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Abstract

Spatial transcriptomics offers unique opportunities to define the spatial organization of tissues and
organs, such as the mouse brain. We address a key bottleneck in the analysis of organ-scale spatial
transcriptomic data by establishing a workflow for self-supervised spatial domain detection that is scalable
to multimillion cell datasets. This workflow uses a self-supervised framework for learning latent
representations of tissue spatial domains or niches. We use a novel encoder-decoder architecture, which
we named CellTransformer, to hierarchically learn higher-order tissue features from lower-level cellular
and molecular statistical patterns. Coupling our representation learning workflow with minibatched GPU-
accelerated clustering algorithms allows us to scale to multi-million cell MERFISH datasets where other
methods cannot. CellTransformer is effective at integrating cells across tissue sections, identifying
domains highly similar to ones in existing ontologies such as Allen Mouse Brain Common Coordinate
Framework (CCF) while allowing discovery of hundreds of uncataloged areas with minimal loss of domain
spatial coherence. CellTransformer domains recapitulate previous neuroanatomical studies of areas in
the subiculum and superior colliculus, and characterize putatively uncataloged subregions in subcortical
areas which currently lack subregion annotation. CellTransformer is also capable of domain discovery in
whole-brain Slide-seqV2 datasets. Our workflows enable complex multi-animal analyses, achieving nearly
perfect consistency of up to 100 spatial domains in a dataset of four individual mice with nine million cells
across more than 200 tissue sections. CellTransformer advances the state of the art for spatial
transcriptomics, by providing a performant solution for detection of fine-grained tissue domains from
spatial transcriptomics data.

Introduction

Hierarchical spatial organization is ubiquitous in tissue and organ biology. Systematic, high-
dimensional phenotypic measurements of this organization, generated through experimental tools such
as spatial transcriptomics, multiplex immunofluorescence, and electron microscopy, are also becoming
increasingly available as large, open datasets. However, transforming this abundance of data into a
useful representation can be difficult, even for fields with a wealth of prior knowledge, such as
neuroanatomy.
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Datasets such as the Allen Brain Cell Mouse Whole Brain (ABC-MWB) Atlas'-3, a multi-million
cell single-cell RNA sequencing (scRNA-seq) and spatial (MERFISH) atlas, provide unprecedented
opportunities to investigate whether computational tools can help biologists understand spatial cellular
and molecular organization. However, the size of these datasets presents computational challenges for
existing methods. Existing methods for spatial niche or spatial domain detection often operate on the
entire dataset at once, for example a tissue-section-wide cell by gene matrix. This precludes scale-up to
large multi-section datasets as most systems do not have the GPU memory required to load multiple
sections of data or store intermediary representations such as pairwise distance matrices*=¢, particularly
as datasets scale into the millions or tens of millions. Some methods rely on Gaussian processes, which
feature a costly cubic computational scaling in the number of observations”. Other more scalable methods
are limited in capturing granular structure, integration across tissue sections, or require significant
neuroanatomical prior knowledge to manually audit, cluster, and hyperparameter tune for domain
discovery workflows®?.

Our method, CellTransformer, implements a robust representation learning and clustering
workflow to discover spatial niches at scale by representing not tissue sections but subgraphs that
represent individual cellular neighborhoods. We describe an innovative strategy to induce the encoder of
an encoder-decoder transformer to aggregate useful information into a neighborhood representation
token. This occurs by training the model to condition cell-type specific gene expression predictions using
this neighborhood context token. The model thus learns to predict expression of cell types in arbitrary cell
neighborhoods. This representation allows for recovery of important anatomically plausible spatial
domains while remaining computationally efficient.

We evaluate CellTransformer on using the ABC-MWB dataset (3.9 million cells collected with a
500 gene MERFISH panel)' demonstrating its effectiveness in producing completely data-driven spatial
domains of the mouse brain by comparing the results to the Allen Mouse Brain Common Coordinate
Framework version 3 (CCFv3)'%. CCF is a consensus hand-drawn 3D reference space compiled from a
large multimodal data corpus. Annotations feature labels at three levels of coarseness (from 25 regions at
coarse-grain to 670 at fine-grain), which we use to show that CellTransformer excels at identifying spatial
domains which are spatially coherent and biologically relevant. CellTransformer domains reproduce
known regional architecture observed in targeted studies of the subiculum and in the superior colliculus
superficial layers. Beyond the 670 regions currently annotated in ABC-MWB, we show our workflow
produces meaningful data-driven domains in regions which currently lack subregion annotation. As
examples, we focus on data-driven subdomains we define in superior colliculus and midbrain reticular
nucleus.

We also demonstrate CellTransformer’s strength in integrating domains across animals,
leveraging a separate whole-brain dataset within ABC-MWB'' comprising 6.5 million cells distributed
across four animals and 239 sections and with a separate gene panel with 1129 genes. We find that
CellTransformer produces consistent subregions across all 5 animals (1 coronal and 4 sagittal),
suggesting a successful integration across animals with heterogeneous measurements. Notably we also
find that identified domains are highly consistent across animals. To our knowledge, this work provides
the first demonstration that large scale data-driven discovery of domains at CCF-like resolution can be
based on spatial transcriptomics data. Finally, we show that our framework can perform domain detection
in a different spatial transcriptomics modality, Slide-seqV2, using the whole-brain dataset of cellularly
deconvoluted results™?.
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g2 Results

83 The CellTransformer architecture and domain detection workflow

84 CellTransformer is a graph transformer'® neural network that is trained to learn latent
85 representations of cell neighborhoods by conditioning single-cell gene expression predictions on
86 neighborhood spatial context. We define a cellular neighborhood as any cells within a user-specified
87 distance cutoff in microns away from a reference or center cell. As input, our model requires the gene
88 expression profiles and cell type classifications for cells in a neighborhood and outputs a latent variable
89 representation for that neighborhood. One of the principal operations in a transformer is the self-attention
90 operation, which computes a feature update based on pairwise interactions between elements in a
91 sequence, which are referred to as tokens (here, cells). Accordingly, one interpretation of our model is of
92 learning an arbitrary and dynamic pairwise interaction graph among cells.
93 Restricting this graph to a small neighborhood subgraph of the whole-tissue-section graph has
94 benefits for both computational resource usage and biological interpretability. We interpret the size of the
95 neighborhood as a constraint on the physical distance at which statistical correlations between the
96  observed cells and their gene expression profiles can be directly captured. Truncating neighborhoods
97 using a fixed spatial threshold instead of choosing a fixed number of neighbors also allows the network to
98  account for the varying density of cells in space. Accordingly, our framework incorporates a notion of both
99  cytoarchitecture (relative density and proximity) and molecular variation (cell type and RNA-level
100  variation) in the data.
101 To induce our model to learn biologically relevant latent features from cell neighborhoods, we
102  designed a self-supervised training scheme requiring only cell-type labels, which many large-scale
103  studies make available via scRNA-seq atlas reference mapping™''. Specifically, we train the model to
104 extract features from cellular neighborhoods, modeled as sets of cell tokens that are within a box of fixed
105  size centered around a center, or reference cell, and use them to predict the observed gene expression of
106  the cell at the center of the neighborhood. We refer to this cell as the reference cell (indicated by “cell R
107 in Figure 1a). Cell tokens are generated by composing cell-type and gene expression information
108  (Methods). After encoding with a series of transformer layers (where cells are only allowed to attend to
109  each other if they are in the same neighborhood), these tokens are then aggregated using a learned
110 pooling operation to produce a single token representation of the entire tissue context. The model
111 receives a new mask token representing the reference cell’s type which is used to predict its gene
112  expression following the operation of several transformer decoder layers (Figure 1b). Importantly, during
113 this process, only the mask token and the neighborhood representation can attend to each other. This
114 operation captures a hierarchical encoding and decoding process where low level information (gene and
115  cell type) is produced at the cell token level and aggregated into a high-level representation. This high-
116 level representation is then used to conduct the reverse decoding process (prediction of gene expression
117 from cell type and tissue context information). Unlike closely related method NCEM™, which predicts
118  expression of a reference masked node, we aggregate information across tokens (nodes) in a cellular
119 neighborhood using a learned pooling which strongly bottlenecks the information distributed across the
120 tokens prior to masked cell prediction.
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Figure 1. Overall training and architectural scheme for CellTransformer. (a.) During training, a single cell is drawn
(we denote this the reference cell, highlighted in red). We extract the reference cell’s spatial neighbors and partition
the group into a masked reference cell and its observed spatial neighbors. (b.) Initially, the model encoder receives
information about each cell and projects those features to d-dimensional latent variable space. Features interact
across cells (tokens) through the self-attention mechanism. These per-cell representations and an extra token acting
as a register token are then aggregated into a single vector representation, which we refer to as the neighborhood
representation. This representation is concatenated to a mask token which is cell type-specific and chosen to
represent the type of the reference cell. A shallow transformer decoder (dotted lines) further refines these
representations and then a linear projection is used to output parameters of a negative binomial distribution modeling
of the MERFISH probe counts for the reference cell. (c.) Once the model is trained, we compute embeddings (one for
each neighborhood/reference-cell pairing) and concatenate these embeddings within the tissue section datasets and
across tissue sections. Concatenating embeddings across tissue sections produces region discovery at organ level.
We then cluster these embeddings using k-means to discover tissue domains across sections.

At test time, we extract this neighborhood representation for each cell and use k-means clustering
to identify discrete spatial domains (Figure 1c¢). We will use the term spatial domain to refer to the output
of clustering on embeddings and cluster to refer to single-cell clusters transferred from the ABC-WMB
single cell taxonomy. We emphasize that the input embedding matrix for k-means is conducted by
concatenating all cells across the dataset across tissue sections. Since minibatching is used during
training (unlike methods such as STAligner and GraphST), for generating embeddings, and during k-
means (using cuml for GPU-acceleration), overall computational costs of our algorithm are limited in
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145 principle only by the memory required for storage of cellular neighborhoods rather than entire sections or
146  datasets.

147 Data-driven discovery of fine-grained spatial domains in the
148 mouse brain using ABC-WMB

149 The ABC-WMB spatial transcriptomics dataset contains data from five mouse brains®''. One

150 animal was processed by the Allen Institute for Brain Science with a 500 gene MERFISH panel and 53
151 coronal sections (Yao et al, 2023)" The remaining four other animals, generated in Zhang et al. (2023)[11]
152  were collected with a 1129 gene panel. Sections from two of these animals (“Zhuang 1”, 147 sections;
153  and “Zhuang 2", 66 sections) were sampled coronally. The other two animals in the dataset (“Zhuang 3,
154 23 sections; and “Zhuang 4”, 3 sections) were sampled sagittally.

155 We first trained CellTransformer on the Allen 1 dataset, subsequently extracting embeddings for
156  each cell’s neighborhood, which we defined as a set of cells within a fixed size square around that cell.
157  We then clustered these embeddings using k-means. We emphasize that to generate spatial domains
158  across the brain, all k-means clustering in this paper was performed by concatenating cells in the dataset
159  across tissue sections. All further references to visualizations of domains, including those only visualized
160  for a subset of domains, were fit at a given number of domains across the entire dataset. We also

161 optionally introduced a smoothing step prior to k-means, which we applied to spatially smooth the

162  embeddings. See Supplementary Note 1 for a discussion on the effects of smoothing on detected

163  domains.

164 We generated domains at k=25, 354, and 670, to match the division, structure, and substructure
165  annotations in CCFv3, displaying domains for four consecutive tissue sections (Figure 2a). We also

166 provide representative images of spatial clusters across the brain (28/53 sections) at different k in

167 Supplementary Figures 1-3. Low domain numbers such as k=25 broadly divide the brain into

168  neuroanatomically plausible patterns, with subregions of striatum (dorsal and ventral marked in Figure
169  2a) and cortical layers clearly visible. A comparison of cortical layers across these sections shows that
170  CellTransformer domains at k=25 are well matched to CCF (Supplementary Figure 4b) and correctly
171 identify major classes of layers (1, 2/3 4, 5, and 6) across somatosensory and somatomotor cortex. In
172 particular, we point out the excellent correspondence of domains across tissue sections at k=25 across
173  the entire dataset (Supplementary Figure 1), with nearly perfect consistency across regions. This

174  suggested that our neighborhood representation method was robust enough to enable integration without
175  modeling of batch or tissue-level covariates.

176 At k=354, anterior-posterior subdivisions emerge such as the presence of layer 4 in the motor
177 cortex'? (Figure 2a, see Supplementary Figure 4d, e). Historically, the mouse motor cortex was thought
178  tolack a granular layer 4, however recently, MERFISH, transcriptomic and epigenomic studies have

179  confirmed its existence’'®'8. At k=100 and k=354, we find a domain corresponding to Layer 4 in the

180  somatosensory cortex which clearly extends to layer 4 in the motor cortex.

181 At k=670, the cortical layers identified at lower resolution are further partitioned into superficial,
182 intermediate, and deep strata within several layers. We visualize cortical layers across sections in depth
183 (Figure 2b), showing CellTransformer not only identifies fine superficial-deep structure within cortical

184 layers but also preserves the boundary between somatosensory and motor cortex (marked in thick black
185  dotted lines in Figure 2b). Taken together these results showed that CellTransformer robustly describes
186 previously known anatomical structures.
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188 Figure 2. Representative images of spatial domains discovered using CellTransformer on the Allen 1

189 dataset (53 coronal sections and 500 gene MERFISH panel') and comparison to CCF. (a.) Four sequential tissue
190 sections (the inter-section distance is 200 pym) from anterior (first row, corresponding to section 50) to posterior

191 (bottom row, section 47). In the first three columns, each dot is a cell, colored by spatial domain identified by

192 CellTransformer when clustering was conducted with k = 25, 354, and 670 domains (the CCF division, structure, and
193 substructure domain resolutions). Spatial domain labels are depicted with the same colors across sections within the
194 same column. Fourth column shows CCF region registration to the same tissue section. Select regions are annotated
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195 with CCF labels. MO: motor cortex, SS: somatosensory cortex; ACA: anterior cingulate, CP: caudoputamen; LSX:
196 lateral septum; MSX: medial septum; VISC: visceral cortex; GU: gustatory cortex; PIR: piriform cortex; OT: olfactory
197 tubule; ACB: nucleus accumbens; HY: hypothalamus (b.) Single hemisphere images of same tissue sections in a.
198 domains fit at k=670, zoomed in on cortical layers of motor cortex (MO) and somatosensory cortex (SS). CCF

199 boundaries are shown in semi-transparent lines, with the boundary between SS and MO outlined in larger black

200 dotted lines. (c.) Spatial homogeneity (see Methods) of domains from different methods including recently published
201 methods CellCharter and SPIRAL. (d.) Average Pearson correlation (averaging over number of domains and method)
202 of the maximum Pearson correlation between the cell type composition (at subclass level, 338 types) vectors of data-
203 driven regions with CCF ones. (e.) Average Pearson correlation (averaging over number of domains and method) of
204 optimal matched pairs between data-driven and CCF regions, where CCF regions are only allowed to pair with one
205 data-driven region per comparison. Matches fit using linear programming. (f.) Region-by-region Pearson correlation
206 matrix comparing cell type composition vectors from 670 CCF regions (at substructure level) with 670 spatial domains
207 from CellTransformer. The CCF regions are shown on the left with their structure annotations from CCF at division
208 level on the side of the plot. Correlations above 0.9 are shown in bright green to assist in visualization. (g.) Cell type
209 (cluster level) by region matrix for 670 CCF regions at substructure level. (h.) Cell type (cluster level) by region matrix
210 for 670 CellTransformer regions. Rows are normalized to sum to 1 in both g. and h. Colors along x-axis in both g.
211 and h. show cell class annotations from ABC-MWB cell type taxonomy at class level to allow for visualization of

212 composition in terms of known types. Cell types in the “09 CNU-LGE GABA’ class are boxed in purple in g. and h.,
213 matching their color in the legend. Rows of both g. and h. are grouped using clustering to produce approximately
214 similar structure.

215

216

217

218 We also examined the caudoputamen at various choices of k. At k=25, the caudoputamen is one
219  domain, which separates into broad spatially contiguous domains at k=100. Interestingly, at k=354 and
220 k=670, we observe domains that intermingle in a grid-like pattern (Figure 2a, Supplementary Figure 5)
221 that strongly resembles the Voronoi parcellation established in Hintiryan et al. (2016)"” through systematic
222 projection mapping to caudoputamen. Notably, CellTransformer also captures the transition between the
223  quadrant pattern in intermediate caudoputamen (sections 52, 50 and 49 in Supplementary Figure 5) to
224  the sequential strip organization (sections 44, 43) which Hintiryan et al. (2016) attributed to the

225 differences in subnetwork reorganization. The correspondence of our transcriptomic domains to the

226 Hintiryan et al. (2016) results, which are exclusively based on projection mapping (non-transcriptomic

227  data), suggests the biological relevance of our representation learning workflow.

228 We compared CellTransformer to several other workflows to capture spatial coherency and

229  multiresolution neuroanatomical annotations in CCF at the division, structure, and substructure levels. For
230 comparison, we used two recent methods, CellCharter'® and SPIRAL' that are scalable to millions of

231 cells as benchmarks. CellCharter builds spatially informed embeddings for domain detection by

232  concatenating the embeddings across scales followed by dimensionality reduction and batch correction,
233  while SPIRAL uses graph-neural networks for batch effect correction and integration across scales.

234 Additionally, we implemented a machine learning baseline that employs k-means clustering on cellular
235 neighborhoods (represented as cell type count vectors). Many of the other GPU-accelerated methods
236  such as scENVI#, STACI?®, spaGCN?®, STAligner®, STAGATE?' or GraphST?? cannot be run on datasets
237  that contain millions of cells due to computational constraints (see Methods). Many of these methods
238 require instantiation of a dataset-wide pairwise distance matrix between all cells either on GPU or in RAM,
239  which is a prohibitively large matrix (~60TB for ~4M cells) even for enterprise-level hardware. In contrast,
240  our workflow does not require very large system RAM or extensive preprocessing steps due to our

241 training and inference, maxing out at less than 100GB but requiring significantly less in practice.

242 To quantify the spatial coherence of domains, for each cell we identified its nearest 100 spatial
243 neighbor cells. We then quantified the proportion of neighbor cells within the same spatial domain label as
244  the starting cell (Figure 2c). Ideally, we would expect a high proportion of neighbor cells to be in the
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245  same spatial domain as the starting cell. In this comparison of neighborhood spatial smoothness,

246  CellTransformer outperforms CellCharter (58.2% better spatial coherence at 670 domains) and SPIRAL
247 (4091.2%). CellTransformer also outperforms the machine learning baseline based on k-means clustering
248  on cellular neighborhoods (61.9% better spatial coherence). For reference, we include the CCF

249 parcellation (dashed purple line) in this comparison to provide an upper bound, as well as spatial

250 coherence using single cell type calls at subclass level (338 types, see Methods).

251 To quantify the similarity of detected domains with CCF annotations, we compared the cell type
252 composition of domains using cell type calls from the ABC-WMB taxonomy. We again chose the subclass
253 cell type level, extracting for each domain and for each method a 338-long cell-type vector. We calculated
254 the Pearson correlation of cell type composition vectors computed using the CCF regional annotations at
255  division (25), structure (354) and substructure (670) levels against those of the various methods at the
256 corresponding number of spatial domains. First, for each data-driven domain, we computed the maximum
257 correlation to any CCF domain at the same CCF annotation resolution averaging these numbers across
258  domains. CellTransformer outperforms other methods at mid-granularity and fine-granularity (Figure 2d).
259 In this comparison, several data-driven regions can match the same CCF region, which in the worst case
260 could provide an overly optimistic picture of the correspondence between data-driven domains and CCF.
261 To address this, we conducted a second analysis where only one CCF region could be matched to a

262  given data-driven one. We used linear programming to optimize 1:1 pairing of data-driven regions to CCF
263  ones based on their Pearson correlation and averaged these across regions and methods (Figure 2e).
264  CellTransformer is highly performant, showing that increase in correlation is not due to redundant

265 matches to a single area in CCF. Visualization of spatial clusters from CellCharter (Supplementary

266  Figure 6-7) at k=670 domains across the brain and in midbrain shows lack of spatial coherence in cortical
267 layers and midbrain, with detected domains distributed in a what appear to be non-biological patterns. In
268  contrast, CellTransformer identified spatially coherent domains and uncovered plausible neuroanatomical
269  structures.

270 To further characterize the similarity of CellTransformer domains with CCF, we plotted the

271 Pearson correlation matrix (Figure 2f) between cell type composition vectors generated at 670 domains
272 (substructure level in CCF). Block structures with very high correlations (>0.9, shown in bright green) in
273  the matrix clearly show that CellTransformer is able to identify regions that are highly similar with known
274 ones without any labels. We also investigated correspondence of cell type composition with more

275  granular single cell annotations, employing the “cluster” (5274 cell types) level annotations from ABC-
276  MWB. We observed high similarity between the “substructure” CCF domain set (Figure 2g) and 670

277  CellTransformer domains (Figure 2h) with average Pearson correlation of CellTransformer to CCF

278  domains of 0.853. This shows the high correspondence of CCF and CellTransformer (Figure 2g and

279 Figure 2h) is robust to cell type resolution at which comparison occurs. CellTransformer identified an

280 increase in number of domains containing the 09 CNU-LGE GABA class (striatal/pallidal GABAergic

281 neurons from lateral ganglionic eminence compared with the 670 CCF substructures, shown in light

282 purple box in Figure 2g and Figure 2h), potentially suggesting the presence of uncharacterized

283  developmental populations.

284 The observation of hierarchical grouping of domains at different choices of k (for example

285  delineation of cortical layers and sublayers with increasing number of domains) prompted us to develop a
286  strategy to evaluate an optimal number of spatial domains based on two metrics. We implemented a

287 previously published strategy?® to determine the optimal number of domains using a stability criterion. We
288 reasoned that the optimal choice of spatial domain number would feature minimal variability across

289  clustering runs. In brief, we computed 20 clustering instances with different random initializations for a
290 large range k values (100-2000) and quantified their variability over these initializations (see Methods).
291 Interestingly, stability increased with increasing k (Supplementary Figure 8a, 8b). To facilitate the choice
292  of a particular resolution for analysis, we also computed the inertia (sum of squared errors) for each
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clustering solution. Low stability at small numbers of domains may partially explain subpar results for
CellTransformer in the k=25 CCF evaluations. We averaged the inertia curve and instability and
computed the point of second derivative crossing to identify k=1300 as our resolution for analysis
(crossing point shown with red dot in Supplementary Figure 8c).

CellTransformer is the only method out of the three we implemented (including six other pipelines
which were unable to cope with the size of ABC-MWB dataset) to allow discovery of spatially coherent
divisions at greater than CCF resolution. To our knowledge, this study establishes the first instance of a
data-driven method using spatial transcriptomics data to identify brain regions at resolutions finer than
previously defined in the CCF. We next sought to establish correspondence of particular domains at
k=1300 to known neuroanatomy.

Mapping of spatial domains in the hippocampal formation

We characterized CellTransformer’s ability to capture known anatomical structure in the
hippocampal formation, notably the subiculum (SUB) and prosubiculum (PS), in the Allen 1 dataset. We
focused on this area because it is well characterized with respect to both connectivity?* and transcriptomic
composition?®2%, These structures were investigated in Ding et al. (2020)?’, where the authors performed
consensus clustering of glutamatergic neurons and subsequent ISH experiments were used to
comprehensively map domains in dorsal subiculum (SUBd) and dorsal and ventral prosubiculum (PSd
and PSv). Specifically, this and other recent works have noted the extensive laminar organization
(superficial layers to deeper layers), and the dorsal-ventral organization of the subiculum?®-3°, This
organization has been attributed to distinct and correlated patterns of gene expression and connectivity.

We qualitatively compared spatial domains discovered by CellTransformer with k=1300 to the
anatomical borders identified in Ding et al. (Figure 3a). The subiculum features a three-layer organization
referred to as molecular (mo) layer, a pyramidal cell (py) layer, and polymorphic (po) cell layer. Figure 3a
shows a diagram of SUB and PS regions based on Ding et al. (2020) with the pyramidal and polymorphic
layers of SUB and PS annotated in bold black text. Figure 3b shows discovered spatial domains at
k=1300 across four sequential sections corresponding to those in Ding et al. (2020). A subset of domains
corresponding to SUB and PS are shown in Figure 3c along with putative regional annotations.
CellTransformer identifies a three-layer organization in the dorsal subiculum corresponding to that in Ding
et al. (2020) labeled SUBd-py (light green), SUBd-po (gold), and SUBd-mo (gray-blue). CellTransformer
also correctly splits the SUBd and PSd shown with black dotted lines on the image of section 32. Three-
layer strata are also observed in PSd, although notably the pyramidal layer domain extends caudally,
consistent with transcriptomic studies?*2¢ of SUB architecture. For instance, our PSd-po domains
(sections 31 and 30) strongly resemble the HGEA layer 4 found in Bienkowski et al. (2018)?*. Note that
differences may arise between panels in Figure 3a and 3¢ because of sectioning variability and lack of
exact match between sections in ABC-MWB and the Ding et al. (2020) study. In addition to the
aforementioned regions we also observe high agreement in areas such as in the hippocampus-
amygdaloid transition area (HA) and ventral prosubiculum (PSv).
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Figure 3. Comparison of CellTransformer domain sets identified in the Allen 1" dataset with k=1300 with a
comprehensive region set found in Ding et al. (2020), reproduced with permission from authors. (a.) Representative
images reproduced from Ding et al. of region boundaries in prosubiculum (PS), subiculum (SUB), and hippocampal-
amygdala (HA) particularly along the dorsal-ventral axis. Polymorphic and pyramidal layers of the dorsal subiculum
(SUBd) and ventral prosubiclum are indicated. (b.) Images from hippocampal formation across 4 sequential tissue
sections (anterior to posterior) roughly aligned to sections presented in Ding et al. Each dot is a cell colored using
domain labels with k=1300. (c.) Same as b. but only showing cells inside PS, SUB, and HA. Putative regional
annotations are indicated and grouped by dorsal or ventral region within PS and SUB. (d.) Gene expression patterns
visualized at the corresponding tissue section, where only cells within PS/SUB/HA are shown. Units are in log» probe
counts. (e.) Gene expression heatmap of identified subregions, with putative anatomical annotation. Dendrogram
from hierarchical clustering in gene expression space is shown to the right. Genes visualized in d. are bolded and
denoted with a pink asterisk. Colored brackets indicate the genes which are differentially expressed with respect to
the domain (colors match those shown on the left of the heatmap). Two genes per domain are shown and each gene
is expressed with at least log-fold change greater than 1 relative to the other domains. Abbreviations: PS-mo:
prosubiculum molecular layer; PS-py; pyramidal layer of subiculum; SUBv-py; ventral subiculum, pyramidal layer; HA-
py: hippocampal-amygdaloid transition area, pyramidal layer; HA-po: hippocampal-amygdaloid transition area,
polymorphic layer; SUB-mo: subiculum, molecular layer; PSd-po: dorsal prosubiculum, polymorphic layer; PSv-po:
ventral prosubiculum, polymorphic layer; PSd-py: dorsal prosubiculum, pyramidal layer; SUBd-py: dorsal subiculum,
pyramidal layer; SUBv-py: ventral subiculum, pyramidal layer; PSv-po: ventral prosubiculum, polymorphic layer; PSd-
po: dorsal prosubiculum, polymorphic layer.

Ding et al. (2020) observed differential projection topology in dorsal subiculum versus ventral
prosubiculum. Correspondingly, genes were found to form opposing gradients across the length of
subicular areas. Dorsolateral gene gradients appeared in SUBd and ventromedial gradients in PSv. Since
CellTransformer domains appeared to correspond well with literature results, we explored gene
expression patterns across domains to verify whether dorsal-ventral and medial-laterally varying gene
patterns could be observed. We conducted differential expression analysis across our subicular domains
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360  (Figure 3e) that when visualized (Figure 3d) clearly reflected these gradients. Many genes expressed in
361 SUB and PS traverse their long axis as reported previously?®. The identification of spatial domains which
362  subdivided specific layers of PS and SUB similarly to the results in Ding et al., and featured similar types
363  of gene expression gradients as existing literature, suggests that our pipeline was successful in learning
364 neuroanatomically useful information. Importantly, while results in Ding et al. and related works were
365  enabled by significant neuroanatomical and experimental expertise, CellTransformer allows identification
366  of granular tissue structure in a data-driven fashion. Encouraged by this result, we continued our

367 investigation of CellTransformer correspondence with known literature with a comparison in superior
368  colliculus.

369 CellTransformer allows for quantification of laminar and columnar
370 organization in superior colliculus

371 Recent studies using systematic mapping of cortico-tectal fibers in superior colliculus (SC) have
372 identified distinct laminar and columnar structure®!, suggestive of the complex role SC plays in integration
373  of sensory information and coordination of signals. Therefore, SC presented an excellent opportunity to
374 identify transcriptomic and cellular correlates of connectomic variation. We observed a strong

375  correspondence of three of our spatial clusters (k=1300) in the Allen 1 dataset with known layers of

376  superior colliculus, sensory area, particularly the zonal (zo), superficial gray (sg), and optic (op) layers
377  across a set of tissue sections spanning ~600 um from anterior to posterior (rows of Figure 4a and

378  Supplementary Figure 9a). CellCharter was unable to identify these structures (Supplementary Figure
379  7)and only identifies two layers in SC, which does not conform with existing results.

380 By visualizing the cell type composition within the top-ten most abundant types for these three
381 spatial domains (Supplementary Figure 9a, 9b), we were able to identify cell types that were highly

382  selective for our data-driven SC layers: types 0873 SCsg Gabrr2 Gaba_2, 0861 SCs Pax7 Nfia Gaba_3,
383 and 0788 SCop SIn Glut_1. Crucially, the cell types, which have already been annotated as being

384  associated with one of the zonal, optic, or superficial gray, are identified automatically by

385  CellTransformer. We chose the supertype level to allow inspection of abundant cell types without being
386 difficult to visualize. Supertype-level visualizations also show that even with granular cell types (1201

387  typesin Yao et al.) CellTransformer domains are often marked by spatially specific cell type patterning;
388  we note that we do not filter cells outside of our putative superior colliculus layers for visualization. Next
389  we visualized the percentage of cells in each domain (Supplementary Figure 9c¢), grouping them by

390 neurotransmitter class (GABA-ergic, glutamatergic, and non-neuronal). The superficial gray layer showed
391 the higher proportion of GABA-ergic neurons, while the optic layer had the highest proportion of

392 glutamatergic neurons. To further explore these relationships, we calculated the number of distinct cell
393  types (supertype level) within each neurotransmitter class and domain. A clear dorsal-ventral organization
394  was evident (Supplementary Figure 9d) with the number of GABA-ergic and glutamatergic neuron types
395 increasing with layer depth, suggesting CellTransformer’s ability in capturing complex patterns of cellular
396  spatial organization.


https://www.zotero.org/google-docs/?RyVNW7
https://www.zotero.org/google-docs/?qcKVRu
https://doi.org/10.1101/2024.05.05.592608
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.05.592608; this version posted February 26, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Corresponding spatial domains:
CCF registration k=1300, all domains © zonal layer (zo) @ superficial gray (sg) @) optic layer (op)

5

(0873 SCsg Gabrr2 Gaba_2 (00861 SCs Pax7 Nfia Gaba_3 () 0788 SCopy Sin Glut_1

b Corresponding spatial domains:
. Intermediate @ Intermediate Intermediate . Intermediate . Intermediate white,
| gray, lateral white, lateral white, medial gray, medial centromedial
7 S 5 BN f B

O S A

v
g A

B o g
B o '\“‘

Sead

i >
~ intermediate gray, SC
motor-related

; o

0764 SCig-an-PPT %

0849 SCm-PAG Cdh23

(0769 SCiw Pitx2 Glut 3 (O

5

(intermediate white, SC motor-
related
\ [\ M /

i Gaba_2 Foxb1 Glut_1
Supertype counts in subdomains of SC d Domain composition by
I ’ " 4 i i | i i i neurotransmitter type
ntermediate ntermediate ntermediate ntermediate ntermediate
1 gray lateral [ white, lateral -while. medial ] gray, medial | white, centromedial 50
30 =

N
]

N
o

@

=)

i
3°
%30
%
®&20 N
< Il P
O . . = .
NN

[
|l 1 GABA Glut
Number of cell types within
I ‘ l 3 neurotransmitter class across domains
. e W B  mlim | G | . B _0N =

5
(]

Supertype-level proportions

v

cn
0 £850
' ' \ & h 3°
o > AT aq, & o >/ & = 40
b S % \S N O, e 23]
q,b‘éée/ ‘?@é‘} boee ‘D«Qo\& P (;(o ?’0@’5&/ LA 3 Ao © & S .0
N P S O N S DN P L 2E M
N Q < T Fs Lo o L Pl L O & e
\b Q‘b b‘% & .o 0\0 b‘% 6\+ éb P o c}} e‘b Q/@ 5520 =
N N G\ L 2N\ H > » 8 "
& GG AT 1
=]
4 Indicates cell types visualized in (b.) So 0 | | 1= )
397 <8 GABA Giut NN

398 Figure 4. Examination of putative dorsal and ventral subregions of superior colliculus identified in the Allen 1" dataset using

399 CellTransformer. (a.) Putative subregions of sensory layers of superior colliculus in tissue section 32 identified with k=1300

400 CellTransformer domains. CCF registration is in the first column, with zonal (zo), superficial gray (sg), and optic (op) layers labeled
401 by the color of their CellTransformer domain in third, fourth, and fifth columns. The second column shows all cells with color labels
402 from their spatial domain from CellTransformer at k=1300. The third, fourth, and fifth columns show the putative zo (gray-green), sg
403 (purple), and op (red) domains. These columns also show the spatial distribution of one supertype level cell type in yellow across
404 the section. (b.) Sequential tissue sections (32: anterior, 31: posterior) shown similarly to a., but visualizing subregions of the

405 intermediate gray and intermediate white layers, which are indicated with black arrows in the CCF registered annotation image. (c.)
406 Proportions of different supertype level cell types for top-ten most abundant types in different spatial domains. Colors refer to the
407 same spatial domain label in (a.) and (b.). Cell types visualized in (b.) are denoted with a yellow asterisk. (d.) Barplot of the

408 percentage of cells of a given neurotransmitter class found in a given region (GABA - GABAergic; Glut - Glutamatergic; NN - non-
409 neuronal). (e.) Number of unique cell types (at supertype level) found in each domain, grouped by neurotransmitter class.
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413 Encouraged by these findings, we also investigated subregions of the intermediate gray and
414 intermediate white areas of the motor-related areas in SC (Figure 4a-b), where we identify consistent
415  regions across two consecutive sections that are not annotated in the CCF (rows of Figure 4b). We

416  define subregions of intermediate gray (ig) and white (iw), noting a medial-lateral structure similar to that
417  in Benavidez et al. (2021)*', which exhaustively cataloged projection zones in superior colliculus. Notably
418 unlike in superior colliculus sensory, a significant number of non-neuronal cell types are found in very
419  similar proportions across the intermediate white and gray layers (Figure 4c), and instead differences in
420 regions may be attributable to varying proportions of rare cell types. Encouragingly, even in these fine-
421 grained areas, cell types that are highly specific for our data-driven layers can be readily identified

422  (columns of Figure 4b). These rare domain-enriched cell types include: 0849 SCm-PAG Cdh23 Gaba_2
423  (enriched in the medial intermediate white layer, shown in dark green), 0769 SCig SCiw Pitx2 Glut_3
424  (enriched in lateral intermediate white, shown in light blue), and 0764 SCig-an-PTT Foxb1 Glut_1

425 (enriched in medial intermediate gray, shown in dark blue). The identification of Pitx2-expressing neurons
426  also supports our assertions that CellTransformer identifies biologically relevant domains, with previous
427 studies using Pitx2 expression specifically as an intermediate layer marker in superior colliculus'®:28,

428 We observed complex cell type abundance gradients when visualizing the percentage of cells in
429  agiven domain by their neurotransmitter type (Figure 4). We used supertype level to confirm that

430 spatially-varying cell distribution patterns persisted when using more granular cell type annotations.

431 Lateral domains such as intermediate gray, lateral (shown in dark blue) and intermediate white, lateral
432  (shown in light blue) featured a smaller proportion of GABA-ergic neurons than medial domains but were
433 enriched for glutamatergic neurons and non-neurons (Figure 4d). Despite the low proportion of GABA-
434 ergic neurons, the lateral domain of intermediate gray possessed the highest number of GABA-ergic
435  neuron cell types (Figure 4e). Conversely, non-neurons featured the same number of types across the
436 laminae.

437 A medial-lateral gradient of inhibitory neurons in the midbrain
438 reticular nucleus

439 Next, we investigated the midbrain reticular nucleus (MRN), a subcortical structure with few

440 anatomical annotations in CCF. MRN is highly enriched for interneurons in a dense array of connections
441 and appears to play a complex role in movement initiation and release?®*. CellTransformer identifies four
442 subregions of the MRN, which are not included in the existing CCF annotation (Figure 5a). Plotting cell
443 type proportions across the MRN, we identified cell types which are enriched for these putatively

444 uncharacterized areas, although all domains were predominantly glial (e.g., 1184 MOL NN_4 supertype is
445  abundant in all regions, Figure 5b). By visualizing differentially expressed genes across the domains

446 (Figure 5c¢), we identified genes which were subregion selective (selected genes shown in Figure 5d)
447 and form dorsal-ventral expression gradients. Hierarchical clustering showed that the two dorsal domains
448 (purple and brown) group together with the two ventral ones (gold and gray).
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Figure 5. Subregions of midbrain reticular nucleus discovered in the Allen 1" dataset using CellTransformer. (a.) Sequential tissue
sections (26 and 25, anterior to posterior). First column: CCF registration with approximate location of midbrain reticular nucleus
shown with arrows. Note that registration is not exact and can differ across hemispheres. Second column: all cells in field of view,
with color from spatial domains determined with k=1300. The rest of the columns show only cells located in the MRN, and each
column shows a different supertype level cell type in green. (b.) Supertype level cell type proportions for top fifteen most abundant
types across the MRN subregions. Cell types visualized in (a.) are denoted with green asterisks. (c.) Selected 4 differentially
expressed genes across regions. Each gene is expressed at least log fold change greater than 1 relative to the other domains.
MERFISH probe distributions for select genes indicated with pink asterisks are shown in (d.). (d.) Gene expression gradients across
tissue section 25 for Pax5, Six3, and Bnc2, showing specificity for each of the putative MRN subregions. Intensity of color is 0-1
normalized after log scaling raw probe counts. Each dot is a cell, and the color shows the relative transcript count. We show only
cells within the subregions to make it visually easier to distinguish the relevant cells. (e.) Bar plot of the percentage of cells for a
given neurotransmitter type found in each domain, (GABA - GABAergic; Glut - Glutamatergic; NN - non-neuronal). (f.) Number of
unique cell types (at supertype level) found in each domain, grouped by neurotransmitter class..
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466 We again visualized the neurotransmitter composition and number of unique cell types of given
467  neurotransmitter classes. We observed that the number of types of excitatory neurons was spatially

468  graded. Dorsal domains of MRN (domain 365 shown in purple and domain 198 shown in brown, (Figure
469  5e) featured the highest proportion of glutamatergic neurons, and the proportion of glutamatergic neurons
470 in MRN domains decreased with increasing depth. Nonneuronal cells are also organized along this

471 gradient, but in the opposite direction, the ventral areas featuring the highest proportion of glia and the
472 dorsal the lowest. Interestingly, MRN domains composed of a higher proportion of glutamatergic neurons
473  were also the ones with the greatest number of glutamatergic neuron types, also following a dorsal-

474  ventral gradient (Pearson correlation r = 0.89). This relationship was observed for the nonneuronal cells
475 (Pearson correlation r = 0.81, Figure 5f), but not for GABA-ergic neurons (Pearson correlation r = -0.64).
476 This suggests that CellTransformer can identify plausible structures even in historically difficult to

477  characterize areas.

478 CellTransformer enables scaling up to multi-animal, million cell
479 datasets and generalizes to other spatial assays

480 In order to investigate CellTransformer’s ability to integrate across animals, we trained a new
481 model from scratch on the Zhang et al. (2023)"" MERFISH data, which uses an 1129 gene panel and is
482 split over four animals, with both coronal (Zhuang 1 and 2) and sagittal sections (Zhuang 3 and 4). We
483 computed embeddings for each neighborhood as in the previous analysis and performed k-means,

484 concatenating representations for all mice and sections. This provided an opportunity to examine whether
485  CellTransformer could adapt to a multi-animal case in addition to finding spatial domains across tissue
486  sections of the same animal.

487 Spatial domains in sequential tissue sections appeared highly concordant across all four mice
488 (Figure 6a) at the 50-domain resolution. We used 50 domains to facilitate clear visualization of the

489  domains across animals with relatively few colors. Coronal and sagittal sections across mice clearly

490 corresponded anatomically. Cortical layers were highly consistent across animal and section orientation.
491 Structures that appear in the coronal view can be readily identified in the sagittal sections. For example
492  the hippocampal formation (blue) is well delineated in sections 088 for Zhuang 1, section 044 for Zhuang
493 2, and across displayed sections of Zhuang 3 and Zhuang 4. Despite a relatively low number of cells in
494  mouse 4 (162,579 cells versus more than 1.5 million for each of the other animals), nearly all spatial
495  domains observed for Zhuang 4 are present in other animals. Note that sections from this animal only
496  cover a section of the lateral portion of the brain and do not span the entirety of the sagittal plane.

497 We quantified the robustness of CellTransformer domains in a multi-animal context across and
498 within Zhuang 1-4 datasets. We ran clustering and identified domains at the three values of k: 25, 333,
499  630. These k values correspond to three CCF resolution levels reported by registration in Zhang et al.
500  (2023) (note the number of domains differs due to registration differences). For each k value, we counted
501 the number of domains observed in all four animals. We also repeated this analysis without data for

502  Zhuang 4, which contains far fewer cells than the datasets from other animals (Figure 6b). We find that
503  even at high resolution (630 domains), 93.3% domains were found in each mouse, showing high

504  consistency of CellTransformer domains across datasets. With the Zhuang 4 included, at 630 domains,
505  80.0% domains were found in every animal. To verify that domain consistency across animals was not
506 related to loss of domain spatial coherence, we repeated the neighborhood smoothness analysis we
507  developed for analysis of the Allen 1 dataset on the combined Zhang et al. (2023) data. Spatial

508  smoothness was similar to that of Allen 1 (Supplementary Figure 10), indicating CellTransformer can
509 discover spatially coherent domains that are robustly integrated across animals.

510
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CellTransformer domains for MERFISH (Zhang et al.) results
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512 Figure 6. Investigation into performance of CellTransformer on the Zhuang 1-4 datasets (239 sections, both
513 coronal and sagittal, with a 1129 gene MERFISH panel'"). (a.) Representative images of all four mice arranged by
514 column. The section number for each mouse is shown in the upper left of each image. Note that Zhuang 4 only had
515 three sections. For each image, each dot is a cell neighborhood and colors come from a spatial clustering with k=50
516 (number of CCF regions at structure level), fit by concatenating embeddings across mice. (b.) Quantification of

517 number of per-mouse specific spatial clusters, computed by clustering at different k and computing the number of
518 clusters found for all mice (4 animals) and for the three mice with the most cells per mouse ( Zhuang 1, 2, and 3).
519 Note that because serial sections were collected at a higher frequency (100um versus 200um), different areas of the
520 brain will have marginally higher coverage in one brain or another. (c.) Average correlation of the cell type

521 composition of brain regions computed CellTransformer to CCF regions, computed using the linear-sum assignment
522 matching algorithm (exclusively matching regions from one set to the other). Dotted lines with "0” marker indicate
523 results when fitting using all three mice with >1M cells together. Solid lines with “x” marker indicate results when
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524 computing spatial clustering on each mouse in isolation. (d.) Quantification of subject-level information present in
525 embeddings using linear regression. The median absolute prediction error (x-axis) quantifies accuracy in predicting
526 the (x, y, z) coordinates of a neighborhood from its embeddings. The y-axis quantifies accuracy when predicting

527 mouse identity from embeddings using logistic regression. Values are averaged across cells per mouse. (e.) Results
528 of domain discovery (k=50) on a Slide-SeqV2 whole mouse brain (Macosko 1) dataset'?. Two sets of three sequential
529 sections are shown.

530

531

532

533 We next quantified the similarity of CellTransformer domains to CCF regions. Similarly to our

534  analysis of the Yao et al. (2023) dataset, we computed average similarity of cell type composition vectors
535  from CCF and CellTransformer. In domain discovery across all animals, we found cell-type composition
536  vectors that correspond strongly to CCF (Pearson correlation = 0.805, red line in Figure 6b). We also
537  evaluated whether clustering only on embeddings from one animal would significantly affect similarity to
538  CCF. Correspondence between CellTransformer domains and CCF is high even when domains are fit
539  with a subset of the dataset (Pearson correlations > 0.7 for all comparisons across resolutions and

540  domain source, Figure 6c). This demonstrates CellTransformer can reproduce a consistent

541 neuroanatomical structure even with a small number of observations. Results were highly similar overall
542  to CCF in the Zhang dataset and Yao dataset (Pearson correlations greater than 0.6 for all comparisons),
543 indicating CellTransformer’s robustness to changes in gene panel and preprocessing choices.

544 To further investigate how donor metadata was encoded in the embeddings, we employed linear
545 probing strategies commonly used in interpretation of deep learning model embeddings. We regressed
546  CCF-registered (x, y, z) coordinate position across all embeddings and used logistic regression to classify
547  animal identities. Neighborhood level prediction of donor identity was very accurate (>94% for all animals,
548 Figure 6d) and median absolute prediction error was accurate within 151 ym. Decoding accuracy for both
549 metrics was strongly associated with the number of cells (Pearson correlation -0.92 for coordinate error
550 and 0.92 for predicted donor probability). The observation that mouse donor identity is easily predicted
551 from per-neighborhood embeddings while still maintaining cross-animal and cross-section coherence is
552 another demonstration of the richness of the representation learned by our approach.

553 Finally to demonstrate the applicability of our strategy to a different spatial transcriptomics

554  modality, we analyzed a whole mouse brain Slide-SeqV2 dataset (“Macosko 1”), collected in Langlieb et
555 al. (2023)". Slide-SeqV2 provides whole transcriptome coverage in a spatial context by tiling tissue slices
556 with 10 um by 10 pm squares. As each square may contain more than one cell or a partial cell, we fit our
557 model to the deconvoluted single-cell data computed using the RCTD3? method provided. This produced
558 4,783,976 cells across 101 slices. We also filtered the dataset for low-quality cells and infrequently

559  expressed genes (see Methods). We found that increasing the size of our model (from 4 encoder layers
560 to 10) was necessary to identify spatially coherent domains, perhaps driven by the much larger number of
561 genes detected (5019 versus 500 or 1129 in the two MERFISH datasets; see Methods). We plot three
562 sequential sections from domain discovery at k=50 (Figure 6e). We show that CellTransformer robustly
563 identifies cortical layers across sections and in known structures such as the midbrain and the piriform
564 areas. Domain discovery with greater than 50 regions did not produce adequate integration across

565  sections, possibly because of variable cellular density and single-cell read depth across sections.

566 Overall, we found that the CellTransformer workflow successfully identifies interpretable domains
567 across different spatial transcriptomics modalities, and that the resolution of cross-section and cross-

568 dataset domains depends on the specific spatial transcriptomics method and the quality of the datasets.
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560  DISCUSSION

570 In this study, we present a transformer-based pipeline to combine scRNA-seq and spatially resolved
571 transcriptomic atlases to perform accurate organ level domain discovery. We employed a novel

572 representation learning workflow and implemented a computationally efficient pipeline that readily allows
573  scaling to multi-million cell, multi-animal datasets. The representations learned in our model can be

574 clustered to identify progressively finer-scale spatial domains directly from local cellular and molecular
575 information alone, without predefined spatial labels. We show these regions can be interpreted at the
576  gene or cell level and recapitulate a variety of existing findings in the neuroscience literature where many
577 existing methods cannot. Our pipeline allows extraction of a very high number of domains, which retain
578 high correspondence to existing brain region ontology (CCF). These domains are also highly spatially
579  consistent both within and across tissue sections and even over multiple animals. To our knowledge this
580 s the first demonstration of fine-grained domain detection beyond human annotation (CCF) using data-
581 driven methods in transcriptomic data. Not only can CellTransformer discover this fine structure, but it can
582 reliably find it across animals even with hundreds of regions. This capability is intrinsic to our model, and
583 is learned despite any conditional modeling for donor or section-level covariates, indicating the

584  robustness of learned features.

585 We demonstrated the robustness of our model in uncovering biologically relevant models and
586 characterized our pipeline’s ability to reproduce known neuroanatomy in the hippocampal formation and
587 superior colliculus. Detected domains were concordant with previous comprehensive transcriptomic and
588  connectivity studies of these areas but were identified in a scalable and data-driven way. Not only were
589  we able to detect known and novel regions, we found that CellTransformer domains can recapitulate and
590 extend known spatial cell type enrichment patterns and gene expression gradients.

591 We highlight several advantages of our architecture and approach. Although the use of graph-
592  structured architecture or self-attention to model cells in a neighborhood graph is not novel'+2133 our
593 approach combines novel self-supervised training objective based on spatial correlation between a cell
594 and its neighbors that facilitates learning of a fixed representation for a cellular neighborhood

595  (Supplementary Note 2). The intersection of graph neural networks, transformers, and representation
596 learning research is a rich and rapidly moving research area. Methods for spatial-graph structured data
597  such as CellTransformer will benefit immensely from implementing more effective ways of encoding the
598  data and its metadata such as better position encoding mechanisms®*, rotationally-invariant

599  architectures®, or arbitrary numbers of genes®. There are also significant opportunities to extend

600  CellTransformer’s local representation framework to include other data modalities. Using a transformer
601 than graph neural network facilitates inclusion of arbitrary contextual data such as cell-level (e.g.

602  neurophysiology®”-*) and pixel-level data (e.g. mesoscale axonal connectivity®®, or magnetic resonance
603  imaging*®) which can be tokenized and included in our framework.

604 Caveats of our approach include the necessity of a user-specified spatial radius (for

605 neighborhood computation) and choice of k for spatial cluster detection. The stability of detected spatial
606  domains at a given radius or k poses an interesting future angle from which to study anatomical

607  hierarchies in the brain. Users must also have access to GPUs (to allow for timely model fitting), which
608 reduces overall accessibility, although the hardware requirements are still much less intensive than for
609  many existing models such as spaGCN and scENVI*.

610 CellTransformer advances the state of the art for automated domain detection by allowing

611 identification of granular and biologically relevant spatial domains that is extensible to both very large,
612 multi-animal spatial transcriptomic datasets. As spatially resolved transcriptomic and multi-omic studies
613  of the brain become more prevalent, tools such as CellTransformer provide avenues to transform data
614 into refined anatomical maps of the brain and other complex organs and pave the way towards tissue-
615 level structure-function mapping.
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s16  Methods

617  Allen Brain Cell Mouse Whole Brain (ABC-MWB) dataset processing

618

619  Allen Institute for Brain Science dataset preprocessing

620  We downloaded the log-transformed MERFISH probe counts and metadata for the Allen Institute for
621 Brain Science animal (“Allen 1”) from the Allen Institute public release

622 (https://alleninstitute.qgithub.io/abc atlas access/intro.html) access for ABC-MWB.The Allen 1 dataset is
623 composed of 53 coronal sections. The MERFISH probe set included 500 genes. Serial sections were
624  collected at 200 um intervals. We used the taxonomy from the "20231215" data release. Allen 1 is

625  composed of 3,737,550 cells. We transformed the (x, y) coordinates of each cell into microns instead of
626  mm as provided. Otherwise the dataset was used as-is for neural network training.

627

628 Zhuang lab (Zhang et al.) dataset processing

629 Data were downloaded from the "20230830” data release from the Allen Institute ABC-MWB public data
630 release. Two animals (“Zhuang 1” and “Zhuang 2”) were collected with coronal sections. The other two
631 animals (“Zhuang 3” and “Zhuang 4”) were collected sagittally. Serial sections for Zhuang 1 (female) were
632  collected at 100 um intervals, while serial sections for the other animals (all male) were collected at 200
633 pum intervals. The size of the MERFISH probe set included 1129 genes. Zhuang 1 and Zhuang 2 consist
634  of 2,846,909 cells and 1,227,409 cells, respectively. Zhuang 3 and Zhuang 4 consist of 1,585,844 cells
635 and 162,579 cells, respectively. We transformed the (x, y) coordinates of each cell into microns instead of
636  mm as provided. Otherwise, the data were used as-is for neural network training.

637

638  Cellular neighborhood construction

639  We consider cells in the same neighborhood as a reference cell if the distance between them is within a
640 box of fixed size. For all MERFISH datasets we used a box width of 85 um.

641

642  CellTransformer architecture

643  We construct a CellTransformer to generate a latent representation from a cellular neighborhood where
644 this representation is composed of both molecular and cell type information. We represent cells as nodes
645  in an undirected graph, Y =V, £ where V indexes the nodes in the graph (cells) and we add an edge
646  (Vi:Vj)to the edge set € if dij < T with r a user-specified distance in microns. We assume also that for
647 each node we have access to Xi € R?, a g-dimensional vector of MERFISH probe or cell deconvoluted

648  transcript counts. We also assume we are given class labels ¢ = {a e {1, .., C}}f\;l for each of the NV
649  cells. The user must also specify an embedding dimension and number of transformer encoder and

650 decoder layers; in all experiments in this paper using MERFISH data we use an embedding dimension of
651 384, 4 encoder layers, and 4 decoder layers. For Slide-SeqV2 analysis we used 10 encoder layers and 4
652  decoder layers.

653 To generate a neighborhood embedding, we identify a particular cell which we call a reference
654 cell. Its first degree neighbors are extracted from G. We first apply a shallow encoder (two layer

655 perceptron with GELU nonlinearity) function Jo: R — R'? which maps the gene expression into

656 embedding space. We likewise construct and apply the function 9o : RC — R'%? to map one-hot

657 encoded cell type labels to embedding space, here a simple lookup into a learnable embedding table.
658  These representations are concatenated into a single 384-dimensional representation. We apply these
659 transformations to each cell in the neighborhood, not including the reference cell. We note that at this
660 point, all operations have been per-cell without interactions. In addition to these cell tokens, we also
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661 instantiate for each neighborhood a register token which we use to accumulate global information across
662  the neighborhood. We refer to this token as a <cls>-like token in keeping with previous literature.

663 We then apply a transformer encoder to the cells, only allowing cells within the same

664 neighborhood and their <cls>-like tokens to attend to each other. We use 8 attention heads with GELU
665  activations and layer norm prior to attention and MLP projection. We note that including a bias term in the
666  key, query, and value MLPs is important to stabilize training, while not noting any significant differences in
667 models fit with and without bias terms for the rest of the encoder and decoder layer MLPs. Following the
668  transformer encoder, we use attention pooling to aggregate the cell and <cls> representations for each
669 neighborhood into a single token with embedding dimension 384. We refer to these as the neighborhood
670 representations.

671 We then instantiate a new token from each reference cell that is a learned embedding for each
672 cell type (separately from the encoder cell type embedding). These are concatenated to the neighborhood
673 representations. We then apply a transformer decoder to the tokens, allowing only the neighborhood

674  token and masked cell embedding to attend to each other if they are from the same cellular

675 neighborhood. This decoder embedding dimension was 384 with 8 attention heads.

676 During training, we extract only the masked reference cell tokens. We then use separate linear
677 projections to output the mean, dispersion, scale, and zero inflation logit parameters for zero-inflated

678 negative binomial regression. We optimize the model by minimizing the log likelihood of a negative

679 binomial distribution using observed cells' MERFISH probe counts. We trained all versions of

680 CellTransformer on a system with 2 NVIDIA A6000 GPUs with effective batch size 256.

681

682  Spatial domain detection

683 Once trained, we apply CellTransformer to a given dataset and instead of extracting reference cell tokens
684 we extract the neighborhood representation. We then cluster this representation using k-means. We use
685  the cuml library to perform this operation on GPU (cuml.KMeans), with arguments n_init=3,

686 oversampling_factor=3, and max_iter=1000.

687

688  Optional smoothing of embeddings

689  We observe spatial domains are spatially smooth. However in the case that there is a high-frequency
690 signal that the end-user would like to filter, we optionally introduce a step prior to k-means where we

691 smooth the embeddings using a Gaussian filter. For all comparisons except those in Supplementary
692 Figure 12, smoothing was performed with a Gaussian filter with 40 micron full-width at half maxima

693  (sigma of 12.01 microns).

694

695 Model fitting on the Allen 1 dataset

696  We used an 80%-20% train-test split proportion (random splitting across the entire dataset) and the

697  ADAM optimizer over 40 epochs. We perform a linear warmup for 500 steps to a peak learning rate of
698  0.001 and use an inverse-square root learning rate scheduler to decay the learning rate continuously. We
699 use a weight decay value of 0.00005 which we do not warm up.

700

701 Model fitting on Zhuang datasets

702  We perform training from scratch without transfer. We trained for 40 epochs with the same settings as for
703  the Allen 1 with the exception of adapting projections to 1129 genes instead of 500.

704

705  Computation of stability criterion

706 We follow Wu et al. (2016) in using an Amari-type distance to compare clustering solutions. Briefly, we
707 compute several replicates (20 in this work) of k-means at a given choice of k with different random seed

708 as Dlm', with ¢ indexing the different centroids for a given solution. We then measure the stability of a
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709  given choice of k by comparing the similarity of all pairs of D:.. Define C the Pearson correlation matrix
710  between pairs D and D'. Then we use this dissimilarity metric:

711
1 K K
] / [ — JE— Pyppe— .
CllSS(D7 D ) = oK 2K Z maxi<g<ik ij Z maxi<g<ik ij
712 i=1 J=1
713
714  to identify the choice of k which is most stable.
715

716  Regional matching with CCF computation

717  To quantify overall similarity of regions extracted using CellTransformer with CCF, we first extract cell
718  type composition vectors for each region at a given level of the hierarchy. For all comparisons in Figure
719 2, we use the subclass level (338 cell types), resulting in k-region by 338 matrices. For each region

720  derived from one of the tested models, we compute two quantities: the best match (maximum value of
721 Pearson correlation, non-exclusively) to any CCF (Figure 2d) or an exclusive match (using the linear sum
722  assignment algorithm) to pair the regions from either set one-to-one (Figure 2e). We then computed the
723 average Pearson correlation across the paired matches as the metric. We use scipy.optimize’s

724 implementation to solve the linear sum problem.

725

726  CellCharter

727  To run CellCharter we first generated scVI embeddings using the default settings for depth and width of
728 the network and with the tissue section labels as conditional batch variables. We trained for 50 epochs
729  using the early_stopping=True setting. We then aggregated across 3 (default settings), 6, 9 layers
730  using the cellcharter.gr.aggregate_neighbors function. We then applied CellCharter’s

731 Gaussian mixture model implementation at various choices of the number of Gaussians. We could not
732 run the mixture model with our hardware (A6000, 48GB GPU memory) for more than 9 layers, which was
733 also the number which produced the highest correspondence with CCF and is reported in Figure 2e.
734

735 SPIRAL

736  To run SPIRAL we generated edge sets for 40um, 85um, and 170um neighborhood radii. SPIRAL

737 requires supervision on single-cell types so for this we use the subclass cell type levels. We trained

738  models across neighborhood sizes for 1 epoch and then chose the neighborhood size with best

739  performance (170um) and trained this model to saturation (10 epochs). SPIRAL uses four objective

740  functions so to assess saturation we averaged them. We note that SPIRAL does not use a training and
741 testing set split in their training, making it difficult to assess an optimal stopping point. For the k=354 and
742 k=670 domain discovery analyses the SPIRAL clustering pipeline produced an out-of-memory error and
743  we instead used our own pipeline with k-means on SPIRAL embeddings.

744

745 Nearest-neighbor smoothness computation

746 To quantify smoothness of the spatial domains, we use a nearest-neighbor approach. We extract

747 approximate spatial neighbors for each cell using cuml.NearestNeighbor with 100 neighbors,

748 restricting neighbors to be within the same tissue section. For a given domain set, either from CCF,

749  CellTransformer, or CellCharter, we extract the spatial domain label of the given cell and count the

750 proportion of times that cell is observed in the 100 neighbors. These proportions are averaged across all
751 cells and tissues.

752

753 Linear probing experiments
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754 We extract neighborhood representations for each of the cells in the Zhuang lab datasets. First, we

755 regress these embeddings on the (X, y, z) coordinates. We then computed the absolute prediction error in
756  terms of the coordinates and then reported the average. We also fit a multi-class logistic regression using
757  the mouse donor identity. For the logistic regression we use cuml.LogisticRegression with default
758  settings in cuml. For the cell position regression we fit simple least squares using PyTorch via QR

759  decomposition.

760

761 Quantification of spatial contribution to gene expression

762  We interpret the accuracy of the gene expression predictions for a given cell as an index of correlation of
763 an instance of a particular cell type with its surrounding neighbors. To do this, we compute a simple

764 baseline model which predicts average gene expression (computed across the entire Allen Institute for
765 Brain Science mouse dataset) for each cell. We compute the average Pearson correlation for each

766 instance of a given cell type and average across instances to obtain an average Pearson correlation. We
767  then compute a Pearson correlation between each cell’s observed gene expression and the

768 CellTransformer predictions, averaging similarly across instances of a given cell type. The difference

769 between the baseline and model predictions is displayed, per cell type, and grouped across

770 neurotransmitter types in Supplementary Figure 12.

771

772  Zhuang lab dataset per-animal CCF comparison

773  We contrast two methods of extracting spatial domains from the four animals in the Zhuang lab dataset'".
774  We first fix k, the number of desired spatial domains. Then we fit one k-means model on all of the

775  neighborhood embeddings for all four (Zhuang 1, 2, 3, and 4) mice together. We also fit a k-means model
776  to the embeddings of the mice separately. We then compute the similarity of these region sets using the
777 same method used to quantify differences between CellCharter and CellTransformer by comparing their
778 regional cell type composition vectors.

779

780  Slide-seqV2 analysis

781 Initial results with a direct transfer of hyperparameters to the Langlieb et al. (2023) dataset'? did not

782 produce spatially coherent domains. We therefore implemented two quality control procedures on the raw
783  data. After filtering for coding genes and non-mitochondrial genes, we additionally used only genes that
784  were expressed in >10% of cells in the dataset. At the cellular level we identified cells with >20%

785 mitochondrial genes and those within the 10th percentile of read depth across each section. We also

786  removed these cells. This left 5,019 genes and 4,783,456 cells. We noted that a successful segmentation
787  in the Langlieb et al. (2023) dataset required a larger model than the MERFISH ones, using 10 encoder
788 layers rather than 4, which we attributed to the 10X higher number of genes in this dataset versus the 500
789  in the ABC-MWB Allen 1 dataset. We used a neighborhood size of 50um to reduce memory footprint,
790 reasoning the higher cell density in this dataset and higher number of genes would provide enough

791 information for representational richness.

792

793  Other software

794  Principal software used in this work includes PyTorch*!, numpy*?, scikit-learn*3, scipy*4, scanpy*®, cuml*®,
795  matplotlib*’, and seaborn*.

796

797  Code and data availability

798  Code will be publicly available at https://github.com/abbasilab/celltransformer. All data used for this

799 publication is available either at the Allen Institute ABC-MWB data portal (https://portal.brain-

800 map.org/atlases-and-data/bkp/abc-atlas) or the CZI cellxgene portal

801 (https://cellxgene.cziscience.com/datasets).
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s12  Supplementary Note 1: Effect of smoothing and analysis on
913  striatal glial populations

914 When scaling up the number of regions past 500 in the Allen 1 dataset, we observed that almost
915  all spatial clusters were spatially smooth except for a recurring pattern in the striatum. We plot

916  (Supplementary Figure 11a-b) six sequential sections where we identified an irregular (which we define
917  here as a broadly non-convex shape that does not form relatively singular connected component) pattern
918  of cells in the striatum and only the striatum (note the spatial uniformity of areas surrounding striatum in
919  cortex and endopiriform area, nucleus accumbens etc.). We identified cells in these areas and found they
920  were mostly non-neuronal, with astrocytic types (such as 1163 Astro-TE NN_3, Supplementary Figure
921 11) forming a large proportion of cells.

922 We sought to understand whether these spatial clusters might be biologically relevant or

923  somehow related to noise. A recent paper, Ollivier et al. (2024)*° identified a novel population of Crym+
924  astrocytes in a similar spatial distribution as observed in our regions, specifically in a dorsoventral and
925 lateromedial distribution (see Supplementary Figure 11e for reproduction from Ollivier et al., granted
926  with permission). As Crym was included in the MERFISH panel, we quantified Crym expression in

927 astrocytes within these areas, finding that all but two of these spatially irregular domains had very high
928 levels of Crym expression. Notably, the two groups with lower expression, spatial clusters 457 and 758,
929  were the most dorsolateral, and are distributed where Crym+ astrocytes were not observed in Ollivier et
930 al. We reasoned that these spatial clustersmay have biological relevance.

931 However, to simplify downstream analyses and conform with neuroanatomical conventions we
932 applied a simple smoothing operation (see Methods), which removed this spatial cluster in successive
933  clustering operations. We used a very small smoothing window (12 micron sigma, or 40 micron full-width
934 at half-maxima) and found the order of ranked methods and their relative performance changes were not
935  significantly affected.

936 Supplementary Note 2: Interpreting the CellTransformer
937 Objective as a measure of spatial dependence

938 One interpretation of the CellTransformer architecture is learning two representations of cellular
939  gene expression. The first (the learned embedding for each cell type) is unconditional on the spatial

940 neighborhood information. The second is one that is conditional on the spatial neighborhood information
941 learned in the encoder portion of the network and parameterized as a residual update. This residual

942 update can then conveniently be aggregated across layers and represented as a single update term on
943 the unconditional representation to produce the final output. We interpret the increase in accuracy from
944 neighborhood-conditional gene expression prediction as an index of spatial dependence.

945 A ftrivial or poorly fit optimization solution would produce a small value of this index. A similar idea has
946  been previously presented in a number of works, most recently the NCEM approach'.

947 When analyzing the Allen 1 dataset we observe increases in the predictive accuracy (mean 0.10
948  +/- 0.0701 in correlation, averaged across cell types) across the dataset. Moreover, there are few cell
949  types for which there is a decrease in predictive accuracy, indicating that our model has nontrivially

950 learned the objective (Supplementary Figure 12a). Those that are poorly predicted are often only

951 present in the dataset at very low abundances. Conditioned on cell types with more than 102-103 cells,
952 accuracy has only a mild correlation with cellular density (Supplementary Figure 12b) or on number of
953  cells of given type in the dataset. Immature neurons (IMN) are the class which benefits the most from
954 conditional prediction, suggestive of their complex migratory dynamics’. Note that we compute accuracies
955  at the subclass level (338 types). Increase in accuracy does correlate strongly with log-number of
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956  observations per cell type, (Pearson correlation of 0.71, Supplementary Figure 12c), possibly indicating
957 inefficiencies in pretraining.

958 Supplementary Figures
959

CellTransformer k=25 CellTransformer k=25

960
961 Supplementary Figure 1. CellTransformer spatial domains (left) and the corresponding CCF annotations (right)
962 organized in 3 columns for roughly half of the sections in the Allen 1 dataset', approximately every other section.
963 CellTransformer domains were calculated at k=25 clusters.
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CellTransformer k=1000 CellTransformer k=1000 CellTransformer k=1000

Supplementary Figure 2. CellTransformer spatial domains (left) and the corresponding CCF annotations (right)
organized in 3 columns for roughly half of the sections in the Allen 1 dataset', approximately every other section.
CellTransformer domains were calculated at k=1000 clusters.
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CellTransformer k=1300 CellTransformer k=1300

Supplementary Figure 3. CellTransformer spatial domains (left) and the corresponding CCF annotations (right)
organized in 3 columns for roughly half of the sections in the Allen 1 dataset', approximately every other section.
CellTransformer domains were calculated at k=1300 clusters.
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973 Supplementary Figure 4. Four sequential sections of the Allen 1 dataset (200 um sampling interval between

974 sections') displayed with CellTransformer labels at varying resolution alongside CCF registration results. MO: motor
975 cortex. (a.) CCF registration of four sequential sections shown in Figure 2. cortical layers are marked based on CCF
976 annotations. (b.) k=25 spatial domains with CellTransformer shown with regional boundaries from CCF in light gray.
977 Putative cortical layers are annotated, showing CellTransformer replicates known cortical layers. (c.) 25 domains
978 shown without CCF annotations to facilitate visualization. (d.) Same sections now shown with 100 domains to help
979 show the transition from coarse (25 domains) to fine (100 domains). Sublayers of cortex are identified including layer
980 4 in motor cortex which transcriptomic studies have verified but has been difficult to identify using histological

981 approaches. (e.) 354 domain zoom in on the same sections, showing consistency of layer 4 motor cortex detection as
982 well as an anterior-posterior subdivision across motor and somatosensory cortical layers and clear distinction of

983 cortical layers that lie within motor and somatosensory areas.
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984 k=25 k=100 k=354 k=670

985 Supplementary Figure 5. CellTransformer domains identified in the Allen 1 dataset' at varied values of k, colored in
986 three sequential sections (200 um sampling interval between sections with consecutive numbers, top to bottom

987 corresponds to rostral to caudal). Caudoputamen is roughly highlighted by dotted circles in k=354 and k=670 to assist
988  visualization.
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989
990 Supplementary Figure 6. CellCharter results (left) and the corresponding CCF annotations (right) organized in 3

991 columns for roughly half of the sections in the ABC-MWB (Allen 1) dataset, approximately every other section. The
992 color labels for CellCharter correspond to its Gaussian mixture model implementation with k=670 clusters.
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Supplementary Figure 7. Comparison of spatial domains in midbrain for CellTransformer and CellCharter
discovered in the Allen 1 dataset'. Left column shows approximate CCF registration. Middle column shows
CellTransformer domains at k=670 and the right column shows CellCharter domains with 670 Gaussians. The
general performance in outlining cortical layers is similar, however in the midbrain, even at half the number of
clusters, CellCharter loses spatial coherence compared with CellTransformer. For example, CellCharter only
identifies two layers of superior colliculus, whereas multiple layers are defined by CellTransformer.
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Supplementary Figure 8. Quantification of goodness-of-fit and stability of varying numbers of spatial domains. (a.)
inertia (sum of squares errors for each cluster centroid) calculated for different clustering solutions when clustering
embeddings generated using CellTransformer on the Allen 1 dataset'. Error bars (standard deviation) are calculated
but not visible due to scale. (b.) instability scores (see Methods) calculated for different clustering solutions using the
Allen 1 dataset. Error bars are standard deviation. (c.) Average of inertia and stability curves (black line) and second
derivative of same curve (blue dotted lines). Second derivative crossing point at k=1300 shown with red dot.
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1009  Supplementary Figure 9. Comparison of best fit spatial domains from CellTransformer with layers of the superior
1010 colliculus, sensory related area. (a.) Sequential tissue sections (32, 31, 30, from anterior to posterior) showing in first
1011 column CCF registration and borders of relevant areas. Second column: all cells in field of view, colored by spatial
1012 domain from CellTransformer. Third column: only visualizing cells inside our putative matches for the zonal,

1013 superficial gray, and optic layers in the superior colliculus. The 0879 SCsg Pde5a Glut_1 cell type (supertype-level) in
1014 yellow. Fourth column: same as third but visualizing the 0865 SCs Pax7 Nfia Gaba_3 cell type. Fifth column: same as
1015 third and fourth but visualizing the 0882 SCop SIn Glut type. (b.) Bar chart of cell type abundance (as a percentage)
1016  for top ten most abundant types across the putative subregions. Cell types visualized in (a.) are marked with a yellow
1017 asterisk. (c.) Bar chart of per-region proportions of GABA-ergic and glutamatergic neurons and non-neuronal types.
1018 (d.) Bar chart of the number of distinct cell types at supertype level of the ABC-MWB taxonomy per domain.
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Supplementary Figure 10. Results of quantitative comparison of CCF regions and CellTransformer regions at
equivalent number of regions using the Zhuang 1-4 datasets''. Spatial smoothness of spatial clusters as measured
using a nearest-neighbors approach, computed by clustering the concatenated latent variables for neighborhoods in
the Zhuang lab datasets.
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1025 Supplementary Figure 11. Representative images of spatial clustering from CellTransformer models with k=1300

1026 identified using the Allen 1 dataset’. (a.) Sequential tissue sections (50 is most anterior) showing smoothness of
1027 spatial domains across and within tissue sections as well as consistent appearance of an irregular spatial pattern
1028  inside caudoputamen. (b.) Zoom in on the striatum for the same tissue sections. (c.) Plots showing percentage of cell
1029 types of different neurotransmitter for the non-uniform spatial clusters as well as the distribution of unique cell types of
1030 a given neurotransmitter type. (d.) Supertype-level counts in putative subpopulations of caudoputamen. (e.)

1031 Reproduction with permission of results from Ollivier et al. (2024). showing the distribution of Crym mRNA and its
1032 protein product (S100B), clearly identifying a medial population of Crym+ neurons which resembles the spatial pattern
1033  observed in clusters 758 and 457 (dorsoventral and Crymr’). (f.) Dotplot of cell type expression proportions and mean
1034  counts per group (raw counts) in identified irregular caudoputamen areas.
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1036  Supplementary Figure 12. Quantification of improved prediction accuracy as a result of CellTransformer’s

1037 neighborhood-conditioned prediction. Results are over all cells in the Allen 1 dataset’. (a.) Change in Pearson

1038 correlation from per-cell type (at subclass level) average expression. Red lines show medians per distribution. (b.)
1039 Scatterplot of increase in average Pearson correlation per subclass level cell type against average neighborhood size
1040 for reference cells of that type. c. Scatterplot of increase in average Pearson correlation per subclass level cell type
1041 vs the number of cells of that type in log scale.
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