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Abstract 12 

Spatial transcriptomics offers unique opportunities to define the spatial organization of tissues and 13 
organs, such as the mouse brain. We address a key bottleneck in the analysis of organ-scale spatial 14 
transcriptomic data by establishing a workflow for self-supervised spatial domain detection that is scalable 15 
to multimillion cell datasets. This workflow uses a self-supervised framework for learning latent 16 
representations of tissue spatial domains or niches. We use a novel encoder-decoder architecture, which 17 
we named CellTransformer, to hierarchically learn higher-order tissue features from lower-level cellular 18 
and molecular statistical patterns. Coupling our representation learning workflow with minibatched GPU-19 
accelerated clustering algorithms allows us to scale to multi-million cell MERFISH datasets where other 20 
methods cannot. CellTransformer is effective at integrating cells across tissue sections, identifying 21 
domains highly similar to ones in existing ontologies such as Allen Mouse Brain Common Coordinate 22 
Framework (CCF) while allowing discovery of hundreds of uncataloged areas with minimal loss of domain 23 
spatial coherence. CellTransformer domains recapitulate previous neuroanatomical studies of areas in 24 
the subiculum and superior colliculus, and characterize putatively uncataloged subregions in subcortical 25 
areas which currently lack subregion annotation. CellTransformer is also capable of domain discovery in 26 
whole-brain Slide-seqV2 datasets. Our workflows enable complex multi-animal analyses, achieving nearly 27 
perfect consistency of up to 100 spatial domains in a dataset of four individual mice with nine million cells 28 
across more than 200 tissue sections. CellTransformer advances the state of the art for spatial 29 
transcriptomics, by providing a performant solution for detection of fine-grained tissue domains from 30 
spatial transcriptomics data.  31 

Introduction 32 

Hierarchical spatial organization is ubiquitous in tissue and organ biology. Systematic, high-33 
dimensional phenotypic measurements of this organization, generated through experimental tools such 34 
as spatial transcriptomics, multiplex immunofluorescence, and electron microscopy, are also becoming 35 
increasingly available as large, open datasets. However, transforming this abundance of data into a 36 
useful representation can be difficult, even for fields with a wealth of prior knowledge, such as 37 
neuroanatomy. 38 
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Datasets such as the Allen Brain Cell Mouse Whole Brain (ABC-MWB) Atlas1–3, a multi-million 39 
cell single-cell RNA sequencing (scRNA-seq) and spatial (MERFISH) atlas, provide unprecedented 40 
opportunities to investigate whether computational tools can help biologists understand spatial cellular 41 
and molecular organization. However, the size of these datasets presents computational challenges for 42 
existing methods. Existing methods for spatial niche or spatial domain detection often operate on the 43 
entire dataset at once, for example a tissue-section-wide cell by gene matrix. This precludes scale-up to 44 
large multi-section datasets as most systems do not have the GPU memory required to load multiple 45 
sections of data or store intermediary representations such as pairwise distance matrices4–6, particularly 46 
as datasets scale into the millions or tens of millions. Some methods rely on Gaussian processes, which 47 
feature a costly cubic computational scaling in the number of observations7. Other more scalable methods 48 
are limited in capturing granular structure, integration across tissue sections, or require significant 49 
neuroanatomical prior knowledge to manually audit, cluster, and hyperparameter tune for domain 50 
discovery workflows8,9. 51 

Our method, CellTransformer, implements a robust representation learning and clustering 52 
workflow to discover spatial niches at scale by representing not tissue sections but subgraphs that 53 
represent individual cellular neighborhoods. We describe an innovative strategy to induce the encoder of 54 
an encoder-decoder transformer to aggregate useful information into a neighborhood representation 55 
token. This occurs by training the model to condition cell-type specific gene expression predictions using 56 
this neighborhood context token. The model thus learns to predict expression of cell types in arbitrary cell 57 
neighborhoods. This representation allows for recovery of important anatomically plausible spatial 58 
domains while remaining computationally efficient.  59 

We evaluate CellTransformer on using the ABC-MWB dataset (3.9 million cells collected with a 60 
500 gene MERFISH panel)1 demonstrating its effectiveness in producing completely data-driven spatial 61 
domains of the mouse brain by comparing the results to the Allen Mouse Brain Common Coordinate 62 
Framework version 3 (CCFv3)10. CCF is a consensus hand-drawn 3D reference space compiled from a 63 
large multimodal data corpus. Annotations feature labels at three levels of coarseness (from 25 regions at 64 
coarse-grain to 670 at fine-grain), which we use to show that CellTransformer excels at identifying spatial 65 
domains which are spatially coherent and biologically relevant. CellTransformer domains reproduce 66 
known regional architecture observed in targeted studies of the subiculum and in the superior colliculus 67 
superficial layers. Beyond the 670 regions currently annotated in ABC-MWB, we show our workflow 68 
produces meaningful data-driven domains in regions which currently lack subregion annotation. As 69 
examples, we focus on data-driven subdomains we define in superior colliculus and midbrain reticular 70 
nucleus.  71 

We also demonstrate CellTransformer’s strength in integrating domains across animals, 72 
leveraging a separate whole-brain dataset within ABC-MWB11 comprising 6.5 million cells distributed 73 
across four animals and 239 sections and with a separate gene panel with 1129 genes. We find that 74 
CellTransformer produces consistent subregions across all 5 animals (1 coronal and 4 sagittal), 75 
suggesting a successful integration across animals with heterogeneous measurements. Notably we also 76 
find that identified domains are highly consistent across animals. To our knowledge, this work provides 77 
the first demonstration that large scale data-driven discovery of domains at CCF-like resolution can be 78 
based on spatial transcriptomics data. Finally, we show that our framework can perform domain detection 79 
in a different spatial transcriptomics modality, Slide-seqV2, using the whole-brain dataset of cellularly 80 
deconvoluted results12.  81 
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Results 82 

The CellTransformer architecture and domain detection workflow 83 

CellTransformer is a graph transformer13 neural network that is trained to learn latent 84 
representations of cell neighborhoods by conditioning single-cell gene expression predictions on 85 
neighborhood spatial context. We define a cellular neighborhood as any cells within a user-specified 86 
distance cutoff in microns away from a reference or center cell. As input, our model requires the gene 87 
expression profiles and cell type classifications for cells in a neighborhood and outputs a latent variable 88 
representation for that neighborhood. One of the principal operations in a transformer is the self-attention 89 
operation, which computes a feature update based on pairwise interactions between elements in a 90 
sequence, which are referred to as tokens (here, cells). Accordingly, one interpretation of our model is of 91 
learning an arbitrary and dynamic pairwise interaction graph among cells.  92 

Restricting this graph to a small neighborhood subgraph of the whole-tissue-section graph has 93 
benefits for both computational resource usage and biological interpretability. We interpret the size of the 94 
neighborhood as a constraint on the physical distance at which statistical correlations between the 95 
observed cells and their gene expression profiles can be directly captured. Truncating neighborhoods 96 
using a fixed spatial threshold instead of choosing a fixed number of neighbors also allows the network to 97 
account for the varying density of cells in space. Accordingly, our framework incorporates a notion of both 98 
cytoarchitecture (relative density and proximity) and molecular variation (cell type and RNA-level 99 
variation) in the data.  100 

To induce our model to learn biologically relevant latent features from cell neighborhoods, we 101 
designed a self-supervised training scheme requiring only cell-type labels, which many large-scale 102 
studies make available via scRNA-seq atlas reference mapping1,11. Specifically, we train the model to 103 
extract features from cellular neighborhoods, modeled as sets of cell tokens that are within a box of fixed 104 
size centered around a center, or reference cell, and use them to predict the observed gene expression of 105 
the cell at the center of the neighborhood. We refer to this cell as the reference cell (indicated by “cell R” 106 
in Figure 1a). Cell tokens are generated by composing cell-type and gene expression information 107 
(Methods). After encoding with a series of transformer layers (where cells are only allowed to attend to 108 
each other if they are in the same neighborhood), these tokens are then aggregated using a learned 109 
pooling operation to produce a single token representation of the entire tissue context. The model 110 
receives a new mask token representing the reference cell’s type which is used to predict its gene 111 
expression following the operation of several transformer decoder layers (Figure 1b). Importantly, during 112 
this process, only the mask token and the neighborhood representation can attend to each other. This 113 
operation captures a hierarchical encoding and decoding process where low level information (gene and 114 
cell type) is produced at the cell token level and aggregated into a high-level representation. This high-115 
level representation is then used to conduct the reverse decoding process (prediction of gene expression 116 
from cell type and tissue context information). Unlike closely related method NCEM14, which predicts 117 
expression of a reference masked node, we aggregate information across tokens (nodes) in a cellular 118 
neighborhood using a learned pooling which strongly bottlenecks the information distributed across the 119 
tokens prior to masked cell prediction.  120 
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 121 
Figure 1. Overall training and architectural scheme for CellTransformer. (a.) During training, a single cell is drawn 122 
(we denote this the reference cell, highlighted in red). We extract the reference cell’s spatial neighbors and partition 123 
the group into a masked reference cell and its observed spatial neighbors. (b.) Initially, the model encoder receives 124 
information about each cell and projects those features to d-dimensional latent variable space. Features interact 125 
across cells (tokens) through the self-attention mechanism. These per-cell representations and an extra token acting 126 
as a register token are then aggregated into a single vector representation, which we refer to as the neighborhood 127 
representation. This representation is concatenated to a mask token which is cell type-specific and chosen to 128 
represent the type of the reference cell. A shallow transformer decoder (dotted lines) further refines these 129 
representations and then a linear projection is used to output parameters of a negative binomial distribution modeling 130 
of the MERFISH probe counts for the reference cell. (c.) Once the model is trained, we compute embeddings (one for 131 
each neighborhood/reference-cell pairing) and concatenate these embeddings within the tissue section datasets and 132 
across tissue sections. Concatenating embeddings across tissue sections produces region discovery at organ level. 133 
We then cluster these embeddings using k-means to discover tissue domains across sections.  134 

 135 
 136 
 137 

At test time, we extract this neighborhood representation for each cell and use k-means clustering 138 
to identify discrete spatial domains (Figure 1c). We will use the term spatial domain to refer to the output 139 
of clustering on embeddings and cluster to refer to single-cell clusters transferred from the ABC-WMB 140 
single cell taxonomy. We emphasize that the input embedding matrix for k-means is conducted by 141 
concatenating all cells across the dataset across tissue sections. Since minibatching is used during 142 
training (unlike methods such as STAligner and GraphST), for generating embeddings, and during k-143 
means (using cuml for GPU-acceleration), overall computational costs of our algorithm are limited in 144 
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principle only by the memory required for storage of cellular neighborhoods rather than entire sections or 145 
datasets.  146 

Data-driven discovery of fine-grained spatial domains in the 147 

mouse brain using ABC-WMB 148 

The ABC-WMB spatial transcriptomics dataset contains data from five mouse brains1,11. One 149 
animal was processed by the Allen Institute for Brain Science with a 500 gene MERFISH panel and 53 150 
coronal sections (Yao et al, 2023)1 The remaining four other animals, generated in Zhang et al. (2023)[11] 151 
were collected with a 1129 gene panel. Sections from two of these animals (“Zhuang 1”, 147 sections; 152 
and “Zhuang 2”, 66 sections) were sampled coronally. The other two animals in the dataset (“Zhuang 3”, 153 
23 sections; and “Zhuang 4”, 3 sections) were sampled sagittally. 154 

We first trained CellTransformer on the Allen 1 dataset, subsequently extracting embeddings for 155 
each cell’s neighborhood, which we defined as a set of cells within a fixed size square around that cell. 156 
We then clustered these embeddings using k-means. We emphasize that to generate spatial domains 157 
across the brain, all k-means clustering in this paper was performed by concatenating cells in the dataset 158 
across tissue sections. All further references to visualizations of domains, including those only visualized 159 
for a subset of domains, were fit at a given number of domains across the entire dataset. We also 160 
optionally introduced a smoothing step prior to k-means, which we applied to spatially smooth the 161 
embeddings. See Supplementary Note 1 for a discussion on the effects of smoothing on detected 162 
domains.  163 

We generated domains at k=25, 354, and 670, to match the division, structure, and substructure 164 
annotations in CCFv3, displaying domains for four consecutive tissue sections (Figure 2a). We also 165 
provide representative images of spatial clusters across the brain (28/53 sections) at different k in 166 
Supplementary Figures 1-3. Low domain numbers such as k=25 broadly divide the brain into 167 
neuroanatomically plausible patterns, with subregions of striatum (dorsal and ventral marked in Figure 168 
2a) and cortical layers clearly visible. A comparison of cortical layers across these sections shows that 169 
CellTransformer domains at k=25 are well matched to CCF (Supplementary Figure 4b) and correctly 170 
identify major classes of layers (1, 2/3 4, 5, and 6) across somatosensory and somatomotor cortex. In 171 
particular, we point out the excellent correspondence of domains across tissue sections at k=25 across 172 
the entire dataset (Supplementary Figure 1), with nearly perfect consistency across regions. This 173 
suggested that our neighborhood representation method was robust enough to enable integration without 174 
modeling of batch or tissue-level covariates. 175 

At k=354, anterior-posterior subdivisions emerge such as the presence of layer 4 in the motor 176 
cortex13 (Figure 2a, see Supplementary Figure 4d, e). Historically, the mouse motor cortex was thought 177 
to lack a granular layer 4, however recently, MERFISH, transcriptomic and epigenomic studies have 178 
confirmed its existence1,15,16. At k=100 and k=354, we find a domain corresponding to Layer 4 in the 179 
somatosensory cortex which clearly extends to layer 4 in the motor cortex.  180 

At k=670, the cortical layers identified at lower resolution are further partitioned into superficial, 181 
intermediate, and deep strata within several layers. We visualize cortical layers across sections in depth 182 
(Figure 2b), showing CellTransformer not only identifies fine superficial-deep structure within cortical 183 
layers but also preserves the boundary between somatosensory and motor cortex (marked in thick black 184 
dotted lines in Figure 2b). Taken together these results showed that CellTransformer robustly describes 185 
previously known anatomical structures. 186 
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 187 
Figure 2. Representative images of spatial domains discovered using CellTransformer on the Allen 1 188 

dataset (53 coronal sections and 500 gene MERFISH panel1) and comparison to CCF. (a.) Four sequential tissue 189 
sections (the inter-section distance is 200 µm) from anterior (first row, corresponding to section 50) to posterior 190 
(bottom row, section 47). In the first three columns, each dot is a cell, colored by spatial domain identified by 191 
CellTransformer when clustering was conducted with k = 25, 354, and 670 domains (the CCF division, structure, and 192 
substructure domain resolutions). Spatial domain labels are depicted with the same colors across sections within the 193 
same column. Fourth column shows CCF region registration to the same tissue section. Select regions are annotated 194 
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with CCF labels. MO: motor cortex, SS: somatosensory cortex; ACA: anterior cingulate, CP: caudoputamen; LSX: 195 
lateral septum; MSX: medial septum; VISC: visceral cortex; GU: gustatory cortex; PIR: piriform cortex; OT: olfactory 196 
tubule; ACB: nucleus accumbens; HY: hypothalamus (b.) Single hemisphere images of same tissue sections in a. 197 
domains fit at k=670, zoomed in on cortical layers of motor cortex (MO) and somatosensory cortex (SS). CCF 198 
boundaries are shown in semi-transparent lines, with the boundary between SS and MO outlined in larger black 199 
dotted lines. (c.) Spatial homogeneity (see Methods) of domains from different methods including recently published 200 
methods CellCharter and SPIRAL. (d.) Average Pearson correlation (averaging over number of domains and method) 201 
of the maximum Pearson correlation between the cell type composition (at subclass level, 338 types) vectors of data-202 
driven regions with CCF ones. (e.) Average Pearson correlation (averaging over number of domains and method) of 203 
optimal matched pairs between data-driven and CCF regions, where CCF regions are only allowed to pair with one 204 
data-driven region per comparison. Matches fit using linear programming. (f.) Region-by-region Pearson correlation 205 
matrix comparing cell type composition vectors from 670 CCF regions (at substructure level) with 670 spatial domains 206 
from CellTransformer. The CCF regions are shown on the left with their structure annotations from CCF at division 207 
level on the side of the plot. Correlations above 0.9 are shown in bright green to assist in visualization. (g.) Cell type 208 
(cluster level) by region matrix for 670 CCF regions at substructure level. (h.) Cell type (cluster level) by region matrix 209 
for 670 CellTransformer regions. Rows are normalized to sum to 1 in both g. and h. Colors along x-axis in both g. 210 
and h. show cell class annotations from ABC-MWB cell type taxonomy at class level to allow for visualization of 211 
composition in terms of known types. Cell types in the “09 CNU-LGE GABA” class are boxed in purple in g. and h., 212 
matching their color in the legend. Rows of both g. and h. are grouped using clustering to produce approximately 213 
similar structure. 214 

 215 
 216 

 217 
We also examined the caudoputamen at various choices of k. At k=25, the caudoputamen is one 218 

domain, which separates into broad spatially contiguous domains at k=100. Interestingly, at k=354 and 219 
k=670, we observe domains that intermingle in a grid-like pattern (Figure 2a, Supplementary Figure 5) 220 
that strongly resembles the Voronoi parcellation established in Hintiryan et al. (2016)17 through systematic 221 
projection mapping to caudoputamen.  Notably, CellTransformer also captures the transition between the 222 
quadrant pattern in intermediate caudoputamen (sections 52, 50 and 49 in Supplementary Figure 5) to 223 
the sequential strip organization (sections 44, 43) which Hintiryan et al. (2016) attributed to the 224 
differences in subnetwork reorganization. The correspondence of our transcriptomic domains to the 225 
Hintiryan et al. (2016) results, which are exclusively based on projection mapping (non-transcriptomic 226 
data), suggests the biological relevance of our representation learning workflow.  227 

We compared CellTransformer to several other workflows to capture spatial coherency and 228 
multiresolution neuroanatomical annotations in CCF at the division, structure, and substructure levels. For 229 
comparison, we used two recent methods, CellCharter18 and SPIRAL19 that are scalable to millions of 230 
cells as benchmarks. CellCharter builds spatially informed embeddings for domain detection by 231 
concatenating the embeddings across scales followed by dimensionality reduction and batch correction, 232 
while SPIRAL uses graph-neural networks for batch effect correction and integration across scales. 233 
Additionally, we implemented a machine learning baseline that employs k-means clustering on cellular 234 
neighborhoods (represented as cell type count vectors). Many of the other GPU-accelerated methods 235 
such as scENVI4, STACI20, spaGCN5, STAligner6, STAGATE21 or GraphST22 cannot be run on datasets 236 
that contain millions of cells due to computational constraints (see Methods). Many of these methods 237 
require instantiation of a dataset-wide pairwise distance matrix between all cells either on GPU or in RAM, 238 
which is a prohibitively large matrix (~60TB for ~4M cells) even for enterprise-level hardware. In contrast, 239 
our workflow does not require very large system RAM or extensive preprocessing steps due to our 240 
training and inference, maxing out at less than 100GB but requiring significantly less in practice.  241 

To quantify the spatial coherence of domains, for each cell we identified its nearest 100 spatial 242 
neighbor cells. We then quantified the proportion of neighbor cells within the same spatial domain label as 243 
the starting cell (Figure 2c). Ideally, we would expect a high proportion of neighbor cells to be in the 244 
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same spatial domain as the starting cell. In this comparison of neighborhood spatial smoothness, 245 
CellTransformer outperforms CellCharter (58.2% better spatial coherence at 670 domains) and SPIRAL 246 
(4091.2%). CellTransformer also outperforms the machine learning baseline based on k-means clustering 247 
on cellular neighborhoods (61.9% better spatial coherence). For reference, we include the CCF 248 
parcellation (dashed purple line) in this comparison to provide an upper bound, as well as spatial 249 
coherence using single cell type calls at subclass level (338 types, see Methods). 250 

To quantify the similarity of detected domains with CCF annotations, we compared the cell type 251 
composition of domains using cell type calls from the ABC-WMB taxonomy. We again chose the subclass 252 
cell type level, extracting for each domain and for each method a 338-long cell-type vector. We calculated 253 
the Pearson correlation of cell type composition vectors computed using the CCF regional annotations at 254 
division (25), structure (354) and substructure (670) levels against those of the various methods at the 255 
corresponding number of spatial domains. First, for each data-driven domain, we computed the maximum 256 
correlation to any CCF domain at the same CCF annotation resolution averaging these numbers across 257 
domains. CellTransformer outperforms other methods at mid-granularity and fine-granularity (Figure 2d). 258 
In this comparison, several data-driven regions can match the same CCF region, which in the worst case 259 
could provide an overly optimistic picture of the correspondence between data-driven domains and CCF. 260 
To address this, we conducted a second analysis where only one CCF region could be matched to a 261 
given data-driven one. We used linear programming to optimize 1:1 pairing of data-driven regions to CCF 262 
ones based on their Pearson correlation and averaged these across regions and methods (Figure 2e). 263 
CellTransformer is highly performant, showing that increase in correlation is not due to redundant 264 
matches to a single area in CCF. Visualization of spatial clusters from CellCharter (Supplementary 265 
Figure 6-7) at k=670 domains across the brain and in midbrain shows lack of spatial coherence in cortical 266 
layers and midbrain, with detected domains distributed in a what appear to be non-biological patterns. In 267 
contrast, CellTransformer identified spatially coherent domains and uncovered plausible neuroanatomical 268 
structures.  269 

To further characterize the similarity of CellTransformer domains with CCF, we plotted the 270 
Pearson correlation matrix (Figure 2f) between cell type composition vectors generated at 670 domains 271 
(substructure level in CCF). Block structures with very high correlations (>0.9, shown in bright green) in 272 
the matrix clearly show that CellTransformer is able to identify regions that are highly similar with known 273 
ones without any labels. We also investigated correspondence of cell type composition with more 274 
granular single cell annotations, employing the “cluster” (5274 cell types) level annotations from ABC-275 
MWB. We observed high similarity between the “substructure” CCF domain set (Figure 2g) and 670 276 
CellTransformer domains (Figure 2h) with average Pearson correlation of CellTransformer to CCF 277 
domains of 0.853. This shows the high correspondence of CCF and CellTransformer (Figure 2g and 278 
Figure 2h) is robust to cell type resolution at which comparison occurs. CellTransformer identified an 279 
increase in number of domains containing the 09 CNU-LGE GABA class (striatal/pallidal GABAergic 280 
neurons from lateral ganglionic eminence compared with the 670 CCF substructures, shown in light 281 
purple box in Figure 2g and Figure 2h), potentially suggesting the presence of uncharacterized 282 
developmental populations.  283 

The observation of hierarchical grouping of domains at different choices of k (for example 284 
delineation of cortical layers and sublayers with increasing number of domains) prompted us to develop a 285 
strategy to evaluate an optimal number of spatial domains based on two metrics. We implemented a 286 
previously published strategy23 to determine the optimal number of domains using a stability criterion. We 287 
reasoned that the optimal choice of spatial domain number would feature minimal variability across 288 
clustering runs. In brief, we computed 20 clustering instances with different random initializations for a 289 
large range k values (100-2000) and quantified their variability over these initializations (see Methods). 290 
Interestingly, stability increased with increasing k (Supplementary Figure 8a, 8b). To facilitate the choice 291 
of a particular resolution for analysis, we also computed the inertia (sum of squared errors) for each 292 
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clustering solution. Low stability at small numbers of domains may partially explain subpar results for 293 
CellTransformer in the k=25 CCF evaluations. We averaged the inertia curve and instability and 294 
computed the point of second derivative crossing to identify k=1300 as our resolution for analysis 295 
(crossing point shown with red dot in Supplementary Figure 8c). 296 

CellTransformer is the only method out of the three we implemented (including six other pipelines 297 
which were unable to cope with the size of ABC-MWB dataset) to allow discovery of spatially coherent 298 
divisions at greater than CCF resolution. To our knowledge, this study establishes the first instance of a 299 
data-driven method using spatial transcriptomics data to identify brain regions at resolutions finer than 300 
previously defined in the CCF.  We next sought to establish correspondence of particular domains at 301 
k=1300 to known neuroanatomy.  302 

Mapping of spatial domains in the hippocampal formation 303 

We characterized CellTransformer’s ability to capture known anatomical structure in the 304 
hippocampal formation, notably the subiculum (SUB) and prosubiculum (PS), in the Allen 1 dataset. We 305 
focused on this area because it is well characterized with respect to both connectivity24 and transcriptomic 306 
composition25,26.  These structures were investigated in Ding et al. (2020)27, where the authors performed 307 
consensus clustering of glutamatergic neurons and subsequent ISH experiments were used to 308 
comprehensively map domains in dorsal subiculum (SUBd) and dorsal and ventral prosubiculum (PSd 309 
and PSv). Specifically, this and other recent works have noted the extensive laminar organization 310 
(superficial layers to deeper layers), and the dorsal-ventral organization of the subiculum28–30. This 311 
organization has been attributed to distinct and correlated patterns of gene expression and connectivity.  312 

We qualitatively compared spatial domains discovered by CellTransformer with k=1300 to the 313 
anatomical borders identified in Ding et al. (Figure 3a). The subiculum features a three-layer organization 314 
referred to as molecular (mo) layer, a pyramidal cell (py) layer, and polymorphic (po) cell layer. Figure 3a 315 
shows a diagram of SUB and PS regions based on Ding et al. (2020) with the pyramidal and polymorphic 316 
layers of SUB and PS annotated in bold black text. Figure 3b shows discovered spatial domains at 317 
k=1300 across four sequential sections corresponding to those in Ding et al. (2020). A subset of domains 318 
corresponding to SUB and PS are shown in Figure 3c along with putative regional annotations. 319 
CellTransformer identifies a three-layer organization in the dorsal subiculum corresponding to that in Ding 320 
et al. (2020) labeled SUBd-py (light green), SUBd-po (gold), and SUBd-mo (gray-blue). CellTransformer 321 
also correctly splits the SUBd and PSd shown with black dotted lines on the image of section 32. Three-322 
layer strata are also observed in PSd, although notably the pyramidal layer domain extends caudally, 323 
consistent with transcriptomic studies24–26 of SUB architecture. For instance, our PSd-po domains 324 
(sections 31 and 30) strongly resemble the HGEA layer 4 found in Bienkowski et al. (2018)24. Note that 325 
differences may arise between panels in Figure 3a and 3c because of sectioning variability and lack of 326 
exact match between sections in ABC-MWB and the Ding et al. (2020) study. In addition to the 327 
aforementioned regions we also observe high agreement in areas such as in the hippocampus-328 
amygdaloid transition area (HA) and ventral prosubiculum (PSv). 329 
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 330 
Figure 3. Comparison of CellTransformer domain sets identified in the Allen 11 dataset with k=1300 with a 331 
comprehensive region set found in Ding et al. (2020), reproduced with permission from authors. (a.) Representative 332 
images reproduced from Ding et al. of region boundaries in prosubiculum (PS), subiculum (SUB), and hippocampal-333 
amygdala (HA) particularly along the dorsal-ventral axis. Polymorphic and pyramidal layers of the dorsal subiculum 334 
(SUBd) and ventral prosubiclum are indicated. (b.) Images from hippocampal formation across 4 sequential tissue 335 
sections (anterior to posterior) roughly aligned to sections presented in Ding et al. Each dot is a cell colored using 336 
domain labels with k=1300. (c.) Same as b. but only showing cells inside PS, SUB, and HA. Putative regional 337 
annotations are indicated and grouped by dorsal or ventral region within PS and SUB. (d.) Gene expression patterns 338 
visualized at the corresponding tissue section, where only cells within PS/SUB/HA are shown. Units are in log2 probe 339 
counts. (e.) Gene expression heatmap of identified subregions, with putative anatomical annotation. Dendrogram 340 
from hierarchical clustering in gene expression space is shown to the right. Genes visualized in d. are bolded and 341 
denoted with a pink asterisk. Colored brackets indicate the genes which are differentially expressed with respect to 342 
the domain (colors match those shown on the left of the heatmap). Two genes per domain are shown and each gene 343 
is expressed with at least log-fold change greater than 1 relative to the other domains. Abbreviations: PS-mo: 344 
prosubiculum molecular layer; PS-py; pyramidal layer of subiculum; SUBv-py; ventral subiculum, pyramidal layer; HA-345 
py: hippocampal-amygdaloid transition area, pyramidal layer; HA-po: hippocampal-amygdaloid transition area, 346 
polymorphic layer; SUB-mo: subiculum, molecular layer; PSd-po: dorsal prosubiculum, polymorphic layer; PSv-po: 347 
ventral prosubiculum, polymorphic layer; PSd-py: dorsal prosubiculum, pyramidal layer; SUBd-py: dorsal subiculum, 348 
pyramidal layer; SUBv-py: ventral subiculum, pyramidal layer; PSv-po: ventral prosubiculum, polymorphic layer; PSd-349 
po: dorsal prosubiculum, polymorphic layer.  350 
 351 
 352 
 353 

Ding et al. (2020) observed differential projection topology in dorsal subiculum versus ventral 354 
prosubiculum. Correspondingly, genes were found to form opposing gradients across the length of 355 
subicular areas. Dorsolateral gene gradients appeared in SUBd and ventromedial gradients in PSv. Since 356 
CellTransformer domains appeared to correspond well with literature results, we explored gene 357 
expression patterns across domains to verify whether dorsal-ventral and medial-laterally varying gene 358 
patterns could be observed. We conducted differential expression analysis across our subicular domains 359 
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(Figure 3e) that when visualized (Figure 3d) clearly reflected these gradients. Many genes expressed in 360 
SUB and PS traverse their long axis as reported previously25. The identification of spatial domains which 361 
subdivided specific layers of PS and SUB similarly to the results in Ding et al., and featured similar types 362 
of gene expression gradients as existing literature, suggests that our pipeline was successful in learning 363 
neuroanatomically useful information. Importantly, while results in Ding et al. and related works were 364 
enabled by significant neuroanatomical and experimental expertise, CellTransformer allows identification 365 
of granular tissue structure in a data-driven fashion. Encouraged by this result, we continued our 366 
investigation of CellTransformer correspondence with known literature with a comparison in superior 367 
colliculus.  368 

CellTransformer allows for quantification of laminar and columnar 369 

organization in superior colliculus 370 

Recent studies using systematic mapping of cortico-tectal fibers in superior colliculus (SC) have 371 
identified distinct laminar and columnar structure31, suggestive of the complex role SC plays in integration 372 
of sensory information and coordination of signals. Therefore, SC presented an excellent opportunity to 373 
identify transcriptomic and cellular correlates of connectomic variation. We observed a strong 374 
correspondence of three of our spatial clusters (k=1300) in the Allen 1 dataset with known layers of 375 
superior colliculus, sensory area, particularly the zonal (zo), superficial gray (sg), and optic (op) layers 376 
across a set of tissue sections spanning ~600 µm from anterior to posterior (rows of Figure 4a and 377 
Supplementary Figure 9a). CellCharter was unable to identify these structures (Supplementary Figure 378 
7) and only identifies two layers in SC, which does not conform with existing results.  379 

By visualizing the cell type composition within the top-ten most abundant types for these three 380 
spatial domains (Supplementary Figure 9a, 9b), we were able to identify cell types that were highly 381 
selective for our data-driven SC layers: types 0873 SCsg Gabrr2 Gaba_2, 0861 SCs Pax7 Nfia Gaba_3, 382 
and 0788 SCop Sln Glut_1. Crucially, the cell types, which have already been annotated as being 383 
associated with one of the zonal, optic, or superficial gray, are identified automatically by 384 
CellTransformer. We chose the supertype level to allow inspection of abundant cell types without being 385 
difficult to visualize. Supertype-level visualizations also show that even with granular cell types (1201 386 
types in Yao et al.) CellTransformer domains are often marked by spatially specific cell type patterning; 387 
we note that we do not filter cells outside of our putative superior colliculus layers for visualization. Next 388 
we visualized the percentage of cells in each domain (Supplementary Figure 9c), grouping them by 389 
neurotransmitter class (GABA-ergic, glutamatergic, and non-neuronal). The superficial gray layer showed 390 
the higher proportion of GABA-ergic neurons, while the optic layer had the highest proportion of 391 
glutamatergic neurons. To further explore these relationships, we calculated the number of distinct cell 392 
types (supertype level) within each neurotransmitter class and domain. A clear dorsal-ventral organization 393 
was evident (Supplementary Figure 9d) with the number of GABA-ergic and glutamatergic neuron types 394 
increasing with layer depth, suggesting CellTransformer’s ability in capturing complex patterns of cellular 395 
spatial organization.  396 
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 397 
Figure 4. Examination of putative dorsal and ventral subregions of superior colliculus identified in the Allen 11 dataset using 398 
CellTransformer. (a.) Putative subregions of sensory layers of superior colliculus in tissue section 32 identified with k=1300 399 
CellTransformer domains. CCF registration is in the first column, with zonal (zo), superficial gray (sg), and optic (op) layers labeled 400 
by the color of their CellTransformer domain in third, fourth, and fifth columns. The second column shows all cells with color labels 401 
from their spatial domain from CellTransformer at k=1300. The third, fourth, and fifth columns show the putative zo (gray-green), sg 402 
(purple), and op (red) domains. These columns also show the spatial distribution of one supertype level cell type in yellow across 403 
the section. (b.) Sequential tissue sections (32: anterior, 31: posterior) shown similarly to a., but visualizing subregions of the 404 
intermediate gray and intermediate white layers, which are indicated with black arrows in the CCF registered annotation image. (c.) 405 
Proportions of different supertype level cell types for top-ten most abundant types in different spatial domains. Colors refer to the 406 
same spatial domain label in (a.) and (b.). Cell types visualized in (b.) are denoted with a yellow asterisk. (d.) Barplot of the 407 
percentage of cells of a given neurotransmitter class  found in a given region (GABA - GABAergic; Glut - Glutamatergic; NN - non-408 
neuronal). (e.) Number of unique cell types (at supertype level) found in each domain, grouped by neurotransmitter class. 409 

 410 
 411 
 412 
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Encouraged by these findings, we also investigated subregions of the intermediate gray and 413 
intermediate white areas of the motor-related areas in SC (Figure 4a-b), where we identify consistent 414 
regions across two consecutive sections that are not annotated in the CCF (rows of Figure 4b). We 415 
define subregions of intermediate gray (ig) and white (iw), noting a medial-lateral structure similar to that 416 
in Benavidez et al. (2021)31, which exhaustively cataloged projection zones in superior colliculus. Notably 417 
unlike in superior colliculus sensory, a significant number of non-neuronal cell types are found in very 418 
similar proportions across the intermediate white and gray layers (Figure 4c), and instead differences in 419 
regions may be attributable to varying proportions of rare cell types. Encouragingly, even in these fine-420 
grained areas, cell types that are highly specific for our data-driven layers can be readily identified 421 
(columns of Figure 4b). These rare domain-enriched cell types include: 0849 SCm-PAG Cdh23 Gaba_2 422 
(enriched in the medial intermediate white layer, shown in dark green), 0769 SCig SCiw Pitx2 Glut_3 423 
(enriched in lateral intermediate white, shown in light blue), and 0764 SCig-an-PTT Foxb1 Glut_1 424 
(enriched in medial intermediate gray, shown in dark blue). The identification of Pitx2-expressing neurons 425 
also supports our assertions that CellTransformer identifies biologically relevant domains, with previous 426 
studies using Pitx2 expression specifically as an intermediate layer marker in superior colliculus16,28.  427 

We observed complex cell type abundance gradients when visualizing the percentage of cells in 428 
a given domain by their neurotransmitter type (Figure 4). We used supertype level to confirm that 429 
spatially-varying cell distribution patterns persisted when using more granular cell type annotations. 430 
Lateral domains such as intermediate gray, lateral (shown in dark blue) and intermediate white, lateral 431 
(shown in light blue) featured a smaller proportion of GABA-ergic neurons than medial domains but were 432 
enriched for glutamatergic neurons and non-neurons (Figure 4d). Despite the low proportion of GABA-433 
ergic neurons, the lateral domain of intermediate gray possessed the highest number of GABA-ergic 434 
neuron cell types (Figure 4e). Conversely, non-neurons featured the same number of types across the 435 
laminae. 436 

A medial-lateral gradient of inhibitory neurons in the midbrain 437 

reticular nucleus 438 

Next, we investigated the midbrain reticular nucleus (MRN), a subcortical structure with few 439 
anatomical annotations in CCF. MRN is highly enriched for interneurons in a dense array of connections 440 
and appears to play a complex role in movement initiation and release29,30. CellTransformer identifies four 441 
subregions of the MRN, which are not included in the existing CCF annotation (Figure 5a). Plotting cell 442 
type proportions across the MRN, we identified cell types which are enriched for these putatively 443 
uncharacterized areas, although all domains were predominantly glial (e.g., 1184 MOL NN_4 supertype is 444 
abundant in all regions, Figure 5b). By visualizing differentially expressed genes across the domains  445 
(Figure 5c), we identified genes which were subregion selective (selected genes shown in Figure 5d) 446 
and form dorsal-ventral expression gradients. Hierarchical clustering showed that the two dorsal domains 447 
(purple and brown) group together with the two ventral ones (gold and gray).  448 
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 449 
Figure 5. Subregions of midbrain reticular nucleus discovered in the Allen 11 dataset using CellTransformer. (a.) Sequential tissue 450 
sections (26 and 25, anterior to posterior). First column: CCF registration with approximate location of midbrain reticular nucleus 451 
shown with arrows. Note that registration is not exact and can differ across hemispheres. Second column: all cells in field of view, 452 
with color from spatial domains determined with k=1300. The rest of the columns show only cells located in the MRN, and each 453 
column shows a different supertype level cell type in green. (b.) Supertype level cell type proportions for top fifteen most abundant 454 
types across the MRN subregions. Cell types visualized in (a.) are denoted with green asterisks. (c.) Selected 4 differentially 455 
expressed genes across regions. Each gene is expressed at least log fold change greater than 1 relative to the other domains. 456 
MERFISH probe distributions for select genes indicated with pink asterisks are shown in (d.). (d.) Gene expression gradients across 457 
tissue section 25 for Pax5, Six3, and Bnc2, showing specificity for each of the putative MRN subregions. Intensity of color is 0-1 458 
normalized after log scaling raw probe counts. Each dot is a cell, and the color shows the relative transcript count. We show only 459 
cells within the subregions to make it visually easier to distinguish the relevant cells. (e.) Bar plot of the percentage of cells for a 460 
given neurotransmitter type found in each domain, (GABA - GABAergic; Glut - Glutamatergic; NN - non-neuronal). (f.) Number of 461 
unique cell types (at supertype level) found in each domain, grouped by neurotransmitter class..  462 

 463 
 464 
 465 
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We again visualized the neurotransmitter composition and number of unique cell types of given 466 
neurotransmitter classes. We observed that the number of types of excitatory neurons was spatially 467 
graded. Dorsal domains of MRN (domain 365 shown in purple and domain 198 shown in brown, (Figure 468 
5e) featured the highest proportion of glutamatergic neurons, and the proportion of glutamatergic neurons 469 
in MRN domains decreased with increasing depth. Nonneuronal cells are also organized along this 470 
gradient, but in the opposite direction, the ventral areas featuring the highest proportion of glia and the 471 
dorsal the lowest. Interestingly, MRN domains composed of a higher proportion of glutamatergic neurons 472 
were also the ones with the greatest number of glutamatergic neuron types, also following a dorsal-473 
ventral gradient (Pearson correlation r = 0.89). This relationship was observed for the nonneuronal cells 474 
(Pearson correlation r = 0.81, Figure 5f), but not for GABA-ergic neurons (Pearson correlation r = -0.64). 475 
This suggests that CellTransformer can identify plausible structures even in historically difficult to 476 
characterize areas.  477 

CellTransformer enables scaling up to multi-animal, million cell 478 

datasets and generalizes to other spatial assays 479 

In order to investigate CellTransformer’s ability to integrate across animals, we trained a new 480 
model from scratch on the Zhang et al. (2023)11 MERFISH data, which uses an 1129 gene panel and is 481 
split over four animals, with both coronal (Zhuang 1 and 2) and sagittal sections (Zhuang 3 and 4). We 482 
computed embeddings for each neighborhood as in the previous analysis and performed k-means, 483 
concatenating representations for all mice and sections. This provided an opportunity to examine whether 484 
CellTransformer could adapt to a multi-animal case in addition to finding spatial domains across tissue 485 
sections of the same animal. 486 

Spatial domains in sequential tissue sections appeared highly concordant across all four mice 487 
(Figure 6a) at the 50-domain resolution. We used 50 domains to facilitate clear visualization of the 488 
domains across animals with relatively few colors. Coronal and sagittal sections across mice clearly 489 
corresponded anatomically. Cortical layers were highly consistent across animal and section orientation. 490 
Structures that appear in the coronal view can be readily identified in the sagittal sections. For example 491 
the hippocampal formation (blue) is well delineated in sections 088 for Zhuang 1, section 044 for Zhuang 492 
2, and across displayed sections of Zhuang 3 and Zhuang 4. Despite a relatively low number of cells in 493 
mouse 4 (162,579 cells versus more than 1.5 million for each of the other animals), nearly all spatial 494 
domains observed for Zhuang 4 are present in other animals. Note that sections from this animal only 495 
cover a section of the lateral portion of the brain and do not span the entirety of the sagittal plane.  496 

We quantified the robustness of CellTransformer domains in a multi-animal context across and 497 
within Zhuang 1-4 datasets. We ran clustering and identified domains at the three values of k: 25, 333, 498 
630. These k values correspond to three CCF resolution levels reported by registration in Zhang et al. 499 
(2023) (note the number of domains differs due to registration differences). For each k value, we counted 500 
the number of domains observed in all four animals. We also repeated this analysis without data for 501 
Zhuang 4, which contains far fewer cells than the datasets from other animals (Figure 6b). We find that 502 
even at high resolution (630 domains), 93.3% domains were found in each mouse, showing high 503 
consistency of CellTransformer domains across datasets. With the Zhuang 4 included, at 630 domains, 504 
80.0% domains were found in every animal. To verify that domain consistency across animals was not 505 
related to loss of domain spatial coherence, we repeated the neighborhood smoothness analysis we 506 
developed for analysis of the Allen 1 dataset on the combined Zhang et al. (2023) data. Spatial 507 
smoothness was similar to that of Allen 1 (Supplementary Figure 10), indicating CellTransformer can 508 
discover spatially coherent domains that are robustly integrated across animals. 509 

 510 
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 511 
Figure 6. Investigation into performance of CellTransformer on the Zhuang 1-4 datasets (239 sections, both 512 

coronal and sagittal, with a 1129 gene MERFISH panel11). (a.) Representative images of all four mice arranged by 513 
column. The section number for each mouse is shown in the upper left of each image. Note that Zhuang 4 only had 514 
three sections. For each image, each dot is a cell neighborhood and colors come from a spatial clustering with k=50 515 
(number of CCF regions at structure level), fit by concatenating embeddings across mice. (b.) Quantification of 516 
number of per-mouse specific spatial clusters, computed by clustering at different k and computing the number of 517 
clusters found for all mice (4 animals) and for the three mice with the most cells per mouse ( Zhuang 1, 2, and 3). 518 
Note that because serial sections were collected at a higher frequency (100µm versus 200µm),  different areas of the 519 
brain will have marginally higher coverage in one brain or another. (c.) Average correlation of the cell type 520 
composition of brain regions computed CellTransformer to CCF regions, computed using the linear-sum assignment 521 
matching algorithm (exclusively matching regions from one set to the other). Dotted lines with "o” marker indicate 522 
results when fitting using all three mice with >1M cells together. Solid lines with “x” marker indicate results when 523 
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computing spatial clustering on each mouse in isolation. (d.) Quantification of subject-level information present in 524 
embeddings using linear regression. The median absolute prediction error (x-axis) quantifies accuracy in predicting 525 
the (x, y, z) coordinates of a neighborhood from its embeddings. The y-axis quantifies accuracy when predicting 526 
mouse identity from embeddings using logistic regression. Values are averaged across cells per mouse. (e.) Results 527 
of domain discovery (k=50) on a Slide-SeqV2 whole mouse brain (Macosko 1) dataset12. Two sets of three sequential 528 
sections are shown. 529 

 530 
 531 
 532 
We next quantified the similarity of CellTransformer domains to CCF regions. Similarly to our 533 

analysis of the Yao et al. (2023) dataset, we computed average similarity of cell type composition vectors 534 
from CCF and CellTransformer. In domain discovery across all animals, we found cell-type composition 535 
vectors that correspond strongly to CCF (Pearson correlation = 0.805, red line in Figure 6b). We also 536 
evaluated whether clustering only on embeddings from one animal would significantly affect similarity to 537 
CCF. Correspondence between CellTransformer domains and CCF is high even when domains are fit 538 
with a subset of the dataset (Pearson correlations > 0.7 for all comparisons across resolutions and 539 
domain source, Figure 6c). This demonstrates CellTransformer can reproduce a consistent 540 
neuroanatomical structure even with a small number of observations. Results were highly similar overall 541 
to CCF in the Zhang dataset and Yao dataset (Pearson correlations greater than 0.6 for all comparisons), 542 
indicating CellTransformer’s robustness to changes in gene panel and preprocessing choices.  543 

To further investigate how donor metadata was encoded in the embeddings, we employed linear 544 
probing strategies commonly used in interpretation of deep learning model embeddings. We regressed 545 
CCF-registered (x, y, z) coordinate position across all embeddings and used logistic regression to classify 546 
animal identities. Neighborhood level prediction of donor identity was very accurate (>94% for all animals, 547 
Figure 6d) and median absolute prediction error was accurate within 151 µm. Decoding accuracy for both 548 
metrics was strongly associated with the number of cells (Pearson correlation -0.92 for coordinate error 549 
and 0.92 for predicted donor probability). The observation that mouse donor identity is easily predicted 550 
from per-neighborhood embeddings while still maintaining cross-animal and cross-section coherence is 551 
another demonstration of the richness of the representation learned by our approach. 552 

Finally to demonstrate the applicability of our strategy to a different spatial transcriptomics 553 
modality, we analyzed a whole mouse brain Slide-SeqV2 dataset (“Macosko 1”), collected in Langlieb et 554 
al. (2023)12. Slide-SeqV2 provides whole transcriptome coverage in a spatial context by tiling tissue slices 555 
with 10 µm by 10 µm squares. As each square may contain more than one cell or a partial cell, we fit our 556 
model to the deconvoluted single-cell data computed using the RCTD32 method provided. This produced 557 
4,783,976 cells across 101 slices. We also filtered the dataset for low-quality cells and infrequently 558 
expressed genes (see Methods). We found that increasing the size of our model (from 4 encoder layers 559 
to 10) was necessary to identify spatially coherent domains, perhaps driven by the much larger number of 560 
genes detected (5019 versus 500 or 1129 in the two MERFISH datasets; see Methods). We plot three 561 
sequential sections from domain discovery at k=50 (Figure 6e). We show that CellTransformer robustly 562 
identifies cortical layers across sections and in known structures such as the midbrain and the piriform 563 
areas. Domain discovery with greater than 50 regions did not produce adequate integration across 564 
sections, possibly because of variable cellular density and single-cell read depth across sections.  565 

Overall, we found that the CellTransformer workflow successfully identifies interpretable domains 566 
across different spatial transcriptomics modalities, and that the resolution of cross-section and cross-567 
dataset domains depends on the specific spatial transcriptomics method and the quality of the datasets.  568 
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Discussion 569 

In this study, we present a transformer-based pipeline to combine scRNA-seq and spatially resolved 570 
transcriptomic atlases to perform accurate organ level domain discovery. We employed a novel 571 
representation learning workflow and implemented a computationally efficient pipeline that readily allows 572 
scaling to multi-million cell, multi-animal datasets. The representations learned in our model can be 573 
clustered to identify progressively finer-scale spatial domains directly from local cellular and molecular 574 
information alone, without predefined spatial labels. We show these regions can be interpreted at the 575 
gene or cell level and recapitulate a variety of existing findings in the neuroscience literature where many 576 
existing methods cannot. Our pipeline allows extraction of a very high number of domains, which retain 577 
high correspondence to existing brain region ontology (CCF). These domains are also highly spatially 578 
consistent both within and across tissue sections and even over multiple animals. To our knowledge this 579 
is the first demonstration of fine-grained domain detection beyond human annotation (CCF) using data-580 
driven methods in transcriptomic data. Not only can CellTransformer discover this fine structure, but it can 581 
reliably find it across animals even with hundreds of regions. This capability is intrinsic to our model, and 582 
is learned despite any conditional modeling for donor or section-level covariates, indicating the 583 
robustness of learned features.  584 
 We demonstrated the robustness of our model in uncovering biologically relevant models and 585 
characterized our pipeline’s ability to reproduce known neuroanatomy in the hippocampal formation and 586 
superior colliculus. Detected domains were concordant with previous comprehensive transcriptomic and 587 
connectivity studies of these areas but were identified in a scalable and data-driven way. Not only were 588 
we able to detect known and novel regions, we found that CellTransformer domains can recapitulate and 589 
extend known spatial cell type enrichment patterns and gene expression gradients.  590 

We highlight several advantages of our architecture and approach. Although the use of graph-591 
structured architecture or self-attention to model cells in a neighborhood graph is not novel14,21,33, our 592 
approach combines novel self-supervised training objective based on spatial correlation between a cell 593 
and its neighbors that facilitates learning of a fixed representation for a cellular neighborhood 594 
(Supplementary Note 2). The intersection of graph neural networks, transformers, and representation 595 
learning research is a rich and rapidly moving research area. Methods for spatial-graph structured data 596 
such as CellTransformer will benefit immensely from implementing more effective ways of encoding the 597 
data and its metadata such as better position encoding mechanisms34, rotationally-invariant 598 
architectures35, or arbitrary numbers of genes36. There are also significant opportunities to extend 599 
CellTransformer’s local representation framework to include other data modalities. Using a transformer 600 
than graph neural network facilitates inclusion of arbitrary contextual data such as cell-level (e.g. 601 
neurophysiology37,38) and pixel-level data (e.g. mesoscale axonal connectivity39, or magnetic resonance 602 
imaging40) which can be tokenized and included in our framework.  603 

Caveats of our approach include the necessity of a user-specified spatial radius (for 604 
neighborhood computation) and choice of k for spatial cluster detection. The stability of detected spatial 605 
domains at a given radius or k poses an interesting future angle from which to study anatomical 606 
hierarchies in the brain. Users must also have access to GPUs (to allow for timely model fitting), which 607 
reduces overall accessibility, although the hardware requirements are still much less intensive than for 608 
many existing models such as spaGCN and scENVI4.  609 

CellTransformer advances the state of the art for automated domain detection by allowing 610 
identification of granular and biologically relevant spatial domains that is extensible to both very large, 611 
multi-animal spatial transcriptomic  datasets. As spatially resolved transcriptomic and multi-omic studies 612 
of the brain become more prevalent, tools such as CellTransformer provide avenues to transform data 613 
into refined anatomical maps of the brain and other complex organs and pave the way towards tissue-614 
level structure-function mapping.  615 
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Methods 616 

Allen Brain Cell Mouse Whole Brain (ABC-MWB) dataset processing 617 
 618 
Allen Institute for Brain Science dataset preprocessing 619 
We downloaded the log-transformed MERFISH probe counts and metadata for the Allen Institute for 620 
Brain Science animal (“Allen 1”) from the Allen Institute public release 621 
(https://alleninstitute.github.io/abc_atlas_access/intro.html) access for ABC-MWB.The Allen 1 dataset is 622 
composed of 53 coronal sections. The MERFISH probe set included 500 genes. Serial sections were 623 
collected at 200 μm intervals. We used the taxonomy from the "20231215" data release. Allen 1 is 624 
composed of 3,737,550 cells. We transformed the (x, y) coordinates of each cell into microns instead of 625 
mm as provided. Otherwise the dataset was used as-is for neural network training.  626 
 627 
Zhuang lab (Zhang et al.) dataset processing 628 
Data were downloaded from the "20230830” data release from the Allen Institute ABC-MWB public data 629 
release. Two animals (“Zhuang 1” and “Zhuang 2”) were collected with coronal sections. The other two 630 
animals (“Zhuang 3” and “Zhuang 4”) were collected sagittally. Serial sections for Zhuang 1 (female) were 631 
collected at 100 μm intervals, while serial sections for the other animals (all male) were collected at 200 632 
μm intervals. The size of the MERFISH probe set included 1129 genes. Zhuang 1 and Zhuang 2 consist 633 
of 2,846,909 cells and 1,227,409 cells, respectively. Zhuang 3 and Zhuang 4 consist of 1,585,844 cells 634 
and 162,579 cells, respectively. We transformed the (x, y) coordinates of each cell into microns instead of 635 
mm as provided. Otherwise, the data were used as-is for neural network training.  636 
 637 
Cellular neighborhood construction 638 
We consider cells in the same neighborhood as a reference cell if the distance between them is within a 639 
box of fixed size. For all MERFISH datasets we used a box width of 85 μm. 640 
 641 
CellTransformer architecture  642 
We construct a CellTransformer to generate a latent representation from a cellular neighborhood where 643 
this representation is composed of both molecular and cell type information. We represent cells as nodes 644 
in an undirected graph,  where  indexes the nodes in the graph (cells) and we add an edge 645 

 to the edge set  if , with  a user-specified distance in microns. We assume also that for 646 
each node we have access to , a -dimensional vector of MERFISH probe or cell deconvoluted 647 
transcript counts. We also assume we are given class labels  for each of the  648 
cells. The user must also specify an embedding dimension and number of transformer encoder and 649 
decoder layers; in all experiments in this paper using MERFISH data we use an embedding dimension of 650 
384, 4 encoder layers, and 4 decoder layers. For Slide-SeqV2 analysis we used 10 encoder layers and 4 651 
decoder layers.  652 

To generate a neighborhood embedding, we identify a particular cell which we call a reference 653 
cell. Its first degree neighbors are extracted from . We first apply a shallow encoder (two layer 654 
perceptron with GELU nonlinearity) function  which maps the gene expression into 655 
embedding space. We likewise construct and apply the function  to map one-hot 656 
encoded cell type labels to embedding space, here a simple lookup into a learnable embedding table. 657 
These representations are concatenated into a single 384-dimensional representation. We apply these 658 
transformations to each cell in the neighborhood, not including the reference cell. We note that at this 659 
point, all operations have been per-cell without interactions. In addition to these cell tokens, we also 660 
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instantiate for each neighborhood a register token which we use to accumulate global information across 661 
the neighborhood. We refer to this token as a <cls>-like token in keeping with previous literature.  662 
 We then apply a transformer encoder to the cells, only allowing cells within the same 663 
neighborhood and their <cls>-like tokens to attend to each other. We use 8 attention heads with GELU 664 
activations and layer norm prior to attention and MLP projection. We note that including a bias term in the 665 
key, query, and value MLPs is important to stabilize training, while not noting any significant differences in 666 
models fit with and without bias terms for the rest of the encoder and decoder layer MLPs. Following the 667 
transformer encoder, we use attention pooling to aggregate the cell and <cls> representations for each 668 
neighborhood into a single token with embedding dimension 384. We refer to these as the neighborhood 669 
representations.  670 
 We then instantiate a new token from each reference cell that is a learned embedding for each 671 
cell type (separately from the encoder cell type embedding). These are concatenated to the neighborhood 672 
representations. We then apply a transformer decoder to the tokens, allowing only the neighborhood 673 
token and masked cell embedding to attend to each other if they are from the same cellular 674 
neighborhood. This decoder embedding dimension was 384 with 8 attention heads.  675 
 During training, we extract only the masked reference cell tokens. We then use separate linear 676 
projections to output the mean, dispersion, scale, and zero inflation logit parameters for zero-inflated 677 
negative binomial regression. We optimize the model by minimizing the log likelihood of a negative 678 
binomial distribution using observed cells’ MERFISH probe counts. We trained all versions of 679 
CellTransformer on a system with 2 NVIDIA A6000 GPUs with effective batch size 256.  680 
 681 
Spatial domain detection 682 
Once trained, we apply CellTransformer to a given dataset and instead of extracting reference cell tokens 683 
we extract the neighborhood representation. We then cluster this representation using k-means. We use 684 
the cuml library to perform this operation on GPU (cuml.KMeans), with arguments n_init=3, 685 
oversampling_factor=3, and max_iter=1000. 686 
 687 
Optional smoothing of embeddings 688 
We observe spatial domains are spatially smooth. However in the case that there is a high-frequency 689 
signal that the end-user would like to filter, we optionally introduce a step prior to k-means where we 690 
smooth the embeddings using a Gaussian filter. For all comparisons except those in Supplementary 691 
Figure 12, smoothing was performed with a Gaussian filter with 40 micron full-width at half maxima 692 
(sigma of 12.01 microns). 693 
 694 
Model fitting on the Allen 1 dataset 695 
We used an 80%-20% train-test split proportion (random splitting across the entire dataset) and the 696 
ADAM optimizer over 40 epochs. We perform a linear warmup for 500 steps to a peak learning rate of 697 
0.001 and use an inverse-square root learning rate scheduler to decay the learning rate continuously. We 698 
use a weight decay value of 0.00005 which we do not warm up.  699 
 700 
Model fitting on Zhuang datasets 701 
We perform training from scratch without transfer. We trained for 40 epochs with the same settings as for 702 
the  Allen 1 with the exception of adapting projections to 1129 genes instead of 500.  703 
 704 
Computation of stability criterion 705 
We follow Wu et al. (2016) in using an Amari-type distance to compare clustering solutions. Briefly, we 706 
compute several replicates (20 in this work) of k-means at a given choice of k with different random seed 707 
as , with  indexing the different centroids for a given solution. We then measure the stability of a 708 
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given choice of k by comparing the similarity of all pairs of . Define  the Pearson correlation matrix 709 
between pairs  and . Then we use this dissimilarity metric: 710 
 711 

 712 
 713 
to identify the choice of k which is most stable.  714 
 715 
Regional matching with CCF computation 716 
To quantify overall similarity of regions extracted using CellTransformer with CCF, we first extract cell 717 
type composition vectors for each region at a given level of the hierarchy. For all comparisons in Figure 718 
2, we use the subclass level (338 cell types), resulting in k-region by 338 matrices. For each region 719 
derived from one of the tested models, we compute two quantities: the best match (maximum value of 720 
Pearson correlation, non-exclusively) to any CCF (Figure 2d) or an exclusive match (using the linear sum 721 
assignment algorithm) to pair the regions from either set one-to-one (Figure 2e). We then computed the 722 
average Pearson correlation across the paired matches as the metric. We use scipy.optimize’s 723 
implementation to solve the linear sum problem. 724 
 725 
CellCharter 726 
To run CellCharter we first generated scVI embeddings using the default settings for depth and width of 727 
the network and with the tissue section labels as conditional batch variables. We trained for 50 epochs 728 
using the early_stopping=True setting. We then aggregated across 3 (default settings), 6, 9 layers 729 
using the cellcharter.gr.aggregate_neighbors function. We then applied CellCharter’s 730 
Gaussian mixture model implementation at various choices of the number of Gaussians. We could not 731 
run the mixture model with our hardware (A6000, 48GB GPU memory) for more than 9 layers, which was 732 
also the number which produced the highest correspondence with CCF and is reported in Figure 2e. 733 
 734 
SPIRAL 735 
To run SPIRAL we generated edge sets for 40um, 85um, and 170um neighborhood radii. SPIRAL 736 
requires supervision on single-cell types so for this we use the subclass cell type levels. We trained 737 
models across neighborhood sizes for 1 epoch and then chose the neighborhood size with best 738 
performance (170um) and trained this model to saturation (10 epochs). SPIRAL uses four objective 739 
functions so to assess saturation we averaged them. We note that SPIRAL does not use a training and 740 
testing set split in their training, making it difficult to assess an optimal stopping point. For the k=354 and 741 
k=670 domain discovery analyses the SPIRAL clustering pipeline produced an out-of-memory error and 742 
we instead used our own pipeline with k-means on SPIRAL embeddings. 743 
 744 
Nearest-neighbor smoothness computation 745 
To quantify smoothness of the spatial domains, we use a nearest-neighbor approach. We extract 746 
approximate spatial neighbors for each cell using cuml.NearestNeighbor with 100 neighbors, 747 
restricting neighbors to be within the same tissue section. For a given domain set, either from CCF, 748 
CellTransformer, or CellCharter, we extract the spatial domain label of the given cell and count the 749 
proportion of times that cell is observed in the 100 neighbors. These proportions are averaged across all 750 
cells and tissues.  751 
 752 
Linear probing experiments 753 
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We extract neighborhood representations for each of the cells in the Zhuang lab datasets. First, we 754 
regress these embeddings on the (x, y, z) coordinates. We then computed the absolute prediction error in 755 
terms of the coordinates and then reported the average. We also fit a multi-class logistic regression using 756 
the mouse donor identity. For the logistic regression we use cuml.LogisticRegression with default 757 
settings in cuml. For the cell position regression we fit simple least squares using PyTorch via QR 758 
decomposition.  759 
 760 
Quantification of spatial contribution to gene expression 761 
We interpret the accuracy of the gene expression predictions for a given cell as an index of correlation of 762 
an instance of a particular cell type with its surrounding neighbors. To do this, we compute a simple 763 
baseline model which predicts average gene expression (computed across the entire Allen Institute for 764 
Brain Science mouse dataset) for each cell. We compute the average Pearson correlation for each 765 
instance of a given cell type and average across instances to obtain an average Pearson correlation. We 766 
then compute a Pearson correlation between each cell’s observed gene expression and the 767 
CellTransformer predictions, averaging similarly across instances of a given cell type. The difference 768 
between the baseline and model predictions is displayed, per cell type, and grouped across 769 
neurotransmitter types in Supplementary Figure 12.  770 
 771 
Zhuang lab dataset per-animal CCF comparison 772 
We contrast two methods of extracting spatial domains from the four animals in the Zhuang lab dataset11. 773 
We first fix k, the number of desired spatial domains. Then we fit one k-means model on all of the 774 
neighborhood embeddings for all four (Zhuang 1, 2, 3, and 4) mice together. We also fit a k-means model 775 
to the embeddings of the mice separately. We then compute the similarity of these region sets using the 776 
same method used to quantify differences between CellCharter and CellTransformer by comparing their 777 
regional cell type composition vectors. 778 
 779 
Slide-seqV2 analysis 780 
Initial results with a direct transfer of hyperparameters to the Langlieb et al. (2023) dataset12 did not 781 
produce spatially coherent domains. We therefore implemented two quality control procedures on the raw 782 
data. After filtering for coding genes and non-mitochondrial genes, we additionally used only genes that 783 
were expressed in >10% of cells in the dataset. At the cellular level we identified cells with >20% 784 
mitochondrial genes and those within the 10th percentile of read depth across each section. We also 785 
removed these cells. This left 5,019 genes and 4,783,456 cells. We noted that a successful segmentation 786 
in the Langlieb et al. (2023) dataset required a larger model than the MERFISH ones, using 10 encoder 787 
layers rather than 4, which we attributed to the 10X higher number of genes in this dataset versus the 500 788 
in the ABC-MWB Allen 1 dataset. We used a neighborhood size of 50um to reduce memory footprint, 789 
reasoning the higher cell density in this dataset and higher number of genes would provide enough 790 
information for representational richness. 791 
  792 
Other software 793 
Principal software used in this work includes PyTorch41, numpy42, scikit-learn43, scipy44, scanpy45, cuml46, 794 
matplotlib47, and seaborn48.  795 
 796 
Code and data availability 797 
Code will be publicly available at https://github.com/abbasilab/celltransformer. All data used for this 798 
publication is available either at the Allen Institute ABC-MWB data portal (https://portal.brain-799 
map.org/atlases-and-data/bkp/abc-atlas) or the CZI cellxgene portal 800 
(https://cellxgene.cziscience.com/datasets).  801 
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Supplementary Note 1: Effect of smoothing and analysis on 912 

striatal glial populations 913 

When scaling up the number of regions past 500 in the Allen 1 dataset, we observed that almost 914 
all spatial clusters were spatially smooth except for a recurring pattern in the striatum. We plot 915 
(Supplementary Figure 11a-b) six sequential sections where we identified an irregular (which we define 916 
here as a broadly non-convex shape that does not form relatively singular connected component) pattern 917 
of cells in the striatum and only the striatum (note the spatial uniformity of areas surrounding striatum in 918 
cortex and endopiriform area, nucleus accumbens etc.). We identified cells in these areas and found they 919 
were mostly non-neuronal, with astrocytic types (such as 1163 Astro-TE NN_3, Supplementary Figure 920 
11) forming a large proportion of cells.  921 
 We sought to understand whether these spatial clusters might be biologically relevant or 922 
somehow related to noise. A recent paper, Ollivier et al. (2024)49 identified a novel population of Crym+ 923 
astrocytes in a similar spatial distribution as observed in our regions, specifically in a dorsoventral and 924 
lateromedial distribution (see Supplementary Figure 11e for reproduction from Ollivier et al., granted 925 
with permission). As Crym was included in the MERFISH panel, we quantified Crym expression in 926 
astrocytes within these areas, finding that all but two of these spatially irregular domains had very high 927 
levels of Crym expression. Notably, the two groups with lower expression, spatial clusters 457 and 758, 928 
were the most dorsolateral, and are distributed where Crym+ astrocytes were not observed in Ollivier et 929 
al. We reasoned that these spatial clustersmay have biological relevance.  930 
 However, to simplify downstream analyses and conform with neuroanatomical conventions we 931 
applied a simple smoothing operation (see Methods), which removed this spatial cluster in successive 932 
clustering operations. We used a very small smoothing window (12 micron sigma, or 40 micron full-width 933 
at half-maxima) and found the order of ranked methods and their relative performance changes were not 934 
significantly affected. 935 

Supplementary Note 2: Interpreting the CellTransformer 936 

objective as a measure of spatial dependence 937 

One interpretation of the CellTransformer architecture is learning two representations of cellular 938 
gene expression. The first (the learned embedding for each cell type) is unconditional on the spatial 939 
neighborhood information. The second is one that is conditional on the spatial neighborhood information 940 
learned in the encoder portion of the network and parameterized as a residual update. This residual 941 
update can then conveniently be aggregated across layers and represented as a single update term on 942 
the unconditional representation to produce the final output. We interpret the increase in accuracy from 943 
neighborhood-conditional gene expression prediction as an index of spatial dependence.  944 
A trivial or poorly fit optimization solution would produce a small value of this index. A similar idea has 945 
been previously presented in a number of works, most recently the NCEM approach14. 946 

When analyzing the Allen 1 dataset we observe increases in the predictive accuracy (mean 0.10 947 
+/- 0.0701 in correlation, averaged across cell types) across the dataset. Moreover, there are few cell 948 
types for which there is a decrease in predictive accuracy, indicating that our model has nontrivially 949 
learned the objective  (Supplementary Figure 12a). Those that are poorly predicted are often only 950 
present in the dataset at very low abundances. Conditioned on cell types with more than 102-103 cells, 951 
accuracy has only a mild correlation with cellular density (Supplementary Figure 12b) or on number of 952 
cells of given type in the dataset. Immature neurons (IMN) are the class which benefits the most from 953 
conditional prediction, suggestive of their complex migratory dynamics1. Note that we compute accuracies 954 
at the subclass level (338 types). Increase in accuracy does correlate strongly with log-number of 955 
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observations per cell type, (Pearson correlation of 0.71, Supplementary Figure 12c), possibly indicating 956 
inefficiencies in pretraining. 957 

Supplementary Figures 958 

 959 

960 
Supplementary Figure 1. CellTransformer spatial domains (left) and the corresponding CCF annotations (right) 961 
organized in 3 columns for roughly half of the sections in the Allen 1 dataset1, approximately every other section. 962 
CellTransformer domains were calculated at k=25 clusters.   963 
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 964 
Supplementary Figure 2. CellTransformer spatial domains (left) and the corresponding CCF annotations (right) 965 
organized in 3 columns for roughly half of the sections in the Allen 1 dataset1, approximately every other section. 966 
CellTransformer domains were calculated at k=1000 clusters.  967 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 26, 2025. ; https://doi.org/10.1101/2024.05.05.592608doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?6MieZe
https://doi.org/10.1101/2024.05.05.592608
http://creativecommons.org/licenses/by-nc/4.0/


 

 
 
 

 968 
Supplementary Figure 3. CellTransformer spatial domains (left) and the corresponding CCF annotations (right) 969 
organized in 3 columns for roughly half of the sections in the Allen 1 dataset1, approximately every other section. 970 
CellTransformer domains were calculated at k=1300 clusters. 971 
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 972 
Supplementary Figure 4. Four sequential sections of the Allen 1 dataset (200 µm sampling interval between 973 
sections1) displayed with CellTransformer labels at varying resolution alongside CCF registration results. MO: motor 974 
cortex. (a.) CCF registration of four sequential sections shown in Figure 2. cortical layers are marked based on CCF 975 
annotations. (b.) k=25 spatial domains with CellTransformer shown with regional boundaries from CCF in light gray. 976 
Putative cortical layers are annotated, showing CellTransformer replicates known cortical layers. (c.) 25 domains 977 
shown without CCF annotations to facilitate visualization. (d.) Same sections now shown with 100 domains to help 978 
show the transition from coarse (25 domains) to fine (100 domains). Sublayers of cortex are identified including layer 979 
4 in motor cortex which transcriptomic studies have verified but has been difficult to identify using histological 980 
approaches. (e.) 354 domain zoom in on the same sections, showing consistency of layer 4 motor cortex detection as 981 
well as an anterior-posterior subdivision across motor and somatosensory cortical layers and clear distinction of 982 
cortical layers that lie within motor and somatosensory areas.983 
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 984 
Supplementary Figure 5. CellTransformer domains identified in the Allen 1 dataset1 at varied values of k, colored in 985 
three sequential sections (200 µm sampling interval between sections with consecutive numbers, top to bottom 986 
corresponds to rostral to caudal). Caudoputamen is roughly highlighted by dotted circles in k=354 and k=670 to assist 987 
visualization.  988 
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 989 
Supplementary Figure 6. CellCharter results (left) and the corresponding CCF annotations (right) organized in 3 990 
columns for roughly half of the sections in the ABC-MWB (Allen 11) dataset, approximately every other section. The 991 
color labels for CellCharter correspond to its Gaussian mixture model implementation with k=670 clusters.  992 
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993 
Supplementary Figure 7. Comparison of spatial domains in midbrain for CellTransformer and CellCharter 994 
discovered in the Allen 1 dataset1. Left column shows approximate CCF registration. Middle column shows 995 
CellTransformer domains at k=670 and the right column shows CellCharter domains with 670 Gaussians. The 996 
general performance in outlining cortical layers is similar, however in the midbrain, even at half the number of 997 
clusters, CellCharter loses spatial coherence compared with CellTransformer. For example, CellCharter only 998 
identifies two layers of superior colliculus, whereas multiple layers are defined by CellTransformer.   999 
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 1000 

 1001 
Supplementary Figure 8. Quantification of goodness-of-fit and stability of varying numbers of spatial domains. (a.) 1002 
inertia (sum of squares errors for each cluster centroid) calculated for different clustering solutions when clustering 1003 
embeddings generated using CellTransformer on the Allen 1 dataset1. Error bars (standard deviation) are calculated 1004 
but not visible due to scale. (b.) instability scores (see Methods) calculated for different clustering solutions using the 1005 
Allen 1 dataset. Error bars are standard deviation. (c.) Average of inertia and stability curves (black line) and second 1006 
derivative of same curve (blue dotted lines). Second derivative crossing point at k=1300 shown with red dot.   1007 
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 1008 
Supplementary Figure 9. Comparison of best fit spatial domains from CellTransformer with layers of the superior 1009 
colliculus, sensory related area. (a.) Sequential tissue sections (32, 31, 30, from anterior to posterior) showing in first 1010 
column CCF registration and borders of relevant areas. Second column: all cells in field of view, colored by spatial 1011 
domain from CellTransformer. Third column: only visualizing cells inside our putative matches for the zonal, 1012 
superficial gray, and optic layers in the superior colliculus. The 0879 SCsg Pde5a Glut_1 cell type (supertype-level) in 1013 
yellow. Fourth column: same as third but visualizing the 0865 SCs Pax7 Nfia Gaba_3 cell type. Fifth column: same as 1014 
third and fourth but visualizing the 0882 SCop Sln Glut type. (b.) Bar chart of cell type abundance (as a percentage) 1015 
for top ten most abundant types across the putative subregions. Cell types visualized in (a.) are marked with a yellow 1016 
asterisk. (c.) Bar chart of per-region proportions of GABA-ergic and glutamatergic neurons and non-neuronal types. 1017 
(d.) Bar chart of the number of distinct cell types at supertype level of the ABC-MWB taxonomy per domain.  1018 
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 1019 
Supplementary Figure 10. Results of quantitative comparison of CCF regions and CellTransformer regions at 1020 
equivalent number of regions using the Zhuang 1-4 datasets11. Spatial smoothness of spatial clusters as measured 1021 
using a nearest-neighbors approach, computed by clustering the concatenated latent variables for neighborhoods in 1022 
the Zhuang lab datasets.  1023 
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 1024 
Supplementary Figure 11. Representative images of spatial clustering from CellTransformer models with k=1300 1025 
identified using the Allen 1 dataset1. (a.) Sequential tissue sections (50 is most anterior) showing smoothness of 1026 
spatial domains across and within tissue sections as well as consistent appearance of an irregular spatial pattern 1027 
inside caudoputamen. (b.) Zoom in on the striatum for the same tissue sections. (c.) Plots showing percentage of cell 1028 
types of different neurotransmitter for the non-uniform spatial clusters as well as the distribution of unique cell types of 1029 
a given neurotransmitter type. (d.) Supertype-level counts in putative subpopulations of caudoputamen. (e.) 1030 
Reproduction with permission of results from Ollivier et al. (2024). showing the distribution of Crym mRNA and its 1031 
protein product (S100B), clearly identifying a medial population of Crym+ neurons which resembles the spatial pattern 1032 
observed in clusters 758 and 457 (dorsoventral and Crym-). (f.) Dotplot of cell type expression proportions and mean 1033 
counts per group (raw counts) in identified irregular caudoputamen areas. 1034 
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 1035 
Supplementary Figure 12. Quantification of improved prediction accuracy as a result of CellTransformer’s 1036 
neighborhood-conditioned prediction. Results are over all cells in the Allen 1 dataset1. (a.) Change in Pearson 1037 
correlation from per-cell type (at subclass level) average expression. Red lines show medians per distribution. (b.) 1038 
Scatterplot of increase in average Pearson correlation per subclass level cell type against average neighborhood size 1039 
for reference cells of that type. c. Scatterplot of increase in average Pearson correlation per subclass level cell type 1040 
vs the number of cells of that type in log scale.  1041 
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