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SUMMARY

Epigenome-wide association studies (EWAS) are transforming our understanding of the
interplay between epigenetics and complex human traits and phenotypes. We introduce the
Methylation Screening Array (MSA), a new iteration of the Infinium technology for scalable and
guantitative screening of trait associations of nuanced ternary-code cytosine modifications in
larger, more inclusive, and stratified human populations. MSA integrates EWAS, single-cell, and
cell-type-resolved methylome profiles, covering diverse human traits and diseases. Our first
MSA applications yield multiple biological insights: we revealed a previously unappreciated role
of 5-hydroxymethylcytosine (5hmC) in trait associations and epigenetic clocks. We
demonstrated that 5hmCs complement 5-methylcytosines (5mCs) in defining tissues and cells’
epigenetic identities. In-depth analyses highlighted the cell type context of EWAS and GWAS
hits. Using this platform, we conducted a comprehensive human 5hmC aging EWAS,
discovering tissue-invariant and tissue-specific aging dynamics, including distinct tissue-specific
rates of mitotic hyper- and hypomethylation rates. These findings chart a landscape of the
complex interplay of the two forms of cytosine modifications in diverse human tissues and their
roles in health and disease.
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Availability: Informatics for MSA data preprocessing and functional analysis is available in the
R/Bioconductor package SeSAMe (version 3.22+):
https://bioconductor.org/packages/release/bioc/html/sesame.html

The complete MSA manifest, design criteria, technical, human trait, and functional annotations
are available at https://zwdzwd.qgithub.io/InfiniumAnnotation

The generated human cell line, primary tissue 5mC and 5hmC methylome profiles (N=676), and
EM-seq data are available in the Gene Expression Omnibus with accession GSE264438 and
GSE267407.
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INTRODUCTION

The dynamic genome-wide patterns of cytosine modifications, including 5-methylcytosine
(5mC), 5-hydroxymethylcytosine (5hmC), and unmodified cytosine (collectively referred to as
the ternary code methylation), play a critical role in regulating gene expression regulation®,
genome stability maintenance?, and organismal development’. Through these roles, DNA
methylation has been extensively associated with cellular and physiological human traits* and is
increasingly utilized as a biomarker in translational research and clinical applications®®. Notable
examples include applying DNA methylation to classify cancer and rare diseases’™°, liquid
biopsy-based disease diagnosis', and assessing disease hazard through methylation risk
scores and forensic analysis™®. Analysis of DNA methylation profiles is also crucial for
elucidating gene transcription mechanisms™, understanding cell identity maintenance®,
studying variations in cell composition*®, and investigating gene-environment interactions within
populations®.

Epigenome-wide association studies (EWAS) investigate large human populations for how DNA
cytosine modifications are associated with human traits and diseases*!"*®. Over the past
decade, EWAS has been instrumental in uncovering links between DNA methylation and
diverse human phenotypes. To support these studies, methodologies developed to profile DNA
methylation across the genome'® are often challenged by the large size of the human genome,
the complex methylation biology across genomic regions, and prevalent inter-cellular
heterogeneity in tissues®. The most comprehensive DNA methylation profiling assay is single-
cell whole genome methylation sequencing (scWGMS), which offers unparalleled detail by
providing base-resolution data for individual cells**. However, the high costs and technical
complexity of scWGMS often limit its use to a limited number of samples®. As it is currently not
practical to implement scWGMS for population studies, alternative methodologies are more
frequently used, trading off genome coverage, base resolution, or cell-type resolution to reduce
costs and technical demands. These include methods for profiling bulk tissues®® or FACS-
purified cells (e.g., bulk deep WGBS or nanopore sequencing)®, targeted genome capture (e.g.,
RRBS®), and the use of data techniques to interpret sparse signals (e.g., low-pass
sequencing?®).

The Infinium DNA methylation BeadChip has been a robust solution for large-scale methylation
discovery and screening efforts due to its ease of experiment and data analysis®’, base-
resolution detection, and high quantitative granularity. This platform has been central to
consortia such as The Cancer Genome Atlas (TCGA) and has amassed over 80,000 HM450
methylomes® and a comparable number of EPIC array methylation profiles in the Gene
Expression Omnibus (GEO). While sequencing-based methods are more used for case-specific
and mechanistic studies, Infinium arrays are often preferred in discovering population-scale trait
associations, including meQTL studies®®, epigenetic risk scoring®*, and EWASs in
human®?* and other mammalian species®>’. Such adoption is partly due to the need for
population studies to cover a large number of samples to dissect multiple cohort covariates
(e.g., sex, age, genetic background, and tissue type) and their interactions and, in others, to the
high depths required to capture nuanced variations in cytosine modification levels®*%*. A
prominent example is 5hmCs, which are inherently stochastic—often under 30% per site, even
in homogeneous cell populations®, unlike the bimodal distribution typical of 5SmCs—and are
concentrated in specific regulatory regions***?, necessitating high quantitative resolution for
accurate measurements on a small number of sites rather than sparse whole-genome
coverage.

Array technologies rely on static probe designs that fix the CpG space to those selected during
the array's development*®. While this permits cross-study comparisons, the current design has
the following limitations. First, whole genome methylation sequencing of 5mCs and 5hmCs in
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human cells and tissues has significantly advanced our understanding of cell type methylation at
high resolutions® since the last human array design**. Current EPICv2 arrays, largely inheriting
EPIC, have yet to incorporate the recent discoveries (e.g., of 5hmCs)??*%3  Further, most
predictive models based on existing arrays hinge on a small number of trait associates. For
example, most epigenetic clock models used hundreds of CpGs and reached high prediction
accuracy™. Minimalistic approaches were taken in epigenetic clock construction®, cell type
deconvolution*’, and cancer classification*®. These observations prompt us to think that building
compatible but condensed arrays for applying existing models and reassessing associations in
significantly larger, more inclusive, and stratified human populations should be feasible (Figure
1A).

To implement these thoughts, we present the rational, systematic design and the first
application of the Methylation Screening Array (MSA), the latest Infinium BeadChip iteration.
Compared to previous Infinium BeadChips, MSA has concentrated its coverage on trait-
associated methylation (~5.6 trait associations per site vs. ~2.2 in EPICv2, Methods) and cell-
identity-associated methylation variations (~3.7 cell signatures per site vs. ~2.3 in EPICv2, with
an additional 48 novel cell type contrasts that can be made). Half of the design targeted
previously reported EWAS associations. The other half leverages the latest single-cell and bulk
whole genome methylation profiling efforts that deeply characterize diverse human cell types.
This dual approach enables high-resolution cell-type deconvolution, supported by reference
methylation panels and predictive models we have rigorously benchmarked in this study.
Compared to the 8-sample plate design used in previous methylation arrays, MSA is built on a
novel 48-sample EX methylation platform to achieve ultra-high sample throughput at a lower
cost per sample while screening for more traits per probe site. Evaluation of the array’s
accuracy and reproducibility confirms its robustness for population-scale applications. Applying
MSA to various human tissues, we characterize tissue-specific 5mC and 5hmC genomic
distribution and demonstrate the capacity for accurate cell-type deconvolution. We performed
the first EWAS for 5hmC in aging and sex and identified previously under-reported contributions
of 5hmC to the prediction mechanism of epigenetic clocks. Analysis of 64 whole blood
methylomes demonstrated variable methylation at established EWAS loci and age and sex-
related immune cell composition alterations across the lifespan.

RESULTS
Rational, systematic design of MSA

We designed the MSA array by compactly consolidating human trait-associated loci identified in
previous EWAS studies and novel probe designs targeting diverse methylation biology (Figure
1B). After post-manufacture quality control, the MSA array contains 284,317 unique probe sets
targeting 269,094 genomic loci. 145,318 loci overlap what is targeted by the EPICv2 platform
(Figure S1A). More SNP-targeting probe sets and nearly as many CpH probes were
incorporated relative to EPICv2 (Figure S1B). Human trait-associated methylations were
identified by mining EWAS databases and literature, prioritizing the diversity of trait coverage
and statistical significance (Methods). We broadly classified all EWAS hits into 16 trait groups
(Figure 1C, S1C). As expected from the design, MSA is highly enriched by EWAS associations
across human traits (Figure 1D), reflecting the platform's targeted design and compact size.

For new CpGs that previous Infinium platforms have not targeted, we leveraged existing WGBS
data sets to identify CpGs associated with cell type, cis-regulatory elements, correlation with
chromatin accessibility and gene expression, 5-hydroxymethylation and additional methylation
features (Figure S1D, Methods). We emphasized high-confidence cell-type-specific methylation
discriminants to facilitate the deconvolution of complex heterogeneous tissue types and the
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study of cell-specific processes. Using pseudo bulk and sorted methylomes from brain**~>*, pan

tissue?®, and blood cells®?, we performed hierarchical, non-parametric analyses to identify CpG
discriminants for the different cell types (Methods). These analyses identified thousands of
hyper and hypomethylated signatures across hundreds of cell types (Figure S1E). Compared to
EPICv2, MSA contains more markers per cell type comparison group despite the smaller size
(Figure 1E). These differences are especially pronounced for rarer cell types or comparison
groups with relatively few designable genome-wide markers. For example, our analysis of
WGBS data identified 34 high-quality markers of the SRGAP1 subtype of VIP interneurons
derived from the caudal ganglionic eminence. We incorporated 31 markers onto MSA, whereas
EPICv2 contains three (Figure 1E).

Like the EPICv2 array, the MSA design is highly enriched in the promoter, enhancer, and
transcriptionally active regions. It is strongly depleted from quiescent, heterochromatic, and ZNF
regions (as annotated by the full stack ChromHMM®>?) (Figure S1F, Table S1). The two platforms
are less represented by open-sea CGI sites but have a higher proportion of cis-regulatory
element coverage (as annotated by ENCODE®*) (Figure S1G, Table S1). MSA has a slightly
increased proportion of proximal (5.6% vs. 3.45%) and distal (16.2% vs. 10.1%) enhancer
elements and marginally less coverage of CpG island (12.4% vs. 16.2%) sites compared to
EPICv2. Compared to EPICv2, MSA CpH probes were designed by analyzing brain cell type-
specific methylomes with more prevalent CpH methylation. The queried cytosines are more
linked to brain and neuron functions, implicating genes critical for neuron development and
synaptic signaling (Figure 1F).

Lastly, MSA contains at least one probe linked to 14,964 genes (overlapping or within 1500bp of
the transcription start site), nearly as many as the larger EPICv2 array (Figure S1H). The 772
genes on EPICv2 but not MSA were enriched in olfactory receptors and highly polymorphic
genes whose readings are often confounded by genetic polymorphism® (Figure S1il). In
summary, the MSA assay targets human trait-associated methylations and novel sites where
methylation is predicted to be dynamic, cell type-specific, and biologically relevant.

MSA is highly reproducible and accurate.

We used the MSA BeadChip to generate 146 methylation profiles for eight cell lines (GM12878,
HCT116, Hela, Jurkat, K562, LNCaP, MCF7, and Raji) with replicates in order to assess the
arrays’ technical performance. Probe success rates for most of these 146 samples surpassed
90% (Methods, Figure S1J). Probe detection rates were robust to 50 ng of input DNA but
declined to <60% for three samples with ~30 ng of input DNA (Figure S1J).

For all cell lines, we observed high correlation coefficients between samples of the same line
regardless of the laboratory of cell culture (Figure 1G). The correlations between different cell
lines were significantly lower, reflecting the different cell origin, ploidy, and epigenomic
properties of the different lines. For GM12878 and HCT116, we generated technical replicate
methylomes using the same DNA sample and computed Spearman correlation coefficients and
F1 scores based on binarized methylation levels (Methods). The technical replicates had highly
similar methylation profiles, with Spearman’s rho of 0.986 and 0.945 and F1 scores of 0.99 and
0.95 for GM12878 and HCT116, respectively (Figure S1K). We also compared the GM12878
cell line to methylation profiles that we previously generated using the same DNA samples on
the EPIC and EPICv2 array**. The technical replicate correlation coefficients surpassed 97% on
all three platforms. Across shared probes, methylation measurements were highly concordant
between platforms (Figure S1L).

Like the EPICv2 BeadChip, the MSA array includes replicate probe designs that target the same
122-mer genomic loci but may vary in the other design details**. The replicate designs have the
same prefix but alternative suffixes that describe the chemistry and target strand
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specifications®. For each of the 8,523 replicate probe groups, we calculated the standard
deviation (SD) of replicate probes within cell line samples and compared the means of these
SDs to the SDs of non-replicate probes (Figure S1M). Replicate probes had a low mean
standard deviation of 0.02 compared to non-replicate probes, suggesting that the replicate
probes produce consistent methylation measurements. Methylation can be averaged over
replicate probes or the most robust replicate selected based on signal intensity P-value using
SeSAMe.

We also assessed the specificity of MSA probe sequences. To minimize cross-hybridization,
only sequences with mapping quality >20 were considered for novel probe designs (Methods).
In the final MSA manifest, >99.9% of probe sequences are uniquely mapped with high quality.
The minority of probes with lower-quality mapping can be readily identified in the standard
SeSAMe*® preprocessing pipeline.

Next, we evaluated the accuracy of MSA by comparing MSA beta values with methylation
titration standards. For each titration, the beta value distributions centered on the target titration
level (Figure 1H). We further compared our cell line methylomes from MSA to methylomes of
the same DNA samples generated using an EM sequencing protocol®”*® (Figure 1l). Beta
values remained highly correlated within but not across cell lines. Additional comparisons of the
MSA cell line methylomes with publicly available WGBS data of the same cell lines also showed
higher intra-cell line correlations than between cell lines (Figure S1N). These experiments
confirm that MSA measurements are accurate and consistent with ground truth titrations and
WGBS data.

While MSA is more scalable than prior platforms due to its smaller size, a substantial number of
probes were not reintroduced (Figure S1A), which could hinder the implementation of
methylation-based prediction models or the study of prior associations. First, we noted that the
loss of probes minimally affected the performance of eight prior epigenetic clocks (Figure S10).
We also reason that missing EPIC probes can be imputed from MSA probes. We implemented
a sparse nearest-neighbor graph approach on a deep WGBS data set of sorted human cells®*
with high coverage across both platforms (Methods). Of the 714,492 non-retained probe sites,
471,145 had a nearest neighbor with a correlation >.5 across the WGBS methylomes. To
evaluate whether EPIC-based models could retain compatibility with MSA methylation profiles,
we trained a tissue prediction model using only legacy probes. We tested the prediction on
MSA-profiled human tissue types. The beta value reading at the nearest neighbor MSA site was
sufficient to predict the tissue type using the EPIC-only model (Figure 1J). We have provided a
neighbor reference in Supplementary Table S3 for missing value imputation.

MSA uncovers tissue-specific methylation biology.

We generated methylomes for five different sorted immune cell types (CD4 T, CD8 T, Total T
cells, NK cells, Monocytes), peripheral blood mononuclear cells (PBMCs), and 26 different
human tissue types (Figure S2A). We performed unsupervised clustering using t-stochastic
neighbor embedding (tSNE) to explore their global methylome similarities. Related cell and
tissue types were highly colocalized (Figure 2A).

Cell type proportions are often the main drivers of bulk tissue EWAS results®. Using reference-
based deconvolution, we tested whether our bulk MSA tissue methylomes could be resolved
into their constituent cell types (Methods). The cell proportion estimates of bulk tissues aligned
with the reported tissue types (Figure 2B). For example, heart samples were predicted to
contain cardiomyocytes, heart fibroblasts, and endothelial cells, while liver samples primarily
contained hepatocytes. As expected, organs of immune cell development, such as the spleen
and lymph nodes, had varying proportions of monocytes, T cells, and B cells. The thymus
lacked B cells, which is consistent with its role as an organ of T lymphocyte maturation®. A few
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profiled samples had discordant cell proportions and did not cluster in proximity to the rest of the
samples of the same tissue type. For example, while most pancreatic tissues were estimated as
acinar and ductal cells, the most populous cell types of the organ®, one sample had a higher
fraction of granulocytes, suggesting excessive blood contamination or sample mislabeling. Such
cases were indicated and excluded from downstream tissue-specific analyses (Methods).

Next, we performed one-vs-all non-parametric supervised analyses of the tissues (Methods)
and identified thousands of CpG discriminants uniquely methylated in the target tissue type
(Figure 2C). Most CpG signatures were hypomethylated compared to the remaining tissues
(Figure S2B). These tissue-specific probe sets were highly enriched in the cell-specific CpG
signature lists curated from the analysis of publicly available single and sorted cell data sets
during array design (Figure S2C, Methods), validating the design process and the performance
of the selected probes in discriminating the target cell types.

To explore the role of tissue-specific methylation markers in the corresponding tissue biology,
we analyzed the chromatin state distributions and gene linkages of the CpG sets. We first
compared them with the full stack ChromHMM states, a universal genome annotation learned
from over 1,000 data sets comprising diverse cell types® (Figure 2D). Hypermethylated tissue
signatures were generally absent from enhancers and were enriched in promoter and bivalent
promoter states, while hypomethylated markers were enriched in enhancers and gene bodies.
The signatures are strongly enriched in the chromatin state associated with the matching cell
type. For example, cerebellum and motor cortex signatures are enriched in EnhA6, representing
brain enhancers. In contrast, colon and liver signatures were strongly enriched in EnhA14/A15,
annotated as liver/digestive/intestine enhancers. The monocyte, NK cell, CD4+, and CD8+ T
cell signatures were specifically enriched in EnhA7, a blood enhancer state.

In addition to tissue-specific chromatin states, the signatures colocalized with the corresponding
tissue-specific transcription factor binding sites (Figure 2E). For example, CpG markers of
kidney tissues were enriched in the binding sites of SIX2, which regulates the specification and
maintenance of nephron progenitors®?, while colon signatures were enriched in CDX2, which
governs intestinal development and gene expression®. The markers were also in proximity to
tissue-specific genes. We linked each tissue CpG marker to all genes within 10KB and co-
embedded the linked gene sets with the human gene atlas ontology database (Figure S2D).
Related tissue types are localized in the network space, and ontology terms match the tissue
type. Collectively, our MSA data uncovered the epigenome signatures at tissue-specific
transcription factor binding sites and genes that regulate the corresponding tissue biology.

Lastly, we analyzed the mitotic histories of the different tissue methylomes using a subset of
PRC2 target CpGs® and partially methylated domains (PMDs) to track the cumulative cell
divisions of the tissue (Figure S2E). Applying the models to our tissue and immune cell
methylomes yielded division rates consistent with the relative proliferative activity of these
tissues reported in the literature based on radioisotope labeling®®. For example, the colon, small
intestine, and T cells had the highest division rate score, consistent with the high cellular
turnover of these tissues (Figure S2E). In contrast, tissues with higher fractions of post-mitotic
cell types, such as the motor cortex, cerebellum, and kidney, had the lowest division rates. The
estimates of mitotic activity using the PMD methylations largely correlated with those obtained
from the PRC2 model. Interestingly, pancreatic and adrenal tissues showed relatively low PMD
methylation compared to other tissues and predictions based on average PRC2 target
methylations. These effects were not fully explained by global methylation differences, which
were minor for tissues of similar mitotic activity based on the EpiTOC2 model (Figure S2F). The
physiological cause or consequence of this PMD hypomethylation in acinar cell biology warrants
further investigation.
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MSA reveals dynamic 5-hydroxymethylation biology in human tissues.

The standard array preparation uses bisulfite conversion, which does not discriminate 5-
methylcytosine (5mC) from 5-hydroxymethylation (5hmC)®. To test if MSA is compatible with
5hmC profiling, hence producing a ternary code (5mC, 5hmC, and unmodified C) methylome,
we employed a modified ACE seq protocol across the bulk human tissues®” (Methods). The
derived 5hmC levels were globally anti-correlated with the proliferation rate of the tissue, being
most abundant in neuron-enriched central nervous system tissues, followed by the kidney,
heart, and liver, and lowest in the colon and lymph node (Figure S3A, S3B). Across chromatin
states, 5hmC levels peaked in H3K36me3/H3K79me2 marked gene body enhancers and
actively transcribed states (Figure 3A). Meta gene analysis showed a rapid depletion of 5hmC
levels near the TSS, which rebounded and peaked in gene bodies (Figure S3C). To validate
5hmC measurements, we compared probe sets selected for tissue-specific 5hmC levels
identified from publicly available 5hmC-Seal** and hmC-CATCH?®. While brain tissues had high
5hmC levels across most design groups, the non-brain tissues had the highest 5hmC in the
designed tissue groups (Figure S3D).

Next, we expanded the tissue-specific 5hmC analysis to all probes. tSNE analysis of 5hmC
profiles showed a separation according to tissue type (Figure 3B). Supervised analysis
(Methods) identified dozens to thousands of tissue-specific 5hmC sites in most tissues (Figure
3C, S3E), the majority of which were associated with elevated 5hmC in the target tissue (Figure
S3E). There were relatively few or no markers for skin (N=1) and colon (N=0), consistent with
the low global 5hmC levels in these tissues.

Intriguingly, tissue-specific 5hmCs were highly enriched in the tissue-specific gain of 5mCs we
identified via standard 5mod-C profiling in the matched tissue types (Figure 3D) and in an
independent WGBS data set of sorted human cells** (Figure S3F). Indeed, we found little
overlap of tissue-specific 5hmC with tissue-specific loss of 5modC. As a result, the tissue-
specific 5hmC was enriched in promoter states and, to a lesser extent, enhancers (Figure S3G),
in contrast to the hypomethylation signatures we identified that were highly enriched in tissue-
specific enhancers and transcription factor binding sites (Figure 2D, 2E).

Despite this lack of overlap, 5hmC still accumulated in a highly tissue-specific fashion. We
tested the enrichment of genes in proximity to the 5hmC markers for each tissue type against
GTEX tissue-specific RNA expression (Methods) and observed strong enrichment of the tissue
marker genes identified by 5hmC in the corresponding tissue-specific RNA set from GTEXx
(Figure 3E). For example, liver-specific 5hmC linked to CFB, PKLR, and ADH1A, all genes that
are specifically expressed in the liver®®. Similarly, kidney 5hmC localized to PKHD1, PAX2, and
CYS1 which regulate kidney development and physiology®®’°. At the probe markers for many of
these tissue-specific genes, we did not observe hypomethylation colocalizing with 5hmC in the
target tissue type; rather, we observed consistent hyper 5hmC across all the samples in the
tissue group (Figure 3F). These results suggest that 5hmC may accumulate and remain stable
in promoters and gene bodies to confer tissue-specific function, as opposed to existing as a
transient byproduct of active demethylation pathways.

In contrast, hypomethylation occurs at more distal enhancers in the binding sites of tissue-
specific transcription factors. These two modifications appear to be complementary in their
localization and regulation of tissue-specific gene expression and cell identity. Future studies
may elucidate the mechanisms by which 5hmC and 5mC are specifically targeted to their
distinct locations in relation to tissue-specific genes.

5mC and 5hmC methylation biology in imprinting, aging, and sex specificities.
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To investigate methylation biology further, we analyzed constitutive methylation patterns not
dictated by cell identity, across all the profiled tissues. Among the 128 tissues profiled, 13,633
probes were consistently unmethylated (B < 0.2), 5,012 were consistently methylated (8 > 0.8),
and 225 displayed intermediate methylation (B between 0.3-0.7; Figure 4A). Constitutively
methylated CpGs were enriched in gene bodies, while unmethylated sites were predominantly
found in CpG islands and transcription start sites (Figure S4A). Both categories were depleted
in enhancer regions, which showed greater variability and are critical for tissue-specific
regulation (Figure 2D).

We linked intermediately methylated probes to genes within 5 kb, identifying 123 proximal
genes. Notable genes with the most linked probes included known imprinting loci such as
PEG10, GNAS, and MIMT1, which exhibit parent-of-origin expression regulated by methylation
at imprinting control regions (ICRs) and differentially methylated regions (DMRs) (Figure S4B).
Across 32 tissue types, the average methylations linked to these genes centered around 0.5
with minimal variability, except in the testis, which deviates due to sperm presence. Dozens of
genes with proximal intermediately methylated probes displayed characteristics like ICR genes
but are not to our knowledge currently documented as imprinted or monoallelically expressed
(Figure 4B).

We further analyzed methylation and 5hmC patterns across aging using linear modeling
(Methods) and identified thousands of age-associated CpGs, predominantly hypermethylated
with age (Figure S4C). These CpGs were significantly enriched in PRC2 target regions, CpG
islands, and bivalent chromatin (Figure S4D). Notably, 10 CpGs exhibited tissue-independent
5hmC increases during aging (Figure 4C). Set enrichment analysis revealed a strong overlap
between age-associated 5mC CpGs and ranked 5hmC aging CpGs (Figure S4E), suggesting
that some hypermethylation with age reflects 5hmC accumulation.

To further explore this, we assessed 20 epigenetic clocks with various degrees of age
correlation in our 5mC datasets (Methods, Figure S4F). We found significant enrichment of
clock probe sets in 5hmC aging probes, implying that clocks incorporate, to different degrees,
5hmC to estimate age (Figure 4D). Using 5hmC data alone, we trained a highly accurate model
to predict chronological age (Figure 4E). These findings indicate that 5hmC is dynamic
throughout the lifespan, and it alone can serve as a robust aging biomarker. Further
investigation is needed to determine whether 5hmC accumulation results from spurious TET
activity and if 5ShmC age acceleration is associated with disease states.

Lastly, thousands of CpG sites showed sex-associated 5mC and 5hmC patterns, with 1,809
sites shared between the two modifications (Figure S4G, S4H). Most sex-associated CpGs
were located on sex chromosomes, enriched in CpG islands and TSS chromatin states, likely
reflecting sex-specific regulation of gene dosage (Figure S4l1). Additionally, we identified 966
autosomal CpGs associated with sex for 5mC and 79 for 5hmC, some exhibiting differences as
pronounced as those seen in X-linked CpGs (Figure 4F). The mechanisms underlying sex-
specific methylation at autosomal loci and its potential role in regulating sex-specific expression
and phenotypes remain to be explored.

MSA methylomes reveal strong tissue contexts of human trait associations.

Leveraging the trait association focus of MSA, we evaluated the capacity of MSA data to
perform functional annotation of EWAS hits. In this analysis, we focused on the tissue context
using the primary tissue profiles produced in this study. We first note that for the traits
investigated in the curated studies, trait-associated probes are more often significantly enriched
in enhancers and promoters®® but underrepresented in heterochromatic and repressive
genomes (Figure S5A), consistent with their roles in transcriptional regulation. Traits
characterized by genomic alterations (e.g., Down’s syndrome), cell proliferation (e.g.,
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malignancy), and frequent toxin exposure (e.g., smoking) had distinct and recurring chromatin
feature enrichment (Figure 5A). In contrast, complex disease traits, e.g., diabetes and
Alzheimer’s disease, are varied in chromatin state enrichment across studies.

As expected, the enhancer and promoter-associated probes are more variably methylated
across primary human tissue types (Figure S5B). To test whether such variation reveals the
tissue context of each trait, we grouped CpGs by their associated traits and compared the
methylation levels across tissue types (Figure 5B). An intriguing correspondence between the
perceived tissue context and the methylation rank emerged. For example, CpGs associated with
Alzheimer’s disease showed the most extreme methylation in brain tissues compared to other
tissue types (Figure 5B). Sites with a putative positive disease effect size have the highest
methylation readings in the brain, whereas sites with reduced methylation in diseases were
least methylated in brain tissues. Similarly, probes associated with irritable bowel syndrome
(IBS) were most methylated in the colon and small intestinal tissues. These results suggest a
propensity of trait-associated CpGs to colocalize with differential methylations specific to the
tissue that manifest the trait phenotype, underscoring the importance of tissue context when
conducting EWASSs.

We also investigated the extent to which GWAS variants colocalize with tissue-specific
methylation. We tested the enrichment of trait-associated SNPs in the one-vs-all cell-specific
methylation signatures on MSA (Methods). These analyses identified multiple genetic variants
associated with a tissue-specific trait co-localizing with the methylation signature of the
corresponding tissue type. For example, SNPs associated with blood glucose and diabetes
were colocalized with methylation markers for pancreatic cell types, while cholesterol variants
were localized to hepatocyte-specific methylations (Figure 5C). Diverse autoimmune disorders
were enriched in CpG markers for regulatory T cells, which are involved in immune system
homeostasis and autoimmune suppression’’. Whether the genetic variants implicated in these
diseases directly impact nearby tissue-specific methylation to perturb gene expression and
function requires follow-up studies.

MSA detects inter-individual methylation variation at EWAS trait sites

To date, thousands of traits have been analyzed in EWAS studies using peripheral whole blood,
a clinically accessible tissue source that provides sufficient DNA for array-based analysis. To
explore immune cell dynamics and evaluate the array's capacity for detecting interindividual
variation, we analyzed 64 whole blood samples from anonymous donors using MSA. The MSA
design included some major epigenetic clocks (Figure S6A), and we verified that we could
accurately predict age using the multi-tissue Horvath clock™® on the tissues we previously
profiled (Figure S6B). The Horvath clock and a sex prediction model (Methods) applied to the
whole blood samples revealed a broad age range (8.7-58.4 years) and a sex distribution of 14
females and 50 males (Methods, Figure S6C).

Cell composition explains most bulk-tissue epigenetic variations. To analyze interindividual cell
composition variation using DNA methylation, we first benchmarked computational
deconvolution on MSA-based methylation profiles of sorted immune cells. As expected,
predicted sorted immune cells contained >90% of the matching cell type, consistent with
standard purification yields (Methods, Figure 6A). Then, we applied the same deconvolution
strategy to whole-blood DNA methylomes. The results yielded estimates aligned with prior
literature (Figure 6B; mean estimates: Neutrophils 61%, CD4T 14%, CD8T 9%, Monocytes 7%,
B Cells 6%, NK 3%). Principal component analysis showed immune cell proportions, along with
seX, explained the greatest variance in the data set (Figure 6C, S6B). To examine immune cell
composition dynamics, we regressed cell type proportions on predicted age and sex. We found
that aging was associated with a significant decrease in CD4+ T cells and an increase in


https://doi.org/10.1101/2024.05.17.594606
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.17.594606; this version posted February 11, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

neutrophils (Figure 6D). Sex differences revealed higher CD8+ T cell proportions and lower NK
cell proportions in females (Figure 6E).

To further assess interindividual variations, we ranked autosomal probes by standard deviation
across individuals. Using a set enrichment framework (Methods), we observed that sites with
inter-individual methylation variation are significantly enriched in EWAS traits previously
reported by blood-based EWASSs, including immune system disorders and other environment-
related traits (e.g., smoking and alcohol consumption) (Figure 6F). The new MSA probe designs
showed a similar distribution of inter-individual variations compared to legacy probes,
suggesting an expanded capacity for detecting blood-based methylation-trait links (Figure S6C).
While we could not directly correlate methylation with phenotypic traits in our data set, the
results demonstrate that MSA detects methylation variations associated with various
physiological outcomes identified in prior studies.

DISCUSSION

The Infinium DNA methylation BeadChip is a broadly used and accessible assay in human
population studies. It has enabled trait association discoveries and predictive models such as
epigenetic clocks, risk scores, and disease classifiers. Previous Infinium BeadChips have been
designed to target genomic features, such as gene promoters, gene bodies, and cis-regulatory
elements. While methylation variation at these genomic features is indeed associated with
human traits, evenly covering genomic elements is not as economical for trait screening
applications as in discovery and hypothesis generation settings.

The existing methylation-based screening of most human traits requires relatively few loci. For
instance, the Horvath clock for chronological age used 353 CpGs‘2. Other epigenetic clocks use
feature numbers ranging from a few CpGs to ten thousand CpGs’?, which are much smaller in
number than existing Infinium array capacities*. The feasibility of such minimalistic approaches
has also been established in cancer classification®® and cell type deconvolutions’™® and
demonstrates high inference precision. The development of MSA can be seen as a balanced
approach to DNA methylome-based trait screening, prioritizing only the probe sets that link to
diverse traits and high-confidence prediction models for the benefit of profiling larger human
populations.

While legacy probes were incorporated for their established trait associations, the enhanced
scalability of MSA may facilitate the repositioning of these probes for novel associations.
Historically, populations of European descent have been overrepresented in EWAS studies,
potentially overlooking disease-relevant associations in more diverse demographics. Re-
examining these associations in larger and more balanced cohorts will be imperative to
dissecting the complex interplay of genetic and environmental influences on disease
phenotypes. The legacy probe designs chosen for inclusion in MSA are also frequently
associated with multiple traits, implying that multiple physiological or environmental stimuli can
converge on similar epigenetic programs. Future studies may elucidate whether these shared
signatures represent common inflammatory or homeostatic pathways that are similarly disrupted
and whether additional, currently under-studied disease states converge on the same loci.

Besides offering a balanced approach in trait screening, MSA also represents an upgrade of
Infinium array content to bridge deep high cell-type resolution profiing and cost-effective
population screening. While offering greater cell type variation and genome-wide details, single-
cell methylome profiling cannot be scaled to population settings. MSA is designed to translate
the cell type-specific knowledge from single-cell and bulk whole-genome methylome profiles for
use in the population setting.
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Computational cell-type deconvolutions are powerful methods for interrogating tissue
composition variation in development and disease. The expanded cell-specific CpG markers
and refined annotation in MSA enhance deconvolution granularity compared to EWAS studies
based on previous Infinium platforms. For example, the commonly used CETS algorithm for
estimating brain cell proportions estimates NeuN+:NeuN- proportions without predicting trait-
relevant subtypes’. We designed cell-specific probes discriminating 174 unique cell types (82
brain cell types, 51 pan tissue, 41 blood) and anticipate that these markers will enable high-
resolution deconvolution, augmenting the study of selectively vulnerable or rare cell populations
in complex diseases and tissue types. Our results and other recent work have also identified an
enrichment of genetic variants associated with complex traits within cell-specific DMRs®. It is
not clear the extent to which methylation changes in these cell-specific DMRs may perturb the
functioning of the disease-relevant cell types. We anticipate that MSA will permit such
investigations.

Previous efforts have established the compatibility of Infinium arrays with other base conversion
protocols, such as Tet-assisted bisulfite conversion, to profile 5hmC modifications’®’’. Our
analysis suggested that the new MSA array is compatible with the tandem bisulfite-A3A
conversion for 5hmC profiling. We applied the 5hmC profiling to neuronal and peripheral human
tissues. The tissue-specificity mirrors previous sequencing-based 5hmC profiles, suggesting the
feasibility of using methylation arrays to implement 5ShmC profiling in large sample sets. Our
data also underscores the high cell type specificity of 5hmC signals, which are often distinct but
complementary to cell-specific hypo 5modC and could be additionally used to trace cell identity
and tissue composition changes. Over aging and across tissues, we identified dynamic 5hmC
variations that are strongly linked to tissue specific gene expression and aging prediction
models.

As a first application, our analysis was limited in validating the trait-associated probes selected
due to limited metadata availability. However, we found that probes associated with some traits
in the literature were variably methylated in the corresponding tissue types we profiled or had a
strong tissue context according to the beta value rank by tissue type (Figure 5). Attempting to
design a consolidated array, we were also limited in the number of the CpG sites we could
include and thus genomic feature and trait coverage. As more WGBS and array-based
methylomes are generated, future designs may refine the most relevant trait and cell type-
implicated CpG sites to maximize screening and discovery power most economically.

CONCLUSION

We systematically developed, benchmarked, and applied MSA, a novel Infinium BeadChip
assay consolidating trait-associated probes from the extensive EWAS literature, single-cell and
bulk whole genome methylome profiles. Our benchmark revealed MSA as an accurate,
reproducible, scalable, next-generation Infinium human methylation BeadChip targeting trait
discovery in population settings. Our first application uncovered the cell type context of human
EWAS and GWAS discoveries and dynamic 5hmC association in peripheral tissues. We
anticipate MSA to be a valuable tool for methylation screening in large human populations for
trait associations and broadly dissecting the cell-type-specific mechanisms of human diseases.

METHODS
CpG Probe Selection
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Probe designability We aligned unmethylated and methylated probe sequences to the hg38
genome using the BISCUIT tool suite’®. To identify uniquely mapping sequences,
subsequences of 30,35,40 and the entire 50nt probe sequence were aligned, and only probe
designs where all subsequences had mapping quality >20 for both the methylated and
unmethylated allele were considered. For these 19,253,974 uniquely mapping CpGs, design
scores reflecting hybridization efficiency and melting temperature were computed, and
13,891,035 CpGs with design scores > .3 were retained. Any probe sequence that contained
common SNPs (dbSNP Build 151)”° within 5nt of the 3’ end was removed. Sequences with
more than six additional CpGs were also removed to prevent hybridization interference due to
variable methylation of neighboring CpGs. 9,993,793 CpGs remained from this preprocessing
(“Designable Probes”), from which all array content was subsequently selected. When possible,
high-quality probes (design score >= .6) were prioritized.

Cis-regulatory elements: Human GRCh38 candidate cis-regulatory element (CRE)
annotations were downloaded from the ENCODE Project Consortium®® and intersected with
designable CpG sites. The methylation range for each CpG was computed across sorted
immune®? and pan tissue® cell types. CpGs that did not show a range > .4 were filtered out. The
remaining CpGs were grouped by CRE type and sorted by methylation range. 30,000 CpGs
total were sampled with a bias toward enhancer elements (dELS: 64%; pELS: 21%; CTCF Only,
CTCF-bound:11%; PLS:2%; DNAse-H3K4me3:2%).

Monoallelic/intermediate methylation: 180 bulk adult normal WGBS samples (Table S2) were
analyzed to identify candidate monoallelically methylated CpG sites. Autosomal CpGs with
minimum coverage of 20 reads and mean methylation >.3 and <.7 across 140 of the 180
samples were considered intermediate methylation and intersected with the designable probe
list. 207 pan-tissue sorted cell WGBS methylomes from Loyfer et al ** were also analyzed for
intermediate methylation, and designable CpGs with mean methylation >.3 and <.7 across 180
of the 207 samples were selected.

XClI-linked CpGs: 76 high coverage (>20 million CpGs) normal female WGBS samples (Table
S2) were analyzed to identify X-chromosome CpG sites with intermediate methylation across
samples (0.3 < methylation < .7). An additional 95 normal male WGBS samples were analyzed
to identify X chromosome CpG sites fully unmethylated (< .3 methylation across 50 samples) or
fully methylated (>.7). The CpG sites intermediately methylated in female samples but
unmethylated or fully methylated in male samples were intersected with the high-quality probe
list.

Cell type-specific methylation: BED/bigWig files for single cell brain**™*, sorted pan tissue?,

and sorted immune cell WGBS data®® were downloaded and used for marker identification. To
reduce the sparsity of single-cell brain data, pseudo bulk methylomes were generated by
averaging methylation over the cell type labels obtained by unsupervised clustering analysis
previously reported. One vs. all comparisons were performed across major cell type groups and
hierarchically within major groups to identify subtype markers. Wilcoxon rank sum testing was
performed between the target and out groups at each CpG site to identify cell-specific markers.
Designable CpG sites with an AUC = 1 and a delta beta >= .3 between the in and out groups
were selected, and markers were capped at 80 CpGs per cell type contrast. Hyper and
hypomethylated signatures were balanced when possible.

5hmC: 5hmC-Seal®* and hmC-CATCH?®*® 5hmC peaks were downloaded. Genomic intervals
were intersected with the designable CpG list. For 5hmC-Seal data, the 5hmC CpG signal was
treated as a binary value (1 if within a significant peak, 0 if not). For hmc-CATCH data, the peak
coverage was applied to CpGs within the peak, and samples were scaled according to the total
coverage. Tissue-specific 5hmC sites were identified as previously described for the WGBS
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data. To identify 5hmC sites along a continuum of tissue specificity, the top 10K most highly
covered CpGs in each sample from the hmC-CATCH data®® were collected and binned
according to the frequencies the CpG was in the top 10K across the 60 samples. 11 bins of 5
tissue count intervals (e.g., 1-5, 6-10, ..., 55-60 tissues) were sampled equally, with sampling
capped at 200 CpGs per bin.

Cell-specific CpH methylation: Genes with cell-specific mCH methylation were downloaded*’,
and the top ten genes with the highest AUROC were selected for each cell type. Gene
coordinates were intersected with CAC cytosines, the most prevalent mCH context found in
neurons. 20 cytosines were sampled from each gene for each cell type.

DNA methylation-gene expression correlations: Matched WGBS / Gene expression data
from the Roadmap Epigenomics Mapping Consortium were used to compute the Spearman
correlation between CpGs in the high-quality designability list and genes within 10KB of the
CpG. CpGs were then ranked by the P-value of the correlation, standard deviation and
expression levels of the gene, and absolute value of the correlation. The top 2,500 CpGs
negatively correlated with the expression of the linked gene, and the top 2,500 positively
correlated CpGs were selected. TCGA normal tissues®™ were also analyzed to identify
correlated linked CpG-Gene pairs. CpGs with a correlation >= 0.6 or <= -0.7 and a P-value <
.05 were additionally included (901 positively correlated, 1,620 negatively correlated).

DNA methylation-chromatin  accessibility correlations: Matched DNA-chromatin
accessibility data were downloaded from Luo et al. 2022*°, and Spearman correlations were
computed between the accessibility peaks and CpG methylation sites. Correlations with P-
values < .05 and |Spearman’s rho| > .5 were selected, and the CpGs intersected with the high-
guality designability list.

CoRSIVs: Genomic coordinates for CoRSIVs were downloaded®®® and intersected with high-
quality designable probes.

Solo-WCGW in partially methylated domains: CpGs in the WCGW context (flanked by A or
T) in common PMDs were downloaded from Zhou et al. 2018% and intersected with high-quality
designable probes. This subset was further intersected with CpG islands, and 6,000 probes
were randomly sampled.

meQTLs: meQTL data was downloaded from the GoDMC database®’, and CpGs were ranked
according to the number of times a CpG was associated with a meQTL. The top 10K CpGs
were selected. An additional 20K meQTLs were randomly sampled from Hawe et al. 2021%°.

Imprinting-associated DMRs: Differentially methylated regions associated with monoallelically
expressed genes were downloaded from Skaar et al. 2012°* and lifted to GRCh38 coordinates.
The DMRs were intersected with the designable probes list.

Y-linked genes: 180 high coverage (>20 million CpGs) Human WGBS samples (Table S2)
were analyzed to identify variably methylated Y-linked genes. The Y chromosome CpGs were
intersected with designable probes and subsequently intersected with all Y chromosome genes
(GENCODE V39). The variance across the 180 samples was computed at every remaining CpG
site. For each gene, the top 20 most variable probes were selected.

Human trait associations: 1,067 EWAS studies were curated from the literature and EWAS
databases (EWAS catalog®®, EWAS atlas®). A subset of high-priority studies was identified
according to sample number and statistical significance, diversity of trait coverage, citation
number, and the journal impact factor. All probes, or the top 2500 most significant probes, were
selected from high-priority studies. The top 100 most significant probes were selected from all
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remaining curated studies. Study titles and trait annotations were queried for regular
expressions to consolidate all selected studies/traits into 16 major trait groups.

Sample Preparation

Tissue dissection: Fresh frozen tissue samples were obtained from the Cooperative Human
Tissue Network (CHTN), and 30-50mg of tissue were dissected on dry ice.

Cell line culture: GM12878, K562 (CCL-243), LNCaP (CRL-1740), and HCT116 (CCL-247)
cells (Source 1) were obtained from American Type Culture Collection (ATCC, Manassas, VA,
USA). 1-4 x 1076 cells were plated and cultured for 6 days with fresh media added 2-3 days.
K562 cells were cultured in Iscove's Modified Dulbecco's Medium (30-2005, ATCC), 10% Fetal
Bovine Serum (FBS) (45000-736, Gibco), and 1% penicillin/streptomycin (15140122, Gibco).
LNCaP cells were cultured in Roswell Park Memorial Institute Medium (RPMI-1640) (30-2001,
ATCC), 10% FBS, and 1% penicillin/streptomycin (15140122, Gibco). GM12878 cells were
cultured with RPI-1640 (72400047, Invitrogen), and 15% Fetal Bovine Serum (Gibco, 45000-
736), 1% GlutaMAX™ (Gibco, 35050061), and 1% penicillin/streptomycin (15140122, Gibco).
HCT116 cells were cultured in McCoy's 5a medium modified (ATCC,30-2007), 10% Fetal
Bovine Serum (FBS) (45000-736, Gibco), and 1% penicillin/streptomycin (15140122, Gibco). All
cells were maintained in a 37°C incubator with 5% CO2 and cultured at a 75 cm2 culture flask
(Fisher, BD353136)

DNA extraction: Genomic DNA was extracted from 30-70 mg of tissue or 5.0 x 1076 cells for
Source 1 cell lines using commercially available QIAGEN QIAamp Mini Kit (QIAGEN, 51304),
following the manufacturer's protocol. DNA was quantified using a Qubit 4 Fluorometer
(Invitrogen). For Source 2 and Source 3 cell lines, genomic DNA was purchased from BioChain
Institute (HeLa - #D1255811, Raji - #D1255840, Jurkat - #D1255815, MCF7 - #D1255830, K562
- #D1255820)

Immune cell purification: Sorted immune cells were purified by the Human Immunology Core
at the University of Pennsylvania following STEMCELL Technologies RosetteSep Enrichment
Cocktail protocols (https://cdn.stemcell.com/media/files/pis/10000000545-PI1S_02.pdf). PBMCs
were isolated using a Lymphoprep ficol layer.

Methylation titration controls: 10 ng of fully methylated human blood (Thermo Scientific,
SD1131) and Jurkat (Thermo Scientific, SD1121) genomic DNA were amplified using the Repli-
g Mini Kit (QIAGEN, 150023) according to the manufacturer’s protocol. Following quantification
with a Qubit 4 Fluorometer, 500ng of unamplified and amplified DNA were combined for the
50% control. Human pre-mixed calibration standards (0,5,10,25,50,75,100%) were purchased
from EpigenDx (EpigenDx 80-8060H_PreMix), and 200ng / titration was used for testing.

EM sequencing of cell line DNA: Genomic DNA from the GM12878, K562, and HCT116 cell
lines were extracted according to the QIAGEN QIAmp Mini Kit Protocol. The three samples
were then mechanically sheared to 300 base pairs using the M220 Focused-ultrasonicator
(Covaris, 500295) and methylated lambda control DNA. 200ng of each sample was
enzymatically converted using the NEBNext® Enzymatic Methyl-seq Kit (NEB, E7120) with the
manufacturer’s protocol. The samples were then indexed during PCR amplification during PCR
amplification using EM-Seq™ index primers (NEB 7140). The indexed libraries (200 ng each)
were pooled and used as input for the Twist NGS Methylation Detection System for target
enrichment. A pre-hybridization solution of blockers and enhancers was created to prepare the
pool for hybridization (Twist Bioscience, 104180). The DNA was hybridized with the Twist
Human Methylome Panel (Twist Bioscience, 105520), and the targets were bound with
streptavidin beads (Twist Bioscience, 100983), followed by a post-capture amplification. The
enriched libraries were sequenced to 20X on the Illumina Novaseq 6000 PE150 platform.
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5hmC profiling: Using the EZ DNA Methylation Kit (Zymo Research, D5001), 500 ng of each
sample was bisulfite converted and purified following the manufacturer’s protocol. The samples
were then denatured with DMSO at 95°C for 5 minutes and snhap-cooled on dry ice. The
samples were deaminated using APOBEC3A (A3A) purified following previously published
protocol® over 2 hours at 37°C. After incubation, the samples were purified using the Oligo
Clean and Concentrator Kit (Zymo Research, D4060), following the manufacturer's protocol.
Two cycles of whole genome amplification were performed using 50 U of Klenow Fragment
(3'—5" exo-) (NEB, M0212M), dNTP solution mix (Bio-Rad, #1708874), and Random Primer 6
(NEB, S1230S). The samples were finally purified using AMPure XP Beads (Beckman Coulter
Life Sciences, A63881).

MSA Data Analysis

Data preprocessing: All data preprocessing was done using the SeSAMe R package (version
1.22.0)°. A manifest address file was generated using the MSA manifest available at
https://github.com/zhou-

lab/InfiniumAnnotationV1/raw/main/Anno/MSA/MSA .hg38.manifest.tsv.qz and the
sesameAnno_buildAddressFile function. Beta values were extracted from raw IDAT files using
the openSesame function with the built address file and default parameters. Probe detection
rates were obtained using the probeSuccessRate argument with the openSesame function. One
sample with probe detection rates < 0.7 was excluded from analyses.

Trait enrichment testing: 2,398,372 EWAS hits were curated from the literature and EWAS
databases®?* and used as a background for enrichment testing. Traits were annotated to 16
major trait groups by searching for regular expression terms relevant to the trait group within the
study or trait descriptions. The odds ratio enrichment in these trait groups was computed for 3
query sets: 1) EPICv2 probes, retained MSA probes from prior Infinium platforms, and a random
set of probes equal in size to the retained MSA probes. log2 odds ratio was plotted for each
platform across trait groups. For testing the enrichment of MSA and EPICv2 probes in total trait
associated probes, all EWAS probes were rank-ordered according to how many traits the
probes associated with. The MSA and EPICv2 probes were each tested as a query against the
ranked probe list using a modified gene set enrichment approach® using the knowYourCG R
package (version 1.0.0).

Gene linkage and ontology analysis: The MSA and EPICv2 manifests were downloaded
(https://github.com/zhou-lab/InfiniumAnnotationV1/raw/main/Anno/), and probe coordinates
expanded 1500bp upstream of the probe start site. The manifests were then intersected with
GENCODE.v41 GTF files to identify linked genes. Gene ontology testing was performed for
protein-coding genes using Enrichr®’. The GO Biological Process gene set was queried. For
CpH probe-linked genes, only genes with a minimum of 2 probes per gene were analyzed.

Sample reproducibility and accuracy: Pearson correlation coefficients were computed across
cell line samples. Correlation matrices were plotted in heatmaps. For pairwise replicate
comparisons, beta values were first binarized as 1 if beta > 0.5 and 0 if beta < 0.5. F1 scores for
the binarized vectors were computed using the MLmetrics package (1.1.3).

Cell deconvolution: Reference-based cellular deconvolution for sorted immune cells and
whole blood samples was performed using the EpiDISH R package®® (version 2.18.0) with the
robust partial correlations (RPC) method. The centDHSbloodDMC.m matrix provided within the
package was used as a reference for sorted immune cell deconvolution. For bulk tissue cell type
inference, a reference for one vs. all cell-specific CpGs was created from Loyfer et al. 2023%** as
previously  described and deposited to the CytoMethlC github  repository
(https://github.com/zhou-lab/CytoMethIC_models/). Cell proportion scores were computed with
the cmi_predict function from the CytoMethIC package (Version 1.1.1)
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Identification of tissue-specific markers: One-vs-all tissue type comparisons were performed
for sorted immune cells and bulk tissues. Wilcoxon rank sum testing between the target and out-
group was performed at each CpG site. CpGs with NA values in >10% of the target group or
>50% of the out group were excluded. The AUC for discriminating between the target and the
out-groups was computed. Only CpGs with a delta beta >20% and AUC >= .8 were selected as
cell markers. For visualization, the top 50 hypo and hypermethylated CpGs sorted by AUC and
delta beta were selected for each tissue type. For 5hmC samples, the same analysis was
performed, and a delta beta of 5% was used as a threshold for marker identification.

Tissue-specific CpG - transcription factor binding site analysis: BED files containing TFBS
peaks were downloaded from ReMap 2022 (https:/remap.univ-amu.fr®®). The peaks for each
transcription factor were intersected with all MSA CpGs to create CpG-TFBS links. Tissue
signatures were tested for enrichment in the TFBS CpG sets using Fisher's exact test with all
MSA probes as the background.

Enrichment testing in chromatin states: Enrichment testing in chromatin states for all probe
sets in manuscript was performed using the knowYourCG R package (version 1.0.0) with the
chromHMM knowledgebase set and testEnrichment function.

Tissue-specific CpG marker validation enrichment testing: BED/bigWig files for single cell
brain**!, sorted pan tissue**, and sorted immune cell WGBS data® were downloaded and used
for marker identification. To reduce the sparsity of single-cell brain data, pseudo bulk
methylomes were generated by averaging methylation over the cell type labels obtained by
unsupervised clustering analysis previously reported. One vs. all comparisons were performed
across major cell type groups and hierarchically within major groups to identify subtype markers.
Wilcoxon rank sum testing was performed between the target and out groups at each CpG site
to identify cell-specific markers. CpG sites with an AUC > .95 and a difference in beta value > .5
between the in and out groups were selected to generate marker lists for each cell type and
intersected with MSA probes. The 5modC and 5hmC tissue signatures identified from MSA
profiled tissues were tested for enrichment in the marker lists using Fisher's exact test with all
MSA probes as the background.

Nearest neighbor analysis: Nearest neighbor analysis was performed using deep WGBS
data®* to identify neighbor genomic coordinates on MSA for non-retained EPIC probes. The
WGBS data was subset for the MSA probe genomic coordinates and reference graphs were
constructed using the nnd_knn (k=50 neighbors) function from the rnn_descent R package
(version 0.1.6). The graph was then queried using the EPIC probe genomic coordinates from
the WGBS data using the graph_knn_query function. For each CpG, the neighbor in the
reference graph with the lowest Euclidean distance was recorded. We additionally computed the
Euclidean distance between every EPIC probe and the nearest genomic neighbor on MSA. The
final CpG with the lowest Euclidean distance was retained. To test the performance of neighbor
probes in classifying tissue type, we used an EPIC tissue prediction model from the CytoMethIC
R package (version 1.1.1) and removed all probes from the model that were retained on MSA.
For remaining EPIC-only probes, we substituted the neighbor beta values from the MSA
methylomes to compute the tissue inference.

Tissue-specific CpG — marker gene enrichment testing: CpG signatures for each tissue type
were linked to genes +/- 10KB from the CpG site (GENCODEV19). The resulting gene sets for
each tissue type were tested for enrichment against the HumanGeneAtlas®® downloaded from
Enrichr®? and the top 5 most enriched ontology terms (FDR < .05) for each tissue type’s gene
sets were selected for network graphing in Cytoscape version 3.9.1 using the log2 odds ratio for
edge weights and an edge weighted spring embedded layout.
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Epigenetic clock estimation: 730 TCGA normal tissues profiled on the HM450 array were
used to assess the impact of missing probes on epigenetic clock estimation. The full clock
probes, and the subset represented on MSA were both tested, and the predictions compared
(Fig S10). For MSA profiled tissues, the probe suffixes were removed and duplicate probes
averaged. All age estimates were computed with the DNAmMAge function from the methylclock
package (version 1.8.0)* using default parameters. HypoClock and EpiTOC2 mitotic rate
estimates were computed by tissue type group using the data and code provided by the authors
at https://zenodo.org/records/2632938. Placental tissues were excluded.

Sex prediction: Sex for anonymous whole blood donors was inferred using the cmi_predict
function from the CytoMethIC R package (version 1.1.1) using the sex associated CpGs from
the models represented on the MSA array. This model generates a sex score by averaging the
difference between male associated hyper and hypo methylation over known sex associated
CpGs.

Linear modelling: Linear modelling for age and sex associated 5modC and 5hmC was
performed using the DML function from the SeSAMe package®® version 1.22.0, covarying for
tissue type (CpG ~ Age + Sex + Tissue). P-values were adjusted for multiple comparisons using
the FDR method and CpGs with FDR < .05 for age and sex were considered for further
analysis. Testis and placenta excluded. For analysis of whole blood methylomes, cell type
proportions from deconvolution analysis were regressed on epigenetic age and sex using linear
models.

Set Enrichment Analyses: All set enrichment analyses were performed using the
testEnrichmentSEA function from the knowYourCG package R package (version 1.0.0). For
testing epigenetic clock probes against 5hmC age probes, epigenetic clock probes were
downloaded from the dnaMethyAge R package (https://github.com/yiluyucheng/dnaMethyAge)
and tested against the ranked list of age associated 5hmC probes, sorted according to P value
from the 5hmC ~ Age + Sex + Tissue EWAS. The top 10 most enriched clocks were plotted. For
variable blood methylome analysis, autosomal probes were ranked according to the standard
deviation across the 64 whole blood samples. EWAS trait CpGs*** were tested as queries
against the variable probe list.

5hmC age clock: For each tissue type, 80% of samples were randomly selected for training
and the remaining 20% used testing. For feature selection, the top 1000 CpGs according to P
value were selected from the 5hmC aging EWAS. An elastic net regression model was trained
to predict age from the 5hmC beta values using the cv.glment function (alpha=0.5, nfolds=10)
from the gimnet package (Version 4.1-8).

Analysis of EWAS hit chromatin state contexts: Each set of EWAS trait probes in the
curated studies was tested for enrichment in 100 full-stack ChromHMM chromatin states >
using Fisher’'s exact test. The total pool of curated EWAS hits was used as a background set.
The number of traits-chromatin state associations with FDR < .05 was computed for each
chromatin state and plotted. 17 studies representing 6 trait groups were selected, and the
enrichment across chromatin states was plotted in heat maps.

Chromatin context analysis of EWAS methylations: The standard deviation of all probes
was computed using the tissue methylomes generated on MSA and sorted to create a ranked
probe list. Selected full-stack ChromHMM states were intersected with the list of total EWAS hits
and tested as queries against the ranked probe list using a modified gene set enrichment
approach®® using the knowYourCG R package (version 1.0.0).

Tissue context analysis of EWAS methylations: For each set of EWAS trait probes in the
curated studies, we computed the standard deviation of the probes using the tissue methylomes
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we generated using MSA. Trait sets were sorted according to the average standard deviations,
and the most variable traits were selected for further analysis. In these traits, the rank for each
sample was computed according to beta values. The mean rank of each tissue type group was
computed for every CpG in the trait, and the distributions of ranks for each tissue type were
plotted.

GWAS co-localization with tissue-specific methylations: GWAS summary statistics were
downloaded from the NHGRI-EBI GWAS catalog® (version 1.0.2.1). The top 3000 unique
disease/trait categories with the most SNPs were grouped and tested as independent queries
against each one-vs-all tissue/cell-specific CpG set from the curated lists incorporated into the
final MSA design. SNPs and CpG sites were expanded by 5kbps in upstream and downstream
directions, and genomic interval overlaps were computed using the IRanges package (version
2.36.0). The total number of CpG intervals for all tissue signatures was used as a background
set, and Fisher's Exact test was performed for enrichment testing.
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FIGURES LEGENDS

Figure 1: MSA design workflow and major trait groups. (A) Schematic illustrating the axes of
sample throughput, genome coverage, and cost efficiency for different methylation assay
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technologies. MSA has targeted genome coverage for high throughput at a relatively cheaper
cost. (B) The screening process is to identify designable probes (left), targeted trait groups, and
methylation features (right). (C) Major trait categories are incorporated into array content with a
subset of represented sub-trait groups. Two trait categories (Sex and Other) are omitted.
Duplicate traits studied from different cohorts are possible. (D) Set enrichment analysis showing
the enrichment score of MSA and EPICv2 probes down a ranked list of EWAS hits probes,
ranked according to the number of trait associations (top) and heatmap showing the enrichment
of retained sites on MSA in all annotated major trait groups compared with EPICv2 and a
random selection of Infinium probes equal in size to MSA (bottom). (E) Number of CpGs per cell
type contrast on MSA vs. EPICv2 for contrasts with few (<500) high-quality whole genome
markers. (F) Gene ontology for biological process results for genes linked to CpH probes
(minimum two probes per gene) on MSA and EPICv2. (G) Heatmap of beta value correlations
between cell line samples profiled on MSA. (H) Density plots of beta values for methylation
titration standards. (I) Heatmap of beta value correlations between cell line samples profiled on
MSA and with an EM sequencing protocol. (J) Tissue scores for a subset of profiled tissues
were generated using the nearest neighbor probes on MSA for an EPIC tissue prediction model.

Figure 2. MSA reveals tissue-specific methylation biology and tissue compositions. (A)
tSNE plot showing unsupervised clustering of sorted immune cells and bulk tissues profiled on
MSA. (B) Heatmap showing cell type proportion estimates obtained by methylation-based
deconvolution on the sorted immune cell and bulk tissues (columns) profiled on MSA (C)
Heatmaps showing beta values of tissue-specific CpGs (rows) over bulk and sorted immune
cells (columns). (D) Enrichment of hyper and hypomethylated tissue-specific CpGs in different
full-stack ChromHMM chromatin states (FDR < .05) (E) Heatmap showing enrichment of tissue-
specific hypomethylated CpGs (columns) in transcription factor binding sites (rows).

Figure 3: 5hmC analysis of human tissues with MSA. (A) Line plot showing mean 5hmC
levels across consensus ChromHMM states for each tissue type. (B) tSNE plot showing
unsupervised clustering of bulk tissues profiled for 5hmC. (C) Heatmap showing representative
one vs. all 5hmC signatures (rows) and the beta value across profiled tissues (columns) (D) Dot
plot showing enrichment of 5modC tissue signatures in 5hmC tissue signatures. (E) Heatmap
showing enrichment of genes linked to 5hmC CpG signatures for each tissue type in gene
ontology sets from GTEX tissue-specific gene expression (columns) (F) Representative marker
genes for seven tissue types showing 5modC (left) and 5hmC beta levels (right). Only 5hmC
discriminates target tissue type.

Figure 4: Epigenetic aging and mitotic history analysis of MSA profiled tissues. (A)
Heatmap showing beta values over probes identified to be intermediately methylated (rows)
across profiled samples (columns) (B) Mean beta values over intermediately methylated probes
for six representative genes. The beta value patterns resemble those at known imprinting genes
(C) Manhattan plot of the aging 5hmC EWAS (bottom) and scatter plots for representative age-
associated 5hmC CpGs (top) (D) Set Enrichment scores for 10 epigenetic clocks. Epigenetic
clock probes were tested for enrichment against a list of 5ShmC probes, ranked according to the
P value associated with aging. Representative panels on the right show clock probes enriching
toward the top of the list of most significant 5hmC probes. (E) A scatter plot shows the
relationship of reported age to predicted age on testing data for the multi-tissue clock trained to
predict age using 5hmC. (F) Boxplots showing beta value distributions for 5modC and 5hmC
over representative sex-specific autosomal CpGs

Figure 5: Tissue context of human trait associations. (A) Heatmap showing the enrichment
of publicly available trait-associated probes across different genomic features (B) Distributions
of mean beta value rank for each tissue type over trait-associated CpGs (C) Enrichment of a
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subset of designed tissue-specific methylation sets on MSA in the SNP sets associated with
different GWAS traits

Figure 6: Immune cell composition and interindividual whole-blood methylation variation.
(A) Validation of immune cell deconvolution using sorted immune cell methylation profiles. (B)
Immune cell proportion estimates in 64 whole blood methylomes. (C) Principal component
analysis shows that immune cell proportions and sex explain the largest variance across the
dataset. (D) Age-associated immune cell composition dynamics: CD4+ T cell proportions
significantly decrease with age, while neutrophil proportions increase. (E) Sex differences in
immune cell composition. (F) Enrichment of previously reported EWAS traits in CpG sites with
high inter-individual methylation variation.
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