

Temperature alone is not enough: food-web context determines evolutionary responses to warming

Ze-Yi Han¹, Yaning Yuan¹, Katrina DeWitt¹, Andrea Yammie¹, Daniel J. Wieczynski¹, Masayuki Onishi¹, Jean P. Gibert¹

¹Department of Biology, Duke University, Durham, NC, USA

Statement of authorship: ZH and JPG conceived the study; ZH and JPG designed the experimental work. ZH collected the data with support from AY, KD and YY. ZH analyzed the data with support from DJW and JPG; ZH wrote the first version of the manuscript; all authors contributed significantly to subsequent versions.

Data accessibility statement: All annotated code and data are available at our dedicated repository (https://github.com/ZeYiHan/Temp_Pred_Evo).

Running title: Temperature indirectly drives prey evolution

Keywords: Thermal evolution, Food-web eco-evolutionary dynamics, Food-web temperature response, Trait-base ecology, plasticity and evolutionary response

To whom correspondence should be addressed: Ze-Yi Han, Department of Biology, Duke University, Durham, NC, USA, 402-405-3888, zeyihanw@gmail.com

23 ABSTRACT

24 Global warming is reshaping food webs globally. Rapid evolution has been proposed as a buffer
25 against climate change, but how simultaneous shifts in biotic and abiotic environments may
26 influence evolution is unknown. Using experimental evolution and mathematical modeling in
27 microbial food webs of prey algae and ciliate predators, we tested 1) how temperature affects
28 prey evolution and 2) how the food-web context—i.e., predator identity, abundance, and
29 competition among predators—mediates prey evolutionary dynamics. We found that
30 temperature alone does not drive prey evolution unless predators are present, and food-web
31 context determines ensuing evolutionary dynamics. These seemingly complex evolutionary
32 responses are predictable from the joint effects of temperature-dependent, predator-specific
33 predation rates, and the emergence of temperature-dependent prey plasticity. We reveal that
34 evolutionary outcomes under warming are shaped by the broader food web context of species,
35 suggesting that the same species may exhibit different eco-evolutionary responses in different
36 food webs under novel climates.

37

38

39 SIGNIFICANCE

40 Predicting how species evolve under climate change is critical for understanding future changes
41 in food webs. Evolutionary responses have long been known to be driven by environmental
42 change—like temperature—but whether and how ecological interactions influence this process is
43 unknown. Using experimental evolution and mathematical modeling, we show that temperature
44 alone does not drive prey evolution. Instead, the broader food webs context—predator identity,
45 abundance, and competition—mediates how species evolve under warming. Additionally, we
46 demonstrate that prey evolution depends on temperature-dependent predator-specific predation
47 rates and prey plasticity. Our findings highlight that the same species may evolve differently
48 within different food webs, urging the need to integrate ecological interactions when forecasting
49 evolutionary responses to climate change.

50 INTRODUCTION

51

52 Global warming is reshaping food webs worldwide (Barbour & Gibert 2021) through changes in
53 population growth (Dell *et al.* 2011; Frazier *et al.* 2006; Kontopoulos *et al.* 2020) and species
54 interactions (Blois *et al.* 2013; Dell *et al.* 2014). Additionally, increasing temperature raises
55 metabolic costs (Clarke 2006; Clarke & Fraser 2004), forcing predators to consume more prey
56 (Sheridan & Bickford 2011) while gaining diminishing energetic returns (Barneche *et al.* 2021).
57 This reduced energetic intake results in the energetic choking of upper food-web trophic levels,
58 food web rewiring (Barbour & Gibert 2021; Bartley *et al.* 2019), compositional turnover
59 (Komatsu *et al.* 2019), and trophic collapse (Ullah *et al.* 2018; Voigt *et al.* 2003; Zarnetske *et al.*
60 2012).

61

62 Species evolution both influences and is influenced by novel biotic and abiotic conditions. For
63 example, rising temperature could directly influence evolution through effects on organismal
64 metabolism (Alton *et al.* 2024; Clarke 2003), morphology (Diamond *et al.* 2017; Yampolsky *et*
65 *al.* 2014), and fitness (van Heerwaarden & Sgrò 2021; Padfield *et al.* 2016). On the other hand,
66 predation and competition within food webs can influence evolution directly (Abrams 2000;
67 Frickel *et al.* 2017), for example, by selecting in favor of better defended prey that are worse at
68 competing for resources (Yoshida *et al.* 2004). In a warming world, however, changes to abiotic
69 drivers of selection, like temperature, can influence biotic drivers of selection, like predation or
70 competition, urging joint study of these effects.

71

72 Indeed, temperature influences demographic and functional traits asymmetrically among
73 interacting species (Dell *et al.* 2014; Gibert *et al.* 2022), shifting species interactions and the
74 potential for species rapid evolution under warming (Kordas *et al.* 2011; Tseng & O'Connor
75 2015). Higher temperature and predation can also trigger plastic responses that fundamentally
76 alter ecological dynamics, species interactions, and ensuing selection (Agrawal 2001). Species
77 evolutionary responses in a warming world are thus likely jointly determined by the effects that
78 rising temperature and resulting shifts in species interactions (i.e., food web context) may have
79 on phenotypic plasticity and selection. However, how these joint effects may affect evolutionary
80 responses within food webs in a warming world is not known, thus greatly hindering our ability
81 to anticipate the fate of species in new climates.

82

83 We addressed this central issue through a combination of mathematical models and microcosm
84 experiments in a model system of global distribution and importance (Bar-On *et al.* 2018; Herron
85 *et al.* 2019): the interaction between the unicellular green alga *Chlamydomonas reinhardtii* and
86 its ciliate predators, which co-occur within broader microbial food webs across ecosystems, from
87 soils to wetlands (Foissner *et al.* 2009). While evolutionary change operates in all food webs,
88 addressing how it might change in novel climates is logically impossible to test in nature. Our
89 microbial system breaks down this intractability issue while remaining relevant to the natural
90 world through the pivotal role of microbes in all ecosystems worldwide (Foissner *et al.* 2009).
91 We thus assembled tractable microcosm food webs and studied the combined effects of
92 temperature, predation, and predator competition (as a proxy for food web context), on prey
93 evolution. We tracked population dynamics, rapid shifts in prey genetic makeup (i.e., rapid
94 evolution), and plastic phenotypic changes, to disentangle how temperature and food web

95 context co-determine eco-evolutionary outcomes within these microbial food webs across three
96 temperatures.

97

98 RESULTS

99 *Predation maintains genetic diversity and influences eco-evolutionary outcomes*

100 To make testable predictions on how predation could influence prey evolution, we used a
101 mathematical model of rapid evolution that keeps track of two genetically distinct prey strains
102 under predation (see Methods). The model suggests that different prey strains cannot coexist in
103 the absence of predators –classically, unless intra-strain competition is higher than inter-strain
104 competition– (Appendix I Equation 1-2). Predation, however, facilitates the invasion of the strain
105 that would otherwise be lost (Appendix I Equations 1,3), thus maintaining genetic diversity. We
106 tested these theoretical predictions using an experimental predator-prey microbial system where
107 the alga *Chlamydomonas reinhardtii* was preyed upon by one of three possible ciliate protist
108 species (*Glaucoma* sp., *Tetrahymena pyriformis*, *Paramecium caudatum*, see Methods). The
109 algal prey population was composed of two genetically and phenotypically distinct strains – i.e.,
110 the fluorescently tagged wild type (WT) and untagged *vfl1-1* (variable flagella) genotypes (Fig.
111 1). We kept track of prey abundances, phenotypes, and genetic frequencies over time to quantify
112 both plastic and evolutionary responses (see Methods). Our empirical results corroborated our
113 model predictions. In the absence of predators, WT consistently outcompeted *vfl1-1*; However,
114 predation either 1) facilitated the persistence of *vfl1-1* that was lost under control conditions, or
115 2) slowed down the rate of *vfl1-1* loss (Fig. 2a-d; Appendix II Figure 1-2). By altering the
116 temporal dynamics of prey genetic frequencies, predator-prey interactions can determine
117 evolutionary outcomes.

118

119 Different predators selected for WT and *vfl1-1* differently, as indicated by differences in *vfl1-1*
120 frequencies across predator treatments (Fig. 2a-d; Appendix IV Table 1-2). Interestingly, our
121 model can reproduce these effects and suggest that differences in predator attack rates across
122 genotypes alone should be sufficient to explain differences in prey evolutionary outcomes across
123 predators (Fig. 2a-b, model parameter see Appendix I Table 1). This mathematical understanding
124 thus offers a simple explanation for otherwise seemingly complex dynamics, and shows that
125 predator-specific differences in predation rates influence the eco-evolutionary process and prey
126 genetic makeup.

127

128 *Prey traits influence eco-evolutionary outcomes*

129 In our experimental system, predation can be influenced by two key prey functional traits:
130 motility and defensive clumping. Strain *vfl1-1* has impaired swimming ability compared to WT
131 (Adams *et al.* 1985; Appendix V videos) and is predicted by theory to experience lower predation
132 rates relative to the more motile WT, all else equal (Aljetlawi *et al.* 2004; González *et al.* 1993;
133 Pawar *et al.* 2012; Visser 2007). Our data supports this prediction as *vfl1-1* is selected against in
134 the absence of predators, and selected in favor in the presence of most predators (Fig. 2 c-d)
135 owing to decreased predation through impaired motility relative to WT.

136

137 However, when predation pressure is high enough, WT can develop plastic defensive clumps
138 (Lurling & Beekman 2006), while *vfl1-1* cannot. We quantified the onset of this clumping
139 defensive trait as cytometric changes in algal particle size over time: a faster increase in average
140 particle size over time should indicate a quicker onset of defensive clumping. Genotype *vfl1-1*

141 showed no significant clumping in response to predation (Fig. 2e yellow, Appendix IV Table 3)
142 while WT showed strong plastic clumping against predation (Fig. 2e green; Appendix II Fig. 3-4;
143 Appendix IV Table 4). The magnitude of the clumping, as measured by the shape of the
144 distribution of WT particle size, varied by predator (Fig. 2e, Appendix IV Table 4), indicating
145 predator-specific clumping responses likely resulting from model-predicted differences in
146 predation rates. Last, we found differences in the relative fitness of motility and defensive
147 clumping traits that are predator-specific. For example, *Glaucoma* sp. selected strongly in favor
148 of *vfl1-1* while predator *P. caudatum* drove *vfl1-1* to extinction (Fig. 2c-d). These results show
149 that food web context not only influences prey evolution, but also determines how prey traits
150 shape the evolutionary process itself.

151
152 *Temperature only affects eco-evolutionary outcomes in the presence of predation*
153 Temperature alone increased both WT and *vfl1-1* growth rates (Appendix II Fig. 5, Appendix IV
154 Table 5), but did not affect prey rapid evolution –measured as rapid shifts in genetic frequencies–
155 on its own (Fig. 3a Control panel; Appendix II Figure 2). However, temperature significantly
156 influenced prey rapid evolution in the presence of predation, indicating that the temperature
157 effects on prey evolution are mediated by predation (Fig. 3a; Appendix IV Table 6). We propose
158 two concurrent mechanisms to explain this result: first, temperature influences prey evolution
159 through differences in predator thermal performance and predation rates, leading to changes in
160 selection on prey phenotypes (Fig. 3d mechanism 1). Second, temperature can affect prey
161 evolution through its effect on the timing and magnitude of prey plastic responses induced by
162 predation (Fig. 3d mechanism 2). Importantly, in the absence of predators, neither mechanism is

163 at play, explaining why temperature does not drive prey evolution in this system on its own, and
164 how food web context can influence the evolutionary outcome.

165
166 To illustrate how these mechanisms explain the observed eco-evolutionary dynamics, we focus
167 on predation by *P. caudatum* as a case study. The first mechanism was evidenced by
168 temperature-dependent changes in the predator demographic parameters that underpin their
169 population dynamics: the intrinsic growth rate, r (Appendix II Fig. 6, Appendix IV Table 7), and
170 predator maximum abundances, which serve as a proxy for the carrying capacity, K (Fig. 3b,
171 Appendix II Fig. 6, Appendix IV Table 7). Both r and K are tied to predation intensity, as faster
172 population growth (r) and larger carrying capacity (K) require increased predation to fuel and
173 maintain biomass growth. Consequently, increased predation accelerated prey evolutionary
174 dynamics by exerting stronger selection on the prey, resulting in increased predation rates and
175 stronger selection against WT for its high motility in the early stage of the experiment (or,
176 conversely, in favor of *yfll-1*, Fig. 3b data panel, bars left of dash line; Appendix IV Table 2, 6).
177 Evidence for the second mechanism comes from the differences in the timing and magnitude of
178 WT plastic responses across temperatures (Fig. 3c and Appendix II Fig. 3). With the onset of
179 plastic clumping (Fig. 3b, grey dot in conceptual panel), WT had higher relative fitness than *yfll-1*
180 in the later stages (Fig. 3b conceptual panel), leading to a decline in the less-defended *yfll-1*
181 (Fig. 3b data panel, bars right of the dash line). Importantly, temperature-dependent predation
182 rates (Fig. 3b) influence the clumping response through changes in the distribution of WT
183 particle size, including mean, median, variance, skewness, and kurtosis (Fig. 3c; Appendix IV
184 Table 8). The intensified WT plastic responses at higher temperatures (Fig. 3c) and the
185 subsequent temperature-dependent drop in *yfll-1* frequencies (Fig. 3b) further evidenced the

186 effects of temperature on the anti-predator defense and ensuing eco-evolutionary dynamics (Fig.
187 3b).

188

189 *Predator competition modulates how predation affects prey evolution across temperatures*

190 To understand the importance of the broader food web context, we introduced a second predator
191 (i.e., a predator competitor) and assessed their effect on the observed eco-evolutionary dynamics
192 across temperatures (Fig. 4). We did so by quantifying the similarity between prey evolutionary
193 dynamics in single-predator vs predator-competition treatments using Earth Mover's Distance
194 (see Methods). First, we discovered that the directional selection applied by each predator
195 individually is attenuated when two competing predators favor distinct strains (Fig. 4).

196 Specifically, prey evolutionary dynamics of single predator treatments were least similar to one
197 another between each pair of the competing predators (e.g. prey evolutionary dynamics of
198 *Glaucoma sp.* and *P. caudatum* single predator treatments have high EMD score, or low
199 similarity; Appendix III Fig. 1). In contrast, the evolutionary dynamics of competition treatments
200 (e.g. *Glaucoma sp.* + *P. caudatum*) showed higher similarity to the evolutionary dynamics of
201 either single predator treatments (Appendix III Fig. 1).

202

203 Second, we found that predator competition mediated temperature effects on prey evolution (Fig.
204 4; Appendix IV Table 9-12) through the same mechanisms described previously (Fig. 3d).
205 Particularly, differences in predator thermal performance drive differences in their relative
206 contribution to selection on prey traits across competition treatments (Appendix II Fig. 7a),
207 leading to temperature effects on prey evolution in the presence of predation and predator
208 competition. For example, predation favored *yfII-1* in all competition treatments where *T*.

209 *pyriformis* and *Glaucoma* sp. had their highest thermal performance in competition with
210 *P. caudatum*, (i.e. highest r and max population density at 19°C, Appendix II Fig. 6; Fig. 3d
211 mechanism 1; Fig. 4) and WT showed the slowest clumping response (Appendix II Fig. 7b),
212 resulting in strong selection against WT (Fig. 4; Appendix II Fig. 7a; Fig. 3d mechanism 2).
213 However, at warmer temperatures, *P. caudatum* became more abundant and performed better
214 (Appendix II Fig. 6), exerting stronger selection on prey than its competitors (Fig. 3d mechanism
215 1; Fig. 4). This resulted in faster and stronger plastic response by WT (Fig. 3d mechanism 2),
216 selection in favor of WT, and accelerated loss of *vfl1-1* in competition treatments at high
217 temperature (Fig. 4, 25°C; Appendix Fig. 7a). Consequently, prey evolutionary dynamics in
218 competition treatments more closely resembled those in *T. pyriformis* and *Glaucoma* sp. single
219 predator treatments at cooler temperatures, but more resembled that in *P. caudatum* treatment at
220 higher temperatures (Appendix III Fig. 1). Taken together, these results demonstrate food web
221 context influences the effects of temperature on these eco-evolutionary dynamics in a predictable
222 way through the interplay between prey plasticity, predator thermal performance, and
223 competitive ability within the broader food web. The density dynamics of both prey genotypes
224 and all predator species across all treatments can be found in Appendix II Fig. 8.

225

226 DISCUSSION

227 Our results reveal that temperature strongly but indirectly affects prey evolution within food
228 webs through differences in temperature-dependent predation rates across genotypes and prey
229 defensive plastic responses (Figs. 2-3). In the presence of multiple predators, differences in
230 predator performance across temperatures leads to predator-specific differential selection across
231 prey genotypes—which would not occur in the absence of predation and ultimately lead to

232 differences in prey evolutionary outcomes across food web contexts (Fig. 4). We highlight the
233 significance of the broader food web context in shaping species evolution under global warming,
234 and show how even identical species in different food webs may respond to warming in different
235 ways.

236

237 *Plasticity influences prey rapid evolution*

238 Our study shows that predator differential selection on multiple prey functional traits (i.e.
239 motility and clumping) facilitates the maintenance of additive genetic diversity (Fig. 2, Siepielski
240 *et al.* 2020)). Moreover, we revealed the reciprocal effects of prey functional traits and species
241 interactions, and how these underpin the dynamics of species evolution within food webs (Fig.
242 3). While previous studies have shown that more motile prey experience higher predation rates
243 compared to slower prey (Andersen & Dölger 2019; González *et al.* 1993), we found that the
244 relative fitness of the less motile *vfl1-1* strain was influenced by the onset of a plastic defensive
245 trait in the WT strain, itself temperature-dependent (Fig. 3). The onset of this trait-mediated eco-
246 evolutionary process sometimes led to a new equilibrium in which all genetic variants persisted,
247 or one in which only one did (Fig. 3). Consequently, dynamic, temperature-dependent plastic
248 responses can significantly alter the course of the evolutionary process and influence the fate of
249 genetic variants in a warming world. However, this process is vastly underappreciated and
250 poorly understood in food web ecology.

251

252 *Predator identity and food web context affect prey plastic responses*

253 We showed that evolutionary outcomes are strongly dependent on predator identity and the
254 broader food web context, as the interplay between rapid plasticity and evolution can shift

255 predator preferences (Fig. 3). Additionally, multiple predators can have joint effects in shaping
256 prey plastic and evolutionary responses (Fig. 4; Appendix III Figs. 1-2), which is itself
257 contingent on the composition of the food web. Indeed, prey evolutionary dynamics under
258 selection by multiple predators reflected the combined effects of selection imposed by individual
259 predator species (Fig. 4; Appendix III Fig. 1). Phenotypic change, plastic or evolutionary, can
260 thus determine the fate of organisms within food webs: shifts in one functional trait in response
261 to one predator may affect the interaction with another predator, potentially cascading through
262 the entire community, as had been predicted by theory (Cosmo *et al.* 2023; Guimarães *et al.*
263 2017). Our study highlights the importance of achieving a mechanistic understanding of the
264 interplay between species functional trait dynamics and biotic interactions across trophic levels
265 to better understand their fate in a changing world (Henn *et al.* 2018).

266

267 *Food web context and temperature interactively drive prey evolution*

268 While temperature-mediated changes in species interactions have been hypothesized to drive
269 changes in species plastic and evolutionary functional traits in a warming world (Barbour &
270 Gibert 2021; Fischer *et al.* 2016; Fordyce 2006), empirical support for this hypothesis is lacking.
271 We show that reciprocal effects between food web context and trait dynamics together drive prey
272 evolutionary trajectories differentially across temperatures (Figs. 3-4). If food-web context and
273 temperature jointly influence rapid changes in the genetic makeup of populations, as shown here,
274 warming could severely impact species persistence across in warming food webs. For example,
275 we show that predation and predator diversity can maintain prey trait diversity (Fig. 2).
276 However, observed increasing extinction rates among predators under warming (Thunell *et al.*
277 2021; Zarnetske *et al.* 2012) may prompt a decrease in predator diversity and subsequent

278 reduction in prey genetic and trait diversity, in turn decreasing potential for future adaptive
279 evolution. This loss of genetic diversity could be most pronounced when dominant predators
280 disproportionately affect prey evolution under warming (e.g., *P. caudatum*, Fig. 4), particularly in
281 simpler food webs at higher latitudes (Gibert 2019). Standing plasticity and the evolution of
282 plasticity have the potential to alter these outcomes, underlining the importance of understanding
283 their ecological consequences in a rapidly changing world. Last, while species evolution is
284 shaped by the food web context (Figs. 2-4), the composition and network complexity of food
285 webs are rapidly changing, which should have important but currently unknown effects on
286 evolutionary outcomes (Barbour & Gibert 2021).

287

288 CONCLUSIONS

289 Our research reveals that temperature influences prey evolution exclusively in the presence of
290 predators, highlighting the crucial role of food-web context in determining eco-evolutionary
291 outcomes. While rapid evolution has been proposed as a potential buffer against the impacts of
292 climate change on natural communities, our study underscores that anticipating evolutionary
293 outcomes and species fate in novel climates demand a deeper understanding of evolutionary
294 responses across food-web contexts and accounting for rapid shifts in these food webs as the
295 globe warms.

296 METHODS

297 *Experimental work*

298

299 Unicellular microalgae can be found in diverse habitats, from soil to freshwater ecosystems
300 worldwide (Arora & Sahoo 2015; Falkowski 1994). These organisms are at the base of all food

301 webs, fueling both green and brown energy pathways (Guo *et al.* 2016), and are routinely preyed
302 upon by microbes (e.g., ciliate protists) and metazoans (e.g., rotifers, cladocerans) alike
303 (Calatrava *et al.* 2023). Our focal prey species, the unicellular green alga *Chlamydomonas*
304 *reinhardtii*, is a well-established model organism with known mutations linked to functional
305 traits (Calatrava *et al.* 2023; Sasso *et al.* 2018; Tulin *et al.* 2024). Here we used two genetically
306 and phenotypically distinct strains of *C. reinhardtii*: wild type (WT) and *vfl1-1* (variable flagella)
307 as our prey population.

308

309 Wild type (WT) possesses two flagella that allow the entire range of normal locomotive
310 behaviors (Huang 1986) and can form large cell clumps, a common form of defense against
311 predation (Herron *et al.* 2019). Strain *vfl1-1* produces individuals with variable numbers of
312 flagella from 0 to 10 and defective swimming ability (Adams *et al.* 1985). Additionally, *vfl1-1*
313 seems unable to clump under predation. To distinguish these two strains and keep track of their
314 relative frequencies in mixture populations, we used mNeonGreen fluorescent protein to tag WT
315 populations and used flow cytometry to count tagged WT vs non-tagged *vfl1-1* individuals over
316 time (Fig. 1a). Both strains exhibit autofluorescence (Fig. 1a), but only one (WT) will show
317 fluorescence in the near green spectrum (Fig. 1a). We used two protist predators of similar body
318 size, *Tetrahymena pyriformis* and *Glaucoma sp.*, as the focal predators, and a larger protist,
319 *Paramecium caudatum*, as a competitor for the focal predators (Fig. 1b). All four species are
320 commonly found in freshwater and soil systems (Cornwallis *et al.* 2023; Foissner & Berger
321 1996).

322

323 To understand how temperature and food web context (i.e., presence of predators and predator
324 competitors) jointly influence *C. reinhardtii* evolution, we set up experimental microcosms in
325 autoclaved 250 ml borosilicate jars filled with 100 ml of 9:1 COMBO media (Kilham *et al.*
326 1998): timothy hay infusion (Brans *et al.* 2022). Each microcosm was assigned to one of three
327 possible predation treatments (no predation/Control, + *T. pyriformis*, + *Glaucoma sp.*), one of
328 two possible predator competition treatments (+ *T. pyriformis* & *P. caudatum*, + *Glaucoma sp.* &
329 *P. caudatum*), and one of three possible temperatures: 19°C, 22°C, and 25°C. The manipulations
330 produced a factorial design with 18 combinations of treatments (Fig. 1b), each replicated six
331 times, yielding a total of 108 microcosms.

332

333 Prior to experimentation, the algae strains were maintained on TAP agar (Gorman & Levine
334 1965) at room temperature. Protist cultures were maintained in bacterized timothy hay protist
335 media at 22°C and a 16:8-hour light-dark cycle. All cultures were transferred to 9:1 COMBO
336 media: timothy hay protists media and cultured under the same light and temperature regime as
337 protist stock cultures 2 weeks prior to experimental work. We carried out the experiment in two
338 blocks on two consecutive days; each block had half of the replicates in all treatments. We
339 started WT and *vfl1-1* strains at equal densities of 2000 individuals/ml in all microcosms and
340 initialized *T. pyriformis*, *Glaucoma sp.*, and *P. caudatum* populations at density of 5 ind/ml, 5
341 ind/ml, and 0.5 ind/ml, respectively. The experiment was carried out for 15 days, or ~ 30-45 *C.*
342 *reinhardtii* generations under control conditions at the three focal temperatures.

343

344 We recorded all species densities on days 0, 5, 10, and 15. We used flow cytometry (NovoCyte
345 2000R, Agilent, CA, USA) to distinguish the two genetically and phenotypically distinct strains

346 of *C. reinhardtii*: mNeonGreen tagged wild type (WT) and *vfl1-1* (variable flagella). This
347 allowed us to track the abundances and frequencies of both strains over time. We used forward
348 scatter height (FSC-H) as a measure of cell/cell clump size of *C. reinhardtii* (Adan *et al.* 2017) to
349 track plastic morphological change in response to protist predation, thus providing a window into
350 both rapid plastic change (i.e., within strains), and rapid evolutionary change by clonal sorting
351 (i.e., change in genetic frequencies; Fig. 1c). We recorded the density of all protist species
352 through fluid imaging (FlowCam; Yokogawa Fluid Imaging Technologies, Portland, ME, USA)
353 at a magnification of 10x (Fig. 1c).

354

355 *Data analysis*

356 To analyze how temperature and ecological interactions influenced prey evolution, we used
357 autoregressive moving average linear mixed models (ARMA-LMMs; ‘nlme’ package, v. 3.1-
358 162) to examine autocorrelation in our data. After finding no significant effects of
359 autocorrelation (Appendix IV Table 1), we used classic linear mixed models (LMM) in the
360 ‘lme4’ package (version 1.1-3 in R v. 4.3.1) to the rest of analyses. We calculated the relative
361 frequencies of *vfl1-1* in total *C. reinhardtii* population as the measure of prey evolution. To
362 better evaluate whether changes in prey evolution were affected by temperature, we also
363 calculated the relative changes in *vfl1-1* frequencies across temperatures (Δ *vfl1-1* frequency) by
364 deducting the mean *vfl1-1* frequencies at 19°C from each replicate at 22°C and 25°C in each
365 treatment.

366

367 We first performed LMM on the single predator treatments and the control (Fig. 1b) to
368 understand the individual effects of each predator on prey evolution. We analyzed the fixed

369 effects of predator species identity, temperature, and time on the prey evolution and temperature
370 effects on prey evolution, by using *yf11-1* frequency and $\Delta yf11-1$ frequency as response variables
371 respectively. We then accounted for the densities of the single predators as a fixed effect to the
372 previous model to analyze the effects of predation on prey evolution. We then performed LMM
373 on *T. pyriformis* and *Glaucoma sp.* single predator treatments and the competition treatments
374 (Fig. 1b) to test whether the presence of a second predator had joint effects with predator species
375 identity, predator density, and temperature on *yf11-1* genetic frequency and $\Delta yf11-1$ frequency
376 using previous linear mixed models.

377

378 Additionally, to quantify the relative importance of each predator on prey evolution in
379 competition treatments, we calculated Earth Mover's Distance (EMD from now on) with
380 'emd' (R package, version 0.3-3), which quantifies the similarity of prey evolution patterns
381 over time between different predation treatments (higher EMD means less similarity).
382 Specifically, at each temperature, we calculated the EMD of *yf11-1* frequencies 1) between the
383 single predator treatments in each competition pair and 2) between each of the single predator
384 treatments and the corresponding competition treatment.

385

386 To understand the mechanism through which predation and temperature jointly affect prey
387 evolution, we quantified demographic parameters that govern species population dynamics: 1) a
388 proxy for maximum growth rate, r , at each temperature, as $\ln(N_t) - \ln(N_0)]/time$ using day 5 data
389 and their initial densities on day 0, and, 2) maximum density, N_{max} , by measuring the highest
390 daily average across replicates. We used linear models ('stats' v4.3.1) and stepwise model

391 selection ('stepAIC' in R package 'MASS' v7.3-60) to test the effects of temperature and
392 competition on each of the predators.

393

394 We also used linear mixed models to understand how abiotic and biotic factors affect prey
395 plasticity. Similar to previous LMMs, we tested how temperature, predator species, predator
396 density, and time, affect WT and *vfl1-1* particle sizes in single predator treatments. In addition to
397 those factors, we also tested how the presence/absence of a predator competitor affects prey
398 particle size in the competition treatment.

399

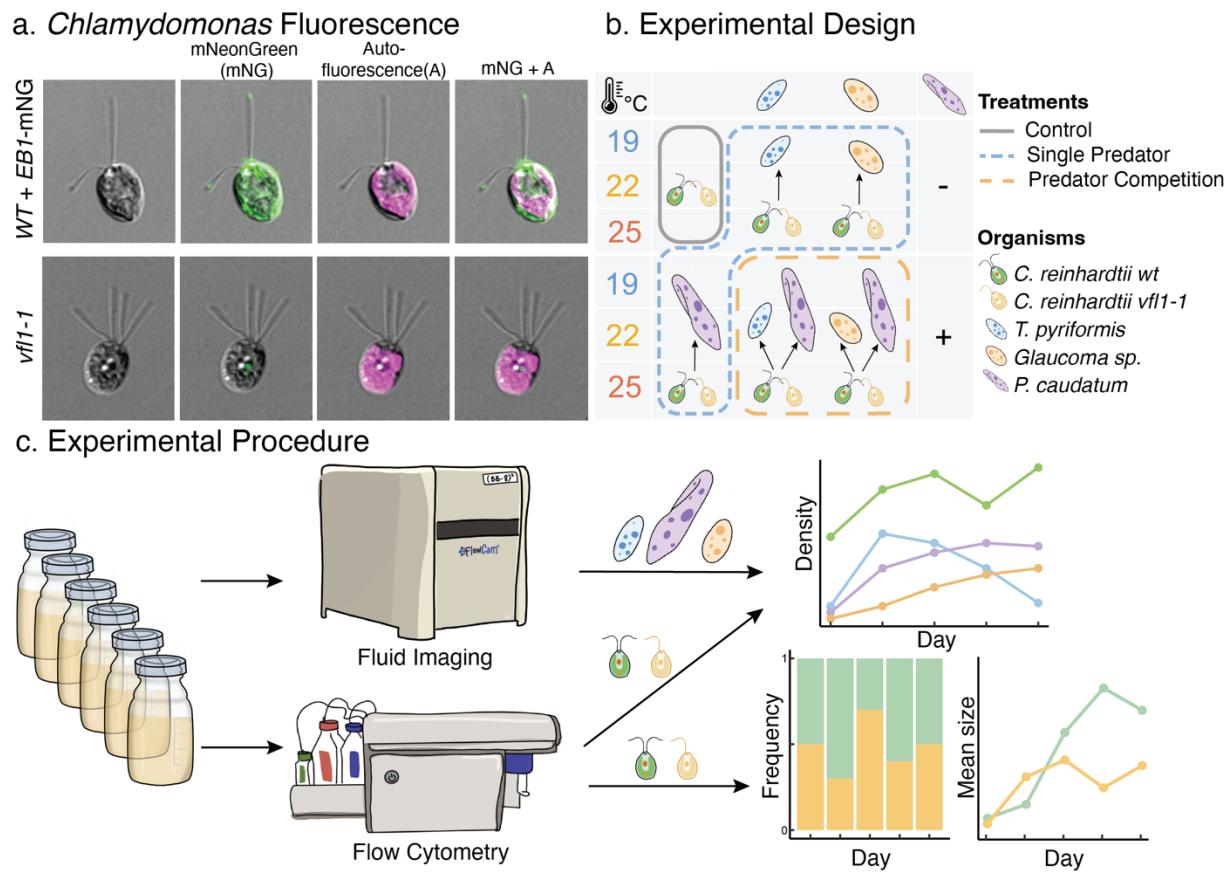
400 *Mathematical modeling*

401 To understand the processes that drive rapid evolution in the prey population in the
402 presence/absence of a predator, we mathematically tracked the population dynamics of a system
403 with two genetically distinct prey strains under predation by a shared predator. We assumed that
404 WT (W) and *vfl1-1* (V) grow logistically and compete for resources at different rates using a
405 model in differential equations. Further, we assumed that the predator (P) has a multispecies type
406 II functional response and dies at a background mortality rate, *m*. Our model allows for the
407 predator to prey on each strain at different rates. Taken together, the equations modeling the
408 strain dynamics and predator population are:

$$409 \frac{dW}{dt} = r_w W \left(1 - \frac{W}{K_w} - \frac{a_{wv} V}{K_w} \right) - \frac{d_{wp} W P}{1 + d_{vp} \eta_{vp} V + d_{wp} \eta_{wp} W}$$

$$410 \frac{dV}{dt} = r_v V \left(1 - \frac{V}{K_v} - \frac{a_{vw} W}{K_v} \right) - \frac{d_{vp} V P}{1 + d_{vp} \eta_{vp} V + d_{wp} \eta_{wp} W}$$

$$411 \frac{dP}{dt} = \frac{e_v d_{vp} V P}{1 + d_{vp} \eta_{vp} V + d_{wp} \eta_{wp} W} + \frac{e_w d_{wp} W P}{1 + d_{vp} \eta_{vp} V + d_{wp} \eta_{wp} W} - m P ,$$

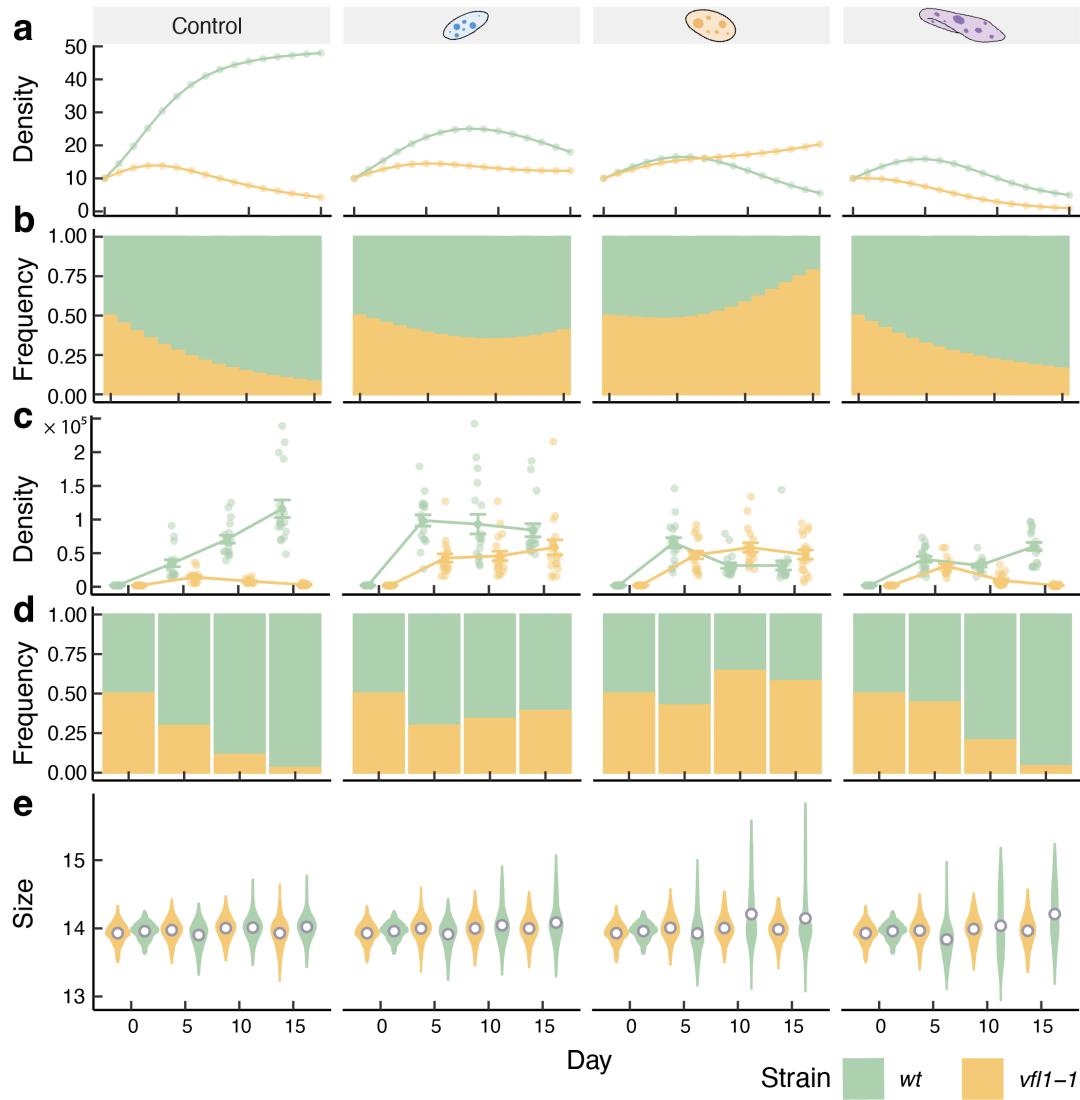

412 where r is intrinsic growth rate, K_i is the carrying capacity of each genotype, a_{ww} is the
413 competition effect of V on W (vice versa for a_{vw}), d_{wp} and η_{wp} are the attack rate and the
414 handling time of the predator on W , a_{vp} and η_{vp} are those of predator on V , e_w and e_v are the
415 conversion efficiencies of W and V to predator biomass. We used the growth rate of WT and
416 *vfl1-1* in control conditions as r_w and r_v and then explored parameter space with the remaining
417 model parameters to find dynamics that qualitatively reproduced the observed dynamics. In the
418 appendix we also include alternative model formulations (e.g., treating predation as a constant
419 mortality rate, predators with a type I functional response) and provide an analytical treatment of
420 the model and associated predictions (Appendix I).

421

422

423

424



425

426 Figure 1. Experimental organisms and designs. a) Images of a *C. reinhardtii* wild-type strain
427 expressing mNeonGreen (mNG)-tagged EB1 protein and a *vfl1-1* mutant strain. *vfl1-1* cells have
428 variable numbers of flagella ranging between zero to more than four. b) Factorial design of the
429 experiment, showing 3 temperatures by 3 predations by 2 competition treatments. c)
430 Experimental procedures of sampling methods.

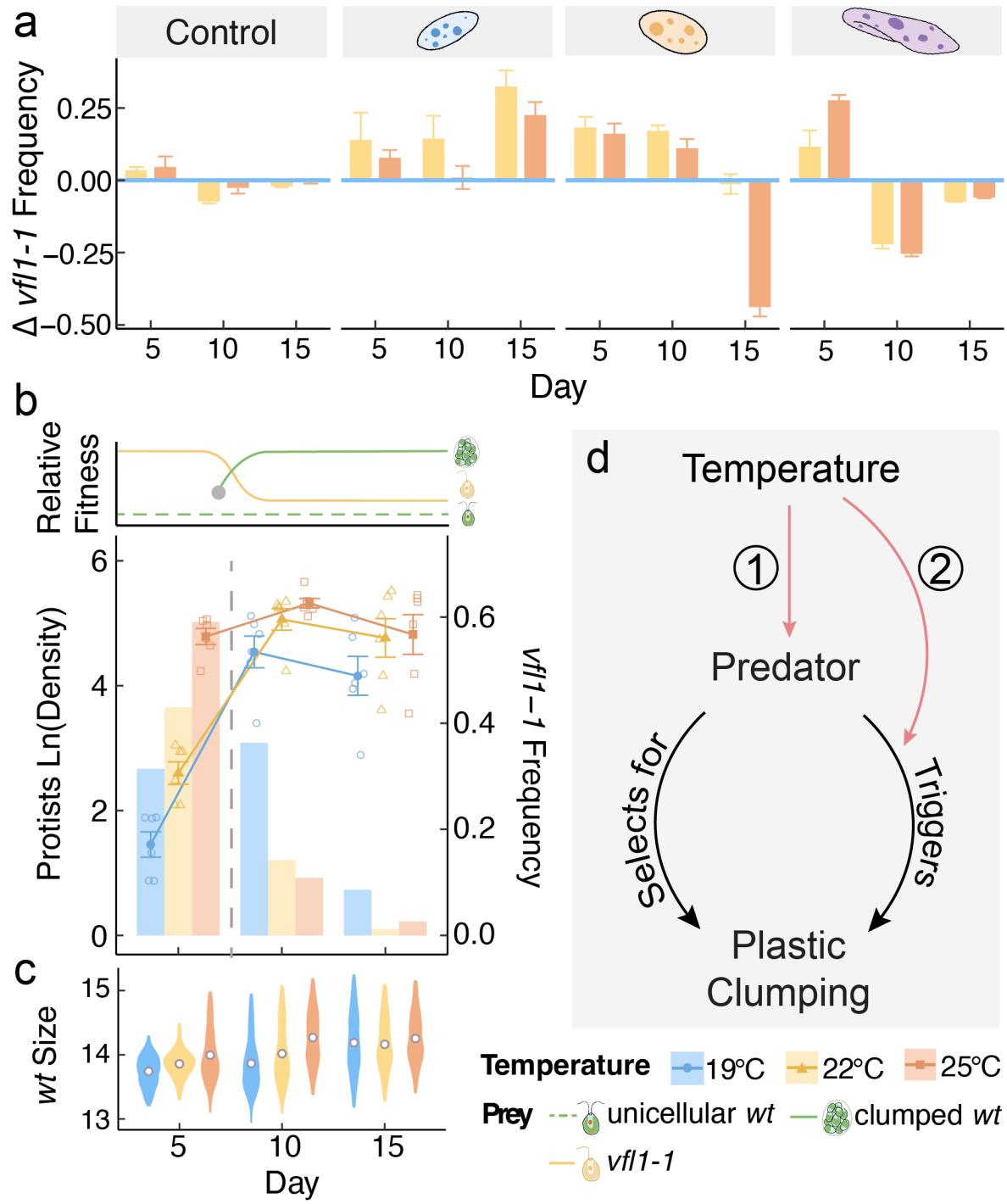
431

432

433

434

435 Figure 2. Model prediction and empirical data of prey clonal dynamics and prey body size.


436 *C. reinhardtii* population density and genetic frequencies predicted by mathematical models (a-b);

437 Specific parameter see Appendix I Table 1) and from empirical data (c-d). Panel e shows the size

438 of *C. reinhardtii* particles over time. Yellow represents *vfl1-1* mutant strain and green represents

439 WT.

440

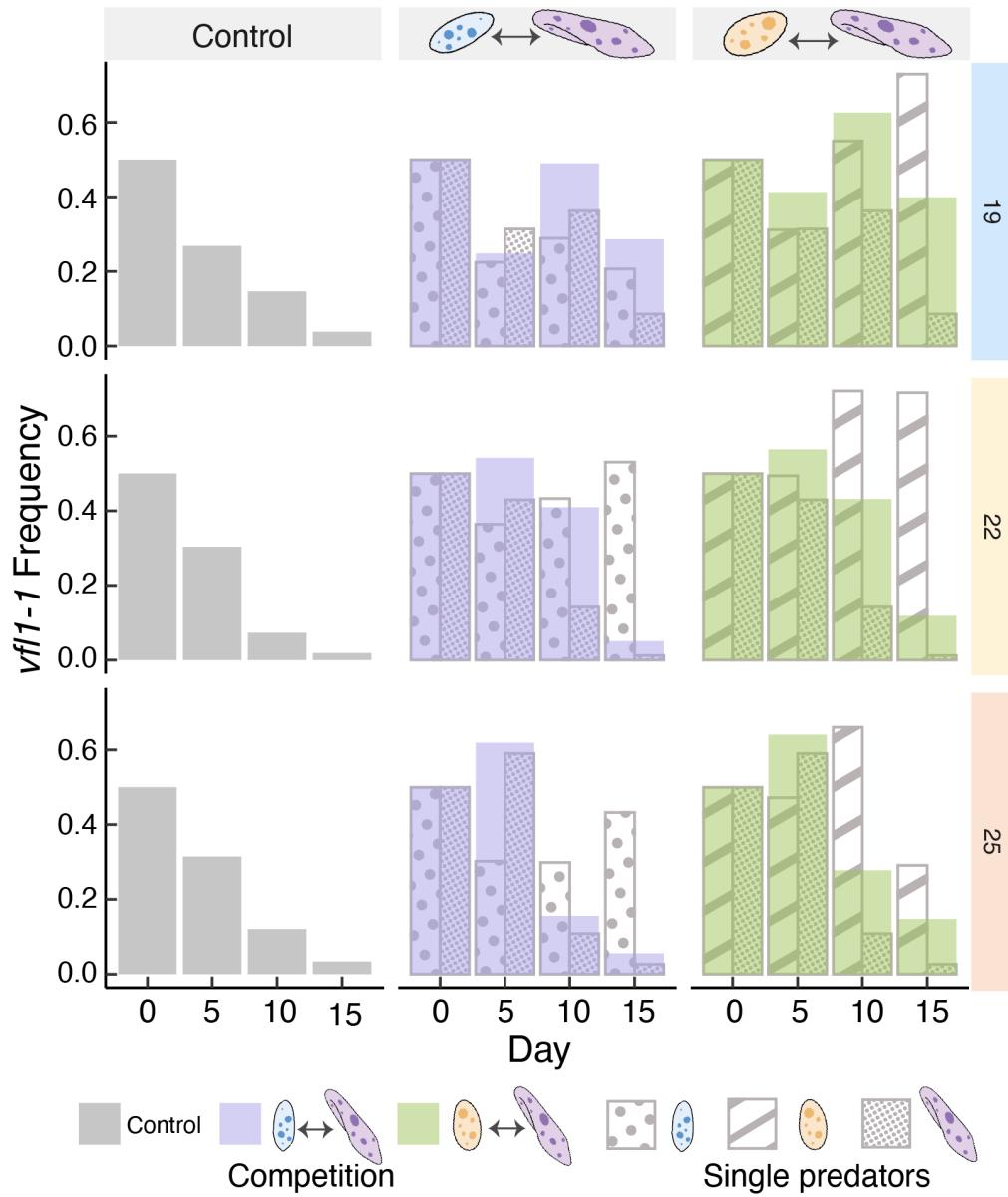
441

442

443 Figure 3. Temperature affects prey evolution through predator thermal performance and prey

444 plasticity. a) To understand temperature effects on prey evolution, we calculated the changes in

445 *vfl1-1* frequencies across temperature in control and all single predator treatments, using *vfl1-1*
446 frequency at 19°C as the baseline (representing as blue horizontal line at 0). Blue, yellow, and
447 orange represent 19°C, 22°C, and 25°C respectively. b) shows the *P. caudatum* density (left axis,
448 solid lines) and *vfl1-1* frequency (right axis, bars) across temperature in *P. caudatum* single
449 predator treatment. Circles, triangles, and rectangles represent 19°C, 22°C, and 25°C,
450 respectively. The grey dash line represents the switch in the selection direction after plastic
451 response of WT. Top panel is a conceptual diagram indicating the decrease of relative fitness of
452 *vfl1-1* (yellow solid line) due to the onset of WT clumping (grey dot). The relative fitness of
453 unicellular WT and clumped WT are presented by green dash and green solid line, respectively.
454 c) WT particle size distribution in *P. caudatum* treatment across temperature. d) Conceptual
455 diagram of the two potential mechanisms of temperature affecting WT clumping.


456

457

458

459

460

461

462

463 Figure 4. Prey evolution under predator competition. Frequencies of *vfl1-1* in competition

464 treatments with two predators. Solid color bars represent the frequencies of *vfl1-1* in control and

465 two predator-competition treatments at different temperatures. Bars with patterns represent the

466 frequencies of *vfl1-1* in the single-predator treatments at each temperature.

467

468

469 REFERENCES

470

471 Abrams, P.A. (2000). The Evolution of Predator-Prey Interactions: Theory and Evidence. *Annu. Rev. Ecol. Syst.*, 31, 79–105.

472

473 Adams, G.M., Wright, R.L. & Jarvik, J.W. (1985). Defective temporal and spatial control of flagellar assembly in a mutant of *Chlamydomonas reinhardtii* with variable flagellar number. *J. Cell Biol.*, 100, 955–964.

474

475

476 Adan, A., Alizada, G., Kiraz, Y., Baran, Y. & Nalbant, A. (2017). Flow cytometry: basic principles and applications. *Crit. Rev. Biotechnol.*, 37, 163–176.

477

478 Agrawal, A.A. (2001). Phenotypic Plasticity in the Interactions and Evolution of Species. *Science*, 294, 321–326.

479

480 Aljetlawi, A.A., Sparrevik, E. & Leonardsson, K. (2004). Prey–predator size-dependent functional response: derivation and rescaling to the real world. *J. Anim. Ecol.*, 73, 239–252.

481

482

483 Alton, L.A., Kutz, T., Bywater, C.L., Lombardi, E., Cockerell, F.E., Layh, S., *et al.* (2024). Temperature and nutrition do not interact to shape the evolution of metabolic rate. *Philos. Trans. R. Soc. B Biol. Sci.*, 379, 20220484.

484

485

486 Andersen, A. & Dölger, J. (2019). Planktonic encounter rates with non-spherical encounter zones. *J. R. Soc. Interface*, 16, 20190398.

487

488 Arora, M. & Sahoo, D. (2015). Green Algae. In: *The Algae World*, Cellular Origin, Life in Extreme Habitats and Astrobiology (eds. Sahoo, D. & Seckbach, J.). Springer Netherlands, Dordrecht, pp. 91–120.

489

490

491 Barbour, M.A. & Gibert, J.P. (2021). Genetic and plastic rewiring of food webs under climate change. *J. Anim. Ecol.*, 1365–2656.13541.

492

493 Barneche, D.R., Hulatt, C.J., Dossena, M., Padfield, D., Woodward, G., Trimmer, M., *et al.* (2021). Warming impairs trophic transfer efficiency in a long-term field experiment. *Nature*.

494

495

496 Bar-On, Y.M., Phillips, R. & Milo, R. (2018). The biomass distribution on Earth. *Proc. Natl. Acad. Sci.*, 115, 6506–6511.

497

498 Bartley, T.J., McCann, K.S., Bieg, C., Cazelles, K., Granados, M., Guzzo, M.M., *et al.* (2019). Food web rewiring in a changing world. *Nat. Ecol. Evol.*, 3, 345–354.

499

500 Blois, J.L., Zarnetske, P.L., Fitzpatrick, M.C. & Finnegan, S. (2013). Climate Change and the Past, Present, and Future of Biotic Interactions. *Science*, 341, 499–504.

501

502 Calatrava, V., Tejada-Jimenez, M., Sanz-Luque, E., Fernandez, E., Galvan, A. & Llamas, A. (2023). *Chlamydomonas reinhardtii*, a Reference Organism to Study Algal–Microbial Interactions: Why Can’t They Be Friends? *Plants*, 12, 788.

503

504

505 Clarke, A. (2003). Costs and consequences of evolutionary temperature adaptation. *Trends Ecol. Evol.*, 18, 573–581.

506

507 Clarke, A. (2006). Temperature and the metabolic theory of ecology. *Funct. Ecol.*, 20, 405–412.

508

509 Clarke, A. & Fraser, K.P.P. (2004). Why does metabolism scale with temperature? *Funct. Ecol.*, 18, 243–251.

510

511 Cornwallis, C.K., Svensson-Coelho, M., Lindh, M., Li, Q., Stábile, F., Hansson, L.-A., *et al.* (2023). Single-cell adaptations shape evolutionary transitions to multicellularity in green algae. *Nat. Ecol. Evol.*, 7, 889–902.

512

513 Cosmo, L.G., Assis, A.P.A., de Aguiar, M.A.M., Pires, M.M., Valido, A., Jordano, P., *et al.*
514 (2023). Indirect effects shape species fitness in coevolved mutualistic networks. *Nature*,
515 619, 788–792.

516 Dell, A.I., Pawar, S. & Savage, V.M. (2011). Systematic variation in the temperature dependence
517 of physiological and ecological traits. *Proc. Natl. Acad. Sci.*, 108, 10591–10596.

518 Dell, A.I., Pawar, S. & Savage, V.M. (2014). Temperature dependence of trophic interactions are
519 driven by asymmetry of species responses and foraging strategy. *J. Anim. Ecol.*, 83, 70–
520 84.

521 Diamond, S.E., Chick, L., Perez, A., Strickler, S.A. & Martin, R.A. (2017). Rapid evolution of
522 ant thermal tolerance across an urban-rural temperature cline. *Biol. J. Linn. Soc.*, 121,
523 248–257.

524 Falkowski, P.G. (1994). The role of phytoplankton photosynthesis in global biogeochemical
525 cycles. *Photosynth. Res.*, 39, 235–258.

526 Fischer, B.B., Kwiatkowski, M., Ackermann, M., Krismer, J., Roffler, S., Suter, M.J.F., *et al.*
527 (2016). Phenotypic plasticity influences the eco-evolutionary dynamics of a predator–
528 prey system.

529 Foissner, W. & Berger, H. (1996). A user-friendly guide to the ciliates (Protozoa, Ciliophora)
530 commonly used by hydrobiologists as bioindicators in rivers, lakes, and waste waters,
531 with notes on their ecology. *Freshw. Biol.*, 35, 375–482.

532 Foissner, W., Chao, A. & Katz, L.A. (2009). Diversity and geographic distribution of ciliates
533 (Protista: Ciliophora). In: *Protist Diversity and Geographical Distribution*, Topics in
534 Biodiversity and Conservation (eds. Foissner, W. & Hawksworth, D.L.). Springer
535 Netherlands, Dordrecht, pp. 111–129.

536 Fordyce, J.A. (2006). The evolutionary consequences of ecological interactions mediated
537 through phenotypic plasticity. *J. Exp. Biol.*, 209, 2377–2383.

538 Frazier, M.R., Huey, R.B. & Berrigan, D. (2006). Thermodynamics Constrains the Evolution of
539 Insect Population Growth Rates: “Warmer Is Better.” *Am. Nat.*, 168, 512–520.

540 Frickel, J., Theodosiou, L. & Becks, L. (2017). Rapid evolution of hosts begets species diversity
541 at the cost of intraspecific diversity. *Proc. Natl. Acad. Sci.*, 114, 11193–11198.

542 Gibert, J.P. (2019). Temperature directly and indirectly influences food web structure. *Sci. Rep.*,
543 9, 5312.

544 Gibert, J.P., Grady, J.M. & Dell, A.I. (2022). Food web consequences of thermal asymmetries.
545 *Funct. Ecol.*, 1365-2435.14091.

546 González, J., Sherr, E. & Sherr, B. (1993). Differential feeding by marine flagellates on growing
547 versus starving, and on motile versus nonmotile, bacterial prey. *Mar. Ecol. Prog. Ser.*,
548 102, 257–267.

549 Gorman, D.S. & Levine, R.P. (1965). Cytochrome f and plastocyanin: their sequence in the
550 photosynthetic electron transport chain of *Chlamydomonas reinhardtii*. *Proc. Natl. Acad.*
551 *Sci.*, 54, 1665–1669.

552 Guimarães, P.R., Pires, M.M., Jordano, P., Bascompte, J. & Thompson, J.N. (2017). Indirect
553 effects drive coevolution in mutualistic networks. *Nature*, 550, 511–514.

554 Guo, F., Kainz, M.J., Sheldon, F. & Bunn, S.E. (2016). The importance of high-quality algal
555 food sources in stream food webs – current status and future perspectives. *Freshw. Biol.*,
556 61, 815–831.

557 van Heerwaarden, B. & Sgrò, C.M. (2021). Male fertility thermal limits predict vulnerability to
558 climate warming. *Nat. Commun.*, 12, 2214.

559 Henn, J.J., Buzzard, V., Enquist, B.J., Halbritter, A.H., Klanderud, K., Maitner, B.S., *et al.*
560 (2018). Intraspecific Trait Variation and Phenotypic Plasticity Mediate Alpine Plant
561 Species Response to Climate Change. *Front. Plant Sci.*, 9.

562 Herron, M.D., Borin, J.M., Boswell, J.C., Walker, J., Chen, I.-C.K., Knox, C.A., *et al.* (2019).
563 De novo origins of multicellularity in response to predation. *Sci. Rep.*, 9, 2328.

564 Huang, B.P.-H. (1986). *Chlamydomonas reinhardtii*: A Model System for the Genetic Analysis
565 of Flagellar Structure and Motility. In: *International Review of Cytology*, Molecular
566 Approaches to the Study of Protozoan Cells (eds. Bourne, G.H., Danielli, J.F. & Jeon,
567 K.W.). Academic Press, pp. 181–215.

568 Kilham, S.S., Kreeger, D.A., Lynn, S.G., Goulden, C.E. & Herrera, L. (1998). COMBO: a
569 defined freshwater culture medium for algae and zooplankton. *Hydrobiologia*, 377, 147–
570 159.

571 Komatsu, K.J., Avolio, M.L., Lemoine, N.P., Isbell, F., Grman, E., Houseman, G.R., *et al.*
572 (2019). Global change effects on plant communities are magnified by time and the
573 number of global change factors imposed. *Proc. Natl. Acad. Sci.*, 116, 17867–17873.

574 Kontopoulos, D.-G., Smith, T.P., Barracough, T.G. & Pawar, S. (2020). Adaptive evolution
575 shapes the present-day distribution of the thermal sensitivity of population growth rate.
576 *PLOS Biol.*, 18, e3000894.

577 Kordas, R.L., Harley, C.D.G. & O'Connor, M.I. (2011). Community ecology in a warming
578 world: The influence of temperature on interspecific interactions in marine systems. *J.*
579 *Exp. Mar. Biol. Ecol.*, Global change in marine ecosystems, 400, 218–226.

580 Lurling, M. & Beekman, W. (2006). Palmelloids formation in *Chlamydomonas reinhardtii* :
581 defence against rotifer predators? *Ann. Limnol. - Int. J. Limnol.*, 42, 65–72.

582 Padfield, D., Yvon-Durocher, G., Buckling, A., Jennings, S. & Yvon-Durocher, G. (2016). Rapid
583 evolution of metabolic traits explains thermal adaptation in phytoplankton. *Ecol. Lett.*,
584 19, 133–142.

585 Pawar, S., Dell, A.I., & Van M. Savage. (2012). Dimensionality of consumer search space drives
586 trophic interaction strengths. *Nature*, 486, 485–489.

587 Sasso, S., Stibor, H., Mittag, M. & Grossman, A.R. (2018). From molecular manipulation of
588 domesticated *Chlamydomonas reinhardtii* to survival in nature. *eLife*, 7, e39233.

589 Sheridan, J.A. & Bickford, D. (2011). Shrinking body size as an ecological response to climate
590 change. *Nat. Clim. Change*, 1, 401–406.

591 Siepielski, A.M., Hasik, A.Z., Ping, T., Serrano, M., Strayhorn, K. & Tye, S.P. (2020). Predators
592 weaken prey intraspecific competition through phenotypic selection. *Ecol. Lett.*, 23, 951–
593 961.

594 Thunell, V., Lindmark, M., Huss, M. & Gårdmark, A. (2021). Effects of Warming on Intraguild
595 Predator Communities with Ontogenetic Diet Shifts. *Am. Nat.*, 198, 706–718.

596 Tseng, M. & O'Connor, M.I. (2015). Predators modify the evolutionary response of prey to
597 temperature change. *Biol. Lett.*, 11, 20150798.

598 Tulin, F., Clark-Cotton, M.R. & Onishi, M. (2024). *Chlamydomonas*. *Curr. Biol.*, 34, R611–
599 R612.

600 Ullah, H., Nagelkerken, I., Goldenberg, S.U. & Fordham, D.A. (2018). Climate change could
601 drive marine food web collapse through altered trophic flows and cyanobacterial
602 proliferation. *PLOS Biol.*, 16, e2003446.

603 Visser, A.W. (2007). Motility of zooplankton: fitness, foraging and predation. *J. Plankton Res.*,
604 29, 447–461.

605 Voigt, W., Perner, J., Davis, A.J., Eggers, T., Schumacher, J., Bährmann, R., *et al.* (2003).
606 TROPHIC LEVELS ARE DIFFERENTIALLY SENSITIVE TO CLIMATE. *Ecology*,
607 84, 2444–2453.
608 Yampolsky, L.Y., Schaer, T.M.M. & Ebert, D. (2014). Adaptive phenotypic plasticity and local
609 adaptation for temperature tolerance in freshwater zooplankton. *Proc. R. Soc. B Biol. Sci.*,
610 281, 20132744.
611 Yoshida, T., Hairston, N.G. & Ellner, S.P. (2004). Evolutionary trade-off between defence
612 against grazing and competitive ability in a simple unicellular alga, *Chlorella vulgaris*.
613 *Proc. R. Soc. Lond. B Biol. Sci.*, 271, 1947–1953.
614 Zarnetske, P.L., Skelly, D.K. & Urban, M.C. (2012). Biotic Multipliers of Climate Change.
615 *Science*, 336, 1516–1518.
616
617
618
619