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The human genome contains numerous structurally-variable polymorphic loci, including
several hundred disease-associated genes, almost inaccessible for accurate variant calling.
Here we present Locityper, a tool capable of genotyping such challenging genes using short
and long-read whole genome sequencing. For each target, Locityper recruits and aligns
reads to locus haplotypes, for instance extracted from a pangenome, and finds the likeliest
haplotype pair by optimizing read alignment, insert size and read depth profiles. Locityper
accurately genotypes up to 194 of 256 challenging medically relevant loci (95% haplotypes
at QV33), an 8.8-fold gain compared to 22 genes achieved with standard variant calling
pipelines. Furthermore, Locityper provides access to hyperpolymorphic HLA genes and
other gene families, including KIR, MUC and FCGR. With its low running time of 1h10m
per sample at 8 threads, Locityper is scalable to biobank-sized cohorts, enabling association

studies for previously intractable disease-relevant genes.

Introduction

Single-nucleotide variants (SN'Vs) are the most abundant class of genetic variants segregating in the
human population and are at the same time easy to access using microarray or short-read sequenc-
ing platforms. Unsurprisingly, virtually all genome-wide association (GWAS) studies seeking to map
genotypes to phenotypes have therefore been focusing on SNVs. In contrast, structural variants (SVs),
which are 50bp in size or longer, are much more challenging to characterize and more than half of
all SVs per sample are missed by short-read based variant discovery =, despite their biomedical rele-
vance*”. This difficulty to analyze SVs from short reads is largely driven by their common formation
through homology-associated mechanisms, leading to repetitive and complex sequence contexts?. Al-
most 750 genes contain “dark” protein-coding exons, where read mapping and variant calling cannot

be adequately performed ® and around 400 medically relevant genes are almost inaccessible due to their
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repetitive nature and high polymorphic complexity”. Of them, 273 genes are widely used for variant
calling and assembly benchmarking®’. Long read technologies are needed to address this problem 1012
and recent long-read based genome assembly strategies indeed lead to haplotype-resolved genome as-
semblies of diploid samples that routinely resolve many previously intractable complex genetic loci >4,
Nevertheless, long read sequencing of large cohorts remains prohibitively expensive, signifying the
need for accurate short read based genotyping.

In the meantime, high quality assemblies are available for hundreds of human haplotypes and give

2,8,15

rise to a pangenome reference The genetic variation encoded therein can serve as a basis for

h16,17

genotyping workflows by mapping reads to a pangenome grap or through k-mer based genome

inference 8.

While genome inference with Pangenie!® has expanded the set of accessible structural
variants considerably %, it exhibits limitations at complex loci with few unique k-mers. As an alternative
strategy, methods for targeted genotyping of genes of special interest, such as the HLA and KIR gene
families, have been developed 2!, Even though these methods can achieve high accuracy, they typically
rely on specific gene structure and cannot be easily scaled to include more targets.

Here, we propose a new tool, called Locityper, to leverage genome assemblies in a pangenome ref-
erence or custom collections of locus alleles for fast targeted genotyping of complex loci. Locityper can
efficiently process both short and long read data, and it integrates a range of different signals based on
read depth, alignment identity, and paired-end distance in a statistical model to infer genotype likeli-
hoods. This provides an opportunity to genotype and analyze a diverse set of previously understudied
genes for already available large sequencing datasets such as the 1000 Genomes Project cohort and large

biobanks like the All-of-Us?? program and the UK Biobank >, where disease association studies can be

performed.

Results

Overview of the method

Locityper is a targeted genotyping tool designed for structurally-variable polymorphic loci. For every
target region, Locityper finds a pair of haplotypes (locus genotype) that explain input whole genome
sequencing (WGS) dataset in a most probable way. Locus genotyping depends solely on the refer-
ence panel of haplotypes, which can be automatically extracted from a variant call set representing a
pangenome (VCF format), or provided as an input set of sequences (FASTA format). Before genotyping,
Locityper efficiently preprocesses the WGS dataset and probabilistically describes read depth, insert
size, and sequencing error profiles. Next, Locityper uses haplotype minimizers to quickly recruit reads

to all target loci simultaneously.
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At each locus, Locityper estimates a likelihood for every possible locus genotype by distributing
recruited reads across possible alignment locations at the corresponding haplotypes (Figure 1). The
likelihood function is defined in such a way to prioritize read assignments with smaller number of
sequencing errors; optimal insert sizes across the read pairs; and stable read depth without excessive
dips or rises. We show that finding a maximum likelihood read assignment can be formulated as an
integer linear programming (ILP) problem (Methods), for which Locityper employs existing ILP solvers
and stochastic optimization. Finally, Locityper identifies genotypes with the highest joint likelihood,
calculates its quality score, and outputs the most probable read alignments to the two corresponding
haplotypes.

Locityper performs well on various sequencing technologies, including short-read Illumina sequenc-
ing, high-accuracy PacBio HiFilong reads, and error-prone PacBio CLR and Oxford Nanopore long reads.
It is able to efficiently process both mapped and unmapped input reads. Across all steps, Locityper

efficiently utilizes multiple computing cores to perform the analysis as fast as possible.

C Genotype A,A
| — ]
a | — ::IEII:I
p . 1 N
‘ \ [ ——
Database of locus haplotypes [ 1 [
8 [
T [ T
Genotype AB
Haplotype B e
Haplotype C | [ [ l
| - ‘ Each genotype: [ ] — s— s— a— ] n—
distribute recruited
Haplotype D reads across haplotypes Genotype A,C
to maximize likelihood — =
| s— [ o— — s— e J |
[ [ wo— [ w—  o—— ) o— |
\ | — —| — — —
- [T s
b | [ [ ]
( ) —_— =i
Recruited WGS reads = Ly T——T—]
\:‘|:||:‘|:I—‘:I GenOtype A’D
| s R w— — — | — o—
—— e
| I— — S— — N S— | — —| — — —
e e o m— T s

[six more genotypes not shown]

Predicted genotype: A,B

Figure 1. lllustration of the locus genotyping approach. a, Database of four locus haplotypes (A..D).
b, Whole genome sequencing (WGS) reads, recruited to any of the haplotypes. For illustrative purposes,
haplotypes and reads are colored by homologous blocks (information, unavailable to Locityper). ¢, Optimal
assignments of reads to various genotypes, where small red squares show read alignment mismatches or
indels. Genotype A,B has the highest joint likelihood due to a small number of alignment errors and no lack or
excess of read depth.
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Locityper accurately genotypes a wide range of challenging loci

In order to evaluate Locityper’s targeted genotyping accuracy, we utilized a list of 273 challenging
medically relevant (CMR) genes, collected by Wagner et al.” For each target locus we used a reference
panel of up to 90 haplotypes extracted from the recent phased whole genome assemblies® released by the
Human Pangenome Reference Consortium (HPRC) 1°. After removing genes that overlap pangenomic
variants longer than 300 kb and merging nearby genes (see Methods), we retained 256 loci covering
13.9Mb and fully encompassing 265 CMR genes and 23 other protein coding genes (see Supp. Table 1).
Then, we used Locityper to genotype 40 Illumina, 40 simulated short-reads, 20 PacBio HiFi and 20
Oxford Nanopore (ONT) HPRC WGS datasets. Each of the datasets was processed twice: first, with the
full reference panel of 90 HPRC haplotypes; and then in a leave-one-out (LOO) setting, where the two
relevant sample haplotypes were removed from the database beforehand.

To measure genotyping error, we calculated sequence divergence between actual and predicted
haplotypes (Figure 2a) and corresponding Phred-like?* quality values (QV), widely used for genome
assembly evaluation?>?°. Then, we distributed haplotype predictions into four bins based on their QV
(<17, 17-23, 23-33 and >33), where a haplotype from the last bin (QV > 33) differs from the actual
haplotype by no more than 5bp per 10 kb (see Figure 2b), which is competitive with long read genome

assemblies from ONT data?’. After genotyping, we marked potentially incorrect genotype predictions
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Figure 2. Haplotype accuracy definition and analysis at 256 challenging medically relevant loci. a, Hap-
lotyping error is calculated as sequence divergence between actual and predicted haplotypes. Quality value
(QV) is a Phred-like transformation of the haplotyping error. b, Approximate correspondence between sequence
divergence (haplotyping error) and QV bins. ¢, Haplotyping accuracy for full-database Locityper (marked by
a filled circle) and the 1KGP call set for up to 40 HPRC samples, respectively. Haplotypes that failed filtering
are shown with gray. d, Locityper accuracy in the leave-one-out setting (LOO; shown with a white circle) and
the corresponding haplotype availability (QV between actual and closest available haplotypes) across up to
40 HPRC samples. e, Locityper concordance at 602 lllumina WGS trios from the 1KGP. f, Accuracy, lost by
Locityper in the LOO setting across HPRC samples—histogram of differences between best available and pre-
dicted QVs. Cumulative fraction is shown with light blue.
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based on the number of unexplained reads and the similarities between top genotype predictions;
consequently, we will split genotypes into those that failed and those that passed filtering. Note that
the haplotypes were compared across the whole locus, including both coding and non-coding regions,
which avoids the need for gene annotations on highly variable haplotypes.

Using the full reference panel, 20,028 Locityper haplotypes (98.4%) passed filtering out of a total of
20,350 fully assembled sample-locus haplotypes across the 256 CMR loci and 40 Illumina WGS samples.
Among passed predictions, 94.9% haplotypes had QV > 33, and additional 3.1% haplotypes had QV
between 23 and 33 (see Figures 2c and 3). Although some genes remain challenging for accurate
genotyping, at 194 (234) loci > 95% haplotypes had QV > 33 (> 23).

Even though HPRC assemblies are very accurate, they may include assembly or phasing errors,
especially at challenging loci. To remove this factor from the performance analysis, we used ART
Nlumina?® to simulate 40 short-read datasets and processed them with Locityper. Unsurprisingly, the
tool showed even higher accuracy on simulated datasets, producing 99.1% genotypes, which passed

filtering; of them 98.6% with QV > 33 (Figure 2c and Supp. Figure 1a).
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Figure 3. Locityper haplotyping accuracy for 40 lllumina WGS datasets. Predicted haplotypes across
256 challenging medically relevant loci are binned into four groups according to their haplotyping quality value
(QV). Semi-transparent colors show predictions that failed post-genotyping filtering.
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Locityper significantly outperforms state-of-the-art short-read variant calling pipelines

Recently, New York Genome Center (NYGC) researchers presented an extensive variant calling pipeline
and used toit to call phased single nucleotide variants, indels and structural variants across high coverage
Ilumina WGS datasets for 3,202 samples from the expanded 1KGP (1000 Genomes Project) cohort®. As
the 1KGP call set is phased, we were able to reconstruct local haplotypes at the 256 CMR loci, as well
as calculate genotyping accuracy for 39 HPRC samples present in the 1IKGP sample set. Even though
the NYGC pipeline utilizes state-of-the-art variant callers, IKGP haplotypes had significant divergence
from the actual sample haplotypes, with only 27.4% haplotypes showing QV > 33 and another 22.3%
haplotypes with QV < 17 (see Figure 2c). In total, 1IKGP haplotypes were overwhelmingly accurate (>
95% haplotypes at QV > 33) at only 22 loci (at 83 loci for QV > 23; see Supp. Figure 1b).

Locityper produces high accuracy genotypes based on long reads

Locityper is not limited to short reads: it is able to process various long read WGS datasets, including
accurate PacBio HiFi and error-prone Oxford Nanopore (ONT) data (see Figure 2c). For these two
technologies, 99.8% and 99.5% Locityper haplotypes passed filtering, respectively; of them, 98.7% and
95.6% were very accurate with QV > 33, while only 0.1% and 0.5% haplotypes had QV < 17, respectively
(see Supp. Figure 1c—d).

Locityper achieves near optimal accuracy in the leave-one-out setting

In the LOO setting, Locityper produced 95.7% Illumina-based haplotypes that passed filtering; among
them 86.4% haplotypes had QV > 23, including 59.9% haplotypes with QV over 33 (Figure 2d and Supp.
Figure 2a). Even though Locityper achieves smaller accuracy in the LOO setting, it still reconstructs
2.2 times as many highly accurate haplotypes (QV > 33) compared to the 1KGP call set and 4.6 times
smaller number of inaccurate haplotypes (QV < 17).

By design, Locityper always associates an input WGS sample with two existing locus haplotypes,
and it is not able to predict haplotypes missing from the database. Therefore, Locityper LOO accuracy
is limited to haplotype availability—similarity between the actual haplotypes and the closest haplotype
remaining in the LOO database. 66.8% haplotypes across 40 samples and 256 CMR loci had high
availability (closest haplotype with QV > 33); this percentage rises to 92.3% when considering closest
haplotypes with QV > 23 (Figure 2d and Supp. Figure 3). In general, Locityper was able to predict
haplotypes, close to the best available: lost accuracy (difference between best possible and predicted QVs)
was under 5 and 10 for 91.4% and 97.3% haplotypes, respectively (see Figure 2f).

At other sequencing datasets, predicted haplotypes were even closer to optimal: lost accuracy

was under 5 QV for 93.3%, 97.5% and 97.8% haplotypes based on Simulated, HiFi and ONT reads,
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respectively; and was under 10 for 98.2%, 99.0% and 99.1% haplotypes (Figure 2f and Supp. Figure 2b—
d). In particular, 99.1% HiFi-based LOO haplotypes passed post-genotyping filters and of them 66.4%
and 90.5% had QV > 33 and > 23 to the actual haplotypes, respectively.

This analysis shows that Locityper performs extremely well when required haplotypes are present
in the reference panel, and achieves near-optimal accuracy with only limited haplotype sets. Growing

1

number of haplotypes in pangenomes° are likely to increase Locityper accuracy even further.

Locityper produces concordant trio predictions

In addition to the HPRC dataset, we genotyped the full 1KGP cohort of 3202 Illumina WGS samples,
including 602 trios. At each of the 256 CMR loci and for each trio we calculated concordance—similarity
between child and parent haplotypes (see Methods). As Figure 2e shows, the vast majority of trio
haplotypes were concordant (82.0% and 94.4% with QV > 33 and > 23, respectively). Moreover, average

concordance QV surpassed 42 and did not drop below 31 at any locus (see Supp. Figure 4).

Locityper accurately genotypes HLA and KIR genes

In order to evaluate Locityper ability to genotype hyperpolymorphic genes, we examined genes from
two medically relevant genomic regions: Major histocompatibility locus (MHC) covering over 4 Mb and
over 200 genes?’; and killer-cell immunoglobulin-like receptor (KIR) gene cluster spanning 150 kb and
17 genes®. The two regions contain extremely polymorphic HLA and KIR genes that play an essential
role in adaptive and innate immune systems>!32. As Locityper genotypes target loci based solely on the
sequences of available haplotypes, it is not limited to gene bodies and can utilize intergenic sequence,
gene order and presence/absence of copy-number-variable genes. On the other hand, Locityper may
require a large collection of assembled MHC or KIR haplotypes to accurately genotype out-of-sample
individuals.

Multiple specialized tools have been developed for genotyping the MHC locus 2%%3; the newest of
them being T1K?!, a state-of-the-art3* genotyper for HLA and KIR genes that is capable of processing
whole genome and whole exome short read sequencing data. To compare T1K and Locityper accuracy,
we genotyped 40 [llumina HPRC WGS datasets at 23 genes and 13 pseudo genes from the MHC locus
as well as 6 genes and 3 pseudogenes from the KIR locus, all combined into 25 target loci with sum
length slightly over 1 Mb. Similarly to CMR loci benchmarking, we run Locityper twice: using the full
database and in the LOO configuration.

Across the 40 HPRC samples and 36 genes from the MHC locus, Locityper achieved full match
with baseline annotation (correctly predicted all fields in the HLA nomenclature®*) in 99.5% cases
with the full database and 87.9% in the LOO setting, compared to T1K’s 65.0% (Figure 4a,c). When

not requiring full matches and evaluating copy-number accurate protein product prediction (second
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Figure 4. Haplotyping accuracy for 40 HPRC samples at the MHC and KIR loci. Accuracy is shown for
Locityper with the full database (denoted by black circle); Locityper in the leave-one-out setting (white circle);
and T1K. Fully predicted alleles, as well as correctly identified missing copies, are colored with dark green
(Full match), due to the varying number of allele fields in the HLA/KIR gene nomenclature®>3’. Otherwise,
haplotypes are colored according to the number of correctly predicted fields. a—b, Haplotyping accuracy at
36 (pseudo)genes from the MHC locus (a) and 9 (pseudo)genes from the KIR gene cluster (b). ¢, Fraction of
haplotypes of various accuracy, aggregated across all MHC and KIR genes/pseudogenes.

nomenclature field), T1K accuracy rose to 78.3%, while Locityper accuracy grew to 99.5% and 94.0%
using full and LOO databases, respectively. Similarly, at the 9 KIR genes, Locityper correctly predicted
protein products in 99.9% (full database) and 73.3% (LOO) and achieved full match in 99.7% and 67.9%
cases, respectively. Using the same metrics, T1K accuracy reached 68.0% (protein product) and 55.9%
(full match) (see Figure 4b—c).

Some protein products were present in only one HPRC sample, consequently, such samples cannot be
correctly annotated by Locityper in the LOO setting. Cases like that appeared in the most polymorphic
HLA and KIR genes and explained 41.3% and 19.0% Locityper LOO errors, respectively (see Supp.
Figure5). Atthe same time, in many cases T1K predicted smaller copy number than required, explaining
85.7% and 42.5% of all errors at the MHC and KIR loci, respectively. When ignoring these two error
types (missing allele predictions and unavailable protein groups), Locityper and T1K achieve similar

accuracy when predicting protein products—96.4% and 96.2% at the MHC locus, as well as 77.5% and
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78.7% at the KIR genes (Supp. Figure 5). Overall, the general purpose tool Locityper performs in a

competitive manner even when compared to T1K, which is specifically designed for HLA /KIR genes.

Locityper accurately genotypes disease associated gene families

Although the set of CMR genes includes a wide variety of genetically diverse genes, several important
polymorphic gene families are underrepresented in it. One such highly heterogeneous gene family is
the mucin gene cluster (MUCI-MUC24)*’. Mucin genes encode large glycoproteins that are essential to
barrier maintenance and the defense of epithelial tissues. All canonical mucins harbor a large exon that
contains Variable Number Tandem Repeats (VNTRs). These VNTR sequences vary per mucin, yet each
extensively encode serine and threonine residues for glycosylation!. The gene family can be broken
up into two subgroups—that of the cell surface, i.e. tethered mucins and the secreted mucins. In the
tethered mucins, single VNTR domains contain variation in total motif copy number and motif usage
(Figure 5a); however, the secreted, gel-forming mucins harbor potential variation in VNTR domain copy

number, VNTR motif copy number, VNTR motif usage, and cys domain copy number*>*3 (Figure 5b).
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Figure 5. Locityper can accurately genotype mucin and other gene families. a, Gene model of MUCT1,
a mucin tethered to the surface of epithelial cells. MUC1 harbors a 20 amino acid VNTR repeat sequence
and is highly polymorphic in VNTR length, as represented by the example haplotypes 1-3%. b, Gene model
of MUC5B, a secreted, gel-forming mucin that is important for homeostasis in the lungs. MUC5B encodes
an irregular 29 amino-acid VNTR motif that is broken up into separate VNTR domains by cys domains. The
number of VNTR domains, cys domains, and VNTR motifs could each contribute to polymorphism among
haplotypes at this locus®°. ¢, Difference in average haplotyping accuracy (QV) between Locityper and 1KGP
call set at 15 mucin genes based on 39 lllumina WGS datasets. Improvement for the leave-one-out setting
and the full Locityper database are shown with dark and light shades, respectively. Tethered and secreted
mucins are shown with purple and green colors; the only non-gel-forming secreted mucin MUC7 is marked
with an asterisk. d, Locityper (LOO) and 1KGP call set average genotyping accuracy (QV) across 4 gene
families: CFH in orange; CYP2 in light green; FCGR in red; and MUC in blue. Diagonal black line shows zero
improvement boundary and diagonal gray lines show 10, 20 and 30 QV improvement.


https://doi.org/10.1101/2024.05.03.592358
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.03.592358; this version posted February 14, 2025. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

The presence of these repetitive sequences makes mucins both highly polymorphic and difficult to
accurately sequence/genotype in short reads.

Locityper leverages information about both read depth and read alignment for genotyping; therefore,
the tool is well suited for the characterization of mucin genetic variation. Based on 39 HPRC Illumina
WGS datasets, Locityper (LOO) haplotypes achieved on average 10.5 higher QV compared to the 1IKGP
call set across 15 examined MUC loci, with the largest improvement observed at MUC6 and MUC16
with 30.1 and 18.7 QV, respectively (Figure 5c). The only negative QV difference between Locityper and
1KGP was observed at the non-gel forming MUC?7 gene, where the two haplotype sets showed very high
QV values 43.5 and 44.2, respectively.

Further examples of genes that are challenging to address with standard calling techniques are
FCGR2B and FCGR3A, encoding receptors for the Fc region of the immunoglobulin gamma complexes
(IgG)***. IgGbinding to FCGR2B induces immune complexes phagocytosis/endocytosis and therewith
establishes the basis of antibody production by B-cells. Several transcript variants encoding different
isoforms with differing biological function are present (e.g. isoform IIB2 does not trigger phagocytosis
unlike other isoforms*®). Genetic variations in this gene have been reported to cause increased suscep-
tibility to systemic lupus erythematosus (SLE)*, as well as to malaria, autoimmune hypersensitivity

disease, and immune thrombocytopenic purpura->0.

The second receptor, FCGR3A, is expressed
on natural killer cells (NKc) as an integral membrane glycoprotein®®. It binds antigen-IgG complexes
formed during infection events and thus triggers cytokine production and degranulation by the NK cells.
This process is a central effector mechanism limiting viral load and viral propagation in a memory-like
manner®!. Similar to FCGR2B, genetic variants in the FCGR3A gene have been associated with SLE¥,
as well as immunodeficiency, susceptibility to recurrent viral infections, and alloimmune neonatal neu-
tropenia®>~°. However, genetic analyses of the FCGR genes using high resolution short reads have been

57 Never-

proven notoriously difficult due to a recent gene duplication and diversification processes
theless, at the FCGR2B and FCGR3A receptor genes Locityper (LOO) improves average QV by 5.3 and
9.6 points compared to the 1KGP call set, respectively (23.0 — 28.3 and 20.3 — 29.9) based on the 39
INlumina WGS datasets (Figure 5d). A larger reference panel would likely improve Locityper’s ability
to genotype FCGR genes even further, as the tool achieves much higher accuracy (35.9 and 54.0) when
using its full database.

Moreover, Locityper (LOO) achieves significant QV improvement (12.2) at the CFH gene, associated
with age-related vision loss and kidney disorders®®™’. Finally, Locityper showed on average 4.5 higher
QV across 16 protein coding CYP2 genes that play a major role in drug metabolism %!, Out of the CYP2
genes, Locityper achieved the highest improvement at CYP2U1 (9.8), CYP2A13 (11.0) and CYP2W1 (11.7)

(see Figure 5d).
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Locityper produces more accurate variant calls compared to

Pangenie and 1KGP call sets

Pangenie is a pangenome-based short read variant caller, which calls sequence variants and structural
variations by counting read k-mers along paths in a pangenomic graph 8. In order to facilitate compar-
ison to unphased Pangenie call sets, we converted Locityper—predicted locus haplotypes into phased
diploid variant calls, and compared Pangenie and Locityper call sets to the ground truth variant calls,
extracted from the phased whole genome assemblies for the 40 HPRC samples. Both Locityper and
Pangenie were run using their full respective reference panels, which include HPRC samples.

Across the 256 CMR loci, Locityper achieves higher average F; score (0.939, median = 0.965) than
Pangenie (0.842, median = 0.902), improving both average precision (Pangenie: 0.848, Locityper: 0.945);
and recall (Pangenie: 0.843, Locityper: 0.936) by over 9% (see Supp. Figure 6). Although 1KGP call set
shows similarly high precision (0.946), it does so at the expense of much lower recall (0.658), achieving a
combined F1 score of 0.746 (median = 0.829). The difference is more pronounced at indels and structural
variations, where Locityper, Pangenie and 1KGP call sets attain average F; scores of 0.882, 0.728 and

0.550, respectively.

Runtime and memory usage

Locityper WGS preprocessing (executed once per dataset) took on average 16m (minutes) using 8
threads and consumed 15 Gb of RAM for 30x unmapped Illumina WGS input dataset. If a dataset
with a similar library preparation was previously preprocessed, read mapping can be skipped, which
speeds up WGS preprocessing to under 3m. Next Locityper step, read recruitment, can simultaneously
identify reads for multiple target loci. Due to the fact that reading and decompressing input data was
the most time-consuming operation, recruitment speed did not depend on the number of loci (1 to 256
tested). Using 8 threads, read recruitment lasted 14m and had negligible memory footprint (<1 Gb).
The final Locityper step, genotyping, consumed <10 Gb of RAM and required approximately 9 seconds
per locus, depending the target complexity and size: in total, genotyping 256 CMR loci took 38m30s,
while genotyping 25 loci covering MHC and KIR loci took 3mb5s. Altogether, Locityper analysis of the
HLA and KIR genes, including preprocessing and read recruitment, required under 35 minutes using 8
threads.

At the same time, T1K with 8 threads required on average 2h30m and 48m to process the MHC and
KIR loci, respectively, and required 2.5 Gb memory. Pangenie calls variants across the whole genome,
and, consequently, had heavier runtime and memory footprint: at 24 threads, its pangenome indexing
(executed once) and genotyping steps took 34m and 1h40m, respectively, and consumed 60 and 37 Gb
of RAM.
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In addition to unmapped data, Locityper and T1K can efficiently utilize mapped reads (in
BAM/CRAM formats for Locityper and BAM format for T1K) by only recruiting reads aligned to
the regions of interest or to alternative contigs, as well as unmapped reads. Additionally, by examining
existing alignments, Locityper is able to preprocess WGS datasets almost immediately. Overall, this
decreases T1K runtime to 45m and 23m for HLA and KIR loci, respectively, as well as speeds up the full

Locityper pipeline for these genes to under 6m.

Discussion

In this study, we present Locityper, a targeted method for genotyping complex polymorphic genes using
both short and long-read whole genome sequencing. Locityper implements fast read recruitment to
a collection of target loci, and utilizes a carefully balanced probabilistic model to calculate genotype
likelihoods based on read alignment, insert size and read depth profiles. Locityper employs integer
linear programming and stochastic optimization to find the most likely genotype for each target locus.
Locityper departs from the prevalent variant-centric approach, which we argue constitutes a particular
limitation for highly polymorphic loci. In contrast, our approach leverages collections of known haplo-
type sequences, which can be extracted from a pangenome reference or directly provided by the user.
By examining larger regions around genes of interest, Locityper inherently makes use of any available
information, including intergenic sequence, gene order, structural variants, and copy number of short
tandem repeats. Locityper is easy to install via docker, singularity or conda, only requires easy-to-obtain
input files, has a small memory footprint and significantly shorter runtime than both T1K and Pangenie.

We demonstrated Locityper’s accuracy through excellent agreement to both phased genome as-
semblies and Mendelian consistency across the 602 family trios included in the 1IKGP cohort. When
evaluated across a wide range of challenging disease-associated genes, Locityper produces significantly
more accurate haplotype predictions compared to a state-of-the art phased variant call set on the 1KGP
cohort and outperformed genome-wide pangenome-based genome inference using Pangenie. Loci-
typer’s accuracy stays consistently high across various input sequencing technologies, performing well
at Illumina, simulated short reads, PacBio HiFi and Oxford Nanopore Technologies (ONT) datasets.

At present, the size of the available collections of reference haplotypes still poses a limitation. To
quantify this effect, we performed leave-one-out evaluations, showing that the best available haplotype
does not reach QV 33 in more than 30% of cases (Fig. 2d). Therefore, despite Locityper’s ability to
predict haplotypes close to the best available, the resulting accuracy is not yet ideal for all genes of
interest. Significantly larger pangenomes are presently being constructed by the HPRC'® and we are
confident that these future pangenomes will lead to a significant increase in performance on out-of-

sample individuals for more complex polymorphic genes. Already now, Locityper outperforms the
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specialized genotyper T1K across HLA and KIR genes in a LOO setting and shows improved ability to
genotype other medically relevant gene families (e.g. MUC and FCGR) using short read WGS.

As part of this study, we used Locityper to process 3,202 Illumina WGS datasets from the 1KGP
and make the obtained genotypes available, which provides a resource for deeper analyses of >300
challenging target loci. Additionally, publicly available Locityper-preprocessed WGS summaries will
allow for a faster genotyping of genes that were not a focus of this study across the 1KGP cohort. We
envision that Locityper will enable the inclusion of complex loci in GWAS®? and PheWAS®® analyses,
especially in a larger cohort, such as the All-of-Us program?? and the UK Biobank?*, which promises to
discover many new associations and explain missing heritability. Of note, Locityper’s ability to process
both short and long reads might prove especially useful for the increasing production of long reads in
the context of biobank-scale sequencing efforts.

For a given locus, Locityper aims to find two existing haplotypes that would explain an input WGS
dataset in the best way. Consequently, it is not designed to reconstruct a novel haplotype, even if it
constitutes a mixture of already known haplotypes. To address this, Locityper outputs read alignments
to the top predicted genotypes, which can be used later for visual analysis or variant calling. Combined
with assembly polishing ®+%%, this could improve genotyping accuracy and allow for reconstruction of
previously unobserved alleles—a strategy that we plan to explore in future research.

Different parts of a gene of interest, such as exons, introns, and tandem repeats, might have different
relative impact on its biological function, as well as on the allele/protein groups in the corresponding
allele classification. Currently, Locityper weights all sequence windows according to their k-mer content
and sequence complexity. However, a modification can be made that would either automatically, or with
user input, upweight/downweight various parts of the haplotype according to their phenotypic impor-
tance. Moreover, two loci with significant homology, e.g. part of a non-tandem segmental duplication,
are processed independently, with potentially overlapping sets of recruited reads. Locityper mitigates
this problem by tracking the number of off-target k-mers per read/haplotype window. Nevertheless,
further method improvements are conceivable, such as using a shared pool of reads for the related loci,
similar to the strategy implemented by T1K?!.

In conclusion, Locityper allows for fast and accurate targeted genotyping of challenging polymor-
phic loci using various sequencing technologies. With the current draft pangenome containing highly
accurate phased-genome assemblies, Locityper routinely achieves sequence accuracies above QV 33,
which is comparable to genome assemblies from Oxford Nanopore data?’. As more human haplotypes
are represented in pangenomes, we expect the accuracy to improve further, which will facilitate de-
tailed analysis of previously intractable genes, leading to improved diagnostic power and novel disease

associations.
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Data availability

Locityper-predicted genotypes for 3202 Illumina 1KGP samples, corresponding preprocessed
WGS parameters, target loci database and benchmarking results can be found on Zenodo®

(doi.org/10.5281/zenodo.10977559).

Code availability

Locityper is implemented in the Rust programming language, and can be installed via conda,
singularity and docker. Source code is freely available under the terms of the MIT license
at github.com/tprodanov/locityper along with installation and usage instructions. Fixed source
code version as well as additional benchmarking scripts can be downloaded from Zenodo®

(doi.org/10.5281/zenodo.10979046).

Methods

In this article, we present a targeted tool Locityper, designed for genotyping complex multi-allelic
loci. Locityper processes whole genome sequencing (WGS) data produced by various sequencing
technologies, including highly accurate short and long reads (such as Illumina and PacBio HiFi data,
respectively), as well as error-prone long reads (such as PacBio CLR and Oxford Nanopore data).
Locityper can efficiently analyze unmapped reads stored in various formats, as well as mapped reads
from sorted and indexed BAM/CRAM files.

Broadly, the method can be split into several steps:

1. Preprocessing target loci,

2. Sample preprocessing (performed once for each WGS dataset),

3. Read recruitment (carried out simultaneously for multiple loci),

4. Locus genotyping and generating BAM files with alignments to the best genotypes.

These steps are described in more detail in the following sections.

Preprocessing target loci

Locityper utilizes solely locus haplotype sequences, and does not require any kind of graph structure
on top of them. Locus haplotypes can be provided directly in a FASTA file; alternatively, Locityper can
automatically extract locus haplotypes from a pangenome, provided in a VCF format (constructed, for
example, by Minigraph-Cactus®®).

When locus haplotypes are extracted from a VCF file, Locityper tries to extend the locus in such a

way that both locus ends do not overlap any pangenomic variation. Additionally, the tool tries to select
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a position that would produce the largest number of unique canonical k-mers at the edges of the locus
(default edge size = 500 bp). In the default configuration, locus extension is limited by 50 kb at each side,
but can fail if there is a longer structural variant at the locus boundary. In such cases, the user can either
increase the allowed extension size, or set the boundaries manually.

Next, Locityper removes all identical haplotypes and calculates Jaccard distance® between multisets
of minimizers” ((15, 15) by default) for all pairs of haplotypes. These pairwise distances are later used
to flag potentially incorrect predicted genotypes. Finally, Locityper finds off-target k-mer multiplicities,
calculated as the difference between canonical k-mer counts across the full reference genome (calculated
using Jellyfish”!; recommended k = 25) and the corresponding k-mer counts at the reference locus

sequence.

WGS dataset preprocessing

Locityper aims to probabilistically describe three features of a given WGS dataset— insert size, error
profile and read depth— by examining read alignments to a predefined background region. For human
WGS data, we use a 4.5 Mb interval on the chr17q25.1 as the default background region as it contains
almost no segmental duplications or other types of structural variations. If input reads are unmapped,
Locityper subsamples input reads by a factor of s (/10 by default) and maps them to the reference

genome using Strobealign”? (short reads) or Minimap2”? (long reads).

Insert size

Manual examination of several paired-end WGS datasets from the HPRC project!® indicated that the
Negative Binomial (NB) distribution fits insert size distribution the best (see Supp. Figure 7). For a given
WGS dataset, we use all fully mapped read pairs (clipping < 2% of the read length, by default) with
high mapping quality (> 20). We remove outliers by defining maximum allowed insert size as three
times the 99" percentile of the observed insert sizes, and discard violating read pairs. Finally, we obtain
the NB distribution parameters using the method of moments. During the next two preprocessing steps
we will only use read pairs with insert sizes within the 99.9% confidence interval of the corresponding

NB distribution.

Error profile

We use two distributions to describe WGS error profiles. First, we use Beta-Binomial (BB) distribution
to evaluate edit distance based on the read length. The distribution is fitted using the maximum
likelihood estimation (MLE) based on the remaining read pairs. Obtained BB distribution will be used

to distinguish between true and off-target alignments at the genotyping stage.
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Second, we calculate match, mismatch, insertion and deletion rates (pum, px, p1, Pp, respectively),
and define alignment likelihood as the product of the corresponding rates to the power of the number
of operations. For example, alignment with 100 matches, 1 mismatch and 2 insertions would receive
likelihood p}\go . p%< ~p%~ pOD . Note that the probabilities do not sum up to one and are incomparable between
reads of different lengths. Nevertheless, this formulation produces fast to calculate probabilities, and

provides a way to numerically compare different alignments of the same read.

Read depth

We split the background region into windows of fixed size based on the mean read length, and assign
reads to windows based on the middle of the corresponding read alignments. Next, we count the
number of primary read alignments assigned to each window (only first mates are counted to preserve
window independence)”*.

For each window we calculate GC-content and the fraction of unique k-mers in an area centered
around the window. Next, we select windows with many unique k-mers (> 90%) and estimate read
depth mean and variance across various GC-content values using local polynomial regression”>. NB

parameters are then estimated separately for each GC-content based on the smoothed mean, variance,

and subsampling rate (see Supplementary Methods 3.1).

Read recruitment

Following dataset preprocessing, Locityper recruits reads to all target loci. For that, we collect mini-
mizers’’ from each locus and each haplotype (default: (5,15) and (10,15)-minimizers for short and long
reads, respectively). Uninformative minimizers, which appear > 5 times off target, are ignored. Loci-
typer compares read and target minimizers in parallel and recruits reads to one or several loci according
to one of the following rules: short reads are recruited if a sufficient fraction of minimizers matches the
target for all read ends (default: 0.7 and 0.6 for single- and paired-reads).

Only a small part of a long read may overlap a given target locus. Consequently, we recruit a long
read if it contains a subregion with sufficiently many minimizer matches. For that, we employ the
following heuristic: matching/mismatching informative minimizers are assigned s, /s_ scores (default:
+3/-1), and a read is recruited if it has a continuous subsequence with sum score greater or equal to

L. M(sy —s_)+s_

2
My + 1

, M

where L is the subregion length (default: 2000 bp), M is the match fraction (default: 0.5) and 2L /(m1,, +1)

is the expected number of (1, 1y)-minimizers per L bp sequence’®. This heuristic is useful as it can be
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quickly evaluated using Kadane’s algorithm’/, and as it is not too restrictive: shorter read subregions

with a higher match rate may produce a hit, and vice versa.

Genotype likelihood
Read location probabilities

Following the read recruitment, every target locus is genotyped independently from other loci. Reads,
recruited to the locus, are aligned to all haplotypes H using either Strobealign’?> or Minimap27®, de-
pending on the read type. Obtained read alignments are assigned BB p-values according to their edit
distances and read lengths. A read pair is retained if both read ends have at least one good alignment
(p = 0.01) to at least one of the haplotypes. All alignments with BB p < 0.001 are discarded.

Without loss of generality, we will describe the following steps for paired-end reads and use notation
r = (r1, r2) to describe a read pair. Each locus haplotype I € H is split into non-overlapping windows
W of fixed size (same size as in read depth preprocessing); furthermore, we expand W) by adding a
null window w,. Each alignment is connected to a single window w based on the middle point of the
alignment, with alignment probability p(r;, w) calculated according to the precomputed error profile.
Reads without proper alignment to / are connected to the null window w,; we will define p(r;, w,) as
A -maxy, p(rj, h) — the probability of the best r; alignment to any haplotype, multiplied by a penalty A
(107 by default).

Paired end alignment probability of the read pair r = (r1,72) to windows w = (w1, w2) can be
written as p(r, w) = p(r1, w1) - p(r2, w2) - Pinsert(r, W), where the last term is calculated according to the
precomputed insert size distribution. For null windows, we define insert size probability as the highest
probability achievable under the precomputed insert size distribution. Finally, we will denote the full
set of possible read pair locations on haplotype & as Lgh) c W x W and will define the probability

of the read pair r location to be w as normalized alignment probability:

p(r, w)

Pew = .
™ Zh’EH ZuEL(rh/) p(l‘, l.l)

@

Some parts of the target loci can have high homology to other genomic regions. Consequently, we
downgrade the effect of potentially misrecruited reads by setting equal probabilities to all locations for
read pairs with less than 5 target-specific k-mers.

Read assignment

Without loss of generality, let us consider a diploid genotype g = (1, h2). We combine windows across

the two haplotypes w® = wh) ywh) 1f hy = hy, we use two copies of each window, such that [W®)|
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is always W] + |W ()| Next, for each read pair r we concatenate possible locations Lihl) and LihZ) in
a similar way to achieve a combined list of locations L,(,g).

We describe read assignment to one of the locations using a boolean vector T, with exactly one true
element (Zw Tew = 1), where T;ww = 1 encodes the statement “true location of the read pair r is w”.

Probability of the read assignment T for all read pairs R is a product of all selected location probabilities:

P(T|R) = l—[ Z Trw * Prw- 3)

reR weL(,g)

In order to evaluate genotype concordance with WGS data, we search for a read assignment T that

produces maximum joint probability P(g,T | R) = P(g|T,R)-P(T | R) =P(g|T)- P(T | R).

Read depth likelihood

We define genotype likelihood conditional on the read assignment as the probability for all genotype

windows to have copy number (CN) equal to one:

PEIT) = [] P(CN@)=1]du(D). @)

weW(®)
dy(T) denotes window w depth according to the read assignment T, which can be written as
ek Zuew® |Trwu + Truw|- At CN = 1, read depth follows the NB distribution with precomputed

parameters 1 and 1. Bayes’ theorem with equal priors produces the following result:

PNB (d, n, lp)

> Pag(d; cn, )’
CG{l} U Cait

Pu(T) = P(CN(w) =1 dy(T) = d) - ®)

where alternative hypotheses are represented by a set C,1;. We found it beneficial to use Cy¢ = {0.5, 1.5},
in other words, a half divergence from the expected read depth is considered significant. As unmapped
reads are already penalized by low alignment probabilities p(r, w.), we define P(CN(w.) = 1 | d) =1
for any read depth d.

Window and read weights

Low-complexity regions, as well as short and long repeats evoke various difficulties in read sequencing,

recruitment and alignment. In order to assign window weights in a continuous fashion, we define the
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following two-parametric function 9 : [0, 1] — [0, 1]:

1 ifx=1,
Sm,q) =19 1= _r otherwise. ©)

9 exhibits several useful properties: it is a strictly increasing smooth function such that 9(0) = 0 and
9(1) = 1. Location parameter 1 € (0,1) defines the break point 9(n;1,:) = 1/2, while the power
parameter 4 > 0 controls the “slope” of the function, with larger g producing larger derivative 8’(1; 1, q)
(see Supp. Figure 8). Finally, we define window w weight C,, = 9(x1;11, g1) - 9(x2; 12, 42) based on the
fraction of locus-specific k-mers x1 and linguistic sequence complexity x, = U;UUs, where U; is the

78

fraction of unique i-mers in the window w out of the maximal possible number of distinct i-mers”’®,

with default parameters 71 = 0.2, 72 =0.5and g1 = g2 = 2.

Combined likelihood and likelihood update

Not accounting for window weights, combined likelihood for a genotype g and read assignment T can

be calculated as:

PETIR) =[] D) Tw P x [] (D, @)

rERweLEg) weW®)

Next, we move the calculations to log-space, add window weights C;,, and introduce contribution factors
Qr,Qp = 0, which represent the relative importance of read alignment and read depth likelihoods,

respectively. Then, log-likelihood .£ can be written in the following way:

LETIR) = O ). Y TwlogPew + Qo ). Lologpu(T). ®)

rERweL(rg) weW®

Contribution factors Qg and Qp are necessary as the read alignments can overshadow read depth
due to the large number of read pairs and large differences between various read alignments. The
two values need to be defined in advance and should sum up to 2: we recommend default values
Qr = 0.15,Qp = 1.85, as they produced good results across a selection of target loci and sequencing

datasets.

Likelihood update

Given log-likelihood .L(g, T | R) for genotype g and some read assignment T, we can efficiently calculate
log-likelihood L(g, T’ | R) for a new read assignment T” if the read assignment has changed for only one
read pair; in other words, when X,z X @ |Trw — Tw| = 2. Suppose that the read assignment changed

for read pair r from location u#, v (in T) to u’, v’ (in T”). Then, read depth likelihood values ¢, (T”) will be
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identical to ¢ (T) for all windows except for u, v, u’,v’, where read depth can quickly be recomputed.

This way, log-likelihood can be recalculated in constant time:

L(g/ T'"|R) = -E(g/ T|R)+ Qg - (10g SDr,u’v’ - 10g Pr,uv)

+Qp Z Cw* (log (Pw(Tl) - log (PW(T)) :

we{u,v,u’ 0"}

©)

Finding best read assignment

For each genotype g we aim to find such read assignment T that would maximize joint log-likelihood
L(g, T |R). Locityper implements three approaches for finding such read assignment: Stochastic Greedy
approach”’, Simulated Annealing® and Integer Linear Programming (ILP)®!. The first two algorithms
start from an arbitrarily generated read assignment T, then iteratively select a random read pair r and
switch its location if it increases the genotype likelihood. In addition to “good” location switches, Simu-
lated Annealing permits “bad” switches (decreasing overall likelihood), gradually restricting frequency
of such events.

In an ILP formulation we introduce two sets of unknowns: ¥ € {0,1} for each read pair r and
each location w € L(rg) ; and Yy € {0, 1} for each window w € W® and each possible window depth d

between zero and maximal possible read depth Dp,ax. The problem can be written as follows:

Dmax
Maximize Z Z Xrw - Qr log Prw + Z Z Ywd - Qb Co@o(d)
reR weL(,g> wew® d=0
Subject to Z Xrw=1 VreR,
weL®
r 10
Dmax ( )
Z Ywd =1 Ywe w®,
d=0
Dmax
Z Z (xr,wu + xr,uw) - Z d- Ywa = 0 Vwe W(g)'
reR yeW(® d=0

Note, that we can remove variables x; for trivial read pairs, which map to only one possible location; at
the same time, the number of possible read depth variables y,, is exactly one more than the number of
non-trivial read pairs mapping to w. Finally, the sum 3’ .r >, e in the third constraint can be limited
to windows and read pairs, relevant to the window w. Locityper utilizes two commercial ILP solvers,
available under academic licenses: HIGHS®? and Gurobi®. Note that it is possible to state a bigger
ILP problem; solution to such formulation would immediately produce the best locus genotype (see
Supplementary Methods 3.2). However, we observed that the available ILP solvers are unavailable to

quickly and accurately find such solution.

20


https://doi.org/10.1101/2024.05.03.592358
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.03.592358; this version posted February 14, 2025. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

Locus genotyping

In order to find the best locus genotype for the input WGS data, Locityper finds the best read assignment
and the corresponding genotype likelihood for each possible locus genotype (Figure 1). To speed up
the process, we start by calculating log-likelihood in the absence of read depth (Qp = 0), which can be
efficiently computed by assigning every read to its most probable location. Then, we employ a heuristic
filtering by removing all genotypes whose likelihood is 10!%° smaller than the best likelihood (first 500
genotypes are kept regardless of likelihood). For all remaining genotypes, the best read assignment is
found using one of the three approaches, described above. Even though the ILP solvers typically find
better read assignments, we use Simulated Annealing as the default solver as it produces decent read
assignments in a fraction of ILP solving time.

Splitting locus haplotypes into non-overlapping windows is an intrinsically discrete process. Further-
more, windows can be shifted across different haplotypes due to the presence of indels. Consequently,
identical read depth profiles may produce varying read depth likelihoods depending on the window
boundaries. To reduce this effect, we perform a procedure, similar to Noise Injection regularization 84
where we randomly move read alignment centers to either direction and reassign reads to windows.
In addition, we redefine window GC-content values and weights C;, as if the window was randomly
moved (actual window boundaries stay fixed). In a default configuration, read and window movement
is limited to half window size or 200 bp, whichever is smaller. Repeating noise injection several times
(20 by default), together with the stochastic nature of likelihood maximization produces a distribution
of log-likelihoods for each genotype.

Finally, Locityper selects a primary genotype with the highest average log-likelihood and calculates
its Phred quality?* based on the probability of error: probability that true log-likelihood of any other
genotype is higher than true log-likelihood of the primary genotypes, calculated using one-sided Welch's
t-test®.

In addition to quality values, Locityper outputs the number of unexplained reads—reads that map
to some, but not to the two predicted haplotypes. Additionally, Locityper iterates over all genotypes
and evaluates average Jaccard distance to the primary genotype (see locus preprocessing) weighted by
the corresponding genotype probabilities. Such a measure is motivated by the fact that all probable
genotypes should be similar to one another. For this study, we marked genotypes as potentially incorrect
if weighted distance is over 30 or if there are more than 1000 unexplained reads, which in turn constitute

over 20% of all reads for the locus.
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Locus selection

Original set of challenging medically relevant (CMR) genes contains 273 protein coding genes’. We
expanded gene coordinates to a minimum of 10 kb, when needed, and supplied positions as input to
Locityper locus preprocessing, allowing an additional coordinate expansion by at most 300 kb to each
of the sides (add -e 300k). At this stage, eight genes (ATPAF2, CLIP2, GTF2l, GTF2IRD2, IGHV3-21,
MRC1, NCF1 and SMNT1) were discarded as at least one the gene ends was contained in a 300 kb-long
pangenomic bubble. Afterwards, we removed redundant loci (completely contained in another locus),
which produced a final set of 256 loci, containing 265 CMR genes.

In a similar fashion, we added 26 loci covering genes from the MHC and KIR gene clusters, as well as
30 loci covering MUC, CFH and CYP2 genes. Full information about the loci can be found in the Supp.
Table 1.

Utilized data

Pangenome reference in a variant calling format (VCF) was downloaded from https://s3-us-west-2.
amazonaws . com/human-pangenomics/pangenomes/freeze/freezel/minigraph-cactus/hprc-vl.
1-mc-grch38/hprc-vl.1-mc-grch38.raw.vef.gz. Illumina, PacBio HiFi and Oxford Nanopore data
for the HPRC samples can be found at https://s3-us-west-2.amazonaws . com/human-pangenomics/
index.html?prefix=working. NYGC variant calls for the 1KGP samples were downloaded from
http://ftp.1000genomes.ebi.ac.uk/voll/ftp/data_collections/1000G_2504_high_coverage/
working/20220422_3202_phased_SNV_INDEL_SV. 3202 1KGP Illumina datasets are available on the
European Nucleotide Archive under accession codes PRJEB31736 and PRJEB36890.

Simulated Illumina data was constructed using ART Illumina® v2.5.8 with parameters -ss HS25
-m 500 -s 20 -1 150 -f 15 for all phased haplotype assemblies from the HPRC project, which can
be found at doi.org/10.5281/zenodo.5826274.

Benchmarking Locityper

In order to evaluate haplotyping accuracy, we computed full-length alignments between actual and pre-
dicted haplotypes using Locityper align module. Internally, it finds the longest common subsequence
of k-mers using LCSk++5¢ and completes the alignment between k-mer matches using Wavefront align-
ment algorithm® 8. Three k-mer sizes are tried (25, 51 and 101), and an alignment with the highest
alignment score is returned.

Afterwards, we calculate haplotyping error—sequence divergence between two haplotypes, calcu-
lated as the ratio between edit distance A and alignment size S (edit distance plus the number of matches).

As actual and predicted genotypes consist of two haplotypes, there are two possible actual-predicted
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haplotype pairings. Out of the two options we select such pairing that produces a smaller ratio between
sum edit distance and sum alignment size.

Then, we use Phred-like transformation of haplotyping error QV = —10 - log,,(A/S) to obtain hap-
lotyping quality values (QV)??%. However, when two haplotypes are completely identical (A = 0), QV
becomes infinite, which poses problems for average QV calculation. For that reason, we corrected QV
definition:

QV = —10- log,, (M)

= a1

This way, QV difference between edit distances 0 and 1 is the same as between 1 and 2, and equals to 10 -
log,,2 =~ 3. Constants smaller than 1/2 were generally even more beneficial for Locityper benchmarking.

In the leave-one-out setting, we calculate lost accuracy as the difference between best possible QV .11
(QV of the closest remaining haplotype) and QV,¢q of the predicted haplotype. However, as to not
penalize well-predicted haplotypes relative to very good possible haplotypes, we modified lost accuracy
to be min{QV,yai1, 33} — min{QVeq,33}. This way, QVpeq = 30 with QV,y,; = 50 will produce lost
accuracy = 3 instead of 20.

We considered a trio of locus genotypes concordant if one of the child haplotypes matches well
one of the maternal haplotypes, while another child haplotype matches one of the paternal haplotypes.
Similarly to haplotyping error calculation, we iterated over 8 possible pairings and selected one with
the smallest sum edit distance divided by sum alignment size, as well as calculated a QV score for each
of the child haplotypes.

We used Bcftools® (v1.18) consensus command to reconstruct haplotypes from the 1KGP phased
variant call set®. In the process, we removed contradicting overlapping variant calls, and variants with
symbolic alternative alleles (with exception of <DEL>), as they cannot be used for haplotype reconstruc-
tion.

In order to compare Locityper, 1IKGP and Pangenie'® v3.02 call sets, we decomposed and normal-
ized variant calls using Vt* v8.57721 commands decompose_blocksub and normalize, respectively.
Before decomposition we removed low quality variants (Locityper genotypes, which failed filtering, and
Pangenie variants with quality <10). Then, we used RTG tools?! v3.12.1 vcfeval module to calculate
variant calling precision and recall using existing HPRC Minigraph-cactus®® representation as a baseline
call set.

Finally, we used T1K?' v1.0.5with presetshla-wgs --alleleDigitUnits 15 --alleleDelimiter :
and kir-wgs with all other parameters set to default. Ground-truth HLA and KIR annotation for HPRC
assemblies were obtained using Immuannot”? using allele databases®*> IPD-IMGT/HLA v3.52 and
IPD-KIR v2.12. If a haplotype contains a novel gene allele, Immuannot may associate it with several

existing alleles. In such cases, we evaluated predicted allele by the best-matching existing allele.
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In all evaluations, we utilized Locityper v8.15.1 along with its dependencies Samtools® v1.18,

Jellyfish”! v2.2.16, Minimap2”® v2.26-r1175 and Strobealign’? v0.13.0.
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