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SUMMARY 

Epigenome-wide association studies (EWAS) are transforming our understanding of the 
interplay between epigenetics and complex human traits and phenotypes. We introduce the 
Methylation Screening Array (MSA), a new iteration of the Infinium technology for scalable and 
quantitative screening of trait associations of nuanced ternary-code cytosine modifications in 
larger, more inclusive, and stratified human populations. MSA integrates EWAS, single-cell, and 
cell-type-resolved methylome profiles, covering diverse human traits and diseases. Our first 
MSA applications yield multiple biological insights: we revealed a previously unappreciated role 
of 5-hydroxymethylcytosine (5hmC) in trait associations and epigenetic clocks. We 
demonstrated that 5hmCs complement 5-methylcytosines (5mCs) in defining tissues and cells’ 
epigenetic identities. In-depth analyses highlighted the cell type context of EWAS and GWAS 
hits. Using this platform, we conducted a comprehensive human 5hmC aging EWAS, 
discovering tissue-invariant and tissue-specific aging dynamics, including distinct tissue-specific 
rates of mitotic hyper- and hypomethylation rates. These findings chart a landscape of the 
complex interplay of the two forms of cytosine modifications in diverse human tissues and their 
roles in health and disease.  
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Availability: Informatics for MSA data preprocessing and functional analysis is available in the 
R/Bioconductor package SeSAMe (version 3.22+):  
https://bioconductor.org/packages/release/bioc/html/sesame.html  

The complete MSA manifest, design criteria, technical, human trait, and functional annotations 
are available at https://zwdzwd.github.io/InfiniumAnnotation 

The generated human cell line, primary tissue 5mC and 5hmC methylome profiles (N=676), and 
EM-seq data are available in the Gene Expression Omnibus with accession GSE264438 and 
GSE267407. 
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INTRODUCTION 

The dynamic genome-wide patterns of cytosine modifications, including 5-methylcytosine 
(5mC), 5-hydroxymethylcytosine (5hmC), and unmodified cytosine (collectively referred to as 
the ternary code methylation), play a critical role in regulating gene expression regulation1, 
genome stability maintenance2, and organismal development3. Through these roles, DNA 
methylation has been extensively associated with cellular and physiological human traits4 and is 
increasingly utilized as a biomarker in translational research and clinical applications5,6. Notable 
examples include applying DNA methylation to classify cancer and rare diseases7–10, liquid 
biopsy-based disease diagnosis11, and assessing disease hazard through methylation risk 
scores12 and forensic analysis13. Analysis of DNA methylation profiles is also crucial for 
elucidating gene transcription mechanisms14, understanding cell identity maintenance15, 
studying variations in cell composition16, and investigating gene-environment interactions within 
populations4. 

Epigenome-wide association studies (EWAS) investigate large human populations for how DNA 
cytosine modifications are associated with human traits and diseases4,17,18. Over the past 
decade, EWAS has been instrumental in uncovering links between DNA methylation and 
diverse human phenotypes. To support these studies, methodologies developed to profile DNA 
methylation across the genome19 are often challenged by the large size of the human genome, 
the complex methylation biology across genomic regions, and prevalent inter-cellular 
heterogeneity in tissues20. The most comprehensive DNA methylation profiling assay is single-
cell whole genome methylation sequencing (scWGMS), which offers unparalleled detail by 
providing base-resolution data for individual cells21. However, the high costs and technical 
complexity of scWGMS often limit its use to a limited number of samples22. As it is currently not 
practical to implement scWGMS for population studies, alternative methodologies are more 
frequently used, trading off genome coverage, base resolution, or cell-type resolution to reduce 
costs and technical demands. These include methods for profiling bulk tissues23 or FACS-
purified cells (e.g., bulk deep WGBS or nanopore sequencing)24, targeted genome capture (e.g., 
RRBS25), and the use of data techniques to interpret sparse signals (e.g., low-pass 
sequencing26). 

The Infinium DNA methylation BeadChip has been a robust solution for large-scale methylation 
discovery and screening efforts due to its ease of experiment and data analysis27, base-
resolution detection, and high quantitative granularity. This platform has been central to 
consortia such as The Cancer Genome Atlas (TCGA) and has amassed over 80,000 HM450 
methylomes28 and a comparable number of EPIC array methylation profiles in the Gene 
Expression Omnibus (GEO). While sequencing-based methods are more used for case-specific 
and mechanistic studies, Infinium arrays are often preferred in discovering population-scale trait 
associations, including meQTL studies29,30, epigenetic risk scoring31,32, and EWASs in 
human33,34 and other mammalian species35–37. Such adoption is partly due to the need for 
population studies to cover a large number of samples to dissect multiple cohort covariates 
(e.g., sex, age, genetic background, and tissue type) and their interactions and, in others, to the 
high depths required to capture nuanced variations in cytosine modification levels38,39. A 
prominent example is 5hmCs, which are inherently stochastic—often under 30% per site, even 
in homogeneous cell populations40, unlike the bimodal distribution typical of 5mCs—and are 
concentrated in specific regulatory regions41,42, necessitating high quantitative resolution for 
accurate measurements on a small number of sites rather than sparse whole-genome 
coverage. 

Array technologies rely on static probe designs that fix the CpG space to those selected during 
the array's development43. While this permits cross-study comparisons, the current design has 
the following limitations. First, whole genome methylation sequencing of 5mCs and 5hmCs in 
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human cells and tissues has significantly advanced our understanding of cell type methylation at 
high resolutions24 since the last human array design44. Current EPICv2 arrays, largely inheriting 
EPIC,  have yet to incorporate the recent discoveries (e.g., of 5hmCs)22,24,38,39. Further, most 
predictive models based on existing arrays hinge on a small number of trait associates. For 
example, most epigenetic clock models used hundreds of CpGs and reached high prediction 
accuracy45. Minimalistic approaches were taken in epigenetic clock construction46, cell type 
deconvolution47, and cancer classification48. These observations prompt us to think that building 
compatible but condensed arrays for applying existing models and reassessing associations in 
significantly larger, more inclusive, and stratified human populations should be feasible (Figure 
1A).  

To implement these thoughts, we present the rational, systematic design and the first 
application of the Methylation Screening Array (MSA), the latest Infinium BeadChip iteration. 
Compared to previous Infinium BeadChips, MSA has concentrated its coverage on trait-
associated methylation (~5.6 trait associations per site vs. ~2.2 in EPICv2, Methods) and cell-
identity-associated methylation variations (~3.7 cell signatures per site vs. ~2.3 in EPICv2, with 
an additional 48 novel cell type contrasts that can be made). Half of the design targeted 
previously reported EWAS associations. The other half leverages the latest single-cell and bulk 
whole genome methylation profiling efforts that deeply characterize diverse human cell types. 
This dual approach enables high-resolution cell-type deconvolution, supported by reference 
methylation panels and predictive models we have rigorously benchmarked in this study. 
Compared to the 8-sample plate design used in previous methylation arrays, MSA is built on a 
novel 48-sample EX methylation platform to achieve ultra-high sample throughput at a lower 
cost per sample while screening for more traits per probe site. Evaluation of the array’s 
accuracy and reproducibility confirms its robustness for population-scale applications. Applying 
MSA to various human tissues, we characterize tissue-specific 5mC and 5hmC genomic 
distribution and demonstrate the capacity for accurate cell-type deconvolution. We performed 
the first EWAS for 5hmC in aging and sex and identified previously under-reported contributions 
of 5hmC to the prediction mechanism of epigenetic clocks. Analysis of 64 whole blood 
methylomes demonstrated variable methylation at established EWAS loci and age and sex-
related immune cell composition alterations across the lifespan.  

 

RESULTS 

Rational, systematic design of MSA 

We designed the MSA array by compactly consolidating human trait-associated loci identified in 
previous EWAS studies and novel probe designs targeting diverse methylation biology (Figure 
1B). After post-manufacture quality control, the MSA array contains 284,317 unique probe sets 
targeting 269,094 genomic loci. 145,318 loci overlap what is targeted by the EPICv2 platform 
(Figure S1A). More SNP-targeting probe sets and nearly as many CpH probes were 
incorporated relative to EPICv2 (Figure S1B). Human trait-associated methylations were 
identified by mining EWAS databases and literature, prioritizing the diversity of trait coverage 
and statistical significance (Methods). We broadly classified all EWAS hits into 16 trait groups 
(Figure 1C, S1C). As expected from the design, MSA is highly enriched by EWAS associations 
across human traits (Figure 1D), reflecting the platform's targeted design and compact size. 

For new CpGs that previous Infinium platforms have not targeted, we leveraged existing WGBS 
data sets to identify CpGs associated with cell type, cis-regulatory elements, correlation with 
chromatin accessibility and gene expression, 5-hydroxymethylation and additional methylation 
features (Figure S1D, Methods). We emphasized high-confidence cell-type-specific methylation 
discriminants to facilitate the deconvolution of complex heterogeneous tissue types and the 
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study of cell-specific processes. Using pseudo bulk and sorted methylomes from brain49–51, pan 
tissue24, and blood cells52, we performed hierarchical, non-parametric analyses to identify CpG 
discriminants for the different cell types (Methods). These analyses identified thousands of 
hyper and hypomethylated signatures across hundreds of cell types (Figure S1E). Compared to 
EPICv2, MSA contains more markers per cell type comparison group despite the smaller size 
(Figure 1E). These differences are especially pronounced for rarer cell types or comparison 
groups with relatively few designable genome-wide markers. For example, our analysis of 
WGBS data identified 34 high-quality markers of the SRGAP1 subtype of VIP interneurons 
derived from the caudal ganglionic eminence. We incorporated 31 markers onto MSA, whereas 
EPICv2 contains three (Figure 1E). 

Like the EPICv2 array, the MSA design is highly enriched in the promoter, enhancer, and 
transcriptionally active regions. It is strongly depleted from quiescent, heterochromatic, and ZNF 
regions (as annotated by the full stack ChromHMM53) (Figure S1F, Table S1). The two platforms 
are less represented by open-sea CGI sites but have a higher proportion of cis-regulatory 
element coverage (as annotated by ENCODE54) (Figure S1G, Table S1). MSA has a slightly 
increased proportion of proximal (5.6% vs. 3.45%) and distal (16.2% vs. 10.1%) enhancer 
elements and marginally less coverage of CpG island (12.4% vs. 16.2%) sites compared to 
EPICv2. Compared to EPICv2, MSA CpH probes were designed by analyzing brain cell type-
specific methylomes with more prevalent CpH methylation. The queried cytosines are more 
linked to brain and neuron functions, implicating genes critical for neuron development and 
synaptic signaling (Figure 1F). 

Lastly, MSA contains at least one probe linked to 14,964 genes (overlapping or within 1500bp of 
the transcription start site), nearly as many as the larger EPICv2 array (Figure S1H). The 772 
genes on EPICv2 but not MSA were enriched in olfactory receptors and highly polymorphic 
genes whose readings are often confounded by genetic polymorphism55 (Figure S1I). In 
summary, the MSA assay targets human trait-associated methylations and novel sites where 
methylation is predicted to be dynamic, cell type-specific, and biologically relevant. 

MSA is highly reproducible and accurate. 

We used the MSA BeadChip to generate 146 methylation profiles for eight cell lines (GM12878, 
HCT116, HeLa, Jurkat, K562, LNCaP, MCF7, and Raji) with replicates in order to assess the 
arrays’ technical performance. Probe success rates for most of these 146 samples surpassed 
90% (Methods, Figure S1J). Probe detection rates were robust to 50 ng of input DNA but 
declined to <60% for three samples with ~30 ng of input DNA (Figure S1J). 

For all cell lines, we observed high correlation coefficients between samples of the same line 
regardless of the laboratory of cell culture (Figure 1G). The correlations between different cell 
lines were significantly lower, reflecting the different cell origin, ploidy, and epigenomic 
properties of the different lines. For GM12878 and HCT116, we generated technical replicate 
methylomes using the same DNA sample and computed Spearman correlation coefficients and 
F1 scores based on binarized methylation levels (Methods). The technical replicates had highly 
similar methylation profiles, with Spearman’s rho of 0.986 and 0.945 and F1 scores of 0.99 and 
0.95 for GM12878 and HCT116, respectively (Figure S1K). We also compared the GM12878 
cell line to methylation profiles that we previously generated using the same DNA samples on 
the EPIC and EPICv2 array44. The technical replicate correlation coefficients surpassed 97% on 
all three platforms. Across shared probes, methylation measurements were highly concordant 
between platforms (Figure S1L). 

Like the EPICv2 BeadChip, the MSA array includes replicate probe designs that target the same 
122-mer genomic loci but may vary in the other design details44. The replicate designs have the 
same prefix but alternative suffixes that describe the chemistry and target strand 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 11, 2025. ; https://doi.org/10.1101/2024.05.17.594606doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.17.594606
http://creativecommons.org/licenses/by-nd/4.0/


specifications55. For each of the 8,523 replicate probe groups, we calculated the standard 
deviation (SD) of replicate probes within cell line samples and compared the means of these 
SDs to the SDs of non-replicate probes (Figure S1M). Replicate probes had a low mean 
standard deviation of 0.02 compared to non-replicate probes, suggesting that the replicate 
probes produce consistent methylation measurements. Methylation can be averaged over 
replicate probes or the most robust replicate selected based on signal intensity P-value using 
SeSAMe56. 

We also assessed the specificity of MSA probe sequences. To minimize cross-hybridization, 
only sequences with mapping quality >20 were considered for novel probe designs (Methods). 
In the final MSA manifest, >99.9% of probe sequences are uniquely mapped with high quality. 
The minority of probes with lower-quality mapping can be readily identified in the standard 
SeSAMe56 preprocessing pipeline.  

Next, we evaluated the accuracy of MSA by comparing MSA beta values with methylation 
titration standards. For each titration, the beta value distributions centered on the target titration 
level (Figure 1H). We further compared our cell line methylomes from MSA to methylomes of 
the same DNA samples generated using an EM sequencing protocol57,58 (Figure 1I). Beta 
values remained highly correlated within but not across cell lines. Additional comparisons of the 
MSA cell line methylomes with publicly available WGBS data of the same cell lines also showed 
higher intra-cell line correlations than between cell lines (Figure S1N). These experiments 
confirm that MSA measurements are accurate and consistent with ground truth titrations and 
WGBS data.  

While MSA is more scalable than prior platforms due to its smaller size, a substantial number of 
probes were not reintroduced (Figure S1A), which could hinder the implementation of 
methylation-based prediction models or the study of prior associations. First, we noted that the 
loss of probes minimally affected the performance of eight prior epigenetic clocks (Figure S1O). 
We also reason that missing EPIC probes can be imputed from MSA probes. We implemented 
a sparse nearest-neighbor graph approach on a deep WGBS data set of sorted human cells24 
with high coverage across both platforms (Methods). Of the 714,492 non-retained probe sites, 
471,145 had a nearest neighbor with a correlation >.5 across the WGBS methylomes. To 
evaluate whether EPIC-based models could retain compatibility with MSA methylation profiles, 
we trained a tissue prediction model using only legacy probes. We tested the prediction on 
MSA-profiled human tissue types. The beta value reading at the nearest neighbor MSA site was 
sufficient to predict the tissue type using the EPIC-only model (Figure 1J). We have provided a 
neighbor reference in Supplementary Table S3 for missing value imputation. 

MSA uncovers tissue-specific methylation biology.  

We generated methylomes for five different sorted immune cell types (CD4 T, CD8 T, Total T 
cells, NK cells, Monocytes), peripheral blood mononuclear cells (PBMCs), and 26 different 
human tissue types (Figure S2A). We performed unsupervised clustering using t-stochastic 
neighbor embedding (tSNE) to explore their global methylome similarities. Related cell and 
tissue types were highly colocalized (Figure 2A).  

Cell type proportions are often the main drivers of bulk tissue EWAS results59. Using reference-
based deconvolution, we tested whether our bulk MSA tissue methylomes could be resolved 
into their constituent cell types (Methods). The cell proportion estimates of bulk tissues aligned 
with the reported tissue types (Figure 2B). For example, heart samples were predicted to 
contain cardiomyocytes, heart fibroblasts, and endothelial cells, while liver samples primarily 
contained hepatocytes. As expected, organs of immune cell development, such as the spleen 
and lymph nodes, had varying proportions of monocytes, T cells, and B cells. The thymus 
lacked B cells, which is consistent with its role as an organ of T lymphocyte maturation60. A few 
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profiled samples had discordant cell proportions and did not cluster in proximity to the rest of the 
samples of the same tissue type. For example, while most pancreatic tissues were estimated as 
acinar and ductal cells, the most populous cell types of the organ61, one sample had a higher 
fraction of granulocytes, suggesting excessive blood contamination or sample mislabeling. Such 
cases were indicated and excluded from downstream tissue-specific analyses (Methods).  

Next, we performed one-vs-all non-parametric supervised analyses of the tissues (Methods) 
and identified thousands of CpG discriminants uniquely methylated in the target tissue type 
(Figure 2C). Most CpG signatures were hypomethylated compared to the remaining tissues 
(Figure S2B). These tissue-specific probe sets were highly enriched in the cell-specific CpG 
signature lists curated from the analysis of publicly available single and sorted cell data sets 
during array design (Figure S2C, Methods), validating the design process and the performance 
of the selected probes in discriminating the target cell types.  

To explore the role of tissue-specific methylation markers in the corresponding tissue biology, 
we analyzed the chromatin state distributions and gene linkages of the CpG sets. We first 
compared them with the full stack ChromHMM states, a universal genome annotation learned 
from over 1,000 data sets comprising diverse cell types53 (Figure 2D). Hypermethylated tissue 
signatures were generally absent from enhancers and were enriched in promoter and bivalent 
promoter states, while hypomethylated markers were enriched in enhancers and gene bodies. 
The signatures are strongly enriched in the chromatin state associated with the matching cell 
type. For example, cerebellum and motor cortex signatures are enriched in EnhA6, representing 
brain enhancers. In contrast, colon and liver signatures were strongly enriched in EnhA14/A15, 
annotated as liver/digestive/intestine enhancers. The monocyte, NK cell, CD4+, and CD8+ T 
cell signatures were specifically enriched in EnhA7, a blood enhancer state.  

In addition to tissue-specific chromatin states, the signatures colocalized with the corresponding 
tissue-specific transcription factor binding sites (Figure 2E). For example, CpG markers of 
kidney tissues were enriched in the binding sites of SIX2, which regulates the specification and 
maintenance of nephron progenitors62, while colon signatures were enriched in CDX2, which 
governs intestinal development and gene expression63. The markers were also in proximity to 
tissue-specific genes. We linked each tissue CpG marker to all genes within 10KB and co-
embedded the linked gene sets with the human gene atlas ontology database (Figure S2D). 
Related tissue types are localized in the network space, and ontology terms match the tissue 
type. Collectively, our MSA data uncovered the epigenome signatures at tissue-specific 
transcription factor binding sites and genes that regulate the corresponding tissue biology. 

Lastly, we analyzed the mitotic histories of the different tissue methylomes using a subset of 
PRC2 target CpGs64 and partially methylated domains (PMDs) to track the cumulative cell 
divisions of the tissue (Figure S2E). Applying the models to our tissue and immune cell 
methylomes yielded division rates consistent with the relative proliferative activity of these 
tissues reported in the literature based on radioisotope labeling65. For example, the colon, small 
intestine, and T cells had the highest division rate score, consistent with the high cellular 
turnover of these tissues (Figure S2E). In contrast, tissues with higher fractions of post-mitotic 
cell types, such as the motor cortex, cerebellum, and kidney, had the lowest division rates. The 
estimates of mitotic activity using the PMD methylations largely correlated with those obtained 
from the PRC2 model. Interestingly, pancreatic and adrenal tissues showed relatively low PMD 
methylation compared to other tissues and predictions based on average PRC2 target 
methylations. These effects were not fully explained by global methylation differences, which 
were minor for tissues of similar mitotic activity based on the EpiTOC2 model (Figure S2F). The 
physiological cause or consequence of this PMD hypomethylation in acinar cell biology warrants 
further investigation. 
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MSA reveals dynamic 5-hydroxymethylation biology in human tissues. 

The standard array preparation uses bisulfite conversion, which does not discriminate 5-
methylcytosine (5mC) from 5-hydroxymethylation (5hmC)66. To test if MSA is compatible with 
5hmC profiling, hence producing a ternary code (5mC, 5hmC, and unmodified C) methylome, 
we employed a modified ACE seq protocol across the bulk human tissues67 (Methods). The 
derived 5hmC levels were globally anti-correlated with the proliferation rate of the tissue, being 
most abundant in neuron-enriched central nervous system tissues, followed by the kidney, 
heart, and liver, and lowest in the colon and lymph node (Figure S3A, S3B). Across chromatin 
states, 5hmC levels peaked in H3K36me3/H3K79me2 marked gene body enhancers and 
actively transcribed states (Figure 3A). Meta gene analysis showed a rapid depletion of 5hmC 
levels near the TSS, which rebounded and peaked in gene bodies (Figure S3C). To validate 
5hmC measurements, we compared probe sets selected for tissue-specific 5hmC levels 
identified from publicly available 5hmC-Seal39 and hmC-CATCH38. While brain tissues had high 
5hmC levels across most design groups, the non-brain tissues had the highest 5hmC in the 
designed tissue groups (Figure S3D).  

Next, we expanded the tissue-specific 5hmC analysis to all probes. tSNE analysis of 5hmC 
profiles showed a separation according to tissue type (Figure 3B). Supervised analysis 
(Methods) identified dozens to thousands of tissue-specific 5hmC sites in most tissues (Figure 
3C, S3E), the majority of which were associated with elevated 5hmC in the target tissue (Figure 
S3E). There were relatively few or no markers for skin (N=1) and colon (N=0), consistent with 
the low global 5hmC levels in these tissues.  

Intriguingly, tissue-specific 5hmCs were highly enriched in the tissue-specific gain of 5mCs we 
identified via standard 5mod-C profiling in the matched tissue types (Figure 3D) and in an 
independent WGBS data set of sorted human cells24 (Figure S3F). Indeed, we found little 
overlap of tissue-specific 5hmC with tissue-specific loss of 5modC. As a result, the tissue-
specific 5hmC was enriched in promoter states and, to a lesser extent, enhancers (Figure S3G), 
in contrast to the hypomethylation signatures we identified that were highly enriched in tissue-
specific enhancers and transcription factor binding sites (Figure 2D, 2E).  

Despite this lack of overlap, 5hmC still accumulated in a highly tissue-specific fashion. We 
tested the enrichment of genes in proximity to the 5hmC markers for each tissue type against 
GTEx tissue-specific RNA expression (Methods) and observed strong enrichment of the tissue 
marker genes identified by 5hmC in the corresponding tissue-specific RNA set from GTEx 
(Figure 3E). For example, liver-specific 5hmC linked to CFB, PKLR, and ADH1A,  all genes that 
are specifically expressed in the liver68. Similarly, kidney 5hmC localized to PKHD1, PAX2, and 
CYS1 which regulate kidney development and physiology69,70. At the probe markers for many of 
these tissue-specific genes, we did not observe hypomethylation colocalizing with 5hmC in the 
target tissue type; rather, we observed consistent hyper 5hmC across all the samples in the 
tissue group (Figure 3F). These results suggest that 5hmC may accumulate and remain stable 
in promoters and gene bodies to confer tissue-specific function, as opposed to existing as a 
transient byproduct of active demethylation pathways.  

In contrast, hypomethylation occurs at more distal enhancers in the binding sites of tissue-
specific transcription factors. These two modifications appear to be complementary in their 
localization and regulation of tissue-specific gene expression and cell identity. Future studies 
may elucidate the mechanisms by which 5hmC and 5mC are specifically targeted to their 
distinct locations in relation to tissue-specific genes. 

5mC and 5hmC methylation biology in imprinting, aging, and sex specificities. 
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To investigate methylation biology further, we analyzed constitutive methylation patterns not 
dictated by cell identity, across all the profiled tissues. Among the 128 tissues profiled, 13,633 
probes were consistently unmethylated (β < 0.2), 5,012 were consistently methylated (β > 0.8), 
and 225 displayed intermediate methylation (β between 0.3–0.7; Figure 4A). Constitutively 
methylated CpGs were enriched in gene bodies, while unmethylated sites were predominantly 
found in CpG islands and transcription start sites (Figure S4A). Both categories were depleted 
in enhancer regions, which showed greater variability and are critical for tissue-specific 
regulation (Figure 2D). 

We linked intermediately methylated probes to genes within 5 kb, identifying 123 proximal 
genes. Notable genes with the most linked probes included known imprinting loci such as 
PEG10, GNAS, and MIMT1, which exhibit parent-of-origin expression regulated by methylation 
at imprinting control regions (ICRs) and differentially methylated regions (DMRs) (Figure S4B). 
Across 32 tissue types, the average methylations linked to these genes centered around 0.5 
with minimal variability, except in the testis, which deviates due to sperm presence. Dozens of 
genes with proximal intermediately methylated probes displayed characteristics like ICR genes 
but are not to our knowledge currently documented as imprinted or monoallelically expressed 
(Figure 4B). 

We further analyzed methylation and 5hmC patterns across aging using linear modeling 
(Methods) and identified thousands of age-associated CpGs, predominantly hypermethylated 
with age (Figure S4C). These CpGs were significantly enriched in PRC2 target regions, CpG 
islands, and bivalent chromatin (Figure S4D). Notably, 10 CpGs exhibited tissue-independent 
5hmC increases during aging (Figure 4C). Set enrichment analysis revealed a strong overlap 
between age-associated 5mC CpGs and ranked 5hmC aging CpGs (Figure S4E), suggesting 
that some hypermethylation with age reflects 5hmC accumulation. 

To further explore this, we assessed 20 epigenetic clocks with various degrees of age 
correlation in our 5mC datasets (Methods, Figure S4F). We found significant enrichment of 
clock probe sets in 5hmC aging probes, implying that clocks incorporate, to different degrees, 
5hmC to estimate age (Figure 4D). Using 5hmC data alone, we trained a highly accurate model 
to predict chronological age (Figure 4E). These findings indicate that 5hmC is dynamic 
throughout the lifespan, and it alone can serve as a robust aging biomarker. Further 
investigation is needed to determine whether 5hmC accumulation results from spurious TET 
activity and if 5hmC age acceleration is associated with disease states. 

Lastly, thousands of CpG sites showed sex-associated 5mC and 5hmC patterns, with 1,809 
sites shared between the two modifications (Figure S4G, S4H). Most sex-associated CpGs 
were located on sex chromosomes, enriched in CpG islands and TSS chromatin states, likely 
reflecting sex-specific regulation of gene dosage (Figure S4I). Additionally, we identified 966 
autosomal CpGs associated with sex for 5mC and 79 for 5hmC, some exhibiting differences as 
pronounced as those seen in X-linked CpGs (Figure 4F). The mechanisms underlying sex-
specific methylation at autosomal loci and its potential role in regulating sex-specific expression 
and phenotypes remain to be explored. 

MSA methylomes reveal strong tissue contexts of human trait associations. 

Leveraging the trait association focus of MSA, we evaluated the capacity of MSA data to 
perform functional annotation of EWAS hits. In this analysis, we focused on the tissue context 
using the primary tissue profiles produced in this study. We first note that for the traits 
investigated in the curated studies, trait-associated probes are more often significantly enriched 
in enhancers and promoters53 but underrepresented in heterochromatic and repressive 
genomes (Figure S5A), consistent with their roles in transcriptional regulation. Traits 
characterized by genomic alterations (e.g., Down’s syndrome), cell proliferation (e.g., 
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malignancy), and frequent toxin exposure (e.g., smoking) had distinct and recurring chromatin 
feature enrichment (Figure 5A). In contrast, complex disease traits, e.g., diabetes and 
Alzheimer’s disease, are varied in chromatin state enrichment across studies.  

As expected, the enhancer and promoter-associated probes are more variably methylated 
across primary human tissue types (Figure S5B). To test whether such variation reveals the 
tissue context of each trait, we grouped CpGs by their associated traits and compared the 
methylation levels across tissue types (Figure 5B). An intriguing correspondence between the 
perceived tissue context and the methylation rank emerged. For example, CpGs associated with 
Alzheimer’s disease showed the most extreme methylation in brain tissues compared to other 
tissue types (Figure 5B). Sites with a putative positive disease effect size have the highest 
methylation readings in the brain, whereas sites with reduced methylation in diseases were 
least methylated in brain tissues. Similarly, probes associated with irritable bowel syndrome 
(IBS) were most methylated in the colon and small intestinal tissues. These results suggest a 
propensity of trait-associated CpGs to colocalize with differential methylations specific to the 
tissue that manifest the trait phenotype, underscoring the importance of tissue context when 
conducting EWASs. 

We also investigated the extent to which GWAS variants colocalize with tissue-specific 
methylation. We tested the enrichment of trait-associated SNPs in the one-vs-all cell-specific 
methylation signatures on MSA (Methods). These analyses identified multiple genetic variants 
associated with a tissue-specific trait co-localizing with the methylation signature of the 
corresponding tissue type. For example, SNPs associated with blood glucose and diabetes 
were colocalized with methylation markers for pancreatic cell types, while cholesterol variants 
were localized to hepatocyte-specific methylations (Figure 5C). Diverse autoimmune disorders 
were enriched in CpG markers for regulatory T cells, which are involved in immune system 
homeostasis and autoimmune suppression71. Whether the genetic variants implicated in these 
diseases directly impact nearby tissue-specific methylation to perturb gene expression and 
function requires follow-up studies. 

MSA detects inter-individual methylation variation at EWAS trait sites 

To date, thousands of traits have been analyzed in EWAS studies using peripheral whole blood, 
a clinically accessible tissue source that provides sufficient DNA for array-based analysis. To 
explore immune cell dynamics and evaluate the array's capacity for detecting interindividual 
variation, we analyzed 64 whole blood samples from anonymous donors using MSA. The MSA 
design included some major epigenetic clocks (Figure S6A), and we verified that we could 
accurately predict age using the multi-tissue Horvath clock72 on the tissues we previously 
profiled (Figure S6B). The Horvath clock and a sex prediction model (Methods) applied to the 
whole blood samples revealed a broad age range (8.7–58.4 years) and a sex distribution of 14 
females and 50 males (Methods, Figure S6C). 

Cell composition explains most bulk-tissue epigenetic variations. To analyze interindividual cell 
composition variation using DNA methylation, we first benchmarked computational 
deconvolution on MSA-based methylation profiles of sorted immune cells. As expected, 
predicted sorted immune cells contained >90% of the matching cell type, consistent with 
standard purification yields (Methods, Figure 6A). Then, we applied the same deconvolution 
strategy to whole-blood DNA methylomes. The results yielded estimates aligned with prior 
literature (Figure 6B; mean estimates: Neutrophils 61%, CD4T 14%, CD8T 9%, Monocytes 7%, 
B Cells 6%, NK 3%). Principal component analysis showed immune cell proportions, along with 
sex, explained the greatest variance in the data set (Figure 6C, S6B). To examine immune cell 
composition dynamics, we regressed cell type proportions on predicted age and sex. We found 
that aging was associated with a significant decrease in CD4+ T cells and an increase in 
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neutrophils (Figure 6D). Sex differences revealed higher CD8+ T cell proportions and lower NK 
cell proportions in females (Figure 6E).  

To further assess interindividual variations, we ranked autosomal probes by standard deviation 
across individuals. Using a set enrichment framework (Methods), we observed that sites with 
inter-individual methylation variation are significantly enriched in EWAS traits previously 
reported by blood-based EWASs, including immune system disorders and other environment-
related traits (e.g., smoking and alcohol consumption) (Figure 6F). The new MSA probe designs 
showed a similar distribution of inter-individual variations compared to legacy probes, 
suggesting an expanded capacity for detecting blood-based methylation-trait links (Figure S6C). 
While we could not directly correlate methylation with phenotypic traits in our data set, the 
results demonstrate that MSA detects methylation variations associated with various 
physiological outcomes identified in prior studies. 

 

DISCUSSION 

The Infinium DNA methylation BeadChip is a broadly used and accessible assay in human 
population studies. It has enabled trait association discoveries and predictive models such as 
epigenetic clocks, risk scores, and disease classifiers. Previous Infinium BeadChips have been 
designed to target genomic features, such as gene promoters, gene bodies, and cis-regulatory 
elements. While methylation variation at these genomic features is indeed associated with 
human traits, evenly covering genomic elements is not as economical for trait screening 
applications as in discovery and hypothesis generation settings. 

The existing methylation-based screening of most human traits requires relatively few loci. For 
instance, the Horvath clock for chronological age used 353 CpGs72. Other epigenetic clocks use 
feature numbers ranging from a few CpGs to ten thousand CpGs73, which are much smaller in 
number than existing Infinium array capacities43. The feasibility of such minimalistic approaches 
has also been established in cancer classification48 and cell type deconvolutions74 and 
demonstrates high inference precision. The development of MSA can be seen as a balanced 
approach to DNA methylome-based trait screening, prioritizing only the probe sets that link to 
diverse traits and high-confidence prediction models for the benefit of profiling larger human 
populations. 

While legacy probes were incorporated for their established trait associations, the enhanced 
scalability of MSA may facilitate the repositioning of these probes for novel associations. 
Historically, populations of European descent have been overrepresented in EWAS studies, 
potentially overlooking disease-relevant associations in more diverse demographics. Re-
examining these associations in larger and more balanced cohorts will be imperative to 
dissecting the complex interplay of genetic and environmental influences on disease 
phenotypes. The legacy probe designs chosen for inclusion in MSA are also frequently 
associated with multiple traits, implying that multiple physiological or environmental stimuli can 
converge on similar epigenetic programs. Future studies may elucidate whether these shared 
signatures represent common inflammatory or homeostatic pathways that are similarly disrupted 
and whether additional, currently under-studied disease states converge on the same loci. 

Besides offering a balanced approach in trait screening, MSA also represents an upgrade of 
Infinium array content to bridge deep high cell-type resolution profiling and cost-effective 
population screening. While offering greater cell type variation and genome-wide details, single-
cell methylome profiling cannot be scaled to population settings. MSA is designed to translate 
the cell type-specific knowledge from single-cell and bulk whole-genome methylome profiles for 
use in the population setting. 
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Computational cell-type deconvolutions are powerful methods for interrogating tissue 
composition variation in development and disease. The expanded cell-specific CpG markers 
and refined annotation in MSA enhance deconvolution granularity compared to EWAS studies 
based on previous Infinium platforms. For example, the commonly used CETS algorithm for 
estimating brain cell proportions estimates NeuN+:NeuN- proportions without predicting trait-
relevant subtypes75. We designed cell-specific probes discriminating 174 unique cell types (82 
brain cell types, 51 pan tissue, 41 blood) and anticipate that these markers will enable high-
resolution deconvolution, augmenting the study of selectively vulnerable or rare cell populations 
in complex diseases and tissue types. Our results and other recent work have also identified an 
enrichment of genetic variants associated with complex traits within cell-specific DMRs22. It is 
not clear the extent to which methylation changes in these cell-specific DMRs may perturb the 
functioning of the disease-relevant cell types. We anticipate that MSA will permit such 
investigations. 

Previous efforts have established the compatibility of Infinium arrays with other base conversion 
protocols, such as Tet-assisted bisulfite conversion, to profile 5hmC modifications76,77. Our 
analysis suggested that the new MSA array is compatible with the tandem bisulfite-A3A 
conversion for 5hmC profiling. We applied the 5hmC profiling to neuronal and peripheral human 
tissues. The tissue-specificity mirrors previous sequencing-based 5hmC profiles, suggesting the 
feasibility of using methylation arrays to implement 5hmC profiling in large sample sets. Our 
data also underscores the high cell type specificity of 5hmC signals, which are often distinct but 
complementary to cell-specific hypo 5modC and could be additionally used to trace cell identity 
and tissue composition changes. Over aging and across tissues, we identified dynamic 5hmC 
variations that are strongly linked to tissue specific gene expression and aging prediction 
models.  

As a first application, our analysis was limited in validating the trait-associated probes selected 
due to limited metadata availability. However, we found that probes associated with some traits 
in the literature were variably methylated in the corresponding tissue types we profiled or had a 
strong tissue context according to the beta value rank by tissue type (Figure 5). Attempting to 
design a consolidated array, we were also limited in the number of the CpG sites we could 
include and thus genomic feature and trait coverage. As more WGBS and array-based 
methylomes are generated, future designs may refine the most relevant trait and cell type-
implicated CpG sites to maximize screening and discovery power most economically.  

 

CONCLUSION 

We systematically developed, benchmarked, and applied MSA, a novel Infinium BeadChip 
assay consolidating trait-associated probes from the extensive EWAS literature, single-cell and 
bulk whole genome methylome profiles. Our benchmark revealed MSA as an accurate, 
reproducible, scalable, next-generation Infinium human methylation BeadChip targeting trait 
discovery in population settings. Our first application uncovered the cell type context of human 
EWAS and GWAS discoveries and dynamic 5hmC association in peripheral tissues. We 
anticipate MSA to be a valuable tool for methylation screening in large human populations for 
trait associations and broadly dissecting the cell-type-specific mechanisms of human diseases. 

 

METHODS 

CpG Probe Selection 
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Probe designability We aligned unmethylated and methylated probe sequences to the hg38 
genome using the BISCUIT tool suite78. To identify uniquely mapping sequences, 
subsequences of 30,35,40 and the entire 50nt probe sequence were aligned, and only probe 
designs where all subsequences had mapping quality >20 for both the methylated and 
unmethylated allele were considered. For these 19,253,974 uniquely mapping CpGs, design 
scores reflecting hybridization efficiency and melting temperature were computed, and 
13,891,035 CpGs with design scores > .3 were retained. Any probe sequence that contained 
common SNPs (dbSNP Build 151)79 within 5nt of the 3’ end was removed. Sequences with 
more than six additional CpGs were also removed to prevent hybridization interference due to 
variable methylation of neighboring CpGs. 9,993,793 CpGs remained from this preprocessing 
(“Designable Probes”), from which all array content was subsequently selected. When possible, 
high-quality probes (design score >= .6) were prioritized. 

Cis-regulatory elements: Human GRCh38 candidate cis-regulatory element (CRE) 
annotations were downloaded from the ENCODE Project Consortium80 and intersected with 
designable CpG sites. The methylation range for each CpG was computed across sorted 
immune52 and pan tissue24 cell types. CpGs that did not show a range > .4 were filtered out. The 
remaining CpGs were grouped by CRE type and sorted by methylation range. 30,000 CpGs 
total were sampled with a bias toward enhancer elements (dELS: 64%; pELS: 21%; CTCF Only, 
CTCF-bound:11%; PLS:2%; DNAse-H3K4me3:2%). 

Monoallelic/intermediate methylation: 180 bulk adult normal WGBS samples (Table S2) were 
analyzed to identify candidate monoallelically methylated CpG sites. Autosomal CpGs with 
minimum coverage of 20 reads and mean methylation >.3 and <.7 across 140 of the 180 
samples were considered intermediate methylation and intersected with the designable probe 
list. 207 pan-tissue sorted cell WGBS methylomes from Loyfer et al 24 were also analyzed for 
intermediate methylation, and designable CpGs with mean methylation >.3 and <.7 across 180 
of the 207 samples were selected. 

XCI-linked CpGs: 76 high coverage (>20 million CpGs) normal female WGBS samples (Table 
S2) were analyzed to identify X-chromosome CpG sites with intermediate methylation across 
samples (0.3 < methylation < .7). An additional 95 normal male WGBS samples were analyzed 
to identify X chromosome CpG sites fully unmethylated (< .3 methylation across 50 samples) or 
fully methylated (>.7). The CpG sites intermediately methylated in female samples but 
unmethylated or fully methylated in male samples were intersected with the high-quality probe 
list.  

Cell type-specific methylation: BED/bigWig files for single cell brain49–51, sorted pan tissue24, 
and sorted immune cell WGBS data52 were downloaded and used for marker identification. To 
reduce the sparsity of single-cell brain data, pseudo bulk methylomes were generated by 
averaging methylation over the cell type labels obtained by unsupervised clustering analysis 
previously reported. One vs. all comparisons were performed across major cell type groups and 
hierarchically within major groups to identify subtype markers. Wilcoxon rank sum testing was 
performed between the target and out groups at each CpG site to identify cell-specific markers. 
Designable CpG sites with an AUC = 1 and a delta beta >= .3 between the in and out groups 
were selected, and markers were capped at 80 CpGs per cell type contrast. Hyper and 
hypomethylated signatures were balanced when possible.  

5hmC: 5hmC-Seal39 and hmC-CATCH38 5hmC peaks were downloaded. Genomic intervals 
were intersected with the designable CpG list. For 5hmC-Seal data, the 5hmC CpG signal was 
treated as a binary value (1 if within a significant peak, 0 if not). For hmc-CATCH data, the peak 
coverage was applied to CpGs within the peak, and samples were scaled according to the total 
coverage. Tissue-specific 5hmC sites were identified as previously described for the WGBS 
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data. To identify 5hmC sites along a continuum of tissue specificity, the top 10K most highly 
covered CpGs in each sample from the hmC-CATCH data38 were collected and binned 
according to the frequencies the CpG was in the top 10K across the 60 samples. 11 bins of 5 
tissue count intervals (e.g., 1-5, 6-10, …, 55-60 tissues) were sampled equally, with sampling 
capped at 200 CpGs per bin.  

Cell-specific CpH methylation: Genes with cell-specific mCH methylation were downloaded49, 
and the top ten genes with the highest AUROC were selected for each cell type. Gene 
coordinates were intersected with CAC cytosines, the most prevalent mCH context found in 
neurons. 20 cytosines were sampled from each gene for each cell type.  

DNA methylation-gene expression correlations: Matched WGBS / Gene expression data 
from the Roadmap Epigenomics Mapping Consortium were used to compute the Spearman 
correlation between CpGs in the high-quality designability list and genes within 10KB of the 
CpG. CpGs were then ranked by the P-value of the correlation, standard deviation and 
expression levels of the gene, and absolute value of the correlation. The top 2,500 CpGs 
negatively correlated with the expression of the linked gene, and the top 2,500 positively 
correlated CpGs were selected. TCGA normal tissues81 were also analyzed to identify 
correlated linked CpG-Gene pairs. CpGs with a correlation >= 0.6 or <= -0.7 and a P-value < 
.05 were additionally included (901 positively correlated, 1,620 negatively correlated).  

DNA methylation-chromatin accessibility correlations: Matched DNA-chromatin 
accessibility data were downloaded from Luo et al. 202249, and Spearman correlations were 
computed between the accessibility peaks and CpG methylation sites. Correlations with P-
values < .05 and |Spearman’s rho| > .5 were selected, and the CpGs intersected with the high-
quality designability list. 

CoRSIVs: Genomic coordinates for CoRSIVs were downloaded82,83 and intersected with high-
quality designable probes.  

Solo-WCGW in partially methylated domains: CpGs in the WCGW context (flanked by A or 
T) in common PMDs were downloaded from Zhou et al. 201823 and intersected with high-quality 
designable probes. This subset was further intersected with CpG islands, and 6,000 probes 
were randomly sampled.  

meQTLs: meQTL data was downloaded from the GoDMC database30, and CpGs were ranked 
according to the number of times a CpG was associated with a meQTL. The top 10K CpGs 
were selected. An additional 20K meQTLs were randomly sampled from Hawe et al. 202129. 

Imprinting-associated DMRs: Differentially methylated regions associated with monoallelically 
expressed genes were downloaded from Skaar et al. 201284 and lifted to GRCh38 coordinates. 
The DMRs were intersected with the designable probes list.  

Y-linked genes: 180 high coverage (>20 million CpGs) Human WGBS samples (Table S2) 
were analyzed to identify variably methylated Y-linked genes. The Y chromosome CpGs were 
intersected with designable probes and subsequently intersected with all Y chromosome genes 
(GENCODE V39). The variance across the 180 samples was computed at every remaining CpG 
site. For each gene, the top 20 most variable probes were selected.  

Human trait associations: 1,067 EWAS studies were curated from the literature and EWAS 
databases (EWAS catalog33, EWAS atlas34). A subset of high-priority studies was identified 
according to sample number and statistical significance, diversity of trait coverage, citation 
number, and the journal impact factor. All probes, or the top 2500 most significant probes, were 
selected from high-priority studies. The top 100 most significant probes were selected from all 
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remaining curated studies. Study titles and trait annotations were queried for regular 
expressions to consolidate all selected studies/traits into 16 major trait groups. 

Sample Preparation  

Tissue dissection: Fresh frozen tissue samples were obtained from the Cooperative Human 
Tissue Network (CHTN), and 30-50mg of tissue were dissected on dry ice. 

Cell line culture: GM12878, K562 (CCL-243), LNCaP (CRL-1740), and HCT116 (CCL-247) 
cells (Source 1) were obtained from American Type Culture Collection (ATCC, Manassas, VA, 
USA). 1-4 x 10^6 cells were plated and cultured for 6 days with fresh media added 2-3 days. 
K562 cells were cultured in Iscove's Modified Dulbecco's Medium (30-2005, ATCC), 10% Fetal 
Bovine Serum (FBS) (45000-736, Gibco), and 1% penicillin/streptomycin (15140122, Gibco). 
LNCaP cells were cultured in Roswell Park Memorial Institute Medium (RPMI-1640) (30-2001, 
ATCC), 10% FBS, and 1% penicillin/streptomycin (15140122, Gibco). GM12878 cells were 
cultured with RPI-1640 (72400047, Invitrogen), and 15% Fetal Bovine Serum (Gibco, 45000-
736), 1% GlutaMAX™ (Gibco, 35050061), and 1% penicillin/streptomycin (15140122, Gibco). 
HCT116 cells were cultured in McCoy’s 5a medium modified (ATCC,30-2007), 10% Fetal 
Bovine Serum (FBS) (45000-736, Gibco), and 1% penicillin/streptomycin (15140122, Gibco). All 
cells were maintained in a 37°C incubator with 5% CO2 and cultured at a 75 cm2 culture flask 
(Fisher, BD353136) 

DNA extraction: Genomic DNA was extracted from 30-70 mg of tissue or 5.0 x 10^6 cells for 
Source 1 cell lines using commercially available QIAGEN QIAamp Mini Kit (QIAGEN, 51304), 
following the manufacturer’s protocol. DNA was quantified using a Qubit 4 Fluorometer 
(Invitrogen). For Source 2 and Source 3 cell lines, genomic DNA was purchased from BioChain 
Institute (HeLa - #D1255811, Raji - #D1255840, Jurkat - #D1255815, MCF7 - #D1255830, K562 
- #D1255820) 

Immune cell purification: Sorted immune cells were purified by the Human Immunology Core 
at the University of Pennsylvania following STEMCELL Technologies RosetteSep Enrichment 
Cocktail protocols (https://cdn.stemcell.com/media/files/pis/10000000545-PIS_02.pdf). PBMCs 
were isolated using a Lymphoprep ficol layer.  

Methylation titration controls: 10 ng of fully methylated human blood (Thermo Scientific, 
SD1131) and Jurkat (Thermo Scientific, SD1121) genomic DNA were amplified using the Repli-
g Mini Kit (QIAGEN, 150023) according to the manufacturer’s protocol. Following quantification 
with a Qubit 4 Fluorometer, 500ng of unamplified and amplified DNA were combined for the 
50% control. Human pre-mixed calibration standards (0,5,10,25,50,75,100%) were purchased 
from EpigenDx (EpigenDx 80-8060H_PreMix), and 200ng / titration was used for testing. 

EM sequencing of cell line DNA: Genomic DNA from the GM12878, K562, and HCT116 cell 
lines were extracted according to the QIAGEN QIAmp Mini Kit Protocol. The three samples 
were then mechanically sheared to 300 base pairs using the M220 Focused-ultrasonicator 
(Covaris, 500295) and methylated lambda control DNA. 200ng of each sample was 
enzymatically converted using the NEBNext® Enzymatic Methyl-seq Kit (NEB, E7120) with the 
manufacturer’s protocol. The samples were then indexed during PCR amplification during PCR 
amplification using EM-Seq™ index primers (NEB 7140). The indexed libraries (200 ng each) 
were pooled and used as input for the Twist NGS Methylation Detection System for target 
enrichment. A pre-hybridization solution of blockers and enhancers was created to prepare the 
pool for hybridization (Twist Bioscience, 104180). The DNA was hybridized with the Twist 
Human Methylome Panel (Twist Bioscience, 105520), and the targets were bound with 
streptavidin beads (Twist Bioscience, 100983), followed by a post-capture amplification. The 
enriched libraries were sequenced to 20X on the Illumina Novaseq 6000 PE150 platform.  
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5hmC profiling: Using the EZ DNA Methylation Kit (Zymo Research, D5001), 500 ng of each 
sample was bisulfite converted and purified following the manufacturer’s protocol. The samples 
were then denatured with DMSO at 95°C for 5 minutes and snap-cooled on dry ice. The 
samples were deaminated using APOBEC3A (A3A) purified following previously published 
protocol85 over 2 hours at 37°C. After incubation, the samples were purified using the Oligo 
Clean and Concentrator Kit (Zymo Research, D4060), following the manufacturer’s protocol. 
Two cycles of whole genome amplification were performed using 50 U of Klenow Fragment 
(3'→5' exo-) (NEB, M0212M), dNTP solution mix (Bio-Rad, #1708874), and Random Primer 6 
(NEB, S1230S). The samples were finally purified using AMPure XP Beads (Beckman Coulter 
Life Sciences, A63881). 

MSA Data Analysis  

Data preprocessing: All data preprocessing was done using the SeSAMe R package (version 
1.22.0)56. A manifest address file was generated using the MSA manifest available at 
https://github.com/zhou-
lab/InfiniumAnnotationV1/raw/main/Anno/MSA/MSA.hg38.manifest.tsv.gz and the 
sesameAnno_buildAddressFile function. Beta values were extracted from raw IDAT files using 
the openSesame function with the built address file and default parameters. Probe detection 
rates were obtained using the probeSuccessRate argument with the openSesame function. One 
sample with probe detection rates < 0.7 was excluded from analyses.  

Trait enrichment testing: 2,398,372 EWAS hits were curated from the literature and EWAS 
databases33,34 and used as a background for enrichment testing. Traits were annotated to 16 
major trait groups by searching for regular expression terms relevant to the trait group within the 
study or trait descriptions. The odds ratio enrichment in these trait groups was computed for 3 
query sets: 1) EPICv2 probes, retained MSA probes from prior Infinium platforms, and a random 
set of probes equal in size to the retained MSA probes. log2 odds ratio was plotted for each 
platform across trait groups. For testing the enrichment of MSA and EPICv2 probes in total trait 
associated probes, all EWAS probes were rank-ordered according to how many traits the 
probes associated with. The MSA and EPICv2 probes were each tested as a query against the 
ranked probe list using a modified gene set enrichment approach86 using the knowYourCG R 
package (version 1.0.0). 

Gene linkage and ontology analysis: The MSA and EPICv2 manifests were downloaded 
(https://github.com/zhou-lab/InfiniumAnnotationV1/raw/main/Anno/), and probe coordinates 
expanded 1500bp upstream of the probe start site. The manifests were then intersected with 
GENCODE.v41 GTF files to identify linked genes. Gene ontology testing was performed for 
protein-coding genes using Enrichr87. The GO Biological Process gene set was queried. For 
CpH probe-linked genes, only genes with a minimum of 2 probes per gene were analyzed.   

Sample reproducibility and accuracy: Pearson correlation coefficients were computed across 
cell line samples. Correlation matrices were plotted in heatmaps. For pairwise replicate 
comparisons, beta values were first binarized as 1 if beta > 0.5 and 0 if beta < 0.5. F1 scores for 
the binarized vectors were computed using the MLmetrics package (1.1.3).  

Cell deconvolution: Reference-based cellular deconvolution for sorted immune cells and 
whole blood samples was performed using the EpiDISH R package88 (version 2.18.0) with the 
robust partial correlations (RPC) method. The centDHSbloodDMC.m matrix provided within the 
package was used as a reference for sorted immune cell deconvolution. For bulk tissue cell type 
inference, a reference for one vs. all cell-specific CpGs was created from Loyfer et al. 202324 as 
previously described and deposited to the CytoMethIC github repository 
(https://github.com/zhou-lab/CytoMethIC_models/). Cell proportion scores were computed with 
the cmi_predict function from the CytoMethIC package (Version 1.1.1) 
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Identification of tissue-specific markers: One-vs-all tissue type comparisons were performed 
for sorted immune cells and bulk tissues. Wilcoxon rank sum testing between the target and out-
group was performed at each CpG site. CpGs with NA values in >10% of the target group or 
>50% of the out group were excluded. The AUC for discriminating between the target and the 
out-groups was computed. Only CpGs with a delta beta >20% and AUC >= .8 were selected as 
cell markers. For visualization, the top 50 hypo and hypermethylated CpGs sorted by AUC and 
delta beta were selected for each tissue type. For 5hmC samples, the same analysis was 
performed, and a delta beta of 5% was used as a threshold for marker identification. 

Tissue-specific CpG - transcription factor binding site analysis: BED files containing TFBS 
peaks were downloaded from ReMap 2022 (https://remap.univ-amu.fr89). The peaks for each 
transcription factor were intersected with all MSA CpGs to create CpG-TFBS links. Tissue 
signatures were tested for enrichment in the TFBS CpG sets using Fisher’s exact test with all 
MSA probes as the background.  

Enrichment testing in chromatin states: Enrichment testing in chromatin states for all probe 
sets in manuscript was performed using the knowYourCG R package (version 1.0.0) with the 
chromHMM knowledgebase set and testEnrichment function. 

Tissue-specific CpG marker validation enrichment testing: BED/bigWig files for single cell 
brain49–51, sorted pan tissue24, and sorted immune cell WGBS data52 were downloaded and used 
for marker identification. To reduce the sparsity of single-cell brain data, pseudo bulk 
methylomes were generated by averaging methylation over the cell type labels obtained by 
unsupervised clustering analysis previously reported. One vs. all comparisons were performed 
across major cell type groups and hierarchically within major groups to identify subtype markers. 
Wilcoxon rank sum testing was performed between the target and out groups at each CpG site 
to identify cell-specific markers. CpG sites with an AUC > .95 and a difference in beta value > .5 
between the in and out groups were selected to generate marker lists for each cell type and 
intersected with MSA probes. The 5modC and 5hmC tissue signatures identified from MSA 
profiled tissues were tested for enrichment in the marker lists using Fisher’s exact test with all 
MSA probes as the background. 

Nearest neighbor analysis: Nearest neighbor analysis was performed using deep WGBS 
data24 to identify neighbor genomic coordinates on MSA for non-retained EPIC probes. The 
WGBS data was subset for the MSA probe genomic coordinates and reference graphs were 
constructed using the nnd_knn (k=50 neighbors) function from the rnn_descent R package 
(version 0.1.6). The graph was then queried using the EPIC probe genomic coordinates from 
the WGBS data using the graph_knn_query function. For each CpG, the neighbor in the 
reference graph with the lowest Euclidean distance was recorded. We additionally computed the 
Euclidean distance between every EPIC probe and the nearest genomic neighbor on MSA. The 
final CpG with the lowest Euclidean distance was retained. To test the performance of neighbor 
probes in classifying tissue type, we used an EPIC tissue prediction model from the CytoMethIC 
R package (version 1.1.1) and removed all probes from the model that were retained on MSA. 
For remaining EPIC-only probes, we substituted the neighbor beta values from the MSA 
methylomes to compute the tissue inference.  

Tissue-specific CpG – marker gene enrichment testing: CpG signatures for each tissue type 
were linked to genes +/- 10KB from the CpG site (GENCODEv19). The resulting gene sets for 
each tissue type were tested for enrichment against the HumanGeneAtlas90 downloaded from 
Enrichr91,92 and the top 5 most enriched ontology terms (FDR < .05) for each tissue type’s gene 
sets were selected for network graphing in Cytoscape version 3.9.1 using the log2 odds ratio for 
edge weights and an edge weighted spring embedded layout.  

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 11, 2025. ; https://doi.org/10.1101/2024.05.17.594606doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.17.594606
http://creativecommons.org/licenses/by-nd/4.0/


Epigenetic clock estimation: 730 TCGA normal tissues profiled on the HM450 array were 
used to assess the impact of missing probes on epigenetic clock estimation. The full clock 
probes, and the subset represented on MSA were both tested, and the predictions compared 
(Fig S1O). For MSA profiled tissues, the probe suffixes were removed and duplicate probes 
averaged. All age estimates were computed with the DNAmAge function from the methylclock 
package (version 1.8.0)93 using default parameters. HypoClock and EpiTOC2 mitotic rate 
estimates were computed by tissue type group using the data and code provided by the authors 
at https://zenodo.org/records/2632938. Placental tissues were excluded. 

Sex prediction: Sex for anonymous whole blood donors was inferred using the cmi_predict 
function from the CytoMethIC R package (version 1.1.1) using the sex associated CpGs from 
the models represented on the MSA array. This model generates a sex score by averaging the 
difference between male associated hyper and hypo methylation over known sex associated 
CpGs.  

Linear modelling: Linear modelling for age and sex associated 5modC and 5hmC was 
performed using the DML function from the SeSAMe package56 version 1.22.0, covarying for 
tissue type (CpG ~ Age + Sex + Tissue). P-values were adjusted for multiple comparisons using 
the FDR method and CpGs with FDR < .05 for age and sex were considered for further 
analysis. Testis and placenta excluded. For analysis of whole blood methylomes, cell type 
proportions from deconvolution analysis were regressed on epigenetic age and sex using linear 
models. 

Set Enrichment Analyses: All set enrichment analyses were performed using the 
testEnrichmentSEA function from the knowYourCG package R package (version 1.0.0). For 
testing epigenetic clock probes against 5hmC age probes, epigenetic clock probes were 
downloaded from the dnaMethyAge R package (https://github.com/yiluyucheng/dnaMethyAge) 
and tested against the ranked list of age associated 5hmC probes, sorted according to P value 
from the 5hmC ~ Age + Sex + Tissue EWAS. The top 10 most enriched clocks were plotted. For 
variable blood methylome analysis, autosomal probes were ranked according to the standard 
deviation across the 64 whole blood samples. EWAS trait CpGs33,34 were tested as queries 
against the variable probe list. 

5hmC age clock: For each tissue type, 80% of samples were randomly selected for training 
and the remaining 20% used testing. For feature selection, the top 1000 CpGs according to P 
value were selected from the 5hmC aging EWAS. An elastic net regression model was trained 
to predict age from the 5hmC beta values using the cv.glment function (alpha=0.5, nfolds=10) 
from the glmnet package (Version 4.1-8). 

Analysis of EWAS hit chromatin state contexts: Each set of EWAS trait probes in the 
curated studies was tested for enrichment in 100 full-stack ChromHMM chromatin states 53 
using Fisher’s exact test. The total pool of curated EWAS hits was used as a background set. 
The number of traits-chromatin state associations with FDR < .05 was computed for each 
chromatin state and plotted. 17 studies representing 6 trait groups were selected, and the 
enrichment across chromatin states was plotted in heat maps. 

Chromatin context analysis of EWAS methylations: The standard deviation of all probes 
was computed using the tissue methylomes generated on MSA and sorted to create a ranked 
probe list. Selected full-stack ChromHMM states were intersected with the list of total EWAS hits 
and tested as queries against the ranked probe list using a modified gene set enrichment 
approach86 using the knowYourCG R package (version 1.0.0).  

Tissue context analysis of EWAS methylations: For each set of EWAS trait probes in the 
curated studies, we computed the standard deviation of the probes using the tissue methylomes 
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we generated using MSA. Trait sets were sorted according to the average standard deviations, 
and the most variable traits were selected for further analysis. In these traits, the rank for each 
sample was computed according to beta values. The mean rank of each tissue type group was 
computed for every CpG in the trait, and the distributions of ranks for each tissue type were 
plotted. 

GWAS co-localization with tissue-specific methylations: GWAS summary statistics were 
downloaded from the NHGRI-EBI GWAS catalog94 (version 1.0.2.1). The top 3000 unique 
disease/trait categories with the most SNPs were grouped and tested as independent queries 
against each one-vs-all tissue/cell-specific CpG set from the curated lists incorporated into the 
final MSA design. SNPs and CpG sites were expanded by 5kbps in upstream and downstream 
directions, and genomic interval overlaps were computed using the IRanges package (version 
2.36.0). The total number of CpG intervals for all tissue signatures was used as a background 
set, and Fisher’s Exact test was performed for enrichment testing.   
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FIGURES LEGENDS 

Figure 1: MSA design workflow and major trait groups. (A) Schematic illustrating the axes of 
sample throughput, genome coverage, and cost efficiency for different methylation assay 
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technologies. MSA has targeted genome coverage for high throughput at a relatively cheaper 
cost. (B) The screening process is to identify designable probes (left), targeted trait groups, and 
methylation features (right). (C) Major trait categories are incorporated into array content with a 
subset of represented sub-trait groups. Two trait categories (Sex and Other) are omitted. 
Duplicate traits studied from different cohorts are possible. (D) Set enrichment analysis showing 
the enrichment score of MSA and EPICv2 probes down a ranked list of EWAS hits probes, 
ranked according to the number of trait associations (top) and heatmap showing the enrichment 
of retained sites on MSA in all annotated major trait groups compared with EPICv2 and a 
random selection of Infinium probes equal in size to MSA (bottom). (E) Number of CpGs per cell 
type contrast on MSA vs. EPICv2 for contrasts with few (<500) high-quality whole genome 
markers. (F) Gene ontology for biological process results for genes linked to CpH probes 
(minimum two probes per gene) on MSA and EPICv2. (G) Heatmap of beta value correlations 
between cell line samples profiled on MSA. (H) Density plots of beta values for methylation 
titration standards. (I) Heatmap of beta value correlations between cell line samples profiled on 
MSA and with an EM sequencing protocol. (J) Tissue scores for a subset of profiled tissues 
were generated using the nearest neighbor probes on MSA for an EPIC tissue prediction model. 

Figure 2: MSA reveals tissue-specific methylation biology and tissue compositions. (A) 
tSNE plot showing unsupervised clustering of sorted immune cells and bulk tissues profiled on 
MSA. (B) Heatmap showing cell type proportion estimates obtained by methylation-based 
deconvolution on the sorted immune cell and bulk tissues (columns) profiled on MSA (C) 
Heatmaps showing beta values of tissue-specific CpGs (rows) over bulk and sorted immune 
cells (columns). (D) Enrichment of hyper and hypomethylated tissue-specific CpGs in different 
full-stack ChromHMM chromatin states (FDR < .05) (E) Heatmap showing enrichment of tissue-
specific hypomethylated CpGs (columns) in transcription factor binding sites (rows). 

Figure 3: 5hmC analysis of human tissues with MSA. (A) Line plot showing mean 5hmC 
levels across consensus ChromHMM states for each tissue type. (B) tSNE plot showing 
unsupervised clustering of bulk tissues profiled for 5hmC. (C) Heatmap showing representative 
one vs. all 5hmC signatures (rows) and the beta value across profiled tissues (columns) (D) Dot 
plot showing enrichment of 5modC tissue signatures in 5hmC tissue signatures. (E) Heatmap 
showing enrichment of genes linked to 5hmC CpG signatures for each tissue type in gene 
ontology sets from GTEx tissue-specific gene expression (columns) (F) Representative marker 
genes for seven tissue types showing 5modC (left) and 5hmC beta levels (right). Only 5hmC 
discriminates target tissue type. 

Figure 4: Epigenetic aging and mitotic history analysis of MSA profiled tissues. (A) 
Heatmap showing beta values over probes identified to be intermediately methylated (rows) 
across profiled samples (columns) (B) Mean beta values over intermediately methylated probes 
for six representative genes. The beta value patterns resemble those at known imprinting genes 
(C) Manhattan plot of the aging 5hmC EWAS (bottom) and scatter plots for representative age-
associated 5hmC CpGs (top) (D) Set Enrichment scores for 10 epigenetic clocks. Epigenetic 
clock probes were tested for enrichment against a list of 5hmC probes, ranked according to the 
P value associated with aging. Representative panels on the right show clock probes enriching 
toward the top of the list of most significant 5hmC probes. (E) A scatter plot shows the 
relationship of reported age to predicted age on testing data for the multi-tissue clock trained to 
predict age using 5hmC. (F) Boxplots showing beta value distributions for 5modC and 5hmC 
over representative sex-specific autosomal CpGs 

Figure 5: Tissue context of human trait associations. (A) Heatmap showing the enrichment 
of publicly available trait-associated probes across different genomic features (B) Distributions 
of mean beta value rank for each tissue type over trait-associated CpGs (C) Enrichment of a 
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subset of designed tissue-specific methylation sets on MSA in the SNP sets associated with 
different GWAS traits  

Figure 6: Immune cell composition and interindividual whole-blood methylation variation. 
(A) Validation of immune cell deconvolution using sorted immune cell methylation profiles. (B) 
Immune cell proportion estimates in 64 whole blood methylomes. (C) Principal component 
analysis shows that immune cell proportions and sex explain the largest variance across the 
dataset. (D) Age-associated immune cell composition dynamics: CD4+ T cell proportions 
significantly decrease with age, while neutrophil proportions increase. (E) Sex differences in 
immune cell composition. (F) Enrichment of previously reported EWAS traits in CpG sites with 
high inter-individual methylation variation. 
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