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Abstract 

The role of the dorsal anterior cingulate cortex (dACC) in cognition is a frequently studied yet highly 

debated topic in neuroscience. Most authors agree that the dACC is involved in either cognitive control 

(e.g. voluntary inhibition of automatic responses) or monitoring (e.g. comparing expectations with 

outcomes, detecting errors, tracking surprise). A consensus on which theoretical perspective best 

explains dACC contribution to behaviour is still lacking, as two distinct sets of studies report dACC 

activation in tasks requiring surprise tracking for performance monitoring and cognitive control 

without involving surprise monitoring, respectively. This creates a theoretical impasse, as no single 

current account can reconcile these findings. Here we propose a novel hypothesis on dACC function 

that integrates both the monitoring and the cognitive control perspectives in a unifying, meta-

Reinforcement Learning framework, in which cognitive control is optimized by meta-learning based on 

tracking Bayesian surprise. We tested the quantitative predictions from our theory in two different 

functional neuroimaging studies at the basis of the current theory crisis. We show that the meta-

Reinforcement Learning perspective successfully captures all the neuroimaging results by predicting 

both cognitive control and monitoring functions, resolving the theoretical impasse about dACC 

function within an integrative framework. In sum, our results suggest that dACC function can be 

framed as a meta-learning optimisation of cognitive control, providing an integrative perspective on 

its roles in cognitive control, surprise tracking, and performance monitoring. 

 

Significance statement 
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An important debate in cognitive neuroscience concerns the role of the anterior cingulate cortex (ACC) 

in cognition. Two effective and competing frameworks suggest a role for the ACC in surprise monitoring 

or optimizing cognitive control, respectively. So far, none of these frameworks has succeeded as a 

unified theory of ACC function. In this study, we reanalyzed previous neuroimaging data on ACC activity 

during cognitive tasks using a novel computational perspective: meta-Reinforcement Learning. We 

show that this computational framework can explain a variety of data on ACC function that, globally, 

could not be captured by any of the previous models. We propose that meta-Reinforcement Learning 

offers a unified theory of ACC cognitive and computational function. 

 

Introduction 

Humans constantly face complex decisions, ranging from selecting one out of more available options 

(like choosing between an apple or a cupcake) to choosing the amount of cognitive and bodily 

resources we want to invest to achieve a goal (effort allocation). Formally, these decisional processes 

are aimed at solving a trade-off between minimizing the cost of investing cognitive (or physical) 

resources and maximizing the gain from investing a certain amount of resources1–5. In order to optimize 

this trade-off, it is sometimes necessary to expend some (cognitive) effort early in order to receive a 

larger reward later. In experimental psychology, the mental processes deputed to control the level of 

cognitive effort we deploy to achieve a goal are referred to as cognitive control. This process allows us 

to select more effortful options when we anticipate higher rewards from them. A typical example of 

cognitive control is the ability to inhibit habitual responses when these are not appropriate for the 

current situation (e.g. changing the route to your workplace when there are roadworks). The dorsal 

anterior cingulate cortex (dACC) and the surrounding cortical areas within the medial prefrontal cortex 

(MPFC) are known to be involved in cognitive control processes (e.g. 6), as well as in Reinforcement 

Learning (RL) and decision-making (e.g. 7), and the underlying computational mechanisms are still 

unclear, above all considering that their activation has been routinely found in many different 

experimental paradigms investigating several aspects of higher-order cognition8–19. Ironically, this area 

has been labelled as the Rorschach test for neuroscientists20. 

The most recent and effective attempts to find a unified theory of dACC function have led to 

two competing frameworks: the Expected Value of Control framework21 (EVC) and the performance 

monitoring framework8,22. The EVC framework states that the dACC is involved in estimating the value 

of exerting cognitive control during a specific task and in selecting the optimal control signal, i.e. the 

control signal that maximises the estimated value21. This framework provides a theoretical explanation 

for several studies that show dACC activity during both anticipation of cognitively effortful tasks and 

the trade-off between the advantages of exerting cognitive control and its intrinsic cost 18,23–25.  
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The performance monitoring framework is based on RL and proposes that the dACC function 

is mainly aimed at performance monitoring by computing prediction error signals, resulting from the 

comparison between the expected and the actual outcome of actions. Prediction error signals are 

essential to update expectations about future action-outcomes associations. This theory was 

implemented in two independently developed models: the Predicted Response Outcome model (PRO) 

by Alexander & Brown8 and the Reward Value and Prediction Model (RVPM) by Silvetti et al.22 These 

models show that the combination of state-action-outcome expectations and the relative surprise 

signals (computed as the absolute value of prediction errors) was sufficient to explain many of the 

experimental findings about dACC function, from error detection to monitoring conflict between 

competing responses26. 

Both the performance monitoring and EVC frameworks bear significant merits in offering 

mechanistic and integrative explanations of dACC functions, but none of them can explain the full 

range of empirical findings. A growing body of literature reports activity in the dACC linked to cognitive 

control (or more generally during anticipation of cognitive effort), in keeping with the perspective of 

the EVC framework21 (see also 27,28). However, given that in some of these cognitive control studies 

dACC activity is observed in the absence of surprise or prediction errors3,24,29 or while controlling for 

all possible sources of surprise30,31, these findings are not easily accommodated by the performance 

monitoring framework. Conversely, the performance monitoring framework provides a good account 

of the experimental findings documenting the role of the dACC in surprise coding during RL-based 

tasks26, while the EVC framework does not explain, by design, these results. Furthermore, a recent 

fMRI study compared the predictions of the two frameworks during a speeded decision-making task, 

which involved both cognitive control and performance monitoring32. This study suggests that the 

dACC function could be parsimoniously explained by performance monitoring mechanisms (involving 

prediction and prediction error), without postulating additional cognitive control optimization 

mechanisms, even in tasks requiring cognitive control33. Taken together, the conflicting results of the 

above studies create a theoretical impasse, since no single account seems to be able to provide an 

integrative account of dACC function that fully explains its multifarious roles in both cognitive control 

and performance monitoring.  

Here, we show that an alternative theoretical framework overcomes this impasse by 

accounting for the roles of dACC in both cognitive control and performance monitoring: The 

Reinforcement Meta-Learner model34,35. The RML belongs to a framework named meta Reinforcement 

Learning (meta-RL), whose algorithms are able to adapt their internal parameters as a function of 

environmental challenges36,37. The RML combines some of the features of the EVC framework and the 

PRO model within the perspective of meta-RL, and in previous studies, it already provided a 
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computational account of dACC function from both cognitive control and performance monitoring 

perspectives34,35,38–40.  

In this study, we test the RML predictions about the dACC activity in two different experimental 

paradigms whose empirical results, taken as a whole, are irreconcilable with both the EVC and the 

monitoring frameworks. The first paradigm is the aforementioned speeded decision-making task, 

which provided support for the performance monitoring framework 32. The second paradigm is a 

verbal working memory task (WM) 30,31,41, showing dACC involvement in cognitive effort independently 

from surprise, in keeping with the perspective of the EVC framework. 

We will show that the RML successfully simulates dACC activity both in the speeded decision-

making task that provides support for models emphasizing performance monitoring and in the WM 

task that provides support for models emphasizing cognitive effort. These findings resolve the 

theoretical impasse generated by the competition between the two previous accounts of dACC, 

explaining its central role in both monitoring and cognitive control within an integrative perspective. 

 

 

Results 

RML description 

The RML is an autonomous agent that learns and makes decisions (related to both motor behaviour 

and cognitive functions) to maximize net value, i.e. reward discounted by the cost of motor and 

cognitive effort (see Supplementary Information for a detailed description).  

The model has been validated across multiple tasks and research domains 34,35,38,39,42, and was 

used in this work without parameter tuning (keeping all the parameters as in the original papers 

describing the model). From the neurophysiological perspective, the RML simulates a cortical-

subcortical macrocircuit including the MPFC (including the dACC) and two brainstem neuromodulatory 

nuclei: the ventral tegmental area (VTA) and the locus coeruleus (LC) (Figure 1a). Previous literature 

has shown a connection between these areas (e.g. 34,43,44). Furthermore, the neurotransmitters 

produced by these brainstem nuclei, dopamine and noradrenaline, are known to affect decision-

making (e.g. 34,45,46), and modulate the dACC function47. 

The RML architecture assumes that the activity of the MPFC during decision-making can be 

explained by three different computations: the value of a decision (motor or cognitive), the surprise 

generated by the environmental feedback following this decision, and the level of cognitive control 

selected by the agent. Decision-making strategies relative to action selection and cognitive control 

levels (policies) are learned by agent-environment interaction, and based on approximate Bayesian 

learning implemented as Kalman filtering48. These three components of MPFC activity are processed 
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by two separate modules (Figure 1b), an action module (MPFCact module) – dedicated to motor action 

selection – and a boost selection module (MPFCboost module) – dedicated to control optimization.  

The MPFCboost module performs control over motor and cognitive functions, by upregulating 

or downregulating activity in VTA and LC. When faced with a decision, the RML first decides on what 

amount of control to exert during the decision (termed ‘boost’). When the optimal boost level is 

selected, the MPFCboost module sends a signal to the VTA and LC, which in turn influence both the MPFC 

modules. As the optimal policy for selecting the boost signal is learned, and the boost signal itself 

influences the learning process, we define the search for an optimal boost policy as meta-learning. 

Boosting the LC module promotes effortful motor actions and enhances information processing in 

other brain structures (cognitive effort) while boosting the VTA module improves reward signals and 

learning from non-primary rewards. Boost, however, implies an intrinsic cost, and the boost module 

implements meta-learning by dynamically optimizing the trade-off between performance 

improvement and boosting cost. In this work, we will equate the boost signal to cognitive control. This 

definition implies some simplification, as the boost signal can also influence the motivational 

component of decision-making, via VTA modulation, aside from cognitive and physical effort via LC 

modulation.  

The MPFCact module evaluates the options the agent has in the current environment based on 

expected effort and reward and selects the optimal action directed toward the environment. Action 

selection in the MPFCact module is influenced by the LC input, which promotes effortful actions, and 

by the VTA input, which influences the expected value of actions. In this way, the action selection and 

value learning of the MPFCact is indirectly modulated by the policy learned by the MPFCboost module 

(meta-learning for optimal action selection). 

The RML works as a task-independent optimizer of motor and cognitive decision-making. This 

is possible because the RML can be connected to external, task-specific, modules (e.g. a deep neural 

network; Figure 1b). The activity of the external module is controlled via LC signals, and its output is 

directed back toward the MPFCact module to provide the RML with the perceptual and/or motor 

features needed for a specific task. 
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Figure 1. Description of the RML model. a Anatomo-functional mapping of RML modules. b Schematic 

representation of RML modules interactions. The agent consists of the RML and of a task-specific model that 

provides the RML with specific functions necessary to execute a task. The RML optimizes the task-specific model 

via LC output (that can be interpreted as the cognitive control signal).  

 

Speeded decision-making task 

Task description 

We administered to the RML a simplified version of the speeded decision-making task proposed in 

Vassena et al. 32 (Figure 2a). In each trial, the agent was asked to select one among two options 

(representing fractal images in Figure 2a). The left and right options were independently set to yield a 

reward equal to an integer between 2 and 7 (six reward levels, with two fractal images for each of the 

six reward level). All possible combinations of the left and right reward were considered, for a total of 

36 possible trial types. The goal of the agent was to select the best option (in terms of expected 

reward) in the shorter time possible. Once the RML selected the option, a reward corresponding to 

the fractal value was delivered to the model. In order to model the time pressure component of the 

task and incentivize the RML to respond as fast as possible, we implemented both a linear devaluation 

of the reward as a function of reaction time (supplementary Equation S13) and a response deadline . 

This solution captures the fact that human participants were instructed to respond as fast and as 

accurately as possible, and that no rewards were given in case of excessively long RT32. The difficulty 

of each trial was a function of the value difference between the presented options: large value 

differences led to faster and more accurate choices than small value differences. 

 

The RML model in the speeded decision-making task 
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In order to make the RML able to perform the speeded decision-making task, we connected 

the model to an external module simulating decisions by accumulating evidence over time, therefore 

enabling the model to simulate reaction times. To show the generalizability of our results, we 

replicated our simulations with two different well-known models as external modules: the drift 

diffusion model (DDM) as proposed by Ratcliff49 and the dual attractor network (DAN) model by Usher 

& McClelland50. This ensured that the results could be attributed to the RML, and not to the specific 

external module used. In the main text, we describe the results of using the DDM as an external 

module. These were fully replicated with the DAN module, as described in detail in the supplementary 

material.  

The integration of the DDM and the RML (Figure 2b) is inspired by Vassena et al.32, where the 

authors fitted the drift rate and the distance of decision boundaries of a DDM to their behavioural data 

to demonstrate that the speeded decision-making task relied on participants’ cognitive control. In each 

trial, the DDM received two different signals from the RML as an input. The first was the difference in 

the expected value of the options (δv in Figure 2b) from the MPFCact module. The value of each possible 

option was learned by the RML during a training session preceding the task. The absolute value of the 

δv signal determined the DDM drift rate, while the sign of the δv signal determined the drift direction 

toward one of the decision boundaries (representing the two available options, left vs right option) for 

that trial. In this way, a larger δv absolute value resulted in higher accuracy and faster decision32. The 

second input from the RML to the DDM consisted of the LC signal, which modulated the distance of 

the decision boundaries. The higher the LC activity, the closer the boundaries, and the faster the 

decision. As the LC output is controlled by the boost signal from the MPFCboost (cognitive control), the 

latter can therefore modulate the decision speed as a function of trial type. Once the DDM reached 

one decision boundary, or no decision was made within the response time, this information was 

passed to the MPFCact module that implemented the option selection; finally, both the MPFC modules 

updated the expected value for the selected option based on the environmental feedback (reward).  

 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 12, 2025. ; https://doi.org/10.1101/2024.05.15.592711doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.15.592711
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Figure 2: Speeded decision-making task: a: Setup of the speeded decision-making task, performed by the RML. 

b: The RML-DDM interaction during the speeded decision-making task. The RML receives input from the 

environment (about rewards and environmental states), and controls a task-specific module (the DDM), which 

helps in task execution. δv: difference in the expected value of the two options, whose absolute value determines 

the drift rate, while its sign determines the drift direction (up or down). The LC output modulated the decision 

boundaries. 

 

Simulation results 

In Figure 3a we report the dACC activity measured with fMRI during the speeded decision-

making task, as reported in Vassena et al.32. This can be described as a W-shaped function of the 

difference in value between the two options (quartic function with a positive leading coefficient). 

During the execution of the same task, the RML predicted the W-shaped activity pattern exhibited by 

the dACC (Figure 3b). Using the Akaike information criterion (AIC)51, we found that the simulated dACC 

activity follows a quartic pattern with a positive leading coefficient rather than a quadratic pattern 

(Aikake weight for a quartic function > 0.999), similar to Vassena et al.32 

The RML simulates the W-shaped dACC activity - shown in Figure 3b - as the combination of 

two different neural signals evoked by the cue onset: the expected net value (expected reward 
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discounted by expected costs, Figure 3c) and the cognitive control signal (boost signal in the RML, 

Figure 3d). 

The expected net value component is dependent on the difference in cue value and follows a 

U-shaped function. When the values of both options are similar (around 0 on the x-axis in Figure 3c), 

the mean expected value of that trial type is minimal, while it is maximal for large value differences. 

Two mechanisms cause the shape of this function. First, similar option values lead to smaller drift rates 

in the DDM, and therefore to longer RTs (see also Equations S10, S13). Since long RTs cause reward 

devaluation and a higher probability to exceed the response deadline, the RML learns that the 

execution of this type of trial has a lower average value (minimum in the U-shaped pattern in Figure 

3c). Conversely, when the difference between option values is large, RTs are shorter on average (higher 

drift rates), leading to a higher expected value (maxima in Figure 3c). The second mechanism depends 

on the intrinsic cost of boosting. The boost function mirrors the net value function (inverted U shape, 

see below), and the boost cost function – which is a linear function of boost - follows the same shape. 

For this reason, the expected value is maximally discounted in the centre and minimally discounted in 

the tails, contributing to a U-shaped expected value. Figure 3d shows the contribution to the RML 

simulation of dACC activity given by the cognitive control signal (boost), which follows an inverted U-

shaped function. As the boosting level maximizes reward while minimizing the cost intrinsic to 

boosting, the RML increases the boost only if the consequent reward gain is worth the boost cost. 

When the difference between the options is small, the DDM drift rate is small. In that case, a larger 

boost allows for a significant improvement in performance by shrinking the decision boundaries and 

therefore shortening the RTs (Figure 2b, see also equation S11 in the supplementary materials). 

Conversely, when the task is easy, and the value difference is large, the DDM drift rate is high. In that 

case, RTs will be fast anyway, and increasing the boost will only marginally improve them. This leads to 

a reduced boost signal (cognitive control) when the value difference is large (minima in Figure 3d). 

The RML explains the W-shaped dACC activity equally well as the PRO model, which was 

successfully used in the original study 32. Moreover, only the RML provides a further experimental 

prediction about another region of the MPFC: The vMPFC. Indeed, the value function in Figure 3d 

predicted the activity of this region (red cluster in Figure 3f), which is well known to be associated with 

value estimation52,53. Finally, the RML also predicts the dACC activity evoked by the reward-driven 

surprise computed as the absolute difference between the overall reward available in a trial and the 

long-term average reward (Figure 3e and green cluster in Figure 3f). This result is due to the surprise-

coding mechanisms proper of both the RML and the PRO models. 
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Figure 3: Results of the speeded decision-making task. a: The MRI results from Vassena et al.32 (adapted). The 

dACC activity is shown in the black line, while the grey, dashed line shows the best fitting quartic function to this 

data. b: The dACC activity as simulated by the RML (black line), and the best fitting quartic function (blue, dashed 

line). This activity is the combination of the value (panel c) and the cognitive control (panel d). c: The value 

component of the RML activity. d: Cognitive control signal (RML boost) as a function of stimuli value difference. 

e: RML surprise-related activity. f: Activation clusters within the MPFC (adapted from Vassena et al.32). Blue: dACC 

activation as a mixture of value and cognitive control, RML prediction in panel b; Red: vMPFC value-based 

activation, RML prediction in panel c; Green: mid-cingulate activation relative to average surprise, RML prediction 

in panel e. 

 

 

Working memory task 

Task description 

In this simulation, we administered a WM task like the one used in Engström et al. 31 (Figure 4a), to the 

RML. This task exemplifies the role of the dACC in cognitive effort. During each trial, the RML was 

exposed to either 1, 4, 6 or 8 words, generating four different difficulty levels. After a delay of 10s, the 

model was presented with a target word that matched one of the memorized words in 50% of trials. 

The model’s goal was to indicate whether the target word matched one of the words presented before.  
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Figure 4. Verbal WM task. a. Setup of the verbal WM task, performed by the RML. b. Schematic representation 

of RML-cRNN interaction during the execution of the verbal WM task. The LC output modulated the gain of the 

neural units in the articulatory process layer, improving words retention in WM. 

 

 

The RML model in the WM task 

For this task, the RML was connected to a task-specific model that simulated verbal WM 

functions (Figure 4b). This model consisted of a dual layer competitive recurrent neural network 

(cRNN), inspired by the FROST network54. The input layer of the cRNN encoded the words presented 

in each trial (each unit encoded one word), working as a phonological storage. The output layer 

retained the words during the delay period, thanks to recurrent connectivity with the input layer. This 

layer simulated the articulatory process and also compared the memory content with the target word. 

Precision of words retention decreased with increasing WM load (number of words to be 

remembered) due to lateral inhibitory connections in the output layer. The RML improved words 

retention by gain modulation of the output layer, via LC output. The MPFCAct made the decision about 

words-target matching based on the linear combination of the cRNN output (see Supplementary 

Methods for details). Here we ran 15 simulations, representing 15 different subjects. 

 

Simulation results 
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In Figure 5a we show the dACC activity measured with fMRI during the WM task. As reported 

in Engstrom et al.31, the dACC activity was significantly described by a linear function of WM load. The 

RML successfully predicted the dACC activity (Figure 5b) as boost intensity by the MPFCBoost module, 

showing –like in the fMRI reults- a significant linear trend as a function of WM load (t-test on beta 

values: t(14) = 17.58, p < 0.0001). This result derives from the optimization of the boost signal as a 

function of task difficulty, in order to counteract –via LC output- the cRNN drop of performance due to 

increasing WM load.  

The RML also showed that neither surprise (Figure 5c) nor value expectation (from both 

MPFCAct and MPFCBoost, Figure 5d) can explain the dACC activity during the task (none resulted to show 

a significant linear trend as a function of WM load). This was because accuracy remained constant 

across difficulty levels (mean accuracy 87%, main effect of WM load: F(3,14)= 1.39, p = n.s.), like 

reported in human participants 41. 

 

 

Figure 5. Results from verbal WM task. a) fMRI results from Engstrom et al. 31 showing dACC activity (red cluster 

in subpanel) as a function of WM load (difficulty levels 1-4). b) Boost signal from RML as a function of WM load. 

c) RML surprise (unsigned PE, average of MPFCAct and MPFCBoost) as a function of WM load. d) RML expected 

value (average of MPFCAct and MPFCBoost) as a function of WM load. 

 

 

Discussion 

 In this study, we proposed the meta-RL framework as a solution to the theoretical impasse 

generated by fact that the two most prominent accounts of dACC in human cognition – namely, the 

performance monitoring framework and the EVC framework – focus on two distinct sets of studies, 

whose results are difficult to reconcile within a unified account. While the performance monitoring 

framework (instantiated with the PRO model) was effective in predicting the dACC activity in a 

cognitive control task involving unexpected events—the speeded decision-making task utilized in 

Vassena et al.32,—it is ineffective in predicting the dACC activity in cognitive control tasks designed to 

exclude unexpected events (e.g. 3,24,29–31). Differently, the EVC perspective could successfully frame the 

aspects of the dACC activity related to cognitive control optimization in the absence of surprise signals 
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but does not account for the neural data when surprise and unexpected events are relevant for task 

execution. 7  

Here we have shown that the meta-RL perspective (instantiated with the RML model34,35) can 

explain dACC activity in both task types, as it grounds cognitive control optimization on Bayesian 

surprise tracking. Our two simulations showed that the meta-RL perspective can simultaneously 

account for findings that were previously explained separately by the EVC and PRO models. When 

applied to a speeded decision-making task that exemplifies the importance of surprise monitoring, the 

RML matched the PRO model in predicting the dACC activation (Figure 3b) and surprise-driven activity 

in the mid-cingulate cortex (Figure 3e), while also additionally predicting the vMPFC activity related to 

value estimation (Figure 3c), found by Vassena et al.32 as a replication of experimental results from 

previous literature (e.g. 52,53). When applied to a working memory task that exemplifies the importance 

of cognitive effort, the RML successfully predicted dACC activity (Figure 5b) and the fact that neither 

surprise (Figure 5c) nor value expectation can explain the dACC activity during the task (Figure 5d). 

It is important to note that while both the RML and PRO models generate comparable 

predictions regarding dACC activity in the speeded decision-making task 32, they provide distinct 

underlying computational explanations. The PRO model generates the W-shaped dACC activity pattern 

as the combination of two different types of surprise signals. One surprise signal is triggered by the 

cue onset, and it depends on the uncertainty relative to the cue type. The other is triggered by the 

response onset and depends on the uncertainty related to the probability of selecting one of the two 

responses over the other. The PRO model therefore suggests that the dACC plays no role in the 

optimization of cognitive control per se but it is exclusively involved in surprise tracking. As argued 

above, this view is challenged by empirical evidence showing dACC activation corresponding to 

cognitive control intensity in tasks deliberately designed to exclude surprise3,24,29–31. In contrast, the 

RML explains the dACC activity as the sum of two different functions: The expected value of the 

selected action (U-shaped function in Figure 3c) and the cognitive control intensity (inverted U-shaped 

function in Figure 3d), suggesting a more complex function of the dACC, where surprise-based 

monitoring is functional to cognitive control optimization.  

This is the reason why the RML, differently from the PRO model, is able to explain the dACC 

activity also in tasks where surprise is not involved, such as the working memory task studied here (see 

also 34,35,38). These findings solidify the RML as a computational account unifying the monitoring and 

control perspective during decision-making, thereby reconciling surprise, value, and cognitive control 

under the framework of meta-learning processes36,37.  

Another important innovation of the RML is its bio-inspired system-level perspective, where 

MPFC function is studied in conjunction with brainstem and midbrain catecholaminergic nuclei. This 
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allows for modeling of the cortico-subcortical reciprocal influence and how the MPFC can orchestrate 

cortical and striatal functions by controlling the release of neuromodulators, broadening the scope of 

application of the RML framework. For example, in a previous work, the RML was shown to be capable 

of providing a computational account of how the MPFC modulates parietal neurons - via LC activation 

- during a visual attention task35. The same mechanism can also explain the activity in dorsolateral 

regions of the frontal and parietal lobes that Vassena et al. described in their study32. Indeed, these 

areas are involved in the execution of the speeded decision-making task (spatial and motor control 

components), and the RML suggests that the MPFC optimizes their performance by neuronal gain 

modulation via neuromodulatory input. Moreover, this system-level perspective allows us to formulate 

predictions about different regions within the MPFC, like the activity pattern of the vMPFC (Figure 3c) 

or of the mid-cingulate cortex (Figure 3f). 

A further relevant element introduced by the RML is that most of the behavioural and neural 

predictions made by the RML emerge from the interaction of the model with the environment 

(situatedness as defined by Wilson55 and Nolfi56). Furthermore, the goal of the optimization process of 

the RML is to find the set of actions (policy) that maximizes the net value, regardless of whether these 

actions are directed toward the external environment (motor) or the internal environment (cognitive 

control). Learning optimal actions (motor or cognitive) requires a loop between the RML and the 

environment, where the RML plays an active role in exploring the world. Recently, an improvement to 

the RML was proposed, the RML-C35, where the situated and proactive aspects of RML are more 

pronounced, as the model’s goal is not limited to net value maximization, but includes also the 

maximization of information relative to the environment. To this aim, the RML-C actively explores the 

environment to improve its predictions, investing motor and cognitive effort for gathering information 

(intrinsic motivation57,58), beyond the utilitarian perspective of net value maximization. The situated 

and proactive perspective that the RML proposes about the dACC role – and more in general of the 

MPFC – seems to be soundly grounded also on the neurophysiology of this area, which evidences large 

neural populations coding for both motor and visceromotor functions (for a review: 26). Differently 

from the RML, the PRO model embraces a pure monitoring perspective, where the dACC plays a 

passive role of RL “critic” 59, dedicated to the monitoring of action-outcome contingencies. Similarly, 

the implementation of the EVC model proposed by Vassena et al.32 selects the control intensity as a 

function of the option values and the control cost, working as a decision-making algorithm where 

information about the environment and the action-outcome contingencies is fully known in advance. 

However, a more recent implementation of the EVC, the Learned Value of Control (LVOC) model28, has 

been designed for learning the optimal policies of control through model-environment interactions in 

stationary conditions. However, contrary to the RML and PRO models, the LVOC does not include 
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explicit monitoring of surprise, hence it remains to be tested whether it could account for the dACC 

data relative to surprise coding.  

In summary, in this work, we have shown that the meta-learning perspective represents a 

general solution for the understanding of the MPFC function and that it is capable of explaining 

empirical data from a larger domain set if compared with the PRO and EVC models alone. Future 

research in this domain should investigate also the comparison of the above frameworks with other, 

alternative perspectives on the computational basis of cognitive control, based on active inference60,61, 

such as the proposal that cognitive control results from the monitoring of the deviation from prior 

beliefs about cognitive actions so that cognitive effort is exerted to override habits62.  

 

Methods 

A detailed description of simulation methods and data analysis is reported in the Supplementary 

Information. 
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