptiveMotorControlLab/CellSeg3D
https://github.com/AdaptiveMotorControlLab/CellSeg3D
https://doi.org/10.1101/2024.05.17.594691
http://creativecommons.org/licenses/by/4.0/


Selecting Annotations. 1. Are there certain perspectives that should be privileged? If so, how did you seek these perspectives
out?

We chose to engage researchers that have a deep understanding on cell biology and vision research.

2. Are there certain perspectives that would be harmful to include? If so, how did you screen these perspectives out?

No.

3. Were sociodemographic characteristics used to select annotators for your task? If so, please detail the process.

No.

4. If you have any aggregated socio-demographic statistics about your anno- tator pool, please describe. Do you have reason
to believe that sociode- mographic characteristics of annotators may have impacted how they an- notated the data? Why or
why not?

Our annotator worked in our research institute.

5. Consider the intended context of use of the dataset and the individuals and communities that may be impacted by a model
trained on this dataset. Are these communities represented in your annotator pool?

Not applicable.

Platform and Infrastructure Choices. 1. What annotation platform did you utilize? At a high level, what considerations
informed your decision to choose this platform? Did the chosen platform sufficiently meet the requirements you outlined for
annotator pools? Are any aspects not covered?

We used napari, a fast, interactive viewer for multi-dimensional images in Python. Link: https://napari.org/stable/

2. What, if any, communication channels did your chosen platform offer to facilitate communication with annotators? How did
this channel of communication influence the annotation process and/or resulting annotations?

Communication was established through other internal communication platforms.

4. How much were annotators compensated? Did you consider any particular pay standards, when determining their compen-
sation? If so, please describe.

The compensation was based on their employment contract at EPFL.

Dataset Analysis and Evaluation. 1. How do you define the quality of annotations in your context, and how did you assess the
quality in the dataset you constructed?

To assess the quality of the annotations in the constructed dataset, we included a review process. Annotations were created
by an expert well-acquainted with the morphological characteristics of TPH2 positive cells, ensuring a high level of initial
accuracy. Any ambiguous cases in annotation were resolved through discussions amongst the team until a consensus was
reached. Regular feedback was provided to the annotator, and any identified errors or inconsistencies were promptly corrected.

2. Have you conducted any analysis on disagreement patterns? If so, what analyses did you use and what were the major
findings? Did you analyze potential sources of disagreement?

We provided regular feedback sessions in a synchronous and asynchronous way.

3. How do the individual annotator responses relate to the final labels released in the dataset? Our dataset along with our

annotations are available and accessible through zenodo: https://zenodo.org/records/11095111.
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Dataset Release and Maintenance. 1. Do you have reason to believe the annotations in this dataset may change over time?
Do you plan to update your dataset? No.

2. Are there any conditions or definitions that, if changed, could impact the utility of your dataset?

We do not believe so.

3. Will you attempt to track, impose limitations on, or otherwise influence how your dataset is used? If so, how? No.

4. Were annotators informed about how the data is externalized? If changes to the dataset are made, will they be informed?
Yes.

5. Is there a process by which annotators can later choose to withdraw their data from the dataset? If so, please detail. No.
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