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Abstract

Neurons in the primate lateral prefrontal cortex (LPFC) flexibly adapt their activity to sup-

port a wide range of cognitive tasks. Whether and how the topography of LPFC neural

activity changes as a function of task is unclear. In the present study, we address this is-

sue by characterizing the functional topography of LPFC neural activity in awake behaving

macaques performing three distinct cognitive tasks. We recorded from chronically implanted

multi-electrode arrays and show that the topography of LPFC activity is stable within a task,

but adaptive across tasks. The topography of neural activity exhibits a spatial scale compatible

with prior anatomical tracing work on a!erent LPFC inputs. Our findings show that LPFC

maps of neural population activity are stable for a specific task, providing robust neural codes

that support task specialization. Moreover, the variability in functional topographies across

tasks indicates activity landscapes can adapt, providing flexibility to LPFC neural codes.
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1. Introduction

Flexibility is one of the defining properties of higher-order cognitive functions supported

by the primate lateral prefrontal cortex (LPFC). Unlike neural populations in primary sensory

areas, where activity is dominated by stimulus features such as frequency and orientation [1, 2],

LPFC neurons flexibly adapt their activity according to rules, behavioral context and feedback5

associated with di!erent tasks, even when stimulus inputs are held constant [3, 4, 5, 6, 7].

This flexibility is shaped in part by the diversity of connections LPFC neurons receive, which

is more heterogeneous than for sensory neurons [8, 9]. Because of their diverse connections,

response profiles of LPFC neurons often exhibit selectivity to mixtures of task features, e.g.,

firing maximally only to a specific combination of rule, context and feedback [10, 11].10

The selectivity of individual LPFC neurons to di!erent combinations of task features cre-

ates unique challenges to understanding their functional organization as compared to sensory

regions. In the visual cortex, for instance, individual neurons with preferences for similar

stimulus features typically assemble into locally connected populations, giving rise to func-

tional organizations which can be spatially delineated using stimulus mapping techniques [12].15

Stimulating di!erent visual field locations [13], stimulus orientations [14], or object categories

[15, 16] reveals maps of neural populations with distinct feature preferences in striate and ex-

trastriate cortex, respectively. The response profiles of these stimulus-tuned populations persist

over days, weeks and months [17, 18, 19], forming stable topographic maps. The maps are or-

ganized at a columnar spatial scale [1, 20] that is detectable using recording techniques such as20

multi-electrode arrays and functional magnetic resonance imaging (fMRI) [13, 21, 22]. However,

it remains an open question whether the LPFC exhibits task-specific functional topographies

[23, 24, 25, 26, 27], and if so, whether these topographies are stable over time [28, 29], and have

a spatial scale similar to those of other cortical areas. Testing for task-specific topographies of

LPFC activity in primates, i.e., ’task mapping’, has proven challenging due to constraints on25

the complexity and diversity of the ’task space’ typically sampled in a given experiment [30].

Primate electrophysiology studies often probe only a single task, or task features which are

not su”ciently distinct from one another, and do not analyze session-to-session variability in

neural activity to characterize population stability.

If stable task-specific topographies exist in the LPFC at a spatial scale similar to sensory30

cortical areas, then this functional organization should be reliably detectable when mapping

responses to di!erent task features embedded in a su”ciently diverse task space. Here, we

examined this possibility by acquiring a unique dataset consisting of multi-electrode array

recordings from the LPFC of two macaques who were trained to perform three distinct cognitive
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tasks [31, 32, 33]. The tasks cover a diverse task space by di!erentially recruiting a series of35

cognitive demands, embedding stimuli in rich behavioral contexts, and leveraging virtual reality

environments for strong engagement of the LPFC [34]. The monkeys performed the same set of

tasks over test sessions spanning multiple days, allowing us to assess the stability of task-tuned

population responses over time.

To test for task-specific topographies in the LPFC, we take an approach inspired by rep-40

resentational similarity analysis (RSA) [35]. In fMRI [36, 37] and electrophysiology studies

[38, 39], RSA is typically used to examine the distributed spatial pattern of responses across

multiple measurement channels (e.g., voxels, electrodes) to an individual stimulus. Comparing

these patterns across di!erent stimuli allows one to infer representational geometry in the cor-

tex, abstracted from the measurement channels themselves [40] (Fig. 1). Here, we adapt RSA45

to topographic similarity analysis (TSA) by focusing on the matrix transpose, i.e., the response

profile of individual measurement channels (electrodes) to multiple task features [41]. Com-

paring these patterns across di!erent channels allows us to infer their functional topography

in the cortex, abstracted from the specific task features (Fig. 1).

TSA has two key advantages over stimulus-feature mapping strategies typically used for50

visual cortex [12]. First, TSA flexibly accommodates the full tuning profile of each channel

to multiple task features, enabling the modeling of potentially context-dependent mixtures of

neural selectivities. Second, because TSA abstracts from task features, it provides a char-

acterization of LPFC functional topographies that can be directly compared across di!erent

tasks.55

We show that topographies of LPFC activity are task-specific and stable within a task.

We then demonstrate a spatial scale of functional organization consistent across all three task-

specific functional topographies, which recapitulates prior anatomical tracing work examining

the a!erent input patterns of the LPFC from ipsilateral associational cortices and contralateral

LPFC [42, 43, 44]. Our results indicate that the functional organization of the LPFC exhibits60

stable topographies of task-specific population activity, likely reflecting distinguishable mix-

tures of a!erent sensory and cognitive input.
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Figure 1: Topographic similarity analysis.

To test for task-specific functional topographies in the LPFC, we adapt representational similarity analysis

(RSA) to topographic similarity analysis (TSA).

a) Simulated neural data across experimental conditions (rows) and measurement channels (columns). Higher

spike rates in a given channel are denoted by lighter shades.

b) RSA abstracts from measurement channels to infer representational geometry.

c) TSA abstracts from experimental conditions to infer functional topography. TSA allows for quantitative

comparison of functional topographies across time and tasks.

2. Results

Estimating the topography of LPFC neural activity across time and tasks65

The same two rhesus macaque monkeys (monkey B and monkey T) each performed three

cognitive tasks (Fig. 2a-c). The first task was an oculomotor delayed response task (ODR)

[31]. The second task was a visuospatial working memory task (VWM) deployed in a virtual-

reality environment with naturalistic scenes for stronger attentional engagement [32, 34]. The

third task was a context-dependent decision making task (CDM), which was also deployed70

in a virtual-reality environment [33]. Altogether, these three tasks engage a wide spectrum

of cognitive functions, including working memory, visuospatial attention, context-dependent

decision making and motor planning.

We recorded the responses of neurons in layers II/III of LPFC areas 8A and 9/46, dorsal

and ventral to the principal sulcus, using 96-channel multi-electrode Utah arrays (see Supple-75

mentary Fig. 1 for array placement). Each array covered a 4 mm → 4 mm cortical area with 10

→ 10 electrodes (↑0.4 mm spacing). Both monkeys performed multiple measurement sessions

for each task on separate days (Supplementary Fig. 2). In each session, we simultaneously

recorded neural activity from multiple channels on each array (see Supplementary Table 1 for
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details on active channels). Action potential times were extracted and synchronized to task80

events. To enable spatial mapping of response preferences across the array, we pooled spiking

activity from putative units identified on the same recording channel, summing their activities

to create multi-unit activity. Units measured by the same channel exhibited similar response

preferences (Supplementary Fig. 3). The pooled activity reflects the activity of subpopulations

of neurons within the area covered by each array channel.85

To characterize the spatial organization of population codes in the LPFC, we first computed

task tuning profiles, one for each channel in each session in each task (Fig. 2d-f). Task tuning

profiles are vectors that store the firing rates of a channel to the experimental conditions.

The time windows for estimating spike rates vary from a few hundred milliseconds up to a

few seconds (see Methods for details). These time windows were determined based on task90

structure, monkey behavior and population decoding results. Next, we computed a channel-

by-channel tuning similarity matrix for each array in each session in each task (Fig. 2g). Each

element of the matrix represents the Pearson correlation of tuning profiles between a channel

pair. The matrix as a whole reflects the similarity of task tuning for all channel pairs, thus

capturing the functional topography of task-tuned LPFC activity. This characterization enables95

quantitative comparison of functional topographies across time and tasks (Figs. 1, 2g). For

comparative purposes, we also analyzed trial-to-trial fluctuations around the trial averages that

define the tuning profiles (see Methods). Topographies based on these spontaneous fluctuations,

or residuals, are expected to be consistent across tasks [45, 41].
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Figure 2: Comparing task-tuned functional topographies in the LPFC across time and tasks.

a) Oculomotor delayed response task (ODR). Monkeys fixated a point on the screen. A visual cue appeared,

then disappeared. After a delay, the monkeys saccaded toward the remembered target location.

b) Visuospatial working memory task (VWM). A visual cue appeared in one of nine target locations in a virtual

arena, then disappeared. After a delay, the monkeys navigated toward the remembered target location using a

joystick.

c) Context-dependent decision making task (CDM). Monkeys navigated through an X maze using a joystick.

The texture of the corridor walls indicated the decision context for target selection.

d-f) Example tuning profile for a single channel in the ODR (d), VWM (e), and CDM (f) tasks. Legends

indicate the task features that composed the unique task space.

g) Schematics for TSA of task-tuned responses across time (solid lines) and tasks (dashed lines). Matrix

elements are Pearson correlations of tuning profiles between channel pairs.

The topography of LPFC neural activity is stable over time but adaptive across100

tasks

LPFC neural activity was on average positively correlated between channels, with stronger

correlations observed for task-tuned than residual responses. In the tuning similarity matrices,

the mean cross-channel correlation (r) over sessions and tasks was 0.50+/-0.21 (mean+/-SD)

for monkey B (mB) and 0.44+/-0.16 for monkey T (mT). In the residual similarity matrices,105

the mean cross-channel correlation (r) over sessions and tasks was 0.08+/-0.04 for mB and

0.15+/-0.08 for mT. The sign and magnitudes of the observed correlations are consistent with

prior work [5, 46, 47].

We next assessed whether the functional topography of LPFC neural activity is consistent

over time (sessions) and across tasks (ODR, VWM and CDM). To do so, we used TSA to110
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compute the average correlation of the channel-by-channel similarity matrices across sessions

within and between tasks (Fig. 2g). Session-to-session correlations within the same task

assess the consistency of topography over time, and session-to-session correlations between

di!erent tasks assess the consistency of topography across tasks. Consistencies were assessed

for topographies based on task-tuned responses and residuals separately, for each array in each115

monkey. To control for array shifting across time, we only included sessions spaced apart

no more than 20 days for within- as well as between-task comparisons. Given that data for

some tasks were acquired more than 20 days apart (see Supplementary Fig. 2), between-task

comparisons are based on two out of three tasks for each monkey. We focus on results from

the ventral array for both monkeys in the following sections, due to low signal-to-noise ratio of120

dorsal array recordings in mT (see Methods).

Over time, the task-tuned topographies are relatively stable. The consistencies of task-

tuned topographies were as follows: mB: VWM-VWM r = 0.43, mB: CDM-CDM r = 0.25,

mT: VWM-VWM r = 0.64 and mT: ODR-ODR r = 0.21. In all cases, the r values for

within-task consistencies were significantly larger than zero (one-sided permutation test; p <125

0.05, Fig. 3a,b). Moreover, the within-task consistencies for task-tuned topographies were

significantly higher than those observed for residual topographies (two-sided t-test; mB: VWM-

VWM t(54) = 3.97, p < 0.001, mB: CDM-CDM t(14) = 2.95, p = 0.01, mT: VWM-VWM

t(7) = 5.79, p < 0.001 and mT: ODR-ODR t(5) = 2.60, p = 0.05). The dorsal array in

mB showed similar results (Supplementary Fig. 4). Hence, over sessions of a given task, the130

topographies of task-tuned responses are more consistent than the topographies of concurrent

trial-to-trial fluctuations in spontaneous activity.

Across di!erent tasks, the task-tuned topographies adapt. The consistencies of task-tuned

topographies were as follows: mB: VWM-CDM r = 0.11, mT: VWM-ODR r = 0.18. The r

values for between-task consistencies were significantly larger than zero (one-sided permutation135

test; p < 0.05). However, they were significantly below their noise ceilings estimated from

the within-task consistencies (one-sided t-test; mB: VWM-CDM t(36) = ↓18.04, p < 0.001,

mT: VWM-ODR t(3) = ↓7.25, p = 0.003, Fig. 3c,d), suggesting that task-tuned functional

topographies are not fully consistent across tasks even when considering noise inherent to the

data. Moreover, the r values quantifying between-task consistency of task-tuned topographies140

were either significantly lower than or not significantly di!erent from those observed for residual

topographies (two-sided t-test; mB: VWM-CDM t(36) = ↓3.03, p = 0.005, mT: VWM-ODR

t(3) = ↓0.51, p = 0.64). The dorsal array in mB showed similar results (Supplementary Fig.

4). Hence, between a given pair of two di!erent tasks, the topographies of task-tuned responses
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are less consistent than the topographies of concurrent spontaneous trial-to-trial fluctuations145

in activity.

The above analyses average correlations across session pairs to estimate the overall consis-

tency of the LPFC topography across time and tasks. While this approach provides a general

measure of stability, it does not capture finer, continuous changes in topography over time or

quantify the relative contributions of time and task to topographic change. To address this, we150

conducted an additional analysis using linear regression to quantify the unique contributions

of time and task to explaining variance in session-pair consistency (Supplementary Results

1, Supplementary Fig. 5a). Across sessions and arrays, a linear regression model including

predictors for both time and task explained on average 87% of the variance in session-pair

consistency (Supplementary Fig. 5b). Time uniquely accounted for 15% of the explainable155

variance, while task explained 40%, further underscoring the adaptability of the LPFC to-

pography across tasks relative to its stability over time (Supplementary Fig. 5c). Although

variability is present across arrays, these results support the distinct roles of time and task in

shaping LPFC topography.

To evaluate the robustness of our approach in identifying consistent and meaningful topo-160

graphic patterns, we tested its sensitivity to di!erent low-dimensional projections of the data

using a split-half approach with non-overlapping conditions. This analysis tested whether the

within-task consistency of tuning similarity matrices remains stable when derived from disjoint

subsets of conditions. For both same-session (Supplementary Fig. 6a) and cross-session (Sup-

plementary Fig. 6b) comparisons, within-task consistencies remained significantly larger than165

zero (one-sided t-tests, p < 0.05). These findings support the reliability of our approach in

capturing stable and meaningful topographic patterns despite variations in condition sampling.

Importantly, the between-task consistencies observed in this control analysis reproduced the

original findings (Fig. 3c,d): they were significantly below the noise ceiling estimated from the

within-task consistencies (Supplementary Fig. 6b; one-sided t-tests; mB ventral: VWM-CDM170

t(36) = ↓15.04, p < 0.001, mB dorsal: VWM-CDM t(36) = ↓43.68, p < 0.001, mT ventral:

VWM-ODR t(3) = ↓5.08, p = 0.007), reinforcing the adaptability of the LPFC functional

topography across tasks.

Our analyses suggest that task-tuned functional topographies in the LPFC are (1) stable

across time within a task: neural populations with similar tuning on one day tend to exhibit175

similar tuning on another day, and (2) adaptive across tasks: neural populations with similar

tuning in one task do not necessarily exhibit similar tuning in another task. These findings

demonstrate the capacity of LPFC to maintain consistent neural population topographies over
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time while flexibly adapting to the demands of di!erent tasks.

Figure 3: Task-tuned functional topographies in the LPFC are stable across time but adaptive

across tasks.

a-b) Consistency of functional topographies across time within a task for mB (a) and mT (b).

c-d) Consistency of functional topographies between tasks for mB (c) and mT (d).

Black horizontal lines indicate significant di!erences between task and residuals (p < 0.05, two-sided paired

t-test). Gray horizontal lines show the noise ceiling. Gray triangles indicate values significantly below the noise

ceiling (p < 0.05, one-sided t-test). Error bars show the standard error of the mean (SEM) across session pairs.

Linking the topography of LPFC neural activity to fine-grained spatial maps180

Given that feature-tuned neurons are known to cluster in populations at the spatial scale of

cortical columns [1, 2, 20, 25], the observed task-specific functional topographies in the LPFC

(Fig. 3; Supplementary Fig. 4) may be expressed spatially by clusters of similarly tuned neu-

rons with an adaptive task-dependent ’fingerprint’. To quantify the degree of spatial clustering

9
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of channels with similar response preferences on the array, we computed spatial autocorrelation185

functions (ACFs) of channel tuning profiles [27, 26, 48, 49]. The ACFs measure the tuning

similarity between channels as a function of their distance on the array. We computed ACFs

for each session and task. As a measure of spatial autocorrelation, we used a cross-validated

implementation of global Moran’s I that is bounded between -1 and 1, where positive values

indicate similar tuning (see Methods). We found that the spatial autocorrelation between chan-190

nels decreases exponentially as their distance on the array increases (Fig. 4a; Supplementary

Fig. 7a,b). From the ACFs of both monkeys, we observed a positive spatial autocorrelation

up to a distance of 1-2 mm across tasks (Fig. 4a).

These observations suggest that the task-specific functional topographies in the LPFC con-

verge on a common spatial scale. To quantify this spatial scale, we fit Laplacian functions to195

the observed ACFs. Modeling the ACFs with Laplacians provides a concise description of the

observed spatial decay using a limited set of parameters, allowing us to derive a scalar estimate

of spatial scale. This estimate, represented by the full-width-at-half-maximum (FWHM) of the

fitted Laplacians, captures the spatial extent of similarity in tuning. The FWHM is interpreted

as the width of the 2-dimensional kernel needed to smooth spatially independent tuning profiles200

to yield the same degree of clustering we observe in the data [50]. The median of the FWHMs

across sessions and tasks is 369 +/- 107 µm (SD), suggesting the existence of fine-grained, or

mesoscale, clusters of similarly tuned neural populations on the arrays.

To get an impression of the spatial structure of the tuning similarity on the arrays, we next

visualized the data using 2-dimensional (2D) multidimensional scaling (MDS). We converted205

the tuning profile correlations to correlation distances, and applied 2D MDS. Channels were

color-coded based on their location in the 2D MDS space and projected back to the arrays

[41] (Fig. 4b). Each color indicates a unique channel tuning profile across all conditions of a

given task. Channels with similar tuning profiles are thus similarly colored, and their relative

position on the array reveals observable clustering, which is highly similar within tasks and210

moderately to weakly similar between tasks. Across all maps, the clusters of similarly task-

tuned channels reveal a consistent spatial scale (Fig. 4c; Supplementary Fig. 7c,d). To further

emphasize the spatial scale of these clusters, we smoothed the 2D MDS array maps using 2D

Gaussian kernels with FWHM values matching the empirically derived cluster sizes from the

fitted Laplacians. In all three tasks, this visualization highlights the mesoscale organization215

of task-tuned population activity, showing clusters at a spatial scale similar to that observed

for maps in sensory cortical areas, such as V1, where mesocale functional organization reflects

tuning to stimulus features [14, 21] (Fig. 4d).
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Figure 4: Task-tuned functional topographies in the LPFC are organized at a fine-grained spatial

scale.

a) Spatial autocorrelation functions (ACFs) for ODR, VWM and CDM tasks. Solid lines represent the ACFs

for individual sessions in each task. Colors indicate arrays: light blue for the mB ventral array, dark blue for

the mB dorsal array, and pink for the mT ventral array. Gray shaded areas indicate the width between two

immediately neighboring channels on the array (0.4 mm). Vertical dashed lines show the median full-width-at-

half-maximum (FWHM) of Laplacian functions fit to ACFs of individual sessions.
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Figure 4:

b) Steps taken to visualize tuning similarity on the array. Channels with similar tuning profiles in a given task

are similarly colored.

c) Array maps for the mB dorsal array in all three tasks, using two example sessions per task.

d) Array maps in panel c after smoothing with 2D Gaussian kernels whose FWHMs match that of the fitted

Laplacian functions.

Our findings suggest that task-tuned LPFC responses are spatially clustered at the mesoscale,

similar to sensory cortical areas [1, 2, 20, 14, 21]. We next asked what properties of cortical220

organization might shape this spatial scale. One possibility is that the a!erent input projec-

tions from di!erent regions of the brain may exhibit a spatial scale of clustering in the LPFC

similar to that of the functional topographies observed in the present work. This would suggest

that the structural organization of long-range inputs into the LPFC shapes the functional to-

pographies of its task-tuned responses. To test this hypothesis, we analyzed a well-documented225

structural connectivity map representing the profile of a!erent inputs to the macaque principal

sulcus of the LPFC from the contralateral principal sulcus through callosal fibres, and from

the ipsilateral parietal cortex through associational fibres (Fig. 5a,b) [42, 51]. The structural

map overlaps the cortical patch measured with multielectrode arrays in the current study (Fig.

5a,b). To obtain an unbiased estimate of the map’s intrinsic spatial scale, we sampled 210230

patches at random locations from the map, using a 4 mm → 4 mm patch size equivalent to

the area covered by our arrays (Fig. 5b,c). For each sample, we computed a spatial ACF and

corresponding FWHM using the same strategy as depicted in Fig. 4a. For both measures,

we observed that the functionally derived estimates in Fig. 4a fall within the 95% confidence

interval of the estimates computed across the structural map samples (Fig. 5d). These findings235

suggest that the structural and functional spatial scales are comparable, consistent with the

idea that long-range a!erent inputs may contribute to the mesoscale organization in the LPFC.

To assess the sensitivity of these results to stripe size in the structural map, we conducted

additional simulations by scaling the map to produce smaller, original, and larger stripe sizes

(Supplementary Fig. 8a-c). Larger stripe sizes produced broader spatial scales in the structural240

ACFs, positioning the functionally derived ACFs outside the 95% confidence interval of the

structural distribution at shorter distances (Supplementary Fig. 8f). Results for the smaller

stripe size were less conclusive (Supplementary Fig. 8d) but did not challenge the alignment

observed for the original stripe size (Supplementary Fig. 8e). These findings reinforce the link

between structural and functional spatial scales by demonstrating that a broader structural245

scale of long-range a!erent inputs is inconsistent with the functional measures.
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Figure 5: Linking task-specific functional topographies in the LPFC to fine-grained structural

maps.

a) Anatomical tracing of white matter fiber inputs to the macaque LPFC [43, 42], adapted with permission

from [42]. The LPFC receives inputs through contralateral callosal fibers of the principal sulcus (PS; solid

black arrow) and ipsilateral association fibers from the intraparietal sulcus (IPS; white strike arrow). HRP =

horeradish peroxidase, H3 ↓AA = tridared amino acids.

b) Structural map representing the spatial profile of a!erent inputs to the macaque LPFC, adapted with

permission from [42]. The black dashed line shows the rim of the PS. Black stripes show the reconstructed

terminal fields of callosal fibers in the PS, reflecting inputs from the contralateral PS. Interdigitated white

stripes receive inputs from the ipsilateral IPS [43]. The red square shows an example cortical patch sampled

for our analysis.

c) Examples of cortical patches sampled at random locations from the structural map in panel b. Each sample

has a coverage of 4 mm → 4 mm.

d) Functional ACFs superimposed on structural ACFs. Yellow, green and purple lines represent mean functional

ACFs across sessions for the ODR, VWM and CDM tasks, respectively, for the mB dorsal array (Fig. 4a).

Vertical dashed lines show the mean FWHM across sessions for each task. Solid gray lines represent structural

ACFs for 210 structural map samples. Dashed gray lines show the 95% confidence interval of the structural

ACFs. Gray dots placed on the zero autocorrelation line show the 95% confidence interval of the structural

FWHMs.

3. Discussion

We used TSA to characterize the functional topography, temporal stability, and spatial

scale of task-tuned LPFC neural activity by analyzing array recordings from awake behav-

ing macaques performing three distinct cognitive tasks [31, 32, 33]. TSA revealed that the250

spatial topography of task-tuned LPFC neural activity is stable across time within a task but

adaptive across tasks. The stability for task-tuned responses is higher than for concurrent spon-

taneous fluctuations, indicating that the correlation structure among LPFC neural populations

is strengthened by task. We further demonstrate that although all three tasks exhibit distinct

topographies of task-tuned activity, they converge on a common spatial scale. Finally, we show255
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that this spatial scale is likely shaped, in part, by the organization of a!erent long-range inputs

into the LPFC from distinct cortical areas throughout the brain.

Our findings indicate that TSA provides a powerful and flexible strategy for decomposing

high-dimensional response profiles from LPFC array recordings into topographies of task-tuned

preferences. However, TSA has some notable di!erences from traditional methods for deriving260

neural tuning profiles [12]. TSA infers topographic patterns indirectly, based on second-order

correlations between channels rather than direct measures of tuning to isolated, explicitly

defined task features [41] (Fig. 1). In this sense, the “maps” revealed by TSA are not traditional

tuning maps anchored to a single feature dimension but rather spatial patterns of similarity in

neural response profiles. This has multiple advantages: TSA enables the modeling of potentially265

context-dependent mixtures of neural selectivities and provides a characterization of functional

topographies that can be directly compared across di!erent tasks. Moreover, we show that

the use of a noise ceiling is a helpful theoretical construct for contextualizing e!ect sizes in

TSA [52]. However, by itself, TSA does not eliminate the fundamental challenges associated

with disentangling the complex interplay of stimulus features, task structure, and intrinsic270

connectivity in shaping LPFC functional organization. Future approaches could integrate

TSA with more refined task designs and multimodal imaging measures to yield an even clearer

understanding of the spatial and functional organization of the LPFC in both macaques and

humans. Below we discuss some of these methodological challenges in light of the current

study.275

Task mapping in the LPFC presents significant challenges. Unlike stimulus mapping ex-

periments in the visual cortex, which are relatively easy to parameterize according to objective

physical features such as location, orientation, or object category, task mapping experiments

are more di”cult to parameterize because task features often represent abstract concepts, such

as rule associations or temporal interdependencies [3, 5, 10, 41, 26, 27]. For example, although280

the LPFC exhibits task-specific topographies, we also observed that these topographies still

share a significant portion of task-related variance. We interpret this shared variance as tuning

to shared features between tasks. For instance, all three tasks consist of visual stimuli and a

trial sequence with successive cue and target phases. Future work examining task mapping in

the LPFC will benefit from experimental designs which increase the number and diversity of285

task features sampled, and the precision of their relationship to one another in a high dimen-

sional ”task space” [30]. Task mapping experiments which systematically vary task-stimulus

combinations in a high dimensional task space will be better equipped to explore the similarity

of distinct tasks to one another, as well as their potential linear and nonlinear integration,
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thereby enabling more computationally principled hypotheses about LPFC function, including290

biased competition [53, 54] and compositional coding [55, 56].

Connectomic profiling of the LPFC also presents significant challenges. In contrast to the

relatively homogeneous short-range structural connections that shape topographic maps in the

visual cortex [21], LPFC functional topographies are likely shaped by a heterogeneous mixture

of long-range a!erent inputs and local intrinsic connectivity [8, 57, 58, 59, 23, 60]. Anatomical295

tracing studies have shown that the LPFC receives patterned long-range input projections from

multiple areas — most notably from the posterior parietal cortex and the contralateral LPFC

— that form elongated stripes of connectivity [8, 58]. We estimated the spatial scale of LPFC

a!erent input patterns by sampling a structural connectivity map provided in seminal work by

Patricia Goldman-Rakic [42]. We show that the spatial scale of this map corresponds closely to300

the ↑300–400 µm scale of the functional topographies observed here, despite the vastly di!erent

methodologies used to derive the structural and functional maps. The stripes, along with local

horizontal connections that form patchy networks [59] may serve as substrates for the spatially

clustered functional responses to task features. Recent multimodal studies of the macaque

LPFC have begun to bridge the structure-function gap using microstimulation [57] and di!usion305

MRI [61]. Consistent with our findings, these studies indicate that a diverse network of long-

range structural projections may provide the sca!olding for LPFC’s functional organization,

influencing the intrinsic network structure upon which task-specific activity patterns unfold

[62, 57]

The spatial scale of the LPFC functional topographies observed in macaques suggests that310

these patterns could, in principle, be resolved using TSA in combination with ultra-high-field

fMRI in humans. While task-based fMRI studies of human LPFC have not yet achieved

such fine-grained resolution, there is precedent in the visual domain, where stimulus-driven

ocular dominance columns, organized at submillimeter scales, have been successfully visualized

with cutting-edge imaging techniques (e.g., [21]). Future cross-species translational e!orts,315

leveraging the complementary strengths of human fMRI and macaque electrophysiology with a

unified analytical framework such as TSA, may achieve a more comprehensive understanding

of LPFC function. In humans, the non-invasive nature of fMRI allows exploration of a wider

and more diverse task space, encompassing complex and abstract cognitive functions that

are challenging to systematically manipulate in macaque models. The rich datasets obtained320

from human fMRI studies may generate novel hypotheses regarding the functional organization

and computational principles of the LPFC, which can be reverse translated through targeted

electrophysiological experiments in macaques to provide mechanistic insights into the observed
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mesoscopic patterns.

In summary, our application of TSA to LPFC recordings in awake macaques has elucidated325

stable yet task-specific spatial topographies of neural activity, all converging on a consistent

spatial scale likely influenced by long-range cortical inputs. These results demonstrate TSA’s

e”cacy in decomposing complex neural response patterns into spatially interpretable topogra-

phies and highlight the nuanced interplay between task demands and structural connectivity

in shaping LPFC function. Furthermore, the alignment of macaque functional topographies330

with the potential resolution of ultra-high-field fMRI in humans paves the way for cross-species

translational research. By integrating the expansive and diverse task spaces accessible through

human fMRI with the precise electrophysiological insights from macaque models, this unified

analytical framework promises to deepen our understanding of the LPFC’s organizational prin-

ciples and its role in executive cognitive processes.335

4. Methods

4.1. Subjects and ethics statement

We recorded LPFC neural activity in two male rhesus macaques (Macaca mulatta, monkey

B and monkey T, 10 and 9 years old) while they were performing three di!erent cognitive340

tasks across multiple measurement sessions. All training, surgery, and recording procedures

conformed to the Canadian Council on Animal Care guidelines and were approved by The

University of Western Ontario Animal Care Committee.

4.2. Behavioral tasks

4.2.1. Oculomotor delayed response (ODR) task345

Fig. 2a illustrates the experimental setup of the oculomotor delayed response task. Each

trial began with the appearance of a fixation point at one of 16 predefined locations on a

computer screen. Then a target was presented for 1000 ms before it disappeared. The monkeys

were asked to maintain fixation for a variable length delay period (1400 ms - 2500 ms, median

= 1800 ms) and upon extinction of the fixation point, make a saccade towards the remembered350

target location to get a reward. More information on the ODR task can be found in [31].

4.2.2. Visuospatial working memory (VWM) task

Fig. 2b illustrates the experimental setup of the visuospatial working memory task, which

took place in a virtual reality environment. Within the virtual arena in the environment,

targets were arranged in a 3 → 3 grid. The time needed to navigate between adjacent targets355
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was ↑0.5 s. During the cue period, a visual cue (red rectangle) was presented in one of the

nine target locations for 3 seconds, then disappeared. After a 2-second delay, the monkeys

navigated towards the remembered target location at a constant speed using a joystick. Upon

reaching the correct target, the monkeys received a reward. More information on the VWM

task can be found in [32].360

4.2.3. Context-dependent decision making (CDM) task

Fig. 2c illustrates the experimental setup of the context-dependent decision making task,

which was also deployed in a virtual reality environment. The task took place in a double

ended Y maze, also termed ”X maze” as in [34, 63]. The monkeys navigated through the X

maze using a joystick. The texture of the walls, being brown ”wood” or dark grey ”steel”,365

indicated which coloured disk the monkeys should choose at the bifurcation to get a reward.

In other words, the decision context was specified by the texture of the walls. We will refer

to the coloured disks as goals in subsequent text. More information on the CDM task can be

found in [33].

4.3. Neural recordings370

Two 96-channel Utah arrays (4 mm → 4 mm coverage, 10 → 10 electrodes, spaced at 0.4

mm, 1.5 mm in length) (Blackrock Microsystems) were chronically implanted in the left LPFC

in each animal. They were located anterior to the arcuate sulcus and on the ventral and dorsal

side of the posterior end of the principal sulcus, targeting layers II/III of cortical areas 8A and

9/46 (see Supplementary Fig. 1 for array placement).375

Neural data were recorded using a Cerebus Neural Signal Processor (Blackrock Microsys-

tems). The neural signal was digitized (16 bit) at a sampling rate of 30 kHz. Data were online

sorted to identify putative units on each recording channel in real-time. Action potential times

were extracted and synchronized to task events. For all tasks, eye positions were monitored

using SR Research EyeLink 1000, at a sampling rate of 500 Hz.380

Both monkeys performed multiple measurement sessions for each task. Sessions were ac-

quired on separate days. Monkey B performed 4 sessions for the ODR task, 11 sessions for

the VWM task, and 6 sessions for the CDM task. Monkey T performed 4 sessions for the

ODR task, 8 sessions for the VWM task, and 9 sessions for the CDM task. Three sessions

were excluded from analysis in the VWM task for monkey T due to low trial numbers across385

experimental conditions. See Supplementary Figure 2 for further details on the included ses-

sions. The dorsal array in monkey T was excluded from analysis due to low signal-to-noise

ratio of recordings at the time of the experimental sessions, which makes it di”cult to map the

topography of the array.
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Quality assurance data generated by the Blackrock software before each recording session390

indicated potential crosstalk in 4 out of the 60 sessions analyzed across monkeys and arrays.

This a!ected only one monkey, array, and task (monkey B, dorsal, CDM) in 4 of the 6 mea-

surement sessions for that task. To assess the robustness of the spatial scale results (Fig. 4) to

potential crosstalk, we performed a conservative control analysis. For the a!ected sessions, we

removed any shared spikes for channel pairs with more than 10% shared spikes, which impacted395

approximately 50 channel pairs on average per session. Results from this analysis confirmed

that spike removal had minimal e!ects on the estimated spatial scale (Supplementary Fig. 7)

and did not a!ect the pattern of results for the consistency analyses reported in Supplementary

Figure 4.

4.4. Neural data analysis400

4.4.1. Computing task tuning profiles

To enable spatial mapping of response preferences across the array, we pooled units recorded

from the same channel by summing up their spiking activities. Units recorded from the same

channel exhibited similar response preferences (Supplementary Fig. 3). We refer to the pooled

activity as multi-unit activity. The pooled activity reflects the activity of subpopulations of405

neurons within the area covered by an array channel. This area has an estimated diameter of

300 microns based on the impedance of the electrodes.

For each channel in each session in each task, we first computed trial-specific spike rates

for each experimental condition and applied a square root transformation to the spike rates to

account for the Poisson-like increase of variability with increasing mean firing rates [64, 48]. We410

next computed trial-averaged spike rates by averaging across trials of the same experimental

condition, which yielded a task tuning profile for each channel.

More specifically, in the ODR task, the tuning profile for a channel was defined as the

trial-averaged spike rates for the 4 quadrants (16 targets were grouped into 4 quadrants based

on their location in the retinotopic reference frame, labelled 1-4 starting from bottom left,415

clockwise) during cue (1000 ms), delay (1400 ms - 2500 ms, median = 1800 ms), and response

(first 500 ms) epochs. In the VWM task, the tuning profile for a channel was defined as the

trial-averaged spike rates for the 9 target locations during cue (3000 ms), delay (2000 ms), and

response (first 500 ms) epochs. In the CDM task, the tuning profile for a channel was defined as

the trial-averaged spike rates for the combinations of decision contexts and goal configurations420

in time windows before and after context onset (50 ms before, 600 ms after), goals onset (500

ms before, 300 ms after), and decision onset (500 ms before, 500 ms after). Goal configuration

refers to the location of the disk colour that is associated with wood. If the colour associated
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with wood is on the left-hand side at the bifurcation, the trial is in configuration 1, otherwise

configuration 2.425

We then subtracted out the mean firing rate across all experimental conditions. The mean-

centered tuning profile reflects the modulation in firing rate by the experimental conditions,

providing a rich characterization of channel tuning in each task. The time windows used

for computing tuning profiles were based on trial structure, monkey behavior, and neural

population decoding results. Results of subsequent analyses do not critically depend on the430

exact time windows used.

4.4.2. Computing the topography of task-tuned activity

For each array in each session in each task, we computed a channel-by-channel tuning

similarity matrix. Elements in this matrix reflect the Pearson correlation of tuning profiles

between channel pairs. The matrix reflects the similarity of task tuning for all channel pairs,435

thus capturing the similarity structure of tuning across the array. As such, it provides the basis

for mapping of tuning similarity across the cortical sheet. This approach can be used to study

functional topography [41, 65]. Importantly, the tuning similarity matrices abstract from the

specific experimental conditions used in a single task, which enables comparison of functional

topographies between tasks.440

4.4.3. Computing the topography of spontaneous activity

For comparative purposes, we also analyzed trial-to-trial fluctuations about the trial av-

erages that define the tuning profiles. Topographies based on these spontaneous fluctuations

are expected to be consistent across tasks [41, 45]. We partitioned the measured spiking ac-

tivity in two components: task-tuned activity and spontaneous activity or residuals. For each445

channel in each session in each task, we computed task-tuned activity by replacing the firing

rate of each trial with the mean firing rate across trials of the same experimental condition.

This corresponds to a tuning profile where the trial-averaged spike rate for each condition is

repeated as many times as the number of trials for that condition. We computed residuals by

subtracting out the task-tuned activity from the measured spiking activity. We then computed450

topographies for task-tuned activity and residuals as described in the previous section, but re-

placed tuning profiles by task-tuned or residual activity vectors. Results reported in Fig. 3 are

based on the task-tuned and residual topographies, allowing for a direct comparison between

the two.
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4.4.4. Assessing the consistency of functional topographies across time and across tasks455

To assess whether the functional topographies are consistent across time and across tasks,

we computed the Pearson correlation of tuning similarity matrices across session pairs within

and between tasks (see Fig. 2g). Because the matrices are symmetric, we computed correlation

coe”cients using the upper triangular vector of the matrix. The consistency of functional

topographies within and between tasks was estimated as the mean across session pairs. To460

control for array shifting across time, we only included sessions spaced apart no more than 20

days for within- as well as between-task comparisons. Given that data for some tasks were

acquired more than 20 days apart (see Supplementary Fig. 2), between-task comparisons are

based on two out of three tasks for each monkey.

To determine whether the estimated consistencies are significantly higher than chance, we465

permuted channel locations on the array to simulate the null hypothesis of no consistent spatial

organization. We performed 1,000 permutations, each yielding an estimate of our test statistic

under the null hypothesis. If the actual consistency fell within the top 5 percent of the simulated

null distribution, we rejected the null hypothesis of no consistent spatial organization. This

corresponds to a one-sided test using p < 0.05 for significance thresholding. For between-task470

consistencies, we did not only test if they were higher than expected for no consistent spatial

organization, we also tested if they were lower than expected for a fully consistent spatial

organization. We did so by estimating a noise ceiling for between-task consistencies. For each

task pair, the noise ceiling is defined as the geometric mean of the within-task consistencies,

which reflects the expected maximum between-task consistency given the noise in the data475

[66]. We compared the observed between-task consistencies against the noise ceiling using a

one-sided one-sample t-test across session pairs. We compared consistencies of task-tuned and

residual topographies using a two-sided paired-samples t-test across session pairs.

4.4.5. Assessing the spatial scale of functional topographies

To assess the spatial scale of the functional topographies, we computed spatial autocorrela-480

tion functions (ACFs) of channel tuning profiles on the array. The spatial ACFs were computed

in a cross-validated fashion to reduce the impact of spatially autocorrelated noise. Trials in a

measurement session were split into two halves. Tuning profiles were estimated for each half.

We used global Moran’s I as a measure of spatial autocorrelation [67], which is defined as:

I =
N∑

i

∑
j wij

∑
i

∑
j wij(XAi ↓ X̄A)↑(XBj ↓ X̄B)∑
i(XAi ↓ X̄A)↑(XBi ↓ X̄B)

where N is the total number of channels on the array; XAi is the mean-centered tuning485

profile for the i
th channel in the first half; XBj is the mean-centered tuning profile for the j

th

20

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 15, 2025. ; https://doi.org/10.1101/2024.05.10.591729doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.10.591729
http://creativecommons.org/licenses/by-nc-nd/4.0/


channel in the second half; X̄ is the mean-centered tuning profile averaged across all channels,

estimated for each half separately; and wij is either 1 or 0 (if channel i and channel j are spaced

within a specified spatial range, wij equals 1; otherwise 0).

The numerator estimates the cross-validated covariances of tuning profiles between channel490

pairs spaced at a certain distance. The denominator estimates the cross-validated variances of

tuning profiles across all the channels on the array. To account for the fact that some channels

appear more frequently than others in the covariance estimates, the variance can be estimated

using the following formula as in [49]:

√∑
i

∑
j wij(XAi ↓ X̄A)↑(XBi ↓ X̄B)

∑
i

∑
j wij(XAj ↓ X̄A)↑(XBj ↓ X̄B)

∑
i

∑
j wij

Using this formula for estimating the variance ensures that I is bounded between -1 and 1.495

A positive I indicates that channels spaced at the given distance have similar tuning profiles; a

negative I indicates that channels spaced at the given distance have dissimilar tuning profiles.

To compute spatial ACFs, we systematically varied the spatial distance between channels,

from including only immediately neighbouring channels (0 < distance ↔ 0.4 mm) to channels

that are spaced apart more than one channel width but no more than two (0.4 mm < distance ↔500

0.8 mm), continuing these steps up and till nine channel widths (3.2 mm < distance ↔ 3.6 mm),

and computed the spatial autocorrelation for each distance. At distance 0, the cross-validated

covariances are the same as cross-validated variances, leading to a spatial autocorrelation of 1.

We computed an ACF for each array in each session in each task.

To quantify the spatial scale of the functional topographies, we fit a Laplacian function to505

the spatial ACFs. The Laplacian function captures the exponential decay of channel tuning

similarity as the distance between channels increases. The Laplacian function used is defined

as follows:

f(d) = 1.02→ e
↓ d

s ↓ 0.02

where d ↗ 0 reflects the distances; and s is a fitted value, reflecting the smoothness of

the curve. The full-width-at-half-maximum (FWHM) of the Laplacian curve can be computed510

using s via the following formula:

FWHM = 2→ s→ ln(2)
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The FWHM of a fitted Laplacian function is equivalent to the FWHM of the 2-dimensional

kernel required to smooth an array whose channel tuning profiles are spatially independent, to

yield the degree of spatial autocorrelation we observe in the data [50]. We therefore use the

FWHM as an estimator of spatial scale.515

4.4.6. Mapping tuning similarity on the array

To visualize the spatial structure of tuning similarity on the arrays, we converted the correla-

tions in the tuning similarity matrix to correlation distances, and applied 2D multidimensional

scaling (MDS) to the distances. Channels were colour-coded based on their location in the 2D

MDS space and projected back to the arrays. In the colour space, hue reflects polar angle, and520

saturation reflects eccentricity. Similar colours indicate similar tuning profiles. As a check,

we computed the variance explained in the high-dimensional distances by the low-dimensional

distances for a range of MDS dimensions (1-10). We computed the variance explained by first

correlating the correlation distances between points (channels) in the original high-dimensional

space with the Euclidean distances between points in the low-dimensional MDS space, and then525

squaring the correlation coe”cients [41]. The 2D MDS space explains around 80% of the vari-

ance in the original high-dimensional space across monkeys, arrays, and tasks.

4.4.7. Linking the functional topographies to structural maps

To relate the spatial scale of the observed functional topographies to prior anatomical

tracing work, we repeated the spatial autocorrelation analysis on a reconstructed structural530

map of a!erent input to macaque LPFC [42]. This structural map shows the terminal field

distributions of callosal fibers projecting from the principal sulcus in one hemisphere to the

principal sulcus in the other hemisphere [51]. The fibers terminate in a stripe-like pattern,

reflecting interdigitation of the contralateral callosal fibers with associational fibers from the

ipsilateral parietal cortex [43]. The structural map suggests the existence of cortical columns in535

LPFC, which have been reported to have a width of 300 to 700 microns [42, 51, 44, 43, 68]. To

assess the spatial scale of the structural map, we randomly sampled 210 cortical patches with

4 → 4 mm2 coverage from the map, simulating array placements. Sampled cortical patches

were downsampled to 10 → 10 to match the measurement resolution of the Utah arrays used

in our study. We assessed the spatial ACF for each sampled patch and plotted the distribution540

of ACFs across samples. We then examined whether the ACFs observed for the task-tuned

topographies fall within the distribution derived from the anatomical tracing map (see Fig. 5).
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6. Data availability

Source Data are provided with this paper. Raw data supporting the findings of this paper

are available from MR, BC, RL, JMT upon reasonable requests.

7. Code availability

MATLAB code used for analyzing the data is available from github (https://github.com/570

jkderrick028/topoPFC) or from JDX.
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