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Abstract

Neurons in the primate lateral prefrontal cortex (LPFC) flexibly adapt their activity to sup-
port a wide range of cognitive tasks. Whether and how the topography of LPFC neural
activity changes as a function of task is unclear. In the present study, we address this is-
sue by characterizing the functional topography of LPFC neural activity in awake behaving
macaques performing three distinct cognitive tasks. We recorded from chronically implanted
multi-electrode arrays and show that the topography of LPFC activity is stable within a task,
but adaptive across tasks. The topography of neural activity exhibits a spatial scale compatible
with prior anatomical tracing work on afferent LPFC inputs. Our findings show that LPFC
maps of neural population activity are stable for a specific task, providing robust neural codes
that support task specialization. Moreover, the variability in functional topographies across
tasks indicates activity landscapes can adapt, providing flexibility to LPFC neural codes.
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1. Introduction

Flexibility is one of the defining properties of higher-order cognitive functions supported
by the primate lateral prefrontal cortex (LPFC). Unlike neural populations in primary sensory
areas, where activity is dominated by stimulus features such as frequency and orientation [1, 2],
LPFC neurons flexibly adapt their activity according to rules, behavioral context and feedback
associated with different tasks, even when stimulus inputs are held constant [3, [4] [5 6] [7].
This flexibility is shaped in part by the diversity of connections LPFC neurons receive, which
is more heterogeneous than for sensory neurons [8, [9]. Because of their diverse connections,
response profiles of LPFC neurons often exhibit selectivity to mixtures of task features, e.g.,
firing maximally only to a specific combination of rule, context and feedback [10, [11].

The selectivity of individual LPFC neurons to different combinations of task features cre-
ates unique challenges to understanding their functional organization as compared to sensory
regions. In the visual cortex, for instance, individual neurons with preferences for similar
stimulus features typically assemble into locally connected populations, giving rise to func-
tional organizations which can be spatially delineated using stimulus mapping techniques [12].
Stimulating different visual field locations [13], stimulus orientations [14], or object categories
[15], [16] reveals maps of neural populations with distinct feature preferences in striate and ex-
trastriate cortex, respectively. The response profiles of these stimulus-tuned populations persist
over days, weeks and months [17} [18] [19], forming stable topographic maps. The maps are or-
ganized at a columnar spatial scale [I] 20] that is detectable using recording techniques such as
multi-electrode arrays and functional magnetic resonance imaging (fMRI) [13],21], 22]. However,
it remains an open question whether the LPFC exhibits task-specific functional topographies
[23, 241, 25| 26, 27], and if so, whether these topographies are stable over time [28],29], and have
a spatial scale similar to those of other cortical areas. Testing for task-specific topographies of
LPFC activity in primates, i.e., 'task mapping’, has proven challenging due to constraints on
the complexity and diversity of the 'task space’ typically sampled in a given experiment [30].
Primate electrophysiology studies often probe only a single task, or task features which are
not sufficiently distinct from one another, and do not analyze session-to-session variability in
neural activity to characterize population stability.

If stable task-specific topographies exist in the LPFC at a spatial scale similar to sensory
cortical areas, then this functional organization should be reliably detectable when mapping
responses to different task features embedded in a sufficiently diverse task space. Here, we
examined this possibility by acquiring a unique dataset consisting of multi-electrode array

recordings from the LPFC of two macaques who were trained to perform three distinct cognitive
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tasks [31, 32 B3]. The tasks cover a diverse task space by differentially recruiting a series of
cognitive demands, embedding stimuli in rich behavioral contexts, and leveraging virtual reality
environments for strong engagement of the LPFC [34]. The monkeys performed the same set of
tasks over test sessions spanning multiple days, allowing us to assess the stability of task-tuned
population responses over time.

To test for task-specific topographies in the LPFC, we take an approach inspired by rep-
resentational similarity analysis (RSA) [35]. In fMRI [36] 37] and electrophysiology studies
[38, 39], RSA is typically used to examine the distributed spatial pattern of responses across
multiple measurement channels (e.g., voxels, electrodes) to an individual stimulus. Comparing
these patterns across different stimuli allows one to infer representational geometry in the cor-
tex, abstracted from the measurement channels themselves [40] (Fig. [1). Here, we adapt RSA
to topographic similarity analysis (TSA) by focusing on the matrix transpose, i.e., the response
profile of individual measurement channels (electrodes) to multiple task features [41]. Com-
paring these patterns across different channels allows us to infer their functional topography
in the cortex, abstracted from the specific task features (Fig. .

TSA has two key advantages over stimulus-feature mapping strategies typically used for
visual cortex [12]. First, TSA flexibly accommodates the full tuning profile of each channel
to multiple task features, enabling the modeling of potentially context-dependent mixtures of
neural selectivities. Second, because TSA abstracts from task features, it provides a char-
acterization of LPFC functional topographies that can be directly compared across different
tasks.

We show that topographies of LPFC activity are task-specific and stable within a task.
We then demonstrate a spatial scale of functional organization consistent across all three task-
specific functional topographies, which recapitulates prior anatomical tracing work examining
the afferent input patterns of the LPFC from ipsilateral associational cortices and contralateral
LPFC [42] 43, [44]. Our results indicate that the functional organization of the LPFC exhibits
stable topographies of task-specific population activity, likely reflecting distinguishable mix-

tures of afferent sensory and cognitive input.


https://doi.org/10.1101/2024.05.10.591729
http://creativecommons.org/licenses/by-nc-nd/4.0/

65

70

75

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.10.591729; this version posted July 15, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

a neural data b representational geometry

measurement channels

L1111
7777777 atial ..-

conditions
Eemo
3 B
Eemo
—
response pattern
similarity

within-task
stability

| \ task A

-

functional topography
L

between-task
consistency

-1 tuning profile 1

similarity _

Figure 1: Topographic similarity analysis.

To test for task-specific functional topographies in the LPFC, we adapt representational similarity analysis
(RSA) to topographic similarity analysis (TSA).

a) Simulated neural data across experimental conditions (rows) and measurement channels (columns). Higher
spike rates in a given channel are denoted by lighter shades.

b) RSA abstracts from measurement channels to infer representational geometry.

¢) TSA abstracts from experimental conditions to infer functional topography. TSA allows for quantitative

comparison of functional topographies across time and tasks.

2. Results

Estimating the topography of LPFC neural activity across time and tasks

The same two rhesus macaque monkeys (monkey B and monkey T) each performed three
cognitive tasks (Fig. [2a-c). The first task was an oculomotor delayed response task (ODR)
[31]. The second task was a visuospatial working memory task (VWM) deployed in a virtual-
reality environment with naturalistic scenes for stronger attentional engagement [32] [34]. The
third task was a context-dependent decision making task (CDM), which was also deployed
in a virtual-reality environment [33]. Altogether, these three tasks engage a wide spectrum
of cognitive functions, including working memory, visuospatial attention, context-dependent
decision making and motor planning.

We recorded the responses of neurons in layers I1/I1I of LPFC areas 8A and 9/46, dorsal
and ventral to the principal sulcus, using 96-channel multi-electrode Utah arrays (see Supple-
mentary Fig. |1/ for array placement). Each array covered a 4 mm x 4 mm cortical area with 10
x 10 electrodes (~0.4 mm spacing). Both monkeys performed multiple measurement sessions
for each task on separate days (Supplementary Fig. . In each session, we simultaneously

recorded neural activity from multiple channels on each array (see Supplementary Table |1| for
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details on active channels). Action potential times were extracted and synchronized to task
events. To enable spatial mapping of response preferences across the array, we pooled spiking
activity from putative units identified on the same recording channel, summing their activities
to create multi-unit activity. Units measured by the same channel exhibited similar response
preferences (Supplementary Fig. [3). The pooled activity reflects the activity of subpopulations
of neurons within the area covered by each array channel.

To characterize the spatial organization of population codes in the LPFC, we first computed
task tuning profiles, one for each channel in each session in each task (Fig. —f). Task tuning
profiles are vectors that store the firing rates of a channel to the experimental conditions.
The time windows for estimating spike rates vary from a few hundred milliseconds up to a
few seconds (see Methods for details). These time windows were determined based on task
structure, monkey behavior and population decoding results. Next, we computed a channel-
by-channel tuning similarity matrix for each array in each session in each task (Fig. [2g). Each
element of the matrix represents the Pearson correlation of tuning profiles between a channel
pair. The matrix as a whole reflects the similarity of task tuning for all channel pairs, thus
capturing the functional topography of task-tuned LPFC activity. This characterization enables
quantitative comparison of functional topographies across time and tasks (Figs. , ) For
comparative purposes, we also analyzed trial-to-trial fluctuations around the trial averages that
define the tuning profiles (see Methods). Topographies based on these spontaneous fluctuations,

or residuals, are expected to be consistent across tasks [45] 41].
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Figure 2: Comparing task-tuned functional topographies in the LPFC across time and tasks.

a) Oculomotor delayed response task (ODR). Monkeys fixated a point on the screen. A visual cue appeared,
then disappeared. After a delay, the monkeys saccaded toward the remembered target location.

b) Visuospatial working memory task (VWM). A visual cue appeared in one of nine target locations in a virtual
arena, then disappeared. After a delay, the monkeys navigated toward the remembered target location using a
joystick.

¢) Context-dependent decision making task (CDM). Monkeys navigated through an X maze using a joystick.
The texture of the corridor walls indicated the decision context for target selection.

d-f) Example tuning profile for a single channel in the ODR (d), VWM (e), and CDM (f) tasks. Legends
indicate the task features that composed the unique task space.

g) Schematics for TSA of task-tuned responses across time (solid lines) and tasks (dashed lines). Matrix

elements are Pearson correlations of tuning profiles between channel pairs.

The topography of LPFC neural activity is stable over time but adaptive across
tasks

LPFC neural activity was on average positively correlated between channels, with stronger
correlations observed for task-tuned than residual responses. In the tuning similarity matrices,
the mean cross-channel correlation (r) over sessions and tasks was 0.50+/-0.21 (mean+/-SD)
for monkey B (mB) and 0.44+4/-0.16 for monkey T (mT). In the residual similarity matrices,
the mean cross-channel correlation (1) over sessions and tasks was 0.08+/-0.04 for mB and
0.154/-0.08 for mT. The sign and magnitudes of the observed correlations are consistent with
prior work [5, [46] 47].

We next assessed whether the functional topography of LPFC neural activity is consistent

over time (sessions) and across tasks (ODR, VWM and CDM). To do so, we used TSA to
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compute the average correlation of the channel-by-channel similarity matrices across sessions
within and between tasks (Fig. [2g). Session-to-session correlations within the same task
assess the consistency of topography over time, and session-to-session correlations between
different tasks assess the consistency of topography across tasks. Consistencies were assessed
for topographies based on task-tuned responses and residuals separately, for each array in each
monkey. To control for array shifting across time, we only included sessions spaced apart
no more than 20 days for within- as well as between-task comparisons. Given that data for
some tasks were acquired more than 20 days apart (see Supplementary Fig. , between-task
comparisons are based on two out of three tasks for each monkey. We focus on results from
the ventral array for both monkeys in the following sections, due to low signal-to-noise ratio of
dorsal array recordings in mT (see Methods).

Over time, the task-tuned topographies are relatively stable. The consistencies of task-
tuned topographies were as follows: mB: VWM-VWM r = 0.43, mB: CDM-CDM r = 0.25,
mT: VWM-VWM r = 0.64 and mT: ODR-ODR r = 0.21. In all cases, the r values for
within-task consistencies were significantly larger than zero (one-sided permutation test; p <
0.05, Fig. ,b). Moreover, the within-task consistencies for task-tuned topographies were
significantly higher than those observed for residual topographies (two-sided t-test; mB: VWM-
VWM ¢(54) = 3.97, p < 0.001, mB: CDM-CDM ¢(14) = 2.95, p = 0.01, mT: VWM-VWM
t(7) = 5.79, p < 0.001 and mT: ODR-ODR #(5) = 2.60, p = 0.05). The dorsal array in
mB showed similar results (Supplementary Fig. . Hence, over sessions of a given task, the
topographies of task-tuned responses are more consistent than the topographies of concurrent
trial-to-trial fluctuations in spontaneous activity.

Across different tasks, the task-tuned topographies adapt. The consistencies of task-tuned
topographies were as follows: mB: VWM-CDM r = 0.11, mT: VWM-ODR r = 0.18. The r
values for between-task consistencies were significantly larger than zero (one-sided permutation
test; p < 0.05). However, they were significantly below their noise ceilings estimated from
the within-task consistencies (one-sided t-test; mB: VWM-CDM ¢(36) = —18.04, p < 0.001,
mT: VWM-ODR ¢(3) = —7.25, p = 0.003, Fig. [3k,d), suggesting that task-tuned functional
topographies are not fully consistent across tasks even when considering noise inherent to the
data. Moreover, the r values quantifying between-task consistency of task-tuned topographies
were either significantly lower than or not significantly different from those observed for residual
topographies (two-sided t-test; mB: VWM-CDM ¢(36) = —3.03, p = 0.005, mT: VWM-ODR
t(3) = —0.51, p = 0.64). The dorsal array in mB showed similar results (Supplementary Fig.

. Hence, between a given pair of two different tasks, the topographies of task-tuned responses
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are less consistent than the topographies of concurrent spontaneous trial-to-trial fluctuations
in activity.

The above analyses average correlations across session pairs to estimate the overall consis-
tency of the LPFC topography across time and tasks. While this approach provides a general
measure of stability, it does not capture finer, continuous changes in topography over time or
quantify the relative contributions of time and task to topographic change. To address this, we
conducted an additional analysis using linear regression to quantify the unique contributions
of time and task to explaining variance in session-pair consistency (Supplementary Results
1, Supplementary Fig. ) Across sessions and arrays, a linear regression model including
predictors for both time and task explained on average 87% of the variance in session-pair
consistency (Supplementary Fig. ) Time uniquely accounted for 15% of the explainable
variance, while task explained 40%, further underscoring the adaptability of the LPFC to-
pography across tasks relative to its stability over time (Supplementary Fig. ) Although
variability is present across arrays, these results support the distinct roles of time and task in
shaping LPFC topography.

To evaluate the robustness of our approach in identifying consistent and meaningful topo-
graphic patterns, we tested its sensitivity to different low-dimensional projections of the data
using a split-half approach with non-overlapping conditions. This analysis tested whether the
within-task consistency of tuning similarity matrices remains stable when derived from disjoint
subsets of conditions. For both same-session (Supplementary Fig. @a) and cross-session (Sup-
plementary Fig. @b) comparisons, within-task consistencies remained significantly larger than
zero (one-sided t-tests, p < 0.05). These findings support the reliability of our approach in
capturing stable and meaningful topographic patterns despite variations in condition sampling.
Importantly, the between-task consistencies observed in this control analysis reproduced the
original findings (Fig. ,d): they were significantly below the noise ceiling estimated from the
within-task consistencies (Supplementary Fig. @b; one-sided t-tests; mB ventral: VWM-CDM
t(36) = —15.04, p < 0.001, mB dorsal: VWM-CDM ¢(36) = —43.68, p < 0.001, mT ventral:
VWM-ODR ¢(3) = —5.08, p = 0.007), reinforcing the adaptability of the LPFC functional
topography across tasks.

Our analyses suggest that task-tuned functional topographies in the LPFC are (1) stable
across time within a task: neural populations with similar tuning on one day tend to exhibit
similar tuning on another day, and (2) adaptive across tasks: neural populations with similar
tuning in one task do not necessarily exhibit similar tuning in another task. These findings

demonstrate the capacity of LPFC to maintain consistent neural population topographies over
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time while flexibly adapting to the demands of different tasks.
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Figure 3: Task-tuned functional topographies in the LPFC are stable across time but adaptive
across tasks.

a-b) Consistency of functional topographies across time within a task for mB (a) and mT (b).

c-d) Consistency of functional topographies between tasks for mB (c¢) and mT (d).

Black horizontal lines indicate significant differences between task and residuals (p < 0.05, two-sided paired
t-test). Gray horizontal lines show the noise ceiling. Gray triangles indicate values significantly below the noise

ceiling (p < 0.05, one-sided t-test). Error bars show the standard error of the mean (SEM) across session pairs.

Linking the topography of LPFC neural activity to fine-grained spatial maps

Given that feature-tuned neurons are known to cluster in populations at the spatial scale of
cortical columns [1}, 2, 20} 25], the observed task-specific functional topographies in the LPFC
(Fig. |3} Supplementary Fig. {4 may be expressed spatially by clusters of similarly tuned neu-

rons with an adaptive task-dependent ’fingerprint’. To quantify the degree of spatial clustering
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of channels with similar response preferences on the array, we computed spatial autocorrelation
functions (ACFs) of channel tuning profiles [27] 26 48, 49]. The ACFs measure the tuning
similarity between channels as a function of their distance on the array. We computed ACF's
for each session and task. As a measure of spatial autocorrelation, we used a cross-validated
implementation of global Moran’s I that is bounded between -1 and 1, where positive values
indicate similar tuning (see Methods). We found that the spatial autocorrelation between chan-
nels decreases exponentially as their distance on the array increases (Fig. ; Supplementary
Fig. ,b). From the ACFs of both monkeys, we observed a positive spatial autocorrelation
up to a distance of 1-2 mm across tasks (Fig. [4h).

These observations suggest that the task-specific functional topographies in the LPFC con-
verge on a common spatial scale. To quantify this spatial scale, we fit Laplacian functions to
the observed ACFs. Modeling the ACFs with Laplacians provides a concise description of the
observed spatial decay using a limited set of parameters, allowing us to derive a scalar estimate
of spatial scale. This estimate, represented by the full-width-at-half-maximum (FWHM) of the
fitted Laplacians, captures the spatial extent of similarity in tuning. The FWHM is interpreted
as the width of the 2-dimensional kernel needed to smooth spatially independent tuning profiles
to yield the same degree of clustering we observe in the data [50]. The median of the FWHMs
across sessions and tasks is 369 +/- 107 um (SD), suggesting the existence of fine-grained, or
mesoscale, clusters of similarly tuned neural populations on the arrays.

To get an impression of the spatial structure of the tuning similarity on the arrays, we next
visualized the data using 2-dimensional (2D) multidimensional scaling (MDS). We converted
the tuning profile correlations to correlation distances, and applied 2D MDS. Channels were
color-coded based on their location in the 2D MDS space and projected back to the arrays
[41] (Fig. [4p). Each color indicates a unique channel tuning profile across all conditions of a
given task. Channels with similar tuning profiles are thus similarly colored, and their relative
position on the array reveals observable clustering, which is highly similar within tasks and
moderately to weakly similar between tasks. Across all maps, the clusters of similarly task-
tuned channels reveal a consistent spatial scale (Fig. ; Supplementary Fig. ,d). To further
emphasize the spatial scale of these clusters, we smoothed the 2D MDS array maps using 2D
Gaussian kernels with FWHM values matching the empirically derived cluster sizes from the
fitted Laplacians. In all three tasks, this visualization highlights the mesoscale organization
of task-tuned population activity, showing clusters at a spatial scale similar to that observed
for maps in sensory cortical areas, such as V1, where mesocale functional organization reflects

tuning to stimulus features [14, 21] (Fig. [Ad).
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Figure 4: Task-tuned functional topographies in the LPFC are organized at a fine-grained spatial
scale.

a) Spatial autocorrelation functions (ACFs) for ODR, VWM and CDM tasks. Solid lines represent the ACF's
for individual sessions in each task. Colors indicate arrays: light blue for the mB ventral array, dark blue for
the mB dorsal array, and pink for the mT ventral array. Gray shaded areas indicate the width between two
immediately neighboring channels on the array (0.4 mm). Vertical dashed lines show the median full-width-at-

half-maximum (FWHM) of Laplacian functions fit to ACFs of individual sessions.
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Figure 4:

b) Steps taken to visualize tuning similarity on the array. Channels with similar tuning profiles in a given task
are similarly colored.

¢) Array maps for the mB dorsal array in all three tasks, using two example sessions per task.

d) Array maps in panel ¢ after smoothing with 2D Gaussian kernels whose FWHMs match that of the fitted

Laplacian functions.

Our findings suggest that task-tuned LPFC responses are spatially clustered at the mesoscale,
similar to sensory cortical areas [1], 2, 20} [14] 21]. We next asked what properties of cortical
organization might shape this spatial scale. One possibility is that the afferent input projec-
tions from different regions of the brain may exhibit a spatial scale of clustering in the LPFC
similar to that of the functional topographies observed in the present work. This would suggest
that the structural organization of long-range inputs into the LPFC shapes the functional to-
pographies of its task-tuned responses. To test this hypothesis, we analyzed a well-documented
structural connectivity map representing the profile of afferent inputs to the macaque principal
sulcus of the LPFC from the contralateral principal sulcus through callosal fibres, and from
the ipsilateral parietal cortex through associational fibres (Fig. [Fp,b) [42] 51]. The structural
map overlaps the cortical patch measured with multielectrode arrays in the current study (Fig.
,b). To obtain an unbiased estimate of the map’s intrinsic spatial scale, we sampled 210
patches at random locations from the map, using a 4 mm X 4 mm patch size equivalent to
the area covered by our arrays (Fig. ,c). For each sample, we computed a spatial ACF and
corresponding FWHM using the same strategy as depicted in Fig. [dh. For both measures,
we observed that the functionally derived estimates in Fig. fall within the 95% confidence
interval of the estimates computed across the structural map samples (Fig. ) These findings
suggest that the structural and functional spatial scales are comparable, consistent with the
idea that long-range afferent inputs may contribute to the mesoscale organization in the LPFC.

To assess the sensitivity of these results to stripe size in the structural map, we conducted
additional simulations by scaling the map to produce smaller, original, and larger stripe sizes
(Supplementary Fig. —c). Larger stripe sizes produced broader spatial scales in the structural
ACFs, positioning the functionally derived ACFs outside the 95% confidence interval of the
structural distribution at shorter distances (Supplementary Fig. ) Results for the smaller
stripe size were less conclusive (Supplementary Fig. ) but did not challenge the alignment
observed for the original stripe size (Supplementary Fig. ) These findings reinforce the link
between structural and functional spatial scales by demonstrating that a broader structural

scale of long-range afferent inputs is inconsistent with the functional measures.
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Figure 5: Linking task-specific functional topographies in the LPFC to fine-grained structural
maps.

a) Anatomical tracing of white matter fiber inputs to the macaque LPFC [43] 42], adapted with permission
from [42]. The LPFC receives inputs through contralateral callosal fibers of the principal sulcus (PS; solid
black arrow) and ipsilateral association fibers from the intraparietal sulcus (IPS; white strike arrow). HRP =
horeradish peroxidase, H> — AA = tridared amino acids.

b) Structural map representing the spatial profile of afferent inputs to the macaque LPFC, adapted with
permission from [42]. The black dashed line shows the rim of the PS. Black stripes show the reconstructed
terminal fields of callosal fibers in the PS, reflecting inputs from the contralateral PS. Interdigitated white
stripes receive inputs from the ipsilateral IPS [43]. The red square shows an example cortical patch sampled
for our analysis.

¢) Examples of cortical patches sampled at random locations from the structural map in panel b. Each sample
has a coverage of 4 mm X 4 mm.

d) Functional ACF's superimposed on structural ACFs. Yellow, green and purple lines represent mean functional
ACFs across sessions for the ODR, VWM and CDM tasks, respectively, for the mB dorsal array (Fig. [h).
Vertical dashed lines show the mean FWHM across sessions for each task. Solid gray lines represent structural
ACFs for 210 structural map samples. Dashed gray lines show the 95% confidence interval of the structural
ACFs. Gray dots placed on the zero autocorrelation line show the 95% confidence interval of the structural

FWHMs.

3. Discussion

We used TSA to characterize the functional topography, temporal stability, and spatial
scale of task-tuned LPFC neural activity by analyzing array recordings from awake behav-
ing macaques performing three distinct cognitive tasks [31) 32 33]. TSA revealed that the
spatial topography of task-tuned LPFC neural activity is stable across time within a task but
adaptive across tasks. The stability for task-tuned responses is higher than for concurrent spon-
taneous fluctuations, indicating that the correlation structure among LPFC neural populations
is strengthened by task. We further demonstrate that although all three tasks exhibit distinct

topographies of task-tuned activity, they converge on a common spatial scale. Finally, we show
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that this spatial scale is likely shaped, in part, by the organization of afferent long-range inputs
into the LPFC from distinct cortical areas throughout the brain.

Our findings indicate that TSA provides a powerful and flexible strategy for decomposing
high-dimensional response profiles from LPFC array recordings into topographies of task-tuned
preferences. However, TSA has some notable differences from traditional methods for deriving
neural tuning profiles [12]. TSA infers topographic patterns indirectly, based on second-order
correlations between channels rather than direct measures of tuning to isolated, explicitly
defined task features [41] (Fig. [I). In this sense, the “maps” revealed by TSA are not traditional
tuning maps anchored to a single feature dimension but rather spatial patterns of similarity in
neural response profiles. This has multiple advantages: TSA enables the modeling of potentially
context-dependent mixtures of neural selectivities and provides a characterization of functional
topographies that can be directly compared across different tasks. Moreover, we show that
the use of a noise ceiling is a helpful theoretical construct for contextualizing effect sizes in
TSA [52]. However, by itself, TSA does not eliminate the fundamental challenges associated
with disentangling the complex interplay of stimulus features, task structure, and intrinsic
connectivity in shaping LPFC functional organization. Future approaches could integrate
TSA with more refined task designs and multimodal imaging measures to yield an even clearer
understanding of the spatial and functional organization of the LPFC in both macaques and
humans. Below we discuss some of these methodological challenges in light of the current
study.

Task mapping in the LPFC presents significant challenges. Unlike stimulus mapping ex-
periments in the visual cortex, which are relatively easy to parameterize according to objective
physical features such as location, orientation, or object category, task mapping experiments
are more difficult to parameterize because task features often represent abstract concepts, such
as rule associations or temporal interdependencies [3] [5, [10] 41 26, 27]. For example, although
the LPFC exhibits task-specific topographies, we also observed that these topographies still
share a significant portion of task-related variance. We interpret this shared variance as tuning
to shared features between tasks. For instance, all three tasks consist of visual stimuli and a
trial sequence with successive cue and target phases. Future work examining task mapping in
the LPFC will benefit from experimental designs which increase the number and diversity of
task features sampled, and the precision of their relationship to one another in a high dimen-
sional "task space” [30]. Task mapping experiments which systematically vary task-stimulus
combinations in a high dimensional task space will be better equipped to explore the similarity

of distinct tasks to one another, as well as their potential linear and nonlinear integration,
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thereby enabling more computationally principled hypotheses about LPFC function, including
biased competition [53], [54] and compositional coding [55, [56].

Connectomic profiling of the LPFC also presents significant challenges. In contrast to the
relatively homogeneous short-range structural connections that shape topographic maps in the
visual cortex [21], LPFC functional topographies are likely shaped by a heterogeneous mixture
of long-range afferent inputs and local intrinsic connectivity [8, 57, 58] [59] 23] [60]. Anatomical
tracing studies have shown that the LPFC receives patterned long-range input projections from
multiple areas — most notably from the posterior parietal cortex and the contralateral LPFC
— that form elongated stripes of connectivity [8, 58]. We estimated the spatial scale of LPFC
afferent input patterns by sampling a structural connectivity map provided in seminal work by
Patricia Goldman-Rakic [42]. We show that the spatial scale of this map corresponds closely to
the ~300-400 pm scale of the functional topographies observed here, despite the vastly different
methodologies used to derive the structural and functional maps. The stripes, along with local
horizontal connections that form patchy networks [59] may serve as substrates for the spatially
clustered functional responses to task features. Recent multimodal studies of the macaque
LPFC have begun to bridge the structure-function gap using microstimulation [57] and diffusion
MRI [61]. Consistent with our findings, these studies indicate that a diverse network of long-
range structural projections may provide the scaffolding for LPFC’s functional organization,
influencing the intrinsic network structure upon which task-specific activity patterns unfold
162, 57]

The spatial scale of the LPFC functional topographies observed in macaques suggests that
these patterns could, in principle, be resolved using TSA in combination with ultra-high-field
fMRI in humans. While task-based fMRI studies of human LPFC have not yet achieved
such fine-grained resolution, there is precedent in the visual domain, where stimulus-driven
ocular dominance columns, organized at submillimeter scales, have been successfully visualized
with cutting-edge imaging techniques (e.g., [21]). Future cross-species translational efforts,
leveraging the complementary strengths of human fMRI and macaque electrophysiology with a
unified analytical framework such as TSA, may achieve a more comprehensive understanding
of LPFC function. In humans, the non-invasive nature of fMRI allows exploration of a wider
and more diverse task space, encompassing complex and abstract cognitive functions that
are challenging to systematically manipulate in macaque models. The rich datasets obtained
from human fMRI studies may generate novel hypotheses regarding the functional organization
and computational principles of the LPFC, which can be reverse translated through targeted

electrophysiological experiments in macaques to provide mechanistic insights into the observed
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mesoscopic patterns.

In summary, our application of TSA to LPFC recordings in awake macaques has elucidated
stable yet task-specific spatial topographies of neural activity, all converging on a consistent
spatial scale likely influenced by long-range cortical inputs. These results demonstrate TSA’s
efficacy in decomposing complex neural response patterns into spatially interpretable topogra-
phies and highlight the nuanced interplay between task demands and structural connectivity
in shaping LPFC function. Furthermore, the alignment of macaque functional topographies
with the potential resolution of ultra-high-field fMRI in humans paves the way for cross-species
translational research. By integrating the expansive and diverse task spaces accessible through
human fMRI with the precise electrophysiological insights from macaque models, this unified
analytical framework promises to deepen our understanding of the LPFC’s organizational prin-

ciples and its role in executive cognitive processes.

4. Methods

4.1. Subjects and ethics statement

We recorded LPFC neural activity in two male rhesus macaques (Macaca mulatta, monkey
B and monkey T, 10 and 9 years old) while they were performing three different cognitive
tasks across multiple measurement sessions. All training, surgery, and recording procedures
conformed to the Canadian Council on Animal Care guidelines and were approved by The

University of Western Ontario Animal Care Committee.

4.2. Behavioral tasks

4.2.1. Oculomotor delayed response (ODR) task

Fig. illustrates the experimental setup of the oculomotor delayed response task. Each
trial began with the appearance of a fixation point at one of 16 predefined locations on a
computer screen. Then a target was presented for 1000 ms before it disappeared. The monkeys
were asked to maintain fixation for a variable length delay period (1400 ms - 2500 ms, median
= 1800 ms) and upon extinction of the fixation point, make a saccade towards the remembered

target location to get a reward. More information on the ODR task can be found in [31].

4.2.2. Visuospatial working memory (VWM) task
Fig. illustrates the experimental setup of the visuospatial working memory task, which
took place in a virtual reality environment. Within the virtual arena in the environment,

targets were arranged in a 3 X 3 grid. The time needed to navigate between adjacent targets
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was ~0.5 s. During the cue period, a visual cue (red rectangle) was presented in one of the
nine target locations for 3 seconds, then disappeared. After a 2-second delay, the monkeys
navigated towards the remembered target location at a constant speed using a joystick. Upon
reaching the correct target, the monkeys received a reward. More information on the VWM

task can be found in [32].

4.2.3. Context-dependent decision making (CDM) task

Fig. illustrates the experimental setup of the context-dependent decision making task,
which was also deployed in a virtual reality environment. The task took place in a double
ended Y maze, also termed "X maze” as in [34] [63]. The monkeys navigated through the X
maze using a joystick. The texture of the walls, being brown "wood” or dark grey ”steel”,
indicated which coloured disk the monkeys should choose at the bifurcation to get a reward.
In other words, the decision context was specified by the texture of the walls. We will refer

to the coloured disks as goals in subsequent text. More information on the CDM task can be

found in [33].

4.83. Neural recordings

Two 96-channel Utah arrays (4 mm x 4 mm coverage, 10 x 10 electrodes, spaced at 0.4
mm, 1.5 mm in length) (Blackrock Microsystems) were chronically implanted in the left LPFC
in each animal. They were located anterior to the arcuate sulcus and on the ventral and dorsal
side of the posterior end of the principal sulcus, targeting layers II/I1T of cortical areas 8A and
9/46 (see Supplementary Fig. (1| for array placement).

Neural data were recorded using a Cerebus Neural Signal Processor (Blackrock Microsys-
tems). The neural signal was digitized (16 bit) at a sampling rate of 30 kHz. Data were online
sorted to identify putative units on each recording channel in real-time. Action potential times
were extracted and synchronized to task events. For all tasks, eye positions were monitored
using SR Research EyeLink 1000, at a sampling rate of 500 Hz.

Both monkeys performed multiple measurement sessions for each task. Sessions were ac-
quired on separate days. Monkey B performed 4 sessions for the ODR task, 11 sessions for
the VWM task, and 6 sessions for the CDM task. Monkey T performed 4 sessions for the
ODR task, 8 sessions for the VWM task, and 9 sessions for the CDM task. Three sessions
were excluded from analysis in the VWM task for monkey T due to low trial numbers across
experimental conditions. See Supplementary Figure [2| for further details on the included ses-
sions. The dorsal array in monkey T was excluded from analysis due to low signal-to-noise
ratio of recordings at the time of the experimental sessions, which makes it difficult to map the

topography of the array.
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Quality assurance data generated by the Blackrock software before each recording session
indicated potential crosstalk in 4 out of the 60 sessions analyzed across monkeys and arrays.
This affected only one monkey, array, and task (monkey B, dorsal, CDM) in 4 of the 6 mea-
surement sessions for that task. To assess the robustness of the spatial scale results (Fig. [4]) to
potential crosstalk, we performed a conservative control analysis. For the affected sessions, we
removed any shared spikes for channel pairs with more than 10% shared spikes, which impacted
approximately 50 channel pairs on average per session. Results from this analysis confirmed
that spike removal had minimal effects on the estimated spatial scale (Supplementary Fig.

and did not affect the pattern of results for the consistency analyses reported in Supplementary

Figure [4]

4.4. Neural data analysis

4.4.1. Computing task tuning profiles

To enable spatial mapping of response preferences across the array, we pooled units recorded
from the same channel by summing up their spiking activities. Units recorded from the same
channel exhibited similar response preferences (Supplementary Fig. . We refer to the pooled
activity as multi-unit activity. The pooled activity reflects the activity of subpopulations of
neurons within the area covered by an array channel. This area has an estimated diameter of
300 microns based on the impedance of the electrodes.

For each channel in each session in each task, we first computed trial-specific spike rates
for each experimental condition and applied a square root transformation to the spike rates to
account for the Poisson-like increase of variability with increasing mean firing rates [64} [48]. We
next computed trial-averaged spike rates by averaging across trials of the same experimental
condition, which yielded a task tuning profile for each channel.

More specifically, in the ODR task, the tuning profile for a channel was defined as the
trial-averaged spike rates for the 4 quadrants (16 targets were grouped into 4 quadrants based
on their location in the retinotopic reference frame, labelled 1-4 starting from bottom left,
clockwise) during cue (1000 ms), delay (1400 ms - 2500 ms, median = 1800 ms), and response
(first 500 ms) epochs. In the VWM task, the tuning profile for a channel was defined as the
trial-averaged spike rates for the 9 target locations during cue (3000 ms), delay (2000 ms), and
response (first 500 ms) epochs. In the CDM task, the tuning profile for a channel was defined as
the trial-averaged spike rates for the combinations of decision contexts and goal configurations
in time windows before and after context onset (50 ms before, 600 ms after), goals onset (500
ms before, 300 ms after), and decision onset (500 ms before, 500 ms after). Goal configuration

refers to the location of the disk colour that is associated with wood. If the colour associated
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with wood is on the left-hand side at the bifurcation, the trial is in configuration 1, otherwise
configuration 2.

We then subtracted out the mean firing rate across all experimental conditions. The mean-
centered tuning profile reflects the modulation in firing rate by the experimental conditions,
providing a rich characterization of channel tuning in each task. The time windows used
for computing tuning profiles were based on trial structure, monkey behavior, and neural
population decoding results. Results of subsequent analyses do not critically depend on the

exact time windows used.

4.4.2. Computing the topography of task-tuned activity

For each array in each session in each task, we computed a channel-by-channel tuning
similarity matrix. Elements in this matrix reflect the Pearson correlation of tuning profiles
between channel pairs. The matrix reflects the similarity of task tuning for all channel pairs,
thus capturing the similarity structure of tuning across the array. As such, it provides the basis
for mapping of tuning similarity across the cortical sheet. This approach can be used to study
functional topography [41, [65]. Importantly, the tuning similarity matrices abstract from the
specific experimental conditions used in a single task, which enables comparison of functional

topographies between tasks.

4.4.3. Computing the topography of spontaneous activity

For comparative purposes, we also analyzed trial-to-trial fluctuations about the trial av-
erages that define the tuning profiles. Topographies based on these spontaneous fluctuations
are expected to be consistent across tasks [41] [45]. We partitioned the measured spiking ac-
tivity in two components: task-tuned activity and spontaneous activity or residuals. For each
channel in each session in each task, we computed task-tuned activity by replacing the firing
rate of each trial with the mean firing rate across trials of the same experimental condition.
This corresponds to a tuning profile where the trial-averaged spike rate for each condition is
repeated as many times as the number of trials for that condition. We computed residuals by
subtracting out the task-tuned activity from the measured spiking activity. We then computed
topographies for task-tuned activity and residuals as described in the previous section, but re-
placed tuning profiles by task-tuned or residual activity vectors. Results reported in Fig. [3|are
based on the task-tuned and residual topographies, allowing for a direct comparison between

the two.
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4.4.4. Assessing the consistency of functional topographies across time and across tasks

To assess whether the functional topographies are consistent across time and across tasks,
we computed the Pearson correlation of tuning similarity matrices across session pairs within
and between tasks (see Fig. ) Because the matrices are symmetric, we computed correlation
coefficients using the upper triangular vector of the matrix. The consistency of functional
topographies within and between tasks was estimated as the mean across session pairs. To
control for array shifting across time, we only included sessions spaced apart no more than 20
days for within- as well as between-task comparisons. Given that data for some tasks were
acquired more than 20 days apart (see Supplementary Fig. , between-task comparisons are
based on two out of three tasks for each monkey.

To determine whether the estimated consistencies are significantly higher than chance, we
permuted channel locations on the array to simulate the null hypothesis of no consistent spatial
organization. We performed 1,000 permutations, each yielding an estimate of our test statistic
under the null hypothesis. If the actual consistency fell within the top 5 percent of the simulated
null distribution, we rejected the null hypothesis of no consistent spatial organization. This
corresponds to a one-sided test using p < 0.05 for significance thresholding. For between-task
consistencies, we did not only test if they were higher than expected for no consistent spatial
organization, we also tested if they were lower than expected for a fully consistent spatial
organization. We did so by estimating a noise ceiling for between-task consistencies. For each
task pair, the noise ceiling is defined as the geometric mean of the within-task consistencies,
which reflects the expected maximum between-task consistency given the noise in the data
[66]. We compared the observed between-task consistencies against the noise ceiling using a
one-sided one-sample t-test across session pairs. We compared consistencies of task-tuned and

residual topographies using a two-sided paired-samples t-test across session pairs.

4.4.5. Assessing the spatial scale of functional topographies

To assess the spatial scale of the functional topographies, we computed spatial autocorrela-
tion functions (ACFs) of channel tuning profiles on the array. The spatial ACFs were computed
in a cross-validated fashion to reduce the impact of spatially autocorrelated noise. Trials in a
measurement session were split into two halves. Tuning profiles were estimated for each half.

We used global Moran’s I as a measure of spatial autocorrelation [67], which is defined as:

N X wi(Xa — Xa) (X — Xb)
> Zj Wi > (X — Xa) (Xpi — X5)
where NN is the total number of channels on the array; X,; is the mean-centered tuning

I

profile for the i channel in the first half; Xz; is the mean-centered tuning profile for the ;%
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channel in the second half; X is the mean-centered tuning profile averaged across all channels,
estimated for each half separately; and w;; is either 1 or O (if channel i and channel j are spaced
within a specified spatial range, w;; equals 1; otherwise 0).

The numerator estimates the cross-validated covariances of tuning profiles between channel
pairs spaced at a certain distance. The denominator estimates the cross-validated variances of
tuning profiles across all the channels on the array. To account for the fact that some channels
appear more frequently than others in the covariance estimates, the variance can be estimated

using the following formula as in [49]:

\/Zi > wii(Xai — Xa) (X — Xp) 32, 2 wiy(Xa; — Xa) (Xp; — Xp)
> Ej Wi

Using this formula for estimating the variance ensures that [ is bounded between -1 and 1.

A positive [ indicates that channels spaced at the given distance have similar tuning profiles; a
negative [ indicates that channels spaced at the given distance have dissimilar tuning profiles.

To compute spatial ACFs, we systematically varied the spatial distance between channels,
from including only immediately neighbouring channels (0 < distance < 0.4 mm) to channels
that are spaced apart more than one channel width but no more than two (0.4 mm < distance <
0.8 mm), continuing these steps up and till nine channel widths (3.2 mm < distance < 3.6 mm),
and computed the spatial autocorrelation for each distance. At distance 0, the cross-validated
covariances are the same as cross-validated variances, leading to a spatial autocorrelation of 1.
We computed an ACF for each array in each session in each task.

To quantify the spatial scale of the functional topographies, we fit a Laplacian function to
the spatial ACFs. The Laplacian function captures the exponential decay of channel tuning
similarity as the distance between channels increases. The Laplacian function used is defined

as follows:

F(d) =1.02 x e —0.02

where d > 0 reflects the distances; and s is a fitted value, reflecting the smoothness of
the curve. The full-width-at-half-maximum (FWHM) of the Laplacian curve can be computed

using s via the following formula:

FWHM =2 x s x1n(2)
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The FWHM of a fitted Laplacian function is equivalent to the FWHM of the 2-dimensional
kernel required to smooth an array whose channel tuning profiles are spatially independent, to
yield the degree of spatial autocorrelation we observe in the data [50]. We therefore use the

FWHM as an estimator of spatial scale.

4.4.6. Mapping tuning similarity on the array

To visualize the spatial structure of tuning similarity on the arrays, we converted the correla-
tions in the tuning similarity matrix to correlation distances, and applied 2D multidimensional
scaling (MDS) to the distances. Channels were colour-coded based on their location in the 2D
MDS space and projected back to the arrays. In the colour space, hue reflects polar angle, and
saturation reflects eccentricity. Similar colours indicate similar tuning profiles. As a check,
we computed the variance explained in the high-dimensional distances by the low-dimensional
distances for a range of MDS dimensions (1-10). We computed the variance explained by first
correlating the correlation distances between points (channels) in the original high-dimensional
space with the Euclidean distances between points in the low-dimensional MDS space, and then
squaring the correlation coefficients [41]. The 2D MDS space explains around 80% of the vari-

ance in the original high-dimensional space across monkeys, arrays, and tasks.

4.4.7. Linking the functional topographies to structural maps

To relate the spatial scale of the observed functional topographies to prior anatomical
tracing work, we repeated the spatial autocorrelation analysis on a reconstructed structural
map of afferent input to macaque LPFC [42]. This structural map shows the terminal field
distributions of callosal fibers projecting from the principal sulcus in one hemisphere to the
principal sulcus in the other hemisphere [51]. The fibers terminate in a stripe-like pattern,
reflecting interdigitation of the contralateral callosal fibers with associational fibers from the
ipsilateral parietal cortex [43]. The structural map suggests the existence of cortical columns in
LPFC, which have been reported to have a width of 300 to 700 microns [42] [51] [44] 143] [68]. To
assess the spatial scale of the structural map, we randomly sampled 210 cortical patches with

4 x 4 mm?

coverage from the map, simulating array placements. Sampled cortical patches
were downsampled to 10 x 10 to match the measurement resolution of the Utah arrays used
in our study. We assessed the spatial ACF for each sampled patch and plotted the distribution
of ACFs across samples. We then examined whether the ACFs observed for the task-tuned

topographies fall within the distribution derived from the anatomical tracing map (see Fig. [5).
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6. Data availability

Source Data are provided with this paper. Raw data supporting the findings of this paper
are available from MR, BC, RL, JMT upon reasonable requests.

7. Code availability

MATLAB code used for analyzing the data is available from github (https://github.com/
jkderrick028/topoPFC) or from JDX.
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