

43 [Abstract]

44 Minimally invasive, high-bandwidth brain-computer-interface (BCI) devices can revolutionize
45 human applications. With orders-of-magnitude improvements in volumetric efficiency over other
46 BCI technologies, we developed a 50- μm -thick, mechanically flexible micro-electrocorticography
47 (μECoG) BCI, integrating a 256×256 array of electrodes, signal processing, data telemetry, and
48 wireless powering on a single complementary metal-oxide-semiconductor (CMOS) substrate
49 containing 65,536 recording channels, from which we can simultaneously record a selectable
50 subset of up to 1024 channels at a given time. Fully implanted below the dura, our chip is wirelessly
51 powered, communicating bi-directionally with an external relay station outside the body. We
52 demonstrated chronic, reliable recordings for up to two weeks in pigs and up to two months in
53 behaving non-human primates from somatosensory, motor, and visual cortices, decoding brain
54 signals at high spatiotemporal resolution.

55

INTRODUCTION

56 In electrophysiology, a fundamental trade-off exists between the invasiveness of the recording
57 device and the spatiotemporal resolution and signal-to-noise ratio (SNR) characteristics of the
58 acquired neural signals, ranging from scalp electrode discs to penetrating silicon probes. Non-
59 invasive techniques such as electroencephalography (EEG) do not require surgery but can only
60 capture limited spatiotemporal dynamics of brain activity ¹. Recording from penetrating electrodes
61 allows resolving extracellular action potentials from individual neurons ²⁻⁴; however, invasive
62 microwires can cause tissue damage ⁵⁻⁷ and compromise long-term recording stability ⁸⁻¹⁰.

63 Electrocorticography (ECoG) is an intracranial approach that uses non-penetrating electrodes
64 embedded in thin, flexible substrates that conform to the curvilinear surface of the brain. ECoG
65 records population-level signals, averaged across local neurons. Importantly, because the
66 electrodes sit on the cortical surface, ECoG minimizes brain tissue damage while being able to
67 acquire higher signal-to-noise ratio (SNR), higher bandwidth, and more spatially localized signals
68 compared to EEG ¹¹. *In vivo* studies have shown that ECoG recordings taken from subdural arrays
69 can remain stable for more than a year ^{12,13}, demonstrating the technology's potential usage in
70 chronic applications. Furthermore, advances in microfabrication techniques continue to improve
71 the spatial resolution of the ECoG electrode array. Current leading-edge micro-ECoG (μ ECoG)
72 arrays implement more than a thousand recording sites with sub-millimeter electrode pitch on a
73 single substrate ¹⁴⁻¹⁷. Such progress is encouraging since higher spatial resolution μ ECoG has been
74 shown to improve the accuracy of sensory ¹⁸, motor ¹⁹, and speech decoding ²⁰, more precisely
75 map out epileptiform waveforms ¹⁶, and even record neural spiking activity ^{21,22}.

76 Yet, current leading-edge high-resolution, multi-channel implantable electrodes, including but not
77 limited to μ ECoG, remain separate from the electronics required for signal conditioning and data

78 transmission. Traditionally, long percutaneous cables have been used to connect the implant to
79 external rack-mount electronics²³⁻²⁷, but the use of cables restricts the movement of subjects and
80 increases the risk of infection and tissue damage^{28,29}. More recently, wireless electronics have
81 been implemented to mitigate these concerns, by either using short percutaneous connection to a
82 wearable headstage³⁰⁻³⁵ or implementing a fully subcutaneously integrated system³⁶⁻³⁹.

83 Current multi-channel, high-bandwidth wireless electronics, however, rely on the assembly of
84 discrete, often commercial off-the-shelf components that lead to bulky form factors³⁰⁻³⁹, which
85 complicate surgical placement, removal, and revision^{40,41}. Combining discrete components also
86 results in suboptimal electrical performance compared to what is achievable with application-
87 specific integrated circuits (ASICs) and is hindered by limited interconnect density. This often
88 becomes the bottleneck constraint on the number of recording channels and the scalability of these
89 devices.

90 To implement the densest neural implants, electrodes and electronics need to be merged onto a
91 single substrate. This has been the key to the success of Neuropixels^{23,24}, which feature penetrating
92 neural electrodes capable of simultaneously recording from several hundred channels, with each
93 probe equipped with thousands of electrodes and a wired connection to the probe. Here, we
94 significantly extend the scale and nature of this CMOS integration of electronics and electrodes
95 with the development of a device that we have named the Bioelectronic Interface System to the
96 Cortex (BISC). BISC monolithically integrates a 256×256 high-resolution μ ECoG electrode array
97 with front-end analog electronics, an on-chip controller, wireless powering, a radio frequency
98 transceiver, and antennas onto a single CMOS substrate⁴². For recording, BISC includes front-
99 end circuitry for signal amplification and filtering and a back-end analog-to-digital converter
100 (ADC). BISC also supports stimulation by including programmable bipolar constant-current
101 sources. Our entire device is a 12×12 mm chip whose total thickness is rendered to be less than 50

102 μm after die thinning and passivation, giving the device enough mechanical flexibility to follow
103 the contour of the brain.

104 This extreme miniaturization of function allows the BISC chip to be inserted under the dura on the
105 pial matter using relatively simple and efficient surgical procedures, including the ability to replace
106 chips at the same recording location after months, if necessary. Wireless powering and bi-
107 directional communication are provided by a wearable device positioned directly outside the skin
108 over the implant site. We call this device a “relay station” (**Fig. 1A**) because it wirelessly powers
109 and communicates with the BISC implant while itself capable of being an 802.11n WiFi device.
110 Recording fidelity and long-term efficacy of our device are demonstrated through a series of *in*
111 *vivo* experiments on porcine and non-human primate (NHP) subjects. We implanted our device
112 over multiple anatomical areas of the cortex and demonstrated high-quality chronic recording and
113 accurate decoding of somatosensory, motor, and visual information. For example, from macaque
114 visual cortex recording, our device captured complex spatiotemporal patterns of stimuli-induced
115 traveling waves with spatial features on the scale of a few hundred microns and decoded stimulus
116 orientation at a rate of 45 bits/sec. This minimally invasive, high-bandwidth chip, with its
117 packaging-free, monolithic CMOS design and orders-of-magnitude improvements in volumetric
118 efficiency and channel count compared to existing approaches, offers a scalable, cost-effective
119 solution poised to revolutionize BCIs.

120

121 **RESULTS**

122 **BISC implant form factor**

123 A key metric for implantable BCI devices is “volumetric efficiency,” a measure of how much
124 function can be achieved per amount of tissue displaced by the implant. Key to the volumetric

125 efficiency of the BISC system is the chip, which constitutes the entire implanted system. This chip
126 integrates a 256×256 microelectrode array (MEA) with a 26.5×29 μm pitch that results in a total
127 array area of 6.8×7.4 mm (**Fig. 1C-E**). Each electrode is 14×14 μm in area and composed of
128 titanium nitride (TiN), fabricated as part of additional microfabrication steps that follow the
129 standard semiconductor foundry process (see **Methods** and **Figs. S3-S5**). As part of this “post-
130 processing” which follows chip fabrication in a commercial CMOS foundry, the silicon substrate
131 is also thinned to less than 25 μm , which, combined with the back-end metal stack, results in an
132 overall thickness of approximately 40 μm (**Fig. 1C**, **Fig. S1B,D**). Polyimide is used to encapsulate
133 the front-side, and parylene the back-side, resulting in a total device thickness of less than 50 μm .
134 The final device has a bending stiffness of approximately 130 $\mu\text{N}\cdot\text{m}$ and, if crystalline defects are
135 appropriately controlled during thinning, can be bent to a radius of curvature of about 1 mm for a
136 strain of 1% in the silicon layer without fracture.

137 A fully processed BISC device has a total volume of 7.2 mm 3 . Its MEA provides a total of $65,536$
138 recording channels, from which up to 1024 channels can be recorded simultaneously. We compare
139 the form factor of our work with other state-of-the-art wireless brain-computer interfaces (BCIs).
140 In this case, we define the volumetric efficiency as the number of simultaneous recording channels
141 per unit implant volume (**Fig. 1F**, **Table S2**). The unique fully-integrated architecture of BISC
142 allows it to achieve better than $400\times$ improved volumetric efficiency over the closest competitor.

143 **BISC implant ASIC design**

144 In the absence of any on-chip compression during recording, the number of simultaneous recording
145 channels and the sampling rate are constrained by the uplink data bandwidth budget of 108 Mbps.
146 To utilize the coverage and density of all the $65,536$ available recording channels while preserving
147 the ability to capture the full temporal dynamics of neural activity, we designed our device to

148 digitize and transmit from a spatially programmable subset of either 256 channels at 33.9 kS/s or
149 1024 channels at 8.475 kS/s.

150 Every group of 2×2 neighboring electrodes in the array share the same recording pixel circuitry,
151 resulting in 16,384 total pixels. When recording from 256 electrodes, the active subset can be
152 programmed to any rectangle of 16×16 pixels, provided that their horizontal and vertical addresses
153 are uniformly spaced. In this mode, only one of the four electrodes from each pixel is recorded.
154 When recording from 1024 channels, the same 16×16 pixel addressing constraint applies, but now
155 recording is taken from all four electrodes in each pixel (see **Methods** and **Supplementary**
156 **Discussion S1**).

157 Each pixel performs signal amplification, chopping, and anti-aliasing filtering (AAF) and contains
158 the associated digital logic to control these functions while occupying an area of only $53 \times 58 \mu\text{m}$
159 (**Fig. S17**). This constrained area prevents the implementation of the capacitor-based filtering ⁴³ or
160 servo-loop-feedback-based or high dynamic range direct-quantization-based circuit topologies ⁴⁴
161 generally used to prevent saturation in the presence of electrochemical DC offsets (EDO). We
162 instead rely on the use of TiN electrodes, known to form non-Faradaic, capacitive interfaces ⁴⁵ to
163 reduce EDO. Electrochemical impedance spectroscopy (EIS) characterization confirms these
164 properties for the BISC electrodes across the frequency range from 0.1 Hz to 1 MHz with an
165 impedance magnitude of $205 \text{ k}\Omega$ at 1kHz, which is equivalent to an electrode capacitance of
166 approximately 0.77 nF (**Extended Data Fig. 1A, Fig. S4**).

167 Instead of a traditional amplifier, the BISC pixel implements an integrator to provide area-efficient
168 AAF from boxcar sampling principles ⁴⁶ with an effective cut-off frequency at 15.1 kHz
169 (**Extended Data Fig. 1B, Figs. S17 and S26**). The use of an integrator also helps to mitigate open-
170 loop gain variation across pixels (**Extended Data Fig. 1C**). All active pixels are time-multiplexed

171 to share a single back-end programmable gain amplifier (PGA) through which a common gain is
172 configured for all active pixels (**Extended Data Fig. 1B, Figs. S17, S18 and S26**). For high-pass
173 filtering, all pixels implement a variable pseudo-resistor that is globally configured across all
174 active pixels (**Extended Data Fig. 1D, Fig. S26**). Input-referred noise integrated from 10 Hz to 4
175 kHz was measured to be $7.68 \mu\text{V}_{\text{RMS}}$ and $16.51 \mu\text{V}_{\text{RMS}}$ when recording from 256 and 1024
176 electrodes, respectively (**Extended Data Fig. 1E and F and Supplementary Discussion S3**).

177 The PGA output is digitized with a pair of interleaved 10-bit successive-approximation-register
178 (SAR) analog-to-digital converters (ADCs) running at 8.68 MS/s. Ten samples of digitized data
179 are grouped into a 125-bit packet by the on-chip controller (see **Supplementary Discussion S2**).
180 The non-data bits in the packet are used for synchronization and error correction coding (**Fig. S23**).
181 The transceiver has uplink and downlink data rates of 108 Mbps and 54 Mbps, respectively, and
182 supports time-division duplexing with a single on-chip antenna by utilizing a transmit/receive
183 (T/R) switch (**Supplementary Discussion S1 and Fig. S20**).

184 Wireless power transfer (WPT) utilizes near-field inductive coupling at 13.56 MHz
185 (**Supplementary Discussion S1 and Figs. S21 and S22**). This choice of frequency keeps the
186 specific absorption rate below 2 W/kg ^{47,48} (**Fig. S22**). The system clock of the implant is derived
187 from the WPT carrier, eliminating the need for a bulky crystal oscillator. BISC has a total power
188 consumption of less than 64 mW, satisfying the thermal budget guideline of 0.5 mW/mm^2 for
189 neural implants^{49,50} (**Fig. S22**).

190 **Relay station design**

191 The relay station serves both to wirelessly power the implant and to transfer data between BISC
192 and a computer base station, which can ultimately take the form of a smartphone. It is a two-part

193 system that consists of a headstage and a processor module (**Fig. 1B**; see **Methods**), all designed
194 from commercial off-the-shelf components.

195 The headstage has a wearable form factor (75×75×45 mm, 151 g) with a printed circuit board
196 (PCB) stack-up that includes a powering coil and ultra-wideband (UWB) antenna (**Fig. 1G, Fig.**
197 **S2**). For wireless powering, we use a tunable power amplifier to drive a custom spiral coil at 13.56
198 MHz that inductively couples to the receiving coil on the implant. For data telemetry, we use an
199 impulse-radio ultra-wideband (IR-UWB) transceiver centered at 4 GHz with on-off-keying (OOK)
200 modulation, where a custom dipole antenna on the headstage communicates with a monopole
201 antenna on the implant.

202 The processor module controls the headstage through a standard high-definition-multimedia-
203 interface (HDMI) cable. The processor module powers and configures PCB components on the
204 headstage, sends queries and commands to the implant and receives responses and recorded data
205 from the implant. Recorded data are either saved in the processor module's non-volatile memory
206 or re-directed to the computer base station over wired or wireless Ethernet. The processor module
207 is based on a Xilinx Zynq-7000 system-on-chip (SoC) that includes a processing system (PS) unit
208 and a programmable logic (PL) unit (**Fig. S24**). The PS integrates a dual-core ARM Cortex-A9
209 processor, runs the Linux operating system, and interfaces with a secure digital (SD) card used as
210 the main non-volatile memory. The PL integrates specialized hardware to handle the bitstream of
211 recorded neural data and store it in the ARM processor's main memory. In addition, the specialized
212 hardware on the PL embeds a high-level application programming interface (API) to generate and
213 deliver pre-configured sequences of time-sensitive commands to the implanted device. We
214 designed the API to be reconfigurable, leveraging its implementation on the PL, allowing it to be
215 updated at any time. We implemented a Python software framework that uses the API and runs
216 under the Linux operating system using PYNQ to control the specialized hardware in the PL. To

217 support an interactive user environment, we designed a graphical user interface (GUI) that runs on
218 the computer base station and interacts with the Python framework on the relay station via a
219 RESTful API (**Fig. S25**). The GUI interacts with the relay station through the high-level API and
220 displays neural data from the implant in real time.

221 Our bi-directional communication protocol uses a custom 125-bit packet tailored to accommodate
222 the sampling rate and ADC resolution of BISC (**Fig. S23, Table S1**). The use of a custom protocol
223 between BISC and the relay station results in more energy-efficient operation of this link when
224 compared to the use of standard protocols such as Bluetooth or 802.11. Moreover, radio
225 transmission between the BISC implant and the relay station only needs to be over a few
226 centimeters, which allows our device to be a high-bit-rate radio transceiver while consuming less
227 than 64 mW of total power (less than 13 mW peak power in the transceiver itself).

228 **Surgical approaches for implant**

229 The thin, mechanically flexible form factor of the BISC implant enables relatively simple surgical
230 implantation when compared to any device using penetrating intracortical electrodes or
231 percutaneous connections. Device sterilization is performed with ethylene oxide (EtO; see
232 **Methods**). In a technique common to both the pig and non-human primate (NHP) models, a
233 standard craniotomy on the scale of 25 mm by 23 mm is made adjacent to the implantation site.
234 The dura was then carefully elevated using sutures or forceps and linearly cut to provide a clear
235 path for implantation. A commercial strip electrode is used as the insertion shuttle (see **Methods**,
236 **Fig. S7**). The BISC chip was placed on top of the guide and then inserted under the dura, ensuring
237 it rested directly on the pial surface. Importantly, the dural incision was made adjacent to the
238 implantation site to avoid cuts or sutures directly over it. After securing the BISC chip in place,
239 the dura was sutured, the skull was repositioned, and the incision was closed.

240 Furthermore, the procedure was designed to facilitate easy upgrading or replacement of the BISC
241 chip. After several months of implantation, we reopened the skull in a NHP, made a new dural
242 incision over the initial dural incision, and replaced the existing BISC chip in less than 10 minutes.
243 This rapid, safe, and effective upgrade process is a significant advantage over other invasive BCI
244 methods, where device replacement is more complex and time-consuming.

245 **Somatosensory evoked potential in porcine model**

246 *In vivo* studies reported in this paper have focused on the recording capabilities of BISC;
247 subsequent studies will focus on stimulation. Our device was first subchronically validated by
248 implantation over somatosensory cortex in a porcine model. The pig brain's size and gyrencephalic
249 surface more closely resemble the human neocortex than those of commonly used small laboratory
250 animals⁵¹. Two weeks after the implant, we recorded somatosensory evoked potentials (SSEP)
251 from the anesthetized animal in response to peripheral stimulation (see **Methods**). Five weeks after
252 the implant, the whole brain was extracted postmortem for histological examination (**Fig. S9**).

253 For the SSEP recording session, percutaneous electrical stimulation was delivered to the median
254 nerve and to four distinct locations of the snout (**Fig. 2A**) which is known to have a large
255 somatotopic representation in the pig brain⁵². The recording was taken from 16×16 channels,
256 configured in the sparsest mode that covers the whole array. Data from these channels were low-
257 pass filtered (300 Hz, eight-order Butterworth, zero-phase), subtracted by their baselines, and then
258 down-sampled to 2.11 kS/s (see **Methods**). Trial-averaged channel responses (**Fig. 2B** and **C**, **Fig.**
259 **S8**) show wave complexes whose polarization and depolarization peak timings are similar to those
260 found in previous porcine SSEP studies^{53,54}. The spatial arrangement of the normalized peak
261 response (**Fig. 2D**, **Video S1**) is also consistent with the previously reported somatotopy^{52,55,56}.

262 Decoding peripheral stimulation site from SSEP was assessed through two approaches: visualizing
263 the data projected into two-dimensional space and constructing a classification model (see

264 **Methods).** For both analyses, we first used principal component analysis to project the z-scored
265 spatiotemporal waveforms into a lower-dimensional space, retaining components that explained
266 80% of the variance (see **Methods**). These extracted components were projected onto a two-
267 dimensional space using t-distribution stochastic neighbor embedding (t-SNE)⁵⁷. This projection
268 (**Fig. 2E**) results in clearly separable clusters, indicating that the measured SSEP can be used to
269 effectively distinguish between peripheral stimulation sites. Decoding performance was quantified
270 using a linear discriminant model with 10-fold cross-validation that resulted in an overall accuracy
271 of $97.8 \pm 1.7\%$ (mean \pm SD, n = 500) (**Fig. 2F**).

272 Coronal sections were collected from the post-mortem extracted brain for histological analysis
273 using three markers: hematoxylin and eosin (H&E), NeuN, and Iba1 (**Fig. S9**). Sections taken
274 directly under BISC showed no significant pathology by H&E or NeuN. Iba1, however, revealed
275 a mild microgliosis extending from the superficial cortex to the subcortical white matter. Near the
276 perimeter of our device, there was a small lesion on the surface of the cortex, consistent with a
277 mechanical injury incurred during electrode placement. No pathological changes were seen in
278 sections taken as control samples from the occipital cortex.

279 **Motor cortex recording in NHP**

280 Prior to the chronic NHP study, BISC was first validated through acute recording using a glass
281 artificial skull mounted in a permanent craniotomy over the motor cortex region of a behaving
282 NHP subject. In this setup, the glass module is hermetically secured to a base ring affixed to the
283 subject's skull using mechanical screws, eliminating the need for additional surgery for device
284 implantation. The subject was seated in a primate chair, facing the experimenter who manually
285 held a wand at the subject's full reach distance. The subject was trained to asynchronously reach,

286 grab the wand, and then retract its arm without the use of an explicit cue to prompt its movement,
287 with the arm location triangulated from multiple cameras (**Fig. 3A**; see **Methods**).

288 For this experiment, the BISC device was attached directly to the artificial skull (**Fig. 3B**) and
289 positioned over the central sulcus (CS), with most electrodes over the primary motor cortex (M1)
290 but a significant portion over the primary somatosensory cortex (S1) (**Fig. 3C**).

291 While the subject was performing the behavioral task, BISC recordings were taken from 16×16
292 channels configured in the sparsest mode covering the whole array. The fidelity of measured multi-
293 channel local field potentials (LFPs) was assessed by building a continuous velocity decoder using
294 a linear model (**Fig. 3D-F**; see **Methods**) and visualizing the spatiotemporal dynamics of selected
295 frequency bands (**Fig. 3G-H**).

296 The decoder was built by first identifying channels ($n = 180$ out of 256) that consistently remained
297 non-saturated throughout the experiment (see **Methods**). Data from these channels were band-pass
298 filtered (0.3 to 300 Hz) and down-sampled to 2.11 kS/s. Recordings contained a strong
299 hemodynamic rhythm around 3 Hz, which we associated with the heart rate (180 beats/minute).
300 This rhythm was removed by subtracting the corresponding time series components computed
301 through space-time singular value decomposition (**Fig. S10**)⁵⁸. The pre-processed recordings were
302 further grouped into four frequency bands: local motor potential (LMP), β (10 to 30 Hz), low γ (30
303 to 70 Hz), and high γ (70 to 190 Hz). Low-frequency LMP was extracted by applying boxcar
304 averaging with a 50 ms window and then z-scoring⁵⁹. The other three bands were extracted by
305 applying multitaper estimation with a 200-ms window and 10-Hz half-bandwidth and then
306 normalizing⁶⁰. Finally, the time history of features from $(t - 0.47)$ s to $(t + 0.47)$ s in 52 ms time
307 steps were used for decoding, resulting in 13,680-dimensional vector $X(t)$ (180 channels, 19 time
308 lags, four frequency bands) as model input for decoding motor feature $y(t)$.

309 We decoded the arm velocity using partial least squares (PLS) regression because it is effective in
310 handling data whose predictor is highly correlated and has a large dimension compared to the
311 number of observations⁶¹. The optimal number of PLS components was determined by calculating
312 the minimum predictive error sum of squares across 5-fold cross-validation (**Fig. S10**). When
313 decoded against the normalized y-dimension (front-back) wrist velocity, feature prediction
314 resulted in Pearson's correlation coefficient of 0.53 ± 0.04 (mean \pm SE), illustrated by an example
315 time segment shown in **Fig. 3E**. Spectral contributions to the decoder from each frequency band
316 were found by computing the sum of the relative weight of coefficients associated with each band
317 (**Fig. 3F**).

318 The two bands with the highest contributions – LMP and high γ band – are further visualized by
319 plotting the multi-channel power over time (**Fig. 3G**) which shows fluctuations synchronized to
320 the subject's motion. Spatiotemporal progression of these bands in a selected one-second-long
321 time window (**Fig. 3H**) shows spatially localized activity in both M1 and S1, with LMP displaying
322 patterns that resemble phase reversal across the CS boundary. A more detailed version of this plot
323 with a finer time resolution and an extended time range can be found in **Video S2**.

324 **Visual cortex recording in NHP.**

325 The stability of chronic neural signals from BISC was validated through long-term (up to 64 days)
326 studies from the visual cortex of an adult macaque monkey. The chip was placed near the border
327 of V1 and V2, partially covering V4 as well (**Fig. 4A**). Over the span of the study, we conducted
328 multiple experiments that involved three different visual stimulus paradigms: gratings, random
329 dots, and natural images.

330 In the grating sessions, the monkey fixated for at least 300 ms to initiate a trial in which 30 static
331 gratings of random orientations were presented consecutively (**Fig. 4B**). Each grating lasted 50

332 ms. BISC recordings were taken from 16×16 channels configured in the sparsest mode covering
333 the whole array. Approximately one-third of them, primarily those overlying V1, showed increased
334 power for Fourier components between 20 Hz and 90 Hz (**Fig. 4C**). The peaks at 20 Hz and
335 harmonics in the power spectrum response reflect the grating changing every 50 ms. We selected
336 four example channels labeled by their chip coordinates (**Fig. 4D**) to show their band-pass filtered
337 responses in one trial (**Fig. 4E**). It is evident that activity in these channels is elicited by the onset
338 of the visual stimulus and returns to baseline after the stimulus. We further applied Morlet wavelet
339 transformation (see **Methods**) to acquire the spectrogram of each channel. The averaged
340 spectrogram of one channel after aligning at the stimulus onset is shown (**Fig. 4F**), along with six
341 individual bands with central frequencies evenly spaced on a logarithmic scale (**Fig. 4G**). We
342 observed different responses in each band, defined as the ratio of the mean response in the time
343 window from 500 to 1500 ms relative to the mean response in the time
344 window from -300 to 0 ms. The resulting response maps are shown for multiple bands (**Fig. 4H**).
345 For each frequency band, we computed the grating-triggered-average response by aligning
346 response segments according to the grating onset and obtained the average band-passed scaled
347 response conditioned on each grating orientation (see **Methods**). The result shows a strong
348 untuned component corresponding to the grating switching (**Fig. S11**). After removing it, the
349 residual tuned components show that channel responses during the time window from 50 to 200
350 ms after grating onsets are tuned to the grating orientation. A typical channel is shown in **Fig. 4I**.
351 We take the average response between 88 and 112 ms after grating onset to measure a tuning curve
352 for each channel and define the orientation selectivity index as the difference between the
353 maximum and the minimum value. The orientation selectivity index maps of multiple frequency
354 bands are shown in **Fig. 4J**. Tuning curves for the 64-Hz band are shown in **Fig. 4K**. The channels

355 with pronounced tuning and greater orientation selectivity indices correspond to those overlying
356 V1. As expected, we observe strong orientation tuning in the gamma band.

357 We then built an orientation decoder from these responses which takes raw responses (with no
358 filtering) of all channels in the time window from 0 to 200 ms after grating onset and returns a
359 distribution of grating orientation. We trained the decoder as a classifier in which orientation is
360 discretized into 36 bins. The decoder is a multi-layer convolutional neural network (CNN) that
361 uses one-dimensional (1D) convolution along the temporal dimension. The performance of a hold-
362 out set (containing trials not used during training) is shown in **Fig. 4L**. The mutual information
363 $I(\theta; \mathbf{r}) = H(\theta) - H(\theta|\mathbf{r})$ between predicted orientation θ and BISC responses \mathbf{r} is computed as
364 approximately 2.27 bits, which constitutes a data rate of 45 bits/sec at a 50-ms frame rate (see
365 **Methods; Figs. S14 and S15**). We found that the decoder prediction approximates the ground truth
366 values (**Fig. 4M**), with a root mean squared error of 9.1° (**Fig. 4N**).

367 We mapped spatial receptive fields (RFs) using a random dot experiment, where single 0.51° dots
368 appeared on a uniform gray background, changing location and color (black/white) every 50 ms
369 (**Fig. 5A**). Dots were presented within a 6°×6° rectangular field, centered 1.5° right and 3° below
370 fixation. The monkey maintained fixation for 1500 ms to receive a juice reward. After removing
371 Fourier components outside the 20-to-90-Hz band, the band-passed responses for all non-saturated
372 channels are shown for one trial (**Fig. 5B**).

373 We computed the RF by dot-triggered averaging on wavelet-transformed responses. Multiple
374 wavelet central frequencies were tested (**Videos S3 to S8**) and almost all of them show clean
375 structure for channels in the V1 area. An example channel is shown in **Fig. 5C** for the 64-Hz band.
376 This channel is responsive to a dot shown in a lower-right location approximately 40 to 80 ms after
377 dot onset. By averaging the spatial-temporal receptive field over time, we can compute an estimate

378 of the spatial RFs, which are shown with a shared color scale (**Fig. 5D**). While channels in V1
379 have compact RFs, the presented dot size is too small to invoke spatially structured response from
380 channels outside of V1. We fit two-dimensional (2D) Gaussian functions to the computed RFs and
381 plot the retinotopic map using the fitted Gaussian centers (**Fig. 5E**). We examined the chronic
382 stability of these retinotopic maps by comparing these maps at Day 36, Days 41-48, and Day 62
383 after surgery. The receptive fields for these channels remained stable over this period with a less-
384 than-0.05-degree change in eccentricity and less-than-2.7-degree change in angle on average for
385 all channels from Day 36 to Day 62 for both dense (at Days 41-48) and sparse (at Days 36 and 62)
386 recordings, demonstrating the stability of BISC chronic recordings (**Fig. 5F**).

387 To exploit the dense 65,536-channel structure of BISC, we densely recorded (minimum electrode
388 pitches at 26.5 μm by 29 μm) from the top-left quadrant of the electrode array through repeated,
389 contiguous recording blocks of 1024 channels. The combined results (**Fig. 5G**) are consistent with
390 what we found in the sparse full-array recording sessions while providing a much higher resolution
391 retinotopic map.

392 Next, we hypothesized that these spatially dense recordings capture fine-grained spatiotemporal
393 dynamics of LFPs that cannot be resolved in the sparse configuration. Specifically, we
394 hypothesized the existence of ‘traveling waves’—spatiotemporally coherent patterns of
395 propagating neural oscillations—given recent findings showing that such waves can encode task-
396 related spatial information⁶². We focused on identifying traveling waves in the gamma band (30-
397 90 Hz), given the task-related oscillations in this range (**Fig. 4F-J**). To measure gamma-band
398 traveling waves, we extracted the instantaneous phase of the gamma oscillation at each channel in
399 the dense configuration. Then, we measured the topography of the gamma traveling waves, using
400 circular statistics to extract the instantaneous direction and strength of the gamma phase gradient
401 at each contact (see Methods). With this approach, we compared the strength of gamma traveling

402 waves across dense recordings taken from 16 different locations of the array during dot viewing.

403 The strongest traveling waves were recorded from the top-left corner of the BISC array,
404 corresponding to posterior medial recordings over the operculum in V1 (see red outline in Fig.
405 6Ai). Our subsequent analysis (Fig. 6Aii, B–E) focuses on recordings from this section of the
406 array.

407 First, we compared the spatial topographies of the traveling waves induced by dot stimuli (**Fig.**
408 **6Aii**). This analysis revealed distinct wave patterns on the cortex that differed according to the
409 location of the presented dot in the visual field. Examining these signals more closely, we tested
410 whether spatially dense BISC recordings revealed additional detailed stimulus-relevant
411 information that was not evident at lower resolutions. For five example dot locations, using UMAP
412 clustering analysis (see **Methods**), we found that spatially dense BISC recordings more effectively
413 distinguished the traveling wave patterns corresponding to different viewed dot locations,
414 compared measurements of these traveling waves at lower resolutions (**Fig. 6B**).

415 To expand this approach and test whether traveling waves encoded information about dot locations
416 across the visual field, we built a neural network decoder to predict the horizontal and vertical
417 coordinates of the dot viewed by the monkey based on the spatiotemporal pattern of BISC-
418 measured traveling waves. This decoder uses a hybrid neural network architecture, including a
419 convolutional neural network (CNN) that assesses the topography of traveling waves at each
420 moment and a transformer network to extract long-range temporal correlations. The model was
421 trained by using the spatiotemporal sequence of traveling waves from each trial to predict the
422 current dot location viewed by the monkey (**Fig. 6C**; **Video S9**; see **Methods**). We used this
423 network to assess the statistical robustness of dot-specific traveling waves over time and compared
424 the accuracy in predicting the coordinates of the viewed dot as a function of recording resolution.

426 By feeding our model with the sequence of gamma band traveling waves observed in each trial,
427 we could reliably decode the coordinates of individual presented dots, with highest accuracy for
428 dots near the center of the visual field (**Fig. 6D**). Decoding accuracy is significantly higher when
429 the traveling waves are computed from full-resolution BISC recordings, compared to lower
430 resolutions (**Fig. 6E**, full resolution versus quarter resolution: t-test, $t(285)=2.6$, $p<0.001$).

431 To test the temporal dynamics of traveling waves, we next assessed whether the predictive model
432 for the current dot stimulus depends not only on the current traveling wave but also on the past
433 history of traveling waves and stimuli. We tested this hypothesis by asking the decoding model to
434 predict the dot location for a new traveling wave pattern immediately after being presented with a
435 shuffled sequence of dots and matching traveling wave patterns. This shuffling procedure resulted
436 in significantly decreased decoding accuracy (**Fig. 6E**, t-test, $t(219)=2.0$, $p<0.05$), indicating that
437 the traveling waves at each moment are not only dependent on the currently viewed dot but also
438 on the recent histories of stimuli and cortical activity. Thus, traveling waves encode information
439 about the current stimuli and past events^{63,64}, which can be extracted by the CNN and transformer
440 network.

441 Lastly, we studied the non-linear characteristics in the responses of BISC recording channels when
442 presented with colored natural images (**Extended Data Fig. 2A**). In this paradigm, we showed the
443 fixating monkey a large number of colored natural images from the ImageNet database⁶⁵. In each
444 of the five recording sessions with sparse recording over the entire array of 16×16 channels,
445 10,000 – 12,000 unique natural images were presented in blocks of 15 images with each image
446 displayed for 120 ms^{66,67}. The images (10° by 10° in size) were centered at a location 3° to the
447 right and below the fixation spot. We then applied zero-phase component analysis (ZCA)
448 whitening across all channels and band-pass filtered the signal between 30 and 90 Hz (with a tenth-
449 order Butterworth, zero phase); this was followed by squaring and averaging of the signal from 40

450 ms to 160 ms after the image onset. Through these processing steps, we derived a scalar magnitude
451 from the gamma band of each channel, known to reflect the spiking activity of the adjacent
452 neuronal population⁶⁸, in response to each natural image that was presented. We then fit a deep
453 neural network model (**Extended Data Fig. 2B**) to the pairs of natural images and gamma-band
454 responses to learn a stimulus-response mapping, i.e. a digital twin of each recorded channel, such
455 that the model can predict the activity of any channel when presented with an arbitrary stimulus.
456 Then, we selected and fine-tuned an ImageNet pre-trained CNN model⁶⁹ as a shared feature space,
457 with learned channel-specific weights, to predict the responses of individual channels⁷⁰. Next, we
458 tested the accuracy of our digital twin model on a held-out set of 75 natural images. Each image
459 was repeated 40 times and was never shown to the model during training.

460 As a measure of predictive performance (**Extended Data Fig. 2C**), we computed the correlation
461 between the model prediction and the averaged neuronal response to repeated presentations of the
462 same test image, which resulted in a mean of 0.69 ± 0.14 (mean \pm SD) across all selected channels.
463 This is comparable or better than the performance of similar predictive models of isolated single
464 neurons in macaque V1^{66,67}. Additionally, we computed the explainable variance for each channel,
465 which measures the response reliability to natural images. This metric is defined as the ratio of
466 response variance across repeated presentations of the same image over the response variance
467 across all images. (**Extended Data Fig. 2C**). We only selected channels with an explainable
468 variance larger than 0.1. Across all channels, we obtained an average explainable variance of 0.24
469 ± 0.09 (mean \pm SD), slightly below the values of 0.31 and 0.32 that were reported for isolated
470 single neurons in macaque V1 and V4, respectively^{66,67}. The spatial distribution of the model
471 performance (**Extended Data Fig. 2D**) and response reliability (**Extended Data Fig. 2E**) across
472 the recording array indicated that channels closer to V1 exhibit higher model performance and
473 response reliability compared to those in higher visual areas. We then visualize the feature

474 selectivity of each channel by using our predictive model (digital twin, **Extended Data Fig. 2F**).

475 Traditionally, parametric stimuli or hand-designed images are used to investigate the visual feature
476 selectivity of single cells or populations of neurons. The stimuli that elicit the highest responses
477 are then used to determine the tuning functions of the neurons in question.

478 More recently, digital twin models have been used to synthesize optimal stimuli by iteratively
479 optimizing a starting image such that the response of a neuron or channel is maximized. These
480 optimized images are referred to as maximally exciting images (MEIs) and can be thought of as
481 non-linear receptive fields ⁷¹, shedding light on the underlying neural response functions. MEIs
482 have recently been used to reveal visual tuning characteristics in mouse V1 ⁷¹⁻⁷⁴, as well as monkey
483 V1 ⁷², and V4 ^{66,75,76}. Here, we show the MEIs for individual channels to demonstrate their visual
484 feature tuning. Remarkably, the MEIs (**Extended Data Fig. 2G**) reveal a hierarchy of complexity
485 in visual feature tuning from area V1 (top left) to V2 (center) to V4 (bottom right). Area V1 is
486 characterized, as expected from MEIs of single isolated neurons V1 ⁷², with oriented Gabor filters.
487 Areas V2 and V4 are dominated by more complex features with dominant color opponency (also
488 observed in ⁷⁵). The digital twin model is thus able to capture detailed non-linear visual response
489 characteristics of the adjacent neuronal population of each recorded channel.

490

491 DISCUSSION

492 This project pioneers a new paradigm in BCI devices that can be implanted entirely subdurally.
493 Like traditional μ ECoG arrays, it relies exclusively on recording and stimulation from the surface,
494 albeit at a dramatically higher electrode density than any previous system. The advantage this
495 device has over those relying on intracortical electrodes, particularly in the context of eventual
496 human translation, lies in its surgical insertion; its removal and replacement are very

497 straightforward, and little to no cortical damage results from using the BISC design. In the future,
498 we expect to transition to less invasive surgical procedures in which only a small slit is made in
499 the cranium and dura, and the BISC implant is “slid” under the skull.

500 Positioning BISC on the pial brain surface allows it to naturally conform to the contour of the brain
501 and move with the brain, bringing significant advantages over devices with components attached
502 to the skull which introduce relative motion between the device and the brain. An additional benefit
503 of subdural μ ECoG recordings over intracortical recordings for clinical translation BCI is their
504 stability over time which was replicated in BISC.

505 BISC was designed with a front-end recording bandwidth sufficient to capture the temporal
506 dynamics of neural spiking activity. Our *in vivo* experiments did not demonstrate the existence of
507 large-scale spiking activity from BISC surface recordings. Future iterations of BISC focused on
508 only LFP recordings can reduce the front-end recording bandwidth and better utilize the available
509 108 Mbps data bandwidth to simultaneously record from a larger number of channels. The
510 architecture of BISC in which full recording channels are present for all electrodes aids in this
511 alternate implementation. The high-density recording capability of the BISC device shows that
512 even for LFPs, when measured with small surface electrodes placed directly on the pial surface,
513 these signals exhibit precise spatiotemporal patterns at a scale of tens of microns. These patterns
514 convey information about both current and past stimuli, as demonstrated by decoder performance
515 trained on gamma-band traveling waves in the primary visual cortex.

516 Prior work has measured traveling waves with more widely spaced electrodes in scales of
517 centimeters⁴ or millimeters⁵, but the findings here are the first to show that traveling waves exist
518 in the primate brain on much finer spatial scales. The traveling wave patterns shown in **Fig. 6A**

519 have curved propagation patterns that roughly match the spatial scale of orientation pinwheels⁷⁷
520 and individual cortical columns⁷⁸.

521 Earlier findings on traveling waves suggest that these signals are coarse plane waves⁴, showing
522 how broad areas of cortex propagate information dynamically and synchronize their activity. By
523 demonstrating that traveling waves exist on a much finer spatial scale, our findings suggest that
524 traveling waves may propagate along intricate cortical maps and provide the opportunity to study
525 how traveling waves interact with detailed cortical gradients. Given our demonstration that
526 information can be extracted for decoding at the tens-of-microns scale in V1, it would be
527 interesting to explore whether BISC can achieve similarly high-resolution decoding in other brain
528 areas relevant for human BMI applications, such as speech or motor movement decoding. The
529 feasibility of such applications likely depends on the topological organization of the local circuits
530 and the underlying task demands.

531 Although it was not included in these *in vivo* studies reported here, BISC supports amplitude
532 controlled, bi-phasic current stimulation that can be configured to be either cathodic-first or
533 anodic-first, followed by a passive balancing phase (see **Methods, Fig. S19 and S26**). The
534 stimulation circuits in each of the 16,384 pixels can be independently programmed (see
535 **Supplementary Discussion S1**), limited only by the aggregate current that can be sourced or
536 sunked at any given time. Future experiments with BISC will test these stimulation capabilities.

537 While the current version of BISC relies on on-chip electrodes, the electronics of BISC can be
538 easily connected to polyimide “extenders”, which would allow BISC to be adapted for intracortical
539 depth electrodes, large area surface electrodes, or both. These extenders can be attached to BISC
540 through solder-bump attachment, thermosonic bonding, or with the use of anisotropic conductive
541 films. Multiple BISC devices can also be tiled over the brain surface to achieve larger area

542 coverage without the use of extenders. All these alternatives build on the technology validated in
543 this work, a fully encapsulated, integrated, wireless, bidirectional neural interface system that can
544 be placed subdurally and controlled from an antenna outside the scalp. The effectiveness of
545 decoding depends on several factors, including the dimensionality of the problem we intend to
546 decode (such as complex, high-dimensional fine motor movements or speech), the spatial
547 organization of the covered brain regions, and the information carried by the LFP for each
548 electrode. Depending on the application and the complexity of the problem, the BISC system is
549 scalable and modular and can be adapted to meet these diverse needs effectively.

550 The current headstage design is quite large, which makes it rather awkward for freely moving
551 animal studies and future human use. A significant reduction in volume can be achieved with the
552 current bill-of-materials by combining all the electronics into a single stacked PCB connected with
553 dual radio-frequency cables to a wearable antenna. Further reduction in the size and form factor of
554 the relay station will come in the design of an ASIC that replaces most of the discrete PCB
555 components.

556 BISC overcomes one of the critical barriers to the widespread clinical translation of many
557 alternative technologies – percutaneous wires – while delivering unprecedented volumetric
558 efficiency and is very timely, given recent advances in the performance of BCI systems for speech
559 and motor control⁷⁹⁻⁸¹. The combination of the high-density wireless recording and stimulation
560 capabilities of BISC with deep-learning-based methods is poised to revolutionize high-bandwidth
561 bidirectional BCIs and holds tremendous promise for revolutionizing treatments of brain diseases
562 ranging from depression and aphasia to motor disorders, strokes, and blindness.

563

564

ACKNOWLEDGEMENTS

565

This work was partly supported by the Defense Advanced Research Project Agency (DARPA) under Contract N66001-17-C-4001, the Department of the Defense Congressionally Directed Medical Research Program under Contract HT9425-23-1-0758, the National Science Foundation under Grant 1546296, and the National Institutes of Health under Grant R01DC019498. We would like to acknowledge the use of facilities and instrumentation at the Columbia Nano Initiative, the CUNY ASRC, and the UPenn Quattrone Nanofabrication Facility. We also extend our thanks to Youry Borisenkova, Adam Banees, and Kukjoo Kim at Columbia University for help with chip processing and Tjitske Vandermolen and Kenneth Kosik at UCSB for many helpful discussion.

573

AUTHOR CONTRIBUTIONS

574

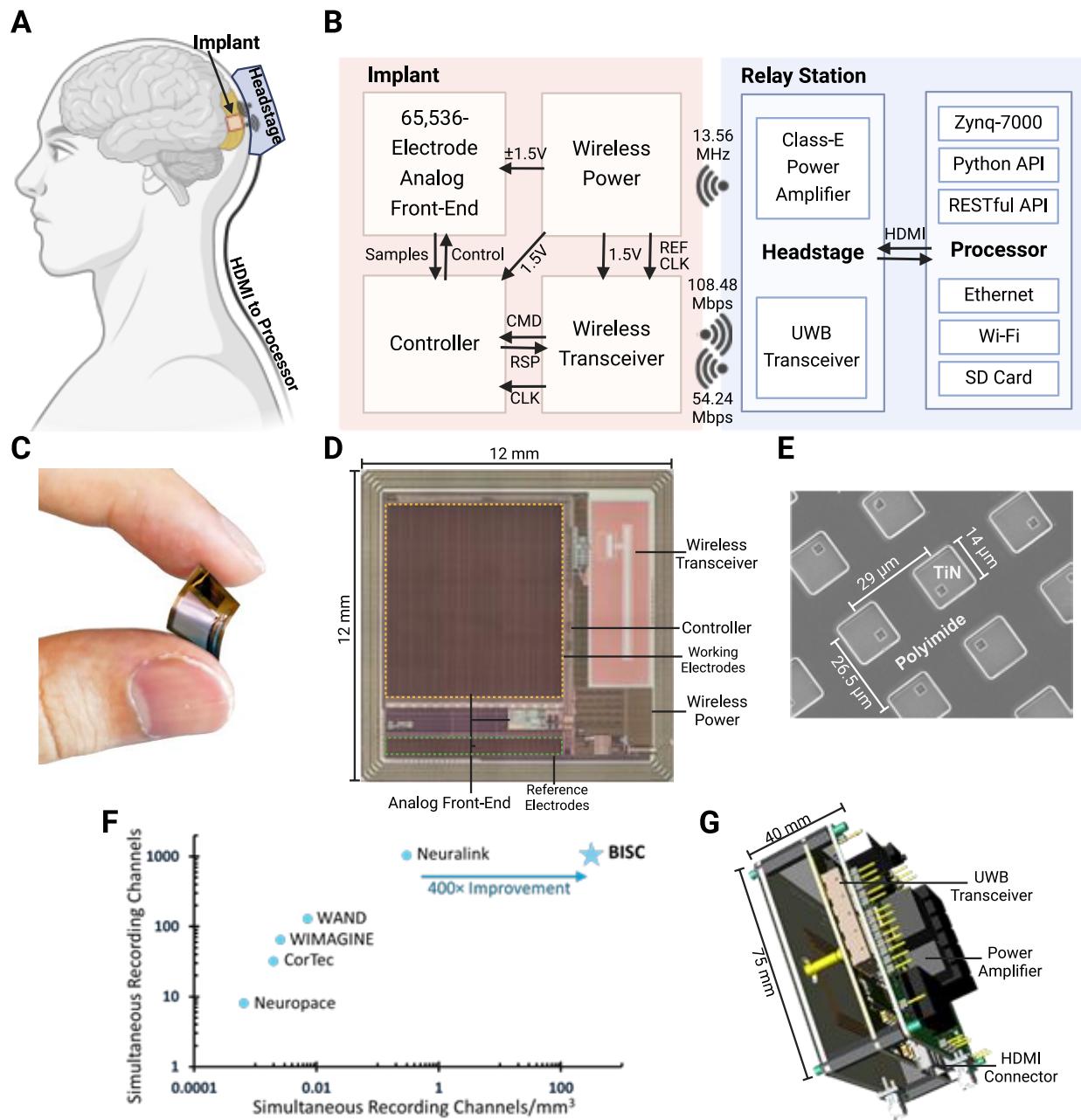
KLS, NZ, TJ, and RJC conceived the project. NZ, TJ, GE, MS, KT, GR, JH, KLS, and RJC designed the implant circuit. JDF, JK, and HY post-processed the implant. NZ and TJ implemented the relay station hardware. GE, NZ, PM, RJC, SP, TJ, AM, and LC implemented the relay station software. TJ, NZ, and SP performed bench-top characterizations. BY, ES, TJ, NZ, KLS, RH, IG, and GE performed *in vivo* experiments on the porcine subject. TJ, BY, and PC conducted porcine data analysis and histology. BP, AD, KEW, NZ, and TJ performed *in vivo* experiments on the motor cortex of non-human primate. TJ, BP, and KEW performed motor cortex data analysis. AT, SP, KLS, RJC, TJ, NZ, GE, TS, GJR, and CN performed *in vivo* experiments on the visual cortex of non-human primate. ZL, KW, AT, SP, DO, RJC, AD, EZ, and JJ performed visual cortex data analysis. KLS, AT, BP, MR, JJ, and DY acquired funding. KLS, AT, BY, BP, RJC, LPC, and JJ provided supervision. TJ, NZ, GE, KLS, KW, ZL, AD, EZ, JJ, and SP wrote the manuscript with review and editing contributed by all authors.

586

COMPETING INTEREST

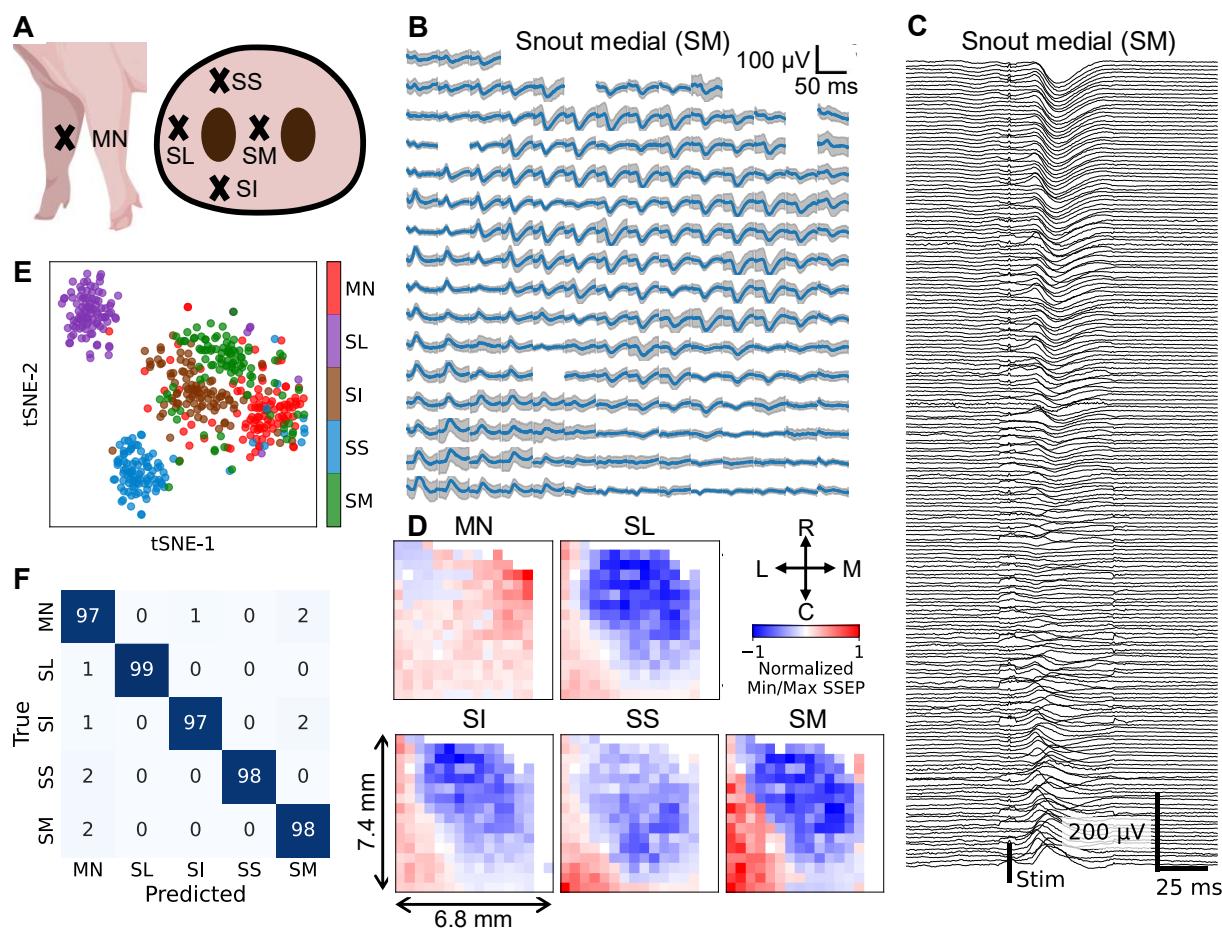
587 NZ is a principal with Kampto Neurotech, LLC, which is commercializing the BISC technology.
588 The BISC technology is patented under U. S. Patent 11617890, issued on April 4, 2023 and
589 exclusively licensed to Kampto from Columbia University.

590 **DATA AVAILABILITY**


591 All recorded electrophysiological data relevant to the figures presented in this paper are available
592 at <https://github.com/klshepard/bisc>. All other relevant data are available from the corresponding
593 authors upon reasonable request.

594 **CODE AVAILABILITY**

595 All scripts used for data analysis are available at <https://github.com/klshepard/bisc>. All other
596 relevant codes are available from the corresponding authors upon reasonable request.


597 **SUPPORTING INFORMATION**

598 Supporting information includes Discussions S1 through S3, Figures S1 through S26, Tables S1
599 and S2, Supplementary Videos S1 through S9.

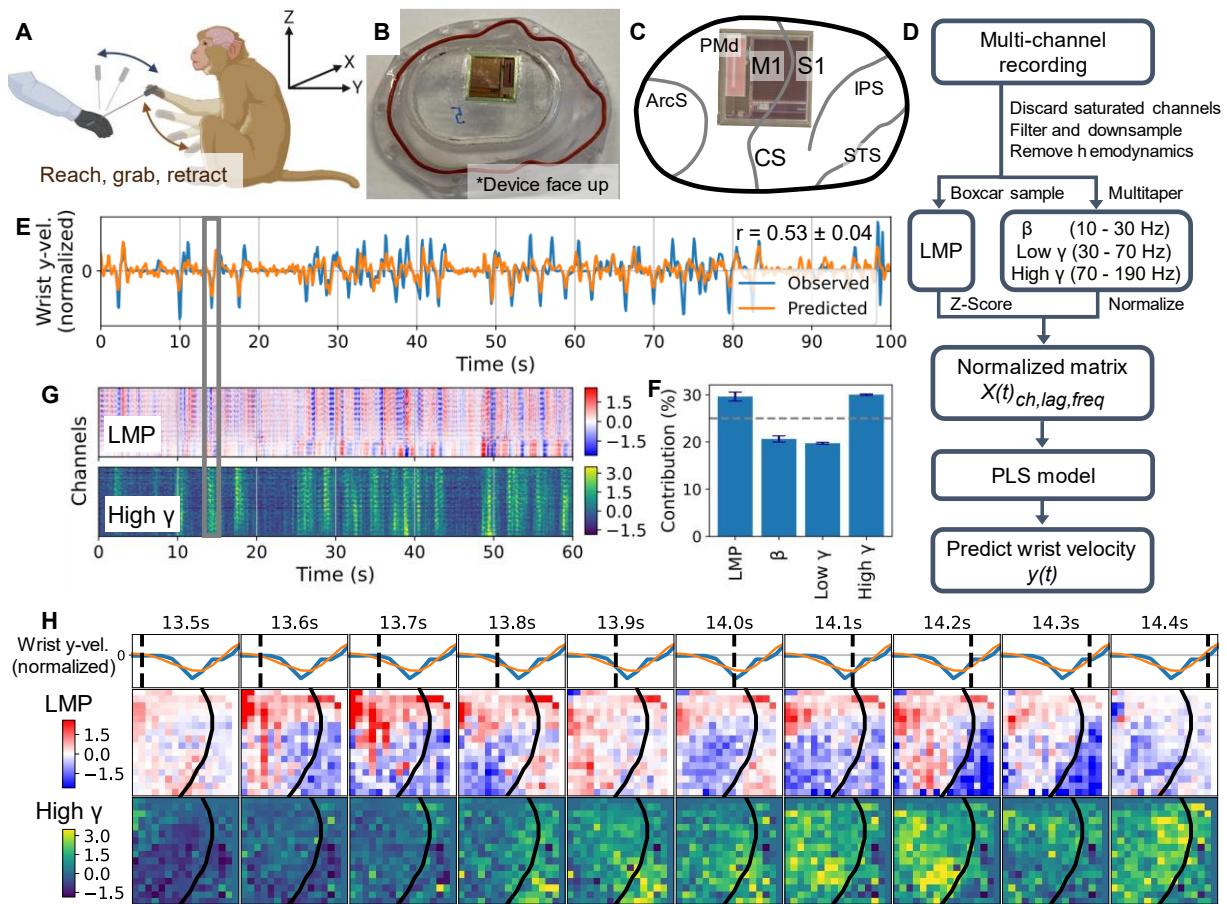
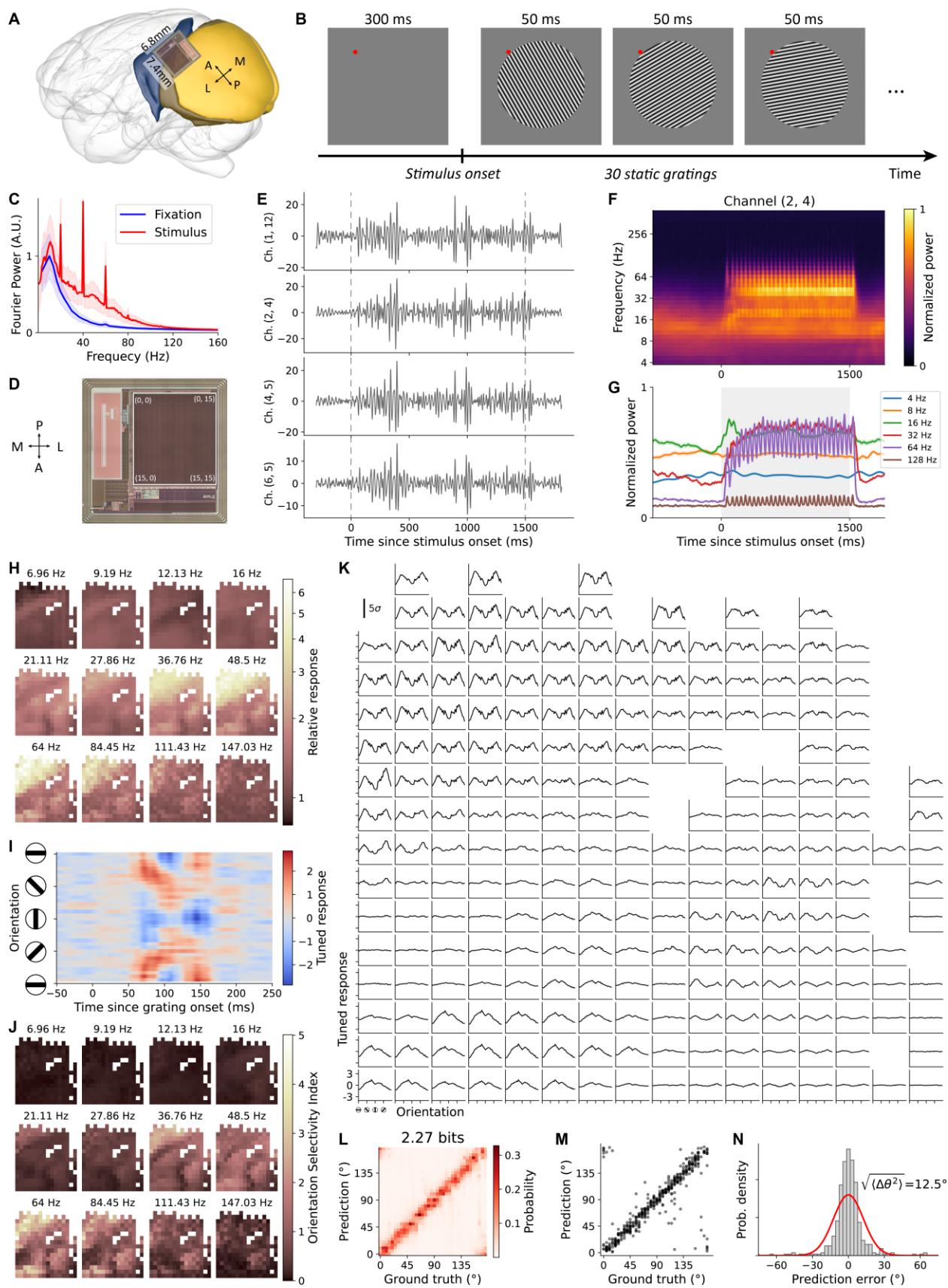
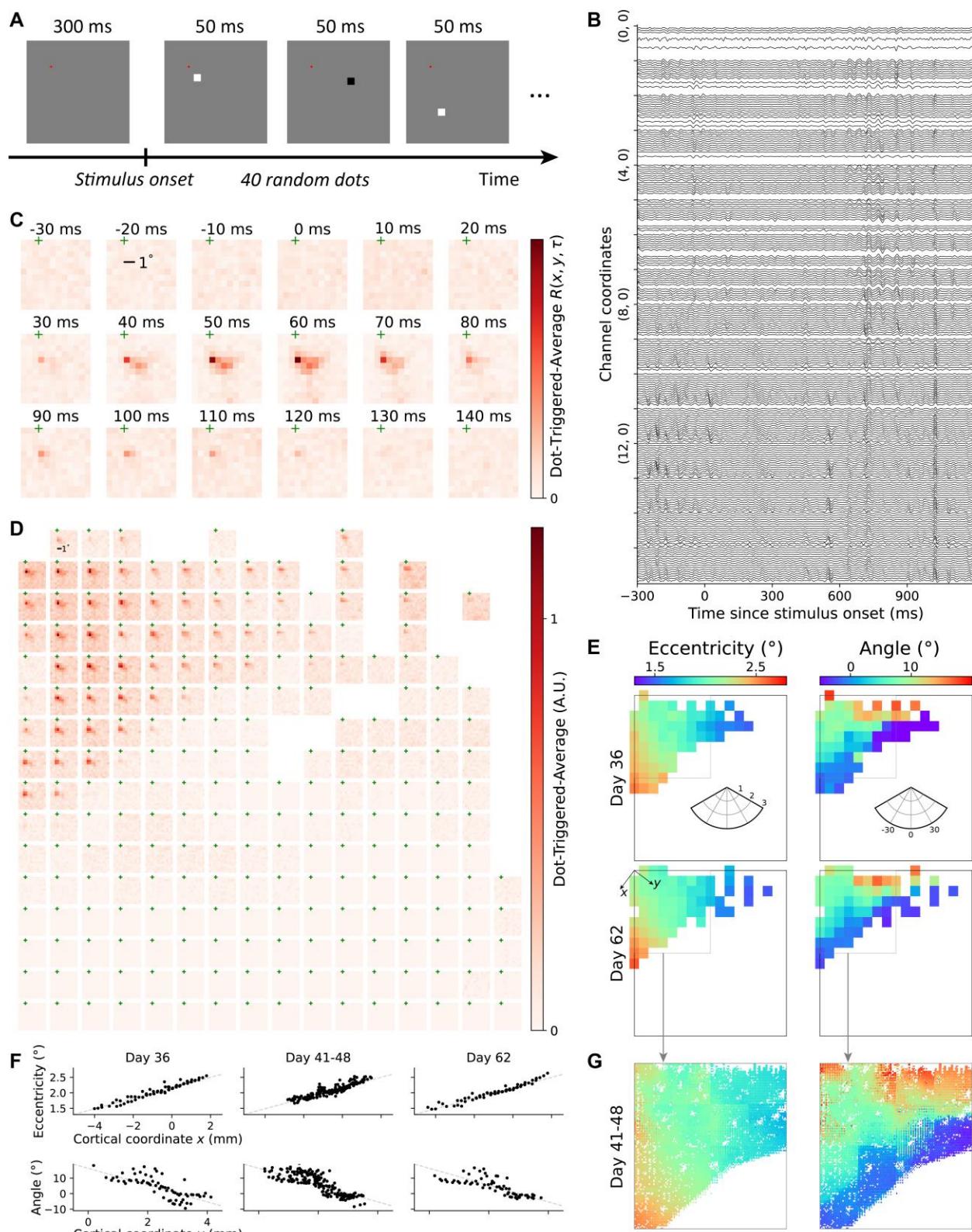


Fig. 1. The BISC implant and relay station. (A) Concept diagram of the BISC implant and relay station. Relay station's headstage provides wireless power and bi-directional communication from outside the body. The headstage module connects to the processor module (not shown) via HDMI cable. (B) Schematic of the overall system. The implant has four main modules: analog front-end (AFE) for recording and stimulation; wireless power for power transfer through an inductive link; wireless transceiver for bi-directional data telemetry; and controller for AFE configuration and data packetization. The headstage module receives a clock from the processor module; data moves between the headstage and processor modules with the processor module controlled by a computer through wired or wireless by means of Python/RESTful APIs. (C) Mechanical flexibility of the BISC implant. (D) Layout of the BISC implant. (E) Scanning electron microscopy (SEM) image of the titanium nitride (TiN) electrodes. (F) Comparison of our work with other competing wireless BCI devices. (G) 3D diagram of the headstage.


600
601
602
603
604
605
606
607
608
609
610
611
612

613 **Fig. 2. BISC recordings over somatosensory cortex from a porcine model.** (A) Location of
614 stimulation (MN: median nerve, SS: snout superior, SL: snout lateral, SI: snout inferior, SM: snout
615 medial). (B) Example of stimulation evoked somatosensory evoked potential (SSEP), trial
616 averaged ($n = 100$). Shaded area indicates SD. (C) Representation of (B) aligned on a shared time
617 axis. (D) Spatial map of normalized SSEP extrema. Positive value indicates that peak SSEP
618 magnitude was greater than the trough magnitude. Negative value indicates that trough SSEP
619 magnitude was greater than the peak magnitude. Cross indicates orientation of the chip in (B) and
620 (D) (R: rostral, C: caudal, L: lateral; M: medial). (E) State-space representation of the SSEPs using
621 t-distributed stochastic neighbor embedding (t-SNE, $n = 500$). (F) Prediction of stimulation
622 location using a linear discriminant classifier ($n = 500$).

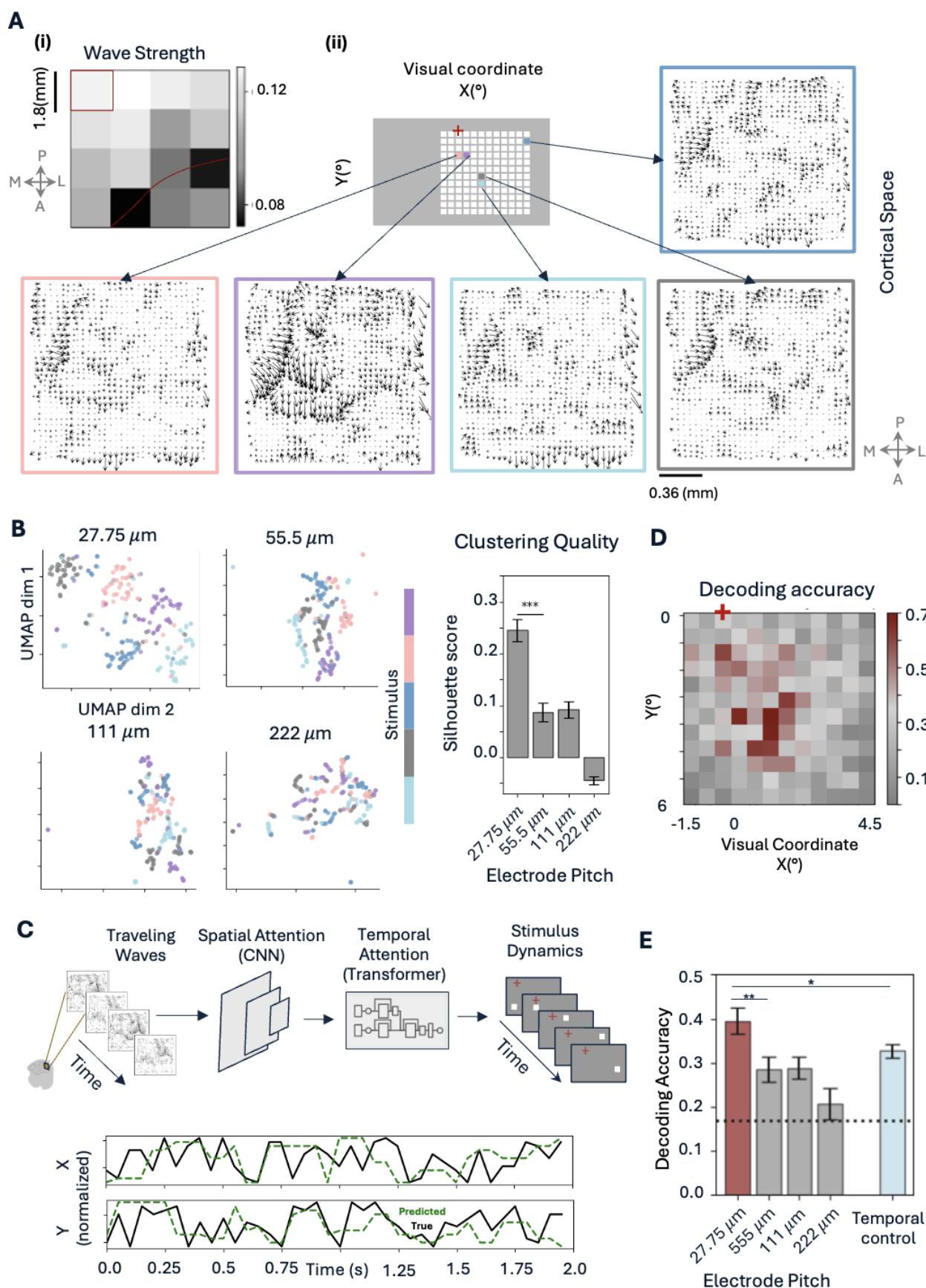


623 **Fig. 3. BISC recordings over motor cortex from a behaving non-human primate.** (A) 624 Behavioral task depiction. The subject was trained to asynchronously reach and grab a “wand” 625 held by the experimenter without an explicit cue. (B) Device placement on the artificial skull. (C) 626 Registration of the device with respect to the brain surface anatomy. (D) Motor feature decoding 627 pipeline. A linear partial least squares (PLS) regression model uses spatial-temporal-spectral input 628 $X(t)$ to predict the subject’s motor feature, $y(t)$. (E) Representative example of continuous 629 decoding of normalized wrist velocity in y-direction (front-back). (F) Spectral contributions to the 630 decoder from each frequency band. Error bars indicate SE, and dashed line indicates chance level. 631 (G) Representative example of spatiotemporal dynamics of local motor potential (LMP) and high 632 γ band, both z-scored. Time axes in (E) and (G) are shared. (H) Representative example of frame- 633 by-frame spatiotemporal progression of LMP and high γ band, both z-scored. Plotted time window 634 is indicated by the vertical gray box over (E) and (G). Dashed lines indicate time instants of each 635 frame, and solid curves over the frames represent the central sulcus (CS) in (C).

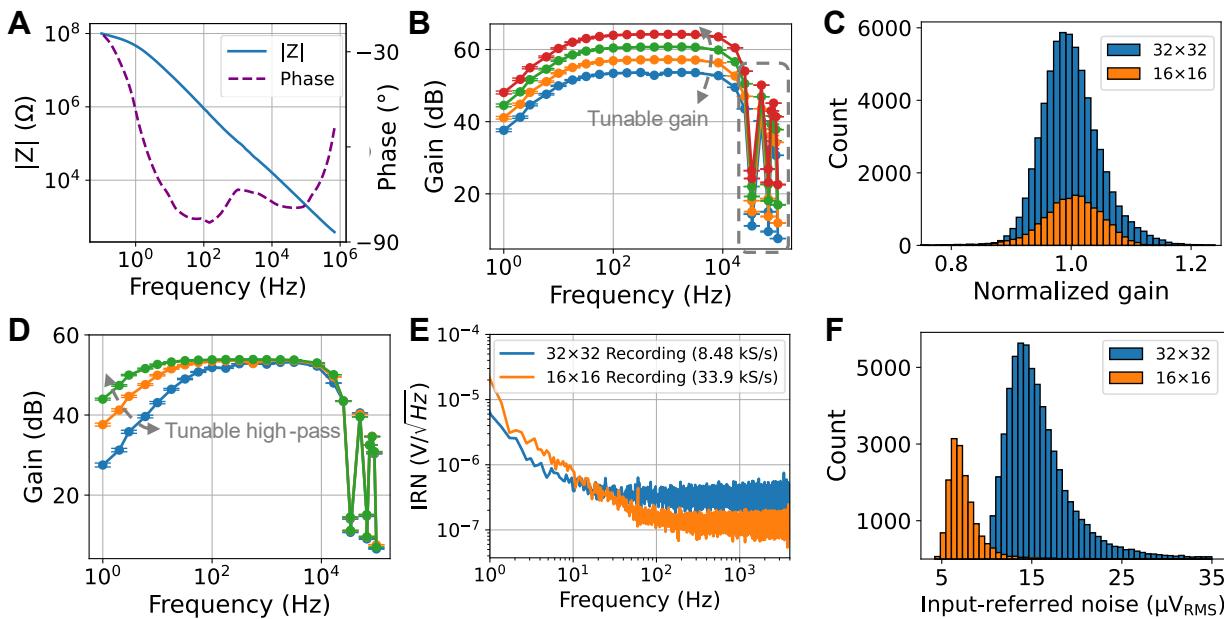
Fig. 4. BISC recordings over visual cortex with grating stimuli. (A) Chip position on the cortex.

638 The chip was placed on the border between V1 and V4 areas. Note that a mirrored image is used
639 here as the chip is facing down. **(B)** A trial in the grating session. The monkey is required to fixate
640 for at least 300 ms before visual stimuli are presented on the monitor. 30 static gratings with
641 random orientations are displayed in one trial, each lasting 50 ms. **(C)** Spectrum comparison
642 between fixation period and stimulus period. Fourier transform is applied to responses in the time
643 window between -300 and 0 ms (blue) and the time window between 500 and 1500 ms (red)
644 relative to stimulus onset. Solid lines are average over channels and trials; shaded areas mark the
645 standard deviation of trial-average over channels. **(D)** Channel coordinates in full chip recording
646 mode. We simultaneously record 256 channels at 33.9 kS/s from the full chip. **(E)** Filtered
647 responses of example channels. For four channels that are strongly responsive to grating stimuli,
648 responses after removing Fourier components below 20 Hz and above 90 Hz for one trial are
649 shown. Vertical lines indicate the onset of stimulation. **(F)** Trial-averaged spectrogram of one
650 channel. We applied wavelet transformation on the recorded signal and obtained time-varying
651 power for different frequency bands. **(G)** Temporal profiles of selected frequency bands. Six rows
652 from (F) are plotted as solid lines. Shaded area is the standard error of mean across trials. Gray
653 background marks the period when grating stimuli are presented. **(H)** Responsiveness maps of
654 different bands. Responsiveness for each channel in given frequency bands is defined as the signal
655 power during the time window from 500 to 1500 ms divided by that during -300 to 0 ms. **(I)**
656 Orientation tuning of an example channel. We computed the grating-triggered-average response
657 conditioned for each orientation. The simple average contains a strong orientation-independent
658 component that reflects the switching of grating every 50 ms (see Supplementary). The heatmap
659 shows orientation tuned components after the removal of orientation-independent component. **(J)**
660 Orientation selectivity maps of different bands. Orientation selectivity index is defined based on
661 the tuned response during the time window from 88 to 112 ms after grating onset (see Methods).
662 **(K)** Orientation tuning curves of all channels from 64-Hz band. Tuned response averaged over the
663 time window from 88 to 112 ms as a function of grating orientation is shown for all channels. The
664 unit of each channel's response is the standard deviation σ across trials computed during fixation
665 period. **(L)** Orientation decoder performance. We trained a decoder that takes raw responses from
666 all channels in the time window from 0 to 200 ms after a grating onset, and predicts the grating
667 orientation. The decoder outputs a distribution over orientations. The average decoder output is
668 shown for each orientation on a hold-out testing set of trials. Mutual information between
669 prediction and response is computed after discretizing orientation into 36 bins. **(M)** Point
670 estimation on testing set. Circular mean of decoder outputs is computed as point estimations. **(N)**
671 Histogram of prediction error. The difference between point estimation and ground truth is
672 gathered for all gratings in testing trials.

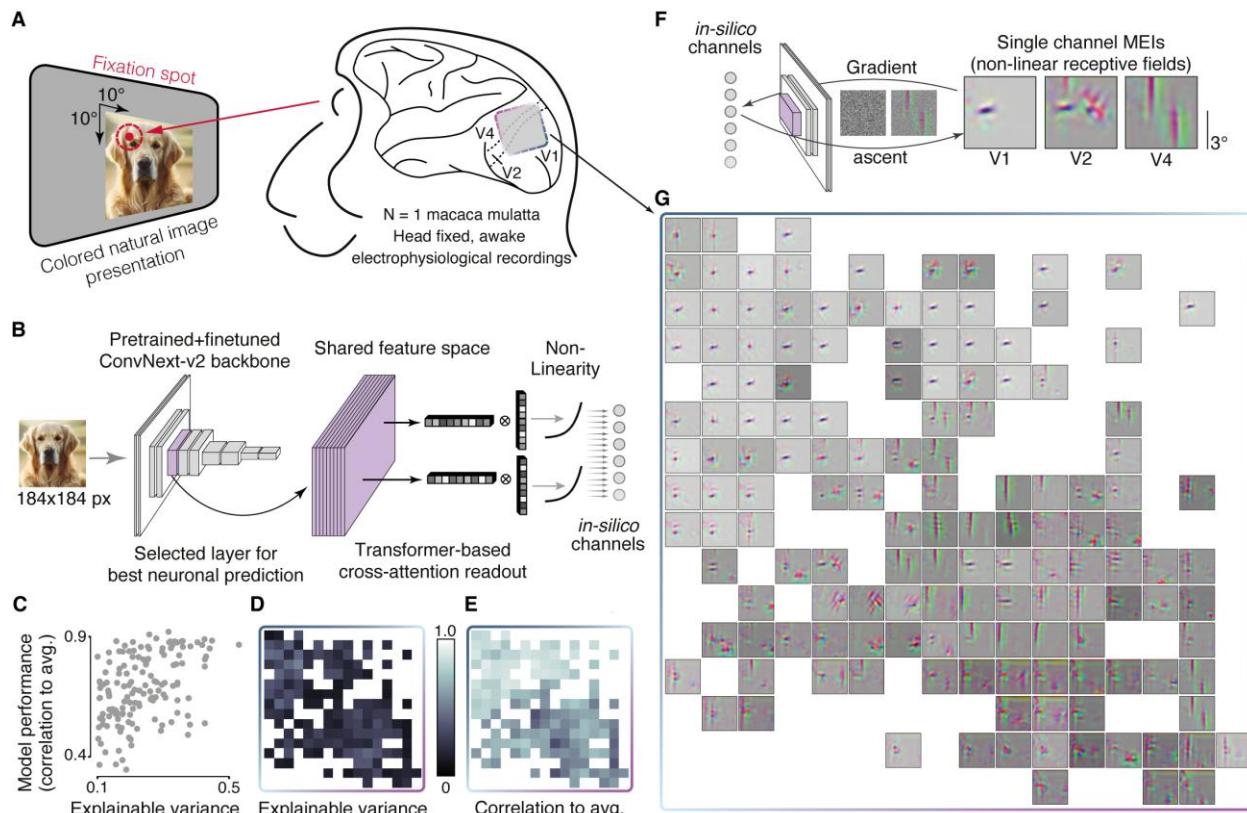
Fig. 5. BISC recordings over visual cortex with dot stimuli. (A) A trial in the dot mapping session. 40 random dots of either black or white color is shown in the area $[-1.5^\circ, 4.5^\circ] \times [0^\circ, 6^\circ]$ (horizontal \times vertical), each lasting 50 ms. (B) Filtered response of all non-saturated channels from a full chip recording session. We show their responses after removing Fourier components below


673

674


675

676


677 20 Hz and above 90 Hz for one trial. **(C)** Spatial-temporal receptive field (RF) of one example
678 channel. We filtered the response by a Morlet wavelet of which the central frequency is 64 Hz,
679 and computed the dot-triggered-average of signal power. Times are relative to dot onset and cross
680 symbol represents the fixation location. **(D)** Spatial RF of all non-saturated channels. Spatial RF
681 is computed by taking the temporal average of dot-triggered-average responses. **(E)** Chronic
682 stability of retinotopic maps. A 2D Gaussian fit is computed for the spatial RF of each channel
683 separately, and we take the fitted center as RF center. Channels with good Gaussian fit (fraction
684 of unexplained variance smaller than 0.8) are shown for recordings from day 36 and 62 after
685 surgery. **(F)** RF locations projected on cortical axes at Day 36, Days 41-48, and Day 62 after
686 surgery. We denoted the direction along which RF eccentricity changes fastest on the chip as ‘x’,
687 and the orthogonal direction as ‘y’. RF centers are plotted against the channel projections on ‘x’
688 and ‘y’ separately. Overall, the eccentricity changes roughly at the rate 0.17 visual degree per
689 millimeter. Across days, the receptive field changed by less-than-0.05-degree in eccentricity and
690 less-than-2.7-degree in angle on average for all channels for both dense (Days 41-48) and sparse
691 (Days 36 and 64), demonstrating the stability of BISC chronic recordings. **(G)** Zoom-in retinotopic
692 map for the upper-left quarter of the chip. We performed 16 dense recording sessions over 8 days,
693 with 1024 channels simultaneously recorded in each session.
694

696 **Figure 6. Spatially dense BISC recordings over visual cortex capture complex traveling wave**
697 **patterns that encode the locations of viewed dot stimuli. (A)** (i) The mean strength of traveling
698 waves at each of 16 dense recordings taken from subsets of the BISC array during the dot mapping
699 experiment. These 16 recordings are also presented in **Fig. 5G**; red line indicates the V1-V2
700 boundary identified from the retinotopic map. Recordings over V1 show higher wave-strength
701 compared to those over V2, consistent with the enhanced functional role of V1 compared to V2 in
702 processing simple visual features such as dot locations. (ii) Each dot stimulus location evokes a
703 distinct pattern of traveling waves. Traveling wave topographies captured by 1024-channel, dense
704 recordings taken from the top-left subset of the array shown in panel A(i) (red box), displayed for
705 each of five example dot locations. Traveling waves are estimated from the gradient of the phase
706 of oscillations in the gamma band (30-90 Hz) in the 40-90 ms interval relative to the dot onset,
707 with this interval chosen as it evokes the maximum neural response (**Fig. 5C**). Note the spatially
708 complex shape of the traveling waves, with even adjacent dots evoking spatially distinct patterns.
709 (B) Separation of the traveling wave patterns between different dot locations visualized using
710 Uniform Manifold Approximation and Projection (UMAP). Low-dimensional UMAP embeddings
711 are shown for four different channel resolutions as defined by average electrode pitch. Colors
712 indicate dot stimulus locations. Note that dot locations are clearly separated in UMAP space for
713 100% sampling. Separation decreases for spatial sampling at lower resolutions. Separability of dot
714 locations is quantified using the silhouette score, with higher scores reflecting greater separability
715 at higher spatial resolution (t-test, $t(527) = 5.71$, $p < 0.0001$). (C) Decoding dot locations from the
716 traveling waves at locations shown in (A) using a hybrid CNN-Transformer model. Predicted x-
717 and y-coordinates closely match true dot locations, as shown in the accuracy trace plots. (D) A
718 heatmap displays prediction accuracy for individual dot locations, illustrating decoding variability
719 across the visual field. Dots presented closer to the center of the visual field (dark red) exhibit
720 higher decoding accuracy, matching the receptive field maps. (E) Decoding accuracy as a function
721 of the spatial sampling of the BISC channels, showing the importance of the BISC chip's high-
722 density recordings for recording relevant spatially precise features of traveling waves (t-test,
723 $t(285)=2.6$, $p < 0.001$). Temporally shuffled controls confirm the temporal dependencies of these
724 high-resolution traveling waves, as temporal shuffling of the order between consecutive stimuli
725 reduces the prediction accuracy for individual dots (t-test, $t(219)=2.0$, $p < 0.05$). Error bars indicate
726 standard error of the mean across cross-validation folds.

Extended Data Fig. 1. Bench-top *in vitro* characterization of BISC implant. (A) Electrochemical impedance spectroscopy of titanium nitride electrode. (B) Frequency response across different gain configurations from a representative 16×16 recording. Note that gain is programmed through a single back-end amplifier that is shared by all pixels. Error bars indicate standard error (SE), and dashed rectangle marks the effects of boxcar sampling (flat band gains: 53.7 ± 0.20 , 57.2 ± 0.21 , 60.7 ± 0.20 , 64.2 ± 0.19 dB, values: mean \pm SD. $n = 255, 255, 245, 235$). (C) Histogram of channel gain variation for each recording mode (16×16 mode: $\pm 5.1\%$, 32×32 mode: $\pm 4.8\%$, values: SD. $n = 15, 163$ and $62,245$). (D) Frequency response across different high-pass (HP) filter configurations from a representative 16×16 recording. Error bars indicate SE (3-dB corner: 4.19 ± 2.28 , 13.30 ± 2.37 , 54.42 ± 1.98 Hz, values: mean \pm SD. $n = 244, 254, 256$). (E) Input-referred noise (IRN) spectrum averaged over representative pixels ($n = 10$) for each recording mode. (F) Histogram of channel IRN for each recording mode, integrated from 10 to 4 kHz (16×16 mode: 7.68 ± 3.11 , 32×32 mode: 16.51 ± 6.85 μ V_{RMS}, values: mean \pm SD. $n = 15, 163$ and $62,245$).

Extended Data Fig. 2. BISC recordings over visual cortex with natural images. (A) We presented static colored natural images, while the monkey was fixating (120 ms presentation time per image, 15 images per trial, 1200 ms inter-trial period). Images ($10^\circ \times 10^\circ$) were shown with their center 3° to the right and below the fixation spot. (B) Model architecture: The pre-processed stimuli (184×184 pixels) and neuronal responses were used to train a neural predictive model, which takes images as an input and outputs an estimate of the underlying neuronal activity. We passed the images through a ConvNext model, pre-trained on an image classification task to obtain image embeddings, i.e. a shared feature space. We then computed the neuronal responses by passing the feature activations to a transformer-based readout and a subsequent non-linearity. (C) Explainable variance, a measure of response reliability to natural images, plotted versus the model's predictive performance (correlation between prediction and average neural response to repeated presentations) of all 144 channels (explainable variance 0.24 ± 0.09 , and correlation to average 0.69 ± 0.14 . values: mean \pm SD). Only channels with an explainable variance greater than or equal to 0.1 are included in these analyses. (D) Visualization of the explainable variance as a function of channel position on the array (same spatial layout as in (D)). (E) Same as (D), but for the model's predictive performance (correlation to average). (F) Schematic illustrating optimization of most exciting images (MEIs). By optimizing a random starting image to elicit the highest activity in one in-silico channel, the visual features that this channel is selective for can be exemplified. Three example MEIs from areas V1, V2, and V4 are shown. (G) MEIs for all 144 channels across the array which reliably responded to repeated image presentations. MEIs in area V1 are characterized by oriented Gabor filters, while the channels overlying area V2 and V4 exhibit more complex color opponent feature tuning.

763

Methods

764

BISC Implant Design

765

The BISC implant (**Fig. S1**), a custom-designed application-specific integrated circuit (ASIC) measuring 12 mm by 12 mm, was manufactured by the Taiwan Semiconductor Manufacturing Company (TSMC) in a 0.13- μ m bipolar-CMOS-DMOS (BCD) process (**Fig. S1**). Post-processing steps, including thinning to 25 μ m, electrode processing, and passivation, were conducted both in-house in the semiconductor processing facilities at Columbia University on coupons and at 200-mm wafer scale at MIT Lincoln Laboratories as described below.

770

The implementation of the implant followed a custom mixed-signal design flow. The digital circuits, which include the logic of the on-chip controller, were designed as finite state machines in SystemVerilog hardware description language (HDL). The HDL was subsequently synthesized into gate-level description using a logic synthesizer (Genus, Cadence Design Systems) and place-and-routed using a physical implementation tool (Innovus, Cadence Design Systems) using TSMC 0.13- μ m-BCD standard-cell libraries. For analog circuits, schematic capture and layout tools (Virtuoso, Cadence Design Systems) were used for the circuit implementation. RF and microwave design tools (Ansys[®] Electronics Desktop, Ansys; PathWave Advanced Design System, Keysight Technologies) were used for power coil and antenna designs.

771

The BISC implant features 65,536 surface titanium nitride (TiN) electrodes in its 16384-pixel array. We provide a basic overview of the design here with more details provided in **Supplementary Discussion S1**. BISC allows programmable selection of 1024 or 256 simultaneously recording electrodes from any of its electrodes with a set of rules.

772

- Every group of two-by-two electrodes (a pixel) is connected to an underlying pixel amplifier.

773

Electrodes numbered from 1 to 65536 are connected to in-pixel amplifiers numbered from 1

786 to 16384 (sequentially from left to right and top to bottom). Electrodes 1, 2, 257, and 258 are
787 connected to pixel-amplifier 1, and electrodes 65279, 65280, 65535, and 65536 are connected
788 to pixel-amplifier 16384.

789 • A group of 16-by-16 in-pixel amplifiers can be used for each recording configuration. Both
790 vertical and horizontal spacing (stride) of amplifiers in that group can be programmed
791 individually from 0 to 7 pixel(s). For example, selecting a group with zero horizontal and
792 vertical spacing (the densest spatial configuration) at the array's top-left corner involves
793 amplifiers 1 to 16, 129 to 144, ..., and 1921 to 1936. In contrast, selecting a group with
794 maximum spacing (seven horizontal and vertical) results in a configuration with the highest
795 spatial coverage.

796 • Each electrode in a pixel can be either statically or dynamically multiplexed to the in-pixel
797 neural amplifier. In static multiplexing, 256 electrodes (1 per pixel) are simultaneously read
798 out at a sampling rate of 33.9 kS/s. In dynamic multiplexing, 1024 electrodes are read out
799 simultaneously at 8.475 kS/s.

800 Each electrode is a 14- μm -by-14- μm square. In the densest configuration, with center-to-center
801 electrode pitches at 26.5 μm by 29 μm , 32 \times 32 electrodes cover an area of 0.85 mm by 0.93 mm.
802 In contrast, the least dense configuration spaces the electrodes 424 μm by 464 μm apart, and 16 \times 16
803 electrodes cover an area of 6.4 mm by 7.0 mm.

804 The reference input for the in-pixel neural amplifiers can be connected either to column-wise
805 reference electrodes or to a global counter electrode; the latter acts as the ground reference
806 potential for the chip. No significant differences were observed between these two schemes in our
807 comparative evaluations. Consequently, the counter-electrode reference configuration was
808 employed for all experiments conducted.

809

810 The in-pixel amplifiers are designed as chopped integrators, with their inputs biased by transistors
811 in the weak-inversion region at the input. To avoid space-consuming DC blocking capacitors, the
812 electrical double layer formed at the TiN electrodes is used as an implicit DC block. The pixel-
813 amplifier inputs are biased to 0 V (ground) during operation. Chopping in the in-pixel amplifiers
814 is used to reject intrinsic voltage offset and $1/f$ noise. The pixel amplifier outputs are multiplexed
815 into a single two-stage programmable gain amplifier. The total voltage gain of the system can be
816 programmed from 484 to 1620 V/V and high-pass corner can be programmed from 4 to 55 Hz.
817 The low-pass corner of the system is 15 kHz. The outputs of the programmable gain amplifier are
818 subsequently digitized by an 8.68 MS/s, interleaved 10-bit successive-approximation-register
819 (SAR) analog-to-digital converter (ADC). When recording from 256 channels, the BISC implant
820 has an input-referred noise of less than $5 \mu\text{V}_{\text{RMS}}$ across the frequency range of 10 Hz to 1 kHz and
821 $10 \mu\text{V}_{\text{RMS}}$ from 0.3 Hz to 10 kHz. When recording from 1024 channels, the input-referred noise is
822 less than $8 \mu\text{V}_{\text{RMS}}$ from 4 Hz to 1 kHz.

823 The implant also allows stimulation current driven from any group of electrodes with a set of rules.

824

- Stimulation can be driven from a minimum of one two-by-two electrode group (a pixel), up to
825 the full array of 65,536 electrodes, acting as a macroelectrode.

826

- For monopolar stimulation, any combination of macroelectrodes can be used to drive current
827 at a given time.

828

- For bipolar stimulation, macroelectrodes electrodes can be used to drive current either in-phase
829 or out of-phase. Macroelectrodes driving opposite phases must have equal widths and have the
830 same horizontal addresses, but their heights can be individually programmed.

831 The temporal profile for stimulation has three phases. The first two phases are anodic or cathodic,
832 generating currents from two on-chip regulated current sources. During these phases, switches that
833 connect the stimulation electrode to the corresponding current source are activated, allowing the
834 current to flow from the source to the electrodes. Both anodic and cathodic current have the same
835 amplitude which is programmable from $10\ \mu\text{A}$ to $1.02\ \text{mA}$. The third phase is for charge balancing,
836 in which the electrodes used for stimulation are grounded to ensure no accumulated charge on the
837 electrodes. The duration of all three phases can be independently programmed from 0 to $350\ \mu\text{s}$.
838 The compliance voltages of the anodic and cathodic current sources are $\pm 1.4\ \text{V}$.

839 The BISC implant has a wireless transceiver with an on-chip slot monopole antenna, enabling
840 wireless communication with the relay station. It operates as an ultra-wideband impulse radio,
841 encoding digital data in short “bursts” of a 4-GHz sine wave. In this encoding scheme, a data “1”
842 is represented by a burst, while a data “0” is the absence of a burst. The transceiver occupies up to
843 700 MHz of bandwidth in the unlicensed ultra-wideband frequency band and can support uplink
844 data rates of 108.48 Mbps and downlink data rates of 54.24 Mbps. To allow full duplex
845 communication using a single antenna, transmitting and receiving are time-division multiplexed
846 for every bit. This allows us to control the timing precisely to stop a recording while the implant
847 still transmits data to the relay station.

848 The implant features wireless power transfer that allows harvesting more than 64 mW from the
849 integrated power coil through inductive resonance coupling. The AC power received on the
850 powering coil is first rectified by an active rectifier and then regulated by regulators to support
851 three 1.5-V power domains and one -1.5-V power domain.

852 **Relay Station Design**

853 The relay station (**Fig. S2**) interfaces the BISC implant to a host computer, while providing
854 wireless power to the implant, sending commands to control the implant's behavior, collecting
855 recorded data, and relaying everything to the host computer over wired or wireless Ethernet. The
856 relay station has two parts: the headstage, where the wireless transceiver and power amplifier
857 reside, and a processor module, upon which a Xilinx Zynq processor and logic translators reside.

858 The headstage is a wearable device (75 × 75 × 45 mm, 151 g) prototyped using off-the-shelf
859 components and printed circuit boards. It establishes wireless communication with the BISC
860 implant and supplies power to the implant through an integrated wireless transceiver and power
861 amplifier. The headstage is connected to the processor module, which contains an FPGA
862 (Snickerdoodle Black, Krtkl), with a standard HDMI cable which can be up to 5 m in length. The
863 HDMI cable sends 12-V DC power to the power regulators on the headstage, delivering up to 1.2
864 A. The wireless transceiver on the headstage transmits high-speed digital data up to 108.48 Mbps
865 using LVPECL over the differential twisted pairs on the HDMI cable to the processor board. A
866 microcontroller (Teensy 4.1, PJRC) integrated on the headstage configures the wireless transceiver
867 and the power amplifier. Communication between the microcontroller and the processor board is
868 achieved using a two-wire UART protocol through the HDMI cable.

869 The BISC headstage is assembled from four separate printed circuit boards. The arrangement of
870 the boards, from the bottom (facing implant) to the top, is as follows:

871 • *UWB circular dipole antenna board.* A dipole antenna is printed on a 0.2-mm-thick, single-
872 layer FR-4 substrate. It is co-designed with the powering coil to optimize the bandwidth and
873 radiation efficiency. The antenna board connects to the transceiver board with an in-series SMP
874 adapter (19K104-K00L5, Rosenberger Group). A balun (BD3150N50100AHF, Anaren) is

875 installed on this board to convert singled-ended RF signal from the SMP adapter to differential
876 signal for the dipole.

877 • Power coil board. The power transmitting coil is a planar, square spiral, printed on a 1.6 mm
878 thick, two-layer FR-4 substrate. It is fabricated with a 13 oz (0.455 mm) thick copper to
879 implement a high-Q inductance for enhanced efficiency and minimal heat loss. The coil has an
880 outer diameter of 3.6 cm and an inner diameter of 2.5 cm to allow clearance for the UWB
881 dipole antenna. The coil has lumped impedance equivalent to 885 nH and 1.1 Ω with a self-
882 resonance frequency well beyond (> 70 MHz) the link frequency. Measured linked efficiency
883 is -10.5 dB at 1.5 cm distance, assuming an ideal conjugate matched driving source and a 75
884 Ω load at the receiver side which is equivalent to the overall circuit load. The coil is terminated
885 with an edge-launch SMA connector and is driven by the power amplifier board via a short (75
886 mm) SMA cable.

887 • Transceiver board. The transceiver board is a 1.6-mm-thick four-layer printed circuit board.
888 Rogers RO4003C is used as the top prepreg to allow good impedance matching and reduce
889 power loss, while FR-4 is used as the core and bottom prepreg to lower the cost. Components
890 installed on the transceiver board are for transmitting and receiving UWB pulses. The SMP
891 connector to the antenna board, receiving chain, and transmitting chain are connected through
892 a RF switch (HMC8038, Analog Devices). In the receiving chain, the RF signal first passes
893 through a digitally controlled attenuator (HMC540SLP3E, Analog Devices) to prevent
894 electromagnetic interference saturating the amplifiers. Subsequently, the signal is amplified 60
895 dB using two low noise amplifiers (CMD308P4, Qorvo) in series and filtered by a band-pass
896 filter (B040MB5S, Knowles). An envelope detector (ADL6012, Analog Devices) then extracts
897 the envelope of the incoming signal, followed by a threshold detector comprising two
898 operational amplifiers (THS4304, Texas Instruments) and a comparator (TLV3604, Texas

899 Instruments). The threshold detected signal becomes a digital short pulse if the implant is
900 transmitting a “1” or stays constant if transmitting “0”. Multipath fading or reflection in the
901 transmitting path can cause spurious pulses to be detected by the threshold detector. This issue
902 is resolved using a self-resetting edge detector, which waits for 6 ns between detections to
903 allow echoes to decay and resets the outputs after each detection. The edge detector is built
904 from a LVPECL buffer (SY89327L, Microchip Technology), a D-flip flop (SY10EP51VMG,
905 Microchip Technology), and a comparator (TLV3601, Texas Instruments). The final output
906 from the edge detector is fed into a divide-by-2 divider (MC100EP32, Onsemi), converting the
907 digital pulses into a non-return-to-zero data stream. This stream is then sent over the HDMI
908 cable (RX) and sampled by the FPGA, and the original data is reconstructed by XORing the
909 current and previous received bits. In the transmitting chain, a frequency synthesizer
910 (ADF4351, Analog Devices) is used to generate the 4 GHz sine wave bursts. To transmit data
911 “1”, the processor board sends a logic high through the HDMI cable (TX), and the RF output
912 from the synthesizer is activated, driving the dipole antenna via the RF switch. The reference
913 clock of the synthesizer and control signal for the RF switch are also sent over the HDMI cable
914 (CLK, TR) by the processor board. Additionally, this board houses the microcontroller which
915 controls the attenuator and the reference voltage of the threshold detector. DC power, reference
916 clock and other control signals are passed to the power amplifier board via a board-to-board
917 connector.

918 • Power amplifier board. The power amplifier board implements a class-E amplifier to drive the
919 power coil at 13.56 MHz. The amplifier uses a single-ended gallium nitride (GaN) transistor
920 (EPC2051, Efficient Power Conversion) as the active switch, loaded with a standard matching
921 network ⁸² that shapes the impedance of the coil. In an inductively coupled system, link
922 efficiency and tuning of its resonant frequency depend on a number of dynamic variables such

923 as the coil-to-coil alignment, electromagnetic properties of the environment, operating mode
924 of the implant etc. To compensate for these variables in real time, the board employs two
925 feedback mechanisms to keep the link operating at its optimum. First, it controls the radiation
926 magnitude by periodically reading out the level of power received by the implant and adjusting
927 the supply voltage of the class-E amplifier through an I2C configurable regulator (TPS65400,
928 Texas Instruments). Second, it prevents de-tuning of the resonance by adjusting the series
929 capacitance of the load network using a reconfigurable capacitor bank ⁸³. By monitoring the
930 current consumed by the class-E amplifier under different load conditions, the 4-bit (1pF LSB)
931 bank is configured to keep the link resonance stable at 13.56 MHz.

932 The processor module runs both firmware and the Linux operating system on the FPGA and ARM
933 processor of a Zynq-7020 SoC. We designed application programming interfaces using Python
934 programming language and Xilinx PYNQ libraries. Our Python software running on Linux
935 (Ubuntu 18.04) provides methods to fully control the BISC implant, stream the recording data over
936 ethernet or store it on the secure digital (SD) card, and control the microcontroller on the BISC
937 headstage.

938 The BISC headstage and processor module presently only work with one implant at a time.
939 However, multiple devices can be implanted if a spacing of at least 5 mm is maintained between
940 devices. In this scheme, an implant would be selectively powered up by positioning the headstage
941 over it.

942 **BISC implant post-processing**

943 Coupon processing. A coupon consisting of four reticles (16 total die) was scribed out from the
944 original 300-mm BISC wafer from TSMC using a diamond scribe. **Fig. S3** shows a schematic of
945 the process flow through a cross-section of the microelectrode array (MEA) region. A layer of

946 photoresist (AZ P4620, MicroChemicals) was spin coated onto the coupon at 3000 rpm, exposed
947 on a contact mask aligner (MA-6, Karl Suss), and then developed (AZ 400K, MicroChemicals).
948 Etching the silicon oxide and nitride layers with a plasma etcher (Oxford Instruments) exposed the
949 Al redistribution layer (RDL) at the electrode sites. The RDL was wet etched in Al etchant (Type
950 A, Transene) to expose the underlying Ta diffusion barrier layer over the redistribution via (RV)
951 layer. A brief Ar ion sputter to remove the Ta oxide layer was followed by sputtering in the same
952 vacuum chamber (Orion 8 Dielectric Sputter Chamber, AJA International) of a 240 nm layer of
953 titanium nitride (TiN; 120 min, 0.33 Å/s, 20 sccm Ar, 3 mTorr, 175W) from a TiN target onto the
954 Ta, and the resist was lifted off in photoresist remover (Remover PG, Kayaku).

955 TiN was chosen as the electrode material due to its biocompatibility, its rough surface morphology
956 providing a reduction in impedance ($Z = 205 \text{ k}\Omega$ at 1 kHz for a $14 \mu\text{m} \times 14 \mu\text{m}$ electrode) compared
957 to a smooth electrode material such as gold ($Z = 3.1 \text{ M}\Omega$ at 1 kHz for a $14 \mu\text{m} \times 14 \mu\text{m}$ electrode),
958 its strong adhesion for chronic implantation and stimulation, its compatibility with CMOS
959 processing, and its capacitive non-Faradaic current properties ⁸⁴. Characterization results of the
960 BISC TiN electrodes are shown in **Fig. S4**.

961 After electrode fabrication, a 2.5-μm-thick polyimide encapsulation layer (PI2610, HD
962 Microsystems) was spin coated onto the front surface after functionalizing the surface with an
963 adhesion promoter (VM652, HD Microsystems) and cured at 350 °C for 30 min. The TiN
964 electrodes were exposed using oxygen plasma etching (Oxford Instruments). After a brief Ar ion
965 clean, a second 360 nm TiN layer was sputtered on top of the first TiN layer using the same
966 deposition parameters, and the AZ P4620 mask was lifted off in Remover PG. The die were then
967 separated with a dicing saw (DISCO Corporation) and bonded frontside down on a glass carrier
968 using an instant adhesive (Loctite® 460, Henkel) for thinning on a grinding and polishing tool (X-
969 Prep®, Allied High Tech) to a final silicon substrate thickness of ~25 μm. Chips were then loaded

970 into a parylene coating chamber (Specialty Coating Systems) to encapsulate the backside with 10
971 μm of parylene C. The parylene was trimmed along the edge to leave about a 1 mm overhang for
972 handling and the chip was released from the glass carrier by dissolving the adhesive in acetone.

973 **Wafer-scale processing.** Whole 8" wafers can be processed in a similar way to individual reticles
974 starting with TiN electrode fabrication and polyimide front surface encapsulation. Assuming the
975 entire wafer is dedicated to BISC chips, a single wafer yields up to 200 fully contained devices
976 ready for sterilization and implantation (**Fig. S5**).

977 During mechanical thinning, grinding induced defects are introduced into the silicon which can
978 serve as nucleation sites for bending induced fracture growth and device failure. Extensive
979 polishing is needed to remove these defects. With this in mind, for the wafer scale thinning process,
980 we developed a wet etch thinning technique using an isotropic silicon wet etch consisting of
981 hydrofluoric, nitric, and acetic (HNA) acids. The device wafer was bonded to a silicon carrier
982 wafer using an organic adhesive (WaferBond[®] HT-10.11, Brewer Science). The wafer edges were
983 clamped using an O-ring seal, and the wafer surface was covered in etchant which was stirred and
984 maintained at room temperature to give a uniform etch rate of 4.28 $\mu\text{m}/\text{min}$ across the wafer. The
985 remaining silicon thickness was monitored during etching, and the wafer was removed and rinsed
986 in DI water once this value reached 25 μm .

987 The chips were carefully aligned using features visible through the thinned backside of the wafer
988 and singulated by laser dicing (DISCO Corporation) through the thinned wafer with 100- μm -wide
989 dicing lanes, stopping within the WaferBond adhesive layer. A 10- μm -thick film of parylene C
990 was deposited onto the backside of the wafer in a room temperature chamber (Specialty Coating
991 Systems) using an adhesion promoter (Silane A174, Sigma-Aldrich). The wafer was then loaded
992 into an excimer laser dicing tool (IPG Photonics) and was aligned as before. The parylene within

993 the dicing lanes was laser cut with a dicing width of 60 μm to leave a 20 μm overhang of parylene
994 along the chip edges. The wafer was then submerged in WaferBond remover (1-dodecene, Brewer
995 Science) to dissolve the underlying adhesive. The individual chips were collected and rinsed in
996 acetone and isopropanol and dried with nitrogen.

997 **Mechanical flexibility of implanted devices.**

998 To render BISC chips compatible with *in vivo* implantation (i.e., skull closure with minimal tissue
999 damage and displacement and maximal conformability), we removed the bulk of the rigid silicon
1000 substrate to reduce volume and achieve sufficient mechanical flexibility. Any desired thickness of
1001 silicon can be removed using the mechanical or wet etch thinning processes described here. We
1002 identified a 10- μm thickness limit based on the depth of an n-type buried layer in the CMOS
1003 process. In the case of mechanical thinning, consideration must be made for grinding induced
1004 subsurface damage. We found that \sim 25 μm was a safe stopping point to guarantee chip
1005 functionality while also providing sufficient flexibility, while the 15 μm thickness was achievable
1006 with wet etching.

1007 Device mechanical stiffness. The final implanted device is a thin plate comprising a multi-material
1008 stack of polyimide, metal interconnects and vias surrounded by interlayer dielectrics (BEOL), the
1009 silicon substrate, and finally a parylene backing layer. By summing the stiffnesses of each of the
1010 four layers, we can estimate a total device bending stiffness of \sim 130 $\mu\text{N}\cdot\text{m}$ according to:

$$1011 B_{total} = \sum_{i=1}^4 \frac{E_i t_i^3}{12(1 - \vartheta_i^2)}$$

1012 where E is Young's modulus, t is the layer thickness, and ϑ is Poisson's ratio ^{85,86}.

1014 By encapsulating our device in polyimide and parylene, we reduce the material stiffness mismatch
1015 between the device surface and the surrounding tissue. The main implication of reduced *device-*
1016 *scale* stiffness which we achieve from die thinning lies in device tissue conformability (see
1017 discussion below). Reduction in tissue damage along the device edges (see histological results),
1018 may also be aided by reduced device stiffness.

1019 Device conformability to cortex. Three regimes can be considered to understand what happens
1020 mechanically to BISC upon implantation. These regimes depend on the relative magnitudes of the
1021 curvature of the cortex (r_{cortex}) and the elasto-capillary length (L_{EC}) of the device. We model the
1022 BISC implant as a flexible device with hydrophilic surface and no built-in stress, wrapping around
1023 a cylinder with water as the wetting liquid (surface tension, $\gamma = 72$ mN/m). Through equating
1024 surface energy reduction with bending energy increase, we find that L_{EC} is given by:

$$1025 \quad L_{EC} = \sqrt{\frac{B}{\gamma}}$$

1026 where B is the bending stiffness. The radius, r_{min} , below which spontaneous wrapping does not
1027 occur is given by:

$$1028 \quad r_{min} = \frac{L_{EC}}{\sqrt{2}}$$

1029 Regime 1 ($L_{EC} < r_{cortex}$). In this regime, the device spontaneously conforms to the cortical surface
1030 driven by capillary forces. Take for example a 5-μm-thick parylene device for which B equals
1031 ~0.035 μN·m, giving $L_{EC} = 0.7$ mm and $r_{min} = 0.5$ mm. In this case, the device conforms to even
1032 the smallest features such as sulci in the cortex, with curvatures down to ~1 mm.

1033

1034 Regime 2 ($L_{EC} > r_{cortex}$). In this regime, the device does not spontaneously bend to conform to the
1035 cortical surface. In the limit of zero flexibility, the device may be pushed into the compliant tissue
1036 by an outside force, e.g., skull reattachment, potentially leading to significant tissue damage
1037 especially as device volume increases.

1038 Regime 3 ($L_{EC} \approx r_{cortex}$). This regime represents the BISC devices ($L_{EC} \approx 40$ mm, $r_{min} \approx 30$ mm)
1039 in the brain regions studied in this paper ($r_{cortex} \approx 30$ mm). As a demonstration of BISC
1040 conformability, **Fig. S6A** shows a BISC chip spontaneously wrapping around a glass beaker with
1041 a radius of curvature of 30 mm with water as the wetting liquid. Importantly, this natural
1042 conformability indicates that outside mechanical forces are not needed to push down the BISC device
1043 to make it conform to the cortical surface.

1044 Bending induced fracture. Due to the nature of its atomic bonding, silicon is inherently prone to
1045 brittle fracture. For ideal silicon samples with minimal defects, the maximum sustainable bending
1046 strain (ε_{max}) is $\sim 1\%$ ⁸⁷. The strain in a material bent under uniaxial stress applied to a radius of
1047 curvature r is given by

$$1048 \varepsilon = \frac{d}{r}$$

1049 where d is the distance between the neutral plane and the plane of interest⁸⁸. Setting $\varepsilon = \varepsilon_{max}$ and
1050 taking d equal to the distance of maximum strain furthest away from the neutral plane in a slab of
1051 thickness t , i.e., $d = t/2$, we can calculate the smallest achievable radius of curvature $r = r_{fracture}$
1052 for an ideal silicon sample via

$$1053 \varepsilon_{max} = \frac{t}{2 \cdot r_{fracture}}.$$

1054 For a multimaterial stack, d should be taken as the distance from the neutral plane where strain is
1055 zero. For the BISC device, denoting $h = 0$ as the top of the polyimide on the front surface of the
1056 device, we can estimate the neutral plane position assuming zero slip and no debonding between
1057 adjacent layers to be at $h = 20 \mu\text{m}$, which is $5 \mu\text{m}$ into the silicon layer⁸⁹. This produces asymmetry
1058 in the mechanical stability of the device under opposing bending directions, since the silicon is
1059 more likely to fracture under tension than compression. When the parylene is under tension,
1060 $r_{fracture}$ is calculated to be 1.5 mm, while when the polyimide is under tension, the value is 0.5
1061 mm.

1062 The maximal bending strain can be greatly reduced by defects in the sample and depends on the
1063 details of device processing. The effect of defects on device fracture is typically quantified using
1064 Weibull distribution⁹⁰. For our process, curvatures as small as 10 mm $r_{fracture}$ are achievable (Fig.
1065 **S6B**). However, such small radii of curvature should not normally be encountered during or after
1066 implantation (see section above on conformability); once implanted, the device is not subject to
1067 any macroscopic bending lengths that would result in fracture. This is consistent with our
1068 experiments, which have never witnessed a fracture mode failure *in vivo*. Handling during
1069 implantation is the only point at which fracture could occur. However, surgical procedures allowed
1070 for consistent implantation without requiring the device to be bent beyond the minimal radius of
1071 curvature.

1072 **Porcine somatosensory cortex recording experimental procedure**

1073 All porcine experiments were performed in compliance with the National Institutes of Health
1074 Guide for the Care and Use of Laboratory Animals and were approved by the Columbia University
1075 Institutional Animal Care and Use Committee (protocol AC-AABQ0559).

1076

1077 Surgical procedures. The BISC implant chips and all surgical tools were sterilized with ethylene
1078 oxide (EtO) prior to implantation. The surgical incision and craniotomy were customized to the
1079 number of devices and implant target. For the porcine model sensorimotor cortex experiment, two
1080 BISC devices were implanted over sensorimotor cortex of each hemisphere of a female Yorkshire
1081 pig (18 weeks old, 23.9 kg). The procedure was performed under general anesthesia. For placement
1082 of bilateral devices, a 5-cm curvilinear bicoronal incision was planned just rostral to the anatomic
1083 sensorimotor cortex. The incision was injected with 2% lidocaine, incised sharply and the scalp
1084 reflected posteriorly. Following hemostasis, a bifrontal craniotomy was performed. Burr holes
1085 were placed with slotting over relevant venous structures and connected with a cutting drill. Then,
1086 the bifrontal craniotomy bone flap was elevated, and epidural hemostasis was obtained. For each
1087 BISC chip, the dura was tented and a coronally oriented 15 mm linear incision was made to allow
1088 access to the subdural space. A commercial four-contact subdural strip electrode (PMT Cortac®
1089 2110-04-032, PMT® Corporation) was used in conjunction with commercial EEG acquisition
1090 equipment (XLTEK Protektor32, Natus Neuro) and peripheral subdermal needle electrodes to
1091 identify the location of somatosensory cortex ⁵⁵. The same strip was used as a shuttle to slide our
1092 implant, from rostral to caudal in the subdural space targeting the cortical location of maximal
1093 somatosensory evoked potential (SSEP) response (Fig. S7). The relay station was then draped and
1094 brought into the sterile field to test the device prior to dural closure. Once recording and stimulation
1095 function were confirmed, the dura was reapproximated and closed in watertight fashion with 4-0
1096 Nurolon sutures. The craniotomy bone flap was microplated back into place with the nonmetallic
1097 cranial fixation system (Delta Resorbable Implant System, Stryker). The galea was closed with 3-
1098 0 Vicryl sutures and the skin with 3-0 nylons and surgical glue. The animal was recovered under
1099 veterinary observation.

1100

1101 SSEP recording. Two weeks after the implant, SSEP was recorded from the subject (28.5 kg) under
1102 stable anesthesia. Drug dosages of $17.5 - 28.1 \mu\text{g}\cdot\text{kg}^{-1}\cdot\text{h}^{-1}$ Fentanyl, $4.9 \text{ mg}\cdot\text{kg}^{-1}\cdot\text{h}^{-1}$ Ketamine, 1.6
1103 $- 2.6 \mu\text{g}\cdot\text{kg}^{-1}\cdot\text{h}^{-1}$ Dexmedetomidine were administered. The choice of drug was influenced by the
1104 subject's allergic reaction to Propofol.

1105 Subdermal needle electrodes (RLSND110-1.5, Rhythmlink[®]) were used in conjunction with a
1106 commercial stimulator (XLTEK Protektor32, Natus Neuro) to deliver electrical stimulation.
1107 Needles were placed on median nerve and four different snout locations (**Fig. 3A**) with local
1108 reference pairing on the contralateral side of the implant. To invoke SSEP, we used a train of
1109 anodic pulses continuously running at 2.79 Hz with pulse width of 0.3 ms. Stimulation amplitude
1110 was gradually increased with increments of 0.5 mA until distinct twitching responses were
1111 observed (**Fig. S8B**). For each location, we collected approximately 200 SSEP trials, where a trial
1112 refers to the delivery of each anodic pulse. Recording configuration used 16×16 channels spatially
1113 programmed in the sparsest recording mode, minimum programmable gain amplifier (PGA) gain
1114 of 53.7 dB, and high-pass filter cut-off of 13 Hz.

1115 Histology. Five weeks after the implant, we extracted the brain post-mortem for histological
1116 analysis. Coronal sections were taken from under the BISC electrode, near the rostral edge of the
1117 implant where there was gross evidence of a mechanically induced injury, and from the ipsilateral
1118 occipital lobe as a control. Sections were stained with three different markers: hematoxylin & eosin
1119 (H&E, H: NC2072425, Fisher. E: 6766008, Fisher), NeuN (MAB377, Millipore), and Iba1
1120 (NB100-1028, Novus Biologicals) (**Fig. S9**). Although a small lesion was found near the rostral
1121 edge of our implant indicative of a mechanically induced placement injury, tissue section from
1122 directly under the electrode array showed no significant pathological change except for a mild
1123 microgliosis.

1124

Porcine somatosensory cortex recording data analysis

1125

Data pre-processing. Non-functioning recording channels were identified from the baseline recordings that were taken without running any electrical stimulation. They were identified by labeling channels whose waveform root mean square (RMS) values are below a heuristic threshold of 1.7-bits after low-pass filtering (300 Hz, eight-order zero-phase Butterworth) or whose waveforms remained consistently saturated throughout the recordings. The BISC 10-bit ADC has an output range of [0, 1023]. For porcine SSEP data analysis, we defined the non-saturated code range for the BISC ADC as [3, 1020] with any data point outside of this range considered saturated. By this means, 25 out of 256 channels were labeled as either dead or saturated and were eliminated from further analysis.

1134

For preprocessing, recordings were first divided into 500 ms segments for each SSEP trial centered on the time of stimulus delivery (from -250 to 250 ms with the stimulation at $t = 0$) and were linearly detrended. For each trial, a channel recording was marked as invalid if its segmented waveform contained one or more saturated data points with invalid segments discarded from further analysis. Common average referencing was applied by re-referencing against the mean of 10 channels with the lowest average RMS activity across the five different stimulation locations. Recordings from these 10 channels remained consistently non-saturated throughout the experiment.

1142

For synchronization between the commercial stimulator and the BISC system, the stimulator was programmed to deliver a 0.3-ms wide electrical pulse to the BISC relay station 55 ms after each peripheral stimulation. Offline analysis, however, revealed that electromagnetic radiation from these pulses were recorded as significant artifacts affecting segments from 50 to 100 ms. For visualization purposes, these artifacts were removed by taking singular value decomposition of

1147 recording segments from 50 to 100 ms and then removing a heuristically chosen number ($n = 15$)
1148 of principal component time series from the original data. This artifact removal, however, only
1149 affects the plot visualization in Fig. 3C and Fig. S8C. It does not affect any other visualization or
1150 analysis presented in this paper, as they do not utilize recording segments beyond 50 ms. As the
1151 last pre-processing step, all valid segments were downsampled to 2.11kS/s with anti-aliasing
1152 filtering with the mean of baseline window (from -50 to -5 ms) then subtracted.

1153 **SSEP visualization and analysis.** Time-domain SSEP waveforms from 0 to 50 ms (**Fig. 3B, Fig.**
1154 **S8A**) were plotted by averaging the channel recordings over 100 trials with channels with fewer
1155 than 100 trials excluded from this analysis. Waterfall plots (**Fig. 3C, Fig. S8C**) are a different
1156 representation of the same trial- averaged data ($n = 100$), linearly detrended and aligned to the
1157 shared time axis from -50 to 100 ms. They were generated by arranging the mean channel
1158 responses sorted by their peak amplitudes inside the SSEP window, defined to be from +5 to +45
1159 ms. The peak amplitudes here are either positive or negative extrema, whichever is higher in
1160 absolute magnitude. Colored spatial maps (**Fig. 3D**) show the peak response of each channel inside
1161 the SSEP window, after normalizing by the overall peak response of the array. Frame-by-frame
1162 temporal dynamics of these spatial maps are provided as a movie (**Video S1**).

1163 For further analysis, only channels ($n = 158$) that remained consistently non-saturated throughout
1164 the experiment were considered. 100 valid trial recordings from each stimulation location were
1165 first z-scored. Then, their lower-dimensional features were extracted through principal component
1166 analysis (PCA), taking only components that cumulatively explain 80% of the variance. These
1167 features were further reduced to two-dimensional space (**Fig. 3E**) by applying t-distributed
1168 stochastic neighbor embedding (t-SNE; Barnes-Hut method, perplexity = 30). The same features
1169 were used to train a classifier using linear discriminant model (LDA; singular value decomposition

1170 method) with stratified 10-fold cross validation (**Fig. 3F**). All analyses in this section used Python
1171 v3.10.0, numpy v1.23.5, scipy v1.10.0, and scikit-learn v1.2.1.

1172 **NHP motor cortex recording experimental procedure**

1173 All NHP motor cortex experiments were performed in compliance with the National Institutes of
1174 Health Guide for the Care and Use of Laboratory Animals, and were approved by the University
1175 of Pennsylvania Institutional Animal Care and Use Committee (protocol 807341).

1176 BISC device was attached to the artificial skull referred to as the BrainPort (**Fig. 4B**) using clear
1177 epoxy (Loctite® EA M-31 CL, Henkel) and was EtO sterilized after curing. Registration of the
1178 device (**Fig. 4C**) was determined by comparing the ground truth images of the BrainPort over the
1179 cranial window, before and after the device attachment.

1180 During behavioral tasks, our NHP subject, a male rhesus macaque (*Macaca mulatta*, 11 years old,
1181 13 kg) was seated in a primate chair with its head motion restricted but otherwise free to move. It
1182 was trained to reach and grab the target using its right arm which was contralateral to the device
1183 placement. The target in our experiment was a wooden stick referred to as the wand, manually
1184 held near the full reach distance of the subject. Post-experiment, we discovered that there may
1185 have been too little variation in the wand position. As a consequence, the subject's normalized
1186 wrist velocities in y (front-back) and z-direction (up-down) were found to be highly correlated
1187 (Pearson $r = 0.96$). It may also be the reason that our feature decoder does not perform well in x-
1188 direction (left-right), as the wand was consistently presented in proximity of the median plane of
1189 the subject.

1190 The reaching tasks were asynchronous and did not require an explicit cue, and the subject received
1191 food rewards for correct behaviors. Experiment was broken down into multiple sessions with rests
1192 between them, with each recording session lasting up to two minutes. Because the subject was not

1193 water restricted, it did not engage in tasks most of the time, resulting in 44 clean reaches over
1194 aggregate duration of approximately six minutes.

1195 Three machine vision cameras filmed the experiment from three different angles. An open source
1196 deep learning framework, DeepLabCut⁹¹, was used to label the wrist position of the subject at 60
1197 Hz frame rate.

1198 **NHP motor cortex recording data analysis**

1199 *Data pre-processing.* Position tracking was lost at times when the subject's wrist moved out of the
1200 camera field-of-view, particularly when the arm was retracted beneath the metal plate of the
1201 primate chair. Short time gaps (< 0.5 s) in the position data were linearly interpolated, and the
1202 resulting data was smoothed using a moving average filter with 200-ms window. Remaining gaps
1203 were categorized into medium (< 2 s) and long (> 2 s) gaps, where medium gaps were interpolated
1204 using cubic spline function and long gaps were linearly interpolated. To extract velocity,
1205 derivatives of this data were taken and then smoothed again using a moving average filter with
1206 200-ms window. Finally, the resulting wrist velocity in each dimension was upsampled to 200 Hz
1207 and then normalized by dividing by its standard deviation.

1208 Throughout the experiment, BISC recordings were taken from 16×16 channels spatially
1209 programmed in the sparsest mode that covers the whole array, each channel sampled at 33.9 kS/s,
1210 with gain of 53.7 dB, and high-pass filter cutoff frequency of 13 Hz. For motor data analysis, we
1211 defined the non-saturated range as [3, 1020] out of the full ADC code range of [0, 1023]. For each
1212 session, a channel is considered non-saturated if less than 1% of data points are saturated.

1213 Time points with packet losses were filled in by time domain linear interpolation, up to 11
1214 consecutive samples (< 0.33 ms). Short segments up to three consecutive saturated samples (<
1215 0.09 ms) were also linearly interpolated. Then, saturated channels were spatially imputed by taking

1216 the average of non-saturated channels in their immediate vicinity (Euclidean distance = 1) only if
1217 more than one non-saturated neighboring channels existed. The resulting data was band-pass
1218 filtered (0.3 – 300 Hz) with an eighth order zero-phase Butterworth filter and downsampled to 2.12
1219 kS/s. Across sessions, an average of 15.0 ± 4.58 standard-deviation (SD) channel recordings were
1220 recovered through spatial imputing. Unrecovered saturated channels (45.8 ± 13.1 SD) were
1221 visualized as carrying all-zero data (**Fig. 4H**) and excluded from further analysis.

1222 Unlike our other *in vivo* experiments, our motor cortex recordings contained significant
1223 hemodynamic artefacts, with a dominant frequency around 3 Hz and its harmonics. To remove
1224 this rhythm, the downsampled recordings were band-pass filtered in the frequency range of
1225 hemodynamic rhythm (3 – 12 Hz) with an 8th order zero-phase Butterworth filter. The filtered
1226 recordings were treated as a space-time matrix which was decomposed using singular value
1227 decomposition (SVD). The resulting principal component (PC) time series were ranked according
1228 to their 3-Hz spectral power strength. Finally, a heuristically chosen number of PCs (five ranked
1229 components) were subtracted from the original downsampled recordings.

1230 By means of this PC removal, we were able to preserve spectral content in the affected frequency
1231 range (**Fig. S10B**) which would not have been possible with a more aggressive approach such as
1232 band-stop filtering. **Fig. S10A** shows an example channel (address: (3, 8)) recording after
1233 hemodynamics removal. Spectrogram was computed by extracting spectral power through
1234 multitaper estimation (200 ms window, 10 Hz half-bandwidth) and then z-scoring for each
1235 frequency bin (0, 20, ..., 200 Hz).

1236 **Motor feature decoder.** To build a continuous motor feature decoder, as described in the main text,
1237 the recordings were further grouped into 4 frequency bands (LMP, β , low γ , high γ) and 19 time
1238 history bins ($t-0.47$, $t-0.42$, ..., $t+0.47$ s). For model construction, only channels that were

1239 consistently non-saturated across sessions were used ($n = 180$), resulting in a 13,680-dimensional
1240 spatio-temporal-frequency vector $X(t)$ (180 channels, 19 time lags, four frequency bands) as
1241 model input for predicting motor feature $y(t)$. Time resolution of feature decoding was kept at
1242 100 ms.

1243 We used a linear partial least squares regression (PLS) model whose hyperparameter – number of
1244 PLS components – was determined by finding the minimum point of predictive sum of errors
1245 (PRESS) across five-fold cross validation (**fig. S10C**). We built our model to decode wrist velocity
1246 of all three dimensions and evaluated its performance using Pearson's correlation coefficient. It
1247 performed best on decoding y-direction velocity (0.53 ± 0.04 SE) and next on z-direction velocity
1248 (0.50 ± 0.04 SE). Velocity in x-direction could not be decoded reliably; speed was decoded instead
1249 (0.50 ± 0.06 SE).

1250 The y-direction velocity decoder was further analyzed by computing the relative contribution of
1251 each frequency band. Denoting our model as the following linear combination where $\varepsilon(t)$
1252 represents the residual error,

$$1253 \quad y(t) = a_0 + \sum_{ch} \sum_{lag} \sum_{freq} a_{ch,lag,freq} \cdot X_{ch,lag,freq}(t) + \varepsilon(t)$$

1254 the relative contribution of each band w_f was calculated as follows (**Fig. 4F**):

$$1255 \quad w_f(band) = \frac{\sum_{ch} \sum_{lag} |a_{ch,lag,freq}|}{\sum_{ch} \sum_{lag} \sum_{freq} |a_{ch,lag,freq}|}$$

1256

1257 All analyses in this section used Python v3.10.0, numpy v1.23.5, scipy v1.10.0, and scikit-learn
1258 v1.2.1.

1259 **NHP visual cortex recording experimental procedure**

1260 Surgical procedures. All experimental procedures were approved by the Baylor College of
1261 Medicine Institutional Animal Care and Use Committee (protocol AN-4367). Here, all behavioral
1262 and electrophysiological data were obtained from a healthy, male rhesus macaque (*Macaca*
1263 *mulatta*) monkey aged 19 years and weighing 13.85 kg during the study period. The animal was
1264 housed individually in a large room adjacent to the training facility, along with around ten other
1265 monkeys, permitting rich visual, olfactory, and auditory interactions, on a 12-hour light/dark cycle.
1266 Regular veterinary care and monitoring were provided.

1267 All surgical procedures on monkeys were conducted under general anesthesia, adhering to standard
1268 aseptic protocols. Prior to surgery, the monkey had been fitted with a custom titanium headpost,
1269 which secured the head in a fixed position to facilitate accurate eye movement tracking. Pre-
1270 medication involved administering atropine (0.05 mg/kg) followed by sedation using a
1271 combination of ketamine (10 mg/kg) and dexmedetomidine (0.015 mg/kg). Anesthesia during
1272 surgery was maintained with isoflurane, adjusted between 0.5% and 2% as necessary.

1273 The surgical site was prepared in a stereotaxic frame, and the implantation area was meticulously
1274 cleaned with alternating applications of betadine and alcohol prior to the initial incision. Based on
1275 precise stereotaxic coordinates targeting the primary visual cortex and higher visual areas V2 and
1276 V4, an incision was made through the epidermis to expose the underlying muscle. Large, curved
1277 hemostats were applied to clamp the muscle tissue above the intended removal site to enable the
1278 relay station headstage to be positioned on top of the skin close to the BISC implant (1.5 to 2 cm
1279 distance between top of the skin and the implant). Following 15 seconds of clamping, the targeted
1280 muscle was excised using a #10 blade scalpel.

1281 A craniotomy measuring 2.5 cm by 2.3 cm was performed to access the underlying brain area for
1282 the BISC device implantation. The removed bone was preserved in sterile saline. Prior to dura

1283 mater incision, the animal was hyperventilated to maintain CO₂ levels between 25-30 mm Hg. A
1284 1.8 mm straight incision was made in the dura mater close to the posterior ridge of the craniotomy
1285 to create a pocket for the BISC device, which was then carefully slid under the dura with the
1286 electrode side facing the brain surface. A commercially available deep brain stimulation guide was
1287 used to accurately slide and position the BISC chip under the dura. The implanted device's
1288 functionality was confirmed through successful communications with the headstage.

1289 After testing the communication between the headstage and the chip, the dura was closed using 3-
1290 0 polyglycolic acid suture, and the previously removed bone flap was repositioned. Burr holes
1291 were drilled into both the bone flap and adjacent skull, and suture was used to secure the bone in
1292 place, promoting a flat, well-aligned healing surface. The overlying skin was then repositioned,
1293 and the device functionality was confirmed once more before suturing the skin closed with 3-0
1294 braided vicryl sutures.

1295 Post-operatively, the animal was weaned off isoflurane and closely monitored during recovery by
1296 both lab and veterinary staff at Baylor College of Medicine. Analgesics were administered for up
1297 to seven days post-surgery to manage pain.

1298 The relatively straightforward surgical procedure and minimal invasiveness of the BISC chip
1299 enable us to replace the BISC chip after months by following the same procedure as above:
1300 recutting the dura over the old incision, removing the chip with graphite forceps, and then using
1301 the DBS guide to reposition a new chip. The data presented here from the visual cortex are from
1302 one such replacement chip

1303 *Electrophysiological recordings.* Electrophysiological data from BISC were recorded by a custom
1304 LabVIEW (National Instrument) software system. Data were transferred over an Ethernet network
1305 connection from the relay station processor module to a Windows PC, while the chip was

1306 configured to record in either 16×16 electrodes full chip coverage mode or 32 × 32 electrodes
1307 dense coverage mode. Full chip coverage mode was recorded at about 34 kS/s per electrode
1308 whereas the dense coverage mode was recorded at about 8.5 kS/s per electrode. The LabVIEW
1309 software system implemented a trial-based state machine responsible for initiating and terminating
1310 behavioral trials, tracking eye movements and behavior, dispensing reward, controlling visual
1311 stimulation, time stamping and database logging various events for post-acquisition
1312 synchronization and analyses. A real-time display of acquired signals is also available in
1313 LabVIEW. A pseudorandom digital signal is recorded together with the BISC data, and the same
1314 signal is separately recorded together with the synchronizing photodiode signal described below.
1315 The presence of the pseudorandom signal in both recordings allows for the precise synchronization
1316 of BISC data with visual stimulation.

1317 Visual stimuli were rendered on a dedicated graphics workstation and displayed on a 16:9 HD
1318 widescreen LCD monitor (23.8") with a refresh rate of 100 Hz at a resolution of 1920 × 1080
1319 pixels and a viewing distance of 100 cm (resulting in ~ 63 px/°). The center of the screen was
1320 aligned with the monkey's root of the nose. A photodiode was attached in the top-left corner of
1321 the display monitor and utilized to detect a synchronizing signal presented together with the visual
1322 stimuli. In experiments conducted with gray scale stimuli, the monitor was gamma-corrected to
1323 have a linear luminance response profile.

1324 In experiments conducted with color stimuli, the monitor's color channels were calibrated by
1325 measuring their spectra at 16 contrast levels equally spaced in the range from 0 to 255, without
1326 equalizing the outputs ⁹². The spectra were corrected for the spectrometer's (USB2000+, Ocean
1327 Optics) sensitivity, allowing us to compare the relative intensities accurately. Intensity values for
1328 each color were derived by integrating the spectra over a 200 nm range. These data helped develop
1329 contrast-intensity curves and allow for the computation of an inverse gamma curve for

1330 linearization using a unified look-up table. After linearizing, the spectra were re-measured to
1331 confirm the uniformity of the color outputs. Mixed color outputs were also examined by testing
1332 all combinations of the three-color channels at four contrast levels, and the resultant spectra were
1333 documented. Finally, we compared the measured intensities from the mixed tests against predicted
1334 values based on single-color data. The strong correlation confirmed the linearity and minimal
1335 interaction between the channels, validating the calibration process. This streamlined approach
1336 ensures accurate color reproduction, essential for reliable experimental results.

1337 A camera-based, custom-built eye tracking system verified that the monkey maintained fixation
1338 within $\sim 0.95^\circ$ around a $\sim 0.15^\circ$ -sized red fixation target. Offline analysis showed that monkeys
1339 typically fixated much more accurately. After the monkey maintained binocular fixation for 300
1340 ms, a visual stimulus appeared. If the monkey fixated throughout the entire stimulus period, they
1341 received a drop of juice at the end of the trial.

1342 *Grating experiment.* In this experiment, the monkey maintained binocular fixation on a red 0.16°
1343 fixation spot at the center of the screen for at least 300 ms to initiate a trial. In each trial, 40 static
1344 gratings of random orientations were presented consecutively (**Fig. 5B**) on a uniform gray
1345 background with a grating size of 6° . The fixation spot was at the center of the screen and the
1346 grating was centered 2° to the right and 2° below the fixation spot. Each grating had a normalized
1347 background luminance of 0.5 and contrast of 0.95 and was presented for 50 ms. The monkey was
1348 rewarded with juice if it maintained fixation during the whole trial which lasted 1500 ms.

1349 *Dot-mapping experiment.* In this experiment, the monkey also maintained binocular fixation on a
1350 red 0.16° fixation spot at the center of the screen for at least 300 ms to initiate a trial. In a trial, a
1351 single 0.51° dot was presented on a uniform gray background, changing location and color (black
1352 or white) randomly every 50 ms (**Fig. 6A**). The fixation spot was at the center of the screen and

1353 the dots were presented in a rectangular field ($6^\circ \times 6^\circ$) centered at 1.5° to the right and 3° below the
1354 fixation spot. The monkey was rewarded with juice if it maintained fixation during the whole trial
1355 which lasted 1500 ms.

1356 *Natural image experiment.* We sampled a set of 24,075 color images from 964 categories (~ 25
1357 images per category) from ImageNet⁶⁵ and cropped them to keep the central 420×420 pixels.

1358 Images were scaled up to 630×630 pixels using bilinear interpolation. All images had eight-bit
1359 intensity resolution (values between 0 and 255) in each color channel. We then sampled 75 as the
1360 test set with the remaining 24,000 images as the training set. The monkey maintained binocular

1361 fixation on a red 0.16° fixation spot at the center of the screen for at least 300 ms to initiate a trial,
1362 and images were shown at a size covering 10° (screen resolution of 63 pixels per visual angle)
1363 centered at 3° to the right and below the fixation spot. The rest of the screen was kept gray (128

1364 intensity). During a recording session, we recorded ~ 1000 successful trials, each consisting of
1365 uninterrupted fixation for 2.4 seconds including 300 ms of gray screen (128 intensity) at the
1366 beginning and end of the trial, and 15 images shown consecutively for 120 ms each with no blanks

1367 in between. Each trial contained either training or test set images. We randomly interleaved trials
1368 throughout the session so that our test set images were shown ~ 40 times. The training set images
1369 were sampled without replacement throughout the session, so each image was effectively shown

1370 once or not at all.

1371 **NHP visual cortex recording data analysis**

1372 *Channel selection.* Prior to any analysis on recording data from grating and random dot
1373 experiments, we first identified the saturated channels. In this case, from the BISC 10-bit ADC
1374 range of [0, 1024), the range [8, 1016) was chosen to represent the non-saturated interval. For a
1375 given channel, the response in one trial was considered non-saturated when fewer than 0.1% of

1376 recorded signals was in saturated region, and a channel was considered as non-saturated when it
1377 is saturated in fewer than 1% of trials. An intersection of non-saturated trials of each non-saturated
1378 channel was defined as the non-saturated trials for the experiment session (about 300 trials in each
1379 grating session, 400 trials in each random dot session). All analyses were performed on non-
1380 saturated channels and trials.

1381 We compared Fourier spectrum during fixation period and grating stimulus period for each non-
1382 saturated channel (**Fig. S11**). For frequencies evenly sampled in the range from 0 to 200 Hz, we
1383 computed the fraction of frequencies at which the channel responses in two periods differ by more
1384 than one standard deviation measured across trials. All channels with a fraction greater than 0.1
1385 are labeled as responsive channels. Only responsive channels are used to compute the average
1386 spectrum in **Fig. 5C**. These channels are located at the V1 area of cortex.

1387 Wavelet transformation for band-pass filtering. We applied Morlet wavelet transformation on the
1388 raw response from one channel to get time-varying band-passed signals. The complex wavelet is
1389 implemented by `scipy.signal.morlet` with scaling factor $s=0.5$. An example of a wavelet with
1390 central frequency of 64 Hz is shown in **Fig. S12**. The absolute value after wavelet transformation
1391 is defined as the signal for the corresponding frequency band.

1392 Response scaling. Since the gains of each channel are not necessarily identical, we shifted and
1393 scaled band-passed responses before performing any tuning analysis, i.e. grating-triggered-average
1394 or dot-triggered-average. For a given channel, we first computed the mean response during the [-
1395 300, 0] ms window relative to stimulus onset for every trial. We define the average and standard
1396 deviation over trials as the baseline response and scaling unit, respectively. Band-passed responses
1397 were converted by the corresponding affine transformation.

1398 Removing orientation-untuned component. The raw grating-triggered-average result reveals an
1399 orientation-independent component that mostly encodes the grating switching every 50 ms. The
1400 same example channel as in **Fig. 5I** is shown in **Fig. S13**. We computed the average over all
1401 orientations and all cycles and termed the residual as orientation tuned component (**Fig. 5I**).

1402 Orientation selectivity index. Proper scaling of band-passed responses enables us to perform
1403 comparisons between channels. For each channel, we computed the temporal average during the
1404 interval from 88 to 112 ms after each grating onset conditioned on the grating orientation, denoting
1405 the result as $f(\theta)$. The orientation selectivity index is defined as difference between maximum
1406 and minimum value:

$$OSI = \max f(\theta) - \min f(\theta)$$

1407 Orientation decoding. The orientation decoder was built on raw channel responses without any
1408 wavelet transformation. We first preprocessed the data by performing principal component
1409 analysis (PCA) to remove some correlations. The first 96 principal components (PCs), which
1410 capture 93.4% of the total variance, were kept and scaled according to the PC variance to serve as
1411 the input to the decoder. The decoder took the responses from these 96 PCs during the interval
1412 from 0 to 200 ms after a grating onset and binned them into 400 bins (0.5 ms each). The decoder
1413 backbone was a three-layer 1D convolution neural network with the last layer outputting a
1414 distribution between 0° and 180° represented by logits in a given number of bins. When training
1415 the decoder as a classifier, the cross entropy was used as the loss objective. We compared the
1416 mutual information between decoder prediction and input for different bin sizes used in
1417 discretization (**Fig. S14**) and observed little change when bin size is no greater than 15°. When
1418 training the decoder as a regressor, the Euclidean distance between the circular mean and the target
1419 orientation in the complex space was used as the loss objective. A small regularization coefficient

1421 (0.02) for distribution entropy was used in training the regressor to avoid non-smooth prediction.

1422 Regressor decoder performance is shown in **Fig. S15**, similar to **Fig. 5L-M**.

1423 Two-component analysis of raw receptive field. In addition to dot-triggered-average of responses
1424 filtered by wavelet, we also computed dot-triggered-average of unfiltered responses (Videos S3 to
1425 S8). We observed structured spatial-temporal receptive field $RF(x, y, \tau)$ on more channels; many
1426 of them locate on V4 and are not picked up by RF analysis using filtered response. We found that
1427 these RFs can be roughly approximated by two components (**Fig. S16**). Each component has a
1428 Gaussian-like spatial profile and the temporal profiles differ from each other:

1429
$$RF(x, y, \tau) \approx RF_{s1}(x, y)RF_{t1}(\tau) + RF_{s2}(x, y)RF_{t2}(\tau)$$

1430 While spatial profiles $RF_{s1}(x, y)$ and $RF_{s2}(x, y)$ can be different for different channels, we
1431 assume $RF_{t1}(\tau)$ and $RF_{t2}(\tau)$ are shared by all channels. We computed the retinotopic map for
1432 both components separately. Component 1 was smaller in size, closer to the fixation point and
1433 shows up earlier than Component 2.

1434 Identification of traveling waves. The very densely spatially sampled BISC recording channels
1435 make it an ideal candidate for detecting rich spatiotemporal neural activity such as traveling waves.
1436 We analyzed recordings from the visual cortex of the adult macaque monkey during the dot
1437 mapping experiment as described before. Traveling waves are brain oscillations that show
1438 individual cycles progressively propagating across the cortex in specific directions. We used a
1439 localized circular-linear regression approach to identify traveling waves in BISC recordings. In
1440 this approach, we assume that the relative phases of the BISC channels exhibit a linear relationship
1441 with channel locations *locally*^{62,93,94}. This local circular-linear fitting of can reveal traveling waves
1442 that move at different directions across different areas of the electrode array, thus identifying
1443 complex patterns of traveling waves in addition to planar traveling waves⁶².

1444 To identify these patterns, we first filtered the BISC signals in the gamma frequency band (30-90
1445 Hz) by applying a 4th-order Butterworth filter, similar to analysis described in previous sections.
1446 We applied the Hilbert transform on each channel's filtered signal to extract the instantaneous
1447 phase. To identify traveling waves, we used a series of two-dimensional (2-D) localized circular-
1448 linear regression to model the direction of wave propagation in a local cluster of channels in the
1449 80- μ m neighborhood of each BISC channel. The local regression determines the direction of local
1450 wave propagation in the cluster surrounding each channel, measuring whether the local phase
1451 pattern varies linearly with the channel's coordinates in 2-D. Here, let x_i and y_i represent the 2-D
1452 coordinates and θ_i the instantaneous phase of the i -th channel in a cluster. We used a 2-D circular-
1453 linear model

1454
$$\hat{\theta}_i = (ax_i + by_i + \vartheta) \bmod 360^\circ$$

1455 where $\hat{\theta}_i$ is the predicted phase, a and b are the phase slopes corresponding to the rate of phase
1456 change (or spatial frequencies) in each dimension, and ϑ is the phase offset. We converted this
1457 model to polar coordinates to simplify fitting. Let $\alpha = \tan^{-1}\left(\frac{b}{a}\right)$ denote the angle of wave
1458 propagation and $\xi = \sqrt{a^2 + b^2}$ denote the spatial frequency. We fitted α and ξ to the distribution
1459 of phases at each time point by conducting a grid search over $\alpha \in [0^\circ, 360^\circ]$ and $\xi \in [0, 6.2]$. Note
1460 that $\xi = 6.2$ corresponds to the spatial Nyquist frequency of $6.2^\circ/\mu\text{m}$, corresponding to the 29 μm
1461 spacing between neighboring channels.

1462 We carried out a grid search in increments of 5° and $0.5^\circ/\mu\text{m}$ for α and ξ , respectively. The model
1463 parameters ($a = \xi \cos(\alpha)$ and $b = \xi \sin(\alpha)$) for each time point are fitted to most closely match
1464 the phase observed at each channel in the cluster. We computed the goodness of fit as the mean
1465 vector length of the residuals between the predicted ($\hat{\theta}_i$) and actual (θ_i) phases⁹⁵,

1466

$$\bar{r} = \sqrt{\left[\frac{1}{n} \sum_{i=1}^n \cos(\theta_i - \hat{\theta}_i) \right]^2 + \left[\frac{1}{n} \sum_{i=1}^n \sin(\theta_i - \hat{\theta}_i) \right]^2}$$

1467 where n is the number of channels in each cluster. The selected values of α and ξ are chosen to
1468 maximize \bar{r} . This procedure is repeated for each cluster. To measure the statistical reliability of
1469 each fitted traveling wave, we examined the phase variance that was explained by the best fitting
1470 model. To do this, we computed the circular correlation, ρ_{cc} , between the predicted ($\hat{\theta}_i$) and actual
1471 (θ_i) phases at each channel:

1472

$$\rho_{cc} = \frac{\sum_{i=1}^n \sin(\theta_i - \bar{\theta}) \sin(\theta_i - \bar{\theta})}{\sqrt{\sum_{i=1}^n \sin^2(\theta_i - \bar{\theta}) \sum_{i=1}^n \sin^2(\theta_i - \bar{\theta})}}$$

1473 where bar denotes averaging across channels. We also refer to ρ_{cc} as the wave strength⁹³.

1474 *Dimensionality reduction analysis for wave patterns:* To visualize how the spatial patterns of
1475 traveling wave propagation differ between multiple viewed dot locations, we used UMAP^{96,97} to
1476 embed both data features and class labels into a low-dimensional manifold. Specifically, we set
1477 `n_neighbors = 15`, `min_dist = 0.1`, and `metric = euclidean` in the UMAP toolbox⁹⁷; the supervision
1478 was introduced via a cross-entropy term that encourages separation among stimulus classes. These
1479 hyperparameters were selected after grid search on the validation dataset to balance local
1480 neighborhood preservation against global cluster separability. We applied this approach to
1481 downsampled datasets to test the contribution of high-density recordings; here wave features were
1482 recalculated for each subset to prevent information leakage from the full-resolution grid. After
1483 UMAP projection, each trial's wave features were embedded in 2D, and stimulus class separation
1484 was quantified using the silhouette score:

1485

$$s(i) = \frac{b(i) - a(i)}{\max[a(i), b(i)]}$$

1486 where $a(i)$ is the average distance of the i -th sample to members of its own cluster, and $b(i)$ is the
1487 lowest average distance of the i -th sample to any other cluster. Higher mean silhouette scores
1488 indicate greater separability. Scores were averaged over 300 random subsampling seeds per
1489 resolution, with variability assessed via standard error.

1490 *Dot location decoder: hybrid CNN-Transformer-based neural network model.* To decode dot
1491 locations from BISC-recorded traveling-waves, we developed a hybrid CNN-Transformer
1492 architecture that predicts the viewed dot location for each traveling wave while accounting for
1493 spatial and temporal dependencies. To decode the spatial location of the stimulus from traveling-
1494 waves, we first passed the pattern of traveling wave propagation for each dot into a CNN module.
1495 The CNN comprised three sequential convolutional layers with filters of size 3×3 , each followed
1496 by ReLU activation and batch normalization (momentum = 0.1). We employed a max-pool layer
1497 with a stride of 2 after the first and second convolutional layers, reducing the dimensionality of
1498 the spatial representation. The final feature map was flattened, yielding a 128-dimensional vector
1499 that served as input to the subsequent Transformer.

1500 Across dot locations, the flattened CNN outputs were reorganized into a sequence of feature
1501 vectors corresponding to consecutive time windows (each ~ 50 ms), which were then passed into a
1502 Transformer with two encoder layers. Each layer used multi-head self-attention (4 heads;
1503 embedding dimension = 128), followed by a position-wise feedforward layer (hidden dimension
1504 = 256). A dropout rate of 0.1 was applied to both attention weights and feedforward activations to
1505 prevent overfitting. The Transformer thus captured potential long-range temporal dependencies in

1506 wave propagation. We employed sinusoidal positional encodings⁹⁸ to preserve the ordering of time
1507 windows.

1508 We allocated 80% of the trials to training, 10% to validation (for hyperparameter tuning and early
1509 stopping), and 10% to hold-out testing. Network weights were optimized via the Adam optimizer
1510 ($\alpha = 0.001$, $\beta_1 = 0.9$, $\beta_2 = 0.999$) with a batch size of 32. We trained for a maximum of 1000 epochs,
1511 applying early stopping if validation loss did not improve over 10 consecutive epochs.

1512 Loss function and multi-task decoding. To facilitate training of the network on the dynamic
1513 stimulus detection task we used a common hybrid approach for multi-task learning⁹⁹. The final
1514 output layer branches into two heads: (1) a classification head, predicting discrete stimulus
1515 locations (e.g., four classes for four possible stimulus sites), and (2) a regression head, estimating
1516 continuous coordinates in the stimulation array. The overall loss was:

$$L = L_{CE} + \lambda L_{MSE}$$

1518 where L_{CE} is cross-entropy loss for classification, L_{MSE} is mean-squared error between predicted
1519 and actual coordinates, and λ was set to 0.5 to balance the two objectives (tuned using grid search).
1520 During the initial training phase, noise regularization was implemented by adding 5% additional
1521 data augmentation to the input, a method used for enhancing model generalization in the context
1522 of time series prediction¹⁰⁰ and image processing¹⁰¹.

1523 **Temporal shuffling control:** To test the impact of temporal structure on decoding, we randomly
1524 permuted the order of presented dot time windows within trials while preserving spatial features.
1525 The effect of this shuffling was to specifically disrupt temporal correlations in neural signals
1526 between consecutive dot presentations. We repeated this procedure across all test trials 10 times
1527 to assess variability and ensure reliable performance estimates. A two-sided paired t-test ($p < 0.01$)
1528 was used to evaluate differences between the original and shuffled conditions. The number of
1529 iterations was chosen based on empirical stability in decoding performance across runs.

1530 Deep neural network models trained on natural images. The deep learning based neural predictive
1531 model consisted of two main parts: A pretrained core that computes image embeddings (i.e. a
1532 shared feature map given an input image) and a readout that maps these features to the neuronal
1533 responses of a single recording channel. As a core, we selected ConvNext-v2-tiny⁶⁹, a recently
1534 published convolutional neural network model trained on ImageNet⁶⁵. We used the original neural
1535 network weights with fine-tuning in a two-step training process. As a readout, we fit an attention
1536 readout, described in detail elsewhere⁷⁰, to transform the core feature map into a scalar neural
1537 response for each recording channel.

1538 In brief, the readout first adds a fixed positional embedding to the image embeddings with
1539 subsequent normalization through LayerNorm. Then, key and value embeddings are extracted by
1540 position-wise linear projections, both of which have parameters shared across all recording
1541 channels. Then, for each channel, a learned query vector is compared with each position's key
1542 embedding using scaled dot-product attention. The result is a spatially normalized attention map
1543 that indicates the most important feature locations for a recording channel, given an input image.
1544 We then use this attention map to compute a weighted sum of the value embeddings, which results
1545 in a single feature vector for each neuron. Finally, a neuron-specific affine projection with
1546 exponential linear unit (ELU) non-linearity gives rise to the scalar predicted neuronal activity. We
1547 refer to this architecture as a cross-attention readout because the key and value embeddings are
1548 obtained from the image, whereas the query is learned for each recording channel separately.

1549 The model is trained by minimizing the Poisson loss between recorded and predicted neuronal
1550 activity, identical to the procedures described in⁶⁶. Here, we first freeze the weights of the core
1551 and train the readout for 30 epochs. Then, we reduce the initial learning from 0.001 to 0.0001 and
1552 optimize the weights of the core and readout using the AdamW optimizer for a total of 200 epochs.

1553 Explainable variance. As a measure of response reliability, we estimated the fraction of the
1554 stimulus-driven variability compared to the overall response variability. More specifically, we
1555 computed the ratio of each channel's total variance minus the variance of the observation noise,
1556 over the total variance. To estimate the variance of the observation noise, we averaged the variance
1557 of responses across image repeats for all of the 75 repeated natural image test stimuli.

1558 Generation of MEIs. We used the trained model to synthesize maximally exciting input images
1559 (MEIs) for each channel using regularized gradient ascent. Starting out with a randomly initialized
1560 Gaussian white noise image, we showed the image to the model and computed the gradients of a
1561 single target channel with respect to the image. To avoid high frequency artifacts, after each
1562 iteration, we applied Gaussian blur with an SD of three pixels to smoothen the image. Additionally,
1563 we constrained the entire image to have a fixed-energy budget, which we implemented as a
1564 maximum L2 norm of the z-scored image, calculated across all pixel intensities. We chose a total
1565 L2 norm of the MEI of 20, such that the resulting MEIs had minimal and maximal values similar
1566 to those found in our training natural image distribution. Additionally, we made sure that the MEI
1567 could not contain values outside of the eight-bit pixel range by clipping the MEI outside of the
1568 bounds that correspond to 0 or 255 pixel-intensity. We used stochastic gradient descent (SGD)
1569 optimized with learning rate of five and ran each optimization for 500 iterations, without early
1570 stopping.

1571

Supplementary Information for

Stable, chronic in-vivo recordings from a fully wireless subdural-contained 65,536-electrode brain-computer interface device

Taesung Jung^{1†}, Nanyu Zeng^{1†}, Jason D. Fabbri¹, Guy Eichler², Zhe Li^{3,4,5}, Erfan Zabeh⁶, Anup Das⁶, Konstantin Willeke^{3,4,5,7}, Katie E. Wingel^{8,9}, Agrita Dubey^{8,9}, Rizwan Huq¹, Mohit Sharma¹, Yaxing Hu¹, Girish Ramakrishnan¹, Kevin Tien¹, Paolo Mantovani², Abhinav Parihar¹, Heyu Yin¹, Denise Oswalt^{9,10,11}, Alexander Misdorp², Ilke Uguz¹, Tori Shinn¹¹, Gabrielle J. Rodriguez^{3,4,5}, Cate Nealley^{3,4,5}, Sophia Sanborn^{4,5}, Ian Gonzales¹³, Michael Roukes¹⁴, Jeffrey Knecht¹⁵, Daniel Yoshor⁹, Peter Canoll¹⁶, Eleonora Spinazzi¹³, Luca P. Carloni², Bijan Pesaran^{8,9,10,11}, Saumil Patel^{3,4,5}, Joshua Jacobs^{6,13}, Brett Youngerman¹³, R. James Cotton^{17,18}, Andreas Tolias^{3,4,5,12,19*}, Kenneth L. Shepard^{1,6,13*}

1582

¹Department of Electrical Engineering, Columbia University; New York, NY 10027, USA

²Department of Computer Science, Columbia University; New York, NY 10027, USA

³Department of Ophthalmology, Byers Eye Institute, Stanford University; Stanford, CA 94305, USA

⁴Stanford Bio-X, Stanford University, Stanford University; Stanford, CA 94304, USA

⁵Wu Tsai Neurosciences Institute, Stanford University; Stanford, CA 94304, USA

⁶Department of Biomedical Engineering, Columbia University; New York, NY 10027, USA

⁷Institute of Computer Science and Campus Institute Data Science, University of Göttingen; Germany

⁸Center for Neural Science, New York University; New York, NY 10003, USA

⁹Department of Neurosurgery, University of Pennsylvania; Philadelphia PA 19118, USA

¹⁰Department of Neuroscience, University of Pennsylvania; Philadelphia, PA 19118, USA

¹¹Department of Bioengineering, University of Pennsylvania; Philadelphia, PA 19118, USA

¹²Center for Neuroscience and Artificial Intelligence, Department of Neuroscience, Baylor College of Medicine; Houston, TX 77030, USA

¹³Department of Neurological Surgery, Columbia University; New York, NY 10032, USA

¹⁴Departments of Physics, Applied Physics, and Bioengineering, Caltech; Pasadena, CA 91125, USA

¹⁵Lincoln Laboratory, Massachusetts Institute of Technology; Lexington, MA 02421, USA

¹⁶Department of Pathology and Cell Biology, Columbia University; New York, NY 10032, USA

¹⁷Shirley Ryan Ability Labs; Chicago, IL, USA

¹⁸Department of Physical Medicine and Rehabilitation, Northwestern University; Chicago, IL, USA

¹⁹Department of Electrical Engineering, Stanford University; Stanford, CA 94304, USA

[†]Contributed equally

*Corresponding authors.

Email: shepard@ee.columbia.edu, tolias@stanford.edu

1611

1612

1613 **Supplementary Discussion S1. BISC implant design**

1614
1615 As illustrated in **Fig. S1**, the implant circuitry consists of four primary top-level modules, each of
1616 which can be implemented and verified independently. These modules are the analog front-end
1617 (AFE), the controller, the wireless transceiver, and the wireless power transfer (WPT). The AFE
1618 is directly interfaced with the electrodes. It is responsible for sensing the neural signals on the
1619 electrodes, which are then amplified locally in the in-pixel amplifiers. The outputs from these
1620 amplifiers are transferred to a programmable gain amplifier (PGA) through column switches and
1621 subsequently digitized by a 10-bit successive-approximation-register (SAR) analog-to-digital
1622 converter (ADC). Additionally, the AFE is designed to drive stimulation currents through the
1623 electrodes from global current sources, utilizing the column and in-pixel switches. The controller
1624 plays a central role in managing the system. It sets all static configurations, including biasing and
1625 gain control for the AFE. Furthermore, it controls all dynamic switching signals into the pixel array
1626 and the column switches. The controller also receives digital samples from the ADC, packaging
1627 the data for transmission via the wireless transceiver, as well as receiving, depacketizing, and
1628 decoding serialized data from the wireless transceiver. While not explicitly shown in the diagram,
1629 the controller also controls the activation and deactivation of the voltage regulators for the AFE.
1630 The wireless transceiver module is responsible for the receiving and transmitting data through the
1631 UWB antenna. It also supplies the controller with a clock signal, which is generated in a phase-
1632 locked loop (PLL) using a reference clock from the WPT module. Lastly, the WPT module is
1633 designed to inductively receive RF power through a coil. This RF power is initially rectified to 2V,
1634 and then further regulated by three 1.5 V regulators dedicated to the AFE, the controller, and the
1635 transceiver. Additionally, the rectified 2V is converted to -2V, and then regulated to -1.5V
1636 specifically for the AFE.

1637
1638 **Design of the analog front-end**

1639
1640 The analog front-end (AFE) is an analog mixed-signal module that serves as the interface between
1641 the electrodes and the controller. Within this module, various circuit blocks are implemented along
1642 two primary signal paths. The first is the recording path, which originates at the electrodes and
1643 progresses through an in-pixel amplifier (**Fig. S17A**), column switches, a programmable gain
1644 amplifier, and a 10-bit ADC, terminating at the controller. The design of the recording path was
1645 inspired by the architecture of an active-pixel sensor (APS)¹⁰² photosensor¹⁰³, which utilizes a
1646 charge amplifier readout mechanism. The APS architecture was used to avoid long high-
1647 impedance routings from electrodes, which are susceptible to electromagnetic interference from
1648 the 13.56 MHz wireless powering frequency. Such interference, unless carefully filtered or
1649 mitigated, can lead to large offsets in the amplifiers due to circuit nonlinearity^{104,105}. To minimize
1650 the potential interference, the routings from the electrodes to the inputs of the in-pixel amplifiers
1651 are restricted to within 20 μ m. Furthermore, the APS architecture relaxes the performance
1652 requirement of the shared back-end circuitry, allowing implementation of PGA and ADC with
1653 smaller area and lower power consumption.

1654
1655 The pixels and column switches in the AFE utilize a dual rail ± 1.5 V power supply. This power
1656 supply configuration allows maximum safety because 0-V bias voltage can be applied on the
1657 electrodes and there is no DC voltage difference between the working, reference, counter
1658 electrodes, and the substrate. Potential current leakages are eliminated from all conductive parts
1659 of the implant. To support this, the pixels and column switches are implemented in a -1.5 V deep
1660 P-well (DPW), isolated from the rest of the circuits by an N-type buried layer (NBL). Each pixel

1661 is identical and occupies an area of $53 \times 58 \mu\text{m}^2$ (**Fig. S17B**). In every pixel there are four 14×14
1662 μm^2 electrode pads on the redistribution layer (RDL). These electrode pads connect to the
1663 underlying circuits by redistribution via (RV).

1664
1665 For every pixel, the recording process utilizes a neural amplifier and multiple control switches.
1666 Given the high-density requirements of the APS architecture, the area available for the neural
1667 amplifier layout is significantly restricted. On the contrary, optimal noise and mismatch
1668 performance requires us to bias the metal-oxide-semiconductor field-effect transistors (MOSFET)
1669 in the weak inversion region, which demands a large area¹⁰⁶. To address this challenge, we made
1670 four design decisions aimed at maximizing the area efficiency for recording circuitry. Firstly, we
1671 implemented the stimulation current sources as a global current generator outside the pixel array,
1672 incorporating only MOSFET switches and combinational logics within the pixels to realize
1673 stimulation. Additionally, the control signals for the stimulation circuits undergo global level
1674 shifting outside the pixel array. Secondly, for the neural amplifier, we adopted a DC-coupled
1675 architecture which eliminates the need for a dedicated large DC blocking capacitor by utilizing the
1676 double-layer capacitance formed between the electrodes and the electrolyte. Thirdly, we
1677 implemented a multiplexing technique for recording from the four electrodes in each pixel to
1678 connect to the neural amplifier, significantly reducing the number of amplifiers¹⁰⁷. Lastly, we
1679 implemented a differential integrator as the neural amplifier (**fig. S15B**)⁴² leveraging the offset
1680 memorization principle¹⁰⁸ and boxcar averaging using integrating, sampling, and reset operations
1681 (**fig. S15E**) to provide anti-aliasing filtering without the need for bulky components. This approach
1682 utilizes chopping operation¹⁰⁸ that effectively cancels out the DC offset and $1/f$ noise inherent in
1683 the neural amplifier. The noise transfer function H_N of the neural amplifier is given by:
1684

$$H_N(\omega) = i \sin \omega \frac{T_{INT}}{4} \text{sinc} \omega \frac{T_{INT}}{4}$$

1685 where T_{INT} is the integration time of the neural amplifier. The sine function in the noise transfer
1686 function attenuates low frequency noise (**Fig. S17F**). Consequently, this approach achieves low
1687 noise and offset without relying on overly large input transistors. Common-mode feedback (CMFB)
1688 of the differential integrator can also be efficiently implemented using MOSFET switches and two
1689 metal-insulator-metal (MIM) capacitors by taking advantage of the reset phase¹⁰⁹. Moreover, the
1690 open-loop configuration of this design eliminates the need for large feedback components while
1691 still maintaining a well-defined gain and low-pass corner. The neural amplifier can be considered
1692 as a trans-capacitance amplifier and its voltage-to-charge gain A_c can be calculated by:
1693

$$A_c = \frac{I_T}{2} \times \left(\frac{g_{mp}}{I_D} + \frac{g_{mn}}{I_D} \right) \times T_{INT}$$

1694 where I_T is the tail current of the neural amplifier, I_D , g_{mp} and g_{mn} are the drain current and
1695 transconductances of the input PMOS and NMOS transistors. The 0-V biasing at the input of the
1696 neural amplifier is implemented using NMOS transistors configured as tunable pseudo-resistors.
1697 The gate voltage of these NMOS transistors is globally generated from a W-2W voltage digital-
1698 to-analog converter (DAC)¹¹⁰. These pseudo-resistors in conjunction with the electrode
1699 capacitance allow the neural amplifier to reject up-to 25 mV DC-offsets in the electrodes and
1700 provide a tunable high-pass corner. The 3-dB low pass corner ω_{lp} of the neural amplifier is fixed
1701 and can be calculated as:
1702

$$\omega_{lp} = \frac{1}{2.24 \times T_{INT}}$$

1703 where coefficient 2.24 is the result of boxcar averaging¹¹¹ whose transfer function is a sinc
1704 function (**Fig. S15F**). In this design, I_T is globally programmable from 0.625 to 4.375 μA , I_D is

1705 half of I_T , $\frac{g_{mp}}{I_D}$ is 22 V^{-1} , $\frac{g_{mn}}{I_D}$ is 26 V^{-1} , and T_{INT} is $29.38 \mu\text{s}$. Since the input transistors are biased
1706 in the weak inversion region, their $\frac{g_m}{I_D}$ values stay nearly constant with differential values of I_D .
1707 Custom designed 3-V logical cells (**Fig. S17D**) are used to generate the control signals to the neural
1708 amplifier.

1709
1710 The programmable gain amplifier (PGA) (**Fig. S18**) consists of a charge amplifier stage (**Fig.**
1711 **S18A**) followed by a programmable gain stage (**Fig. S18B**). The operation of the charge amplifier
1712 involves an operational transconductance amplifier (OTA) switching between two sets of feedback
1713 capacitors. When one set of the metal-insulator-metal (MIM) capacitor is used in amplification,
1714 the other set is reset to ground and the common-mode voltage (VCM). This operation allows
1715 almost an entire clock cycle to be used for OTA settling, relaxing the bandwidth requirement of
1716 the OTA and reducing power consumption. The charge amplifier stage significantly reduces the
1717 nonlinearity of the PGA compared to a voltage amplifier because the metal-oxide-semiconductor
1718 (MOS) sampling capacitors in the pixels are highly nonlinear. Direct amplification of the voltage
1719 output from the pixels would limit the overall effective number of bits (ENOB) to seven bits. With
1720 the MIM capacitors for charge transferring, the system can have a linearity over 10 bits. The
1721 programmable gain stage utilizes a modified predictive switched-capacitor amplifier¹¹². The
1722 voltage gain of this stage is programmable from 1.5 to 5.0. The total voltage gain of the system
1723 A_{sys} is given by:

$$1724 A_{sys} = \frac{A_c}{C_{INT}} \times 1.5^{G+1}$$

1725 where C_{INT} is 5.44 pF and G is a two-bit programmable value from 0 to 3.

1726
1727 Two 10-bit 8.67-MS/s SAR ADC¹¹³ are used to digitize the outputs from the PGA in an interleaved
1728 operation. The two ADCs effectively work as a single ADC, but the interleaving relaxes the
1729 conversion time of the ADC and the settling time of the PGA. This reduces the power consumption
1730 of the ADC and PGA.

1731
1732 The recording process in pixel at row ‘r’, column ‘c’ is controlled by four row lines ($PWR_R[r]$,
1733 $CDS_R[r]$, $REC_R[r]$, $RST_R[r]$) and five column lines ($PWR_C[c]$, $RST_C[c]$, $REC_C[c]$, $SEL0_C[c]$,
1734 $SEL1_C[c]$) as shown in **Fig. S17D**. These control lines operate the recording circuit in six phases.
1735 The first phase is power-on, and in this phase PWR_R and PWR_C are activated, turning on the bias
1736 currents in the neural amplifier. The second and third phases are the amplification phase in which
1737 auto-zeroing happens. They are differentiated by the toggling of the MOSFET chopper switches.
1738 When the CDS_R and RST_C are activated, a clock divide-by-2 circuit toggles its output, consequently,
1739 flips the polarity of the chopper. The fourth phase is readout, where REC_R and REC_C are activated,
1740 turning on the output MOSFET switches in the neural amplifier and column switches. The charges
1741 integrated by the neural amplifier are transferred to the programmable gain amplifier via the
1742 switches, and subsequently digitized by the ADC. The fifth phase is reset, where RST_R and RST_C
1743 are activated, resetting the charges on the integration capacitors through the reset MOSFET
1744 switches. The switched-capacitor common-mode feedback (CMFB) also refreshes its biasing point
1745 at this phase. Additionally, the electrode address for multiplexing will be updated from two column
1746 lines $SEL0_C[c]$, $SEL1_C[c]$) and saved in two D-latches. If recording continues, after the reset phase
1747 the neural amplifier will go into the amplification phase. Otherwise, it goes into the last phase
1748 which is power-off. In the power-off phase all column and row lines are deactivated, and electrodes
1749 are electrically disconnected from the neural amplifier. The recording control lines are locally level

1750 shifted to ± 1.5 V logic level in each pixel, and the logic circuits are custom designed to work under
1751 ± 1.5 V.

1752
1753 For stimulation, there are 16,384 stimulation channels (one per pixel) and a bi-phasic current pulse
1754 can be distributed across a programmable set of pixels (all pixels generate the same temporal
1755 current profile) acting as a “macroelectrode” in either monopolar or bipolar configuration (see
1756 **Methods, Fig. S19**). The temporal profile of the bi-phasic simulation can be configured to be either
1757 cathodic-first or anodic-first, followed by a passive charge balancing phase. Stimulating pixel
1758 address can be quickly reprogrammed within 100 μ s, which offers opportunities to inject high
1759 density spatiotemporal information into the brain.

1760
1761 The stimulation currents are generated globally from a stimulation current generator (**Fig. S19**),
1762 consisting of two regulated-cascode current sources. A stimulation-current digital-to-analog
1763 converter (DAC) provides programmable biasing of the current sources. The reference current is
1764 generated from a low-voltage bandgap reference circuit ¹¹⁴ via a master current DAC. The
1765 amplitude of the current output I_{out} of the stimulation current generator in μ A is:

$$|I_{out}| = 10 \times D_{master} \times M_{D_{stim}}, M_i \in [0, 1, 2, 4, 6, 8, 12, 16]$$

1766 where D_{master} and D_{stim} are three-bit values from 0 to 7.

1767
1768 The stimulation process in each pixel is controlled by a column line (PROG[c]) and three row lines
1769 (SRCS[r], SINK[r], CBAL[r]) routed to the pixels from the controller. These digital control lines
1770 are level-shifted to ± 1.5 V logic levels before they enter the pixel array. Two current column lines
1771 (ANOD[c], CATD[c]) are routed into the pixels from a stimulation current generator through the
1772 column switches. Activation of the PROG line and one of the row lines by the controller initiates
1773 the stimulation sequence: the MOSFET switches connect the four electrode pads in the respective
1774 pixel to the ANOD for anodic current, the CATD for cathodic current, and ground for charge
1775 balancing.

1776
1777 To optimize power efficiency in the implant, both the recording and stimulation circuits are
1778 designed with the capability to be individually shut down by deactivating their respective bias
1779 currents. The implant is operated in a manner that ensures either the recording or the stimulation
1780 circuits are powered on at any given time, but not both simultaneously. Switching between
1781 recording and stimulation introduces a latency of approximately 1 ms to start up the circuits.

1782 1783 **Design of the wireless transceiver**

1784
1785 The wireless transceiver consists of ultra-wide-band (UWB) antenna and transceiver circuits. On-
1786 off keying (OOK) is used for data modulation. The wireless transceiver is designed for low power,
1787 single user, and short-range communication.

1788
1789 The UWB antenna, having a differential-fed slot design ¹¹⁵, was modified to work under brain
1790 environment (**Fig. S20A**). To achieve this, custom multi-layer human head models were built that
1791 incorporate various tissue characteristics, including tissue thickness ¹¹⁶ and dielectric constants ¹¹⁷.
1792 We performed electromagnetic simulation (Momentum, Keysight Technologies and Ansys HFSS,
1793 Ansys) to determine the parameters of the UWB antenna with the custom brain model. Given that
1794 both the UWB antenna and the transceiver circuits are custom designs for the implant, they were
1795 co-designed for optimal performance. The input impedance at 4 GHz was designed to be $50 + j16$

1797 Ω . The path loss is simulated to be 50 dB (Ansys HFSS, Ansys) for a total tissue thickness of 2
1798 cm between the designed antenna and an ideal dipole antenna (**Fig. S20A**). A 700-MHz bandwidth
1799 is achieved from 3.6 to 4.3 GHz.

1800
1801 The UWB antenna is shared by the transmitter and receiver circuits using two sets of NMOS
1802 switches. To minimize insertion loss at the working frequencies (3.6 to 4.3 GHz), a floating-body
1803 technique¹¹⁸ is used which takes advantage of the deep p-well (DPW) in the CMOS technology.
1804 Resistors are used in-series with their gates to reduce RF leakage to the DC control lines.

1805
1806 Duty-cycling is a proven technique to reduce power consumption of impulse radio UWB (IR-
1807 UWB) transceivers^{119,120}. The transmitter employs this technique by generating short RF pulses
1808 using a duty cycled LC complementary oscillator. The LC oscillator is tuned to resonate with the
1809 UWB antenna at 4 GHz without a local frequency reference. A digital pulse generator generates
1810 two short baseband pulses with 1.3 and 0.3 ns pulse width from an enable signal (**Fig. S20B**).
1811 When transmitting a data “1”, the LC oscillator’s tail current is turned on for 1.3 ns. To speed up
1812 the start-up of the LC oscillator, the KICK_N MOSFET switch is turned on for the first 0.3 ns.
1813 Conversely, for a faster shut-off, the shunt MOSFET switch is turned on while the RF switches
1814 are turned off. The LC oscillator delivers 1 V peak-to-peak differential signal into the UWB
1815 antenna when it is turned on. The designed transmitter transmits at maximum 108.48×10^6 pulses
1816 per second and consumes 39 pJ for each pulse transmitted.

1817
1818 The receiver has a non-coherent energy detector architecture for its low implementation
1819 complexity^{121,122}. Consider a noise floor (N_0) at body temperature of -173.6 dBm, a minimal
1820 signal-to-noise ratio (SNR_{REF}) of 17 dB for a bit-error rate (BER) less than 1×10^{-10} ¹²³, path loss
1821 (PL) of 50 dB, receiver noise figure (NF) of 5 dB and data rate (DR) of 54.24 Mbps, the minimal
1822 required transmit power (P_{TX}) of the headstage is given by:

$$P_{TX} = SNR_{REF} + 10 \log(DR) + PL + NF + N_0 = -24.3 \text{ dBm.}$$

1823
1824 According to the FCC regulations on the UWB band¹²⁴, a maximum equivalent isotropic radiated
1825 power (EIRP) of -41.3 dBm/MHz can be transmitted in free air and measured over a 1ms time
1826 window. The maximum power (P_{TX_MAX}) allowed to transmit for a 500-MHz bandwidth is given
1827 by:

$$P_{TX_MAX} = EIRP + BW = -14.3 \text{ dBm.}$$

1828
1829 We also comply with the average power limit as P_{TX} is less than P_{TX_MAX} . Also, the peak power
1830 limit of 0 dBm is satisfied as we operate in the high-data-rate regime¹²². Since there is a $-14.3 +$
1831 $21.3 = 10$ dB link margin, we find that the design is robust against manufacturing variations and
1832 variations in the distance between the implant and headstage.

1833
1834 The UWB receiver features an RF architecture similar to that described in¹²⁵. The signal
1835 processing begins with amplifying the input signal from the UWB antenna by a low-noise
1836 amplifier (LNA), which comprises an input stage followed by two RF amplifier (RF AMP) stages
1837 (**Fig. S20C**) that provide 57 dB of voltage gain with in-band noise figure less than 5 dB. A self-
1838 mixing mixer based on double-balanced Gilbert-cell detects the signal’s envelope (**Fig. S20D**),
1839 which is low-pass filtered by a baseband amplifier (BB AMP) (**Fig. S20E**). Finally, a one-bit
1840 digitizer (1-b ADC) comprised of a sampling and subtraction stage (**Fig. S20F**) followed by a
1841 StrongArm comparator¹²⁶ determines the received bit ("0" or "1") based on a predefined voltage
1842 threshold.

1843

1844 A phase-locked loop (PLL) modified from ¹²⁷ is used to generate a 208.96 MHz clock from the
1845 13.56 MHz powering frequency, which is divided down to generate all the clocks used in the
1846 implant. A 4-stage differential ring oscillator is used which allows timing control at the resolution
1847 of 0.567 ns. A digital controller inside the wireless transceiver controls the start-up of the PLL and
1848 timing generation.

1849
1850 The timing diagram of the UWB transceiver is shown in **Fig. S20G**; the LNA is powered on 4.61
1851 ns and the mixer and base-band low-pass amplifier are powered on 6 ns for every 18.44 ns. The
1852 entire transceiver consumes 12.2 mW when transmitting at 50% of “1”s.

1853
1854 **Design of the BISC implant controller**

1855
1856 The digital controller on the BISC implant is responsible for managing the wireless communication,
1857 device configuration, and dynamic data acquisition. It operates from the 1.5-V power domain on
1858 the chip and consumes a peak power of 10 mW during recording. The controller consists of a main
1859 decoder that translates the instructions received by the wireless transceiver into actions on the
1860 device. The decoder can decode only one instruction at a time and while an instruction is being
1861 executed, other instructions cannot be accepted by the controller.

1862
1863 The decoder interfaces to two specialized control blocks:

1864 • AFE control. AFE control sets the static configuration for recording and stimulation functions
1865 and outputs dynamic control signals that trigger the switching activity in the AFE.

1866 • Communications control. This block receives data samples from the AFE and packetize them
1867 for transmission via the wireless transceiver. During a recording, every new sample of data is
1868 immediately added to the next packet. When a packet is full, it is passed to be streamed through
1869 the wireless transceiver, while the preparation of the next packet begins. The communication
1870 control can also be configured to packetize and transmit other types of data regarding general
1871 information on the current state of the device. The packetizing follows the specialized
1872 communication protocol described in more detail in **Supplementary Discussion S2**.

1873
1874 The instruction set architecture (ISA) of the controller consists of seven instructions (**Table S1**)
1875 that can be classified into three types: dynamic instructions, static instructions, and the query
1876 configuration instruction.

1877
1878 Dynamic instructions include recording, stimulation, power-on, and halt. Each of these instructions
1879 initiates an event that starts or stops an ongoing process. The recording instruction starts a process
1880 that updates the control lines going to the AFE which allow time-multiplexed recording from a
1881 designated subset of channels from the microelectrode array. The stimulation instruction initiates
1882 multi-phasic stimulation through a pre-configured subset of electrodes for a pre-configured amount
1883 of time. The power-on instruction powers on the pixel-level recording amplifiers, which is required
1884 prior to recording the electrodes before recording. The halt instruction stops an ongoing recording.

1885
1886 Static instructions include configuration and programming. The configuration instruction can
1887 program up to 64 bits of configuration in a given instruction. These configuration registers, which
1888 number 122 bits in total, control the functioning of finite state machines (FSMs) in the controller
1889 or are distributed to other functional blocks on the BISC implant, such as the WPT, the AFE, and
1890 the UWB transceiver in order to set longer-term states that are infrequently updated. The

1891 programming instruction sets the address of electrodes used for stimulation and their initial polarity,
1892 along with additional configuration information that are stored in the controller's registers. When
1893 stimulation is initiated, this information is used to gate specific control signals sent to the AFE.

1894
1895 The query configuration instruction allows one to request access to the contents of the
1896 configuration registers.

1897
1898 **Design of the WPT circuit**

1900 The WPT circuit receives power from the relay station by means of 13.56 MHz inductive coupling,
1901 converting the received power to regulated $\pm 1.5V$ supplies (**Fig. S21**). RF inductive power
1902 received by the power coil (**Fig. S1C**) is first converted to a DC voltage using an active rectifier.
1903 This DC voltage, which can be anywhere between 2 and 3.3V to support full functionality of the
1904 device, is further converted to both $+1.5V$ and $-1.5V$ supplies. To generate $-1.5V$, the rectifier
1905 output voltage goes through an additional stage (**Fig. S21B**) prior to the regulation stage.

1906
1907 The output voltage level of the rectifier is a function of the amount of power received by the BISC
1908 implant and the amount of power consumed by it. In a practical setting, both factors are
1909 dynamically changing. For example, the former depends on the coil-to-coil alignment between the
1910 device and the relay station headstage, and the latter depends on the device's mode of operation.
1911 For thermal and specific absorption rate (SAR) characterization, we assumed that our device is in
1912 a recording state, which is the most power-hungry mode of operation.

1913
1914 Ideally, the power delivered to the device should be sufficient but no more than what is necessary
1915 to support full operation, since excess power received becomes converted to heat. This means that
1916 under optimum operation, the rectifier output voltage is stabilized to near 2V. To achieve this, we
1917 periodically read out the rectifier output in a three-bit digitized format (0: 2V, 1: 2.1V, ..., 7: 2.7V)
1918 using the query configuration instruction to the BISC implant and adjust the magnitude of
1919 transmitted power from the headstage.

1920
1921 Coil-to-coil link efficiency is a key metric in inductive WPT design. A more efficient link not only
1922 allows a longer operating distance, but also helps to keep the power radiated by the headstage to
1923 stay below the SAR safety exposure limit (2 W/kg) set by the FCC⁴⁷. We characterized our link
1924 efficiency by measuring S-parameters of the two coils with chicken breast as a tissue phantom
1925 (**Fig. 20A**). We assumed an ideal conjugate-matched impedance on the transmitting side (Port 1)
1926 and a 75Ω load on the receiving side (Port 2) which is the periodic steady-state (PSS) simulated
1927 linear-load equivalent of the time-varying rectifier input impedance.

1928
1929 Temperature of the chip was measured with a thermal imaging camera (FLIR E5-XT, Teledyne
1930 FLIR) under different power delivery conditions (**Fig. 22B**). Measurements were taken in an
1931 ambient setup with no active air flow at 25 °C, after the device operating in recording mode reached
1932 thermal equilibrium. For this measurement, we used a sample that is fully passivated on both sides.
1933 In recording mode, our device consumes 63.5 mW, including the coil loss. SAR simulation
1934 (Ansys® Electronics Desktop, Ansys) assuming 1.5-cm implant depth using a six-layer brain
1935 model¹²⁸ demonstrates that our system can operate below the 2 W/kg limit set by the FCC for
1936 wireless devices used against the body operating below 6 GHz (**Fig. 22D**).

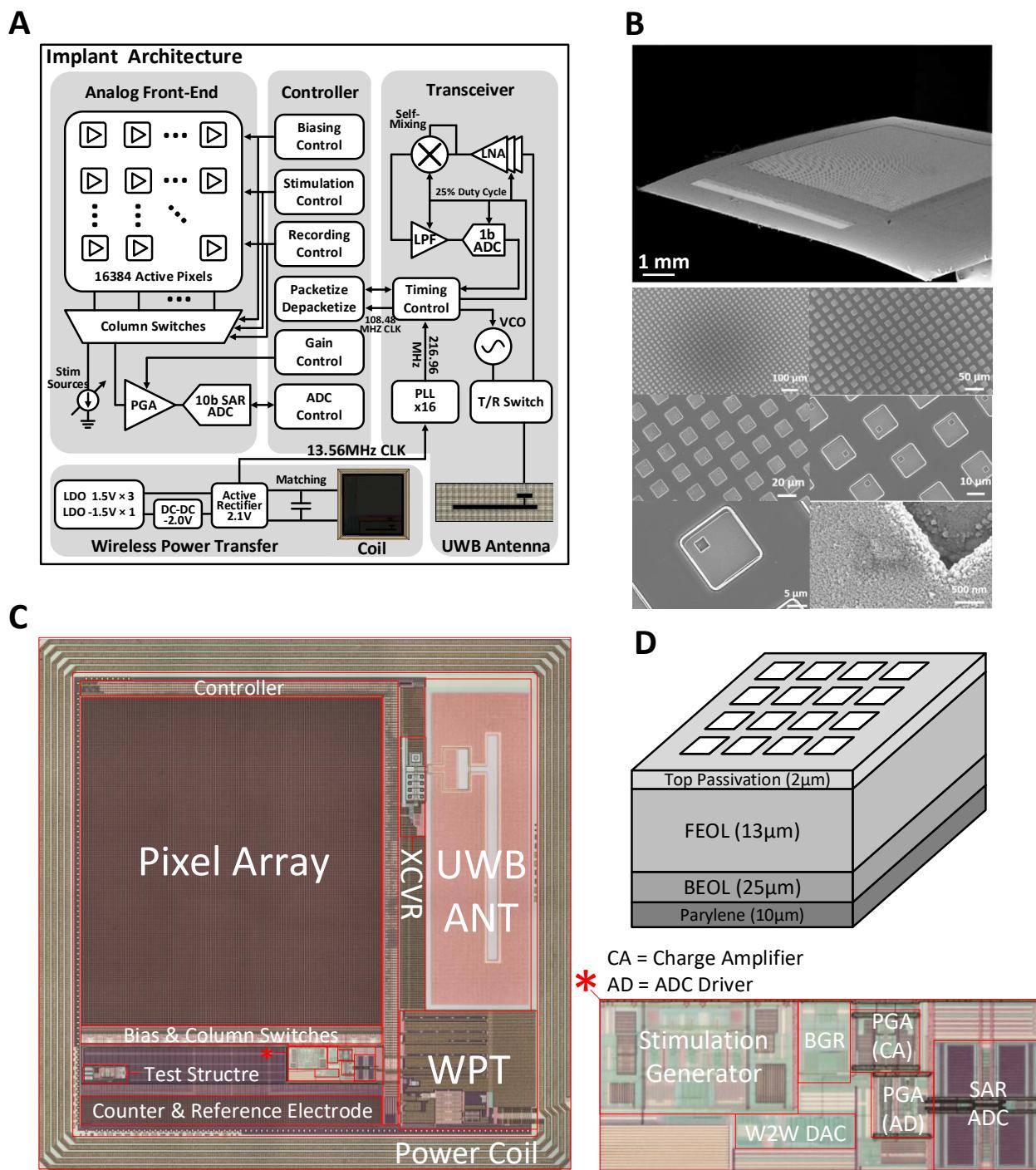
1937 **Supplementary Discussion S2. BISC wireless link protocol and software stack**
1938

1939 The BISC wireless link protocol consists of both uplink and downlink protocols. The downlink
1940 protocol packetizes the information transmitted from the relay station to the implant, while the
1941 uplink protocol packetizes the information sent from the implant to the relay station. Both types
1942 of packets hold a total of 125 bits. Packets from the relay station are received by the BISC implant
1943 bit-by-bit and stored in a shift buffer that matches the size of one packet.

1944 Encoder modules in the BISC implant and in the relay station prepare the packets before
1945 transmission. The packets contain the information to be transmitted, along with several fixed-size
1946 segments of bits that are used for communication synchronization which we denote as “sync bits”
1947 occupying unique positions inside each packet. In addition, the encoder adds eight bits of error
1948 correction code (ECC) to implement single error correction, double error detection (SEC-DED),
1949 computed from the information in the packet and the sync bits. Decoder modules in the implant
1950 and the relay station are in charge of probing the shift buffer at each clock cycle, searching for the
1951 sync bits, and identifying when a full packet is present on the device. When a packet is identified,
1952 it is copied from the shift register and forwarded for further processing.

1953 **Fig. S23** shows the packet structure for both the downlink and the uplink. In both packets, the
1954 parity bits hold the ECC code, and the preamble bits are unused. In the downlink packet, the
1955 OPCODE is a unique code that identifies the instruction (**Table S1**). The OPERAND bits include
1956 an address to a block in the controller and any other parameters that are needed to execute the
1957 command. In the uplink packet, the preamble bits are used to synchronize the order of recorded
1958 values during recording; otherwise they are unused. The DATA bits hold the information from the
1959 implant to be processed by the relay station.

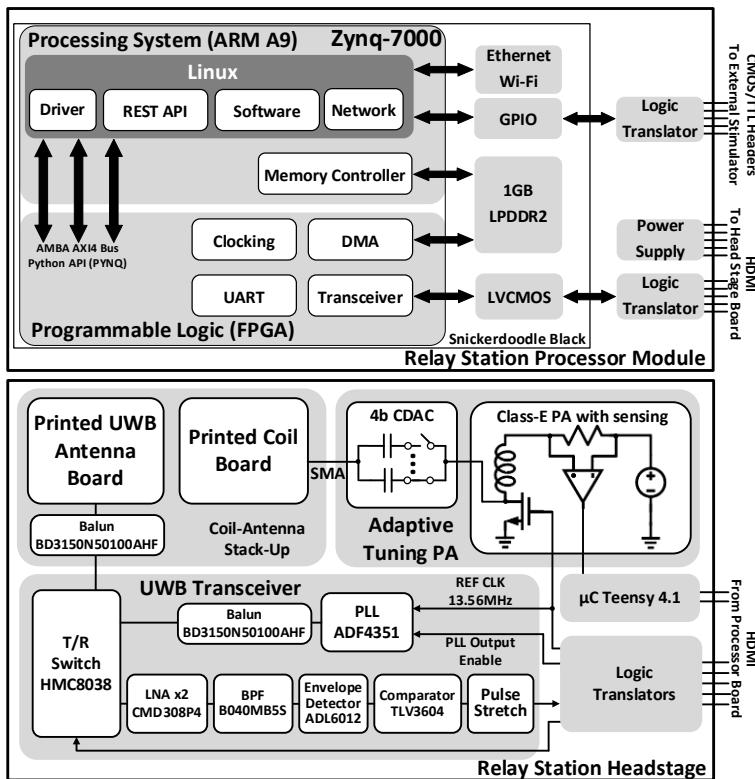
1960 **Fig. S24** presents the software stack in the BISC system and the hardware interface. The software
1961 stack is executed on the processing system (PS) of the relay station. The top layer of the stack is
1962 the RESTful API that implements an interface between an external client to the lower software
1963 layers in the stack. The commands sent to the relay station from an external client trigger Python
1964 applications that allocate memory through direct memory access (DMA) and make the
1965 preparations to intercept data from the implant. When the preparations are done, the applications
1966 use system calls to drivers, which access memory-mapped registers to configure the hardware in
1967 the programmable logic (PL) and retrieve the addresses for the allocated memories. The Python
1968 applications and drivers are implemented on top of a PYNQ¹²⁹ overlay embedded in the Linux
1969 operating system. PYNQ provides libraries that abstract the interaction with the hardware interface
1970 between the PS and the PL. Once the memory-mapped registers are configured with the
1971 information to execute high-level commands from the embedded API in the PL, the hardware in
1972 the PL executes the commands, prepares sequences of instructions to be sent to the implant, and
1973 then forwards them to be processed by the BISC controller. The PL communicates instructions to
1974 the implant through a designated module that interfaces with the transceiver on the headstage. The
1975 PL incorporates a data management module to intercept incoming data from the implant and store
1976 it using DMA in the memories allocated by the Python applications. The PL and the PS interact
1977 through interrupts that signal when the execution of the high-level commands is completed.


1978 **Fig. S25** shows the graphical user interface (GUI) of the software used for recording.

1983 **Supplementary Discussion S3. Bench-top *in vitro* characterization**

1984
1985 BISC recording and stimulation (**Fig. 2**, **Fig. S26B-G**) were characterized from a fully wireless,
1986 *in vitro* measurement setup (**Fig. S26A**). A custom 3D printed mold was used to create two separate
1987 chambers filled with electrolyte: one over the pixel array and the other over the reference/counter
1988 electrodes. Silicone sealant (Kwik-CastTM, World Precision Instruments) was used to attach the
1989 device to the mold to prevent any leakage between the two chambers. Because of small device
1990 feature size, however, the sealant inevitably flowed over to a small portion of the array, encasing
1991 some electrodes (< 5%) at the edge of the array.

1992
1993 A sample processed with titanium nitride electrodes and front-side passivation was used for the
1994 measurement. Because of hydrophobicity of the polyimide used for front-side passivation, we
1995 needed to apply droplets of isopropyl alcohol over the electrodes as the “wetting layer” prior to
1996 filling the chambers with 1× phosphate-buffered saline (PBS) solution. For *in vivo* experiments,
1997 this step was not needed because EtO sterilization significantly reduced the hydrophobicity of the
1998 polyimide. Ag/AgCl pellet electrodes (EP1, World Precision Instrument) were used as the
1999 electrochemical interface between the 1× PBS and electrical cables.


2000
2001 For recording frequency response and pixel gain characterization (**Fig. 2C-E**, **Fig. S26B-E**),
2002 electrical cables were driven by a 400 μ V_{PP} sinusoid (AWG3102C, Tektronix. In conjunction with
2003 -40 dB attenuator). For noise characterization (**Fig. 2B** and **F**), the two Ag/AgCl electrodes were
2004 shorted together. For both measurements, relay station headstage and the sample being measured
2005 were placed inside a Faraday cage. For stimulation characterization (**Fig. 2G** and **H**, **Fig. S26F**
2006 and **G**), electrical cables were connected to a low noise current amplifier (SR570, Stanford
2007 Research System) to measure current waveforms.

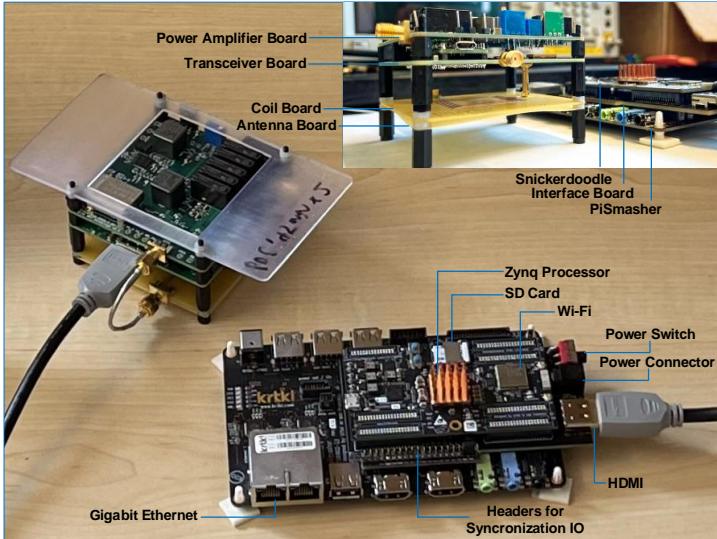
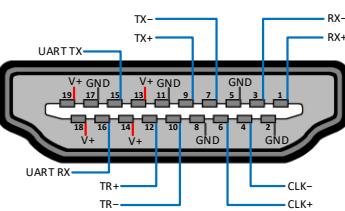
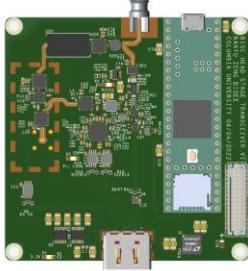
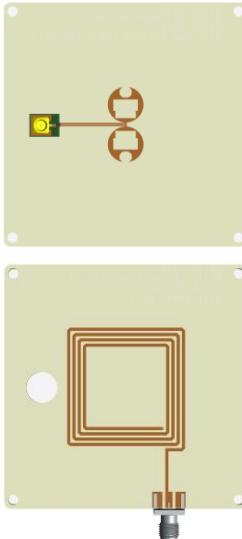

2008
2009
2010
2011

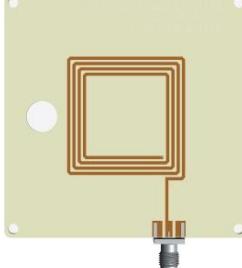
Fig. S1. Architecture of the implant. (A) Functional diagram of the modules on the implant. (B) Cross-section and electrode SEM image. (C) Die photo showing functional components on the integrated circuit. (D) Stack-up of the implant.


A

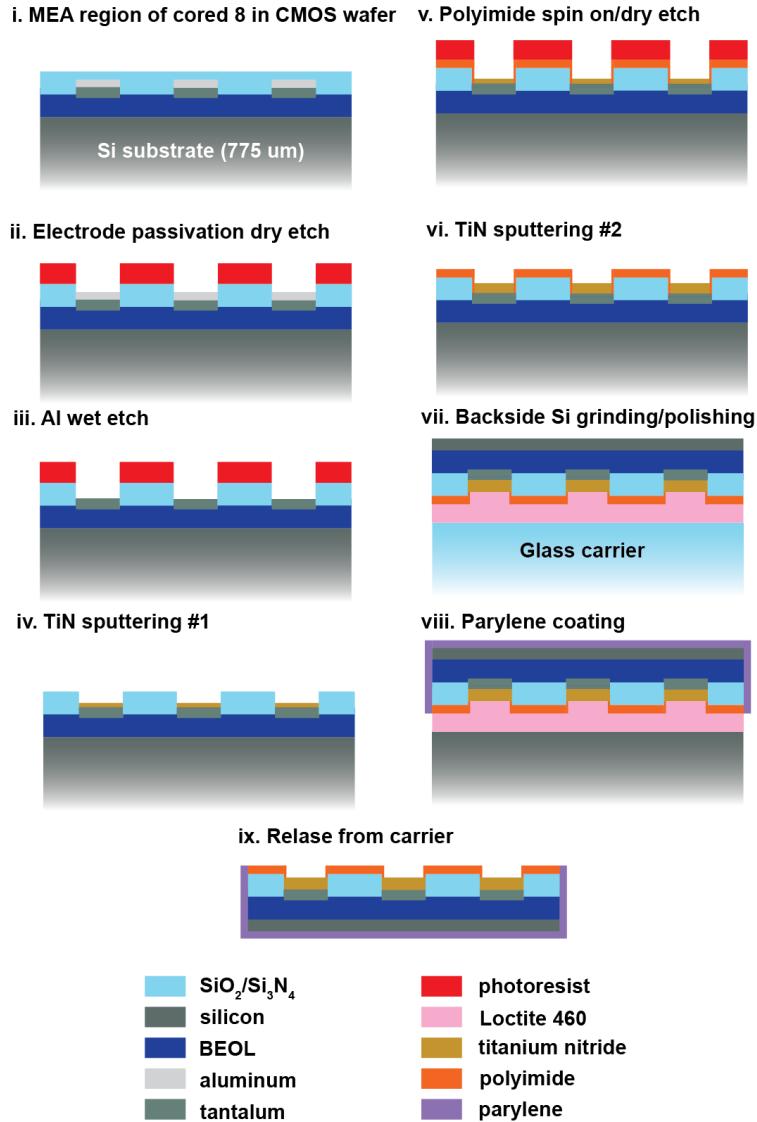
B


C


D


E

F



G

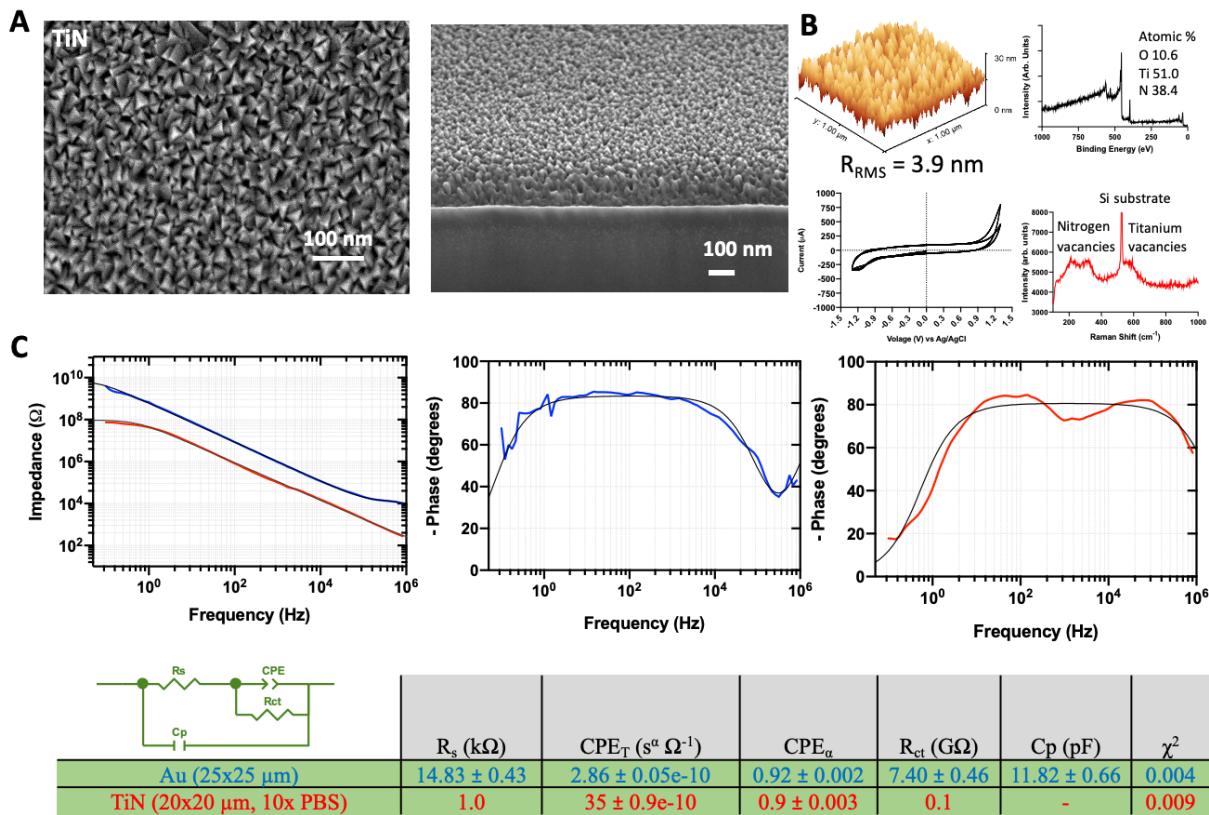
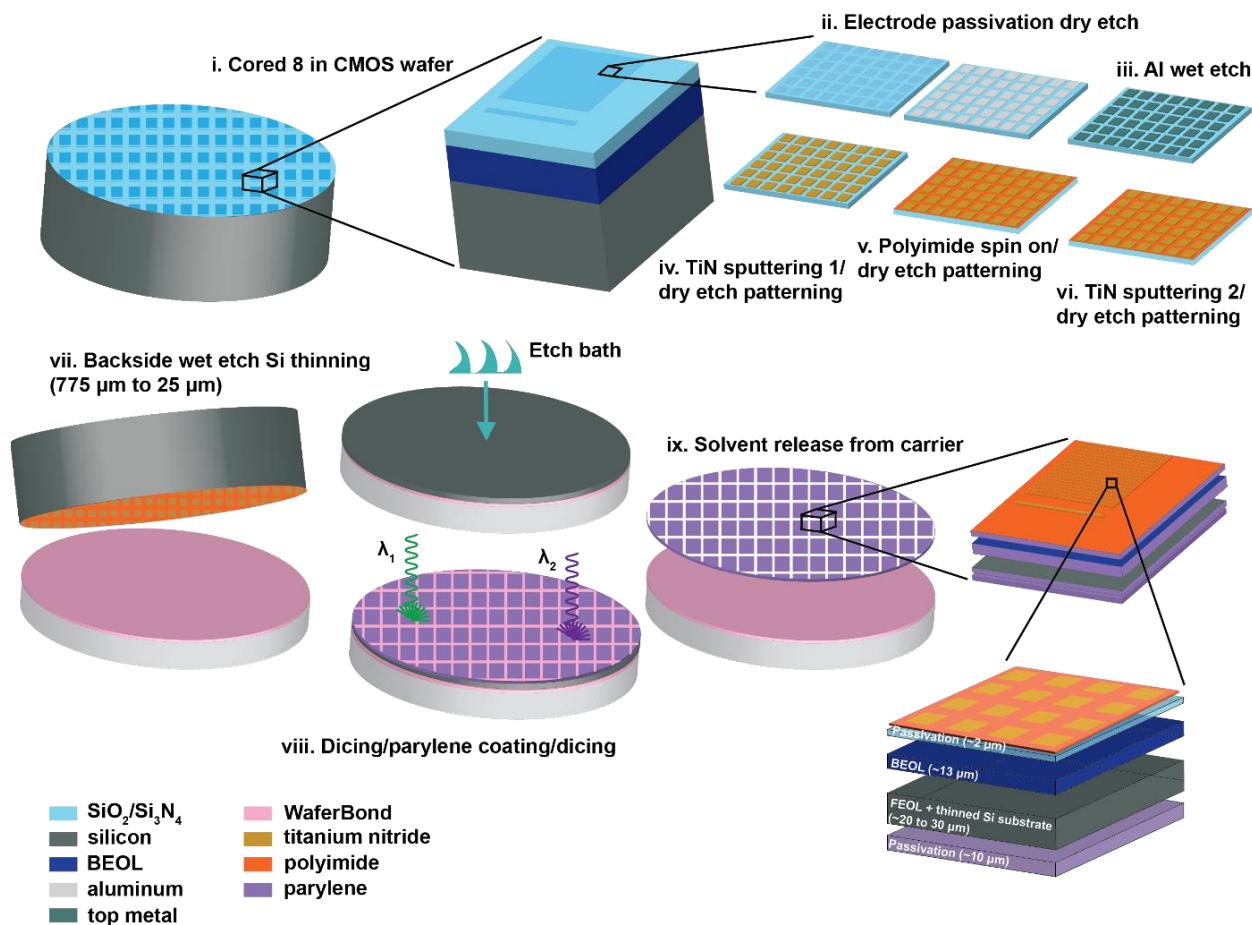

2012
2013
2014
2015
2016

Fig. S2. Architecture of the relay station. (A) Functional diagram of the modules in the relay station. (B) Photos of the relay station with cabling. (C) HDMI connector pinout diagram. (D) Power-amplifier board. (E) Transceiver board, with a Teensy 4.1 board (the top SMA connector is used for testing only). (F) UWB antenna board. (G) Coil board.


Fig. S3. Coupon processing. A cross-section through the microelectrode array (MEA) region shows the pristine wafer with bulk Si substrate (i) post-processed to expose the electrodes (ii and iii) followed by lift-off patterning of a protective TiN layer (iv), spin-on polyimide encapsulation (v), surface impedance optimization with a second lift-off patterned TiN layer (vi), coupon dicing, thinning to remove the bulk of the substrate Si down to $\sim 25 \mu\text{m}$ RST (remaining silicon thickness) (vii), and finally parylene encapsulation (viii) and solvent release (ix).

2017
2018
2019
2020
2021
2022
2023

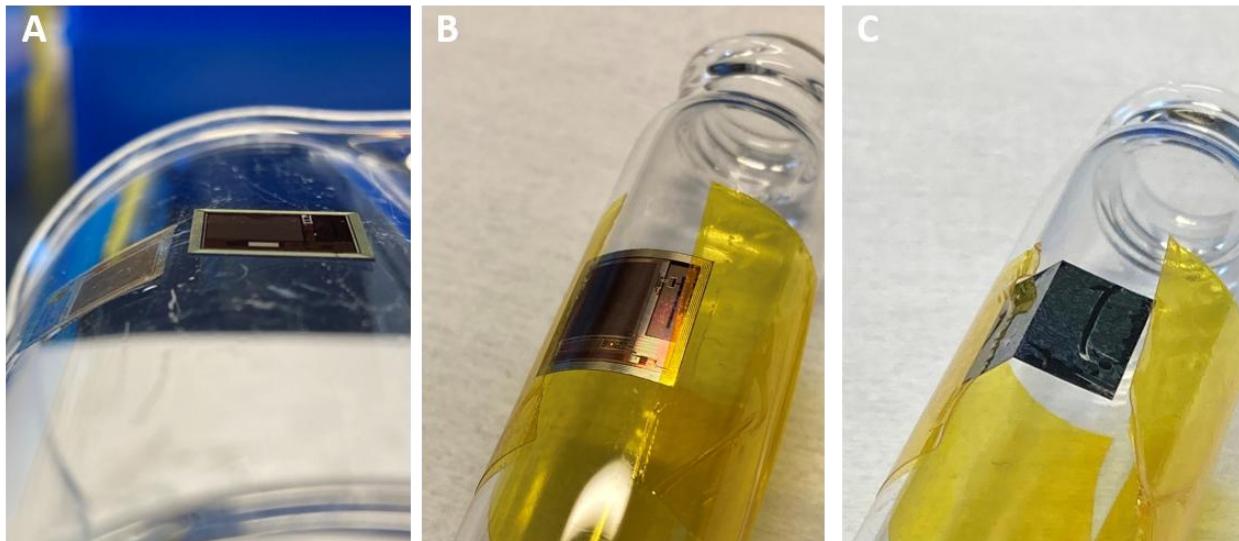

2024

Fig. S4. Titanium nitride characterization. (A) The characteristic roughened morphology of the deposited TiN films was observed with SEM. SEM images of TiN films were acquired on a FEI Helios dual beam FIB-SEM. (B) Surface roughness of the deposited TiN was quantified using AFM giving a root mean square roughness of 3.9 nm. Surface roughness was measured with a Bruker Dimension Icon AFM in tapping mode. Raman scattering was measured on a Renishaw inVia Raman microscope. XPS elemental analysis was performed on a PHI VersaProbe II with peak analysis done using PHI MultiPak software. (C) Electrochemical impedance spectroscopy was used to verify the reduction in electrode impedance from the TiN films. A 20 mV amplitude sinusoidal applied voltage was swept from 10^6 to 10^{-1} Hz with a large area Pt coil counter electrode and Ag/AgCl reference electrode. A 20 μ m \times 20 μ m working TiN test electrode (red) was measured in 10 \times PBS. For comparison, a 25 μ m \times 25 μ m Au electrode (blue), measured in 1 \times PBS is shown as well. The TiN CV curves were measured using a 1 cm^2 TiN working electrode, Ag/AgCl pellet reference electrode, and Pt coil counter electrode in 1 \times PBS between 1.3 and -1.3 V at a scan rate of 100 mV/s. Electrochemical measurements were made using a CH Instruments 760D potentiostat and curve fitting to the equivalent circuit model shown here consisting of a double layer capacitor (constant phase element CPE with leakage resistance R_{ct}) at the electrode surface, solution resistance R_s , and parasitic capacitance C_p was done with ZView software (Scribner Associates).

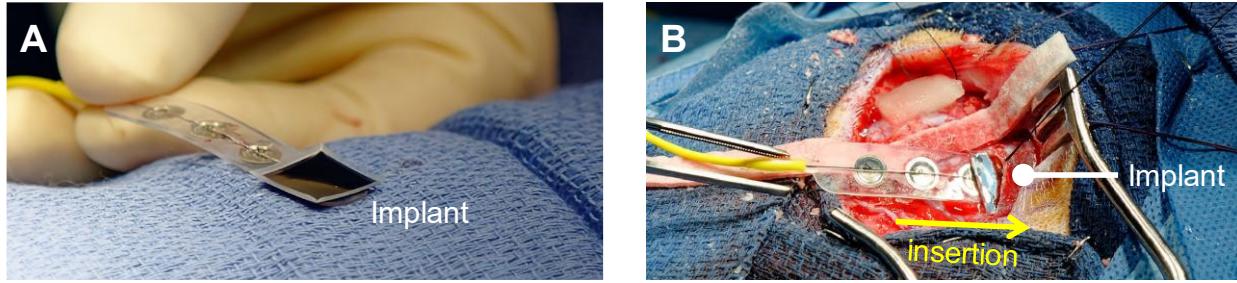
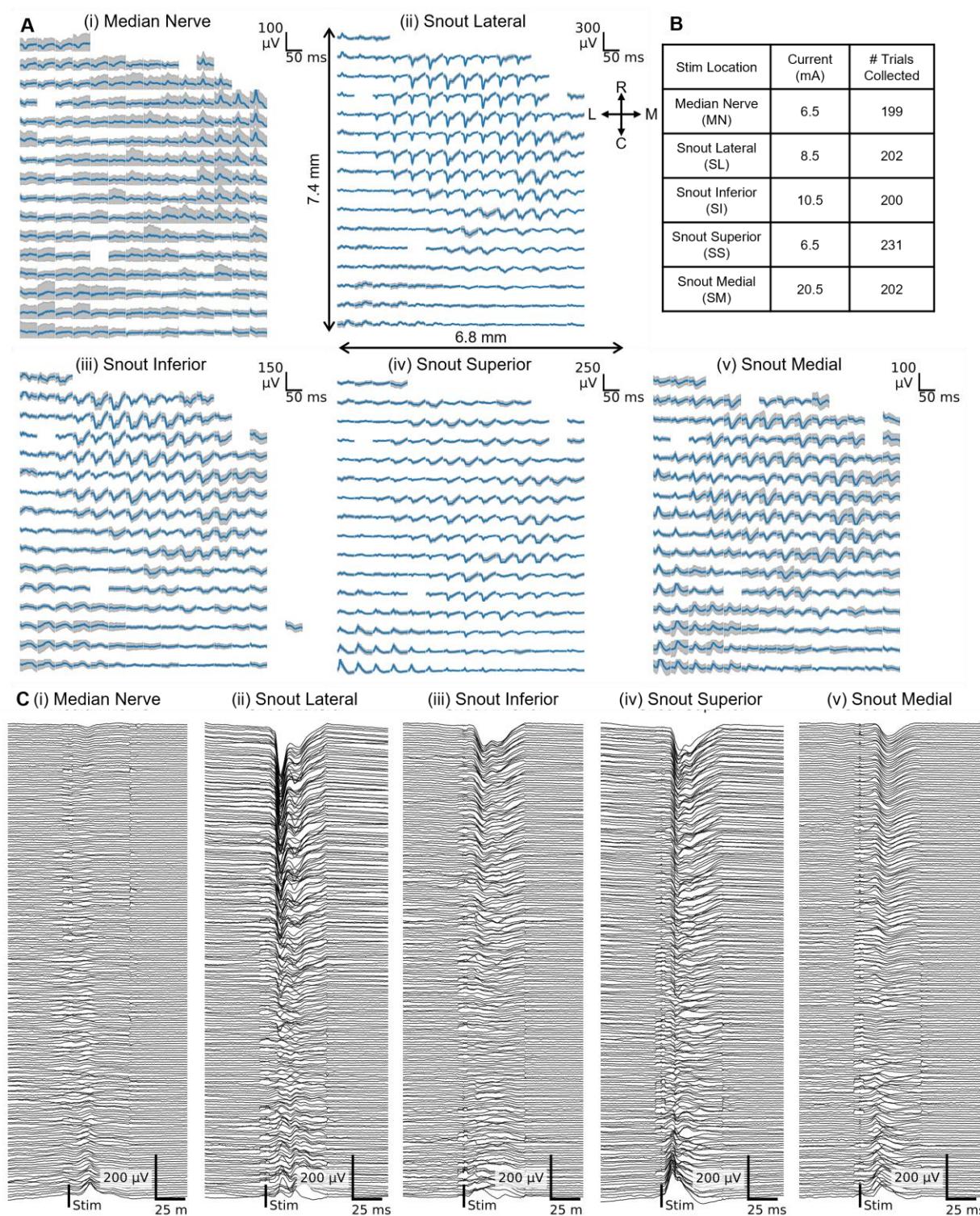


Fig. S5. Wafer-scale processing. Proceeding in a similar manner to coupon processing (i – vi), 200-mm (8") wafers cored from 300-mm foundry wafers receive a wet etch thinning step (vii) followed by laser dicing (viii) to yield more than 100 implant chips per 200-mm wafer.

2043
2044
2045
2046



2047
2048 **Fig. S6. Mechanical flexibility of thinned BISC chips.** (A) Image of a thinned chip (left)
2049 spontaneously conforming to the surface of a glass beaker with a radius of curvature of ~30 mm
2050 using water as the wetting liquid next to an unthinned, rigid chip (right). (B) Image of a chip bent
2051 to a curvature of ~10 mm in the more robust direction (front surface under tension) below the
2052 spontaneous elasto-capillary length cutoff. Kapton tape is used to supply the necessary bending
2053 force. No fracturing occurs in the silicon down to this curvature. (C) Bending down to 10-mm
2054 radius in the opposite direction where the silicon experiences greater tensile stresses due to the
2055 position of the neutral plane, resulting in brittle fracture.

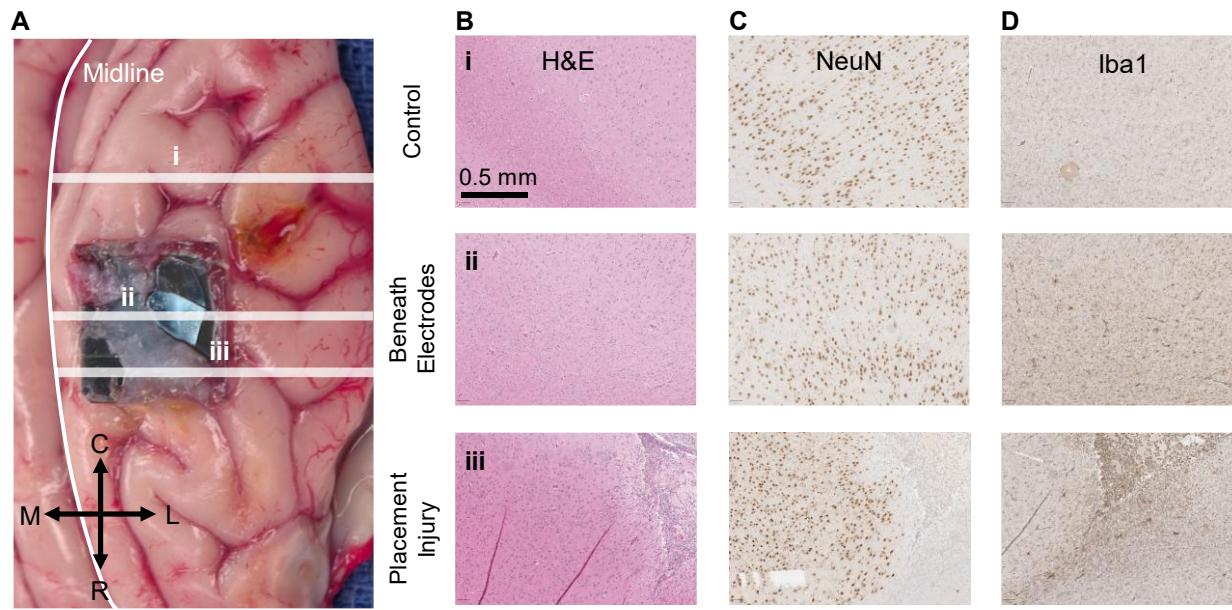
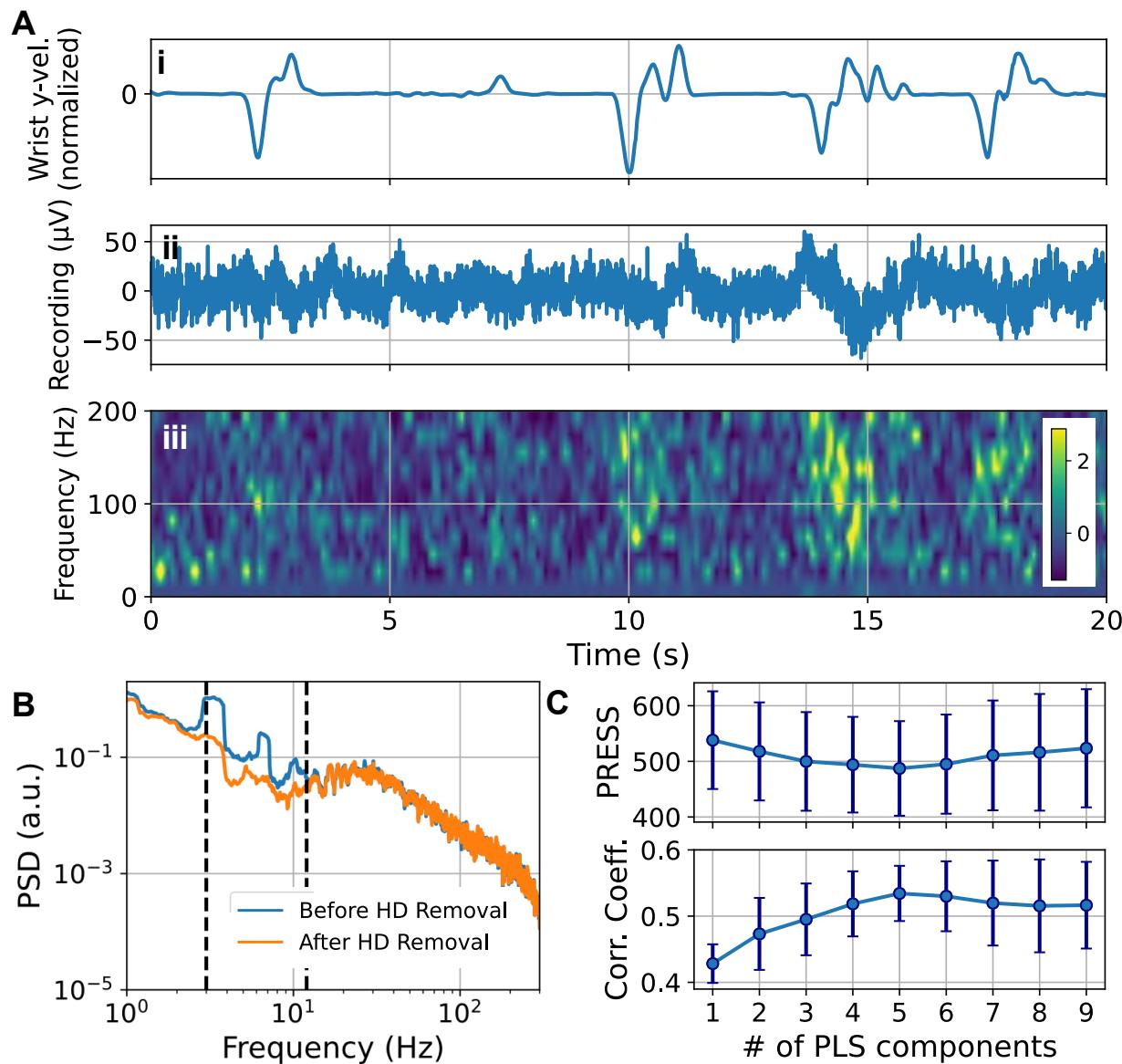

2056
2057

Fig. S7. Surgical insertion of the implant. (A) BISC device placed facedown on commercial strip electrodes, used as the insertion shuttle. (B) Device insertion to the subdural space.

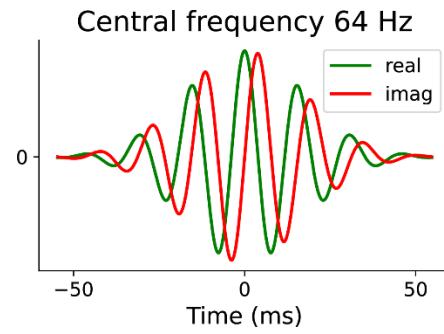


2058
 2059
 2060
 2061
 2062

Fig. S8. Somatosensory evoked potential (SSEP) recording from porcine model. (A) Trial averaged ($n = 100$) SSEPs evoked from five different stimulation locations. Gray shade indicates SD. (B) Stimulation current amplitude (2.79 Hz, pulse width 0.3 ms) applied to each location, and total number of SSEP trials recorded from each location. (C) Representation of (A) aligned on the same time axis.

Fig. S9. Post-mortem histological analysis of the porcine brain. (A) Photograph of the extracted brain showing rough estimates of the location of histological sections (control (i), beneath electrode array (ii), near device perimeter (iii)). The device fractured but remained intact during the extraction. Images of histological stainings for (B) hematoxylin and eosin (H&E), (C) NeuN, (D) Iba1. Histological sections (5- μ m thick) of the left occipital cortex (i), taken as a control sample, show no discernable pathological changes. Sections from the left frontal cortex taken directly beneath the electrodes (ii) show no significant pathology by H&E stain or an immunoperoxidase stain for NeuN. However, a mild reactive microgliosis is highlighted with an immunoperoxidase stain for Iba1. Sections from the left frontal cortex taken at the site of a placement injury (iii) show a small focus of cortical tissue loss by H&E stain, consistent with mechanical injury. An immunoperoxidase stain for NeuN highlight the focal loss of neurons, and an immunoperoxidase stain for Iba1 highlight macrophages and reactive microglia associated with the cortical lesion.

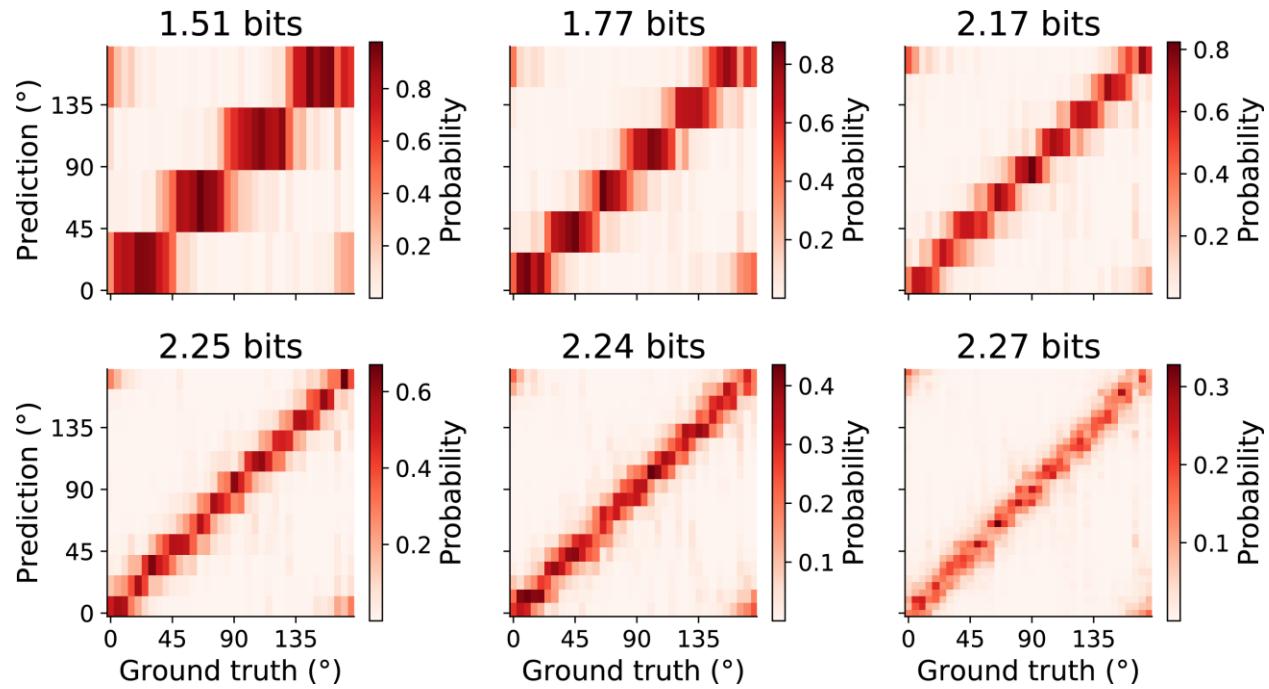
Fig. S10. Motor feature decoder optimization and example channel recording. (A) Example representation of a band-pass filtered (0.3 – 300 Hz) channel recording (ii) and spectrogram (iii) aligned to the subject's wrist velocity in y-direction (front-back) (i). (B) Example representation of a channel power spectral density (PSD) before and after removing hemodynamics (HD). Dashed lines indicate the band-pass filter range (3 – 12 Hz) that was applied to extract the HD time series components. (C) Linear parametric sweep of the number of partial least squares (PLS) components, and the resulting predictive error sum of squares (PRESS) (top) and Pearson's correlation coefficient (bottom) between observed motor feature (normalized wrist velocity in y-direction) and PLS prediction. Error bars indicate SE. Plots in (A-ii), (A-iii) and (B) after HD removal represent the same data.


2076
2077
2078
2079
2080
2081
2082
2083
2084
2085

2086

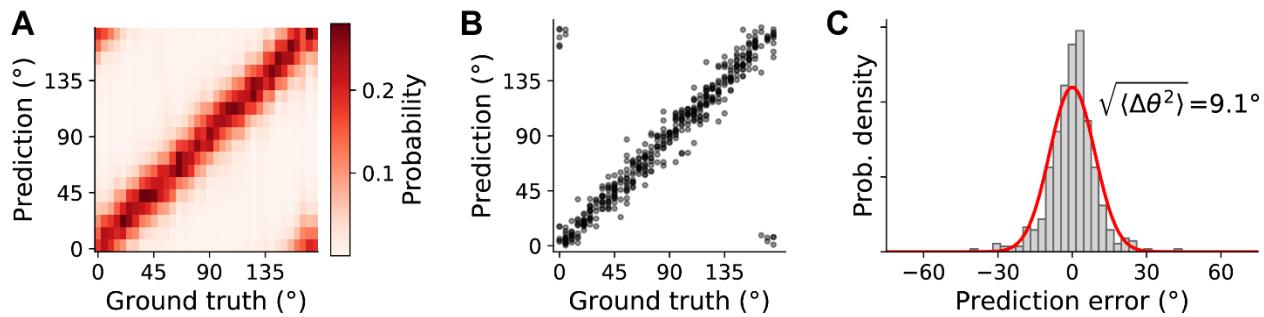
2088
2089
2090
2091
2092
2093

Fig. S11. Comparison of Fourier spectrum during fixation and grating stimuli for each channel. Each panel corresponds to one non-saturated channel. Solid lines are the trial average of Fourier spectrum, and shaded areas mark the standard deviation across trials. Y axis scales are different for each panel, however they all start from 0. Channels over V1 (inset) show more pronounced grating stimuli-induced response, which agrees with the dot stimuli-induced findings (see **Fig. 5D-E, G**).


2094

2095

Fig. S12. Complex Morlet wavelet example with central frequency as 64 Hz.



2096
2097 **Fig. S13. Grating-triggered response.** Raw grating-triggered-average result of an example
2098 channel for the frequency band centered at 64 Hz.

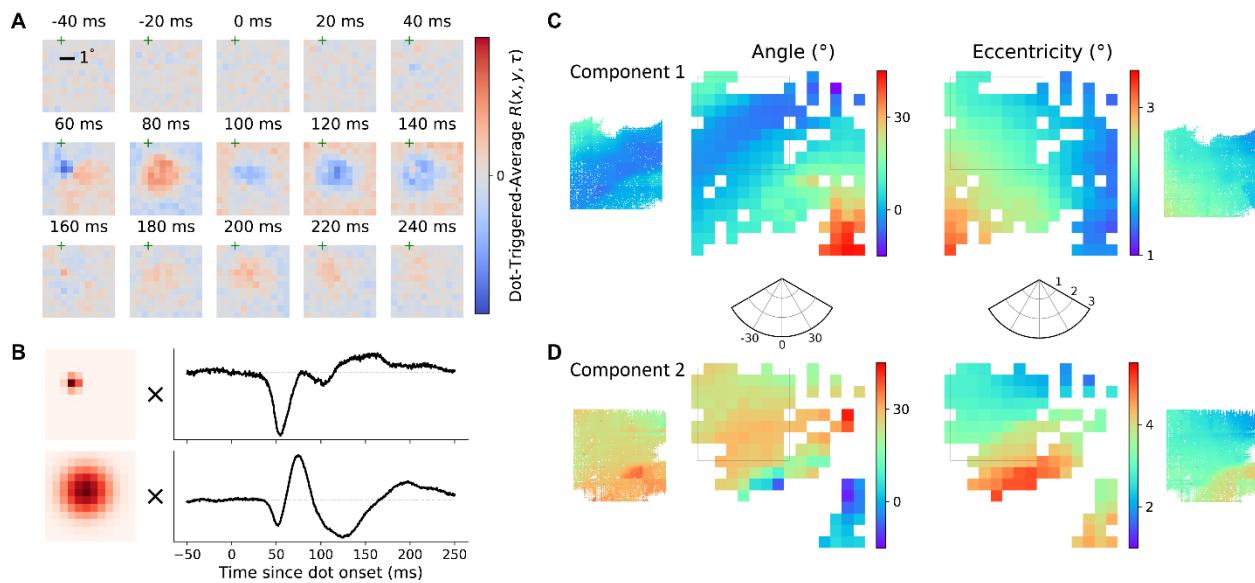


Fig. S14. Mutual information between decoder prediction and BISC response for different orientation discretization. From left to right, top to bottom, number of bins used to discretize [0°, 180°) gradually increases.

2099
2100
2101
2102

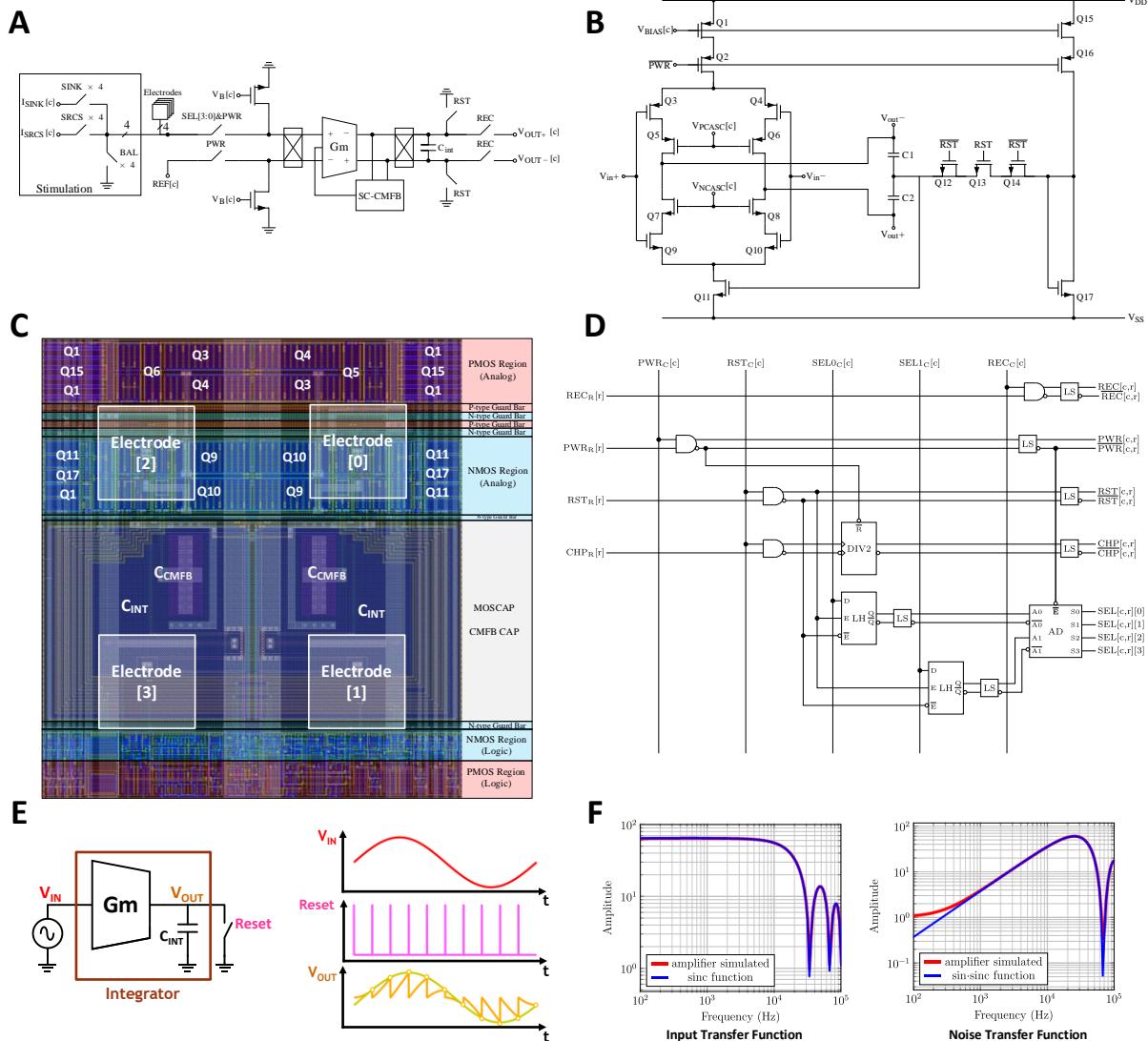
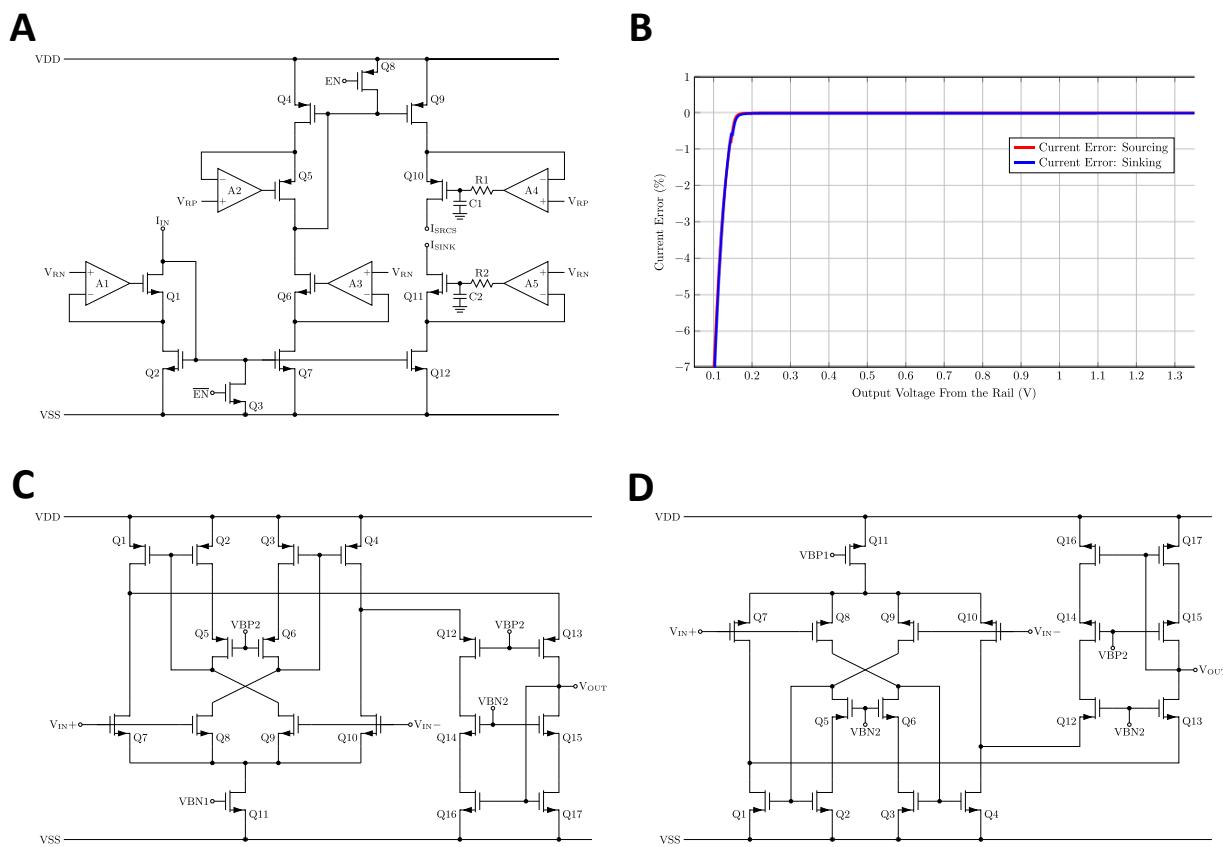
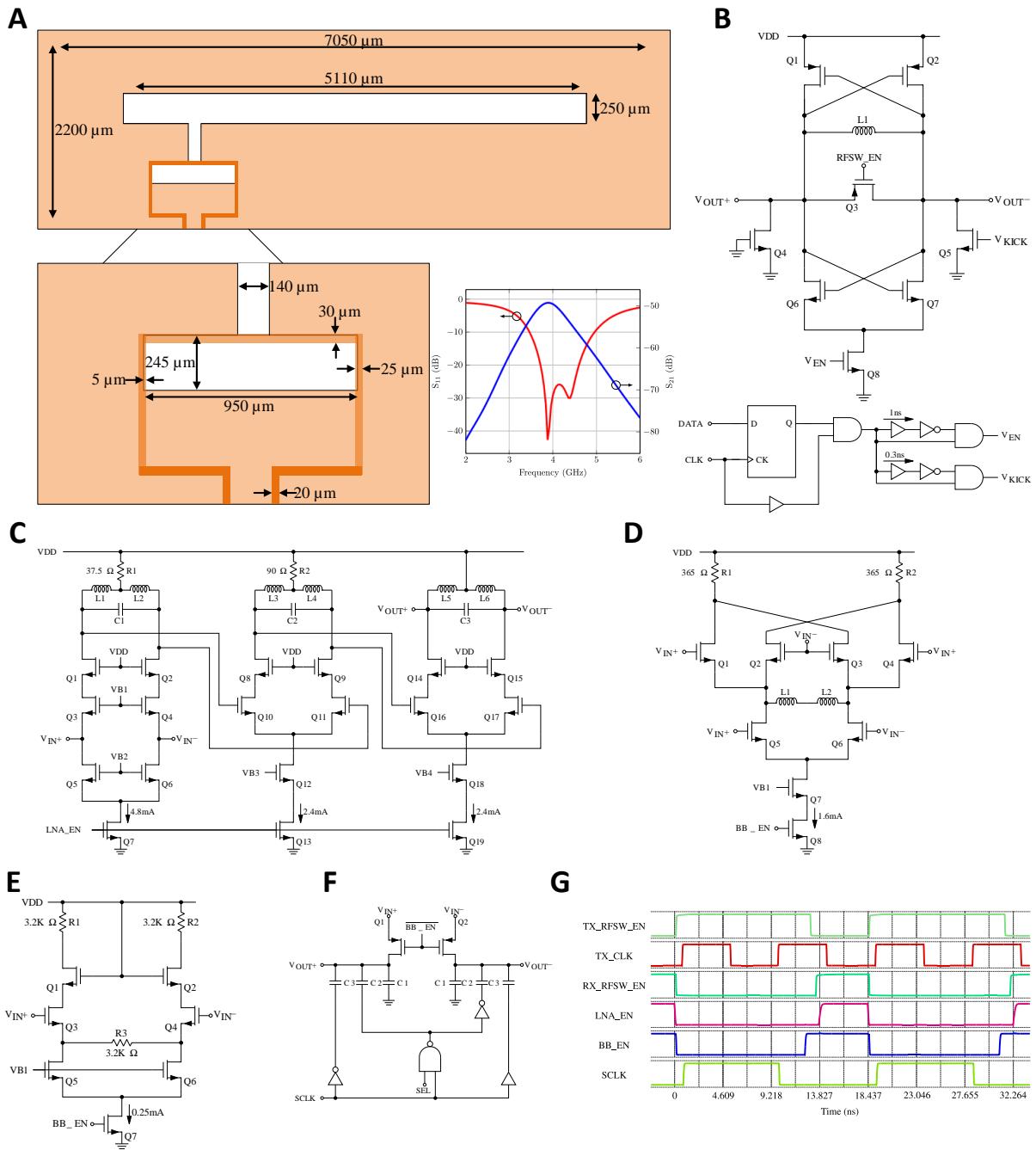


Fig. S15. Orientation decoder trained as a regressor. The training objective is the Euclidean distance between the circular mean of decoder output and the ground truth orientation in the complex space. Decoder output (A), point estimation (B) and error histogram (C) are shown as in Fig. 5L-M.

Fig. S16. Receptive fields (RF) estimated from unfiltered response and the retinotopic maps of two components. (A) Dot-triggered-average of one example channel response without band-passed filtering. (B) Two component decomposition of the receptive field in (A). Each component is time-space separated and the spatial profile is approximated by 2D Gaussian function. (C) RF location of the first component, i.e. the one with smaller spatial extent. Dense recordings on one corner of the chip are analyzed in the same fashion, shown in inset figures on both sides. (D) RF location of the second component, i.e. the one with larger spatial extent.


2108
2109
2110
2111
2112
2113
2114
2115

2116
2117 **Fig. S17. Architecture of the pixel.** (A) Functional diagram of pixel. (B) Schematic of the Gm-C
2118 integrator, implemented as an inverter-based amplifier. (C) Layout of the pixel. (D) Schematic of
2119 digital logic used for recording in each pixel. [c] and [r] correspond to the pixel's column and row
2120 addresses. (E) Depiction of the boxcar averaging principle used for amplification. The input is a
2121 sine wave, and the output switch resets periodically for a very short time. If the reset frequency is
2122 much higher than the input signal frequency, the output of the integrator becomes a sampled,
2123 amplified version of the input. (F) The theoretical and simulated transfer functions of the amplifier
2124 input and noise.



2125
2126 **Fig. S18. Design and characterization of the programmable gain amplifier (PGA).** (A) Design
2127 of a ping-pong charge amplifier. This is the first stage of the PGA. This charge amplifier moves
2128 the charges integrated inside the pixels to its transfer capacitors C_{T1} and C_{T2} . The ping-pong
2129 operation eliminates the need for two charge amplifiers, thereby saving power. A single ended
2130 version is shown for clarity while the actual implementation is differential. The operational
2131 amplifier (OPAMP) is implemented as the folded cascaded operational transconductance amplifier
2132 (OTA) in (D). This OTA has cascaded current sources at the second stage to boost DC gain. (B)
2133 Design of a programmable gain ADC driver. This is the second stage of the PGA following the
2134 charge amplifier. Correlated double sampling is used to enhance the linearity as described in ¹¹².
2135 A single-ended version is shown for clarity and the OTA is the same as (D) without the cascoding
2136 at the second stage. (C) The timing diagram of the switches in (A) and (B). (D) The OTA design
2137 with common-mode feedback. (E) The simulated linearity of the neural amplifier and the charge
2138 amplifier. Spurious free dynamic range (SFDR) is over 75 dB. (F) The simulated linearity of the
2139 PGA. SFDR is over 71 dB.

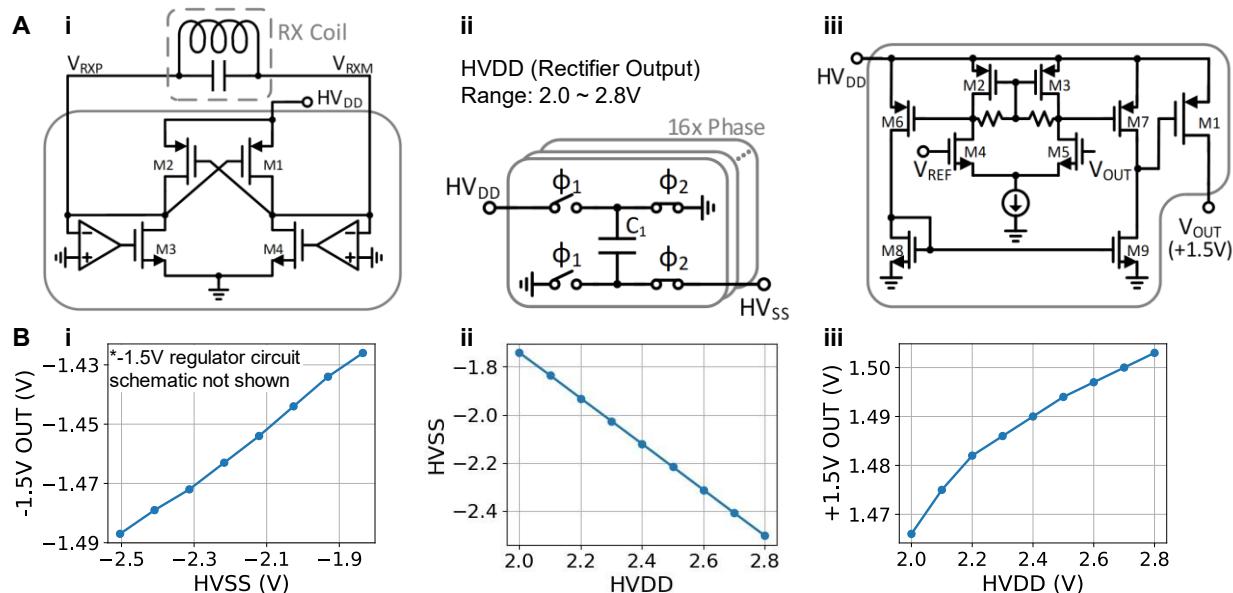
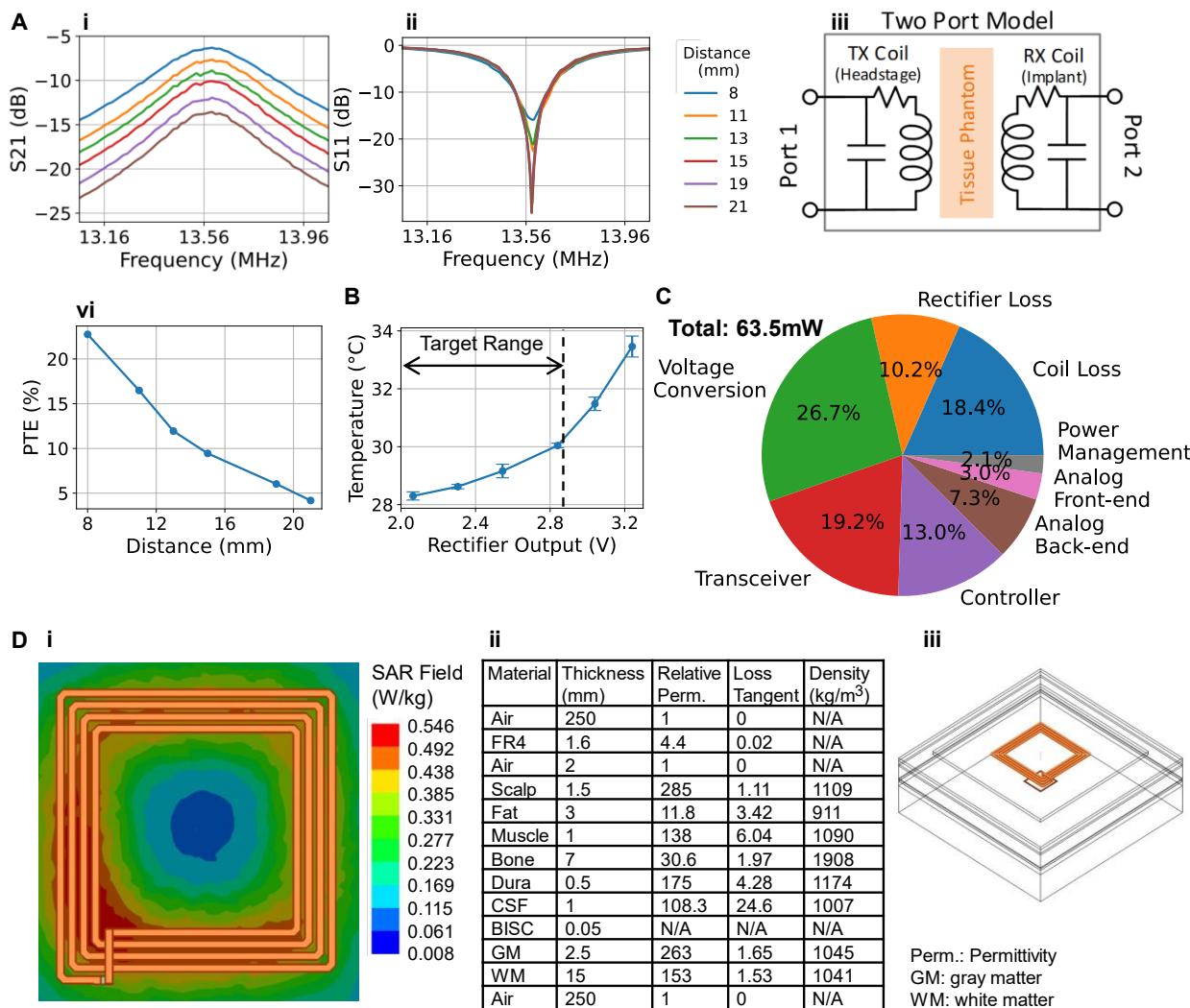


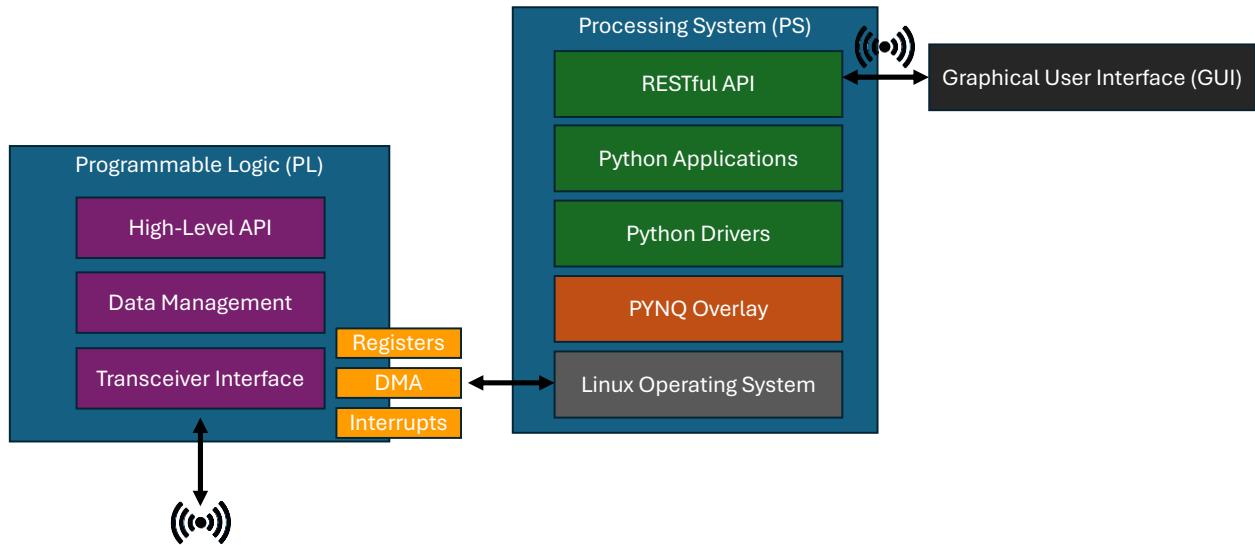
Fig. S19. Design and characterization of the stimulation current generator. (A) Design of the regulated cascode current driver. Operational amplifier (OPAMP) A1, A3, A5 are implemented as PMOS recycling folded cascode input operational transconductance amplifier (OTA) and A2, A4 are implemented as NMOS input recycling folded cascode OTA. R1, R2 and C1, C2 are used to protect the output of OPAMP A4 and A5 by filtering the voltage spikes through the parasitic drain-to-gate capacitance of Q10 and Q11, when the stimulation polarity changes during monophasic stimulation. (B) The simulated voltage compliance under highest (1.12 mA, worst-case) stimulation current. The current error is less than 1% when the output voltages of the current driver are more than 150 mV from the rails (-1.35 V to 1.35 V). (C) The PMOS input recycling folded cascode OTA, based on ¹³⁰. Compared to simple a 5-Transistor OTA, this OTA offers higher DC gain and gain-bandwidth product for the same power consumption. (D) The NMOS input recycling folded cascode OTA.


2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153

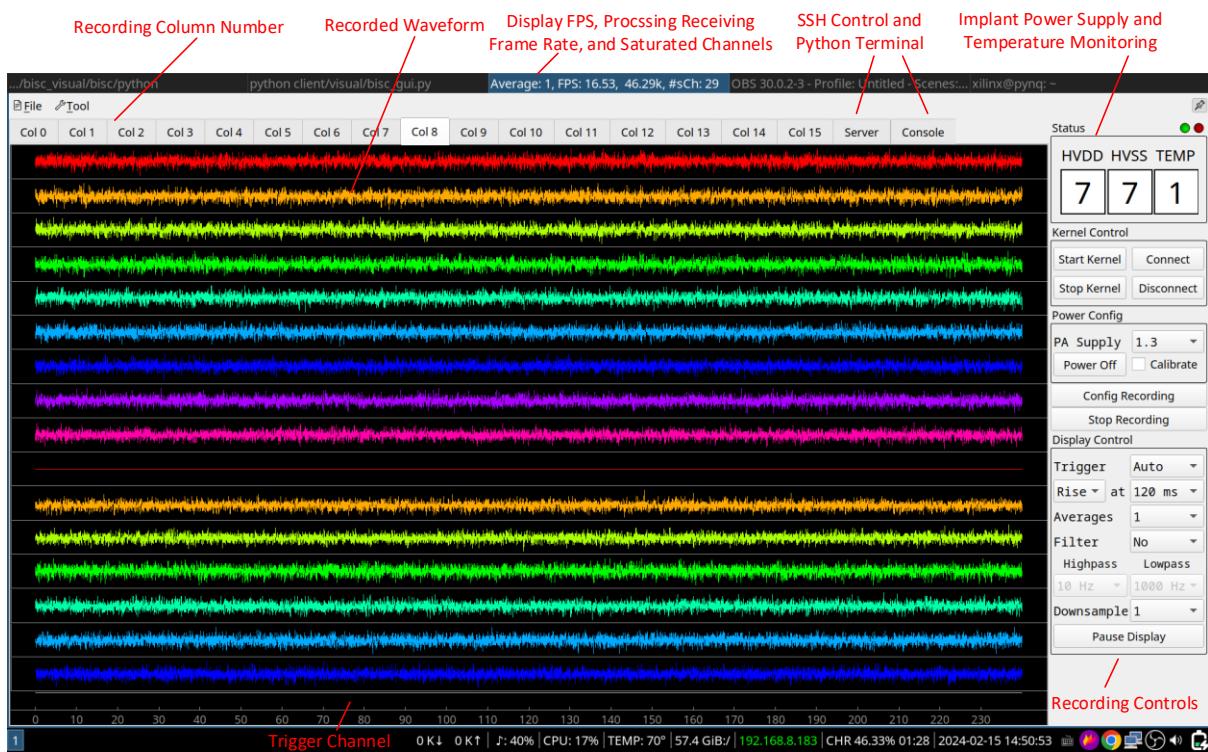
2154
2155 **Fig. S20. Design and characterization of the wireless transceiver.** (A) Design of the on-chip
2156 ultra-wideband (UWB) antenna and simulated S-parameters. The feed ring is made of the
2157 redistribution layer (RDL) metal, and the bottom plate is a stack of METAL6 to METAL1; small
2158 metal slots are made in the bottom plate to satisfy density rules (not shown) (B) UWB transmitter
2159 based on LC complementary oscillator, and a VEN, VKICK pulse generator. (C) Three-stage inductor
2160 loaded low noise amplifier (LNA). (D) Self-mixing mixer. (E) Baseband low-pass amplifier. (F)
2161 Charge redistribution sampling stage for subtracting a threshold voltage from the output of (E),
2162 with one-bit programmability. (G) Timing diagram of the wireless transceiver.

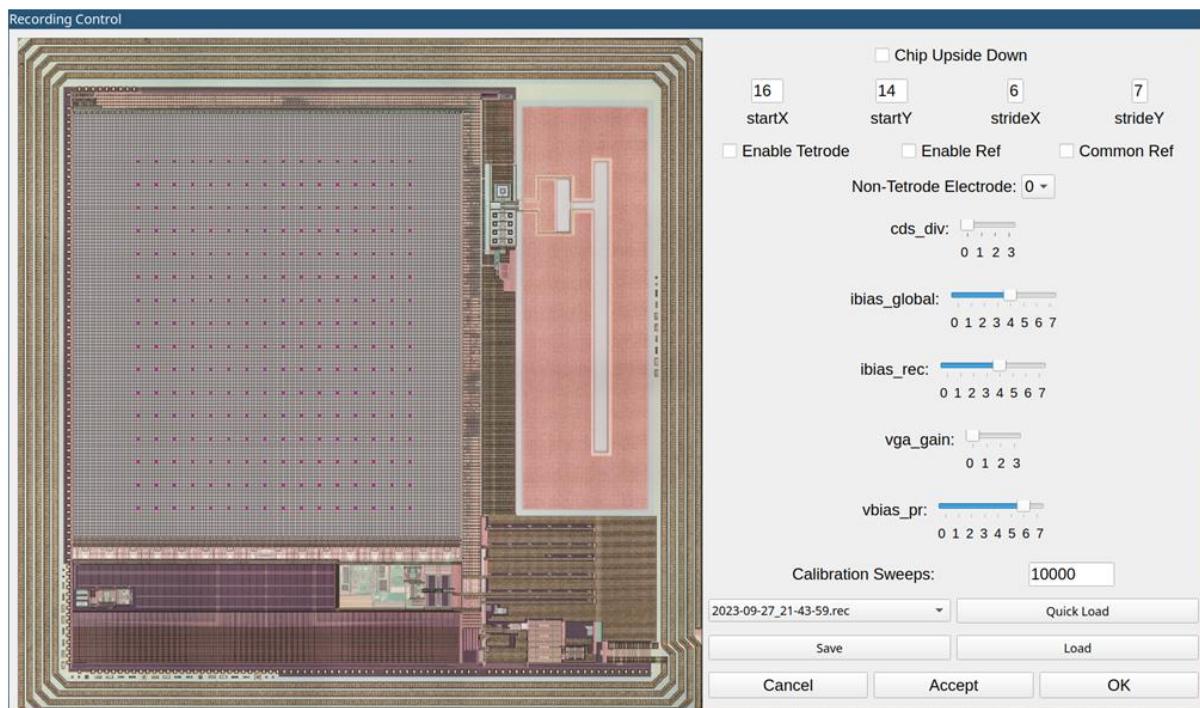
Fig. S21. Design and characterization of the wireless power transfer circuit. (A) Key circuit blocks: active rectifier (i), switch cap DC-DC converter (ii), +1.5V regulator (iii). **(B)** Measured DC-DC line regulation of the key blocks: -1.5V regulator (i), switch cap DC-DC converter (ii), +1.5V regulator (iii). HV_{DD} denotes the rectifier DC output, and HV_{SS} denotes DC-DC converter output.

Fig. S22. Power, thermal, and specific absorption rate (SAR) characterization. (A) Coil link characterization with two port S-parameter measurement. S21 (i) and S11 (ii) were measured with chicken breast as tissue phantom (iii), assuming an ideal conjugate matched impedance on the transmitting side (Port 1) and a $75\ \Omega$ load on the receiving side (Port 2) which is the linear load equivalence of the overall circuit load. S21 is converted to power transfer efficiency (PTE) for these loads (iv). (B) Temperature measurement of a fully passivated device in recording mode under different power delivery conditions. (C) Power consumption breakdown of the device when it is in recording mode. (D) SAR simulation result (i) assuming 1.5-cm implant depth and six-layer brain model (ii), (iii).


2177
2178 **Downlink Packet**
2179

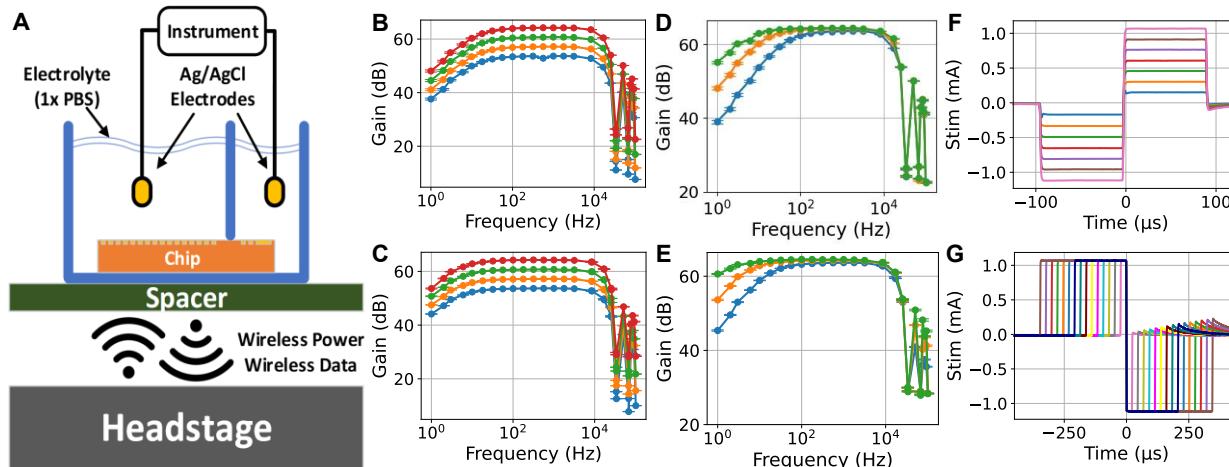
2177
2178 **Uplink Packet**
2179


Fig. S23. Communication packets in the BISC system. Downlink for the direction from the relay station to the implant. Uplink for the direction from implant to relay station.


Fig. S24. The software stack and hardware interface in the BISC system.

2180
2181
2182

A



B

2183
2184 **Fig. S25. GUI software for recording.** (A) The main interface displaying 16 channels (rows) in
2185 each tab (columns). The user can switch the displayed column on the fly by clicking the recording
2186 column number tabs at the top. The recorded data can be played back using the same GUI. The
2187 voltage and temperature readings from the implant are displayed on the right-hand side. (B) The
2188 interface window to configure address of recording pixels (shown as pink dots over the array).

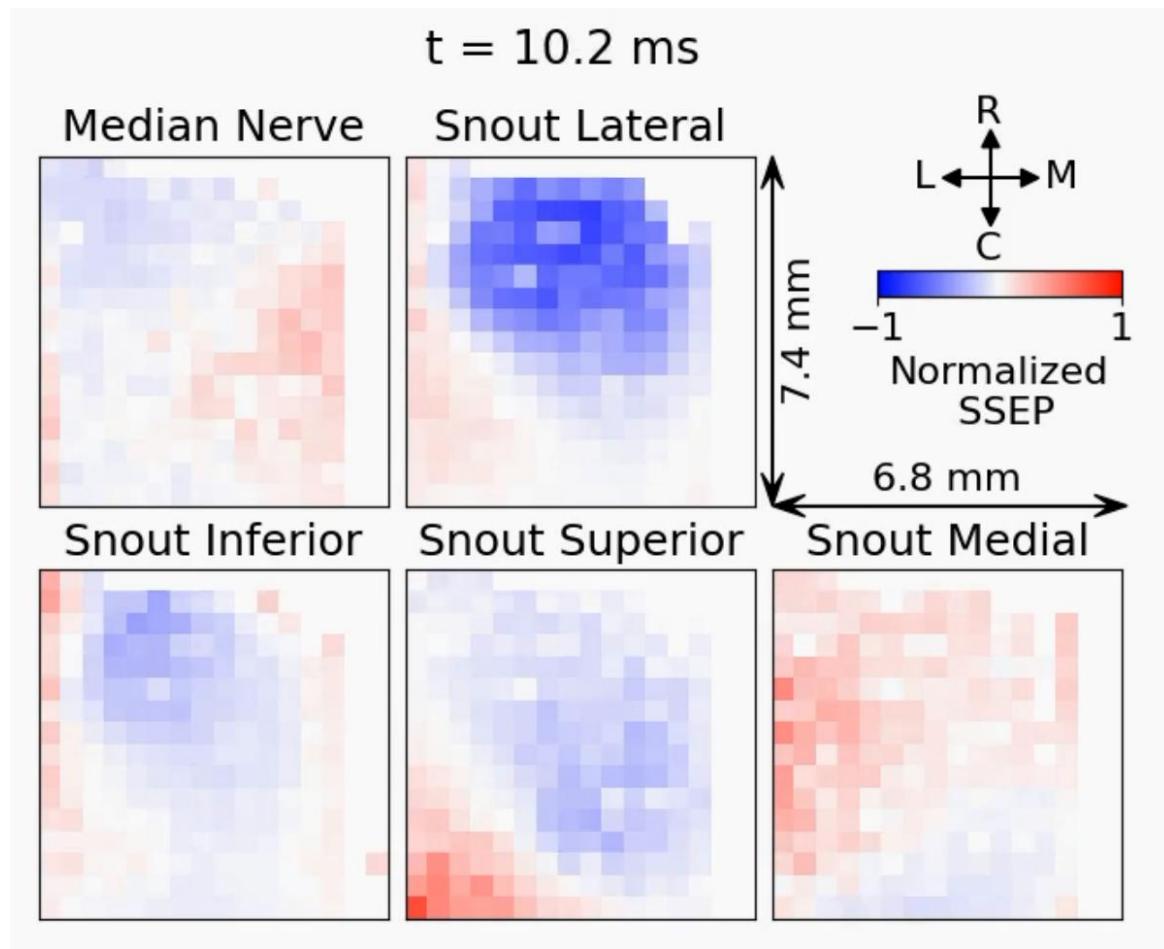
2189 Other recording parameters including gain and high-pass corner can also be controlled using
2190 sliders.

2191 **Fig. S26. Bench-top *in vitro* characterization.** (A) Description of the measurement setup. All
2192 measurements were taken wirelessly, with 1× phosphate buffered saline (PBS) electrolyte and
2193 Ag/AgCl electrodes. Electrodes were either driven by an arbitrary waveform generator (for
2194 recording) or connected to a transimpedance amplifier (for stimulation). (B) Frequency response
2195 across different gain configurations from a representative 16×16 recording. This plot is same as
2196 Fig. 2C but reproduced here for comparison with (C) (flat band gains: 53.7 ± 0.20 , 57.2 ± 0.21 ,
2197 60.7 ± 0.20 , 64.2 ± 0.19 dB, values: mean \pm SD. n = 255, 255, 245, 235). (C) Frequency response
2198 across different gain configurations from a representative 32×32 recording (flat band gains: 53.7 ± 0.28 ,
2199 57.2 ± 0.21 , 60.7 ± 0.39 , 64.2 ± 0.29 dB, values: mean \pm SD. n = 1012, 954, 919, 718). (D)
2200 Frequency response across different high-pass (HP) filter configurations from a representative
2201 16×16 recording. This plot is similar to **Fig. 2D** but measured with highest PGA gain configuration
2202 (3-dB corner: 6.20 ± 2.25 , 14.24 ± 2.35 , 54.42 ± 1.99 Hz, values: mean \pm SD. n = 150, 227, 250).
2203 (E) Frequency response across different high-pass (HP) filter configurations from a representative
2204 32×32 recording (3-dB corner: 1.41 ± 2.63 , 5.16 ± 1.88 , 22.10 ± 1.42 Hz, values: mean \pm SD. n =
2205 299, 727, 969). (F) Representative example of amplitude controlled cathodic-first stimulation
2206 (amplitudes: 160, 320, 480, 640, 800, 960, 1120 μA). (G) Representative example of pulse width
2207 controlled anodic-first stimulation (pulse widths: T, 2T, ..., 15T where T = 23.04 μs). Error bars in
2208 (B) – (E) indicate SE.

Instruction Name	OPCOD E	Action	Parameters
Recording	001	Initiates a recording sequence over the configured array dimensions for an optionally specified number of samples	Number of data samples to take from the array
Stimulation	111	Triggers a pulse stimulation	Width of the stimulation pulse divided to negative, positive and neutral phases
Power-on	110	Powers-on the pixel amplifiers	N/A
Halt	101	Stops an on-going recording	N/A
Configuration	010	Sets the configuration of a target block in the controller	The target block and the unique configuration for the block
Programming	011	Configures the polarity of the pixels for stimulation	The coordinates of the pixels targeted for stimulation and their initial polarities
Query Configuration	000	Query for the current state of configuration of a specific block in the controller	Block address

Table S1. Instruction set architecture of the BISC controller.

Reference	Neuralink 39,131	CorTec 132	Neuropace 133	WIMAGIN E 37,134	WAND 33	BISC
In Vivo Model	Swine, NHP*	Sheep	Human	Human	NHP	Swine, NHP
Integration Type	S	SL	SL	S	T	S
Dimensions w/o Electrodes (mm)	Radius: 11.5 Height: 8*	60×38×7	60×27.5×7.5	Radius: 25 Height: 12.54	36×33×15	12×12×0.05
Weight (g)	n.r.	n.r.	16	n.r.	17.95	< 0.1
Recording Electrode Type	Depth Polymer*	ECoG	ECoG	ECoG	Depth Probes	μECoG
Total # of Channel	1024	32	4	64	128	65536
Simultaneous Recording # of Channel	1024	32	4	64	96	256 / 1024
Noise (μV _{RMS})	6.8 / 8.98 (300 – 10k Hz / 5 – 1k Hz)	n.r.	n.r.	1 (0.5 – 300 Hz)	1.6	7.68 / 16.51 (10 – 4k Hz)
Amp Gain (V/V)	411 – 2661	100 - 750	n.r.	up to 1370	n.r.	484 – 1620
High-Pass Filter (Hz)	5 – 300	2	4 – 12	0.5	500	4 – 55 / 1 – 22
Low-Pass Filter (Hz)	10k	325	30 – 120	300	n.r.	15.1k
Sampling Rate (S/sec)	20k	1k	250	1k	1k	34k / 8.5k
ADC resolution (bits)	10	12	10	12	15	10
Power (mW)	n.r.	n.r.	n.a.	75	172	64
Power Link Type	IL* 250 kHz	IL 250 kHz	IL 20 – 50 kHz	IL 13.56 MHz	n.a.	IL 13.56 MHz
Battery	yes*	no	yes	no	yes	no
Data Link Type	BLE*	IrDA 880 – 900 nm	IL, OOK 20 – 50 kHz	FSK 402 – 405 MHz	BLE 2.4 GHz	UWB-IR 3.75 – 4.25 GHz
Data Rate (Mbps)	n.r.	n.r.	n.r.	0.45	1.96	108/54


2210

2211 T: Transcutaneous (Headstage), S: Subcutaneous, SL: Subcutaneous with Lead Connection
 2212 IL: Inductive Link, PAM: pulse amplitude modulation, UWB-IR: ultra-wideband impulse radio
 2213 IrDA: Infrared Data Association, BLE: Bluetooth Low Energy, FSK: Frequency Shift Keying
 2214 * From press conference ¹³⁵

2215

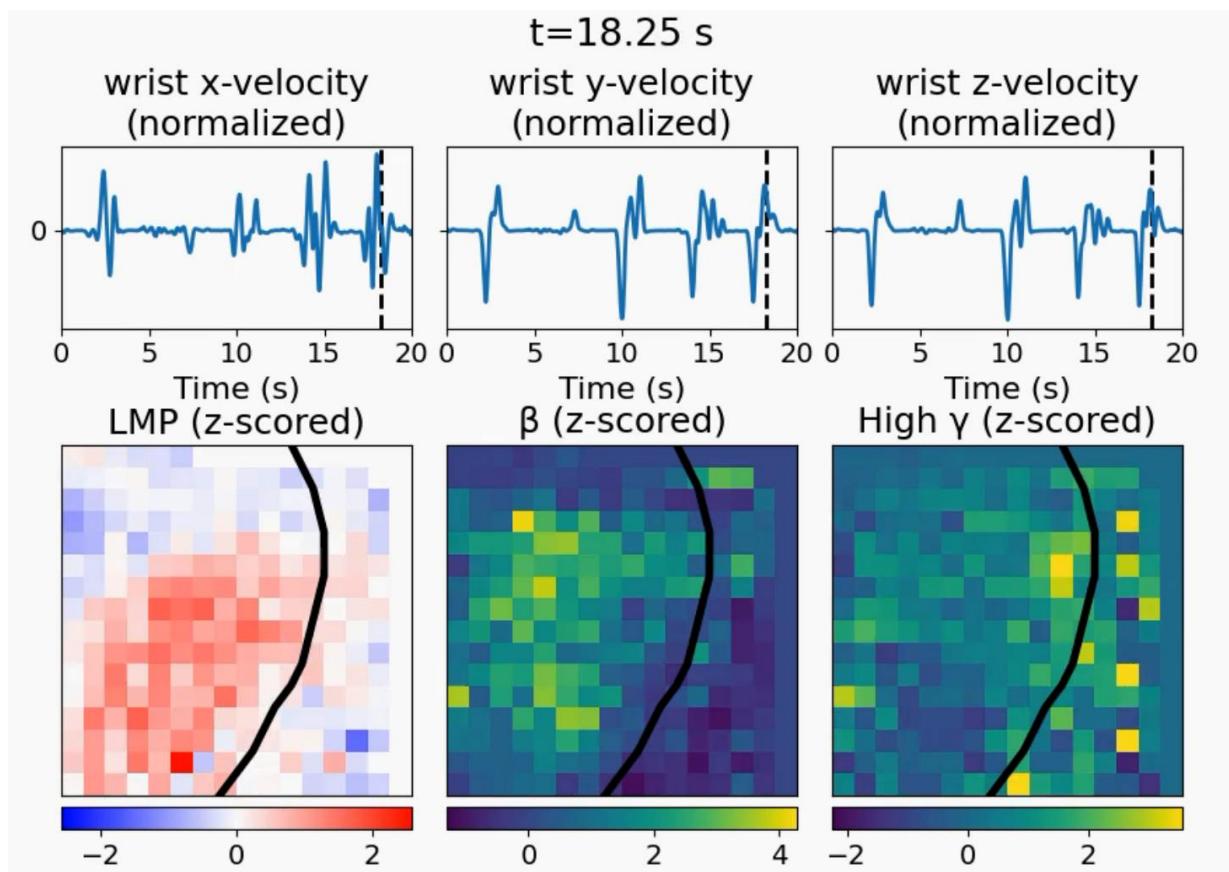
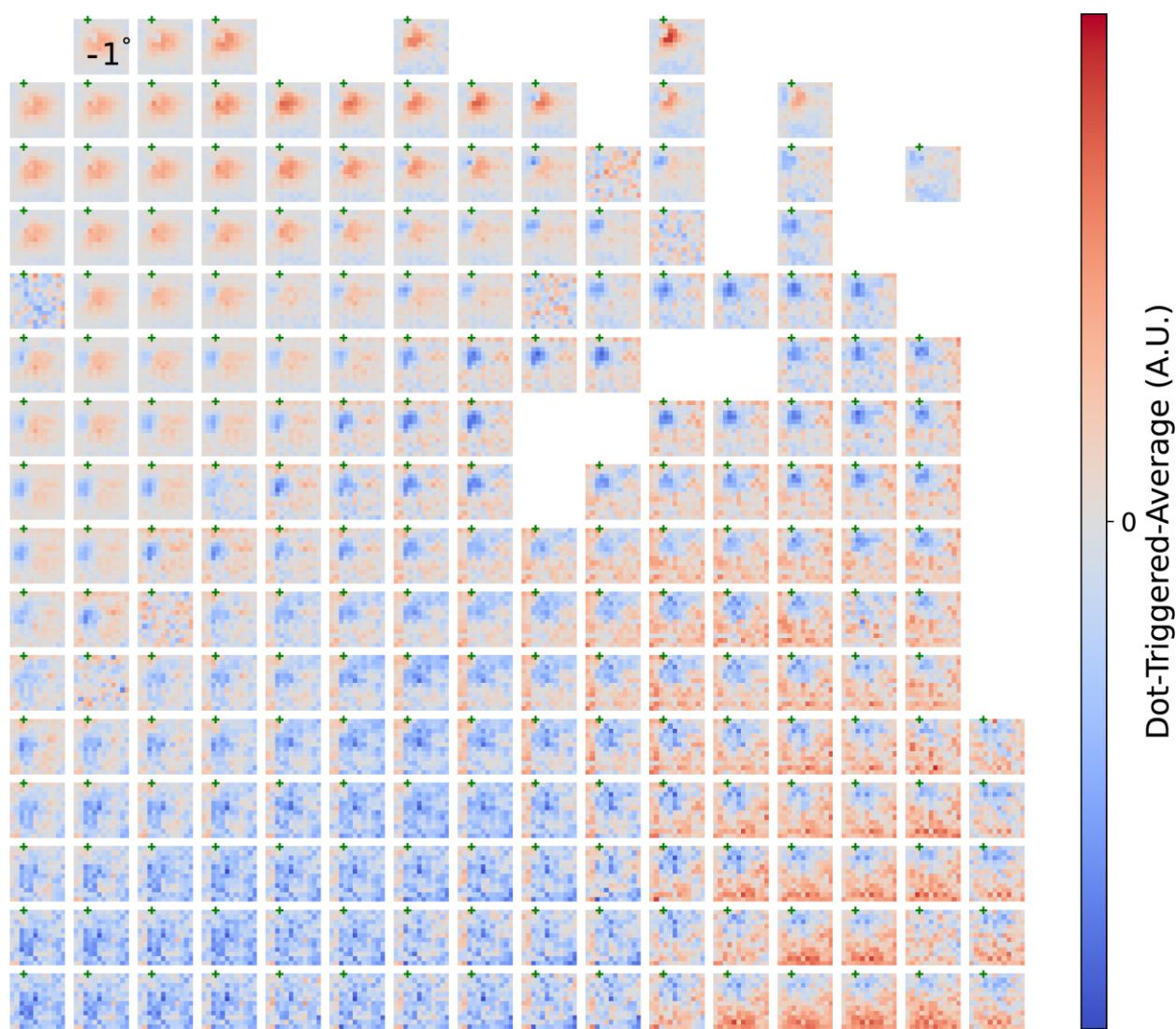
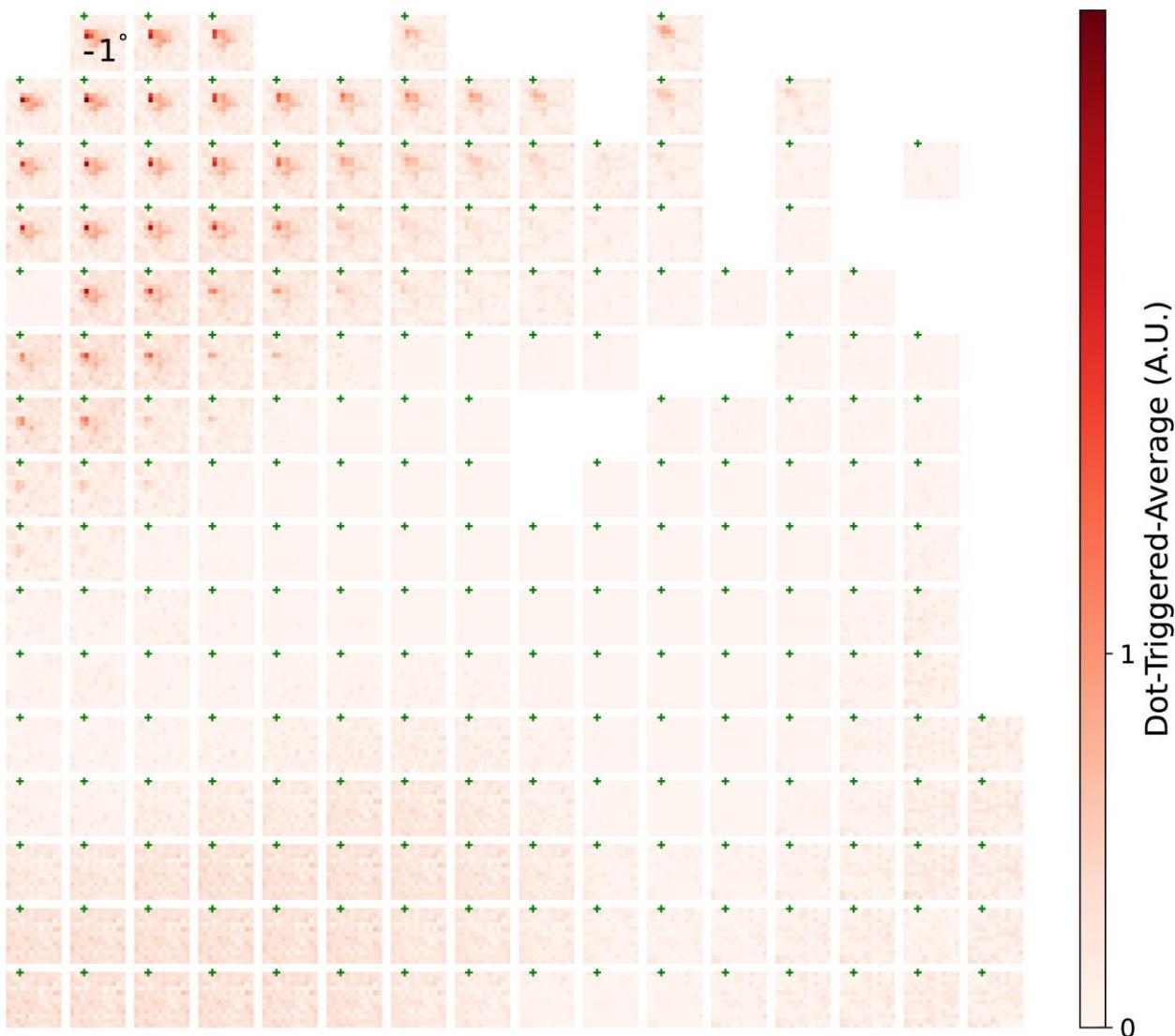

2216
2217

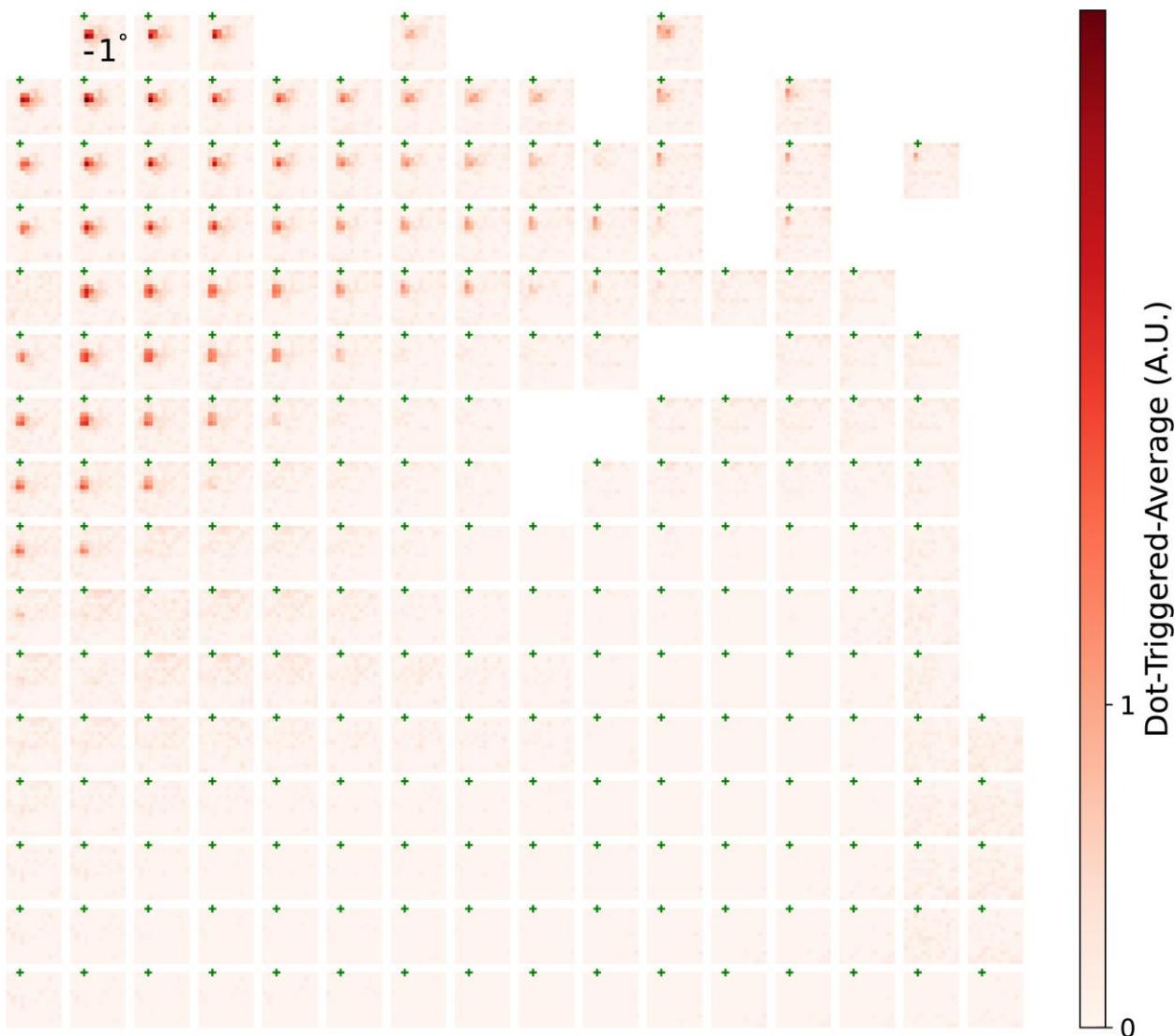
Table S2. Comparison with other wireless brain-computer interface devices

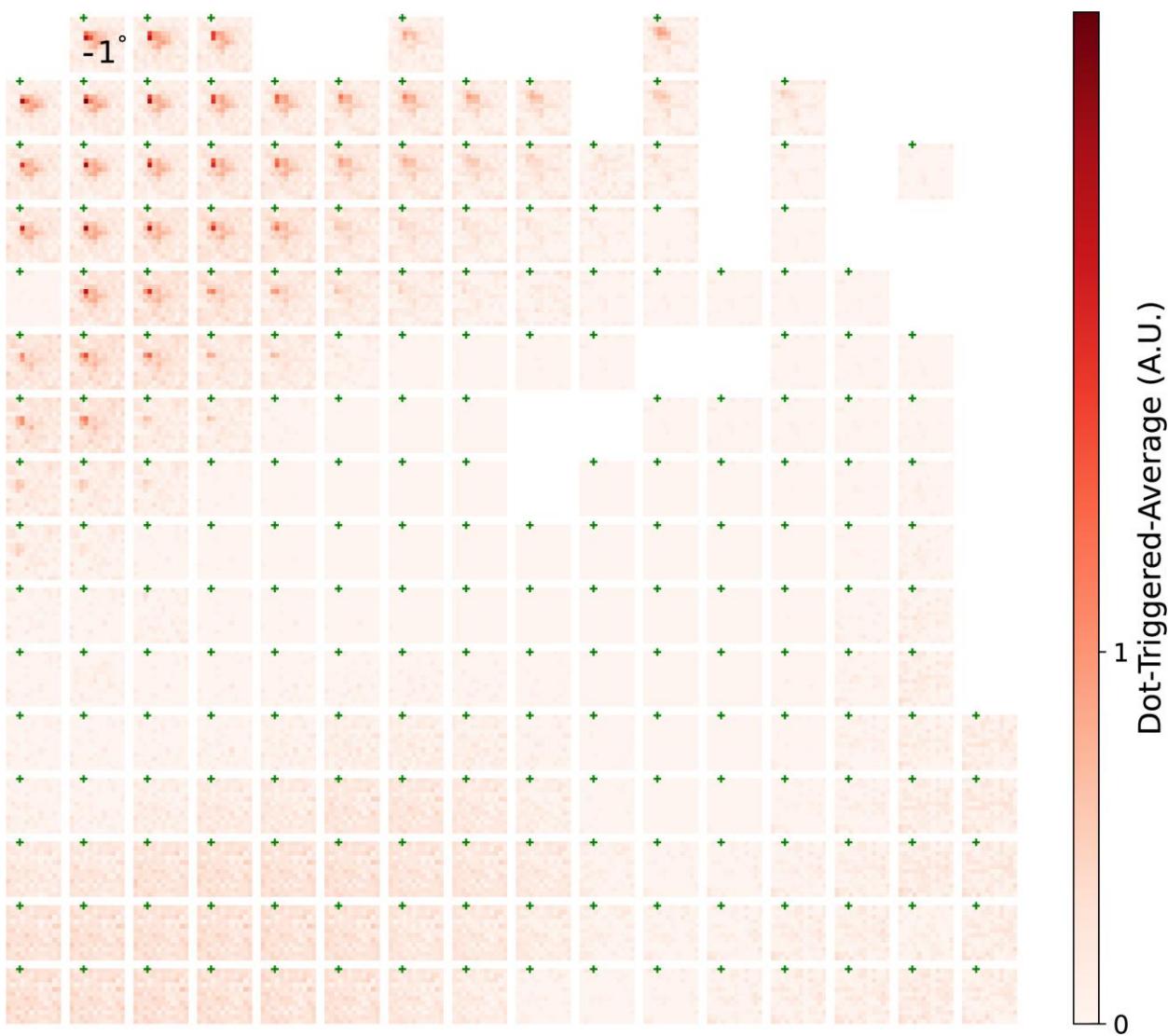

2218
2219

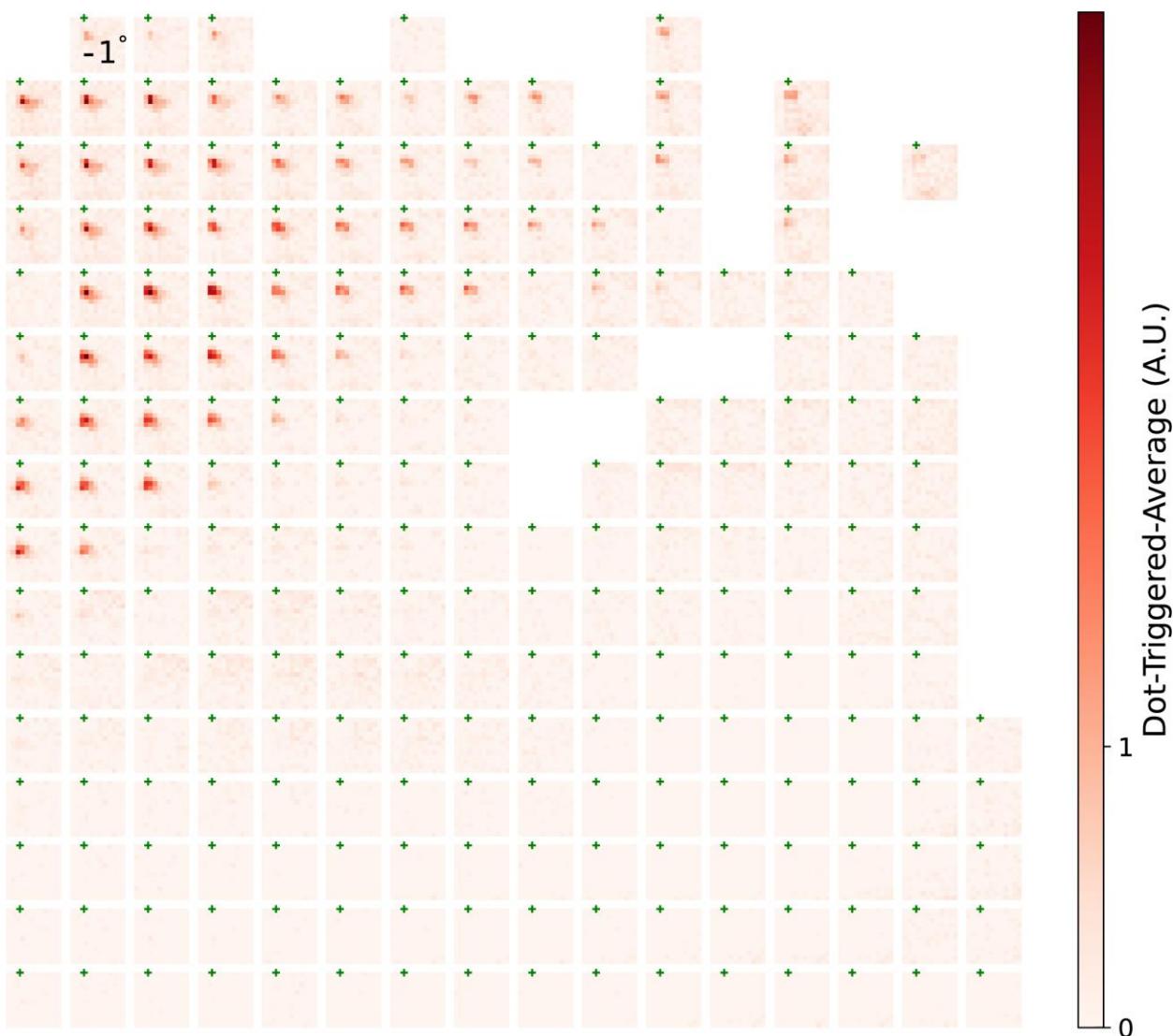
Video S1. Normalized somatosensory evoked potential (SSEP) recording from a porcine model, trial averaged ($n = 100$).

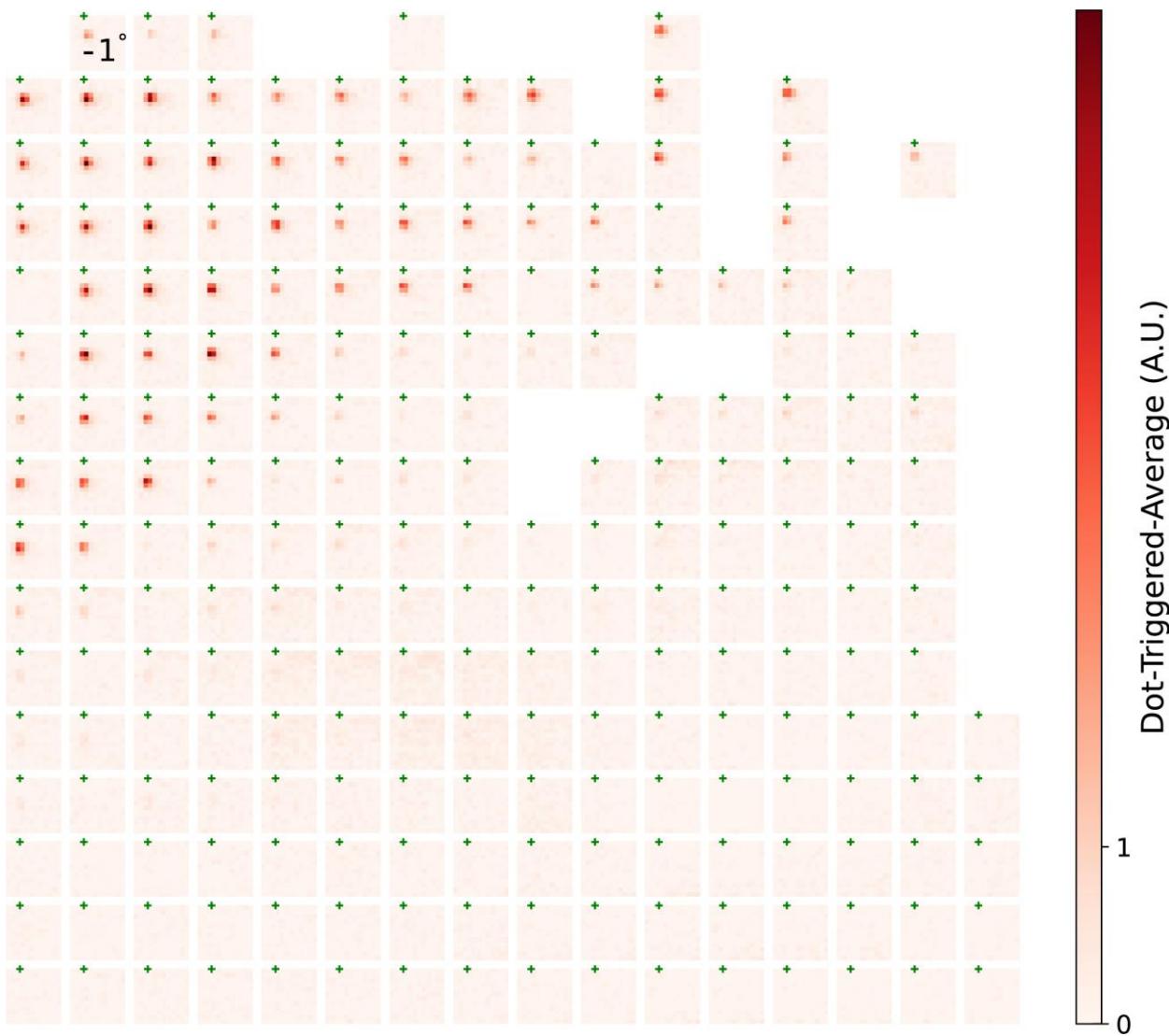


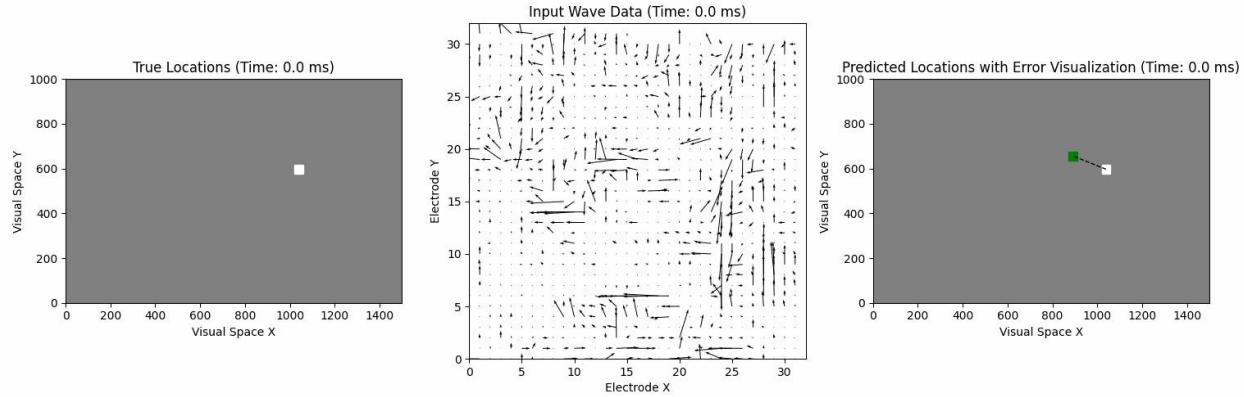
2220
2221


Video S2. Motor cortex recording from a NHP model performing asynchronous reach-and-grab task


2222
2223 **Video S3. Dot-triggered-average responses of all channels without filtering.** Color maps are
2224 not shared; however, they are all symmetrical around 0, i.e. same as in Fig. S12A. A snapshot at
2225 75 ms is shown.


2226
2227 **Video S4. Dot-triggered-average responses of all channels after wavelet transformation**
2228 **(central frequency 8Hz).** Color maps are shared across all channels, same as in **Fig. 5D.** A
2229 snapshot at 75 ms is shown.


2230
2231 **Video S5. Dot-triggered-average responses of all channels after wavelet transformation**
2232 **(central frequency 16Hz).** Color maps are shared across all channels, same as in **Fig. 5D.** A
2233 snapshot at 75 ms is shown.


2234
2235 **Video S6. Dot-triggered-average responses of all channels after wavelet transformation**
2236 **(central frequency 32Hz).** Color maps are shared across all channels, same as in **Fig. 5D.** A
2237 snapshot at 75 ms is shown.

2238
2239
2240
2241 **Video S7. Dot-triggered-average responses of all channels after wavelet transformation**
(central frequency 64Hz). Color maps are shared across all channels, same as in **Fig. 5D.** A snapshot at 75 ms is shown.

2242
2243 **Video S8. Dot-triggered-average responses of all channels after wavelet transformation**
2244 **(central frequency 128Hz).** Color maps are shared across all channels, same as in **Fig. 5D.** A
2245 snapshot at 75 ms is shown.

2246 **Video S9. Dot-triggered traveling waves used for decoding stimuli location.** The traveling
2247 waves are computed from gamma band (30 – 90 Hz) signals recorded from 32×32 spatially dense
2248 electrodes at 26.5 μ m by 29 μ m pitch. Spatiotemporal sequence of these traveling waves, measured
2249 within each dot presentation, is used to predict the current location of the dot stimuli presented to
2250 the subject.

2251 REFERENCES

2252 1 Biasiucci, A., Franceschiello, B. & Murray, M. M. Electroencephalography. *Current*
2253 *Biology* **29**, R80-R85 (2019). <https://doi.org/10.1016/j.cub.2018.11.052>

2254 2 Wise, K. D., Angell, J. B. & Starr, A. An integrated-circuit approach to extracellular
2255 microelectrodes. *Biomedical Engineering, IEEE Transactions on*, 238-247 (1970).
2256 <https://doi.org/10.1109/TBME.1970.4502738>

2257 3 Nicolelis, M. A. L., Ghazanfar, A. A., Faggin, B. M., Votaw, S. & Oliveira, L. M. O.
2258 Reconstructing the Engram: Simultaneous, Multisite, Many Single Neuron Recordings.
2259 *Neuron* **18**, 529-537 (1997). [https://doi.org/10.1016/s0896-6273\(00\)80295-0](https://doi.org/10.1016/s0896-6273(00)80295-0)

2260 4 Maynard, E. M., Nordhausen, C. T. & Normann, R. A. The Utah Intracortical Electrode
2261 Array: A recording structure for potential brain-computer interfaces.
2262 *Electroencephalography and Clinical Neurophysiology* **102**, 228-239 (1997).
2263 [https://doi.org/10.1016/S0013-4694\(96\)95176-0](https://doi.org/10.1016/S0013-4694(96)95176-0)

2264 5 Polikov, V. S., Tresco, P. A. & Reichert, W. M. Response of brain tissue to chronically
2265 implanted neural electrodes. *Journal of Neuroscience Methods* **148**, 1-18 (2005).
2266 <https://doi.org/10.1016/j.jneumeth.2005.08.015>

2267 6 Nolta, N. F., Christensen, M. B., Crane, P. D., Skousen, J. L. & Tresco, P. A. BBB leakage,
2268 astrogliosis, and tissue loss correlate with silicon microelectrode array recording
2269 performance. *Biomaterials* **53**, 753-762 (2015).
2270 <https://doi.org/10.1016/j.biomaterials.2015.02.081>

2271 7 Salatino, J. W., Ludwig, K. A., Kozai, T. D. Y. & Purcell, E. K. Glial responses to
2272 implanted electrodes in the brain. *Nature Biomedical Engineering* **1**, 862-877 (2017).
2273 <https://doi.org/10.1038/s41551-017-0154-1>

2274 8 Rousche, P. J. & Normann, R. A. Chronic recording capability of the Utah Intracortical
2275 Electrode Array in cat sensory cortex. *Journal of Neuroscience Methods* **82**, 1-15 (1998).
2276 [https://doi.org/10.1016/S0165-0270\(98\)00031-4](https://doi.org/10.1016/S0165-0270(98)00031-4)

2277 9 Chestek, C. A. *et al.* Long-term stability of neural prosthetic control signals from silicon
2278 cortical arrays in rhesus macaque motor cortex. *Journal of Neural Engineering* **8**, 045005
2279 (2011). <https://doi.org/10.1088/1741-2560/8/4/045005>

2280 10 Nuyujukian, P. *et al.* Performance sustaining intracortical neural prostheses. *Journal of*
2281 *Neural Engineering* **11**, 066003 (2014). <https://doi.org/10.1088/1741-2560/11/6/066003>

2282 11 Volkova, K., Lebedev, M. A., Kaplan, A. & Ossadtchi, A. Decoding Movement From
2283 Electrocorticographic Activity: A Review. *Frontiers in Neuroinformatics* **13** (2019).
2284 <https://doi.org/10.3389/fninf.2019.00074>

2285 12 Nurse, E. S. *et al.* Consistency of Long-Term Subdural Electrocorticography in Humans.
2286 *IEEE Transactions on Biomedical Engineering* **65**, 344-352 (2018).
2287 <https://doi.org/10.1109/tbme.2017.2768442>

2288 13 Yan, T. *et al.* Chronic subdural electrocorticography in nonhuman primates by an
2289 implantable wireless device for brain-machine interfaces. *Front Neurosci* **17**, 1260675
2290 (2023).

2291 14 Chiang, C.-H. *et al.* Development of a neural interface for high-definition, long-term
2292 recording in rodents and nonhuman primates. *Science translational medicine* **12** (2020).
2293 <https://doi.org/10.1126/scitranslmed.aay4682>

2294 15 Kaiju, T., Inoue, M., Hirata, M. & Suzuki, T. High-density mapping of primate digit
2295 representations with a 1152-channel μ ECoG array. *Journal of Neural Engineering* **18**,
2296 036025 (2021). <https://doi.org/10.1088/1741-2552/abe245>

2297 16 Tchoe, Y. *et al.* Human brain mapping with multithousand-channel PtNRGrids resolves
2298 spatiotemporal dynamics. *Science Translational Medicine* **14**, eabj1441 (2022).
2299 <https://doi.org/10.1126/scitranslmed.abj1441>

2300 17 Zhao, E. T. *et al.* A CMOS-based highly scalable flexible neural electrode interface.
2301 *Science Advances* **9** (2023). <https://doi.org/10.1126/sciadv.adf9524>

2302 18 Kaiju, T. *et al.* High Spatiotemporal Resolution ECoG Recording of Somatosensory
2303 Evoked Potentials with Flexible Micro-Electrode Arrays. *Frontiers in neural circuits* **11**
2304 (2017). <https://doi.org/10.3389/fncir.2017.00020>

2305 19 Wang, P. T. *et al.* Comparison of decoding resolution of standard and high-density
2306 electrocorticogram electrodes. *Journal of Neural Engineering* **13**, 026016 (2016).
2307 <https://doi.org/10.1088/1741-2560/13/2/026016>

2308 20 Duraivel, S. *et al.* High-resolution neural recordings improve the accuracy of speech
2309 decoding. *Nature Communications* **14** (2023). <https://doi.org/10.1038/s41467-023-42555-1>

2311 21 Khodagholy, D. *et al.* NeuroGrid: recording action potentials from the surface of the brain.
2312 *Nature Neuroscience* **18**, 310-315 (2015). <https://doi.org/10.1038/nn.3905>

2313 22 Hassan, A. R. *et al.* Translational Organic Neural Interface Devices at Single Neuron
2314 Resolution. *Advanced Science* **9**, 2202306 (2022). <https://doi.org/10.1002/advs.202202306>

2315 23 Steinmetz, N. A. *et al.* Neuropixels 2.0: A miniaturized high-density probe for stable, long-
2316 term brain recordings. *Science* **372**, eabf4588 (2021).
2317 <https://doi.org/10.1126/science.abf4588>

2318 24 Jun, J. J. *et al.* Fully integrated silicon probes for high-density recording of neural activity.
2319 *Nature* **551**, 232-236 (2017). <https://doi.org/10.1038/nature24636>

2320 25 Pandarinath, C. *et al.* High performance communication by people with paralysis using an
2321 intracortical brain-computer interface. *eLife* **6**, e18554 (2017).
2322 <https://doi.org/10.7554/eLife.18554>

2323 26 Carmena, J. M. *et al.* Learning to Control a Brain–Machine Interface for Reaching and
2324 Grasping by Primates. *PLoS Biology* **1**, e42 (2003).
2325 <https://doi.org/10.1371/journal.pbio.0000042>

2326 27 Hochberg, L. R. *et al.* Reach and grasp by people with tetraplegia using a neurally
2327 controlled robotic arm. *Nature* **485**, 372-375 (2012). <https://doi.org/10.1038/nature11076>

2328 28 Gilletti, A. & Muthuswamy, J. Brain micromotion around implants in the rodent
2329 somatosensory cortex. *Journal of Neural Engineering* **3**, 189 (2006).
2330 <https://doi.org/10.1088/1741-2560/3/3/001>

2331 29 Biran, R., Martin, D. C. & Tresco, P. A. The brain tissue response to implanted silicon
2332 microelectrode arrays is increased when the device is tethered to the skull. *Journal of
2333 Biomedical Materials Research Part A* **82A**, 169-178 (2007).
2334 <https://doi.org/10.1002/jbm.a.31138>

2335 30 Szuts, T. A. *et al.* A wireless multi-channel neural amplifier for freely moving animals.
2336 *Nature Neuroscience* **14**, 263-269 (2011). <https://doi.org/10.1038/nn.2730>

2337 31 Fan, D. *et al.* A Wireless Multi-Channel Recording System for Freely Behaving Mice and
2338 Rats. *PLoS ONE* **6**, e22033 (2011). <https://doi.org/10.1371/journal.pone.0022033>

2339 32 Schwarz, D. A. *et al.* Chronic, wireless recordings of large-scale brain activity in freely
2340 moving rhesus monkeys. *Nature Methods* **11**, 670-676 (2014).
2341 <https://doi.org/10.1038/nmeth.2936>

2342 33 Zhou, A. *et al.* A wireless and artefact-free 128-channel neuromodulation device for
2343 closed-loop stimulation and recording in non-human primates. *Nature Biomedical
2344 Engineering* **3**, 15-26 (2018). <https://doi.org/10.1038/s41551-018-0323-x>

2345 34 Simeral, J. D. *et al.* Home Use of a Percutaneous Wireless Intracortical Brain-Computer
2346 Interface by Individuals With Tetraplegia. *IEEE Transactions on Biomedical Engineering*
2347 **68**, 2313-2325 (2021). <https://doi.org/10.1109/tbme.2021.3069119>

2348 35 Topalovic, U. *et al.* A wearable platform for closed-loop stimulation and recording of
2349 single-neuron and local field potential activity in freely moving humans. *Nature
2350 Neuroscience* (2023). <https://doi.org/10.1038/s41593-023-01260-4>

2351 36 Oxley, T. J. *et al.* Minimally invasive endovascular stent-electrode array for high-fidelity,
2352 chronic recordings of cortical neural activity. *Nature Biotechnology* **34**, 320-327 (2016).
2353 <https://doi.org/10.1038/nbt.3428>

2354 37 Benabid, A. L. *et al.* An exoskeleton controlled by an epidural wireless brain-machine
2355 interface in a tetraplegic patient: a proof-of-concept demonstration. *The Lancet Neurology*
2356 **18**, 1112-1122 (2019). [https://doi.org/10.1016/s1474-4422\(19\)30321-7](https://doi.org/10.1016/s1474-4422(19)30321-7)

2357 38 Ouyang, W. *et al.* A wireless and battery-less implant for multimodal closed-loop
2358 neuromodulation in small animals. *Nature Biomedical Engineering* **7**, 1252-1269 (2023).
2359 <https://doi.org/10.1038/s41551-023-01029-x>

2360 39 Musk, E. An Integrated Brain-Machine Interface Platform With Thousands of Channels.
2361 *Journal of Medical Internet Research* **21**, e16194 (2019). <https://doi.org/10.2196/16194>

2362 40 Hariz, M. I. Complications of deep brain stimulation surgery. *Movement Disorders* **17**,
2363 S162-S166 (2002). <https://doi.org/10.1002/mds.10159>

2364 41 Jitkritsadakul, O. *et al.* Systematic review of hardware-related complications of Deep Brain
2365 Stimulation: Do new indications pose an increased risk? *Brain Stimulation* **10**, 967-976
2366 (2017). <https://doi.org/10.1016/j.brs.2017.07.003>

2367 42 Zeng, N. *et al.* in *2023 IEEE Symposium on VLSI Technology and Circuits* 1-2 (2023).

2368 43 Harrison, R. R. & Charles, C. A low-power, low-noise CMOS amplifier for neural
2369 recording applications. *IEEE Journal of Solid-State Circuits* **38**, 958-965 (2003).
2370 <https://doi.org/10.1109/JSSC.2003.811979>

2371 44 Zhang, M. *et al.* Wireless Compact Neural Interface for Freely Moving Animal Subjects:
2372 A Review on Wireless Neural Interface SoC Designs. *IEEE Solid-State Circuits Magazine*
2373 **15**, 20-29 (2023). <https://doi.org/10.1109/mssc.2023.3312227>

2374 45 Weiland, J. D., Anderson, D. J. & Humayun, M. S. In vitro electrical properties for iridium
2375 oxide versus titanium nitride stimulating electrodes. *Biomedical Engineering, IEEE
2376 Transactions on* **49**, 1574-1579 (2002). <https://doi.org/10.1109/TBME.2002.805487>

2377 46 Raducanu, B. C. *et al.* Time Multiplexed Active Neural Probe with 1356 Parallel Recording
2378 Sites. *Sensors* **17**, 2388 (2017). <https://doi.org/10.3390/s17102388>

2379 47 IEEE. in *IEEE Standard for Safety Levels with Respect to Human Exposure to Radio
2380 Frequency Electromagnetic Fields, 3 kHz to 300 GHz* (IEEE, 2006).

2381 48 Thimot, J. & Shepard, K. L. Bioelectronic devices: Wirelessly powered implants. *Nature
2382 Biomedical Engineering* **1**, 0051 (2017). <https://doi.org/10.1038/s41551-017-0051>

2383 49 Kim, S., Tathireddy, P., Normann, R. A. & Solzbacher, F. Thermal Impact of an Active 3-
2384 D Microelectrode Array Implanted in the Brain. *IEEE Transactions on Neural Systems and
2385 Rehabilitation Engineering* **15**, 493-501 (2007).
2386 <https://doi.org/10.1109/TNSRE.2007.908429>

2387 50 Marblestone, A. H. *et al.* Physical principles for scalable neural recording. *Frontiers in
2388 Computational Neuroscience* **7**, 137 (2013). <https://doi.org/10.3389/fncom.2013.00137>

2389 51 Lind, N. M. *et al.* The use of pigs in neuroscience: Modeling brain disorders. *Neuroscience
2390 & Biobehavioral Reviews* **31**, 728-751 (2007).
2391 <https://doi.org/10.1016/j.neubiorev.2007.02.003>

2392 52 Craner, S. L. & Ray, R. H. Somatosensory cortex of the neonatal pig: I. Topographic
2393 organization of the primary somatosensory cortex (SI). *Journal of Comparative Neurology*
2394 **306**, 24-38 (1991). <https://doi.org/10.1002/cne.903060103>

2395 53 Okada, Y., Lähteenmäki, A. & Xu, C. Comparison of MEG and EEG on the basis of
2396 somatic evoked responses elicited by stimulation of the snout in the juvenile swine.
2397 *Clinical Neurophysiology* **110**, 214-229 (1999). [https://doi.org/10.1016/S0013-4694\(98\)00111-4](https://doi.org/10.1016/S0013-4694(98)00111-4)

2398 54 Gierthmuehlen, M. *et al.* Evaluation of μ ECoG electrode arrays in the minipig:
2399 Experimental procedure and neurosurgical approach. *Journal of Neuroscience Methods*
2400 **202**, 77-86 (2011). <https://doi.org/10.1016/j.jneumeth.2011.08.021>

2401 55 Maier, S. *et al.* Somatosensory and transcranial motor evoked potential monitoring in a
2402 porcine model for experimental procedures. *PLOS ONE* **13**, e0205410 (2018).
2403 <https://doi.org/10.1371/journal.pone.0205410>

2404 56 Sauleau, P., Lapouble, E., Val-Laillet, D. & Malbert, C. H. The pig model in brain imaging
2405 and neurosurgery. *Animal* **3**, 1138-1151 (2009).
2406 <https://doi.org/10.1017/s1751731109004649>

2407 57 Laurens van der Maaten & Hinton, G. Visualizing data using t-SNE. *Journal of Machine
2408 Learning Research* **9**, 2579 (2008).

2409 58 Mitra, P. P. & Pesaran, B. Analysis of Dynamic Brain Imaging Data. *Biophysical Journal*
2410 **76**, 691-708 (1999). [https://doi.org/10.1016/s0006-3495\(99\)77236-x](https://doi.org/10.1016/s0006-3495(99)77236-x)

2411 59 Stavisky, S. D., Kao, J. C., Nuyujukian, P., Ryu, S. I. & Shenoy, K. V. A high performing
2412 brain-machine interface driven by low-frequency local field potentials alone and together
2413 with spikes. *Journal of Neural Engineering* **12**, 036009 (2015).
2414 <https://doi.org/10.1088/1741-2560/12/3/036009>

2415 60 Thomson, D. J. Spectrum estimation and harmonic analysis. *Proceedings of the IEEE* **70**,
2416 1055-1096 (1982). <https://doi.org/10.1109/proc.1982.12433>

2417 61 Wold, S., Sjöström, M. & Eriksson, L. PLS-regression: a basic tool of chemometrics.
2418 *Chemometrics and Intelligent Laboratory Systems* **58**, 109-130 (2001).
2419 [https://doi.org/10.1016/S0169-7439\(01\)00155-1](https://doi.org/10.1016/S0169-7439(01)00155-1)

2420 62 Das, A., Zabeh, E., Ermentrout, B. & Jacobs, J. Planar, Spiral, and Concentric Traveling
2421 Waves Distinguish Cognitive States in Human Memory. *bioRxiv*, 2024.2001.2026.577456
2422 (2024). <https://doi.org/10.1101/2024.01.26.577456>

2423 63 Zabeh, E., Foley, N. C., Jacobs, J. & Gottlieb, J. P. Beta traveling waves in monkey frontal
2424 and parietal areas encode recent reward history. *Nature Communications* **14**, 5428 (2023).
2425 <https://doi.org/10.1038/s41467-023-41125-9>

2426 64 Keller, T. A., Muller, L., Sejnowski, T. & Welling, M. Traveling waves encode the recent
2427 past and enhance sequence learning. *arXiv preprint arXiv:2309.08045* (2023).
2428 <https://doi.org/10.48550/arXiv.2309.08045>

2429 65 Deng, J. *et al.* in *2009 IEEE conference on computer vision and pattern recognition*. 248-
2430 255 (Ieee).

2431 66 Willeke, K. F. *et al.* Deep learning-driven characterization of single cell tuning in primate
2432 visual area V4 unveils topological organization. *bioRxiv*, 2023.2005.2012.540591 (2023).
2433 <https://doi.org/10.1101/2023.05.12.540591>

2434 67 Cadena, S. A. *et al.* Diverse task-driven modeling of macaque V4 reveals functional
2435 specialization towards semantic tasks. *bioRxiv*, 2022.2005.2018.492503 (2022).
2436 <https://doi.org/10.1101/2022.05.18.492503>

2437 68 Jia, X., Tanabe, S. & Kohn, A. Gamma and the coordination of spiking activity in early
2438 visual cortex. *Neuron* **77**, 762-774 (2013). <https://doi.org/10.1016/j.neuron.2012.12.036>

2439

2440 69 Woo, S. *et al.* in *Proceedings of the IEEE/CVF Conference on Computer Vision and*
2441 *Pattern Recognition*. 16133-16142.

2442 70 Pierzchlewick, P. *et al.* Energy guided diffusion for generating neurally exciting images.
2443 *Advances in Neural Information Processing Systems* **36** (2024).

2444 71 Walker, E. Y. *et al.* Inception loops discover what excites neurons most using deep
2445 predictive models. *Nature neuroscience* **22**, 2060-2065 (2019).
2446 <https://doi.org/10.1038/s41593-019-0517-x>

2447 72 Fu, J. *et al.* Pattern completion and disruption characterize contextual modulation in mouse
2448 visual cortex. *bioRxiv* (2023). <https://doi.org/10.1101/2023.03.13.532473>

2449 73 Franke, K. *et al.* State-dependent pupil dilation rapidly shifts visual feature selectivity.
2450 *Nature* **610**, 128-134 (2022). <https://doi.org/10.1038/s41586-022-05270-3>

2451 74 Tong, R. *et al.* The feature landscape of visual cortex. *bioRxiv*, 2023.2011. 2003.565500
2452 (2023). <https://doi.org/10.1101/2023.11.03.565500>

2453 75 Cowley, B. R., Stan, P. L., Pillow, J. W. & Smith, M. A. Compact deep neural network
2454 models of visual cortex. *bioRxiv* (2023). <https://doi.org/10.1101/2023.11.22.568315>

2455 76 Bashivan, P., Kar, K. & DiCarlo, J. J. Neural population control via deep image synthesis.
2456 *Science* **364**, eaav9436 (2019). <https://doi.org/10.1126/science.aav9436>

2457 77 Ohki, K. *et al.* Highly ordered arrangement of single neurons in orientation pinwheels.
2458 *Nature* **442**, 925-928 (2006). <https://doi.org/10.1038/nature05019>

2459 78 Kara, P. & Boyd, J. D. A micro-architecture for binocular disparity and ocular dominance
2460 in visual cortex. *Nature* **458**, 627-631 (2009). <https://doi.org/10.1038/nature07721>

2461 79 Willett, F. R. *et al.* A high-performance speech neuroprosthesis. *Nature* **620**, 1031-1036
2462 (2023). <https://doi.org/10.1038/s41586-023-06377-x>

2463 80 Metzger, S. L. *et al.* A high-performance neuroprosthesis for speech decoding and avatar
2464 control. *Nature* **620**, 1037-1046 (2023). <https://doi.org/10.1038/s41586-023-06443-4>

2465 81 Metzger, S. L. *et al.* Generalizable spelling using a speech neuroprosthesis in an individual
2466 with severe limb and vocal paralysis. *Nature Communications* **13**, 6510 (2022).
2467 <https://doi.org/10.1038/s41467-022-33611-3>

2468 82 Sokal, N. O. & Sokal, A. D. Class E-A new class of high-efficiency tuned single-ended
2469 switching power amplifiers. *IEEE Journal of Solid-State Circuits* **10**, 168-176 (1975).
2470 <https://doi.org/10.1109/jssc.1975.1050582>

2471 83 Lim, Y., Tang, H., Lim, S. & Park, J. An Adaptive Impedance-Matching Network Based
2472 on a Novel Capacitor Matrix for Wireless Power Transfer. *IEEE Transactions on Power*
2473 *Electronics* **29**, 4403-4413 (2014). <https://doi.org/10.1109/tpel.2013.2292596>

2474 84 Ferro, M. D. & Melosh, N. A. Electronic and ionic materials for neurointerfaces. *Advanced*
2475 *Functional Materials* **28**, 1704335 (2018). <https://doi.org/10.1002/adfm.201704335>

2476 85 Vomero, M. *et al.* Conformable polyimide-based μ ECoGs: Bringing the electrodes closer
2477 to the signal source. *Biomaterials* **255**, 120178 (2020).
2478 <https://doi.org/10.1016/j.biomaterials.2020.120178>

2479 86 Luan, L. *et al.* Ultraflexible nanoelectronic probes form reliable, glial scar-free neural
2480 integration. *Science advances* **3**, e1601966 (2017). <https://doi.org/10.1126/sciadv.1601966>

2481 87 Rogers, J. A., Someya, T. & Huang, Y. Materials and mechanics for stretchable electronics.
2482 *science* **327**, 1603-1607 (2010). <https://doi.org/10.1126/science.1182383>

2483 88 Van Den Ende, D. A. *et al.* Mechanical and electrical properties of ultra-thin chips and
2484 flexible electronics assemblies during bending. *Microelectronics Reliability* **54**, 2860-2870
2485 (2014). <https://doi.org/10.1016/j.microrel.2014.07.125>

2486 89 Kim, D.-H. *et al.* Stretchable and foldable silicon integrated circuits. *Science* **320**, 507-511
2487 (2008). <https://doi.org/10.1126/science.1154367>

2488 90 Burghartz, J. N. *et al.* Ultra-thin chip technology and applications, a new paradigm in
2489 silicon technology. *Solid-State Electronics* **54**, 818-829 (2010).
2490 <https://doi.org/10.1016/j.sse.2010.04.042>

2491 91 Mathis, A. *et al.* DeepLabCut: markerless pose estimation of user-defined body parts with
2492 deep learning. *Nature Neuroscience* **21**, 1281-1289 (2018).
2493 <https://doi.org/10.1038/s41593-018-0209-y>

2494 92 Franke, K. *et al.* An arbitrary-spectrum spatial visual stimulator for vision research. *eLife*
2495 **8**, e48779 (2019). <https://doi.org/10.7554/eLife.48779>

2496 93 Das, A. *et al.* Spontaneous neuronal oscillations in the human insula are hierarchically
2497 organized traveling waves. *eLife* **11**, e76702 (2022). <https://doi.org/10.7554/eLife.76702>

2498 94 Das, A., Zabeh, E. & Jacobs, J. in *Intracranial EEG: A Guide for Cognitive Neuroscientists*
2499 (ed Nikolai Axmacher) 487-505 (Springer International Publishing, 2023).

2500 95 Fisher, N. I. *Statistical Analysis of Circular Data*. (Cambridge University Press, 1993).

2501 96 McInnes, L., Healy, J., Saul, N. & Großberger, L. UMAP: Uniform Manifold
2502 Approximation and Projection. *Journal of Open Source Software* **3**, 861 (2018).
2503 <https://doi.org/10.21105/joss.00861>

2504 97 Pedregosa, F. *et al.* Scikit-learn: Machine learning in Python. *the Journal of machine*
2505 *Learning research* **12**, 2825-2830 (2011).

2506 98 Vaswani, A. *et al.* Attention is all you need. *Advances in Neural Information Processing*
2507 *Systems* (2017).

2508 99 Redmon, J. in *Proceedings of the IEEE conference on computer vision and pattern*
2509 *recognition*.

2510 100 Kong, E. *et al.* Recurrent Connectivity Shapes Spatial Coding in Hippocampal CA3
2511 Subregions. *bioRxiv*, 2024.2011.2007.622379 (2024).
2512 <https://doi.org/10.1101/2024.11.07.622379>

2513 101 Gulrajani, I. *et al.* Pixelvae: A latent variable model for natural images. *arXiv preprint*
2514 *arXiv:1611.05013* (2016). <https://doi.org/10.48550/arXiv.1611.05013>

2515 102 Obien, M. E. J., Deligkaris, K., Bullmann, T., Bakkum, D. J. & Frey, U. Revealing neuronal
2516 function through microelectrode array recordings. *Front Neurosci* **8** (2015).
2517 <https://doi.org/10.3389/fnins.2014.00423>

2518 103 Sartori, A., Maloberti, F., Simoni, A. & Torelli, G. A 2D photosensor array with integrated
2519 charge amplifier. *Sensors and Actuators A: Physical* **46**, 247-250 (1995).
2520 [https://doi.org/10.1016/0924-4247\(94\)00899-s](https://doi.org/10.1016/0924-4247(94)00899-s)

2521 104 Kong, S. *et al.* An Investigation of Electromagnetic Radiated Emission and Interference
2522 From Multi-Coil Wireless Power Transfer Systems Using Resonant Magnetic Field
2523 Coupling. *IEEE Transactions on Microwave Theory and Techniques* **63**, 833-846 (2015).
2524 <https://doi.org/10.1109/tmtt.2015.2392096>

2525 105 Redoute, J. M. & Steyaert, M. S. J. EMI-Resistant CMOS Differential Input Stages. *IEEE*
2526 *Transactions on Circuits and Systems I: Regular Papers* **57**, 323-331 (2010).
2527 <https://doi.org/10.1109/tcsi.2009.2023836>

2528 106 Binkley, D. M. in *2007 14th International Conference on Mixed Design of Integrated*
2529 *Circuits and Systems* 47-60 (2007).

2530 107 Sharma, M. *et al.* Acquisition of Neural Action Potentials Using Rapid Multiplexing
2531 Directly at the Electrodes. *Micromachines* **9** (2018). <https://doi.org/10.3390/mi9100477>

2532 108 Poujois, R. & Borel, J. A low drift fully integrated MOSFET operational amplifier. *IEEE*
2533 *Journal of Solid-State Circuits* **13**, 499-503 (1978).
2534 <https://doi.org/10.1109/jssc.1978.1051084>

2535 109 Choksi, O. & Carley, L. R. Analysis of switched-capacitor common-mode feedback circuit.
2536 *IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing* **50**,
2537 906-917 (2003). <https://doi.org/10.1109/tcsii.2003.820253>

2538 110 Gupta, S., Saxena, V., Campbell, K. A. & Baker, R. J. in *2009 IEEE Workshop on*
2539 *Microelectronics and Electron Devices* 1-4 (2009).

2540 111 Tavares, S. E. A Comparison of Integration and Low-Pass Filtering. *IEEE Transactions on*
2541 *Instrumentation and Measurement* **15**, 33-38 (1966).
2542 <https://doi.org/10.1109/tim.1966.4313498>

2543 112 Yoshizawa, H., Huang, Y. & Temes, G. C. Improved SC amplifiers with low sensitivity to
2544 op-amp imperfections. *Electronics Letters* **33** (1997). <https://doi.org/10.1049/el:19970254>

2545 113 Liu, C.-C., Chang, S.-J., Huang, G.-Y. & Lin, Y.-Z. A 10-bit 50-MS/s SAR ADC With a
2546 Monotonic Capacitor Switching Procedure. *IEEE Journal of Solid-State Circuits* **45**, 731-
2547 740 (2010). <https://doi.org/10.1109/jssc.2010.2042254>

2548 114 Banba, H. *et al.* A CMOS bandgap reference circuit with sub-1-V operation. *IEEE Journal*
2549 *of Solid-State Circuits* **34**, 670-674 (1999). <https://doi.org/10.1109/4.760378>

2550 115 Wang, H., Zhang, Z., Li, Y. & Feng, Z. A Wideband Differential-Fed Slot Antenna Using
2551 Integrated Compact Balun With Matching Capability. *IEEE Transactions on Antennas and*
2552 *Propagation* **62**, 5394-5399 (2014). <https://doi.org/10.1109/tap.2014.2343238>

2553 116 Kuster, N., Santomaa, V. & Drossos, A. The dependence of electromagnetic energy
2554 absorption upon human head tissue composition in the frequency range of 300-3000 MHz.
2555 *IEEE Transactions on Microwave Theory and Techniques* **48**, 1988-1995 (2000).
2556 <https://doi.org/10.1109/22.884187>

2557 117 Andreuccetti, D., Fossi, R. & Petrucci, C. *An Internet resource for the calculation of the*
2558 *dielectric properties of body tissues in the frequency range 10 Hz - 100 GHz.* (IFAC-CNR,
2559 Florence (Italy), 1997).

2560 118 Mei-Chao, Y., Ren-Chieh, L., Zuo-Min, T. & Wang, H. in *2005 IEEE Radio Frequency*
2561 *integrated Circuits (RFIC) Symposium - Digest of Papers* 451-454 (2005).

2562 119 Dokania, R., Wang, X., Tallur, S., Dorta-Quinones, C. & Apsel, A. An Ultralow-Power
2563 Dual-Band UWB Impulse Radio. *IEEE Transactions on Circuits and Systems II: Express*
2564 *Briefs* **57**, 541-545 (2010). <https://doi.org/10.1109/tcsii.2010.2048388>

2565 120 Vigraham, B. & Kinget, P. R. A Self-Duty-Cycled and Synchronized UWB Pulse-Radio
2566 Receiver SoC With Automatic Threshold-Recovery Based Demodulation. *IEEE Journal*
2567 *of Solid-State Circuits* **49**, 581-594 (2014). <https://doi.org/10.1109/jssc.2014.2303804>

2568 121 Tiuraniemi, S., Stoica, L., Rabbachin, A. & Oppermann, I. in *2005 IEEE International*
2569 *Conference on Ultra-Wideband* 339-343 (2005).

2570 122 Witrisal, K. *et al.* Noncoherent ultra-wideband systems. *IEEE Signal Processing Magazine*
2571 **26**, 48-66 (2009). <https://doi.org/10.1109/msp.2009.932617>

2572 123 Humbert, P. A. & Azizoglu, M. On the bit error rate of lightwave systems with optical
2573 amplifiers. *Journal of Lightwave Technology* **9**, 1576-1582 (1991).
2574 <https://doi.org/10.1109/50.97649>

2575 124 Federal Communications Commission (FCC). *47 CFR Part 15 Subpart F Ultra-Wideband*
2576 *Operation.* (2002).

2577 125 Lee, G., Park, J., Jang, J., Jung, T. & Kim, T. W. An IR-UWB CMOS Transceiver for
2578 High-Data-Rate, Low-Power, and Short-Range Communication. *IEEE Journal of Solid-*
2579 *State Circuits* **54**, 2163-2174 (2019). <https://doi.org/10.1109/jssc.2019.2914584>

2580 126 Montanaro, J. *et al.* A 160-MHz, 32-b, 0.5-W CMOS RISC microprocessor. *Solid-State*
2581 *Circuits, IEEE Journal of* **31**, 1703-1714 (1996).
2582 <https://doi.org/10.1109/JSSC.1996.542315>

2583 127 Maneatis, J. G. Low-jitter process-independent DLL and PLL based on self-biased
2584 techniques. *IEEE Journal of Solid-State Circuits* **31**, 1723-1732 (1996).
2585 <https://doi.org/10.1109/jssc.1996.542317>

2586 128 Gabriel, C. Compilation of the Dielectric Properties of Body Tissues at RF and Microwave
2587 Frequencies. (Occupational and environmental health directorate, Radiofrequency
2588 Radiation Division, Brooks Air Force Base, Texas (USA), 1996).

2589 129 PYNQ™. <http://www.pynq.io/> (2024). <<http://www.pynq.io/>>.

2590 130 Assaad, R. S. & Silva-Martinez, J. The Recycling Folded Cascode: A General
2591 Enhancement of the Folded Cascode Amplifier. *IEEE Journal of Solid-State Circuits* **44**,
2592 2535-2542 (2009). <https://doi.org/10.1109/jssc.2009.2024819>

2593 131 Yoon, D. Y. *et al.* in *2021 IEEE Symposium on VLSI Technology and Circuits* 1-2 (2021).

2594 132 Kohler, F. *et al.* Closed-loop interaction with the cerebral cortex: a review of wireless
2595 implant technology. *Brain-Computer Interfaces* **4**, 146-154 (2017).
2596 <https://doi.org/10.1080/2326263x.2017.1338011>

2597 133 Jobst, B. & Thomas, G. Critical review of the responsive neurostimulator system for
2598 epilepsy. *Medical Devices: Evidence and Research*, 405 (2015).
2599 <https://doi.org/10.2147/mder.s62853>

2600 134 Mestais, C. S. *et al.* WIMAGINE: Wireless 64-Channel ECoG Recording Implant for Long
2601 Term Clinical Applications. *IEEE Transactions on Neural Systems and Rehabilitation
2602 Engineering* **23**, 10-21 (2015). <https://doi.org/10.1109/tnsre.2014.2333541>

2603 135 Neuralink. in *Neuralink Progress Update, Summer 2020* (2020).

2604