

1 **Contraction-induced endocardial *id2b* plays a dual role in regulating myocardial contractility**
2 **and valve formation**

3 Shuo Chen^{1, 2, 3#}, Jinxiu Liang^{1, 2, 3#}, Jie Yin^{1, 2, 3}, Weijia Zhang^{1, 2, 3}, Peijun Jiang^{1, 2, 3}, Wenyuan Wang^{4, 5},
4 Xiaoying Chen^{6, 7}, Yuanhong Zhou⁸, Peng Xia⁸, Fan Yang^{6, 7}, Ying Gu^{1, 2, 3}, Ruilin Zhang^{4, 5}, Peidong
5 Han^{1, 2, 3*}

6

7 ¹*Department of Cardiology, Center for Genetic Medicine, The Fourth Affiliated Hospital of School of*
8 *Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang*
9 *University, Yiwu, China, 322000.*

10 ²*Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of*
11 *Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310058, China.*

12 ³*Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.*

13 ⁴*TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, China*

14 ⁵*Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China*

15 ⁶*Department of Biophysics, and Kidney Disease Center of the First Affiliated Hospital, Zhejiang University*
16 *School of Medicine, Hangzhou, China.*

17 ⁷*Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China.*

18 ⁸*Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang*
19 *University, Hangzhou, Zhejiang 310058, China.*

20

21 #Shuo Chen and Jinxiu Liang contributed equally to this work.

22 *To whom correspondence should be addressed.

23 hanpd@zju.edu.cn

24 +86-571-88206360

25

26

27 **Abstract**

28 Biomechanical cues play an essential role in sculpting organ formation. Comprehending how cardiac
29 cells perceive and respond to biomechanical forces is a biological process with significant medical
30 implications that remains poorly understood. Here we show that biomechanical forces activate
31 endocardial *id2b* (inhibitor of DNA binding 2b) expression, thereby promoting cardiac contractility and
32 valve formation. Taking advantage of the unique strengths of zebrafish, particularly the viability of
33 embryos lacking heartbeats, we systematically compared the transcriptomes of hearts with impaired
34 contractility to those of control hearts. This comparison identified *id2b* as a gene sensitive to blood
35 flow. By generating a knockin reporter line, our results unveiled the presence of *id2b* in the
36 endocardium, and its expression is sensitive to both pharmacological and genetic perturbations of
37 contraction. Furthermore, *id2b* loss-of-function resulted in progressive heart malformation and early
38 lethality. Combining RNA-seq analysis, electrophysiology, calcium imaging, and echocardiography,
39 we discovered profound impairment in atrioventricular (AV) valve formation and defective excitation-
40 contraction coupling in *id2b* mutants. Mechanistically, deletion of *id2b* reduced AV endocardial cell
41 proliferation and led to a progressive increase in retrograde blood flow. In the myocardium, *id2b*
42 directly interacted with the bHLH component *tcf3b* (transcription factor 3b) to restrict its activity.
43 Inactivating *id2b* unleashed its inhibition on *tcf3b*, resulted in enhanced repressor activity of *tcf3b*,
44 which subsequently suppressed the expression of *nrg1* (neuregulin 1), an essential mitogen for heart
45 development. Overall, our findings identify *id2b* as an endocardial cell-specific, biomechanical
46 signaling-sensitive gene, which mediates intercellular communications between endocardium and
47 myocardium to sculpt heart morphogenesis and function.

48

49 **Keywords:** Zebrafish, Heart, *id2b*, Valve, Contraction

50

51

52

53

54

55 **Introduction**

56 The heart develops with continuous contraction, and biomechanical cues play an essential role in
57 cardiac morphogenesis^{1, 2}. Blood flow is directly sensed by the surrounding endocardium, which
58 undergoes multiscale remodeling during zebrafish heart development. In the atrioventricular canal
59 (AVC) endocardium, oscillatory flow promotes valvulogenesis through transient receptor potential
60 (TRP) channel-mediated expression of Krüppel-like factor 2a (*klf2a*)^{3, 4, 5}. Meanwhile, mechanical
61 forces trigger ATP-dependent activation of purinergic receptors, inducing expression of nuclear factor
62 of activated T cells 1 (*nfatc1*) and subsequent valve formation⁶. In the chamber endocardium, blood
63 flow induces endocardial cells to adopt chamber- and region-specific cell morphology during cardiac
64 ballooning⁷. A recent study further emphasized that blood flow is essential for endocardial cell accrual
65 in assembling the outflow tract⁸. Beyond their role in endocardial cells, proper biomechanical cues are
66 indispensable for shaping the myocardium. For instance, in contraction compromised *tnnt2a*⁹ and
67 *myh6*¹⁰ mutants, trabeculation is markedly reduced. Moreover, apart from the tissue-scale regulatory
68 effect, the shape changes¹¹ and myofibril content¹² at the single-cardiomyocyte level are also sculpted
69 by the interplay of contractility and blood flow in the developing heart.

70 In ventricular myocardium morphogenesis, biomechanical forces coordinate intra-organ
71 communication between endocardial and myocardial cells by regulating BMP, Nrg/ErbB, and Notch
72 signaling. The Nrg-ErbB axis stands as one of the most extensively studied signaling pathway
73 mediating cell-cell communications in the heart^{13, 14, 15, 16}. In particular, endocardial Notch activity
74 induced by cardiac contraction promotes the expression of Nrg, which then secretes into the
75 extracellular space, binding to Erbb2/4 receptor tyrosine kinases on cardiomyocyte and promoting their
76 delamination^{17, 18, 19}. In agreement with the pivotal role of this signaling pathway in heart development,
77 genetic mutations in zebrafish *nrg2a* and *erbb2* result in severely compromised trabeculae formation²⁰,
78^{21, 22}.

79 The development of cardiomyocytes encompasses the specification of subcellular structure,
80 metabolic state, gene expression profile, and functionality^{23, 24}. The rhythmic contraction of
81 cardiomyocytes relies on precisely regulated excitation-contraction coupling (E-C coupling),
82 transducing electrical activity into contractile forces. This intricate signaling cascade involves

83 membrane action potential, calcium signaling, and sarcomeric structure^{25, 26}. Specifically, membrane
84 depolarization triggers the opening of L-type calcium channel (LTCC), allowing calcium influx. The
85 calcium signaling then activates the ryanodine receptor on the sarcoplasmic reticulum (SR) membrane,
86 releasing additional calcium²⁵. E-C coupling is essential for heart development, as evidenced by the
87 complete silence of the ventricle and reduced cardiomyocyte number in *cacna1c* (LTCC $\alpha 1$ subunit in
88 zebrafish) mutant²⁷. Beyond its role in modulating cardiac structure formation, previous studies
89 indicate that Nrg-ErbB2 signaling is also necessary for cardiac function, as *erbb2* mutants exhibit
90 severely compromised fractional shortening and an immature conduction pattern^{20, 28}.

91 Id (inhibitor of DNA binding) proteins belong to the helix-loop-helix (HLH) family and function
92 as transcriptional repressors²⁹. Notably, Id2 lacks a DNA-binding domain and forms heterodimer with
93 other bHLH proteins, acting in a dominant-negative manner³⁰. Id2 plays a crucial role in heart
94 development, and its genetic deletion results in severe cardiac defects in mice^{31, 32, 33}. In zebrafish, *id2a*
95 and *id2b* are homologs of the mammalian *Id2* gene. However, their expression pattern and function in
96 the zebrafish heart remains largely unknown. In the present study, we identified that *id2b* is specifically
97 expressed in endocardial cells of the developing heart, and its expression is regulated by cardiac
98 contraction and blood flow. Genetic deletion of *id2b* led to impaired AV valve formation and reduced
99 cardiac contractility. Therefore, *id2b* serves as a crucial mediator linking biomechanical cues to heart
100 morphogenesis.

101

102 **Results**

103 **Transcriptome analysis identifies *id2b* as a blood flow sensitive gene**

104 Blood circulation is dispensable for early embryonic development in zebrafish, presenting an ideal
105 model to investigate biomechanical cues influencing heart morphogenesis. To identify genes affected
106 by cardiac contraction or blood flow, we treated *myl7:mCherry* zebrafish embryos with tricaine to
107 inhibit cardiac contractility from 72 hours post-fertilization (hpf) to 96 hpf. Hearts from control and
108 tricaine-treated zebrafish embryos were manually collected under a fluorescence stereoscope as
109 previously reported³⁴. Subsequently, approximately 1,000 hearts from each group were subjected to
110 RNA sequencing (Figure 1A). A total of 4,530 genes with differential expression were identified,

111 comprising 2,013 up-regulated and 2,517 down-regulated genes. With a specific focus on identifying
112 key transcription factors (TFs) affected by perturbing biomechanical forces, differentially expressed
113 genes (DEGs) encoding TFs were enriched into signaling pathways through KEGG analysis.
114 Interestingly, our analysis identified several pathways known to be involved in heart development,
115 including the transforming growth factor beta (TGF β) signaling and Notch signaling pathways (Figure
116 1B). In particular, the scaled expression levels of the top 6 DEGs ($|\log_2\text{FC}| \geq 0.585$), exhibiting up- or
117 down-regulation, were listed (Figure 1C). Intriguingly, *Id2* has been shown to regulate murine AV
118 valve formation, a process notably influenced by alterations in blood flow directionality. Moreover,
119 loss of *Id2* leads to malformation of both the arterial and venous poles of the heart and disrupts AV
120 valve morphogenesis^{31, 33}. Therefore, we interrogated the expression and function of *id2b* in developing
121 embryos.

122 Quantitative real-time PCR (qRT-PCR) analysis of purified embryonic hearts revealed a
123 significant reduction in *id2b* mRNA levels and an increase in *id2a* levels following tricaine treatment
124 from 72 to 96 hpf compared to controls (Figure 1D). Furthermore, *in situ* hybridization was performed
125 to visualize *id2b* expression under tricaine or 10 μM blebbistatin (an inhibitor of sarcomeric function
126 and cardiac contractility) treatment from 48 to 72 or from 72 to 96 hpf as previously described⁵.
127 Consistently, our results showed a reduction in *id2b* signal in contraction-deficient hearts compared to
128 the control (Figure 1E). In cardiomyocytes, *tnnt2a* encodes a key sarcomeric protein essential for
129 contractility. Similarly, injection of a previously characterized *tnnt2a* morpholino³⁵ at the 1-cell stage
130 also led to compromised contraction and diminished expression of *id2b* (Figure 1F). Taken together,
131 these results indicate that biomechanical cues are essential for activating *id2b* in embryonic hearts.
132

133 **Visualization of the spatiotemporal expression of *id2b* in developing embryos**

134 Due to technical challenges in visualizing the cell-type-specific expression of *id2b* in the developing
135 heart using whole-mount *in situ* hybridization, we employed an intron targeting-mediated approach³⁶ to
136 generate a knockin *id2b:eGFP* reporter line. This method allowed us to achieve specific labeling
137 without perturbing the integrity and function of the endogenous gene³⁶ (Figure 2A). Comparison of
138 *id2b:eGFP* fluorescence with *in situ* hybridization at 24, 48, and 72 hpf revealed that the reporter signal

139 closely recapitulates the endogenous *id2b* expression pattern. The fluorescence was notably enriched in
140 the heart, brain, retina, and notochord (Figure 2B), mirroring observations from a previously reported
141 *id2b* transgenic line generated through BAC-mediated recombination³⁷.

142 To further elucidate the spatiotemporal expression of *id2b* in developing hearts, we crossed
143 *id2b:eGFP* with *myl7:mCherry* or *kdrl:mCherry*, labelling cardiomyocytes or endocardial cells,
144 respectively. Confocal images revealed minimal, if any, presence of *id2b:eGFP* in *myl7:mCherry*⁺
145 cardiomyocytes (Figure 2C). In sharp contrast, clear co-localization between *id2b:eGFP* and
146 *kdrl:mCherry* was evident at 48, 72, and 96 hpf (Figure 2D). Endocardial localization of *id2b* was
147 further confirmed by RNAscope analysis (Figure 2E). In adult hearts, *id2b:eGFP* fluorescence was
148 enriched in the chamber endocardium and the endothelium lining AVC, outflow tract (OFT), and
149 bulbus arteriosus (Figure 2F). Interestingly, there was an absence of *id2b:eGFP* signal in
150 *kdrl:mCherry*⁺ endothelial cells in trunk blood vessel and brain vasculature (Figure 2G). Collectively,
151 these results indicate that *id2b* is expressed in endocardial cells across different developmental stages.

152

153 **BMP signaling and cardiac contraction regulate *id2b* expression**

154 Taking advantage of live imaging on developing embryos, we explored the *in vivo* dynamics of *id2b* in
155 response to biomechanical force at single-cell resolution. When embryos were treated with tricaine or
156 blebbistatin, the intensity of *id2b:eGFP* in atrial and ventricular endocardium was significantly reduced
157 (Figure 3A, B). Similarly, injection of *tnnt2a* morpholino also markedly suppressed *id2b:eGFP* signal
158 (Figure 3A, B), in agreement with the results obtained from *in situ* hybridization. Strikingly, the
159 reduction in fluorescence intensity was particularly pronounced in AVC endothelial cells (Figure 3A, B,
160 asterisks).

161 We then explored how cardiac contraction modulated *id2b* expression. Given that endocardial
162 cells can sense blood flow through primary cilia^{38, 39}, we used a characterized morpholino³⁸ to
163 knockdown *ift88*, an intraflagellar transporter essential for primary cilia formation. Previously work
164 demonstrated a complete loss of primary cilia in endocardial cells upon *ift88* knockdown³⁸. As
165 expected, a significant decrease in *id2b:eGFP* intensity was observed in the chamber and AVC
166 endocardium of *ift88* morphants compared to control (Figure 3C, D), suggesting that biomechanical

167 forces promote the expression of *id2b* via primary cilia. In the developing heart, a central hub for
168 mediating biomechanical cues is the Klf2 gene, which includes the *klf2a* and *klf2b* paralogues in
169 zebrafish^{3, 4, 5, 38, 40}. Previous studies in mammals and zebrafish have highlighted the essential role of
170 Klf2 transcription factor activity in cardiac valve and myocardial wall formation^{3, 40}. As a flow-
171 responsive gene, *klf2a* expression has been observed throughout the entire endocardium, evidenced by
172 mRNA expression and transgenic studies^{3, 4}. Interestingly, *in situ* hybridization on 48 and 72 hpf *klf2a*^{-/-}
173 and *klf2b*^{-/-} embryos unveiled a drastic decrease in *id2b* expression compared with wild-type zebrafish
174 (Figure 3E), supporting the notion that *klf2*-mediated biomechanical signaling is essential for activating
175 *id2b* expression.

176 Given that *id2b* has been reported as a target gene of bone morphogenetic protein (BMP)
177 signaling, we explored whether BMP also played a role in regulating *id2b* expression. To this end, we
178 knocked down *bmp2b*, *bmp4*, and *bmp7a* in 1-cell stage embryos. Live imaging at 24 hpf revealed a
179 significant reduction in *id2b:eGFP* fluorescence signal in morpholino-injected hearts compared to
180 controls (Figure 3-figure supplement 1A, B), suggesting that *id2b* is a target gene of BMP signaling
181 during early embryonic development. Similarly, treatment with the BMP inhibitor Dorsomorphin from
182 10 to 24 hpf resulted in a marked decrease in *id2b:eGFP* signal (Figure 3-figure supplement 1C, D).
183 Considering that heartbeats in zebrafish commence at approximately 22 hpf, we treated embryos with
184 Dorsomorphin from 24 to 48 hpf or from 36 to 60 hpf. While the number of endocardial cells was
185 slightly reduced upon Dorsomorphin exposure as previously reported⁷, surprisingly, quantification of
186 the average *id2b:eGFP* fluorescence intensity in individual endocardial cells revealed no significant
187 differences between Dorsomorphin and DMSO-treated controls (Figure 3-figure supplement 1C, D).

188 We further visualized BMP activity using the *BRE:d2GFP* reporter line. Confocal images
189 revealed strong fluorescence in the myocardium at 72 hpf, with minimal signal present in the
190 endocardium except for the AVC endothelium (Figure 3-figure supplement 1E). Moreover, after
191 tricaine treatment, endocardial *BRE:d2GFP* slightly increased (Figure 3-figure supplement 1E), as
192 opposed to the reduced *id2b:eGFP* signal (Figure 3A, B). Likewise, endocardial *BRE:d2GFP* intensity
193 was barely affected after completely blocking contraction with *tnnt2a* MO injection (Figure 3-figure
194 supplement 1E). These observations align with previous work using pSmad-1/5/8 as a readout of BMP

195 activity, indicating that endocardial BMP signaling is independent of blood flow⁷. Collectively, these
196 results suggest that *id2b* expression is regulated by both BMP and biomechanical signaling, with the
197 relative contribution of each pathway varying across developmental stages.

198

199 **Compromised AV valve formation in *id2b* mutants**

200 To investigate the role of the contractility-*id2b* axis in zebrafish heart development, we generated a
201 loss-of-function mutant line using CRISPR/Cas9. A pair of sgRNAs designed to target exon 1 was
202 injected with zCas9 protein into 1-cell-stage embryos. Consequently, we identified a mutant allele with
203 a 157 bp truncation, leading to the generation of a premature stop codon (Figure 4A, left). In *id2b*
204 mutants (*id2b*^{-/-}), the expression levels of *id2b* were significantly decreased, while *id2a* expression
205 levels were increased compared to *id2b*^{+/+} siblings (Figure 4A, right). The overall morphology of *id2b*^{-/-}
206 remained unaltered at 72 and 96 hpf (Figure 4B). However, *id2b*^{-/-} zebrafish experienced early lethality
207 starting around 31 weeks post-fertilization (Figure 4C). Strikingly, pericardial edema was observed in
208 20% (9/45) of adult *id2b*^{-/-} zebrafish (Figure 4D, top). Upon dissecting hearts from these *id2b*^{-/-}
209 zebrafish, a prominent enlargement in the atrium with a smaller ventricle was detected (Figure 4D,
210 bottom), which has been characterized as cardiomyopathy in zebrafish^{41, 42}. Histological analysis
211 further revealed malformation in the AV valves of these *id2b*^{-/-} mutants compared to controls (Figure
212 4E, right). Specifically, we noted that the superior and inferior leaflets were significantly thinner,
213 comprising only 1-2 layer of cells in *id2b*^{-/-} zebrafish with an enlarged atrium. This was in sharp
214 contrast to *id2b*^{+/+} zebrafish, which exhibited multilayers of cells (Figure 4E, left). Subsequent
215 examination of the remaining 80% of *id2b*^{-/-} zebrafish (36/45) that did not display prominent pericardial
216 edema also revealed AV valve malformation, albeit to a lesser extent (Figure 4E, middle).

217 To further interrogate the effect of *id2b* inactivation on AV valve formation and function, we
218 analyzed the number of AVC endothelial cells using *kdrl:nucGFP*. At 96 hpf, a reduced number of
219 *kdrl:nucGFP*⁺ cells was detected in the AVC region of *id2b*^{-/-} embryos compared with *id2b*^{+/+} (Figure
220 4-figure supplement 1A, B). In contrast, the number of atrial and ventricular endocardial cells did not
221 differ between *id2b*^{-/-} and *id2b*^{+/+} (Figure 4-figure supplement 1C, D). Subsequently, we assessed
222 hemodynamic flow by conducting time-lapse imaging of red blood cells labelled by *gata1:dsred*.

223 Surprisingly, the pattern of hemodynamics was largely preserved in *id2b*^{-/-} embryos compared to
224 *id2b*^{+/+} siblings at 96 hpf (Figure 4-figure supplement 1E, Video 1, 2), suggesting that the reduced
225 number of endocardial cells in the AVC region was not sufficient to induce functional defects.
226 Additionally, we performed echocardiography to analyze blood flow in adult zebrafish as previously
227 described⁴³. In *id2b*^{-/-} hearts, prominent retrograde blood flow was detected in the AVC region (8/13)
228 (Figure 4G), while unidirectional blood flow was observed in *id2b*^{+/+} (10/10) (Figure 4F).
229 Quantification analysis showed ~32% retrograde blood flow in *id2b*^{-/-}, compared to 0% in *id2b*^{+/+}
230 zebrafish (Figure 4H). Consistently, the superior and inferior leaflets were much thinner in *id2b*^{-/-}
231 exhibiting retrograde flow compared with control fish (Figure 4-figure supplement 1F). Overall, these
232 histological and functional analyses indicate that *id2b* deletion leads to progressive defects in AV valve
233 morphology and hemodynamic flow.

234

235 ***id2b* deletion perturbs calcium signaling and contractile function in the myocardium**

236 Although similar defects in AV valve formation have been reported in both *klf2a* and *nfatc1* mutants,
237 they do not display noticeable pericardial edema at the adult stage, nor do they experience early
238 lethality^{3, 38, 40, 43, 44}. Therefore, we sought to investigate whether other cardiac properties have also been
239 affected by *id2b* loss-of-function. To this end, we employed RNA-seq analysis on purified embryonic
240 *id2b*^{-/-} and *id2b*^{+/+} hearts (Figure 5-figure supplement 1). As expected, enrichment analysis of DEGs
241 demonstrated that the top-ranked anatomical structures affected by *id2b* deletion included the heart
242 valve, the compact layer of ventricle, and the atrioventricular canal (Figure 5-figure supplement 1A).
243 Interestingly, *id2b* inactivation also impacted phenotypes such as cardiac muscle contraction and heart
244 contraction (Figure 5-figure supplement 1B). Therefore, we investigated cardiac contractile function
245 through time-lapse imaging on the *myl7:mCherry* background. At 72 and 120 hpf, a significant
246 decrease in cardiac function was observed in *id2b*^{-/-} compared with *id2b*^{+/+} (Figure 5A-C, Figure 5-
247 figure supplement 2A-C). Similarly, echocardiography analysis showed that the contractile function in
248 adult *id2b*^{-/-} heart was dramatically reduced compared with age-matched *id2b*^{+/+} (Figure 5D, F). These
249 functional defects in *id2b*-deleted hearts could not be attributed to differences in cardiomyocyte
250 number, as we counted cardiomyocytes using the *myl7:H2A-mCherry* line and found no apparent

251 changes between *id2b*^{-/-} and *id2b*^{+/+} embryos at 72 and 120 hpf (Figure 5-figure supplement 2D, E).
252 Similarly, *id2b*^{-/-} also developed regular trabecular structures (Figure 5-figure supplement 2F). Through
253 α -actinin immunostaining, we observed similar sarcomeric structures in *id2b*^{-/-} and control
254 cardiomyocytes at 72 hpf and adult stages (115 dpf) (Figure 5-figure supplement 2G), corroborating
255 that the reduced contractility in *id2b*-depleted heart was independent of structural defects.

256 The key functional unit that transmits electrical activity to contractile function is E-C coupling.
257 Because *id2b*^{-/-} displayed reduced cardiac function, we visualized calcium signaling in the developing
258 heart using *actb2:GCaMP6s* zebrafish (Figure 5G). Compared to *id2b*^{+/+} controls, *id2b*^{-/-} embryos
259 exhibited markedly decreased calcium transient amplitude (Figure 5H), consistent with compromised
260 calcium handling observed in other zebrafish cardiomyopathy models^{42, 45}. In cardiomyocyte, the entry
261 of extracellular calcium is mainly mediated through the LTCC. As previously reported, a defect in
262 zebrafish LTCC pore forming α 1 subunit *cacna1c* leads to compromised cardiac function²⁷. We
263 collected hearts from 72 hpf and 5 months post-fertilization (mpf) zebrafish and detected
264 downregulated *cacna1c* in *id2b*^{-/-} compared to *id2b*^{+/+} (Figure 5I). In addition, we measured cardiac
265 action potential using intracellular recording⁴⁶. Compared to *id2b*^{+/+} zebrafish, the duration of the
266 action potential in *id2b*^{-/-} was significantly shorter (Figure 5J, K), consistent with the decreased
267 expression level of *cacna1c*. Together, these data indicate that *id2b* loss-of-function leads to
268 compromised calcium signaling and cardiac contractile function.

269

270 **Reduced expression of *nrg1* mediates the compromised contractility in *id2b*^{-/-}**

271 Because the deficiency of *id2b* in the endocardium disrupted the function of myocardium, we
272 speculated that the crosstalk between these two types of cells was affected in *id2b*^{-/-}. Interestingly,
273 comparing the differentially expressed genes in embryonic *id2b*^{-/-} and *id2b*^{+/+} hearts identified a
274 significant reduction in the expression level of *Nrg1*, a key mitogen regulating the intra-organ
275 communications between endocardial cells and cardiomyocytes (Figure 6A). Remarkably, analysis of a
276 zebrafish single-cell database⁴⁷ revealed enriched expression of *nrg1* in endocardial cells (Figure 6-
277 figure supplement 1). However, attempts to detect *nrg1* expression through in situ hybridization were
278 unsuccessful, likely due to its low abundance in the heart. Alternatively, qRT-PCR analysis of purified

279 120 hpf embryonic hearts validated decreased *nrg1* levels in *id2b*^{-/-} compared to control (Figure 6B).

280 Previous studies have demonstrated that perturbations in Nrg-ErbB2 signaling, as seen in zebrafish
281 *erbb2* mutants, result in dysfunctional cardiac contractility²⁰. Consistently, a decrease in heart rate was
282 observed in embryos treated with the *erbb2* inhibitor AG1478 (Figure 6C).

283 Remarkably, injecting *nrg1* mRNA at the 1-cell stage not only rescued the reduced expression of
284 *cacna1c* in *id2b*^{-/-} hearts (Figure 6D) but also restored the diminished heart rate (Figure 6E). This is
285 consistent with prior study showing that Nrg1 administration can restore LTCC expression and calcium
286 current in failing mammalian cardiomyocytes⁴⁸. Overall, our data suggest that endocardial *id2b*
287 promotes Nrg1 synthesis, thereby enhancing cardiomyocyte contractile function.

288

289 **Id2b interacts with Tcf3b to limit its repressor activity on *nrg1* expression**

290 We further interrogated how *id2b* promotes the expression of *nrg1*. As a HLH factor lacking a DNA
291 binding motif, Id2b has been reported to form a heterodimer with Tcf3b to limits its function as a
292 potent transcriptional repressor⁴⁹. Notably, we detected expression of *tcf3b* in endocardial cells by
293 analyzing a zebrafish single-cell database⁴⁷ (Figure 7-figure supplement 1). To determine if zebrafish
294 Id2b and Tcf3b interact *in vitro*, Flag-*id2b* and HA-*tcf3b* were co-expressed in HEK293 cells. Co-
295 immunoprecipitation analysis confirmed their interaction (Figure 7A), although whether they interact *in*
296 *vivo* remains to be further investigated. Subsequently, qRT-PCR analysis on purified 120 hpf
297 embryonic hearts revealed a significant increase in the expression of *socs3b* and *socs1a*, target genes of
298 *tcf3b*, in *id2b*^{-/-} compared to *id2b*^{+/+} (Figure 7B). This suggests an elevation in *tcf3b* activity associated
299 with the loss of *id2b* function. Notably, the expression levels of *tcf3a* and *tcf3b* remained consistent
300 between *id2b*^{-/-} and *id2b*^{+/+} hearts (Figure 7B).

301 To understand how the altered interaction between *id2b* and *tcf3b* influences *nrg1* expression, we
302 analyzed the promoter region of zebrafish *nrg1* using JASPAR and identified two potential *tcf3b*
303 binding sites (Figure 7C). Subsequently, a DNA fragment containing the zebrafish *nrg1* promoter
304 region was subcloned into a vector carrying the luciferase reporter gene. Co-injection of this construct
305 with *tcf3b* mRNA into 1-cell stage embryos resulted in a significant decrease in luciferase signal.
306 Conversely, co-injection with a previously characterized *tcf3b* morpholino led to enhanced luciferase

307 intensity (Figure 7D). These results suggest a possible mechanism by which Tcf3b represses *nrg1*
308 expression in zebrafish.

309 Lastly, injecting *tcf3b* morpholino into *id2b*^{-/-} embryos was performed to assess whether
310 attenuating the overactive *tcf3b* in *id2b*^{-/-} could restore the expression level of *nrg1*. qRT-PCR analysis
311 of purified 72 hpf hearts revealed a partial restoration of the diminished *nrg1* expression in *id2b*^{-/-} upon
312 *tcf3b* inhibition (Figure 7E). Taken together, our results indicate that biomechanical cues activate
313 endocardial Id2b expression, leading to its interaction with Tcf3b to alleviate repression on the
314 *nrg1* promoter. Consequently, the depletion of *id2b* unleashes Tcf3b's repressor activity, leading to a
315 reduction in *nrg1* expression, which further acts through *erbb2* to regulate cardiomyocyte function
316 (Figure 7F).

317

318 **Discussion**

319 Biomechanical forces play an essential role in regulating the patterning and function of the heart. At
320 AVC, oscillatory flow promotes the expression of *klf2a* and *nfatc1* to modulate valve morphogenesis.
321 In chamber endocardium, blood flow induces endocardial cells to acquire distinct cell morphology.
322 However, it still lacks a systematic analysis of the transcriptome underlying compromised heartbeats.
323 In the present study, we analyzed embryonic zebrafish hearts without contractility and identified genes
324 that are regulated by biomechanical forces. Specifically, our results unveiled the endocardial-specific
325 expression of *id2b*, which was tightly regulated by flow-sensitive primary cilia-*klf2* axis. Genetic
326 deletion of *id2b* resulted in compromised valve formation and progressive atrium enlargement. In
327 addition, a reduction in heart rate and contractile force was observed in *id2b*^{-/-}, owing to decreased
328 expression of LTCC α 1 subunit *cacna1c*. Mechanistically, *id2b* interacts with bHLH transcription
329 factor *tcf3b* to limit its repressor activity. Hence genetic deletion of *id2b* unleashes *tcf3b* activity, which
330 further represses endocardial *nrg1* expression. As a result, Injection of *nrg1* mRNA partially rescues
331 the phenotype of *id2b* deletion. Overall, our findings identify *id2b* as a novel mediator that regulate the
332 interplay between endocardium and myocardium during heart development.

333 In mammals, the deletion of *Id2* leads to malformations in the arterial and venous poles of the
334 heart, as well as affects AV valve morphogenesis^{31, 33}. Interestingly, approximately 20% perinatal

335 lethality is reported in *Id2* knockout mice, exhibiting AV septal defects and membranous ventricular
336 septal defects³³. Remarkably, pericardial edema is evident in 20% of adult *id2b*^{-/-} zebrafish, with a
337 prominent enlargement of the atrium. The superior and inferior leaflets of AV valves in *id2b*^{-/-} mutants
338 are significantly thinner compared to the control. Therefore, our results suggest that *id2b* may play a
339 similar role in regulating AV valve formation in zebrafish as its mammalian orthologue *Id2*. It is
340 proposed that the loss of *Id2* in mice results in compromised endocardial proliferation and aberrant
341 endothelial-to mesenchymal transformation (EMT), collectively leading to defective valve
342 morphogenesis³³. Nevertheless, the mechanism by which *id2b* loss-of-function causes a reduction in
343 leaflet thickness in zebrafish remains to be determined in future studies.

344 *id2b* has been recognized as a target gene of the BMP signaling pathway. As expected,
345 knockdown of *bmp2b*, *bmp4*, and *bmp7a* at 1-cell stage confirms that endocardial *id2b* expression is
346 controlled by BMP activity during early embryonic development. Surprisingly, treatment with the BMP
347 inhibitor Dorsomorphin at 24 and 36 hpf, when cardiac contractions have already initiated, fails to alter
348 *id2b* expression in the endocardium, suggesting that BMP is dispensable for *id2b* activation at these
349 stages. Instead, endocardial *id2b* expression is reduced upon loss-of-function of *klf2a*, *klf2b*, and *ift88*,
350 suggesting an essential role of the primary cilia-*klf2* axis in mediating *id2b* activation. In endocardial
351 cells, Trp, Piezo, and ATP-dependent P2X/P2Y channels^{4, 6, 50, 51} are well-established sensors for
352 biomechanical stimulation. The activation of these channels further promotes the activities of Klf2 and
353 Nfatc1 to drive heart development and valvulogenesis. However, whether these channels are also
354 required for the activation of *id2b* warrants further investigation.

355 The Nrg-ErbB signaling plays an essential role in regulating heart morphogenesis and function. In
356 the mammalian heart, the genetic deletion of Nrg1 or Erbb2 results in severely perturbed cardiac
357 trabeculae formation^{13, 14, 15}. Zebrafish *erbb2* mutants exhibit a similar defect in cardiomyocyte
358 proliferation and trabeculation²⁰. Interestingly, *nrg1* mutant zebrafish display grossly normal cardiac
359 structure during early embryonic devolpment^{21, 52}. Nevertheless, zebrafish *nrg2a* loss-of-function leads
360 to defective trabeculae formation, suggesting that *nrg2a* is the predominant ligand secreted from
361 endocardium, promoting ventricular morphogenesis²¹. In the adult stage, perivascular cells⁵³ or
362 regulatory T cells⁵⁴-derived *nrg1* promotes cardiomyocyte proliferation during heart regeneration.

363 Hence, the specific ligand/receptor and the spatiotemporal regulation of the Nrg-ErbB axis appear to be
364 more complicated in both embryonic and adult zebrafish. Interestingly, the *nrg1* mutant heart exhibits a
365 defect in cardiac nerve expansion and heart maturation at the juvenile stage despite normal cardiac
366 structure formation⁵², suggesting its potential role in regulating cardiac function. Our findings
367 demonstrate that the expression of *nrg1* in embryonic endocardial cells is influenced by biomechanical
368 cues and *id2b* activity. This signaling axis is essential for coordinating endocardium-myocardium
369 interaction and establishing proper cardiac function.

370

371 Materials and methods

372 **Zebrafish handling and lines**

373 All animal procedures were approved by the Animal Care and Use Committee of the Zhejiang
374 University School of Medicine (application no.29296). Embryonic and adult fish were raised and
375 maintained under standard conditions at 28 °C on a 14/10 hour day/night cycle. The following
376 zebrafish lines were used in this study: *Tg(myl7:mCherry)^{sd7}*⁵⁵, *Tg(myl7:H2A-mCherry)^{sd12}*⁵⁶,
377 *Tg(kdrl:mCherry)^{S896}*⁵⁷, *Tg(kdrl:nucGFP)^{y7}*⁵⁸, *Tg(BRE:d2GFP)^{mw30}*⁵⁹, and *Tg(actb2:Gcamp6s)*. To
378 generate the *id2b* mutant, two short guide RNAs (sgRNAs) targeting exon 1 were generated using the
379 MAXIscript T7 transcription kit (ambion, AM1314). The sgRNAs were as follows: sgRNA1: 5' -
380 GAAGGCAGTCAGTCCGGTG - 3'; sgRNA2: 5' - GAACCGGAGCGTGAGTAAGA - 3'. The two
381 sgRNAs, along with zCas9 protein, were co-injected into one-cell stage embryos. Embryos were raised
382 to adulthood and crossed to wild-type zebrafish to obtain F₁ progenies. Through PCR analysis, a
383 mutant line with a 157 bp truncation was identified.

384 The knock-in *id2b:eGFP* line was generated using a previously reported method³⁶. Briefly, three
385 sgRNAs were designed to target the intron of *id2b* (sgRNA1: 5' - GAGACAAATATCTACTAGTG - 3';
386 sgRNA2: 5' - GTTGAACACATGACGATATT - 3'; sgRNA3: 5' - GCACAACTTAGATTCAAGT -
387 3'). Co-injection of each individual sgRNA with zCas9 protein into one-cell stage zebrafish embryos
388 yielded varying cleavage efficiency. Since sgRNA2 displayed the highest gene editing efficiency, it
389 was selected for subsequent studies. Next, a donor plasmid containing the sgRNA targeting sequence of
390 the intron, exon 2 of *id2b*, and P2A-eGFP was generated. Co-injection of sgRNA, donor plasmid, and

391 zCas9 protein into one-cell stage embryos led to concurrent cleavage of the sgRNA targeting sites in
392 both the zebrafish genome and the donor plasmid (Figure 2A). Accordingly, eGFP fluorescence was
393 observed in injected 24 hpf zebrafish embryos, indicating the incorporation of the donor. The insertion
394 of the *id2b*-p2A-eGFP donor into the genome was confirmed by PCR analysis with primers
395 recognizing target site or donor sequences, respectively (Figure 2A). Embryos with mosaic eGFP
396 expression were raised to adulthood and crossed with wild-type zebrafish to obtain F₁ progenies.
397 Overall, two founders were identified. The junction region of the F₁ embryos was sequenced to
398 determine the integration sites. Although the two founders had slightly different integration sites in the
399 intron, the expression pattern and fluorescence intensity of eGFP were indistinguishable between the
400 two lines.

401

402 **Morpholinos**

403 All morpholinos (Gene Tools) used in this study have been previously characterized. *tnnt2a* MO (5' -
404 CATGTTGCTCTGATCTGACACGCA - 3')³⁵; *ift88* MO (5' -
405 CTGGGACAAGATGCACATTCTCCAT - 3')³⁸; *bmp2b* MO (5' -
406 ACCACGGCGACCATGATCAGTCAGT - 3')⁶⁰; *bmp4* MO (5' -
407 AACAGTCCATGTTGTCGAGAGGTG - 3')⁶¹; *bmp7a* MO (5' -
408 GCACTGGAACATTTTAGAGTCAT - 3')⁶⁰; *tcf3b* MO (5' -
409 CGCCTCCGTTAACAGCTGCGGCATGTT - 3')⁶². For each morpholino, a 1 nL solution was injected
410 into one-cell stage embryos at the specified concentrations: 0.5 μ g/ μ L *tnnt2a* MO, 2 μ g/ μ L *ift88* MO,
411 0.5 μ g/ μ L *bmp2b* MO, 2 μ g/ μ L *bmp4* MO, 4 μ g/ μ L *bmp7a* MO, and 1 μ g/ μ L *tcf3b* MO.

412

413 **Small molecules treatment**

414 To inhibit cardiac contraction, embryos were incubated in 1 mg/mL tricaine (Sigma, A5040) or 10 μ M
415 blebbistatin (MedChemExpress, HY13441) PTU-added egg water for 12-24 hours. In order to inhibit
416 *erbb2* signaling pathway, 10 μ M AG1478 (Sigma, 658552) were used to treat 4 dpf larvae. To inhibit
417 BMP signaling pathway, 10 μ M Dorsomorphin (Sigma, P5499) was used to treat 10, 24, and 36 hpf
418 embryos.

419

420 ***In situ* hybridization and RNAscope**

421 Whole mount *in situ* hybridization was performed as previously described⁴⁶. The probes were
422 synthesized using the DIG RNA labeling kit (Roche). The primers used for obtaining the *id2b* probe
423 template were as follows: Forward 5' - ATGAAGGCAGTCAGTCCGGTGAGGT - 3'; Reverse 5' -
424 TCAACGAGACAGGGCTATGAGGTCA - 3'. RNAscope analysis was performed using the probe Dr-
425 *id2b* (Advanced Cell Diagnostics, 517541) and the Multiplex Fluorescent Detection Kit version 2
426 (Advanced Cell Diagnostics, 323100) as previously described¹⁹.

427

428 **Embryonic heart isolation and RNA-seq analysis**

429 Hearts were isolated from embryos carrying the *Tg(myl7:mCherry)* transgene following an established
430 protocol³⁴. A minimum of 1,000 hearts for each experimental group were manually collected under a
431 Leica M165FC fluorescence stereomicroscope and transferred into ice-cold PBS buffer. After
432 centrifugation at 12,000 g for 2 min at 4°C, the supernatant was removed, and hearts were lysed in
433 cold Trizol buffer (Ambion, 15596). Total RNA was extracted for subsequent quantitative real-time
434 PCR or RNA-seq analysis.

435 Duplicate samples from control and Tricaine-treated embryonic hearts underwent RNA-seq. Raw
436 sequencing reads were preprocessed to remove adapters and filter low-quality reads. Clean sequencing
437 reads were then mapped to the zebrafish reference⁶³ using STAR with default parameters⁶⁴.
438 Subsequently, gene quantification was carried out with RSEM⁶⁵. The gene expected count was applied
439 to identify differential expression genes (DEGs), retaining only genes with counts per million (CPM) of
440 10 in at least two samples. DESeq2⁶⁶ was employed for differential expression analysis, and *P*-values
441 were adjusted using BH correction. DEGs were defined as those with $|\log_2 \text{fold change}| \geq 0.585$ and an
442 adjusted *P*-value < 0.1 . The primary focus was on genes related to transcription regulation, and gene
443 enrichment analysis was conducted using ClusterProfiler⁶⁷. To analyze DEGs in *id2b*^{-/-} and control
444 embryonic hearts, we performed enrichment analysis with the R package EnrichR, dissecting the
445 potential anatomy expression pattern and underlying phenotypes. We mainly focused on genes with the
446 heart related phenotypes, including cardiac muscle tissue development, cardiomyocyte differentiation,

447 heart morphogenesis and cardiac chamber development. All the analysis on identifying DEGs were
448 batch corrected.

449

450 **Quantitative real-time PCR analysis**

451 After extraction from isolated embryonic hearts, 50 ng-1 ug of mRNA was reverse transcribed to
452 cDNA using the PrimeScript RT Master Mix kit (Takara, RR036A). Real-time PCR was performed
453 using the TB Green Premix Ex Taq kit (Takara, RR420A) on the Roche LightCycler 480. Expression
454 levels of the target genes were normalized to *actb1* as an internal control. All experiments were
455 repeated three times. The following primer sets were used: *id2b* Forward 5' -
456 ACCTTCAGATCGCACTGGAC - 3', Reverse 5' - CTCCACGACCGAAACACCATT - 3'; *nrg1*
457 Forward 5' - CTGCATCATGGCTGAGGTGA - 3', Reverse 5' - TTAACCTCGGTTCCGCTTGC - 3';
458 *cacnαlc* Forward 5' - GCCCTTATTGTAGTGGGTAGTG - 3', Reverse 5' -
459 AGTGTGTTGGAGGCCATTG - 3'; *tcf3a* Forward 5' - CCTCCGGTCATGAGCAACTT - 3',
460 Reverse 5' - TTTCCCATGATGCCTTCGCT - 3'; *tcf3b* Forward 5' - CCTTTAATGCGCCGTGCTTC -
461 3', Reverse 5' - GCGTTCTCCATTCCCTGTACCA - 3'; *socs1a* Forward 5' -
462 TCAGCCTGACAGGAAGCAAG - 3', Reverse 5' - GTTGCACAGGGATGCAGTCG - 3'; *socs3b*
463 Forward 5' - GGGACAGTGAGTCCTCCAA - 3', Reverse 5' - ATGGGAGCATCGTACTCCTG - 3';
464 *actb1* Forward 5' - ACCACGGCCGAAAGAGAAAT - 3', Reverse 5' -
465 GCAAGATTCCATACCCAGGA - 3'.

466

467 **Co-immunoprecipitation (Co-IP) and western blot**

468 Zebrafish *tcf3b* and *id2b* were overexpressed in 293T cell for 48 hours. The transfected cells were then
469 collected and lysed using IP lysis buffer (Sangon Biotech, C500035) containing protease and
470 phosphatase inhibitors (Sangon Biotech, C510009, C500017). For the IP experiment, anti-Flag
471 antibody (Cell Signaling Technology, 14793, 1:100) and IgG antibody (ABclonal, AC005, 1:100) was
472 incubated with cell lysates overnight at 4°C. Pretreated magnetic beads were bound with the antigen-
473 antibody complex for 4 hours at 4°C, followed by washing with IP lysis buffer three times. For western
474 blot, samples were denatured at 95°C for 10 min, separated on a 5%-12% gradient gel. Proteins were

475 then transferred to a PVDF membrane (Sigma, ISEQ00010). The membrane was blocked for 1 hour
476 with 5% nonfat milk or 5% BSA (Sangon Biotech) dissolved in TBST and then incubated with primary
477 antibodies (anti-FLAG, Cell Signaling Technology, 14793, 1:1000; anti-HA, Sigma, H3663, 1:1000)
478 overnight at 4°C, followed by three times 10-min TBST washes. HRP-conjugated secondary antibodies
479 (Invitrogen, 31430, 31460) were incubated for 1 hour at room temperature, followed by three times 10-
480 min TBST washes. The detection of immunoreactive bands was performed with a chemiluminescent
481 substrate (Thermo Scientific, 34577) and imaged using the Azure Biosystems 400.

482

483 **Immunofluorescence**

484 For immunofluorescence on adult zebrafish hearts, we fixed the hearts overnight in 4%
485 paraformaldehyde at 4°C, followed by equilibration through 15% and 30% sucrose in PBS solution.
486 The hearts were embedded and frozen in O.C.T. compound (Epredia, 6502), and 10 µm thick
487 cryosections were prepared using a CryoStar NX50 cryostat. Immunofluorescence experiments were
488 performed as previously described⁶⁸. For immunofluorescence on embryonic hearts, embryos were
489 fixed overnight in 4% paraformaldehyde at 4°C, washed twice quickly in 100% methanol, and then
490 dehydrated overnight at -20°C in 100% methanol. Subsequently, rehydration was performed through a
491 methanol gradient (100%, 75%, 50%, 25%, 10 min each), followed by three times washes in PBST (1%
492 PBS/0.1% Triton-X100, 10 min each). The embryos were treated with 10 µg/mL proteinase K diluted
493 in PBST for 20 min at room temperature, re-fixed in 4% paraformaldehyde for 20 min, washed in
494 PBST, and immersed in blocking solution (PBST/1% BSA/2% goat serum) for 1 hour at room
495 temperature. Following this, the embryos were incubated in the primary antibody diluted in blocking
496 solution overnight at 4°C. After washing in PBST, they were incubated in the secondary antibody
497 (1:200) for 2 hours at room temperature. The primary antibody used was: Anti-GFP antibody (Santa
498 Cruz Biotechnology, sc9996, 1:200), anti-α-actinin antibody (Sigma, A7811, 1:200). The secondary
499 antibody used was: Anti-mouse IgG-Alexa 488 (Invitrogen, A11011, 1:400). DAPI was used to stain
500 cell nuclei.

501

502 **Cardiac function analysis**

503 To assess cardiac function in embryonic hearts, embryos were incubated in 0.16 mg/mL tricaine
504 (Sigma, A5040) and embedded in 1% low melting agarose. Heart contractions were recorded for 1 min
505 using a Nikon Ti2 microscope at a rate of 25 frames per second. Fractional shortening and heart rate
506 were measured as described previously⁴⁶. For cardiac contractile functions in adulthood, zebrafish were
507 fixed on a sponge soaked with system water with the belly facing up and echocardiography was
508 performed⁶⁹. Videos and images in color Doppler mode and B-mode were obtained using the
509 Vevo1100 imaging system at a frequency of 50 MHz. Nikon NIS elements AR analysis and Image J
510 software were employed for data extraction. To evaluate AV valve function, the ratio of inflow and
511 outflow area in the same frame was quantified⁴³.

512

513 **Calcium imaging**

514 At 120 hpf, embryos were treated with 10 mM 2,3-butanedione monoxime (BDM, Sigma, B0753) and
515 mounted in 1% low melting agarose. Time-lapse images were acquired using a Nikon Ti2 microscope
516 at a rate of 50 frames per second. Data were analyzed using Nikon NIS elements AR analysis software.

517

518 **Intracellular action potential recording**

519 Electrophysiology study was performed on adult zebrafish ventricles as previously described⁴⁶. Briefly,
520 hearts were mounted in a chamber containing Tyrode's solution: NaCl 150 mM, KCl 5.4 mM, MgSO₄
521 1.5 mM, NaH₂PO₄ 0.4 mM, CaCl₂ 2 mM, Glucose 10 mM, HEPES 10 mM, pH was adjusted to 7.4.
522 Glass pipettes with tip resistance 30-40 MΩ were filled with 3M KCl solution. Intracellular action
523 potentials were recorded using an HEKA amplifier and pClamp10.3 software (Molecular Devices).

524

525 **Histology and HE staining**

526 Adult hearts were dissected and fixed overnight at 4°C in 4% PFA, followed by three times PBS
527 washes. Dehydration involved an ethanol gradient (70%, 80%, 95%, 100%, 100%, 30 min each),
528 followed by three soaks in dimethylbenzene at 65°C, before embedding in paraffin. Sections of 5 μm
529 thickness were prepared using the Leica RM2235 manual rotary microtome for hematoxylin and eosin
530 (HE) staining.

531

532 **Injection of mRNA**

533 The embryonic zebrafish cDNA library was used as a template to amplify the *nrg1* and *tcf3b* fragment,
534 which was then subcloned into the pCS2 vector. The vector was linearized using Not I restriction
535 endonuclease, and mRNA was transcribed in vitro using the mRNA transcription kit (Ambion,
536 AM1340). 100 pg of purified mRNA was injected into one-cell stage embryos.

537

538 **Luciferase assay**

539 The LCR (luciferase reporter) plasmid was generated by subcloning the 5' UTR of *nrg1* into the
540 upstream region of renilla luciferase on the psiCheck2 plasmid. Following construction, 25 pg of the
541 LCR plasmid was co-injected with either 100 pg of *tcf3b* mRNA or 1 ng of *tcf3b* MO into 1-cell stage
542 zebrafish embryos. At 48 hpf, twenty embryos were gathered into one group and fully lysed.
543 Subsequently, firefly and renilla luciferase activities were sequentially measured using a microplate
544 reader with the dual luciferase reporter gene assay kit (Yeasen, 11402ES60), according to the
545 manufacturer's instructions. The experiment was independently replicated three times. The relative
546 renilla luciferase activity, normalized by firefly luciferase activity, served as an indicator of *nrg1*
547 expression level under the influence of *tcf3b* overexpression or reduction.

548

549 **Image processing and statistical analysis**

550 Whole mount *in situ* hybridization images were captured with a Leica M165FC stereomicroscope. Live
551 imaging of zebrafish embryos involved mounting anesthetized embryos in 1% low melting agarose
552 (Sangon Biotech, A600015) and manually oriented them for optimal visual access to the heart.
553 Confocal images were obtained with a Nikon Ti2 confocal microscope. Fluorescence intensity and cell
554 number counting were processed using Nikon NIS Elements AR analysis and Image J software.
555 Statistical analysis was performed using Graphpad prism 8 software. No statistical methods were used
556 to predetermine sample size. Unpaired two-tailed Student's t-tests was used to determine statistical
557 significance. Data are presented as mean \pm s.e.m, $^*P < 0.05$ was considered to be statistically significant.

558

559 **Acknowledgements:** We thank Dr. Pengfei Xu for providing morpholinos. We also thank Dr. Jia Li for
560 the support in generating the *id2b:eGFP* line.

561

562 **Author Contributions:** Shuo Chen and Peidong Han contributed to the study design. Shuo Chen,
563 Jinxiu Liang, Weijia Zhang, Peijun Jiang, Wenyuan Wang, Xiaoying Chen and Yuanhong Zhou
564 conducted experiments. Jie Yin analyzed RNA-sequencing data. Peng Xia, Fan Yang, Ying Gu, and
565 Ruilin Zhang provided key reagents and analytic tool. Shuo Chen, Jinxiu Liang, Jie Yin, and Peidong
566 Han prepared the manuscript.

567

568 **Source of Funding:** This work was supported by the National Natural Science Foundation of China
569 (32170823, 92468104, 31871462), and the National Key R&D Program of China (2023YFA1800600).

570

571 **Disclosures:** The authors declare that they have no conflict of interest.

572

573 **Data availability:** The authors declare that all data supporting the findings in the paper are available in
574 the article and the supplementary files. RNA-seq data have been deposited in GEO under accession
575 number GSE295737 and GSE295738.

576

577 **References**

- 578 1. Duchemin AL, Vignes H, Vermot J, Chow R. Mechanotransduction in cardiovascular
579 morphogenesis and tissue engineering. *Curr Opin Genet Dev* **57**, 106-116 (2019).
- 580
- 581 2. Sidhwani P, Yelon D. Fluid forces shape the embryonic heart: Insights from zebrafish.
582 *Curr Top Dev Biol* **132**, 395-416 (2019).
- 583
- 584 3. Vermot J, *et al.* Reversing blood flows act through klf2a to ensure normal
585 valvulogenesis in the developing heart. *PLoS Biol* **7**, e1000246 (2009).
- 586
- 587 4. Heckel E, *et al.* Oscillatory Flow Modulates Mechanosensitive klf2a Expression
588 through trpv4 and trpp2 during Heart Valve Development. *Curr Biol* **25**, 1354-1361
589 (2015).

590

591 5. Galvez-Santisteban M, *et al.* Hemodynamic-mediated endocardial signaling controls
592 in vivo myocardial reprogramming. *Elife* **8**, (2019).

593

594 6. Fukui H, *et al.* Bioelectric signaling and the control of cardiac cell identity in response
595 to mechanical forces. *Science* **374**, 351-354 (2021).

596

597 7. Dietrich AC, Lombardo VA, Veerkamp J, Priller F, Abdelilah-Seyfried S. Blood flow and
598 Bmp signaling control endocardial chamber morphogenesis. *Dev Cell* **30**, 367-377
599 (2014).

600

601 8. Sidhwani P, *et al.* Cardiac function modulates endocardial cell dynamics to shape the
602 cardiac outflow tract. *Development* **147**, (2020).

603

604 9. Staudt DW, Liu J, Thorn KS, Stuurman N, Liebling M, Stainier DY. High-resolution
605 imaging of cardiomyocyte behavior reveals two distinct steps in ventricular
606 trabeculation. *Development* **141**, 585-593 (2014).

607

608 10. Peshkovsky C, Totong R, Yelon D. Dependence of cardiac trabeculation on neuregulin
609 signaling and blood flow in zebrafish. *Dev Dyn* **240**, 446-456 (2011).

610

611 11. Auman HJ, Coleman H, Riley HE, Olale F, Tsai HJ, Yelon D. Functional modulation of
612 cardiac form through regionally confined cell shape changes. *PLoS Biol* **5**, e53 (2007).

613

614 12. Lin YF, Swinburne I, Yelon D. Multiple influences of blood flow on cardiomyocyte
615 hypertrophy in the embryonic zebrafish heart. *Dev Biol* **362**, 242-253 (2012).

616

617 13. Gassmann M, *et al.* Aberrant neural and cardiac development in mice lacking the
618 ErbB4 neuregulin receptor. *Nature* **378**, 390-394 (1995).

619

620 14. Lee KF, Simon H, Chen H, Bates B, Hung MC, Hauser C. Requirement for neuregulin
621 receptor erbB2 in neural and cardiac development. *Nature* **378**, 394-398 (1995).

622

623 15. Meyer D, Birchmeier C. Multiple essential functions of neuregulin in development.
624 *Nature* **378**, 386-390 (1995).

625

626 16. Zhang W, Liang J, Han P. Cardiac cell type-specific responses to injury and
627 contributions to heart regeneration. *Cell Regen* **10**, 4 (2021).

628

629 17. Lai D, *et al.* Neuregulin 1 sustains the gene regulatory network in both trabecular
630 and nontrabecular myocardium. *Circ Res* **107**, 715-727 (2010).

631

632 18. Rentschler S, *et al.* Neuregulin-1 promotes formation of the murine cardiac
633 conduction system. *Proc Natl Acad Sci U S A* **99**, 10464-10469 (2002).

634

635 19. Liang J, *et al.* Genetically encoded tension heterogeneity sculpts cardiac
636 trabeculation. *Sci Adv* **11**, eads2998 (2025).

637

638 20. Liu J, *et al.* A dual role for ErbB2 signaling in cardiac trabeculation. *Development* **137**,
639 3867-3875 (2010).

640

641 21. Rasouli SJ, Stainier DYR. Regulation of cardiomyocyte behavior in zebrafish
642 trabeculation by Neuregulin 2a signaling. *Nat Commun* **8**, 15281 (2017).

643

644 22. Han P, *et al.* Coordinating cardiomyocyte interactions to direct ventricular chamber
645 morphogenesis. *Nature* **534**, 700-704 (2016).

646

647 23. Guo Y, Pu WT. Cardiomyocyte Maturation: New Phase in Development. *Circ Res* **126**,
648 1086-1106 (2020).

649

650 24. Alvarez-Dominguez JR, Melton DA. Cell maturation: Hallmarks, triggers, and
651 manipulation. *Cell* **185**, 235-249 (2022).

652

653 25. Bers DM. Cardiac excitation-contraction coupling. *Nature* **415**, 198-205 (2002).

654

655 26. Xu C, *et al.* Ptpn23 Controls Cardiac T-Tubule Patterning by Promoting the Assembly
656 of Dystrophin-Glycoprotein Complex. *Circulation* **149**, 1375-1390 (2024).

657

658 27. Rottbauer W, Baker K, Wo ZG, Mohideen MA, Cantiello HF, Fishman MC. Growth and
659 function of the embryonic heart depend upon the cardiac-specific L-type calcium
660 channel alpha1 subunit. *Dev Cell* **1**, 265-275 (2001).

661

662 28. Samsa LA, Givens C, Tzima E, Stainier DY, Qian L, Liu J. Cardiac contraction activates
663 endocardial Notch signaling to modulate chamber maturation in zebrafish.
664 *Development* **142**, 4080-4091 (2015).

665

666 29. Benezra R, Davis RL, Lockshon D, Turner DL, Weintraub H. The protein Id: a negative
667 regulator of helix-loop-helix DNA binding proteins. *Cell* **61**, 49-59 (1990).

668

669 30. Wong MV, Jiang S, Palasingam P, Kolatkar PR. A divalent ion is crucial in the structure
670 and dominant-negative function of ID proteins, a class of helix-loop-helix
671 transcription regulators. *PLoS One* **7**, e48591 (2012).

672

673 31. Jongbloed MR, *et al.* Expression of Id2 in the second heart field and cardiac defects
674 in Id2 knock-out mice. *Dev Dyn* **240**, 2561-2577 (2011).

675

676 32. Moskowitz IP, *et al.* A molecular pathway including Id2, Tbx5, and Nkx2-5 required
677 for cardiac conduction system development. *Cell* **129**, 1365-1376 (2007).

678

679 33. Moskowitz IP, *et al.* Transcription factor genes Smad4 and Gata4 cooperatively
680 regulate cardiac valve development. [corrected]. *Proc Natl Acad Sci U S A* **108**, 4006-
681 4011 (2011).

682

683 34. Burns CG, MacRae CA. Purification of hearts from zebrafish embryos. *Biotechniques*
684 **40**, 274, 276, 278 passim (2006).

685

686 35. Sehnert AJ, Huq A, Weinstein BM, Walker C, Fishman M, Stainier DY. Cardiac
687 troponin T is essential in sarcomere assembly and cardiac contractility. *Nat Genet* **31**,
688 106-110 (2002).

689

690 36. Li J, Zhang BB, Ren YG, Gu SY, Xiang YH, Du JL. Intron targeting-mediated and
691 endogenous gene integrity-maintaining knockin in zebrafish using the CRISPR/Cas9
692 system. *Cell Res* **25**, 634-637 (2015).

693

694 37. Forster D, *et al.* Genetic targeting and anatomical registration of neuronal
695 populations in the zebrafish brain with a new set of BAC transgenic tools. *Sci Rep* **7**,
696 5230 (2017).

697

698 38. Li X, *et al.* Primary cilia mediate Klf2-dependant Notch activation in regenerating
699 heart. *Protein Cell* **11**, 433-445 (2020).

700

701 39. Nauli SM, Kawanabe Y, Kaminski JJ, Pearce WJ, Ingber DE, Zhou J. Endothelial cilia
702 are fluid shear sensors that regulate calcium signaling and nitric oxide production
703 through polycystin-1. *Circulation* **117**, 1161-1171 (2008).

704

705 40. Rasouli SJ, *et al.* The flow responsive transcription factor Klf2 is required for
706 myocardial wall integrity by modulating Fgf signaling. *Elife* **7**, (2018).

707

708 41. Weeks O, *et al.* Embryonic alcohol exposure in zebrafish predisposes adults to
709 cardiomyopathy and diastolic dysfunction. *Cardiovasc Res* **120**, 1607-1621 (2024).

710

711 42. Kamel SM, Koopman CD, Kruse F, Willekers S, Chocron S, Bakkers J. A Heterozygous
712 Mutation in Cardiac Troponin T Promotes Ca(2+) Dysregulation and Adult
713 Cardiomyopathy in Zebrafish. *J Cardiovasc Dev Dis* **8**, (2021).

714

715 43. Gunawan F, Gentile A, Gauvrit S, Stainier DYC, Bensimon-Brito A. Nfatc1 Promotes
716 Interstitial Cell Formation During Cardiac Valve Development in Zebrafish. *Circ Res*
717 **126**, 968-984 (2020).

718

719 44. Novodvorsky P, *et al.* klf2ash317 Mutant Zebrafish Do Not Recapitulate Morpholino-
720 Induced Vascular and Haematopoietic Phenotypes. *PLoS One* **10**, e0141611 (2015).

721

722 45. Kamel SM, *et al.* Istaroxime treatment ameliorates calcium dysregulation in a
723 zebrafish model of phospholamban R14del cardiomyopathy. *Nat Commun* **12**, 7151
724 (2021).

725

726 46. Zhang R, *et al.* In vivo cardiac reprogramming contributes to zebrafish heart
727 regeneration. *Nature* **498**, 497-501 (2013).

728

729 47. Jiang M, *et al.* Characterization of the Zebrafish Cell Landscape at Single-Cell
730 Resolution. *Front Cell Dev Biol* **9**, 743421 (2021).

731

732 48. Wang X, Zhuo X, Gao J, Liu H, Lin F, Ma A. Neuregulin-1beta Partially Improves
733 Cardiac Function in Volume-Overload Heart Failure Through Regulation of Abnormal
734 Calcium Handling. *Front Pharmacol* **10**, 616 (2019).

735

736 49. Slattery C, Ryan MP, McMorrow T. E2A proteins: regulators of cell phenotype in
737 normal physiology and disease. *Int J Biochem Cell Biol* **40**, 1431-1436 (2008).

738

739 50. Li J, *et al.* Piezo1 integration of vascular architecture with physiological force. *Nature*
740 51. Nonomura K, *et al.* Mechanically activated ion channel PIEZO1 is required for
741 lymphatic valve formation. *Proc Natl Acad Sci U S A* **115**, 12817-12822 (2018).

742

743

744 52. Brown D, *et al.* Neuregulin-1 is essential for nerve plexus formation during cardiac
745 maturation. *J Cell Mol Med* **22**, 2007-2017 (2018).

746

747

748 53. Gemberling M, Karra R, Dickson AL, Poss KD. Nrg1 is an injury-induced
749 cardiomyocyte mitogen for the endogenous heart regeneration program in zebrafish.
750 *Elife* **4**, (2015).

751

752 54. Hui SP, *et al.* Zebrafish Regulatory T Cells Mediate Organ-Specific Regenerative
753 Programs. *Dev Cell* **43**, 659-672 e655 (2017).

754

755 55. Palencia-Desai S, Kohli V, Kang J, Chi NC, Black BL, Sumanas S. Vascular endothelial
756 and endocardial progenitors differentiate as cardiomyocytes in the absence of
757 Etsrp/Etv2 function. *Development* **138**, 4721-4732 (2011).

758

759 56. Schumacher JA, Bloomekatz J, Garavito-Aguilar ZV, Yelon D. tal1 Regulates the
760 formation of intercellular junctions and the maintenance of identity in the
761 endocardium. *Dev Biol* **383**, 214-226 (2013).

762

763 57. Chi NC, *et al.* Foxn4 directly regulates tbx2b expression and atrioventricular canal
764 formation. *Genes Dev* **22**, 734-739 (2008).

765

766 58. Roman BL, *et al.* Disruption of acvrl1 increases endothelial cell number in zebrafish
767 cranial vessels. *Development* **129**, 3009-3019 (2002).

768

769 59. Collery RF, Link BA. Dynamic smad-mediated BMP signaling revealed through
770 transgenic zebrafish. *Dev Dyn* **240**, 712-722 (2011).

771

772 60. Lele Z, Bakkers J, Hammerschmidt M. Morpholino phenocopies of the swirl,
773 snailhouse, somitabun, minifin, silberblick, and pipetail mutations. *Genesis* **30**, 190-
774 194 (2001).

775

776 61. Weber S, *et al.* SIX2 and BMP4 mutations associate with anomalous kidney
777 development. *J Am Soc Nephrol* **19**, 891-903 (2008).

778

779 62. Dorsky RI, Itoh M, Moon RT, Chitnis A. Two tcf3 genes cooperate to pattern the
780 zebrafish brain. *Development* **130**, 1937-1947 (2003).

781

782 63. Weinberger M, Simões FC, Patient R, Sauka-Spengler T, Riley PR. Functional
783 Heterogeneity within the Developing Zebrafish Epicardium. *Dev Cell* **52**, 574-
784 590.e576 (2020).

785

786 64. Dobin A, *et al.* STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* **29**, 15-21
787 (2013).

788

789 65. Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or
790 without a reference genome. *BMC Bioinformatics* **12**, 323 (2011).

791

792 66. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion
793 for RNA-seq data with DESeq2. *Genome Biology* **15**, 550 (2014).

794

795 67. Wu T, *et al.* clusterProfiler 4.0: A universal enrichment tool for interpreting omics
796 data. *The Innovation* **2**, 100141 (2021).

797

798 68. Han P, *et al.* Hydrogen peroxide primes heart regeneration with a derepression
799 mechanism. *Cell Res* **24**, 1091-1107 (2014).

800

801 69. Wang LW, *et al.* Standardized echocardiographic assessment of cardiac function in
802 normal adult zebrafish and heart disease models. *Dis Model Mech* **10**, 63-76 (2017).

803

804

805 **Figure legends**

806

807 **Figure 1. Identification of *id2b* as a blood flow sensitive gene.**

808 (A) Schematic showing the experimental procedures, including treatment, heart collection, and RNA-
809 sequencing of zebrafish embryonic hearts. (B) KEGG enrichment analysis depicting differentially
810 expressed genes encoding transcription factors and transcriptional regulators between control (ctrl) and

811 tricaine-treated embryonic hearts. Red and blue rectangles represent up-regulated and down-regulated
812 gene sets, respectively. $|\log_2 \text{fold change}| \geq 0.585$, adjusted $p\text{-value} < 0.1$. Each replicate contains
813 approximately 1,000 hearts. (C) Heat map exhibiting representative genes from KEGG pathways
814 mentioned in (B). (D) qRT-PCR analysis of *id2b* and *id2a* mRNA in control and tricaine-treated
815 embryonic hearts. Data were normalized to the expression of *actb1*. Each sample contains ~1,000
816 embryonic hearts. N=three biological replicates. (E) *In situ* hybridization of *id2b* in 72 hpf and 96 hpf
817 ctrl, tricaine (1 mg/mL), and blebbistatin (10 μM)-treated embryos. Numbers at the bottom of each
818 panel indicate the ratio of representative staining. (F) *In situ* hybridization showing reduced *id2b*
819 expression in *trnt2a* morpholino-injected embryos at 72 hpf compared to control. *** $p < 0.001$. Scale
820 bars, 50 μm .

821

822 **Figure 2. The spatiotemporal expression of *id2b*.**

823 (A) Schematic of the intron targeting-mediated *eGFP* knockin at the *id2b* locus using the CRISPR-
824 Cas9 system. The sgRNA targeting sequence and the protospacer adjacent motif (PAM) sequence are
825 shown in orange and blue, respectively. The donor plasmid comprises left and right arm sequences and
826 a *linker-FLAG-P2A-eGFP* cassette denoted by black lines with double arrows and green box,
827 respectively. The *linker-FLAG-P2A-eGFP* cassette was integrated into the *id2b* locus upon co-injection
828 of the donor plasmid with sgRNA and zCas9 protein, enabling detection by PCR using two pairs of
829 primers (F1, R1 and F2, R2)-the former length yielding a length of about 2.2 kb and the latter about 2.7
830 kb. (B) Zebrafish *id2b* expression pattern, as indicated by *in situ* hybridization of embryos at
831 designated time points, was consistent with the fluorescence localization of *id2b:eGFP*, revealing
832 expression in the heart, brain, retina, notochord, pronephric duct, and other tissues. (C) Maximum
833 intensity projections (top) and confocal sections (bottom) of *id2b:eGFP; Tg(myl7:mCherry)* hearts at
834 designated time points. (D) Maximum intensity projections (top) and confocal sections (bottom) of
835 *id2b:eGFP; Tg(kdrl:mCherry)* embryos at specific time points. Magenta, *id2b:eGFP*; yellow,
836 *kdrl:mCherry*. (E) RNAscope analysis of *id2b* in 96 hpf embryonic heart. White dashed line outlines
837 the heart. OFT, outflow tract. (F) Immunofluorescence of adult *id2b:eGFP; Tg(myl7:mCherry)* heart
838 section (left panel). Enlarged views of boxed areas are shown in the right panel. Green, *eGFP*; red,

839 mCherry; blue, DAPI. BA, bulbus arteriosus; V, ventricle; A, atrium. AVC, atrioventricular canal. **(G)**
840 Confocal z-stack maximum intensity projection of *id2b:eGFP;Tg(kdrl:mCherry)* embryos at 96 hpf
841 showing the whole body (lateral view) and the head (top view). Scale bars, 500 μ m **(B, F, left and G)**,
842 50 μ m **(C and D)**, 25 μ m **(E)**, 100 μ m **(G, right)**.

843

844 **Figure 3. Cardiac contraction promotes endocardial *id2b* expression through primary cilia.**
845 **(A)** Representative confocal z-stack (maximal intensity projection) of *id2b:eGFP* embryos under
846 different conditions: control, tricaine-treated, blebbistatin-treated, and *tnnt2a* morpholino-injected.
847 Images were captured using the same magnification. **(B)** Quantification of mean fluorescence intensity
848 (MFI) of *id2b:eGFP* in the working myocardium (atrium and ventricle, A+V) and atrioventricular
849 canal (AVC) in **(A)**. Data normalized to the mean fluorescence intensity of control hearts. n=(11, 15)
850 (ctrl versus tricaine); n=(5, 6) (ctrl versus blebbistatin); n=(10,11) (ctrl versus *tnnt2a* MO). **(C)**
851 Representative confocal z-stack (maximal intensity projection) of control and *ifl88* morpholino-injected
852 *id2b:eGFP* embryos. **(D)** Normalized MFI of *id2b:eGFP* in the working myocardium (A+V) and AVC
853 in **(C)**. n=(17, 9). **(E)** Whole-mount *in situ* hybridization showing *id2b* expression in control, *klf2a*^{-/-},
854 and *klf2b*^{-/-} embryos at 48 hpf and 72 hpf. Numbers at the bottom of each panel indicate the ratio of
855 representative staining. Data are presented as mean \pm sem. ** $p<0.01$, *** $p<0.001$, **** $p<0.0001$. Scale
856 bars, 50 μ m.

857

858 **Figure 4. *id2b*^{-/-} adults exhibit thinner atrioventricular valve leaflets and prominent retrograde**
859 **blood flow.**

860 **(A)** Two sgRNAs, represented by short vertical lines, were designed to create *id2b*^{-/-} mutants. Co-
861 injection of the two sgRNAs with zCas9 protein induces a 157 bp truncation in the exon 1 of *id2b*,
862 which can be detected by genotyping primers marked with arrows. This genetic modification leads to
863 the formation of a premature stop codon and the subsequent loss of the HLH domain. Right, qRT-PCR
864 analysis of *id2b* and *id2a* mRNA levels in *id2b*^{+/+} and *id2b*^{-/-} adult hearts. **(B)** No discernible
865 morphological differences were observed between *id2b*^{+/+} and *id2b*^{-/-} larvae at both 72 hpf and 96 hpf.
866 **(C)** Kaplan-Meier survival curve analysis and logrank test of *id2b*^{+/+} (n=50) and *id2b*^{-/-} (n=46). Wpf,

867 weeks post-fertilization. **(D)** Pericardial edema and an enlarged atrium are evident in a subset of *id2b*^{-/-}
868 adults. V, ventricle; A, atrium. **(E)** *id2b*^{-/-} adults developed thinner atrioventricular valve leaflets
869 (denoted by arrowheads) compared to *id2b*^{+/+}. Enlarged views of boxed areas are shown in the bottom
870 panels. **(F, G)** Echocardiograms of adult *id2b*^{+/+} **(F)** and *id2b*^{-/-} **(G)** hearts. Unidirectional blood flow
871 was observed in the *id2b*^{+/+} heart, while retrograde blood flow was evident in the *id2b*^{-/-} heart. **(H)** Ratio
872 of retrograde flow area over inflow area shows a significant increase in retrograde flow in *id2b*^{-/-} (n=13)
873 compared to *id2b*^{+/+} (n=10). Data are presented as mean ± sem. *p<0.05, **p<0.01. Scale bars, 500 µm
874 (**B** and **D**, bottom), 2 mm (**D**, top), 200 µm (**E**).
875

876 **Figure 5. Reduced cardiac contractile function and compromised calcium handling in *id2b*^{-/-}**
877 **mutants.**

878 **(A)** Time-lapse imaging (from T1 to T8) illustrates the cardiac contraction-relaxation cycle of 120 hpf
879 *id2b*^{+/+} and *id2b*^{-/-} hearts carrying *myl7:mCherry*. **(B and C)** *id2b*^{-/-} larvae (n=20) display a significant
880 decrease in heart rate and fractional area change compared to *id2b*^{+/+} (n=20). **(D)** Echocardiograms of
881 adult *id2b*^{+/+} and *id2b*^{-/-} hearts. **(E and F)** *id2b*^{-/-} fish (n=12) exhibit reduced cardiac contractile function
882 with preserved heart rate compared to *id2b*^{+/+} (n=14). **(G)** Time-lapse imaging illustrates the calcium
883 dynamics of 120 hpf *id2b*^{+/+} and *id2b*^{-/-} hearts carrying *actb2:GCaMP6s*. **(H)** Ratio of maximal
884 fluorescence intensity (F) over basal fluorescence intensity (F0) of GCaMP6s signal. n=(26, 17). **(I)**
885 qRT-PCR analysis of *cacnα1c* mRNA in *id2b*^{+/+} and *id2b*^{-/-} hearts at 120 hpf (N=three biological
886 replicates, with each sample containing 500-1,000 embryonic hearts) and adult stage (N=five biological
887 replicates). Data were normalized to the expression of *actb1*. **(J)** The action potential of ventricular
888 cardiomyocyte in adult *id2b*^{+/+} (n=9) and *id2b*^{-/-} (n=9) hearts. **(K)** Statistical data showed a notable
889 difference between *id2b*^{+/+} and *id2b*^{-/-} accordingly. Data are presented as mean ± sem. ***p<0.001, ****
890 p<0.0001, ns, not significant. Scale bars, 50 µm.

891

892 **Figure 6. Nrg1 serves as a pivotal mitogen mediating the function of *id2b*.**

893 **(A)** Identification of genes (*fgf8a*, *nkx2.5*, *myh6*, *nrg1*, and *nkx2.7*) associated with four distinct heart
894 development processes: cardiac muscle tissue development, cardiomyocyte differentiation, heart

895 morphogenesis, and cardiac chamber development. The heatmap illustrates scaled-normalized
896 expression values for the mentioned genes. **(B)** qRT-PCR analysis of *nrg1* mRNA in 120 hpf *id2b*^{+/+}
897 and *id2b*^{-/-} embryonic hearts. Data were normalized to the expression of *actb1*. N=four biological
898 replicates, with each sample containing 500-1,000 embryonic hearts. **(C)** Heart rate in 120 hpf larvae
899 treated with AG1478 (n=20) and DMSO (n=20). **(D)** *id2b*^{+/+} and *id2b*^{-/-} larvae were injected with *nrg1*
900 mRNA at the 1-cell stage, followed by qRT-PCR analysis of *cacnα1c* mRNA at 72 hpf. Data were
901 normalized to the expression of *actb1*. N=three biological replicates, with each sample containing 100-
902 200 embryonic hearts. **(E)** The heart rate of 72 hpf *id2b*^{+/+} and *id2b*^{-/-} larvae injected with *nrg1* mRNA
903 at 1-cell stage. n=(16, 12, 14, 14). Data are presented as mean ± sem. *p<0.05, **p<0.01, ***p<0.001,
904 ****p<0.0001. ns, not significant.

905

906 **Figure 7. Id2b interacts with Tcf3b to restrict its inhibition on *nrg1* expression.**

907 **(A)** Immunoprecipitation (IP) assays of Flag-*id2b* and HA-*tcf3b* co-transfected 293T cells. **(B)** qRT-
908 PCR analysis of *tcf3a*, *tcf3b*, *socs1a*, and *socs3b* mRNA in 120 hpf *id2b*^{+/+} and *id2b*^{-/-} embryonic hearts.
909 Data were normalized to the expression of *actb1*. N=four biological replicates, with each sample
910 containing 500-1,000 embryonic hearts. **(C)** Two potential Tcf3b binding sites, with sequences
911 corresponding to the human TCF3 (left) and mouse Tcf3 (right) binding motifs, were predicted in the
912 2,000bp DNA sequence upstream of the zebrafish *nrg1* transcription start site using JASPAR. **(D)**
913 Luciferase assay showing the expression of *nrg1* in embryos with *tcf3b* overexpression (*tcf3b* OE) and
914 morpholino-mediated *tcf3b* knockdown (*tcf3b* MO). N=three biological replicates. **(E)** qRT-PCR
915 analysis of *nrg1* mRNA in 72 hpf *id2b*^{+/+} and *id2b*^{-/-} embryonic hearts injected with control and *tcf3b*
916 morpholino. Data were normalized to the expression of *actb1*. N=four biological replicates, with each
917 sample containing 100-200 embryonic hearts. **(F)** Schematic model for *id2b*-mediated regulation of
918 myocardium function. During heart development, blood flow operates through primary cilia, initiating
919 endocardial *id2b* expression. Subsequently, the interaction between Id2b and Tcf3b restricts the activity
920 of Tcf3b, ensuring proper *nrg1* expression, which in turn promotes LTCC expression (left). However,
921 in the absence of Id2b, Tcf3b inhibits *nrg1* expression. The reduced Nrg1 hinders LTCC expression in

922 cardiomyocytes, resulting in decreased extracellular calcium entry and disruption of myocardial
923 function. Data are presented as mean \pm sem. $^*p<0.05$, $^{**}p<0.01$, $^{***}p<0.001$. ns, not significant.

924

925 **Figure 3-figure supplement 1. Blood flow and BMP signaling independently activates *id2b***
926 **expression.**

927 (A) Representative confocal maximal intensity projection of control (non-injected), *bmp2b*, *bmp4*, and
928 *bmp7a* morpholino-injected *id2b:eGFP*; *Tg(mytl7:mCherry)* hearts at 24 hpf. White circles outline
929 eGFP signal. (B) Quantification of mean fluorescence intensity of *id2b:eGFP* in (A). Data normalized
930 to the mean fluorescence intensity of control hearts. n=(7, 9, 8, 10). (C) Representative confocal
931 maximal intensity projection of DMSO and Dorsomorphin (DM)-treated *id2b:eGFP* hearts at 24, 48
932 and 60 hpf. Embryos were treated from 10 to 24 hpf, from 24 to 48 hpf, or from 36 to 60 hpf. White
933 circles outline eGFP signal. (D) Quantification of mean fluorescence intensity of *id2b:eGFP* in (C).
934 Data normalized to the mean fluorescence intensity of DMSO-treated hearts. n=(6, 10) (24 hpf); n=(14,
935 16) (48 hpf); n=(9, 9) (60 hpf). (E) Confocal optical sections of control, tricaine-treated, and *tmnt2a*
936 morpholino-injected 72 hpf *Tg(BRE:d2GFP)*; *Tg(kdrl:mCherry)* hearts. Yellow arrowheads,
937 endocardial cells. Numbers at the top of each panel indicate the ratio of representative images. (F)
938 Schematic diagram of blood flow and BMP signaling-mediated *id2b* expression. Data are presented as
939 mean \pm sem. $^{***}p<0.001$, $^{****}p<0.0001$. ns, not significant. Scale bars, 50 μ m.

940

941 **Figure 4-figure supplement 1. *id2b*^{-/-} larvae exhibit a decreased number of valve endocardial cells**
942 **while maintaining normal atrioventricular valve function.**

943 (A) Representative confocal images of valve endocardial cells in 96 hpf *id2b*^{+/+} and *id2b*^{-/-} hearts
944 carrying *Tg(kdrl:nucGFP)*. (B) Quantification of the number of valve endocardial cells in *id2b*^{+/+} and
945 *id2b*^{-/-} hearts. VECs, valve endocardial cells. n=(10, 10). (C) Representative confocal images of 72 and
946 120 hpf *id2b*^{+/+} and *id2b*^{-/-} hearts in *Tg(kdrl:nucGFP)*; *Tg(mytl7:mCherry)* transgenic background. (D)
947 Statistical analysis of the number of endocardial cells in the ventricle (V), atrium (A), and combined
948 (A+V) in *id2b*^{+/+} and *id2b*^{-/-} hearts. n=(13, 13) (72 hpf); n=(12, 15) (120 hpf). (E) Quantification of
949 blood flow patterns in 96 hpf *id2b*^{+/+} (n=16) and *id2b*^{-/-} (n=15) hearts. (F) H&E staining of adult *id2b*^{-/-}

950 and *id2b*^{+/+} hearts after echocardiographic analysis in **Figure 4F** and **4G**. Enlarged views of boxed
951 areas are shown in the bottom panels. Data are presented as mean \pm sem. **** $p<0.0001$. ns, not
952 significant. Scale bars, 20 μm (**A**), 50 μm (**C**), 200 μm (**F**).
953

954 **Figure 5-figure supplement 1. *id2b* loss-of-function impacts both valve formation and cardiac**
955 **contraction.**

956 (**A**) The top 20 predicted tissue expression patterns based on the differential expressed genes from
957 *id2b*^{+/+} and *id2b*^{-/-} hearts at 120 hpf were displayed. (**B**) The top 20 predicted phenotypes related to the
958 differential expressed genes from *id2b*^{+/+} and *id2b*^{-/-} hearts at 120 hpf were illustrated.
959

960 **Figure 5-figure supplement 2. *id2b*^{-/-} hearts develop normal trabeculae and sarcomeres.**

961 (**A**) Time-lapse imaging (from T1 to T8) illustrates the cardiac contraction-relaxation cycle of 72 hpf
962 *id2b*^{+/+} and *id2b*^{-/-} hearts carrying *myl7:mCherry*. (**B** and **C**) Heart rate and fractional area change in
963 *id2b*^{-/-} (n=21) and *id2b*^{+/+} (n=21) at 72 hpf. (**D**) Representative confocal z-stack of 72 and 120 hpf
964 *id2b*^{+/+} and *id2b*^{-/-} hearts with *Tg(myl7:H2A-mCherry)* transgene. (**E**) Quantification of the number of
965 cardiomyocytes in the ventricle (V), atrium (A), and combined (A+V) in (**D**). n=(8, 10) (72 hpf); n=(10,
966 10) (120 hpf). (**F**) Representative confocal images of 72 and 120 hpf *id2b*^{+/+} and *id2b*^{-/-} hearts carrying
967 *Tg(myl7:mCherry)*. (**G**) Confocal immunofluorescence images of α -actinin (green) in embryonic (72
968 hpf) and adult (115 dpf) hearts (left). Right: fluorescence intensity profiles for α -actinin. Data are
969 presented as mean \pm sem. ns, not significant. Scale bars, 50 μm (**D** and **F**), 5 μm (**G**).
970

971 **Figure 6-figure supplement 1. *nrg1* is expressed in the endocardial cells.**

972 (**A**) Analysis of *nrg1* expression using the zebrafish single-cell landscape database. The red rectangle
973 highlights endocardial cells. (**B**) Identification of the endocardial cell population in the zebrafish cell
974 landscape. Purple dots represent endocardial cells, and the red oval denotes cell populations from the
975 heart. Images were generated using the Zebrafish Cell Landscape (ZCL) at <http://bis.zju.edu.cn/ZCL/>.
976

977 **Figure 7-figure supplement 1. Expression landscape of zebrafish *tcf3b*.**

978 (A) The major cell types expressing *tcf3b* were displayed according to the zebrafish single-cell
979 landscape. (B) Identification of the endocardial cell population in the zebrafish cell landscape. Purple
980 dots represent endocardial cells, and the red oval denotes cell populations from the heart. Images were
981 generated using the Zebrafish Cell Landscape (ZCL) at <http://bis.zju.edu.cn/ZCL/>.

982

983 **Video 1. 96 hpf *id2b*^{+/+} larvae displayed unidirectional blood flow in the AV canal.** Scale bar, 50
984 μm .

985

986 **Video 2. 96 hpf *id2b*^{-/-} larvae displayed unidirectional blood flow in the AV canal.** Scale bar, 50 μm .

987

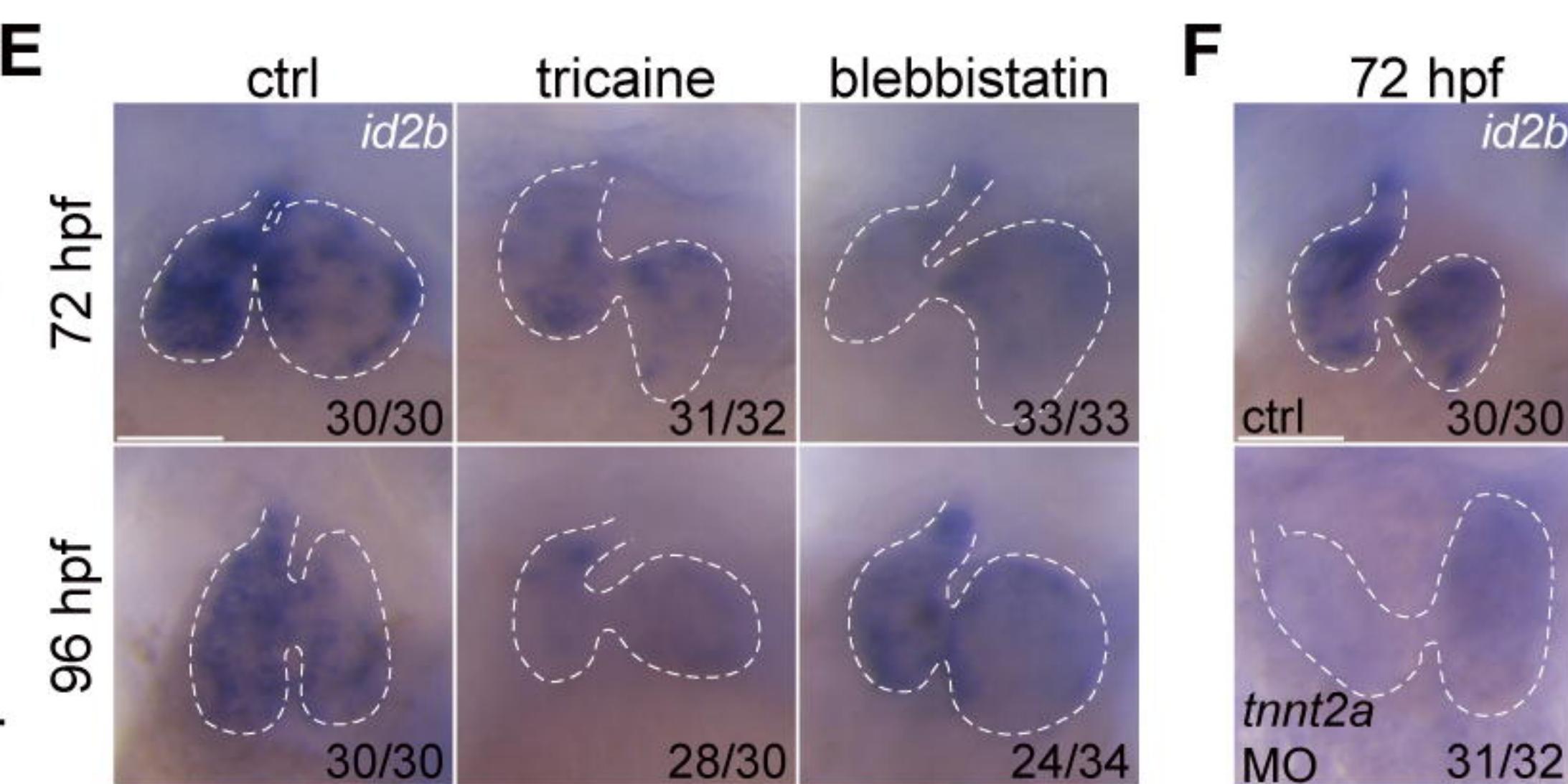
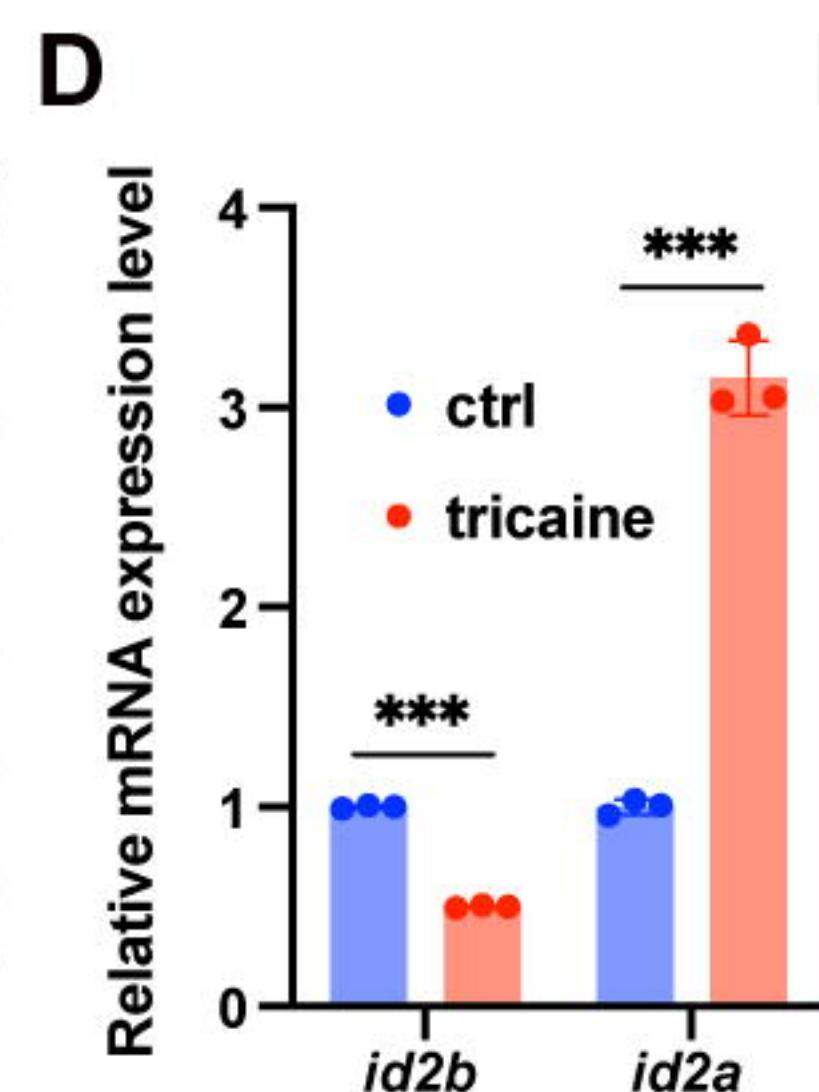
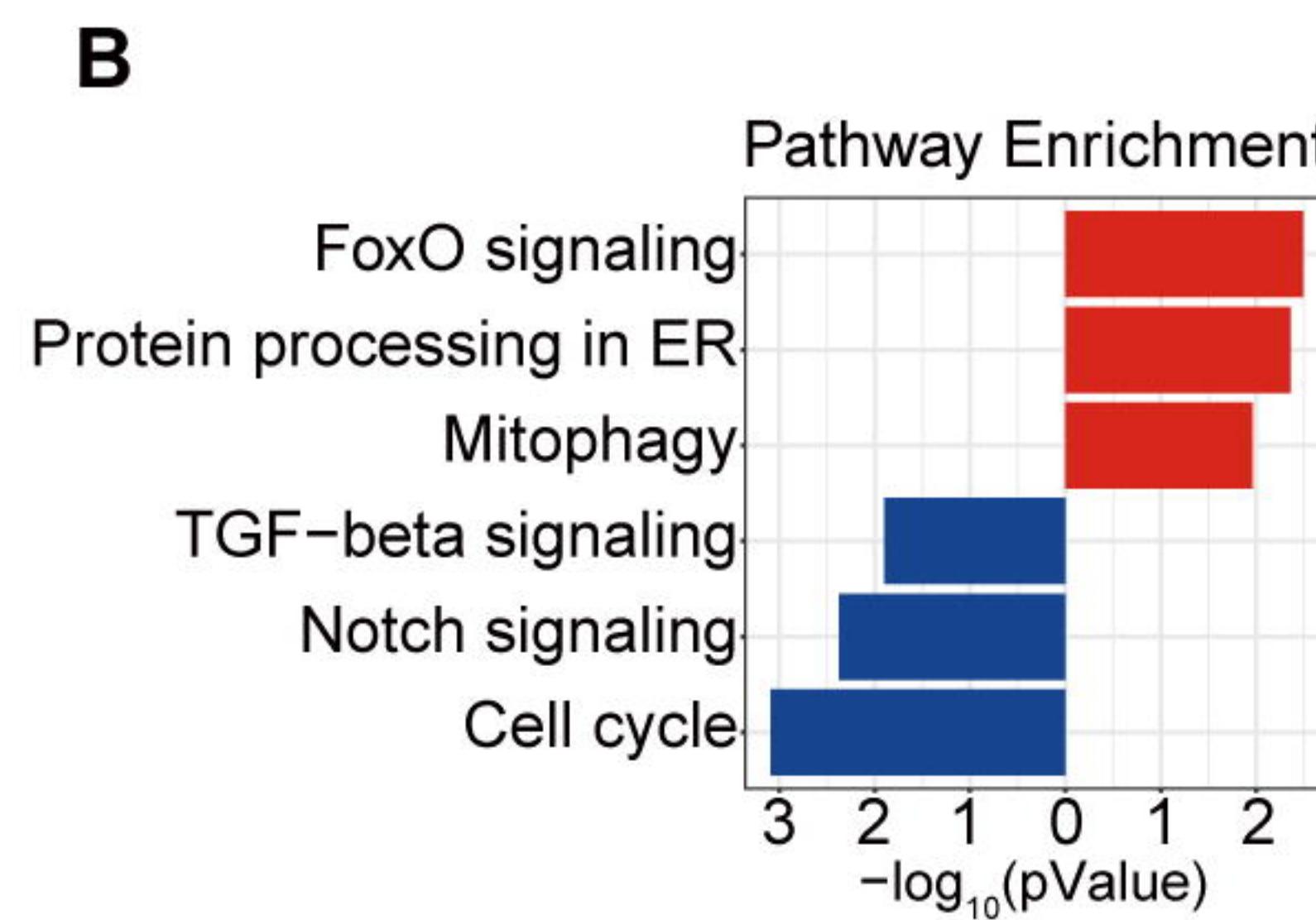
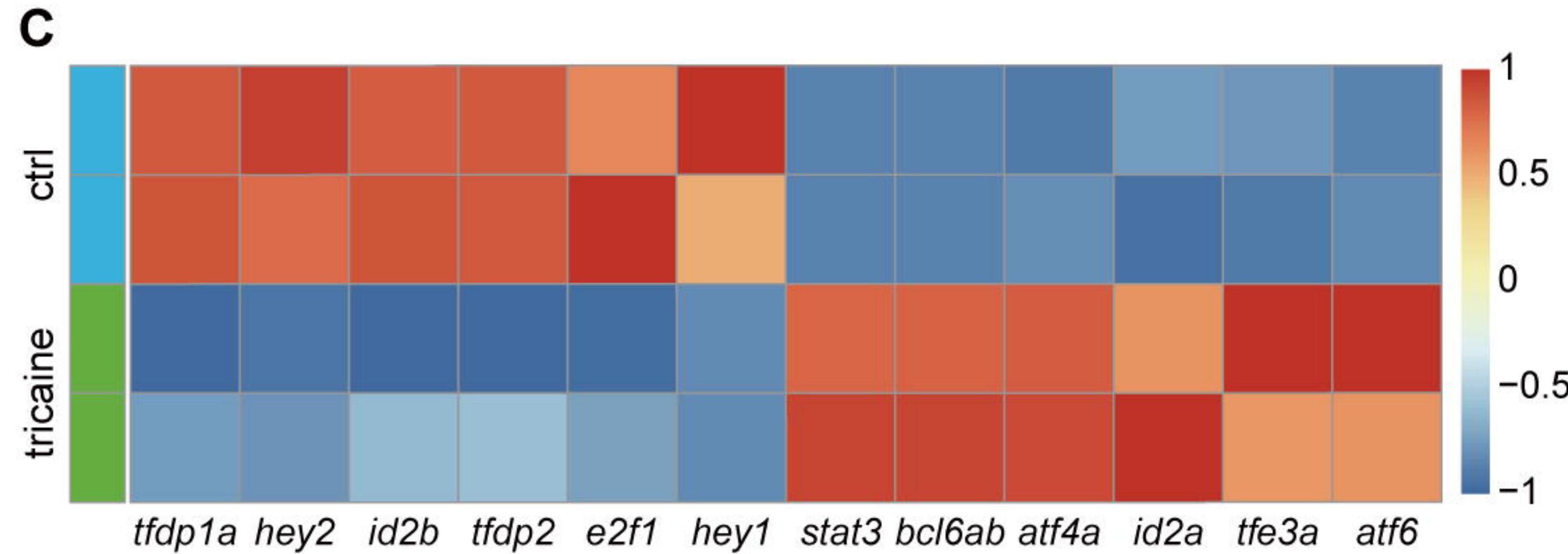





Figure 1

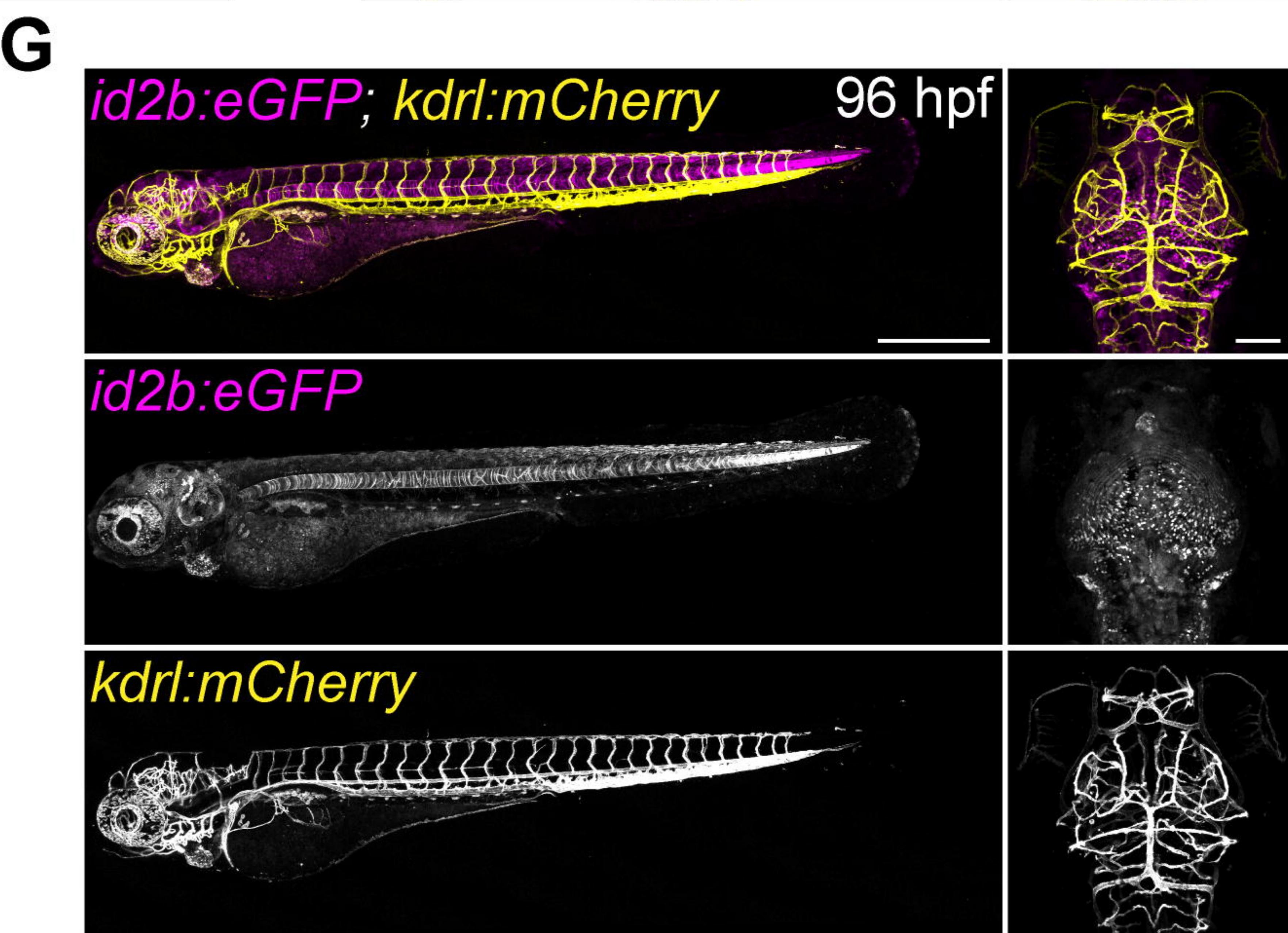
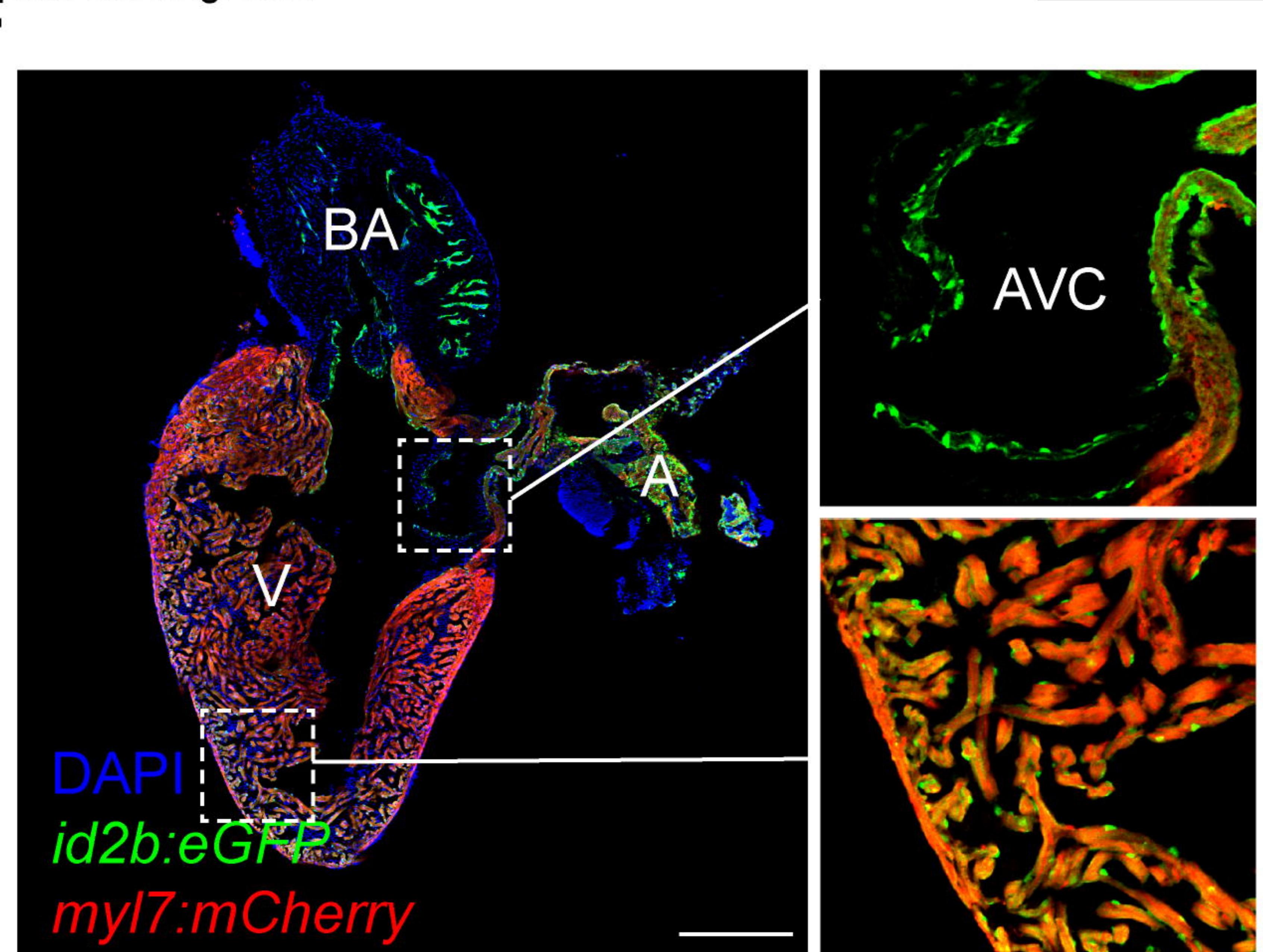
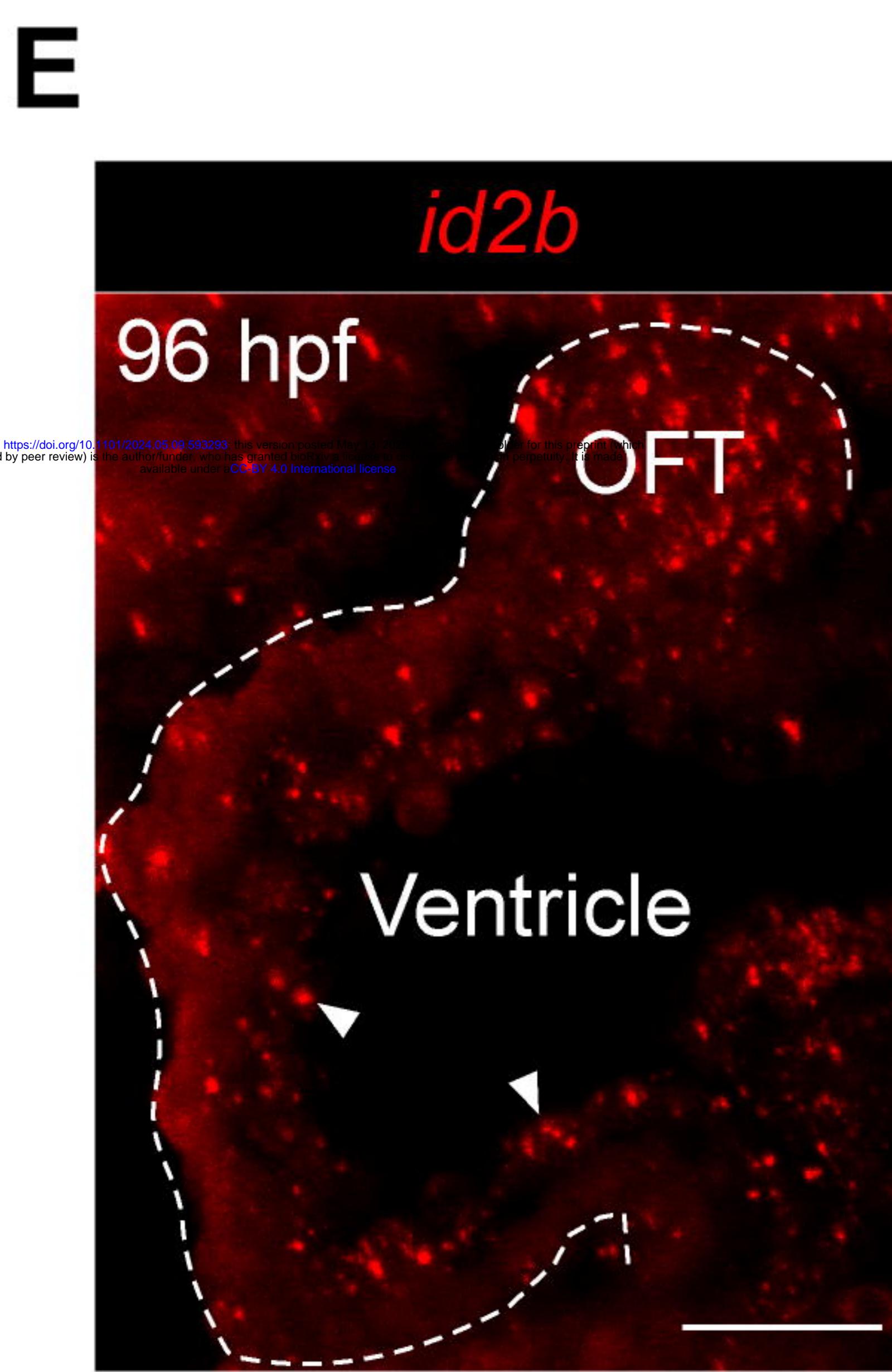
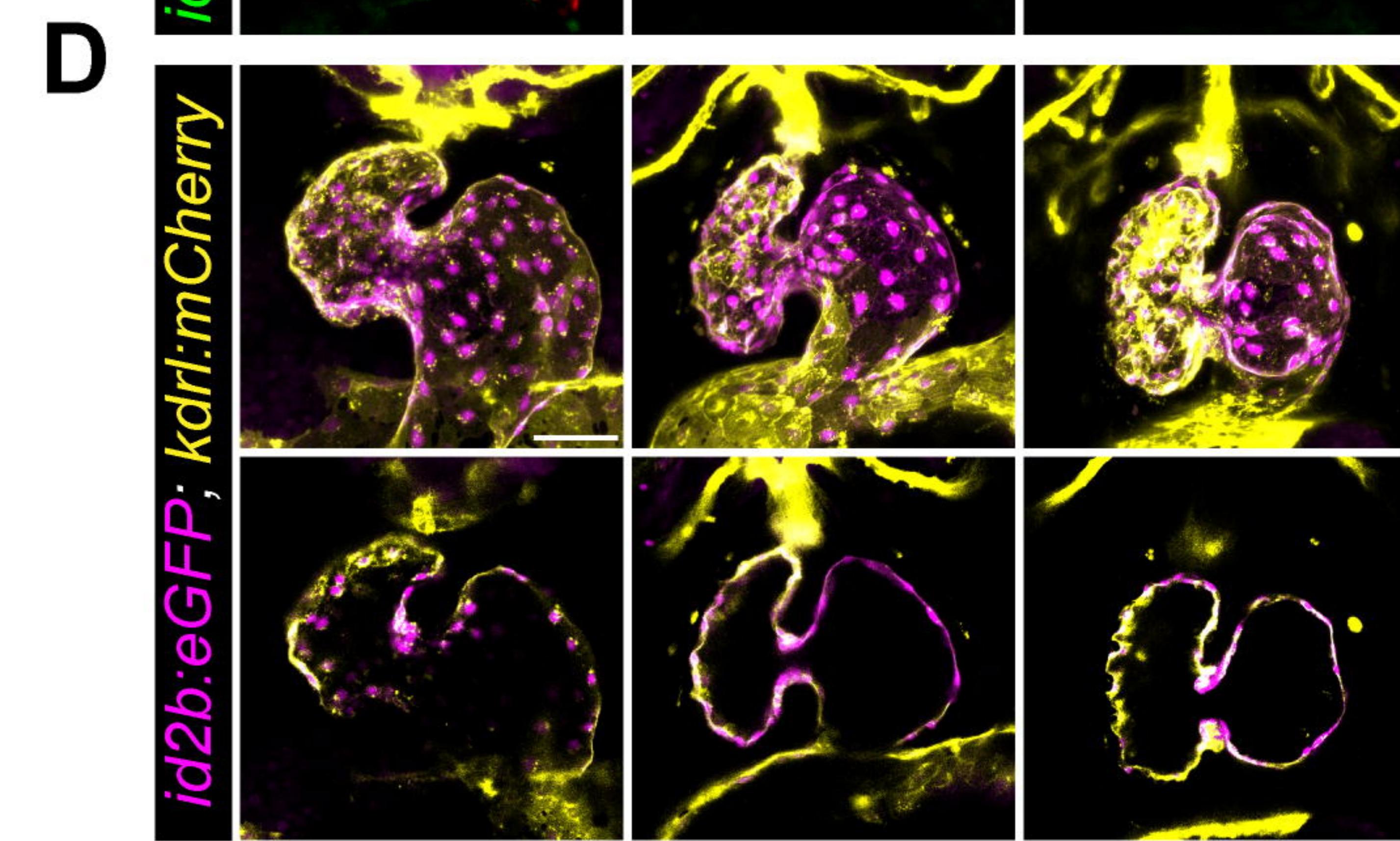
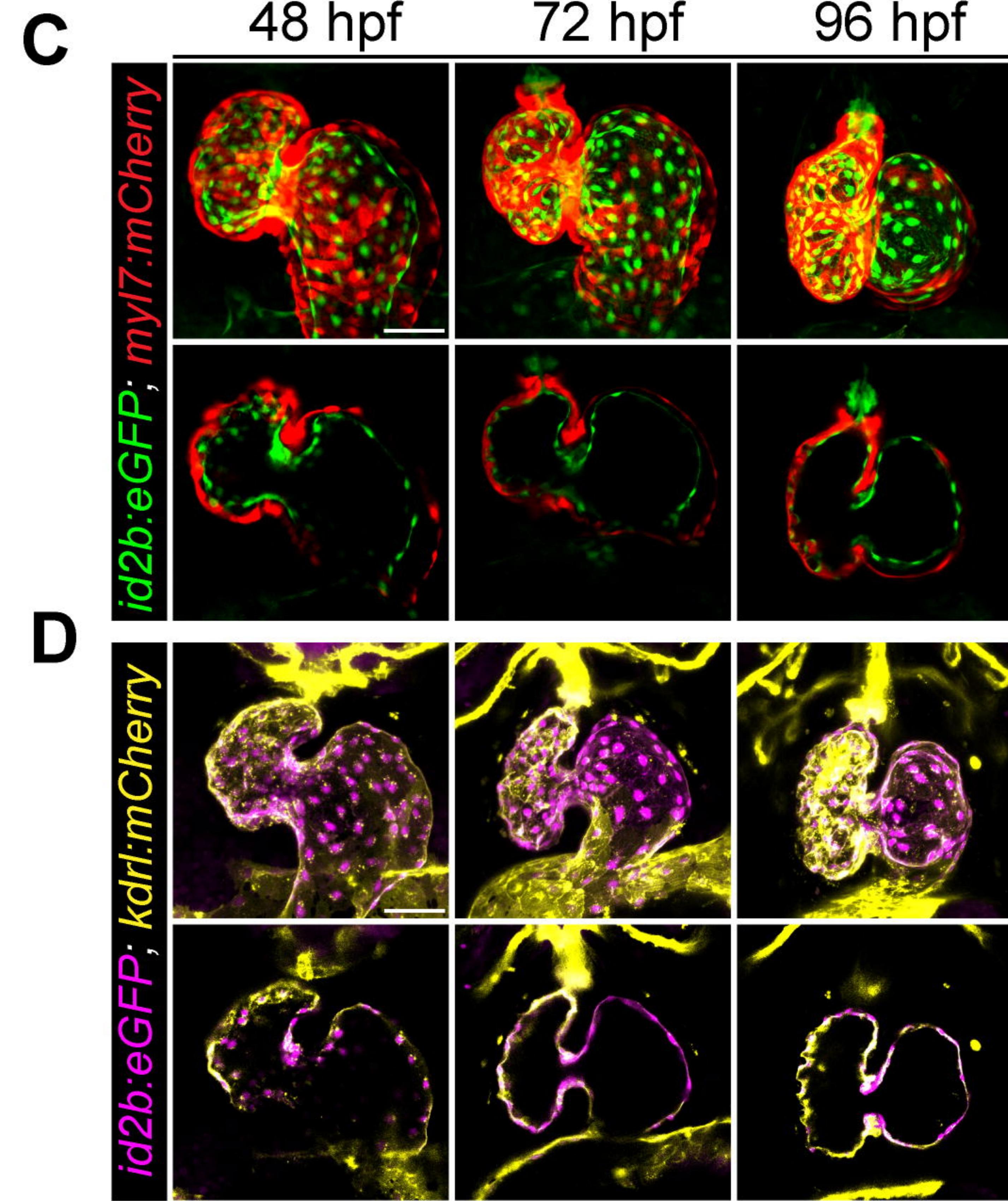
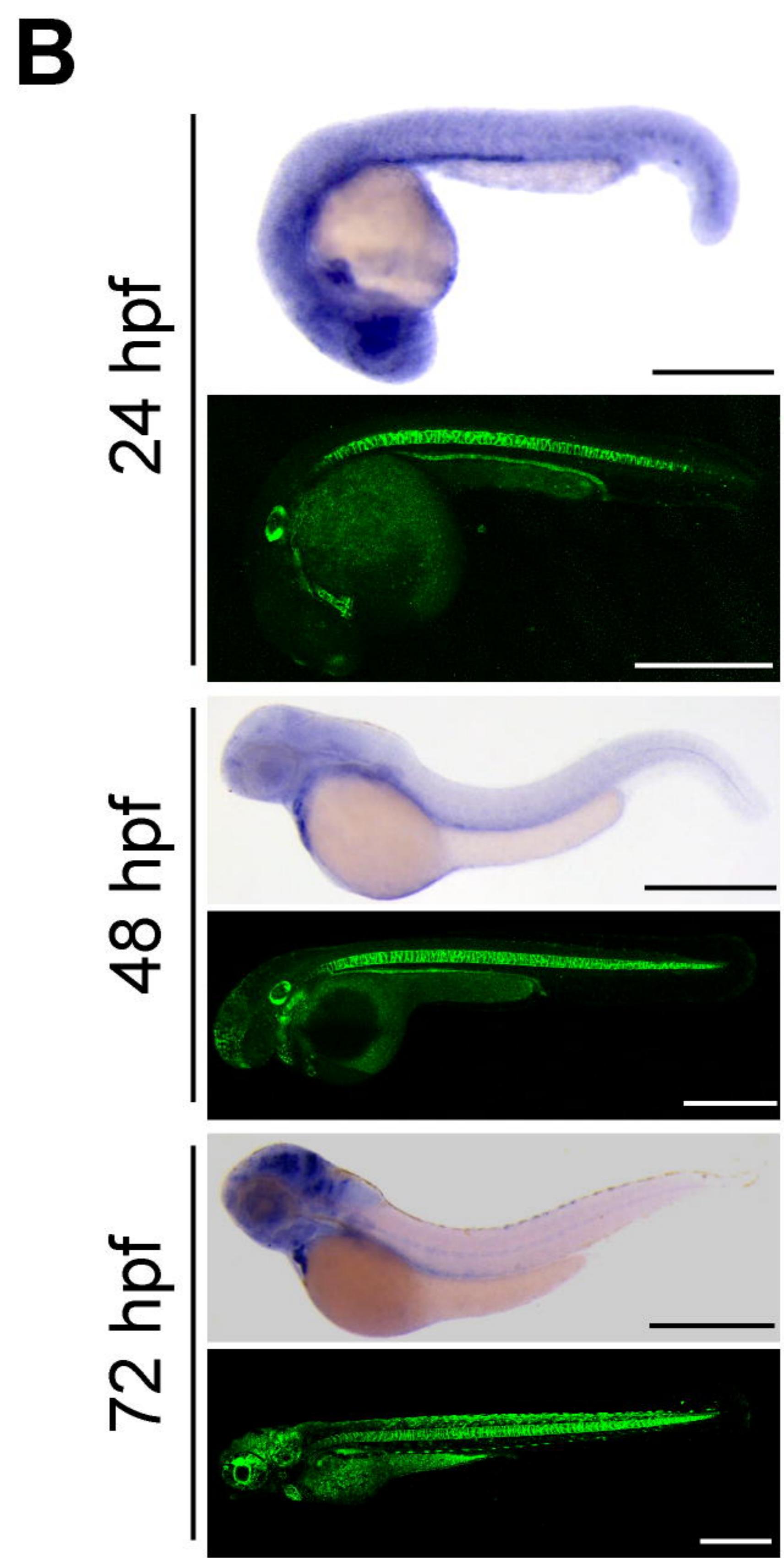
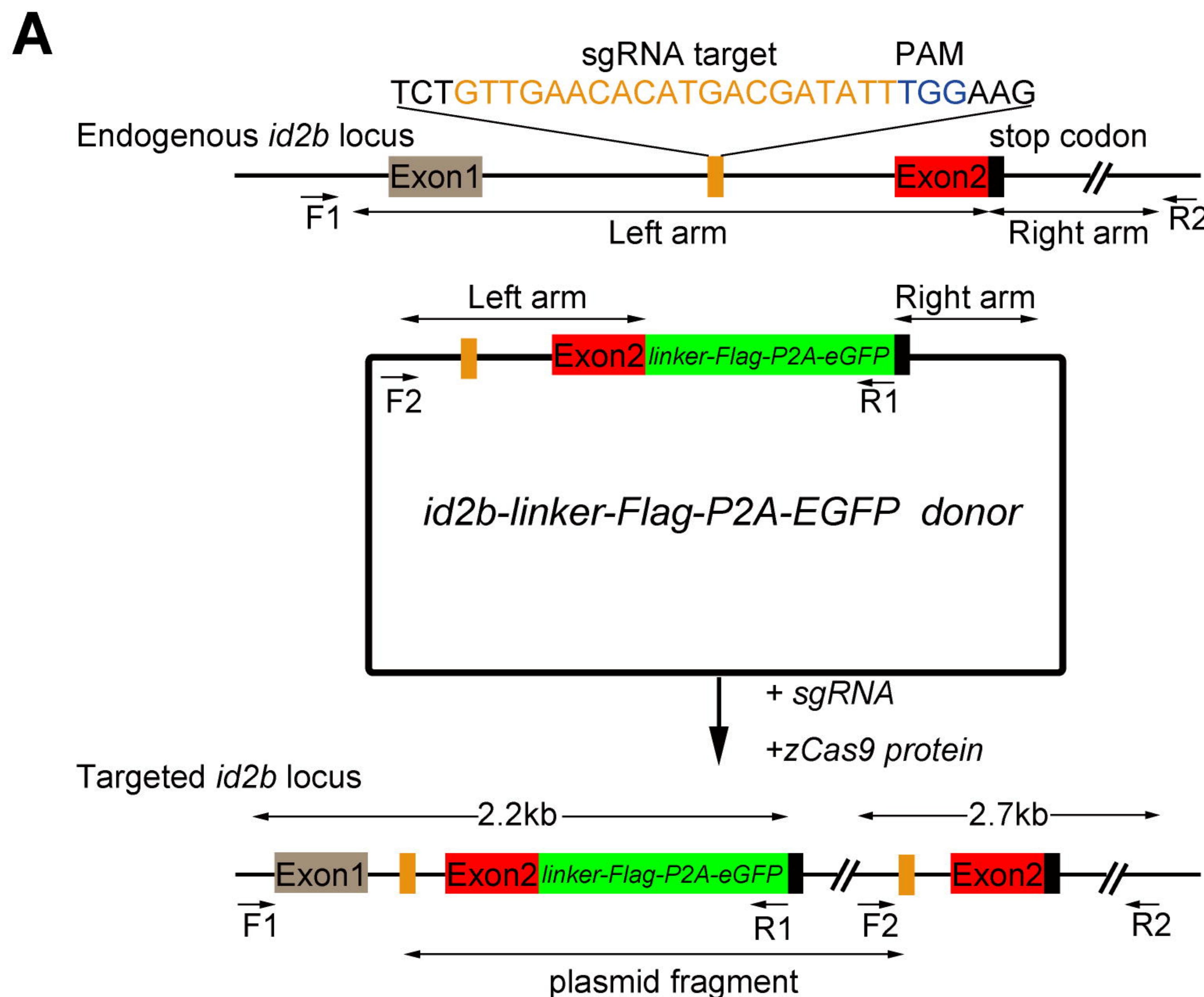








Figure 2

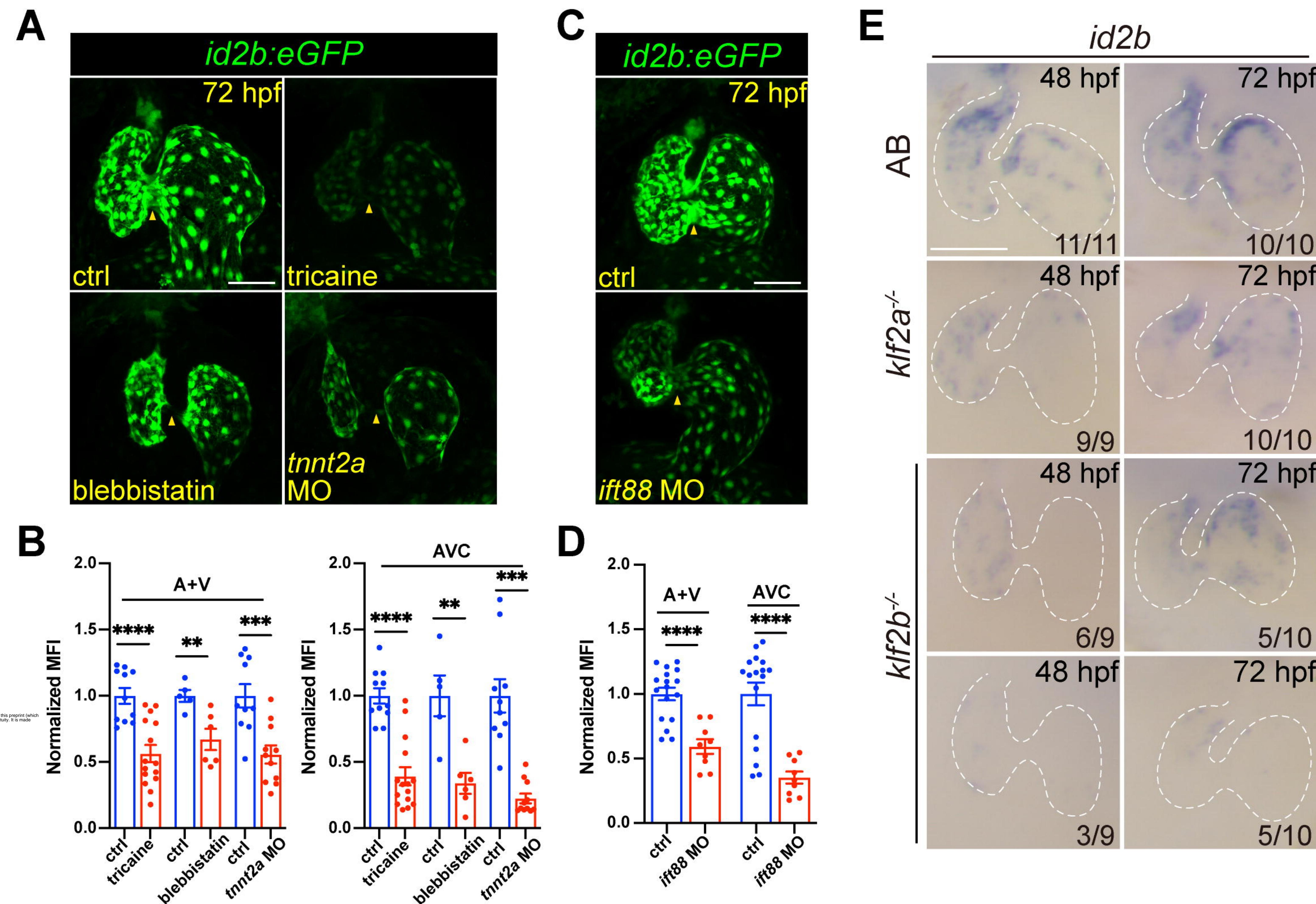


Figure 3

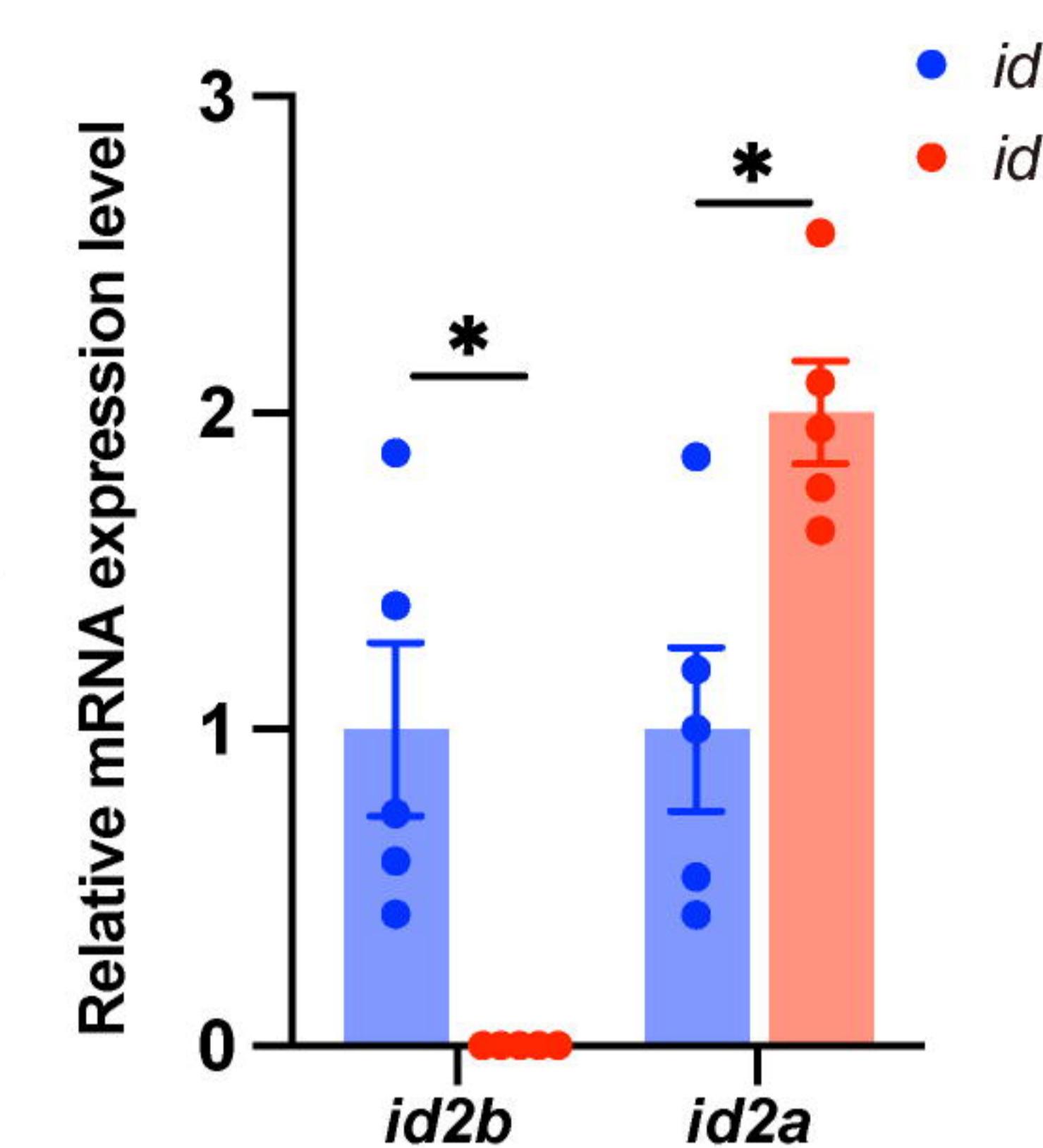
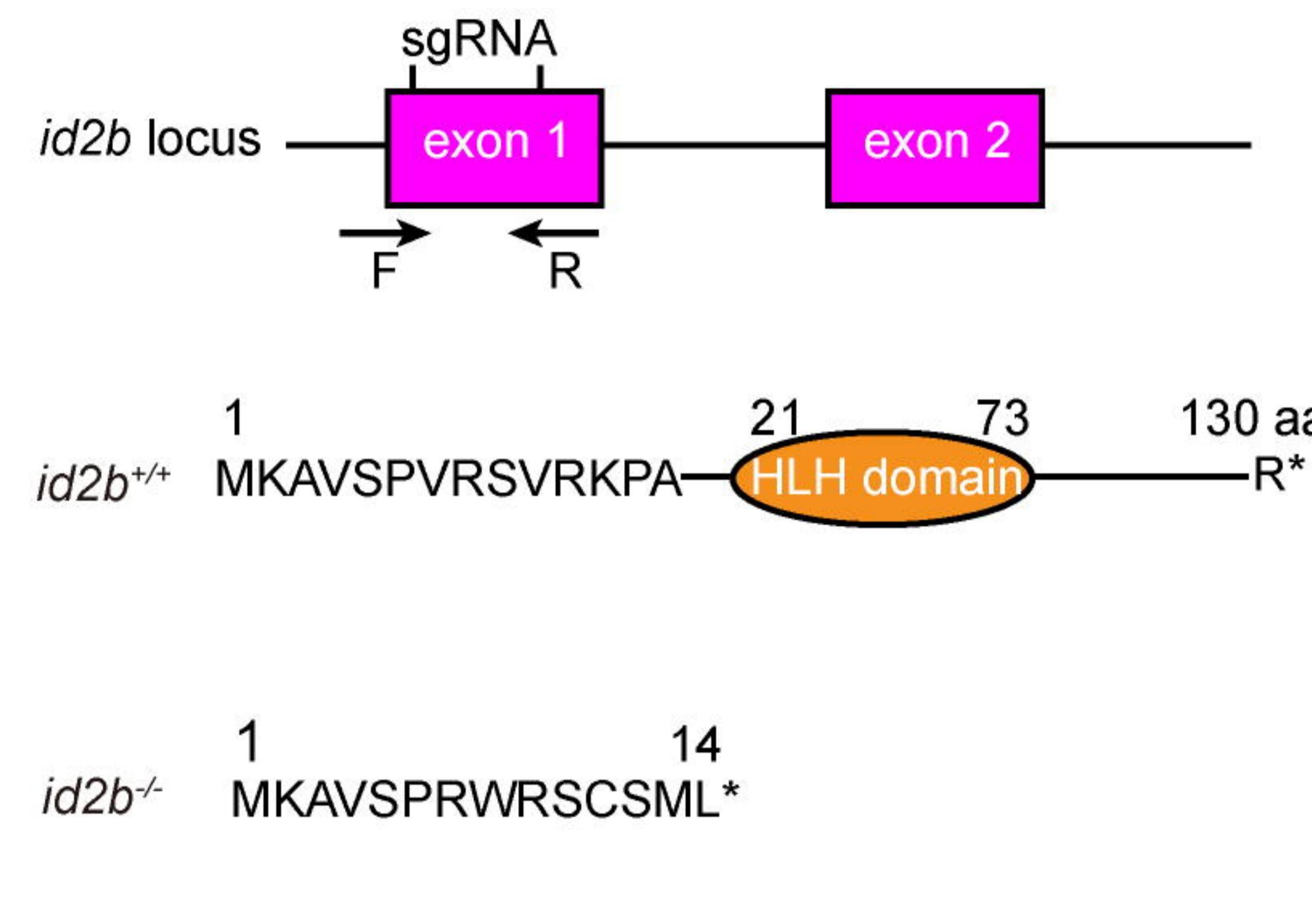
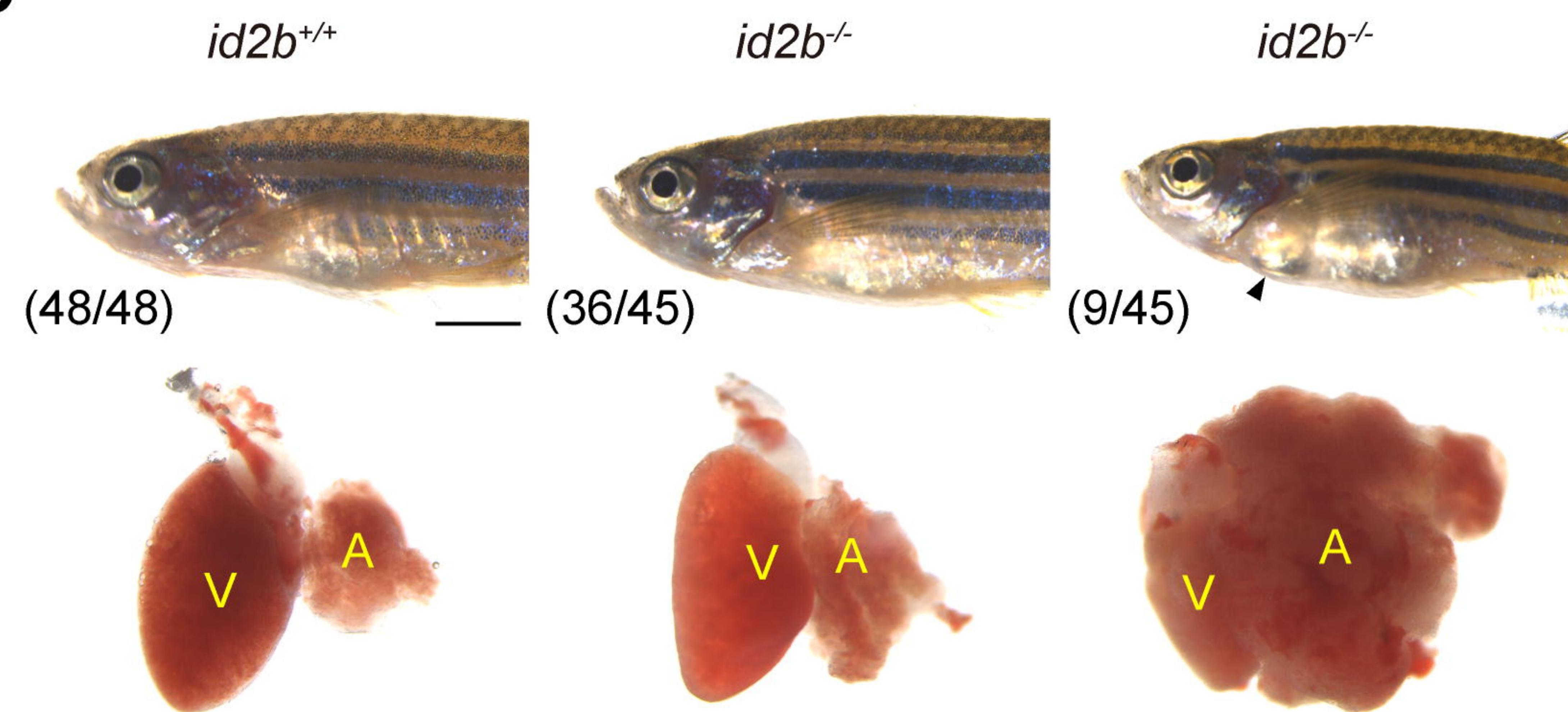
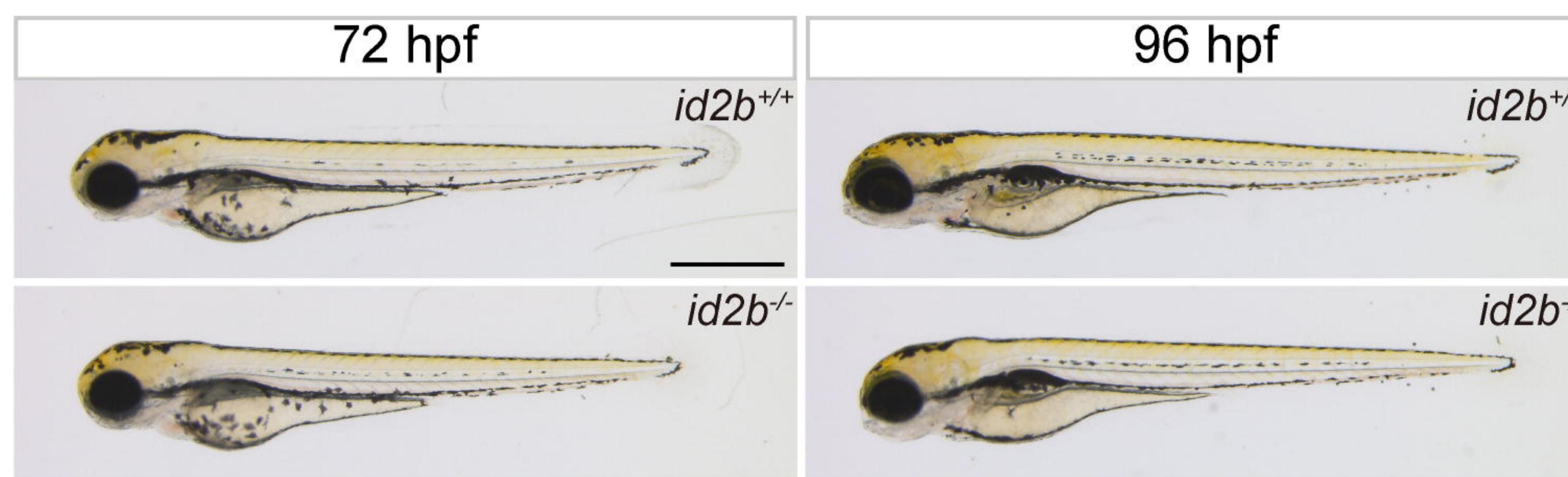
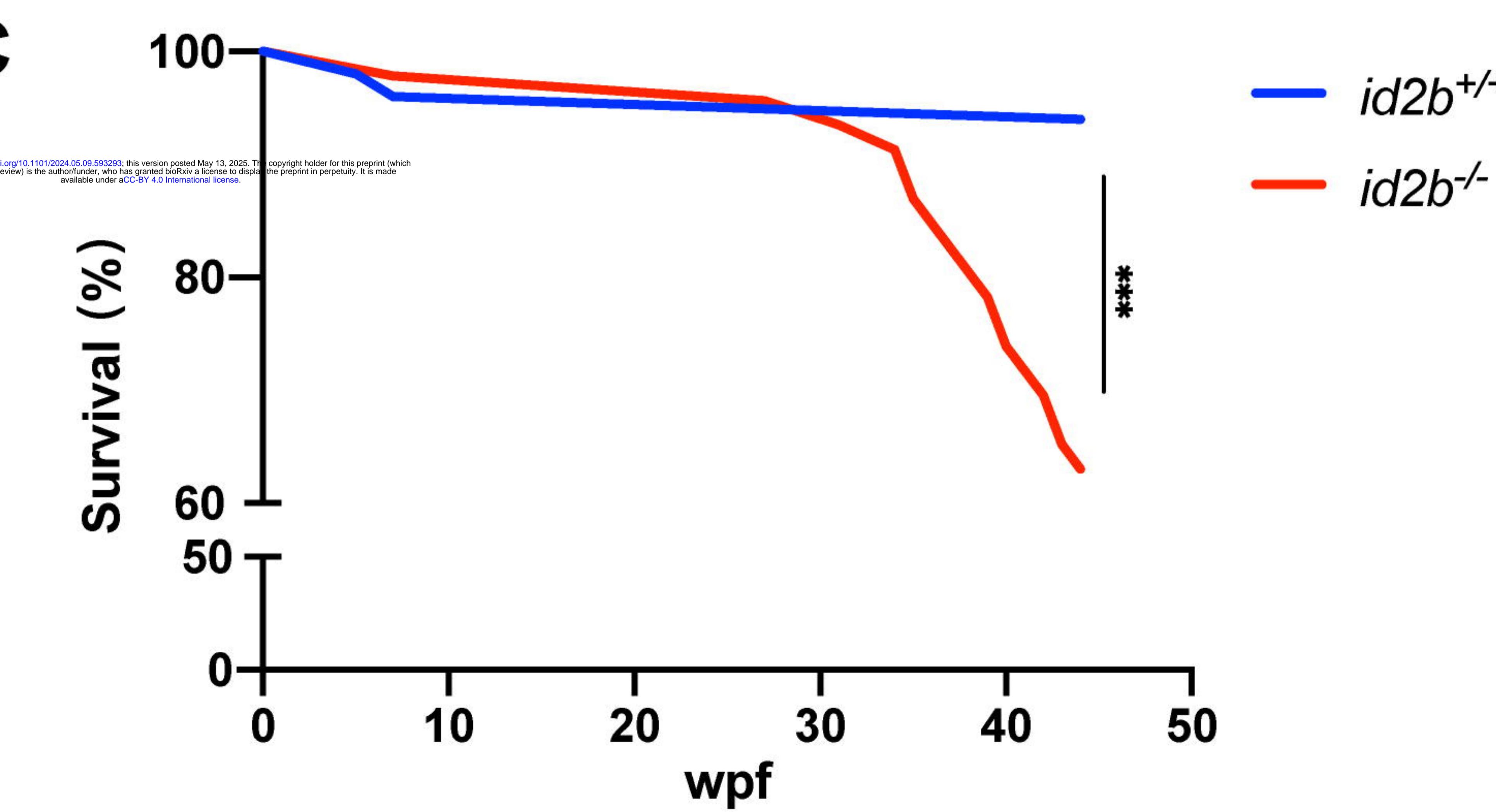
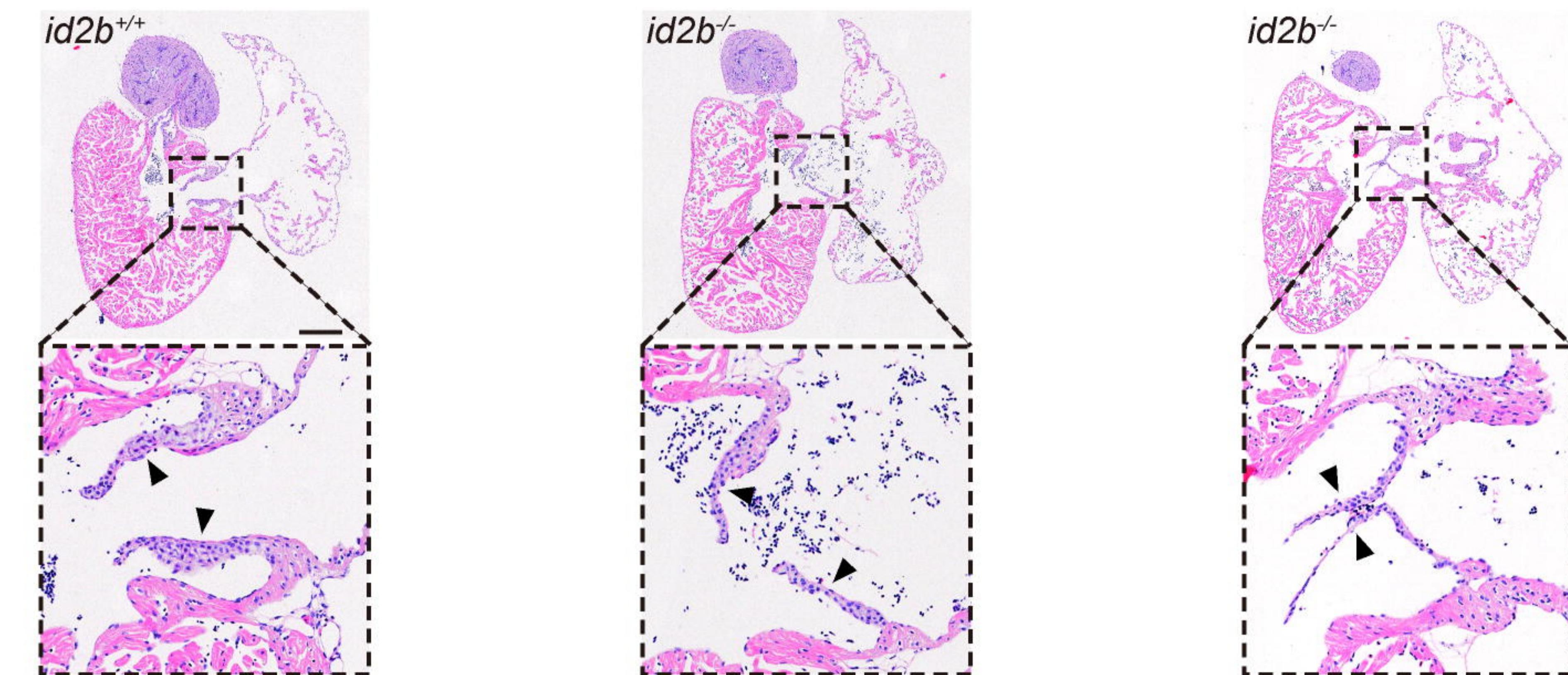
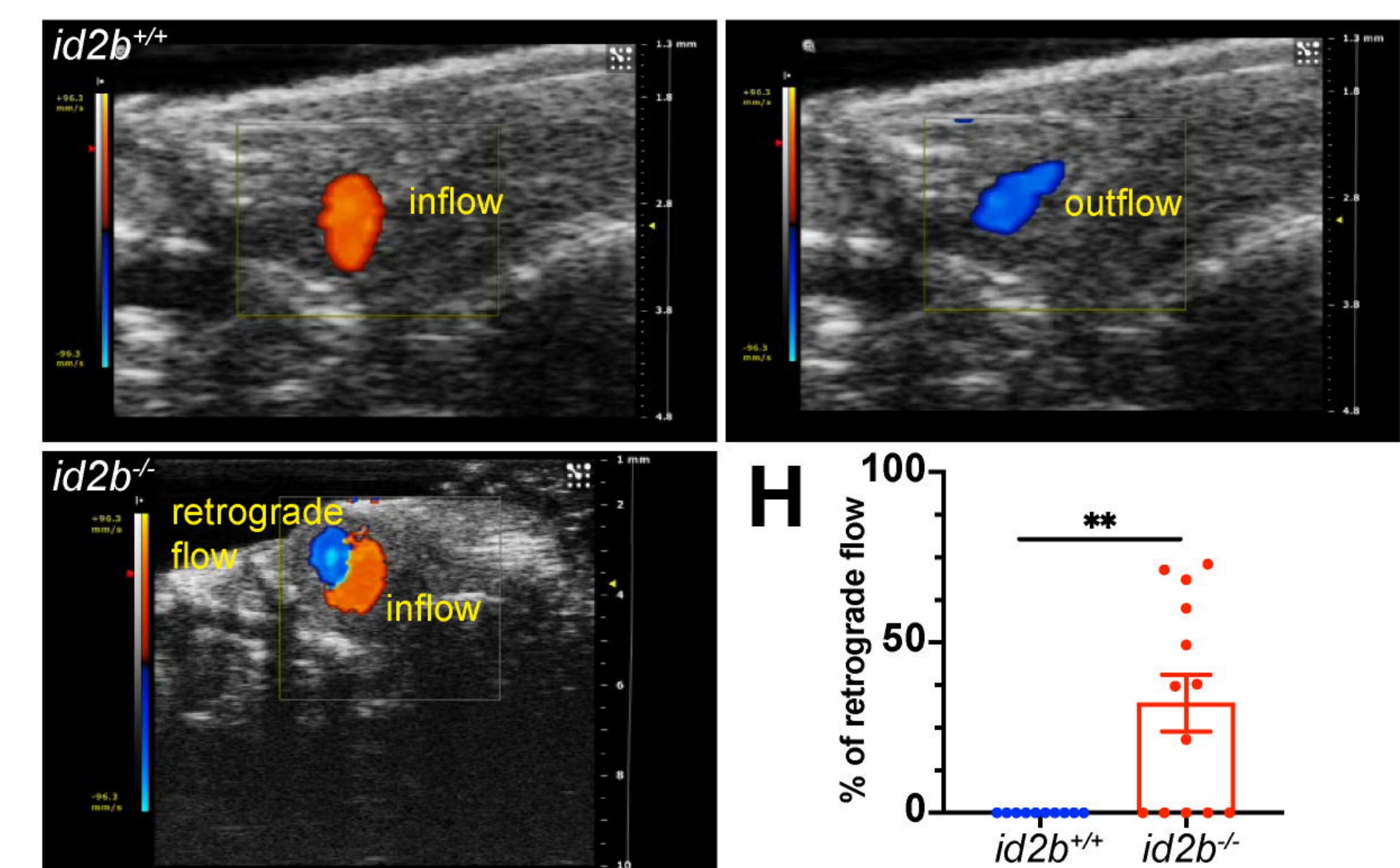
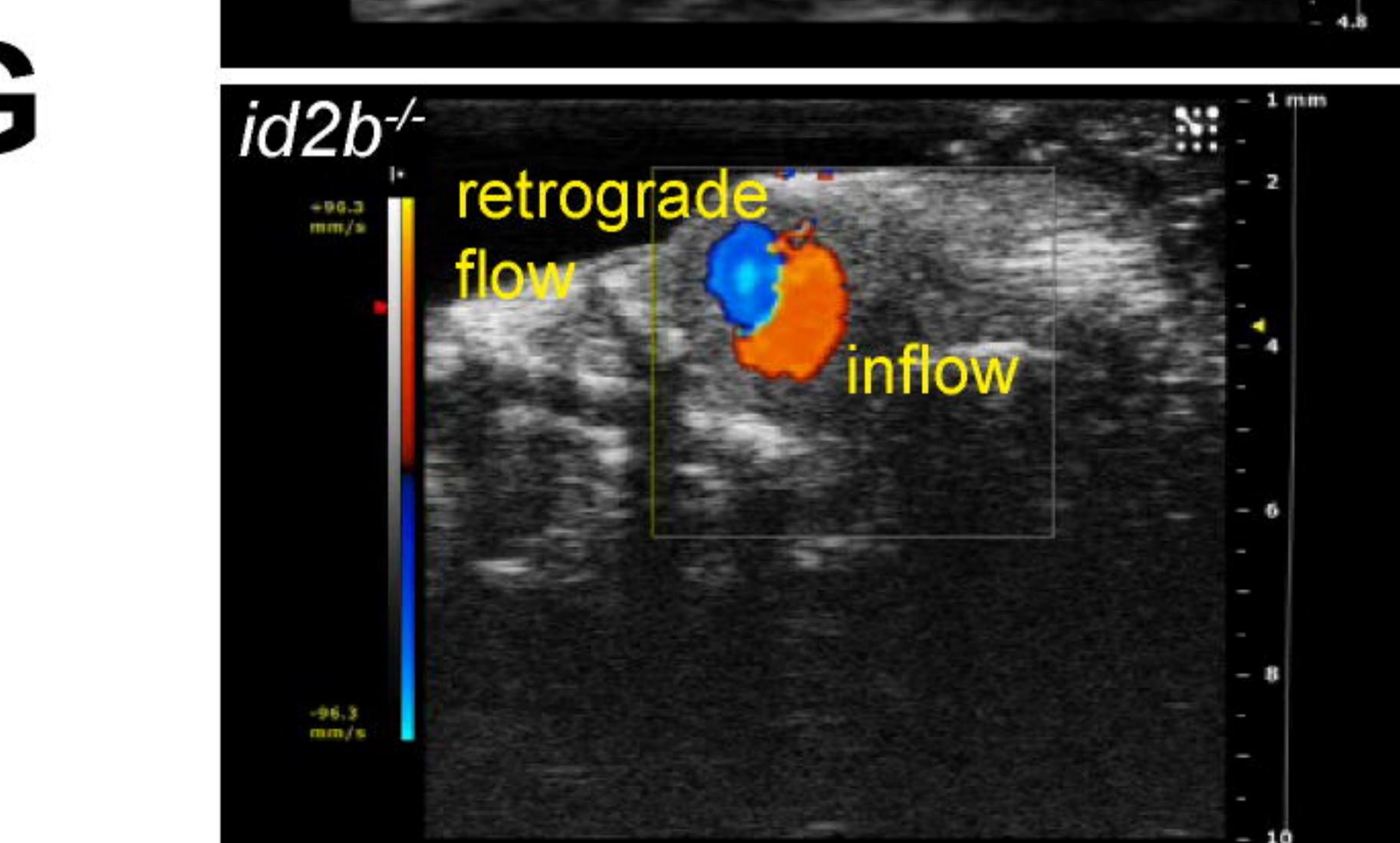
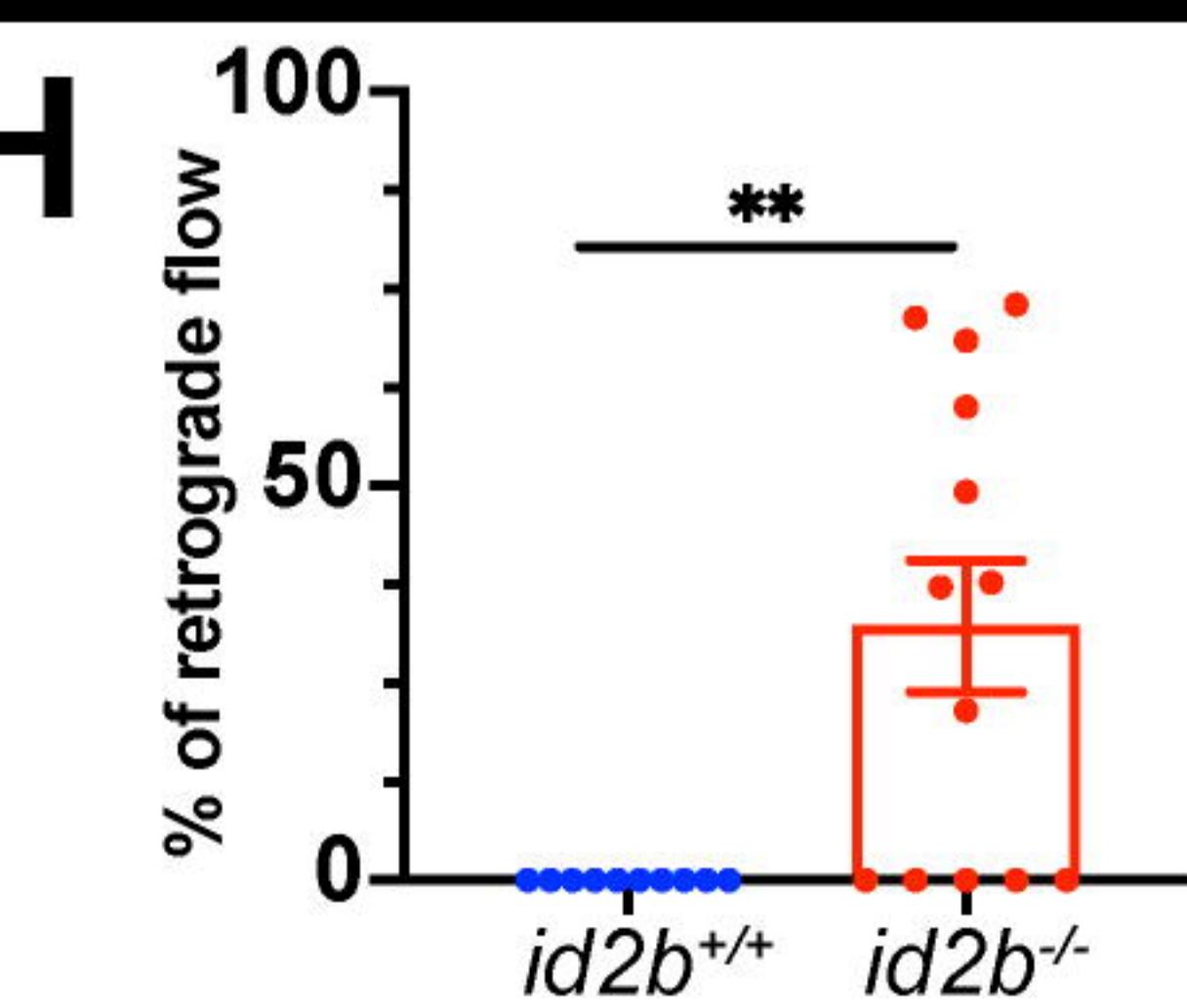
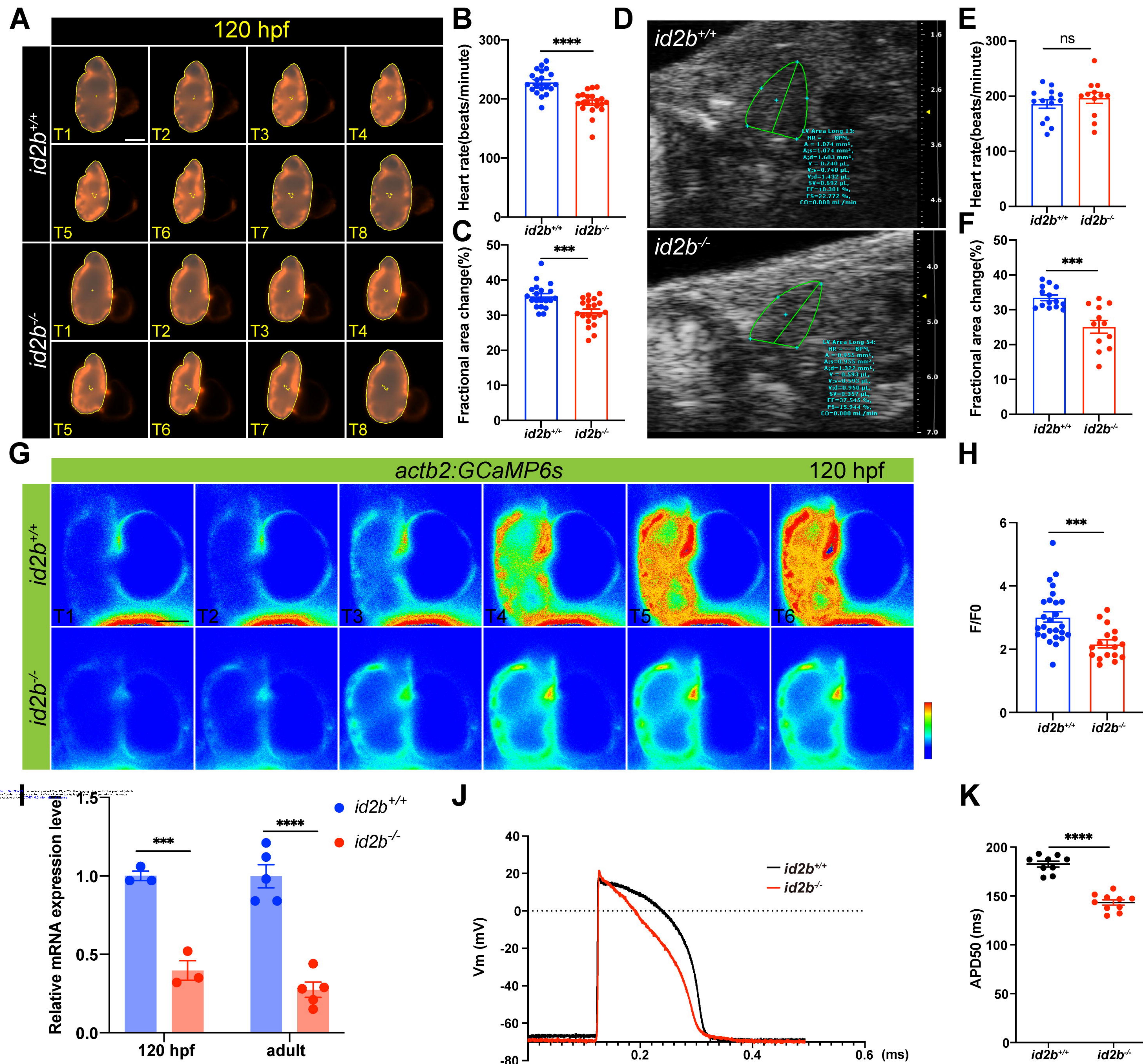










A**D****B****C****E****F****G****H**

Figure 4

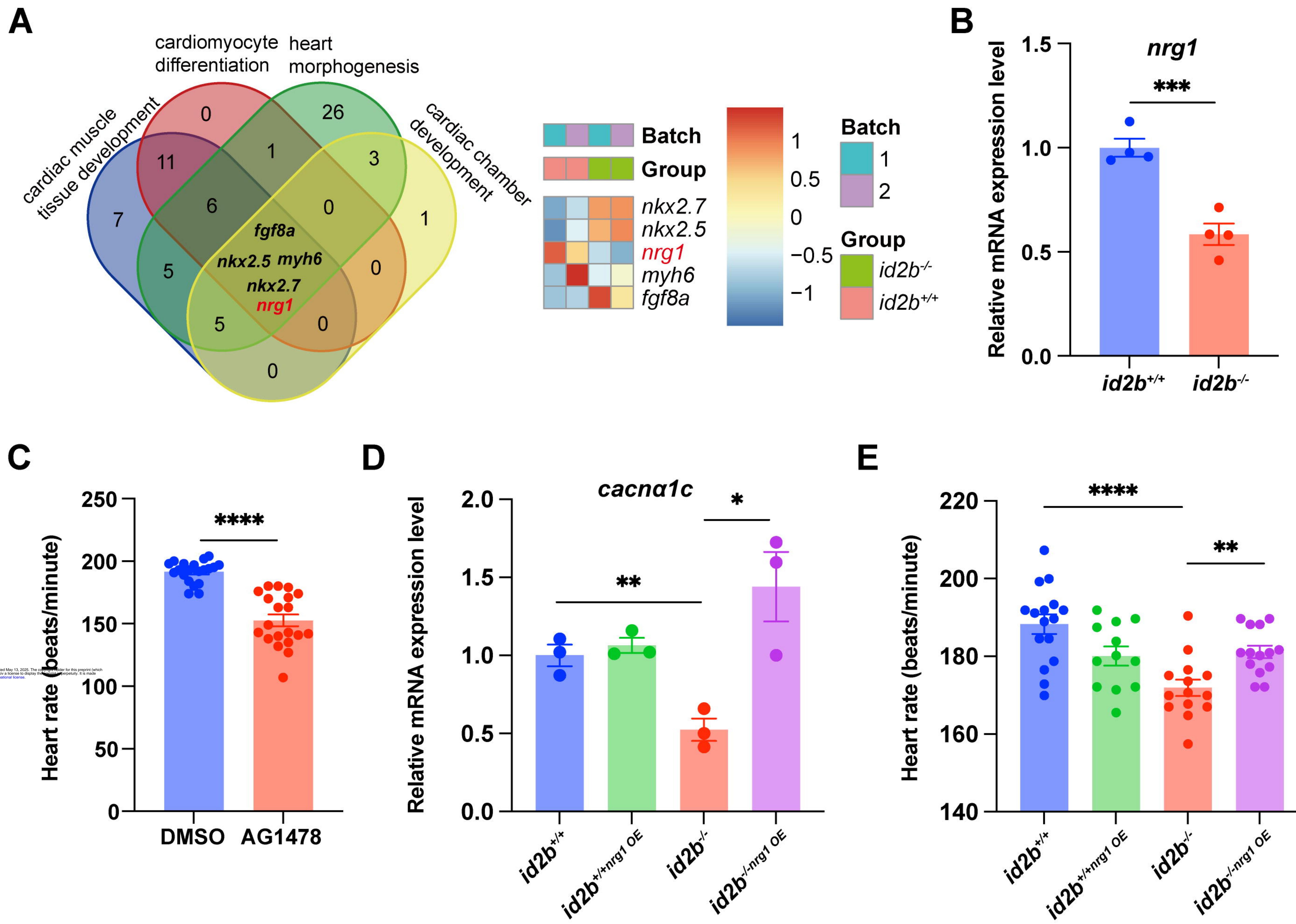


Figure 6

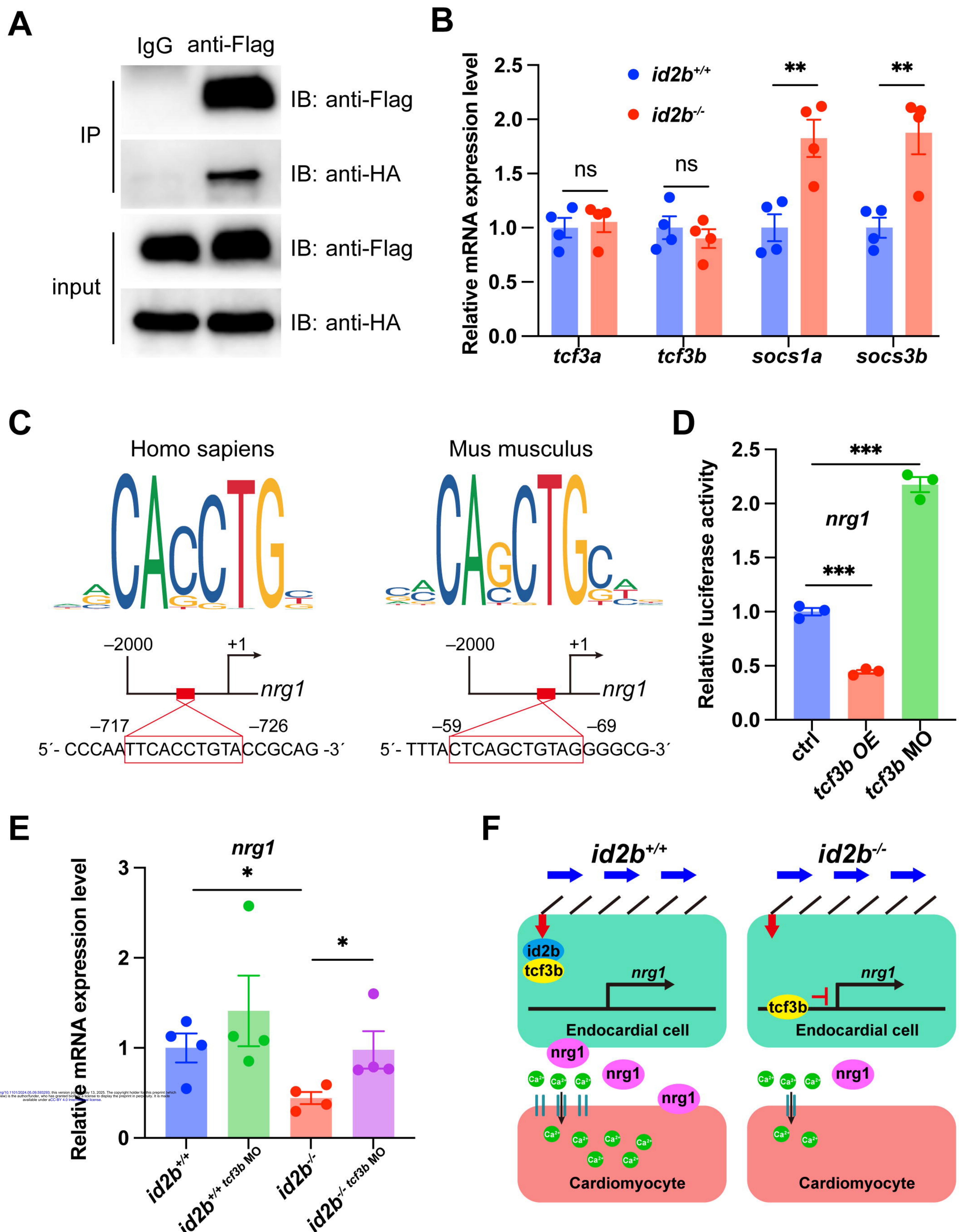


Figure 7