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Abstract

The language of biology, encoded in DNA, RNA, and proteins, forms the foundation of
life but remains challenging to decode due to its complexity. Traditional computational
methods often struggle to integrate information across these molecules, limiting a compre-
hensive understanding of biological systems. Advances in Natural Language Processing
(NLP) with pre-trained models offer new possibilities for interpreting biological language.
Here, we introduce LucaOne, a pre-trained foundation model trained on nucleic acid and
protein sequences from 169,861 species. Through large-scale data integration and semi-
supervised learning, LucaOne demonstrates an understanding of key biological principles,
such as DNA-Protein translation. Using few-shot learning, it effectively comprehends
the central dogma of molecular biology and performs competitively on tasks involving
DNA, RNA, or protein inputs. Our results highlight the potential of unified foundation
models to address complex biological questions, providing an adaptable framework for
bioinformatics research and enhancing the interpretation of life’s complexity.

Keywords: Computational Biology and Bioinformatics, Computational Models, Deep Learning,
Foundation Models, Gene and Protein Language Models

Main
Background

From the discovery of DNA to the sequencing of every living form, the faithful rule-based
flow of biological sequence information from DNA to RNA and protein has been the central
tenet of life science. These three major information-bearing biopolymers carry out most of
the work in the cell and then determine the structure, function, and regulation of diverse living
organisms|[1, 2].

The basic information in the threes is presented in a linear order of letters: four nucleotides
for DNA or RNA and 20 standard and several non-standard amino acids for proteins. Their
secondary or higher structure also contains information attributed to biological functions and
phenotypes. This genetic principle resembles the human linguistic system. Darwin wrote in
his The Descent of Man: ’The formation of different languages and distinct species, and the
proofs that both have been developed through a gradual process, are curiously the same.’[3].
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Various studies have testified to these parallels ever since, promoting the understanding and
decoding of biological language[4—6].

Given the rapid advancements in machine learning technologies for human language
processing, our efforts to decode biological language are bound to accelerate by leverag-
ing insights from the former. The recent development of transformer architecture showed
the superior capability of generalizing massive sequence-based knowledge from large-scale
labeled and unlabeled data, which empowered language models and achieved unprecedented
success in natural language processing (NLP) tasks. By pre-training on large datasets, founda-
tional models learn the general characteristics of biological sequences. These models compute
the input sequence into an embedding, a numerical representation that succinctly captures
its semantic or functional properties. On this basis, various biological computation prob-
lems can be addressed through direct prediction, embedding analysis, or transfer learning[7].
In life science, substantial efforts have been put into adopting such language models, espe-
cially in protein tasks (ProTrans[8], ProteinBERT[9], ESM2[10], Ankh[11]), such as structure
prediction[10, 12] and function annotation[ 13, 14]. In the realm of nucleic acid-focused tasks,
several models have been introduced within niche areas (DNABert2[15], HyenaDNA[16],
ScBert[17]). However, a broadly applicable, foundational model for nucleic acids remains
elusive in widespread adoption across various disciplines.

Therefore, we have opted for a more fundamental and universal approach and devel-
oped a pre-trained, biological language semi-supervised foundation model, designated as
“LucaOne”, which integrates nucleic acid (DNA and RNA) and protein sequences for con-
current training. This methodology allows the model to process and analyze data from
nucleic acids and proteins simultaneously, facilitating the extraction of complex patterns and
relationships inherent in the processes of gene transcription and protein translation[ 18, 19].

We further examine that LucaOne exhibits an emergent understanding of the central
dogma in molecular biology: the correlation between DNA sequences and their correspond-
ing amino acid sequences, supporting the notion that the concurrent training of nucleic acid
and protein sequences together yields valuable insights[20]. To illustrate LucaOne’s practical
effectiveness, we present seven distinct bioinformatics computational scenarios. These exam-
ples highlight LucaOne’s ease of use in real-world applications and demonstrate its superior
performance to state-of-the-art (SOTA) models and other existing pre-trained models.

Results
LucaOne as a Unified Nucleic Acid and Protein Foundation Model

LucaOne was designed as a biological language foundation model through extensive pre-
training on massive datasets, enabling the extraction of generalizable features for effective
adaptation to various downstream tasks, therefore allowing researchers to efficiently employ
pre-trained embeddings from LucaOne for a diverse range of bioinformatics analysis, even
when there is limited training data, thereby significantly enhancing their performance. This
model leverages a multifaceted computational training strategy that simultaneously processes
nucleic acids (DNA and RNA) and protein data from 169,861 species (only those with a
minimum of 10 sequences within the training dataset are counted). Consequently, LucaOne
possesses the capability to interpret biological signals and, as a foundation model, can be


https://doi.org/10.1101/2024.05.10.592927
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.10.592927; this version posted April 9, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-ND 4.0 International license.

guided through input data prompts to perform a wide array of specialized tasks in biological
computation.

Fig. 1 depicts the LucaOne framework, which adopts and enhances the Transformer-
Encoder[21] (Methods A). LucaOne’s vocabulary comprises 39 unique tokens representing
nucleotides and amino acids (Methods B). We used pre-layer normalization to supersede
post-layer normalization to make deep networks easier to train. Rotary Position Embed-
ding (RoPE) replaces traditional absolute positional encoding for inferring longer sequences.
Additionally, the mixed-training model distinguishes nucleotides and amino acids by utilizing
token-type encoding, assigning 0 to nucleotides and 1 to amino acids.

To comprehensively assimilate the patterns and structures pervasive in universal bio-
logical language and the inherent knowledge these patterns convey, we have compiled an
extensive collection of nucleic acid and protein datasets as the foundational pre-training
material. RefSeq provided nucleic acid sequences, including DNA and RNA, and annota-
tions for eight selected Genome region types and their order-level taxonomy. Protein data
included sequences (from UniProt and ColabFoldDB), annotations (from InterPro, UniProt,
and ColabFoldDB), and tertiary structures (from RCSB-PDB and AlphaFold2) (Fig. 2-a,
Extended Data Figure 1, Extended Data Figure 2, and Supplementary Figure 1). A semi-
supervised learning[19] approach was employed to enhance its applicability in biological
language modeling. So, our pre-training tasks have been augmented with eight foundational
sequence-based annotation categories. These annotations complement the fundamental self-
supervised masking tasks, facilitating more effective learning for improved performance in
downstream applications (Fig. 2-b and Supplementary Figure 3). Overall, LucaOne com-
prised 20 transformer-encoder blocks with an embedding dimension of 2,560 and a total of
1.8 billion parameters. The downstream task utilized a model checkpoint at 5.6M (Methods
E). To illustrate the benefits of mixed training for nucleic acids and proteins, we trained
the two additional models (LucaOne-Gene/LucaOne-Prot) separately using nucleic acids and
proteins individually, and made a comparison using the same checkpoint in the central dogma
of molecular biology task. Details of the pre-training data, pre-training tasks, and pre-training
details refer to Methods C, D, and E, respectively.

We utilized t-distributed stochastic neighbor embedding (t-SNE) to visualize the embed-
dings from three distinct datasets: a nucleic acid dataset (S1), comprising sequences from
12 marine species, a protein dataset (S2), consisting of sequences from 12 clans (Pfam clans
are groups of protein families that are evolutionarily related and share similar structures and
functions.), and another protein dataset (S3), organizing of recently updated sequences from
the top 12 most prevalent Gene Ontology (GO) terms - biological processes subset. This visu-
alization was compared to the results obtained using the Multi-OneHot, DNABert2[15], and
ESM2-3B[10] embedding approaches. The outcomes, as illustrated in Fig. 2(c~k), revealed
that the embeddings produced by LucaOne were more densely clustered, indicating that this
method may encapsulate additional contextual information beyond the primary sequence
data. (Dataset S1, S2, and S3 details are in Methods F, and the embedding clustering met-
rics are in Extended Data Table 1). In addition, we examined the correlation between
nucleic acid sequences and protein sequences of the same genes based on embeddings. The
results demonstrated that, despite the absence of paired data and explicit correspondence
relationships during training, the sequences (nucleic acids and proteins) of the same gene
exhibited convergence within the LucaOne embedding space. Moreover, this convergence was
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more pronounced compared to other independently trained pre-trained models and sequence
alignment methods (Details in Methods F).

Learning Central Dogma of Molecular Biology

Our additional objective was to account for known gene and protein sequences occupying
a minuscule yet biologically active niche within their respective design spaces, with a sub-
set of these sequences exhibiting correspondence based on the central dogma. Consequently,
throughout the training phase of the LucaOne model, we refrained from incorporating any
explicit representations of the relationships between DNA, RNA, and protein sequence, seek-
ing to test whether the model inherently grasped the correlation between the genetic and
protein data[22, 23].

We designed an experimental task to assess the ability of LucaOne to recognize the inher-
ent link between DNA sequences and their corresponding proteins. We have constructed a
dataset comprising DNA and protein matching pairs derived from the NCBI-RefSeq database,
with a proportion of 1: 2 between positive and negative samples (Fig. 3-a, 3-b, and Meth-
ods G). To better test whether the LucaOne model has already learned the correspondence
between nucleic acid and protein sequences in the central dogma, few-shot learning was
employed for validation. The samples were then randomly allocated across the training, val-
idation, and testing sets in a ratio of 4: 3: 25, respectively (refer to ’Original Dataset” in the
following sections).

The study employed a simple downstream network to evaluate LucaOne’s predictive
capacity (Fig. 3-¢). LucaOne encoded nucleic acid and protein sequences into two distinct
fixed embedding matrices (Frozen LucaOne). Then, each matrix was processed through pool-
ing layers (either Max Pooling or Value-Level Attention Pooling[24]) to produce two separate
vectors. The vectors were concatenated and passed through a dense layer for classification.

We compared the performance of different modeling approaches, including One-hot
with a transformer, a transformer model with the random initialization, nucleic acid embed-
dings from DNABert2, protein embeddings from ESM2-3B, as well as two separate ver-
sions of the LucaOne foundation model trained independently on nucleic acid and protein
sequences (LucaOne-Gene and LucaOne-Prot), and the unified training foundational version
of LucaOne (Fig. 3-d and Extended Data Table 2). The findings indicated that model-
ing methods lacking pre-trained elements (One-hot and random initialization, see Extended
Data Table 2 were unable to acquire the capacity for DNA-protein translation in this dataset.
In contrast, LucaOne’s embeddings were able to learn this capacity with limited training
examples effectively and significantly surpassed both the amalgamation of the other two pre-
trained models (DNABert2 + ESM2-3B) and the combined independent nucleic acid and
protein LucaOne models using the same dataset, architecture, and checkpoint. This suggests
that pre-trained foundational models can provide additional information beyond the specific
task samples for such biological computation tasks. Moreover, LucaOne’s unified training
approach for nucleic acids and proteins enabled it to learn within a single framework, thereby
capturing the fundamental intrinsic relationships between these two categories of biological
macromolecules to some extent.

A CDS-Protein dataset using data from the original task was prepared to further evaluate
the model’s capabilities. As Fig. 3-d shows that models trained exclusively on the CDS-
Protein dataset demonstrated improvements across multiple performance metrics, including
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accuracy, Fl-score, and AUC. When comparing the LucaOne model with the LucaOne-
Gene/Prot model and the DNABert2 + ESM2-3B model, the enhancements were more
substantial in the latter two model groups compared to LucaOne alone. It suggests that
the LucaOne model possess marginally enhanced discriminative capabilities between cod-
ing and noncoding regions. However, our experimental results (Supplementary Figure 9)
demonstrate a decline in LucaOne’s prediction accuracy as the number of exon within the
target sequence region increases. This observed limitation represents a critical area for future
model optimization. Furthermore, when evaluating performance across datasets from differ-
ent species, both models show consistent results, except for a notable decrease in performance
with Ciona intestinalis. This deviation can largely be attributed to its unique codon usage
patterns, which differ significantly from other species in the study (Fig. 3-e, 3-f). Given the
minimal sample size for this species in the dataset and with only 16% designated for train-
ing, it is likely that the models were unable to adequately learn the specific rules of the
central dogma under these codon preferences, even though the analysis was conducted under
the rule of the Standard Code. The observed divergence in codon preference suggests that
Ciona intestinalis may possess more distinctive translation mechanisms from genetic mate-
rial to proteins, which could be attributed to its unique evolutionary trajectory and selective
pressures[25]. Furthermore, a dataset expanded with two urochordate species was utilized for
model training and testing. The F1-score of the new model improved significantly for Ciona
intestinalis, while the performance for other species remained comparable to that of the orig-
inal model (Methods G and Extended Data Table 3). Based on this, it is inferred that with
an expanded training data size encompassing a wider array of central dogma rules, LucaOne
has the potential to more thoroughly assimilate the syntactical rules associated with genetic
information processing, enabling its application to a more diverse set of scenarios.

LucaOne Provides Embeddings for Diverse Biological Computational Tasks

To ascertain the capacity of the LucaOne model to provide effective embeddings for a variety
of downstream tasks, we conducted validation studies across seven distinct downstream tasks,
which include single-sequence tasks such as prediction of genus taxon (GenusTax), classifi-
cation of ncRNA families (ncRNAFam), and the prediction of protein subcellular localization
(ProtLoc) as well as the assessment of protein thermostability (ProtStab). For homogeneous
paired-sequence tasks, we predicted influenza hemagglutination assays based on a pair of
nucleic acid sequences (InfA) and assessed protein-protein interactions (PPI) utilizing pairs
of protein sequences. Additionally, we forecasted the interactions between ncRNA and pro-
teins (ncRPI) for the heterogeneous sequence task (Full task descriptions in Methods H and
Extended Data Table 4).

For each task, we performed two types of comparative analysis: one against the state-of-
the-art (SOTA) results and another using the same downstream network to assess LucaOne
embeddings against the widely used nucleic acid and protein pre-trained language models,
DNABert2 and ESM2-3B, respectively. These comparative analyses are instrumental in eluci-
dating the incremental contributions of foundation models when addressing related analytical
tasks and in evaluating the specific effectiveness of the embeddings generated by LucaOne
with DNABert2 and ESM2-3B.

Similarly, we used a simple downstream network to facilitate processing these tasks. We
illustrated the capacity of trained and frozen LucaOne to analyze nucleic acid (DNA and


https://doi.org/10.1101/2024.05.10.592927
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.10.592927; this version posted April 9, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-ND 4.0 International license.

RNA) and protein sequences. Fig. 4(a~c) displays the network architectures for three distinct
input types. For tasks requiring paired inputs, a concatenation step is necessary to merge the
output vectors of the pairs into a single extended vector. Finally, a fully connected (FC) layer
was utilized for the ultimate output, which could be for classification or regression purposes.

Fig. 4(d~Kk) displays a comparative analysis of performance on seven distinct biomed-
ical tasks, revealing that LucaOne demonstrates superior representational capabilities over
competing models in the GenusTax, ProtStab, ncRNAFam, InfA, and PPI evaluations, and
comparable performance on the other two: ProtLoc and ncRPI. Notably, within the nucleic
acid-centric GenusTax and ncRNAFam, LucaOne’s accuracy has increased by 0.05 and 0.026,
respectively, indicating a marked improvement over DNABert2. In the InfA task, LucaOne
excelled with an exceptional accuracy of 1.0, reflecting its outstanding ability to represent
this task data. For the ProtStab task, it surpassed ESM2-3B with a 0.015 increase in Spear-
man’s rank correlation coefficient (SRCC) and similarly showed a slight improvement in the
evaluation of protein-protein interaction (PPI). Compared with DeepLocPro[26] in the task
of ProtLoc, LucaOne was competitive with ESM2-3B and demonstrated a 0.025 accuracy
improvement. Although LucaOne did not outperform the elaborate network model ncRPI-
LGAT[27] in evaluating ncRPI, it still exceeded the combined abilities of DNABert2 and
ESM2-3B. LucaOne’s effectiveness was particularly notable in processing tasks involving
heterogeneous sequences of nucleic acids and proteins; employing a unified representation
model is advantageous compared to using separate models. The outcomes of these tasks
underscored the robust representational capabilities of LucaOne for both nucleic acid and
protein sequences. LucaOne could improve performance across a spectrum of downstream
tasks, streamline networks for downstream tasks, and reduce computational resource demands
(More results of hyperparameter comparison experiments and detailed metrics in Methods 1,
Extended Data Table 5, and Supplementary Figure 4).

Discussion

The attempt to build a universal biological language model is to develop a sophisticated cata-
loging and retrieval system for “The Library of Mendel” - the genetic version of “The Library
of Babel.’[28, 29]. The diversity of genetic variations presents a vast “design space” that is
arguably as rich as the entirety of human literature, if not more so, given the far longer history
of life on Earth compared to our record of literature. However, in stark contrast, the propor-
tion of genetic sequences we have successfully identified and cataloged remains significantly
smaller than the volume of documented human languages. Moreover, the growth of our under-
standing and documentation of this "biological language’ is unlikely to occur suddenly or
rapidly[30, 31]. Our endeavor herein offers a computational model that posits the potential
to represent the paradigm of biological language. However, we must temper our expectations
regarding this model’s rapid and seamless refinement toward an idealized state of perfection.

In developing the LucaOne model, we used deep learning frameworks and techniques
from natural language processing. However, we observed systemic discrepancies when apply-
ing these models, which were highly successful in natural language contexts, to genomic
language[32]. The architecture of BERT-based pre-trained language models focuses on under-
standing context but may not efficiently capture biological sequences’ unique attributes and
characteristics[33, 34]. Furthermore, the functions and expressions of biological sequences
are not solely determined by their genetic sequences but also by the environment in which
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they are expressed - a factor for which there is presently no practical modeling approach. Stan-
dardized methods for processing annotated or phenotypic data are lacking, which can lead to
inaccuracies and omissions[35, 36]. Moreover, the continual learning and scalability aspects
have yet to be fully explored in this study, primarily due to resource constraints. As a result,
the complexities of the model’s learning capabilities have not been thoroughly examined at
this point, highlighting the primary area of research for the subsequent phase[37]. In terms of
application, due to the diversity of contexts, a robust evaluation system is absent for general-
izability and domain adaptability, with small, specialized models occasionally outperforming
large pre-trained models in conjunction with downstream tasks in certain areas[32, 38].

In light of these considerations, researchers may need to develop specialized pre-trained
models tailored to genomic language to improve encoding and comprehension of biolog-
ical data, ensuring adaptability across a broader spectrum of computational biology tasks.
Promising directions include architectural innovations in pre-training models, such as incor-
porating genetic programming concepts into large language models (LLMs)[39, 40]. Another
avenue is to harmonize multimodal data, encompassing sequences, feature annotations,
experimental results, images, and phenotypical information to better understand biological
systems beyond unsupervised sequence data learning[41, 42]. Additionally, employing more
transparent algorithms may enhance the interpretability of the model, facilitating better inte-
gration with existing biological research frameworks and model development[43, 44]. Lastly,
given the necessity for pre-trained models to efficiently fine-tune or apply to downstream
tasks, paradigms need to expedite model adaptation to new tasks and broader application
contexts[32].

To conclude, this paper documented our effort to build a comprehensive large model to
represent the intricacies of the biological world. The capabilities demonstrated by LucaOne
showed considerable promise and highlighted several areas that necessitate substantial
advancements. Such multimodal pre-trained foundational models, grounded in bioinformat-
ics, will prove immensely valuable in accelerating and enhancing our comprehension of
biological phenomena.

Main Figures
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Fig. 1: The workflow of LucaOne. a. Data source and processing for pre-training. The
nucleic acid data was from RefSeq and included sequences and annotations, which con-
sisted of order-level taxonomy and eight selected genome region types. Protein encompasses
sequences (from Uniref50, UniProt, and ColabFoldDB-metagenomic protein collection (i.e.
ColabFoldDB), where Uniref50 is clustered set of sequences from the UniProt with at least
50% sequence identity to enhance the learning of these representative sequences), annota-
tions (order-level taxonomy from UniProt and ColabFoldDB, keywords from UniProt, and
features such as sites, homologous superfamilies, and domains from InterPro), and tertiary
structures (experimentally-determined structure from RCSB-PDB and predicted structure
from AlphaFold2-Swiss-Prot). b. Pre-training model architecture and pre-training tasks. The
Encoder is an improved transformer encoder. Based on two self-supervised mask tasks, an
additional eight semi-supervised pre-training tasks were introduced to enhance the model’s
understanding of the data through annotations in the sequences. ¢. Downstream tasks for val-
idation based on LucaOne embedding. The representational capabilities of LucaOne were
verified using eight downstream tasks, whose inputs include DNA, RNA, proteins, and their
interrelated pairs.
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Fig. 2: The data and tasks for pre-training LucaOne, and t-SNE on four embedding
models. a. Details of pre-training data. Nucleic acids included sequence and two kinds
of annotation. The protein consisted of sequence, five types of annotation, and tertiary
structure coordinates. b. Details of pre-training tasks. The pre-training tasks included two self-
supervised mask tasks and eight semi-supervised tasks. c.~j. t-SNEs of the four embedding
methods on the S1-nucleic acid contigs with 12 species from the CAMI2 database, S2-protein
sequences across 12 clan categories from the Pfam database, and S3-protein sequences across
the top 12 most prevalent Gene Ontology (GO) terms from the UniProt database. The results
show that LucaOne’s representation has better clustering on these three datasets (nucleic acid
sequences of the same species should be clustered because of high sequence similarity, and
protein sequences of the same Pfam clan or GO term should be clustered of similar structures
and functions). (sp.01: unclassified Pseudomonas species, sp.02: Aeromonas salmonicida,
sp.03: unclassified Vibrio species, sp.04: Streptomyces albus, sp.05: Aliivibrio salmoni-
cida, sp.06: unclassified Brevundimonas species, sp.07: Vibrio anguillarum, sp.08: Aliivibrio
wodanis, sp.09: Moritella viscosa, sp.10: unclassified Enterobacterales species, sp.11:
unclassified Tenacibaculum species, sp.12: unclassified Aliivibrio species; GO:0000105: L-
histidine biosynthetic process, GO:0009245: lipid A biosynthetic process, GO:0002181:
cytoplasmic translation, GO:0006207: *de novo’ pyrimidine nucleobase biosynthetic process,
GO0:0006094: gluconeogenesis, GO:0009432: SOS response, GO:0006099: tricarboxylic
acid cycle, GO:0042274: ribosomal small subunit biogenesis, GO:0009423: chorismate
biosynthetic process, GO:0044205: *de novo’ UMP biosynthetic process, GO:0006189: *de
novo’ IMP biosynthetic process, GO:0006526: L-arginine biosynthetic process).
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Fig. 3: The workflow of the central dogma of molecular biology task. a. Dataset from 13
species with 10,471 genes in RefSeq. b. Prepared 8,533 positive samples and 17,067 negative
samples and took a specific sample dividing strategy to test the model performance in this task
(training set: validation set: testing set=4: 3: 25). c¢. Based on different embedding methods
of DNA-Protein pair sequences, a simple downstream network was used for modeling and
illustrating their representational ability. d. Models performance comparison (validation +
testing Dataset) on original and CDS-Protein datasets. e. Comparative performance analysis
(validation + testing Dataset) of the models across diverse species datasets (Sample counts in
brackets). f. One species for each Class was selected to undergo a codon usage bias analysis,
which adheres to the conventions of the standard genetic code; this entails comparing the
relative usage frequencies of different codons for each amino acid, ensuring that the total
adds up to 100%. The species Ciona intestinalis exhibits a codon usage bias that is markedly
distinct from that of other species - overall lower GC content. Details in Methods G.
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Fig. 4: Downstream task networks with three input types and results comparison of 8
verification tasks. Based on the embedding matrix, three types of inputs in the downstream
task are corresponding networks: a. A single sequence, including GenusTax, ncRNAFam,
ProtLoc, and ProtStab; b. Two same-type sequences, including InfA and PPI; c. Two hetero-
geneous sequences: Central Dogma and ncRPI. d.~k. Comparison results of 8 downstream
tasks. The Spearman Correlation Coefficient (SRCC) was employed for the ProtStab regres-
sion task, and Accuracy (Acc) was used for other tasks. Comparative methods include the
SOTA, DNABert2-based (for nucleic acids), ESM2-3B-based (for proteins), and LucaOne-
based. The top right % indicates inference using the trained method, the top right A indicates
direct use of the results in its paper, and the top right e indicates repetition using its method
and is better than the results in the paper.
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Methods
A. Model Architecture

Fig. 1-b illustrates the design of LucaOne, which utilizes the Transformer-Encoder[21]
architecture with the following enhancements:

1) The vocabulary of LucaOne comprises 39 tokens, including both nucleotide and amino
acid symbols (refer to Methods B);

2) The model employs Pre-Layer Normalization over Post-Layer Normalization, facilitat-
ing the training of deeper networks[45];

3) Rotary Position Embedding (RoPE[46]) is implemented instead of absolute positional
encoding, enabling the model to handle sequences longer than those seen during training;

4) It incorporates mixed training of nucleic acid and protein sequences by introducing
token-type embeddings, assigning 0 for nucleotides and 1 for amino acids;

5) Besides the pre-training masking tasks for nucleic acid and protein sequences, eight
semi-supervised pre-training tasks have been implemented based on selected annotation
information (refer to Methods D).

B. Vocabulary

The vocabulary of LucaOne consists of 39 tokens. Due to the unified training of nucleic
acid and protein sequences, the vocabulary includes four nucleotides (CA’, *T’, °C’, °G’) of
nucleic acid U’ compiled with *T” in RNA), "N’ for unknown nucleotides, 20 amino acids
of protein (20 uppercase letters excluding 'B’, ’J’, ’O’, *U’, ’X’, and ’Z’), ’X’ for unknown
amino acids, ’O’ for pyrrolysine, *U’ for selenocysteine, other three letters CB’, ’J’, and *Z’)
not used by amino acids, five special tokens: ’[PAD]’, [UNK]’, ’[CLST’, ’[SEP]’, '[MASK]’,

and three other characters: (’.’, ’-’, and **’). Due to the amino acid letters overlapping with
the nucleotide letters, the use of °'1°, °2°,°3’,’4’, and ’5’ instead of ’A’, ’T’, ’C’, °’G’, and 'N’,
respectively.

C. Pre-training Data Details
Nucleic Acid

The nucleic acid was collected from the NCBI RefSeq genome database, involving 297,780
assembly accessions. The molecular types included DNA and RNA (Fig. 2-a). The DNA
sequence, DNA selected annotation, RNA sequence, and RNA selected annotation were
obtained from the format files ’genomic.fna’, ’genomic.gbff’, ’rna.gbff’, and ’rna.fna’,
respectively. Among all pre-training sequences, 70% of DNA sequences and 100% of RNA
sequences were derived from annotated genomes, while the remaining unannotated sequences
were retained to ensure diversity.

DNA reverse strand: The DNA reverse strand also contains a lot of annotation informa-
tion, so the DNA dataset expanded reverse strand sequences with their annotation. A total of
23,095,687 reverse-strand DNA sequences were included.

Genome region types: Eight important genome region types in nucleic acids were
selected, including *CDS’, ’intron’, "tRNA’, 'ncRNA’, 'rRNA’, *miscRNA’, "tmRNA’, and
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‘regulatory’. Each nucleotide in the sequence had a label index of 8 categories (0~7) or -100
when it did not belong to these eight categories.

Order-level taxonomy: The order-level label of the taxonomy tree was selected as the
classification label of the nucleic acid sequence. Each sequence had a label index of 735
categories (0~734) or -100 without the order-level taxonomy.

Segmentation: Due to the limited computing resources, each nucleic acid sequence was
segmented according to a given maximum length. The fragmentation strategy was presented
in Supplementary Figure 2.

Protein

Protein sequence data were obtained from UniRef50, UniProt, and ColabFoldDB. UniRef50
was added to the UniProt database to upsampling high-quality representative sequences,
while ColabFoldDB was incorporated to enhance the diversity of protein sequences. For
ColabFoldDB, redundancy within each cluster was minimized by retaining only the ten most
diverse sequences. Duplicated sequences between UniProt and ColabFoldDB were excluded.
As shown in Fig. 2-a, compared to nucleic acids, proteins contained more information, includ-
ing sequence, taxonomy, keywords, sites, homology regions, domains, and tertiary structure.
Sequence, taxonomy, and keywords were collected from UniProt and ColabFoldDB. The
sites, domains, and homology regions were extracted from Interpro. The tertiary structure was
derived from RCSB-PDB and AlphaFold2-Swiss-Prot.

Sequence: The right truncation strategy was applied when the sequence exceeded the
maximum length.

Order-level taxonomy: Order-level classification information is used as the protein
sequence taxonomy. There were 2,196 categories; each sequence had a label index (0~2,195)
or -100 if its order-level information was missing.

Site: Four types of site regions (‘Active site’, ‘Binding site’, ‘Conserved site’, and ‘PTM”)
with 946 categories were included. For each amino acid in a sequence, if it was a site location,
there was a label index (0~945); otherwise, it was marked with -100.

Homology: A homologous superfamily is a group of proteins that share a common evo-
lutionary origin with a sequence region, reflected by similarity in their structure. There were
3,442 homologous region types; Each amino acid in these regions had a label index (0~3,441)
corresponding to its type, and the other amino acids were labeled -700.

Domain: Domain regions are distinct functional, structural, or sequence units that may
exist in various biological contexts. A total of 13,717 domain categories were included; Each
amino acid in these regions had a label index (0~13,716) corresponding to its category, and
the other amino acids were marked with -700.

Keyword: Keywords are generated based on functional, structural, or other protein cat-
egories. Each sequence was labeled as a set of label indices with 1,179 keywords or -/00
without keywords.

Structure: The spatial coordinates of the C,-atom were used here as the amino acid
coordinates. Each amino acid was labeled with a three-dimensional coordinate normalized
within the protein chain. The amino acids at the missing locations were labeled (-100, -100,
-100). We obtained the experimentally determined structure in RCSB-PDB and the predicted
structure by AlphaFold2 of UniProt (Swiss-Prot) and preferentially selected the structure in
RCSB-PDB. In total, only about half a million protein sequences had structural information.
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D. Pre-training Tasks Details

LucaOne has employed a semi-supervised learning approach to enhance its applicability
in biological language modeling. Unlike the traditional natural language machine learning
domain, where tasks involve input and output of the same textual modality, bioinformatics
analysis often involves different modalities for input and output data. Most bioinformat-
ics downstream tasks extend from understanding nucleic acid or protein sequences, so our
pre-training tasks have been augmented with eight foundational sequence-based annotation
categories. These annotations complement the fundamental self-supervised masking tasks,
facilitating more effective learning for improved performance in downstream applications.
The selection criteria for these annotations focused on universality, lightweight design, and
high confidence level; consequently, only a subset of the data possess such annotations. As
listed in Supplementary Figure 3, there are 10 specific pre-training tasks at four levels.

Token Level Tasks: Gene Mask and Prot Mask tasks randomly mask nucleotides or
amino acids in the sequence following the BERT masking scheme [47] and predict these
masked nucleotides or amino acids based on the sequence context in training. The loss func-
tions of the two mask language pretraining tasks are defined in Supplementary Notes 1 Eq.
(1)~(2).

Span Level Tasks: The model is trained to recognize some essential regions based on
the sequence context. For nucleic acid sequences, eight essential genome region types are
learned. For protein sequences, three types of regions are labeled: site, homology, and domain
regions. The loss functions of these span-level pertaining tasks are listed in Supplementary
Notes 1 Eq. (3)~(7).

Seq Level Tasks: Gene-taxonomy, Prot-taxonomy, and Prot-keyword are the order-level
taxonomies of nucleic acid, protein, and protein-tagged keywords, respectively. They are all
sequence-level learning tasks. The loss functions of the three sequence-level pre-training tasks
are presented in Supplementary Notes 1 Eq. (8)~(9).

Structure Level Tasks: Since the structure of a protein determines its function, we use a
small amount of protein data with a tertiary structure for simple learning in the pre-training
phase. Instead of learning the spatial position at the atomic level, the spatial position of amino
acids is trained (using the position of the C, atom as the position of the amino acid). The loss
function of structure-level pertaining task is defined in Supplementary Notes 1 Eq. (10).

Data Processing: All data processing tasks were performed on the Alibaba Cloud
MaxCompute platform.

E. Pre-training Information

On the dimensions of the embedding, the research conducted by Elnaggar et al. [11] demon-
strates that the ESM2-3B model, with an embedding dimension of 2,560, significantly
enhances performance compared to its counterpart, ESM2-650M, harbors an embedding
dimension of 1,280. However, when the parameter count increases to 15 billion with an
embedding dimension of 5120, there is no significant increase in performance. It is also
observed that the ESM2-15B model requires substantially more time than ESM2-3B and
ESM2-650M regarding the relationship between input sequence length and computational
time. For the relationship between model size and training data size, Hoffmann et al. suggest
that a minimum of 20.2 billion tokens is essential to adequately train a 1B-sized model [48].
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Taking into account these insights, along with the consideration of available computa-
tional resources and the volume of pre-training data, some of the critical hyperparameters
we adopted are as follows: the architecture of LucaOne consists of 20 transformer-encoder
blocks with 40 attention heads each, supports a maximal sequence length of 1,280, and fea-
tures an embedding dimension of 2,560. The model is composed of a total of 1.8 billion
parameters. We employed 10 different pretraining tasks, assigning an equal weight of 1.0 to
Gene-Mask, Prot-Mask, Prot-Keyword, and Prot-Structure tasks, while assigning a reduced
weight of 0.2 to the remaining tasks to equilibrate task complexity (Supplementary Notes
1 Eq. (11)). We used the AdamW optimizer with betas (0.9, 0.98) and a maximum learning
rate of 2e-4, incorporating a linear warm-up schedule throughout the learning rate updates.
For the model training regimen, we utilized a batch size of 8 coupled with a gradient accumu-
lation step of 32. The model underwent training on 8 Nvidia A100 GPUs spanning 120 days.
A model checkpoint of 5.6 million (5.6M, trained with 36.95B tokens) was selected for the
subsequent validation tasks, aligned with ESM2-3B in terms of the volume of data trained for
comparison.

To elucidate the advantages of mixed training involving both nucleic acids and pro-
teins, we further conducted experiments with two supplementary models, LucaOne-Gene and
LucaOne-Prot, trained exclusively with nucleic acids and proteins, respectively. Their per-
formance in the central dogma of the biology task was evaluated with the same checkpoint
(5.6M) of the two models.

Checkpoint Selection Criteria: We have released the 5.6M checkpoint aligned with the
ESM2-3B model for a comparable volume of data trained, which was trained with 36.95 bil-
lion tokens over 20 times the model’s parameters. We also released the 17.6M checkpoint
(trained with 116.62B tokens) based on three criteria: 1) The loss curve slowly descended
after 17.6M steps during training (Extended Data Figure 3-a); 2) The losses are relatively
stable on the validation and testing set between 15M and 20M steps, making 17.6M optimal
(Extended Data Figure 3-b and 3-c); 3) The improvement in the performance of representa-
tive downstream tasks is very limited. For example, in the ncRPI task, the accuracy is 94.93%
at checkpoint 17.6M, which is only a marginal improvement compared to an accuracy of
94.78% at checkpoint 5.6M (Extended Data Figure 3-d).

F. LucaOne Embeddings Level Analysis

Details of t-SNE Datasets: The S1 dataset was curated from marine data available in
CAMI2[49], selecting contigs with lengths ranging from 300 to 1,500 nucleotides. We
focused on species that were identifiable and possessed at least 200 contigs. The contigs
of each species were redundant by MMSeqs, employing a coverage threshold of 80% and
sequence identity of 95%, culminating in a collection of 37,895 nucleic acid contigs from 12
species. We randomly selected 100 samples from each species, totaling 1,200 items for visu-
alization.

The S2 dataset originated from clan data within Pfam, maintaining clan categories with a
minimum of 100 Pfam entries, resulting in 189,881 protein sequences across 12 clan cate-
gories. For visualization, we randomly selected one sample for each Pfam entry in every clan,
amounting to 2,738 samples.

The S3 dataset was selected from the UniProt database from May 1, 2023, to December 16,
2024, which does not overlap the pre-training data of LucaOne (before May 29, 2022). This
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data set focused on the lowest-tier Gene Ontology (GO) annotations within the hierarchical
annotation framework of the biological processes (BP) subset, identifying the 12 most preva-
lent terms at this foundational level. Each GO term randomly samples 100 sequences between
100 and 2,500 amino acids in length, resulting in 1,200 protein sequences across the 12 GO
terms (Supplementary Note 2).

Convergence of Nucleic Acid and Protein Sequences for the Same Gene: We prepared
an additional dataset comprising nucleic acid and protein sequences for the same genes and
examined their correlations solely on embeddings. The results indicated that, despite nucleic
acid and protein sequences not being paired during model training, those corresponding to the
same gene demonstrated convergence within the LucaOne Embedding Space. More details in
Supplementary Note 6 and Supplementary Figure 12.

Task on Codon Degeneracy: We designed an additional task based on influenza virus
HA sequence data to verify whether LucaOne can distinguish between synonymous and non-
synonymous mutations in a zero-shot manner, more details in Supplementary Figure 16.

Task on Pseudogene Correction: We conducted a mask task prediction analysis (zero-
shot) on the data of the true gene (protein coding) and pseudogene pairs, the higher
pseudogene correction rate and the true gene recovery rate demonstrated the model’s abil-
ity to identify the differences between pseudogenes and functional genes. More details in
Supplementary Note 7, Supplementary Figure 13, and Supplementary Figure 14.

G. Details of Central Dogma Tasks

Dataset Construction-Original Dataset: We devised an experimental task to determine
whether LucaOne has established the intrinsic association between DNA sequences and their
corresponding proteins. A total of 8,533 accurate DNA-protein pairs from 13 species were
selected in the NCBI-RefSeq database, each DNA sequence extending to include an addi-
tional 100 nucleotides in the 5° and 3’ contexts, preserving intron sequences within the data.
In contrast, we generated double the number of negative samples by implementing substi-
tutions, insertions, and deletions within the DNA sequences or altering amino acids in the
protein sequences to ensure the resultant DNA sequences could not be accurately translated
into their respective proteins, resulting in a total of 25,600 samples - DNA-protein pairs. Then
the positive and negative samples were each subjected to random shuffles and subsequently
divided into 32 equally sized subsets. Then these subsets were assigned to the training, vali-
dation, and testing sets in a 4: 3: 25 ratio. For more details, then see Extended Data Table 4
and Data Availability

Analysis of Misclassified Samples: We analyze the misidentified samples from two per-
spectives: sequence and embedding. The relationship between sequence identity metrics and
the prediction accuracy of the LucaOne embedding was presented in Extended Data Figure
4-a and 4-b. Data details were presented in Supplementary Note 3. Extended Data Figure
4-a and 4-b show that the prediction accuracy of LucaOne for mutated sample pairs improved
as sequence similarity decreased. We also evaluated the embedding distance alterations corre-
sponding to modifications in nucleic acid and protein sequences by employing mean pooling
to calculate these distances. As illustrated in Extended Data Figure 4-c and 4-d, greater
changes in embedding distances were correlated with improved predictive precision.

17


https://doi.org/10.1101/2024.05.10.592927
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.10.592927; this version posted April 9, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-ND 4.0 International license.

Dataset Construction-2 More Species of Urochordates: We incorporated two species
with annotated reference genome urochordates (referred to as Tunicate in the NCBI Taxon-
omy) into our dataset: Styela clava (ASM1312258v2, GCF_013122585.1) and Oikopleura
dioica (OKI2018_168_ 1.0, GCA_907165135.1). For each of these urochordate species, 480
genes were randomly selected, and positive gene samples, nucleic acid negative samples, and
protein negative samples were constructed using the same approach as in the original dataset.
The same data shuffling and partitioning principles were applied and integrated with the orig-
inal dataset to retrain the Central Dogma model. Data details and model performance are
presented in Extended Data Table 3, Extended Data Figure 5, and Data Availability.

Comparative Performance Analysis: Upon integrating two additional urochordate
species data, Dataset Version 2 as the model exhibited performance comparable to the orig-
inal dataset models across all species except Ciona intestinalis. In particular, the F1-score
for Ciona intestinalis improved significantly, despite the nearly unchanged accuracy. These
findings suggest that supplementing the dataset with species that utilize a codon code similar
to Ciona intestinalis enhances the model’s sensitivity to DNA-Protein correlations in these
organisms while preserving its sensitivity to DNA-Protein correlations in species adhering
to the standard codon code. For more details, please see Extended Data Table 3 and Data
Availability.

CDS-Protein Task: In the current NCBI RefSeq database, genomes with complete intron
annotations are limited, and the accuracy of intron predictions from alternative tools may
directly impact model performance. To mitigate these challenges, coding sequence (CDS)
regions corresponding to genes in the original dataset were extracted as intron-free nucleic
acid sequences to perform the same task. See Supplementary Note 4 for data details and Fig.
3-d for analysis.

Task for Cross-Species Homologous Gene Pairs: We designed an additional task related
to the central dogma by modifying the negative samples in the original study. Instead of
manually altering the sequences, the negative samples were replaced with homologous genes
from closely related species. Please refer to Supplementary Note S for details.

H. Downstream Tasks Details

Genus Taxonomy Annotation (GenusTax): This task is to predict which genus (taxon-
omy) the nucleic acid fragment may come from, which is very important in metagenomic
analysis. A comparative dataset was constructed utilizing NCBI RefSeq, comprising 10,000
nucleic acid sequences, each extending 1,500 nucleotides and annotated with labels corre-
sponding to 157 distinct genera (distributed as 33, 50, 29, and 45 across the four kingdoms:
Archaea, Bacteria, Eukaryota, and Viruses, respectively). The dataset was randomly segre-
gated into training, validation, and testing sets, adhering to an 8: 1: 1 partitioning ratio. It
is important to note that while the LucaOne pre-training task utilized taxonomy annotations
at the order level, the current task employs more granular genus-level annotations, thereby
preventing label information contamination. This investigation constitutes a multi-class clas-
sification challenge. This dataset was also employed for two additional analyses: predicting
the taxonomy of sequences at SuperKingdom and Species levels. The details are presented in
Extended Data Table 5.

Prokaryotic Protein Subcellular Location (ProtLoc): This task is to predict the subcel-
lular localization of proteins within prokaryotic cells, which has garnered substantial attention
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in proteomics due to its critical role[50]. It involves classifying proteins into one of six sub-
cellular compartments: the cytoplasm, cytoplasmic membrane, periplasm, outer membrane,
cell wall and surface, and extracellular space. Our approach adopted the same dataset parti-
tioning strategy as DeeplocPro[26], a model based on experimentally verified data from the
UniProt and PSORTdb databases. Our research undertakes a multi-class classification chal-
lenge, categorizing proteins based on their distinct subcellular localizations. For this dataset,
we additionally designed a task based on the corresponding nucleic acid embeddings of the
proteins. The result showed that embeddings derived from nucleic acid sequences are appli-
cable to the task related to their corresponding protein sequences. The dataset and analytical
results are provided in Supplementary Note 8.

Protein Stability (ProtStab): The evaluation of protein stability is paramount for elu-
cidating the structural and functional characteristics of proteins, which aids in revealing the
mechanisms through which proteins maintain their functionality in vivo and the circum-
stances that predispose them to denaturation or deleterious aggregation. We utilized the same
dataset from TAPE[51], which includes a range of denovo-designed proteins, natural proteins,
mutants, and their respective stability measurements. It is a regression task; each protein input
(z) correlates with a numerical label(y € R), quantifying the protein’s intrinsic stability.

Non-coding RNA Family(ncRNAFam): Non-coding RNA(ncRNA) represents gene
sequences that do not code for proteins but have significant functional and biological roles.
The objective is to assign ncRNA sequences to their respective families based on their char-
acteristics. For this purpose, we utilize the dataset from the nRC[52], which is consistent with
the data employed in the RNAGCN[53] study. Our methodology adheres to the same data par-
titioning into training, validation, and testing sets as done in these previous studies, enabling
direct comparison of results. This project involves a multi-class classification challenge that
encompasses 88 distinct categories.

Influenza A Antigenic Relationship Prediction (InfA): One of the foremost tasks in
influenza vaccine strain selection is monitoring Hemagglutinin (HA) variant emergence,
which induces changes in the virus’s antigenicity. Precisely predicting antigenic responses to
novel influenza strains is crucial for developing effective vaccines and preventing outbreaks.
The study utilizes data from the PREDAC[54] project to inform vaccine strain recommen-
dations. Each data pair in this study comprises two RNA sequences of the HA fragment
from distinct influenza strains, accompanied by corresponding antigenic relationship data.
The objective is framed as a binary classification task identifying the antigenic similarity or
difference between virus pairs.

Protein-Protein Interaction (PPI): The forecasting of protein-protein interaction net-
works represents a significant area of research interest. Our study utilized the DeepPPI[55]
database, whose positive dataset samples were sourced from the Human Protein Reference
Database after excluding redundant interactions, leaving 36,630 unique pairs. This dataset
was randomly partitioned into three subsets: training (80%), validation (10%), and test-
ing (10%). The primary objective of this research is to perform binary classification of
protein-protein interaction sequences.

ncRNA-Protein Interactions (ncRPI): An increasing number of functional non-coding
RNAs (ncRNAs), such as snRNAs, snoRNAs, miRNAs, and IncRNAs, have been discov-
ered. ncRNAs play a crucial role in many biological processes. Experimentally identifying
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ncRNA-protein interactions (ncRPI) is typically expensive and time-consuming. Conse-
quently, numerous computational methods have been developed as alternative approaches.
For comparison, we have utilized the same dataset as the currently best-performing study,
ncRPI-LGAT[27]. It is a binary classification task involving pairs of sequences.

I. Comparison Result Detaills

We conducted a series of comparative experiments. According to Fig. 4, for all embedding
methods, we compare whether the transformer encoder and two pooling strategies (max pool-
ing and value-level attention pooling) were used on the model. At the hyperparameter level,
we compared the number of encoder layers with the number of heads (4 layers with 8 heads
and 2 layers with 4 heads), the peak learning rate of the Warmup strategy (le-4 and 2e-4),
and the batch size (8 and 16). Extended Data Table 5 shows the result of comparing whether
the encoder was used and which pooling method was used accordingly, and Supplementary
Figure 4 shows more metrics on comparison experiments.

In the ProtLoc task, LucaOne’s accuracy is very close to that of the ESM2-3B; In the
ncRPI task, the accuracy of the simple network with LucaOne’s embedding matrix is less
than that of ncRPI-LGAT[27] but higher than that of DNABert2 + ESM2-3B; In the other
five tasks, we achieved the best results. It is better not to use an encoder for ProtLoc, InfA,
PPI, and ncRPI tasks. Using the Max Pooling strategy straightforwardly for the ncRNAFam
and GenusTax tasks can obtain better results. We extended two tasks, four superkingdoms,
and 180 species prediction tasks for the genus classification task with the same sequence data.
LucaOne’s accuracy improved by 0.1 and 0.054, respectively. In particular, LucaOne is more
effective than other large models in embedding sequences without an encoder.
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Extended Data Tables

Extended Data Table 1: Clustering metrics. The clustering scores (using K-Means++) of
the four embedding methods on the S1, S2, and S3 datasets.

DataSet Embedding ARI AMI HS CS V-measure FMI

Multi-OneHot | 0.1258 | 0.2782 | 0.2918 | 0.2949 0.2934 0.1998

12-Marine Species (S1) DNABert2 0.1313 | 0.2556 | 0.2686 | 0.2743 0.2714 0.2063

LucaOne 0.3410 | 0.5524 | 0.5488 | 0.5760 0.5621 0.4040

Multi-OneHot | 0.1062 | 0.1860 | 0.1763 | 0.2167 0.1944 0.2341

12-Clan Pfam (S2) ESM2-3B 0.0731 | 0.1526 | 0.1617 | 0.1595 0.1606 0.1644

LucaOne 0.2379 | 0.4179 | 0.4228 | 0.4240 0.4234 0.3163

Multi-OneHot | 0.0942 | 0.1920 | 0.1934 | 0.2315 0.2107 0.2004

12-Go Terms (S3) ESM2-3B 0.1079 | 0.2582 | 0.2596 | 0.2928 0.2752 0.2027

LucaOne 0.1535 | 0.3779 | 0.3707 | 0.4159 0.3920 0.2474

* Bold values indicate the best performance for each dataset in the respective column.
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Extended Data Table 2: Performance comparison for LucaOne and other embedding tools.
LucaOne was not only compared with several existing embedding methods but also with itself,
which was trained using nucleic acids and proteins separately (LucaOne-Gene/LucaOne-Prot).

LucaOne, with mixing training, obtained the best performance for both the original dataset and
the CDS-Protein dataset.

Accuracy F1-Score AUC
Embedding Network
Original | CDS-Protein | Original | CDS-Protein | Original | CDS-Protein
Transformer
One-Hot + Pooling 0.6667 - 0.0000 - 0.4943 -
+FC
Transformer
Random Init + Pooling 0.6662 - 0.0015 - 0.5085 -
+FC
DNABert2 Pooling
+ ESM2-3B +FC 0.7309 0.7400 0.5689 0.6661 0.7491 0.7959
LucaOne Pooling
(Gene/Prot) +FC 0.8048 0.8163 0.6804 0.7806 0.8616 0.9055
LucaOne P ioé‘(’:‘g 0.8453 0.8451 0.7392 0.8089 0.9101 0.9298

* Bold values indicate the best score in the respective metric.
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Extended Data Table 3: Comparative Performance Analysis. Comparative performance analysis (validation and
testing set) of the models across diverse species datasets (Sample counts in brackets). The original dataset includes
13 species, and the new dataset added two more urochordates species data. F1-score and accuracy are calculated and
presented. The top right * indicates the predictive performances of the model trained by the original version of the

Central Dogma dataset (w/o Oikopleura Dioica and Styela Clava data). More details in Data Availability.

Accuracy F1-Score
DNABert2 DNABert2
Species LucaOne + ESM2-3B LucaOne + ESM2-3B
(Samples count) New with New with New with New with
Original two more Original two more Original two more Original two more
rigina urochordates rigimna urochordates rgina urochordates rigina urochordates
species species species species
G“Z(’;‘ff;’)”“s 0.8318 0.8139 0.7077 0.7128 0.7235 0.7060 0.5401 0.5541
Manis ﬁj’g’gf"c’yl“ 0.8587 0.8517 0.7385 0.7329 0.7449 0.7402 0.5590 0.5431
Drosop ’”l(‘; 6’(1)21)“”"5'“”” 0.8192 0.8517 0.6967 0.6974 0.6691 0.6912 0.4644 0.4706
H””(’fgi.“g’e’” 0.8283 0.8267 0.7248 0.7143 0.7103 0.7295 0.5510 0.5335
Prerop 'Zggvg’)m”y s 0.8331 0.8314 0.7656 0.7622 0.7097 0.7207 0.6040 0.5960
M ”S( ;’;”;55")”[”5 0.8761 0.8805 0.7543 0.7586 0.8170 0.8325 0.6635 0.6583
Dasyp ’”( f;gg;””"““s 0.8491 0.8428 0.7462 0.7507 0.7512 0.7477 0.6044 0.5995
S”(Yl ;ggf" 0.8540 0.8570 0.7358 0.7388 0.7572 0.7745 0.5803 0.5770
M““zgcl‘g”;’;l“’m 0.8412 0.8335 0.7441 0.7336 0.7298 0.7330 0.5896 0.5780
S”’C"p(h]’é"]sl ;"””S” 0.8467 0.8328 0.7270 0.7211 0.7304 0.7216 0.5274 0.5284
E””““(L;‘; gg‘)’"p aeus 0.8540 0.8429 0.7421 0.7345 0.7585 0.7500 0.5956 0.5878
b ”(';l;()ge)”o 0.8345 0.8314 0.7110 0.6896 0.6967 0.7230 0.4808 0.4368
Ciona (’g’;m’“’” 0.7927 0.7873 0.6965 0.6978 0.5174 0.6391 03043 03957
S’yfll;gé‘)”“ 0.6817x% 0.6627 0.6817+ 0.6159 0.3725% 0.4311 0.2533x% 0.2461
Oikop (’fgg‘é)d’”’w 0.6747% 0.6476 0.6747+ 0.6373 0.3315% 0.3951 0.2293% 0.3462
Average 0.8451 0.8212 0.7318 0.7188 0.7391 0.7172 0.5706 0.5411
(All samples)

" Bold values indicate the best score for each species in the respective metric.
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Extended Data Table 4: Details on downstream validation tasks. Details of 10 down-

stream tasks, including task name, task type, input type of task, sample number of
training set, validation set, test set, and sequence length statistics of each task.

- - Train/Valid/ Seq Length
Task Task Type Tnput Type Test Size (Max/Min/Median)
2,455-617/
Central Dogma Binary-Class(2) DNA-Protein 3,200/2,400/20,000 309-11/
1,273-260
SpeciesTax Multi-Class(180) DNA 8,000/1,000/1,000 1,500/1,500/1,500
GenusTax Multi-Class(157) DNA 8,000/1,000/1,000 1,500/1,500/1,500
SupKTax Multi-Class(4) DNA 8,000/1,000/1,000 1,500/1,500/1,500
ProtLoc Multi-Class(6) Protein 9,915/1,991/1,131 5,627/8/396
ProtStab Regression Protein 53,614/2,512/12,851 50/43/43
ncRNAFam Multi-Class(88) RNA 105,864/17,324/25,342 200/24/114
1,690-1,690/
InfA Binary-Class(2) RNA-RNA 4,645/581/581 984-984/
1,095-1,095
33,423-33,423/
PPI Binary-Class(2) Protein-Protein 59,766/7,430/7,425 24-24/
465-437
3,999-3,678/
ncRPI Binary-Class(2) RNA-Protein 16,660/-/4,164 52-49/
1,858-414
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Extended Data Table 5: Detailed results of the testing set on downstream validation tasks
(results of the better pooling method for each task with or without encoder). The top right
% indicates inference using the trained method, the top right A indicates direct use of the
results in its paper, and the top right e indicates repetition using its method and higher than

the results in the paper.

Task Input Method Encoder Better Pooling | Acc/SRCC
‘W/O Encoder Attention 0.7309
DNABert2 + ESM2-3B Encoder Attention 0.7192
. ‘W/O Encoder Attention 0.8048
CentralD DNA-Prot
entraiiogma rotein LucaOne(Gene/Prot) Encoder Attention 0.7938
LucaOne 'W/O Encoder Attention 0.8453
Encoder Attention 0.8125
BERTax*[57] - - -
W/O Encoder Attention 0.519
SpeciesTax DNA DNABert2 Encoder Max 0.696
LucaOne ‘W/O Encoder Attention 0.713
Encoder Attention 0.750
BERTax* [57] - - 0.124
‘W/O Encoder Attention 0.551
GenusTax DNA DNABert2 Encoder Max 0.767
LucaOne ‘W/O Encoder Attention 0.765
Encoder Max 0.817
BERTax*[57] - - 0.816
‘W/O Encoder Attention 0.805
SupKTax DNA DNABert2 Encoder Attention 0.848
LucaOne ‘W/O Encoder Attention 0.940
Encoder Attention 0.947
DeepLocPro [26] - - 0.92
'W/O Encoder Attention 0.9496
ProtLoc Protein ESM2-3B Encoder Max 0.9408
LucaOne ‘W/O Encoder Attention 0.9452
Encoder Max 0.9310
TAPEA[51] - - 0.73
‘W/O Encoder Attention 0.7556
ProtStab Protein ESM2-3B Encoder Attention 0.7102
LucaOne W/O Encoder Attention 0.7512
Encoder Attention 0.7718
RNAGCNA[53] - - 0.90
‘W/O Encoder Attention 0.9036
ncRNAFam RNA DNABert2 Encoder Max 0.9610
LucaOne ‘W/O Encoder Attention 0.9743
Encoder Max 0.9864
PREDAC®[54] - - 0.9010
‘W/O Encoder Attention 0.9966
InfA RNA-RNA DNABert2 Encoder Attention 0.9966
LucaOne 'W/O Encoder Attention 1.0
Encoder Attention 0.9983
DeepPPI4 [55] - - 0.9719
‘W/O Encoder Attention 0.9764
PPI Protein-Protein ESM2-3B Encoder Attention 0.9745
LucaOne ‘W/O Encoder Attention 0.9774
Encoder Attention 0.9751
ncRPI-LGATA[27] - - 0.966
W/O Encoder Attention 0.9460
ncRPI RNA-Protein | DNVABert2 + ESM2-3B —— Attention 0.9332
LucaOne ‘W/O Encoder Attention 0.9479
Encoder Attention 0.9380

* Bold values indicate the best performance in the respective task.
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Extended Data Figures
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Extended Data Figure 1: Overall statistics on pre-training data of LucaOne. a.
Sequences (DNA, RNA, and proteins) were derived from RefSeq, UniProt, ColabFoldDB,
and UniRef50. b. The data (nucleic acids and proteins) involved four superkingdom types:
Viruses, Archaea, Eukarya, and Bacteria, of which Bacteria accounted for the most. ¢. The
sequence length distribution of nucleic acids, with the most being more than 1,000. d. The
sequence length distribution of proteins, with the maximum length ratio between 100 and
1,000. e. The proportion of five nucleotides (CA’, *T’, °’C’, ’G’, and ’Unknown’) in nucleic
acid sequences (U’ compiled with *T” in RNA) and the four identified nucleotides were close
in proportion. f. The proportion of the 20 standard amino acid letters and five other letters
(including four non-standard amino acids and *X’ for unknown amino acid) in the protein
sequence, and Leucine has the highest proportion.
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Extended Data Figure 2: Annotation statistics on pre-training data of LucaOne. a. The
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