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Abstract 

Runs of homozygosity (ROH) are genomic regions that arise when two copies of identical 

haplotypes are inherited from a shared common ancestor. In this study, we leverage ROH to 

identify associations between genetic diversity and non-disease phenotypes in Canis lupus 

familiaris (dogs). We find significant association between the ROH inbreeding coefficient (FROH) 

and several phenotypic traits. These traits include height, weight, lifespan, muscled, white 

coloring of the head and chest, furnishings, and fur length. After correcting for population 

structure, we identified more than 45 genes across the examined quantitative traits that exceed 

the threshold for suggestive significance. We observe distinct distributions of inbreeding and 

elevated levels of long ROH in modern breed dogs compared to more ancient breeds, which 

aligns with breeding practices during Victorian era breed establishment. Our results highlight the 

impact of non-additive variation and of polygenicity on complex quantitative phenotypes in dogs 

due to domestication and the breed formation bottleneck.  
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Background 

For over a century, scholars and dog-enthusiasts alike have sought to unravel the complex 

evolutionary history of man’s best friend [1]. Canis lupus familiaris (dogs) have intrigued 

researchers, across scientific fields, due to their close knit ties to our species [2] and unique 

genetic features [3–5]. While the exact origins of domestication remain elusive, understanding 

the impact of this process on the phenotypic variance and evolutionary history of the species is 

important.  

In the 19th century, Darwin suggested that the broad range of features exhibited in 

modern breeds is conducive to a descendancy from multiple canid species, including wolves and 

jackals. In his accounts on variation, he argues that a single ancestral origin from the gray wolf 

(Canis lupus) seems to contradict the historical and archeological evidence available. Given that 

many wild species of the genus Canis have the potential to interbreed, Darwin’s proposal held 

fast for many years [1]. Advances in genome technology provided scientists with a new approach 

to studying dog ancestry, offering insights that complement and, in some cases, challenge the 

conclusions drawn from archaeological and historical evidence [6]. One commonly used 

approach is mitochondrial DNA (mtDNA) analysis which allows researchers to trace maternal 

ancestry. Using samples collected from dogs, wolves, and several other wild canid species, 

researchers found the similarity between dogs and the gray wolf to be significantly higher than 

that of dogs and any other wild canid species [7, 8]. In recent years, whole genome sequence 

(WGS) data has increasingly focused on the wolf-dog relationship, further supporting this 

finding and making it a primary area of investigation in contemporary studies [4, 9, 10]. 
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While most agree that dogs were the first domesticated species, establishing their spatial 

and temporal roots has been a challenge [11]. The earliest depictions of human-canine ties come 

by means of cave paintings discovered in Saudi Arabia [12]. This cooperative hunting scene is 

believed to be 8000 to 9000 years old, but evidence gathered from burial sites predict an earlier 

origin of domestication [13]. The first dates back approximately 12,000 years ago to the Natufian 

in Northern Israel, where they discovered three sets of dog remains buried with a human [14, 

15]. Additionally, a dog-like mandible was recovered at a burial site in Bonn-Oberkassel, 

Germany. This Northern European sample is believed to be about 14,000 years old [16, 17], 

however genetic work has added an additional layer of evidence for an even older wolf-dog 

divergence.  

Genomic work, based on mtDNA and WGS data, currently offers two potential 

explanations for the origins of domestication. The first is that early dogs were a result of a single 

domestication event from gray wolves in East Asia between 16,000 and 100,000 years ago. The 

hypothesis stems from the limited haplotypic diversity in dogs, which may suggest a genetic 

bottleneck where domesticated dogs originated from a small-closely-related population of gray 

wolves [7]. Additionally, high levels of genetic diversity from the region south of the Yangtze 

River, indicate an older divergence than other areas in Europe and Asia. [18–20].  

The second genomic narrative centers upon the theory that haplogroups entered the dog 

lineage at different times and places. Using nuclear genomic single nucleotide polymorphism 

(SNP) analysis, one study found evidence for allele sharing in Asian dog breeds and Asian 

wolves as well as European dog breeds and European wolves [21]. This work suggests that there 

were several founder events derived from separate wolf populations. Further WGS work has 

documented significant genetic differences in Eastern and Western Eurasian dog populations, 
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providing further support for multiple domestication events [22, 23]. Despite these findings, the 

origins of domestication in dogs remain a hot topic of debate, warranting the need for additional 

studies exploring the complexities of their history. 

While the early evolution of dogs from wolves marked a significant shift between 

species, the more recent history of established dog breeds has shaped evolution within the 

species itself. During the Victorian era, the selective breeding of aesthetically desirable traits led 

to the emergence of hundreds of new breeds. Breed establishment typically involved a limited 

number of founding members, resulting in high levels of inbreeding and dramatic loss of genetic 

diversity [3, 24–28]. Founder effects, such as this, restrict the gene pool and result in long 

stretches of DNA sharing between individuals. Shared segments derived from a single common 

ancestor are said to be identical-by-descent (IBD). Segments of the genome inherited IBD, when 

found within an individual, are commonly referred to as runs of homozygosity (ROH). Artificial 

selection for extreme phenotypes during breed formation made much of the genome homozygous 

and simplified complex trait architecture in dogs, which has facilitated the study of phenotypic 

associations between breeds [3, 29, 30].  

Studies of ROH in humans have revealed associations with numerous complex disease 

and non-disease phenotypes, which provide valuable insight on the impact of genetic diversity on 

health and evolutionary processes [31–36]. Similar work has been done in dogs, providing 

evidence of association between ROH and several disease phenotypes [3, 30, 37]. Additionally, 

previous studies have explored the influence of genetic variants on quantitative traits such as; leg 

length, wrinkled skin, coat color, hair length, and skeletal shape [38–42]. Despite these advances, 

associations with complex non-disease phenotypes in dogs are relatively unexplored [43].  
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In this study, we investigate the relationship between the genomic consequences of 

domestication and complex (non-disease) trait architecture by using the distribution of ROH to 

provide insights on complex phenotypic architecture. To examine the relationship between ROH 

and non-disease phenotypes in dogs, we analyzed 556 canid whole-genome sequences and 

characterized the genomic distribution of ROH. After accounting for breed structure, we test for 

associations between the total ROH coverage of the genome (as measured by FROH) among 13 

breed groups with 13 phenotypes. Finally, we perform an ROH-mapping genome-wide 

association study and identify multiple genetic variants associated with phenotype, namely 

height, weight, and lifespan.  

Results 

ROH distribution 

ROH were categorized into 6 length classes: Class A (0.5 - 1 Mbp), Class B (1 - 2 Mbp), Class C 

(2 - 3 Mbp), Class D (3 - 4 Mbp), Class E (4 - 5 Mbp), and Class F (>5 Mbp). For our 556 

samples, the mean number of ROH (nROH) was 37.06 and the mean length of ROH (sROH) was 

94.17 Mbp. These parameters were also computed for each ROH length class: Class A (nROH = 

99.44; sROH = 68.39 Mbp), Class B (nROH = 50.29; sROH = 70.36 Mbp), Class C (nROH = 21.60; 

sROH = 52.81 Mbp), Class D (nROH = 13.07; sROH = 45.23 Mbp), Class E (nROH = 9.21; sROH 

=41.15 Mbp), and Class F (nROH = 28.77; sROH = 287.05 Mbp) (Table 1, Table 2).  

Domestic dog clades showed a distinct pattern of genetic diversity, with higher levels of 

long ROH (>5 Mbp) when compared with Chinese indigenous dogs (light green) and village 

dogs (royal blue) (Figs. 1 & 2). The highest total nROH (641) was observed in Dingo01 and the 
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highest total sROH (1643.98 Mbp) was observed in NGSD2, both individuals were from the 

Ancient Spitz breed group (Table S1). Terriers had the smallest mean nROH and the smallest 

mean sROH when compared with the remaining 11 breed groups (Tables 1 & 2).  
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Fig. 1: Relationship between the number of runs of homozygosity (nROH) and ROH size 
class in Mbp for all breed groups. The x-axis represents the ROH size in Mbp. The y-axis 
represents the number of ROH. Each violin plot depicts the distribution of the total number of 
ROH within length classes 0.5-1 Mbp, 1-2 Mbp, 2-3 Mbp, 3-4 Mbp, 4-5 Mbp and >5 Mbp for 
each breed group.  

Table 1: nROH across all breed groups and ROH length classification. This table details the 
range and mean ± standard deviation of the number of runs of homozygosity for each breed 
group and ROH length classification. 

Breed 
Group 

Mean 
nROH 

Range 
nROH 

Mean 
nROH 
for 
Class A 
(0.5 - 1 
Mbp)  

Mean 
nROH 
for 
Class B 
(1 - 2 
Mbp)  

Mean 
nROH 
for 
Class C 
(2 - 3 
Mbp)  

Mean 
nROH 
for 
Class D 
(3 - 4 
Mbp) 

Mean 
nROH 
for 
Class E 
(4 - 5 
Mbp) 

Mean 
nROH 
for 
Class F 
(> 5 
Mbp) 

Ancient 
Spitz 

47.10 ± 
58.20 

3 - 338 133.42 ± 
85.63 

65.13 ± 
40.00 

24.71 ± 
11.23 

13.90 ± 
4.31 

9.87 ± 
3.97 

35.58 ± 
18.29 

Retrievers 38.83 ± 
34.58 

0 - 138 106.42 ± 
13.75 

53.96 ± 
9.05 

23.98 ± 
6.39 

13.1 ± 
4.31 

9.94 ± 
3.32 

26.3 ± 
11.77 

Mastiff 
Like 

38.37 ± 
26.65 

0 - 117 78.6 ± 
14.12 

54 ± 
17.53 

27.46 ± 
11.19 

16.91 ± 
7.55 

12.18 ± 
6.53 

41.08 ± 
19.83 

Herding 37.88 ± 
33.97 

0 - 257 97.76 ± 
32.29 

48.47 ± 
10.17 

21 ± 
7.22 

13.91 ± 
5.79 

10.8 ± 
5.51 

35.32 ± 
19.08 

Scent 
Hound 

40.25 ± 
37.52 

1 - 160 113.26 ± 
21.76 

53.65 ± 
9.85 

22.7 ± 
6.35 

13.3 ± 
4.87 

9.09 ± 
4.92 

27.48 ± 
12.44 

Small 
Terrier 

40.93 ± 
41.19 

0 - 277 113.58 ± 
39.05 

60.27 ± 
17.74 

24.08 ± 
9.18 

14.31 ± 
6.32 

8.98 ± 
4.61 

24.38 ± 
16 

Terriers 30.56 ± 9 - 122 90.75 ± 56.25 ± 31.81 ± 18.88 ± 15.88 ± 53.75 ± 
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33.01 15.75 11.22 7.75 6.21 4.66 10.77 

Spaniels 36.29 ± 
35.23 

5 - 144 101.18 ± 
20.19 

61 ± 
9.23 

28.73 ± 
5.37 

18.14 ± 
5.35 

14 ± 
5.19 

41.64 ± 
14.62 

Sighthound 45.29 ± 
48.55 

0 - 192 138.67 ± 
31.05 

63.33 ± 
20.63 

21.67 ± 
8.98 

13.86 ± 
7.57 

8.19 ± 
4.76 

26 ± 
15.86 

Toy Dogs 41.19 ± 
40.77 

1 - 187 114.56 ± 
31.06 

56.17 ± 
25.99 

24.06 ± 
13.48 

14.78 ± 
9.78 

9.44 ± 
6.46 

28.11 ± 
15.34 

Working 
Dogs 

38.29 ± 
27.43 

1 - 129 85.18 ± 
16.07 

50.02 ± 
15.37 

27.36 ± 
12.12 

17 ± 
7.86 

11.82 ± 
5.51 

38.34 ± 
13.11 

Village 
Dogs 

20.5 ± 
31.83 

0 - 261 80.12 ± 
33.69 

23.79 ± 
13.69 

6.33 ± 
5.77 

3.51 ± 
4.76 

2.09 ± 
2.64 

7.15 ± 
11.03 

Chinese 
Indigenous 
Dogs 

14.36 ± 
22.91 

0 - 103 61.53 ± 
16.63 

14.67 ± 
5.79 

4 ± 3.31 1.27 ± 
1.29 

1 ± 1.32 3.67 ± 
5.37 
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Fig. 2: Relationship between the sum of lengths of runs of homozygosity (sROH) and ROH 
size classes. The x-axis represents our defined ROH size classes in Mbp. The y-axis represents 
sROH, which also has units of Mbp. Each violin plot depicts the distribution of the sum of ROH 
within length ranges 0.5-1 Mbp, 1-2 Mbp, 2-3 Mbp, 3-4 Mbp, 4-5 Mbp and >5 Mbp for each 
breed group. 

Table 2: sROH across all breed groups and ROH length classification. The table contains the 
range and mean ± standard deviation of the sum of lengths of runs of homozygosity for each 
breed group and ROH length classification. 
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Breed 

Group 

Mean 

sROH 

(Mbp) 

Range 

sROH 

(Mbp)  

Mean 

sROH for 

Class A 

(0.5 - 1 

Mbp) 

Mean 

sROH for 

Class B 

(1 - 2 

Mbp) 

Mean 

sROH for 

Class C 

(2 - 3 

Mbp) 

Mean 

sROH for 

Class D 

(3 - 4 

Mbp) 

Mean 

sROH for 

Class E 

(4 - 5 

Mbp) 

Mean 

sROH for 

Class F 

(>5 

Mbp) 

Ancient 

Spitz 

119.56 ± 

162.09 

13.73 - 

1113.00 

92.29 ± 

59.41 

90.67 ± 

54.30 

60.33 ± 

27.20 

48.30 ±  44.14 ± 

17.51 

381.60 ± 

255.7 

Retrievers 89.28 ± 

86.63 

0 - 

598.02 

72.96 ± 

9.44 

75.50 ± 

13.25 

57.37 ± 

16.00 

45.22 ± 

15.07  

44.47 ± 

14.90 

240.17 ± 

125.98 

Mastiff 

Like 

126.47 ± 

176.91 

0 - 

1029.28 

54.77 ± 

9.71 

76.97 ± 

25.95 

67.21 ± 

27.55 

58.57 ± 

25.92 

54.38 ± 

29.38 

446.89 ± 

247.25 

Herding 105.25 ± 

139.34 

0 - 

861.74 

67.24 ± 

21.71 

67.53 ± 

14.78 

51.27 ± 

17.64 

48.23 ± 

20.12 

48.26 ± 

24.73 

348.94 ± 

206.94 

Scent 

Hound 

99.19 ± 

113.14 

4.59 - 

946.54 

77.78 ± 

14.73 

74.84 ± 

15.22 

55.26 ± 

15.67 

45.90 ± 

16.82 

40.62 ± 

21.78 

300.75 ± 

159.58 

Small 

Terrier 

89.41 ± 

96.13 

0 - 

690.33 

78.20 ± 

26.38 

84.24 ± 

24.77 

59.07 ± 

22.76 

49.63 ± 

22.10 

40.18 ± 

20.51  

225.15 ± 

170.89  

Terriers 75.86 ± 

116.57 

28.77 - 

951.29 

63.93 ± 

10.90 

79.69 ± 

16.00 

77.98 ± 

19.72 

65.84 ± 

21.84 

 71.06 ± 

20.79 

541.71 ± 

161.42 
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Spaniels 94.03 ± 

127.54 

23.23 - 

856.91 

70.13 ± 

12.83 

85.21 ± 

12.79 

70.39 ± 

13.56 

62.52 ± 

18.65 

62.55 ± 

23.16 

427.24 ± 

190.19 

Sighthound 94.65 ± 

96.81 

0 - 

591.60 

95.24 ± 

21.50 

86.87 ± 

29.21 

53.04 ± 

22.07 

47.98 ± 

26.13 

36.54 ± 

21.32 

248.26 ± 

149.49 

Toy Dogs 97.01 ± 

107.57 

4.12 - 

602.43 

78.92 ± 

22.17 

79.01 ± 

36.61 

58.31 ± 

33.13 

50.45 ± 

33.72 

42.33 ± 

28.82 

273.02 ± 

162.01 

Working 

Dogs 

112.89 ± 

130.13 

4.74 - 

658.42 

58.67 ± 

11.14 

70.67 ± 

22.08 

66.54 ± 

29.19 

58.83 ± 

27.51 

52.76 ± 

24.70 

369.85 ± 

139.08 

Village 

Dogs 

33.24 ± 

59.75 

0 - 

554.84 

54.07 ± 

23.09 

32.65 ± 

19.59 

15.30 ± 

13.97 

12.04 ± 

16.34 

9.35 ± 

11.72  

76.00 ± 

127.67 

Chinese 

Indigenous 

Dogs 

19.82 ± 

35.06 

0 - 

309.27 

41.03 ± 

11.34 

20.00 ± 

7.64 

9.53 ± 

7.68 

4.27 ± 

4.24  

4.41 ± 

5.87 

39.67 ± 

75.16 

Next, we explored the relationship between the total number of ROH (nROH) and the total 

lengths of ROH (sROH) (Fig. 3). We observed significantly higher mean values for both nROH and 

sROH for the domesticated breed dogs relative to the domesticated non-breed Chinese indigenous 

dogs and village dogs. Breed dogs also tended to fall off of the y=x line when nROH was 

compared to sROH. The accumulation of long ROH within breed dogs in the recent time was most 

drastic in Terrier clade, where we also observed the largest FROH (Table 3). We observed the 

largest variance in nROH in the Small Terriers, which include breeds such as the Australian 
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Terrier, Cairn Terrier, Jack Russell Terrier, Norwich Terrier, Scottish Terrier, Tibetan Terrier, 

West Highland, White Terrier, and Yorkshire Terrier. We also observed quite a bit of variance in 

Ancient Spitz, Village dogs, Herding, Mastiff-like, and Toy dogs. Conversely, Chinese 

Indigenous dogs, Terriers, Spaniels, Retrievers, and Scent Hound cluster together quite tightly. 

The Spaniels fall somewhere between these groups.  

We were also interested in whether any of ROH hotspots were shared across clades or 

between breed dogs and domesticated non-breed dog populations. We examined ROH coverage 

per site for each chromosome and plot sites where more than 50% of individuals within each 

clade have a ROH (Fig. S1-S16). There were clear hotspots within clades on every chromosome. 

Some of these hotspots corresponded with recombination rate, such as on chromosome 22, where 

we observed lower recombination rate in regions where there were shared ROH hotspots among 

all individuals. Conversely, on chromosome 12 we observed a high recombination rate, and very 

few shared ROH hotspots among individuals. Moreover, we observed very few shared ROH 

hotspots among different clades. One stand out was chromosome 28, where we observed a 

shared ROH hotspot among Ancient Spitz, Mastiff Like, Retrievers and Terriers (Fig. S13). 

Likewise on chromosome 32, we observed a shared ROH hotspot among Mastiff-Like, Scent 

Hound, Terriers and Toy Dogs (Fig. S14). The majority of hotspots were shared within a clade. 

This was best shown on chromosome 17, where we found multiple clade-specific ROH hotspots 

(Fig. S9). The same pattern was seen on chromosomes 31-38, with a few instances of sharing 

between Mastiff-like breeds and Terriers (Fig. S13 - S16). Lastly, we rarely observed any peaks 

for village dogs and Chinese Indigenous dogs (Fig. S3 - S16).  
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Fig. 3: Relationship between the sum of lengths of runs of homozygosity (sROH) and the 
number of runs of homozygosity (nROH) for each breed group. The x-axis and the y-axis 
represent the sROH and nROH, respectively. The black line is y=x. 
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Next, we examined the level of inbreeding within clades by computing the inbreeding 

coefficient, FROH, for each individual and each breed group (Tables 3 & S2). To account for the 

distribution of FROH across all breed groups, we computed mean FROH (Table 3). High levels of 

mean FROH were observed in breed dogs’ clades. FROH mean values in breed dogs ranged from 

0.41 ± 0.07 in Terriers to 0.24 ± 0.07 in Retrievers. The lowest mean values were observed in 

non-breed dogs, namely Chinese Indigenous Dogs (0.05 ± 0.04) and Village Dogs (0.09 ± 0.08). 

This result was expected and provides support for breed dogs sharing a more recent common 

ancestor and more background relatedness relative to village or Chinese indigenous dogs [3]. 

Table 3: FROH across all breed groups. The table represents the mean ± standard deviation of 
FROH for each breed group. 

 
Breed Group Mean FROH 

Terriers 0.41 ± 0.07 

Spaniels 0.35 ± 0.09 

Mastiff-Like 0.34 ± 0.15 

Ancient Spitz 0.33 ± 0.17 

Working Dog 0.31 ± 0.09 

Herding 0.29 ± 0.11 

Scent Hound 0.27 ± 0.08 

Toy Dogs 0.26 ± 0.13 

Sight Hound 0.26 ± 0.10 

Small Terrier 0.24 ± 0.10 

Retriever 0.24 ± 0.07 

Village Dogs 0.09 ± 0.08 

Chinese Indigenous Dogs 0.05 ± 0.04 
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Association between FROH and phenotypic traits 

Next, we wondered whether FROH could be used to detect non-additivity in quantitative (non-

disease) phenotypes in dogs. Following an approach that was recently used in disease phenotypes 

in dogs [37] and quantitative and disease phenotypes in humans [32, 33, 44–48], we searched for 

non-additive effects by correlating FROH and 13 breed averaged phenotypes (bulky, drop ears, 

furnish, hairless, height, large ears, length of fur, lifespan, long legs, muscled, weight, white 

chest, and white head). The three quantitative phenotypes had significant associations with FROH: 

breed average height (� � 0.31 and � � 4.05 
 10��), breed average weight (� � 0.19  and 

� � 1.19 
 10��), and breed average lifespan (� � 
0.14 and � � 4.44 
 10��) (Fig. 4). In 

breed dogs, we found that as FROH increased by 1%; breed average height increased by 0.192 cm, 

breed average weight increased by 0.14 kg, and breed average lifespan decreased by 0.014 years. 

The statistical analysis, including normalized coefficient effect size (either β or log odds), p-

values, and confidence intervals for quantitative traits (breed average height, breed average 

weight, and breed average lifespan) are shown in Table S3. Significant associations with FROH 

were present in 5 out of the 10 remaining qualitative phenotypes: muscled (� � 7.96 and 

� � 9.68 
 10���), white chest (� � 3.49 and � � 5.36 
 10��), white head (� � 4.26 and 

� � 1.55 
 10��), length of fur (� � 
1.88 and � � 1.27 
 10��), and furnish (� � 
2.50 

and � � 8.24 
 10��) (Fig. 5, Table S4). Across all breed groups, as FROH increased, white 

chest, white head and muscled phenotypes also increased, whereas length of fur and furnish 

phenotypes decreased.  
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Fig. 4: Relationship between effect size and breed averaged phenotypic traits. The y-axis 
represents the phenotypes for which the associations were tested. These are binned into 3 
categories (small individuals, large individuals, and all individuals). The x-axis represents the 
normalized beta coefficients (β) for each trait. Significant effects of FROH on a phenotype 
(nominal p < 0.05) are indicated by a red point. An effect size larger than 0 indicates an 
increase of that trait value with respect to FROH, and less than 0 represents a decrease in that 
trait value. 
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Fig. 5: Relationship between effect size and categorical phenotypic traits. The y-axis 
represents the phenotypes for which the associations were tested. The x-axis represents the log 
odds for each trait. A significant effect of FROH on a phenotype (nominal p < 0.05) is indicated 
with a red point. An effect size larger than 0 indicates an increase of that trait with respect to 
FROH, and less than 0 represents a decrease in that trait. 
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ROH-mapping GWAS 

Finally, we sought to identify the ROH-associated genomic regions that influence our 

quantitative traits of interest (weight, lifespan, or height). Thus, we performed a GLMM-based 

GWAS (Fig. 6, Fig. 7, Fig. 8, and Fig. S17-S25) using presence/absence of ROH across 

individuals as the phenotype predictor for each locus. For exact significant threshold values, see 

Tables S4 - S5.  

For breed average height, we found 27 SNPs above the Suggestive-Wide Significance 

(SWS) threshold and 18 SNPs above the Genome-Wide Significance (GWS) threshold when 

testing for all individuals in our sample (Fig. 6A). Notably, a single SNP on chromosome 24 

(position 22647289) had the strongest associated genomic signal with height ( � � 3.46 


 10��). This region corresponds with the gene SNTA1. Additionally, genes CERS3 (7 SNPs) on 

chromosome 3, CBFA2T2 (16 SNPs) on chromosome 24, and SNTA1 (4 SNPs) on chromosome 

24 were observed to be above the SWS threshold and contained multiple SNPs within their 

transcription regions (Table S6). SNPs linked to these three genes were also above the GWS 

threshold. 

For small individuals, 34 SNPs were observed to be above the SWS threshold and 17 

SNPs were observed to be above the GWS threshold when tested for association with height 

(Fig. 6B). A single SNP on chromosome 9 (position 45711401) had the strongest associated 

genomic signal (� � 1.44 
 10��), which corresponds with the gene PITPNA. Across our small 

subgroup we identified additional genomic variants above the SWS threshold for weight: on 

chromosome 3, CERS3 (3 SNPs), IGF1R (1 SNP), LRRC28 (1 SNP), and TTC23 (3 SNPs); on 

chromosome 9, PITPNA (4 SNPs), SLC43A2 (2 SNPs), VPS53 (2 SNPs), and RPH3AL (4 
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SNPs); on chromosome 18, HGF (2 SNPs); on chromosome 22, COMMD6 (1 SNP); on 

chromosome 24, CBFA2T2 (7 SNPs) and SNTA1 (4 SNPs) (Table S6). Only SNPs associated 

with TTC23, PITPNA, SLC43A2, RPH3AL, CBFA2T2, and SNTA1 were above the GWS 

threshold. For large individuals, a single SNP on chromosome 11 (position 9943557), which is 

linked to PRR16, was observed to be above the SWS threshold for height (Fig. 6C). For an 

extended table containing all the observed genes associated with height refer to Table S6. 
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Fig. 6. Manhattan plots for GLMM-based GWAS using presence/absence of ROH for body 
height. A. All individuals B. Small Individuals C. Large Individuals. The x-axis represents the 
genomic position. The y-axis represents the log10 base transformed p-values. Single nucleotide 
polymorphisms are represented by a single point. The red horizontal line indicates the genome 
wide significance (GWS) threshold, and the blue horizontal line indicates the suggestive wide 
significance (SWS) threshold. Only genes above the GWS threshold are labeled, with the 
exception of IGF1R. Marked genes are not drawn to scale. 

y 
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For breed average weight, 66 SNPs were observed above the SWS threshold and 45 

SNPs above the GWS threshold, when including all individuals in our sample (Fig. 7A). Nearly 

half of the SNPs above the SWS threshold (30 SNPs) were found within genes on chromosome 

24. A single SNP, on chromosome 32 (position 11413601) had the strongest association with 

weight (p =3.24 
 10��). This was observed within PKD2, a gene that encodes for protein 

kinase D2. Across all samples we identified several other SNPS to be above the SWS threshold 

for weight: on chromosome 3, CERS3 (7 SNPs); on chromosome 20, ZXDC (3 SNPs) and 

TXNRD3 (1 SNP); on chromosome 24, SNTA1 (5 SNPs), CBFA2T2 (19 SNPs), ZNF341 (2 

SNPs), and CHMP4B (4 SNPs); on chromosome 32, SEPT11 (1 SNP), CCNI (1 SNP), PKD2 (11 

SNPs), SGMS2 (4 SNPs) and CYP2U1 (3 SNPs); on chromosome 35, SPIDR (5 SNPs) (Table 

S7). The genes on chromosomes 3, 20, 24, and 35 all had SNPs above the GWS threshold. The 

only gene from chromosome 32 with SNPs above the GWS threshold was PKD2. 

For small individuals, 31 SNPs were observed above the SWS threshold and 19 SNPS 

above the GWS threshold (Fig. 7B). Nearly a third of those above the SWS threshold (i.e. 20 

SNPs) belong to chromosome 24. A single SNP on chromosome 24 (position 22660667) had the 

strongest association with weight ( � � 5.88 
 10��) and is linked to the protein-coding gene 

SNTA1 (Fig. 7B). For our subgroup of small individuals, we found SNPs above the SWS 

threshold for weight to be linked to the following genes: on chromosome 3, CERS3 (1 SNP); on 

chromosome 9, RPH3AL (4 SNPs), PITPNA (4 SNPs), and SLC43A2 (2 SNPs); on chromosome 

24, ADAM33 (2 SNPs), SIGLEC1 (2 SNPs), HSPA12B (1 SNP), SNTA1 (4 SNPs), CBFA2T2 (9 

SNPs), ZNF341 (1 SNP) and CHMP4B (1 SNP) (Table S7). SNPs on genes PITPNA, SLC43A2, 

SNTA1, CBFA2T2, and ZNF341 were above the GWS threshold. In contrast, for the subgroup of 

large individuals, 10 SNPs were above the SWS threshold and 5 SNPs were above the GWS 
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threshold (Fig. 7C). Only two genes reached significance in large individuals: on chromosome 

32, PKD2 (4 SNPs) and on chromosome 35, SPIDR (6 SNPs). All the SNPs linked to these two 

genes were above the SWS threshold for weight (Table S7). SNPs on both of these genes were 

also above the GWS threshold. For an extended table containing all the observed genes 

associated with weight refer to Table S7. 
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Fig. 7. Manhattan plots for GLMM-based GWAS using presence/absence of ROH for body 
weight. A. All individuals B. Small Individuals C. Large Individuals. The x-axis represents the 
genomic position. The y-axis represents the log10 base transformed p-values. Single nucleotide 
polymorphisms are represented by a single point. The red horizontal line indicates the genome 
wide significance (GWS) threshold, and the blue horizontal line indicates the suggestive wide 
significance (SWS) threshold. Only genes above the GWS threshold are labeled. Marked genes 
are not drawn to scale. 

For breed average lifespan, 10 SNPs were observed above the SWS threshold and only 4 SNPs 

were above the GWS threshold when tested across all individuals (Fig. 8A). The strongest 

associated SNP (� � 2.21 
 10��) was located on chromosome 20 (position 789204) within the 

gene TXNRD3. Across all samples we identified several other SNPS to be above the SWS 

threshold for lifespan: on chromosome 20, ZXDC (2 SNPs) and TXNRD3 (1 SNP); on 

chromosome 32, SEPT11 (1 SNP); on chromosome 33, DRD3 (5 SNPs) and TIGIT (1 SNP) 

(Table S8). All, but SEPT11, had one SNP above the GWS threshold. For our subgroup of small 

individuals, we only found a gene on chromosome 12 RUNX2 (4 SNPs), to be above the SWS 

threshold. (Fig. 8B and Table S8). For our subgroup of large individuals, we found 9 SNPs to be 

above the SWS threshold, all of which were also above the GWG threshold (Fig. 8C). The 

strongest associated SNP (� � 1.17 
 10�	) was located on chromosome 20 (position 789204) 

within the gene TXNRD3. All genes with SNPs above the significance thresholds (TXNRD3 (1 

SNP), ZXDC (3 SNPs), CFAP100 (4 SNPs), and SLC41A3 (1 SNP)) were located on 

chromosome 20 (Table S8). For an extended table containing all the observed genes associated 

with lifespan refer to Table S8.  
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Fig. 8. Manhattan plots for GLMM-based GWAS using presence/absence of ROH for 
lifespan. A. All individuals B. Small Individuals C. Large Individuals. The x-axis represents the 
genomic position. The y-axis represents the log10 base transformed p-values. Single nucleotide 
polymorphisms are represented by a single point. The red horizontal line indicates the genome 
wide significance (GWS) threshold, and the blue horizontal line indicates the suggestive wide 
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significance (SWS) threshold. Only genes above the GWS threshold are labeled. Marked genes 
are not drawn to scale. 

Conclusions 

Our work provides in-depth analysis of patterns of runs of homozygosity (ROH) in domesticated 

breed dogs and non-breed domesticated village and Chinese Indigenous dogs, highlighting how 

the domestication and breed formation has shaped genetic diversity and trait architecture. We 

demonstrate that ROH, quantified as the total fraction of the genome within a run of 

homozygosity, FROH, can be used to uncover traits that are not fully additive. We focus on ROH 

because these genomic segments reflect recent demography and inbreeding [49, 50]. For breed 

dogs, there is a large fraction of the genome within long ROH because of the small number of 

individuals used for breed establishment. These long ROH are a result of very recent parental 

relatedness and are inextricably linked to this species’ complex evolutionary, domestication, and 

breed formation history.  

Previous research has shown that dogs originated from an isolated wolf population(s), 

and recent strong artificial selection drove breed emergence [3, 51]. Strong artificial selection 

during breed formation resulted in low genetic diversity and high homozygosity within breeds, 

alongside the large phenotypic variance between breeds [38]. Artificial selection, in the case of 

dogs, was achieved through inbreeding, and also led to the significant sharing of common 

genetic variants [52]. Artificial selection for specific phenotypic characteristics during breed 

establishment and subsequent breed standardization have resulted in homogeneity of both the 

phenotypic and genotypic variation within a breed. Further, when looking between breeds, 

previous work has shown that occasionally a dog with a desirable trait in one breed is also used 

to introduce the same phenotype in another breed, which creates a network of genetic relatedness 
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through shared common haplotypes between breeds [53]. In sum, because artificial selection was 

often achieved through inbreeding, and breed standards reduced the effective population size of 

each breed, we expect both phenomena to be reflected through shared haplotypic information 

between breeds and distinct patterns of homozygosity within breeds.  

For example, we show that domesticated breed dogs have unique patterns of ROH in 

their genome, and on average carry more of their genome within long ROH than domesticated 

non-breed village and Chinese indigenous dogs (Table 2). Conversely, the village dogs and 

Chinese indigenous dogs which did not experience selection from breed formation have the 

lowest values for mean ROH distribution. Taken together our results correspond with the higher 

degree of relatedness among all domestic breed group individuals. This was expected given the 

known high levels of inbreeding during breed establishment. Our results also highlight village 

and Chinese indigenous dogs as more outbred populations given lower ROH proportion when 

compared to breed dogs. Specifically, we observe lower levels of mean nROH and mean sROH in 

Chinese indigenous dogs. This is in line with the origins of the Chinese indigenous dogs, which 

is highlighted by relaxed trait selection during establishment of the population [54]. The relaxed 

selection may have resulted in overall higher levels of genetic diversity. Additionally, village 

dogs also harbor lower values for mean nROH and mean sROH (Table 1 and Table 2), consistent 

with them having not experienced an additional bottleneck during breed formation [37].  

Turning to ROH hotspots, we found that there was some relationship with recombination 

rate per chromosome and the density of ROH hotspots, though recombination certainly does 

explain some of the observed hotspot and coldspots, it does not fully explain all of the patterns 

that we observed (Fig. S1 & S4). For example, on many chromosomes, we observe at least one 

ROH hotspot (across breed dogs and village dogs) in a region where recombination rates peaks. 
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This is also consistent with the conclusions from previous studies which suggest recombination 

rates are not the only factor leading to ROH hotspots or coldspots [36, 37]. Our results show that 

the ROH patterns we observe are likely driven by demography (domestication), artificial 

selection (breed formation), and inbreeding. These processes have resulted in unique ROH 

patterns within breeds, sharing across breeds, and very little ROH sharing between breed dogs 

and non-breed village dogs.  

We also examine the relationship between ROH and non-disease traits. We observe that 

the relationship between breed average height and FROH is positive when using all breed dogs 

(Fig. 4). This positive effect size opposes recently published work in human populations [55–57]. 

This may be a result of combining the effect sizes of multiple sizes of dogs (i.e. large and small 

dogs). When we partition by weight, our results correspond to previous studies on height in 

breed dogs [58]. As one might expect, we also find a positive β when testing for the relationship 

between FROH and weight. We also observe a negative β with respect to the relationship between 

FROH and lifespan, indicating an association with inbreeding and survival to old age. This result 

is consistent with the findings in dogs where an association with disease phenotypes was 

observed [37]. Thus, when we partition dogs by weight [59], we find a trend where large dog 

breeds have a shorter lifespan (� � 
0.15) and small dogs have a longer lifespan (� � 0.11). 

However, our results were not significant (Table S3). Previous studies have linked size with 

longevity, and this remains an interesting area for future work [60].  When we include lifespan as 

a covariate when associating FROH and breed average height in all individuals, we still find a 

nominally significant, but larger p-value, of 0.034. Further, the effect size of FROH on height 

decreases from � ~ 0.31 to � ~ 0.19. We also observe a negative �� ~ -0.83) and significant 

relationship between height and lifespan (� � 6.41 
 10���). 
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Our GWAS using ROH identifies several significant associations between SNPs and the 

quantitative traits: height, weight, and lifespan (Table S6, Table S7, and Table S8). When 

utilizing data for all individuals, there were three hits CERS3 (chromosome 3), CBFA2T2 

(chromosome 24) and SNTA1 (chromosome 24) above the GWS threshold for height. In previous 

studies, these three genes were found to harbor genetic variants associated with human height 

[61, 62]. Additionally, human genetics studies have found CERS3 to be linked with Body-Mass 

Index (BMI) [63]. We see that many of the significant genic hits within our subgroup of small 

individuals (PITPNA, LRRC28, TTC23, HGF, SLC43A2, and VPS53) are already associated with 

human height [62, 64]. We also observe a new relationship between RPH3AL and height. 

Though there is limited research on RPH3AL, its role in exocytosis and the secretion of growth 

hormones in humans has been noted [65]. Importantly, the signal within IGF1R replicated, and 

was above the SWS threshold. A mutation in IGF1R was linked with height in small dog breeds, 

like Chihuahuas [58]. Lastly for small individuals, COMMD6 was shown to be associated with 

height. COMMD6 has primarily been studied in relation to immune function, and to our 

knowledge, no studies to date have reported any associations between this gene and height [66]. 

In the subgroup of large individuals, the only gene above the SWS threshold was PRR16 

(chromosome 11), which has been previously associated with human height [62].  

For weight, across all our samples, our GWAS results pinpoint PKD2 (chromosome 32) 

to be the most strongly associated. Mouse models have shown the presence of PKD2 has been 

linked to an increase in fat absorption, potentially promoting obesity [67]. Several other genes, 

with significant associations in our study, have been linked to weight in other species. SNTA1 

was found to be associated with the Live Body Weight (LBW) of goats, which is a factor often 

used to assess livestock health [68]. Another gene, CBFA2T2, was shown to regulate 
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adipogenesis in both humans and mice, which can affect obesity when its expression is altered 

[69–71]. TXNRD3 influences adipocyte differentiation through its involvement in the Wnt 

signaling pathway, a key process in the regulation of body fat and energy storage [72–74]. 

CERS3, also associated with height, has been linked with Body Mass Index (BMI) in humans 

[63]. Additionally, the genes SPIDR, and ZNF341 have been associated with total body fat and 

bone mineral content, respectively [75–77]. CHMP4B has been linked to the human birth weight, 

no studies have directly linked it to obesity and/or body mass. [78, 79]. Similarly, ZXDC has 

primarily been investigated in the context of immune system regulation and cancer biology. To 

our knowledge, this is the first association with weight thus far, which provides an additional 

avenue for future researchers to explore. In our subgroup of small individuals, we identify 

similar associations between weight and the genes SNTA1, ZNF341, and CBFA2T2. 

Additionally, we identify new associations specific to this subgroup with PITPNA (also 

associated with height) and SLC43A2. Both of these genes were shown to decrease body weight 

in knockout mice [80, 81]. In the subgroup of larger individuals, we find two genes to be 

associated with weight, PKD2 and SPIDR, both of which are associated with body fat. 

For lifespan, we highlight several associations of interest. When testing all samples, we 

find significant SNPs linked to the genes: TXNRD3, DRD3, TIGIT, SEPT11 and ZXDC. 

TXNRD3 has been previously associated with lower survival rates for various types of cancers 

[82]. However, to our knowledge, no previous studies have found an explicit connection between 

TXNRD3 and lifespan. The gene that encodes the D3 dopamine receptor, DRD3, is associated 

with schizophrenia, which has too been linked with decreased life expectancy [83, 84]. We 

observe significant signals at TIGIT and SEPT11, which both have been tied to the promotion of 

tumor growth and reduced longevity [85–87]. ZXDC was previously associated with cervical 
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cancer metastasis, which has a significant negative impact on patient survival [88]. In small 

dogs, we saw an association with RUNX2, which has also been associated with multiple cancers 

and poor patient prognosis [89]. In large individuals, our GWAS revealed SLC41A3 to be 

associated with lifespan. A relationship between this gene and liver hepatocellular carcinoma, 

which is the second primary contributor of carcinoma-associated death, has been established 

[90]. Another gene found in the group of large individuals is CFAP100, which to our knowledge 

has not previously been linked to lifespan.  

Overall, our GWAS suggests that quantitative traits in dogs are polygenic with multiple 

variants associated with a trait, and some traits are not entirely additive. The newly identified 

genes, which have not been observed in previous studies, could be used as candidates in future 

functional exploration. The presence of these genes also highlights new avenues to explore 

complex trait architecture and non-additivity in domesticated species. In humans, there have 

been 25,551 associations with height, 2,233 associations with weight, and 664 associations with 

lifespan as of 2023 [91]. After correcting for inflation, we recover a total of 50 associations with 

height, 84 associations with weight, and 21 associations with lifespan. This corresponds to 

previous work, which has suggested that dogs have a more simplified complex trait architecture 

than humans. [38, 92].  

Importantly, we conducted an additional test to validate our ROH based GWAS by 

attempting to replicate a previously identified peak that was known to be homozygous on 

chromosome 13 within RSPO2 for furnishings in dogs [29]. We can identify the same peak on 

chromosome 13 for RSPO2 (Fig. S26), though it did not meet genome-wide or suggestive 

significance after p-values were corrected (Fig. S27). In addition to this peak, we observe 

additional peaks that had not been previously identified. Replicating this peak suggests our 
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approach, which corresponds to different information, is powerful and worthwhile. Notably, 

similar power in human GWAS requires hundreds of thousands or even a million individuals 

[61, 62]. Here, we capture non-additivity when using ROH-mapping GWAS, and we can capture 

this information with less than 1000 dogs. This is due to the unique domestication and breed 

formation bottlenecks that dogs experienced that simplified complex trait architecture [29, 38, 

43, 93–95].  

There are some limitations in the work that we would like to highlight. First, the 

phenotypic values used in the analysis were calculated based on the breed average, restricting us 

to study associations between breeds. In other words, the within breed values would not yield 

any significant results as the expected association between the trait and FROH would be 0, due to 

using a breed average phenotype. Using the breed average has been previously validated [29, 38, 

43, 93–95] but the assumption does come with caveats. For example, when using a breed average 

value, we are ignoring variance among individuals within a breed. This variance within the breed 

is quite small due to the strict standards of the AKC. To this end, we mathematically show that if 

the within breed variance is small, the effect size computed from individual level data will be 

equivalent to the effect size from using the average. However, bias can be introduced in some 

cases when aggregating across breeds. Secondly, breed group categorization based on both 

neighbor-joining trees and AKC could potentially still introduce errors when grouping some 

breeds. Additionally, we did observe that there was a concentration of peaks in the last few 

chromosomes (Fig. S8, Table S9). We believe that the large number of peaks on the smaller 

chromosomes could be due to stronger linkage disequilibrium in the smaller chromosomes, thus 

amplifying the strength of the signal. Alternatively, some chromosomes (such as chromosome 

32) have a higher GC content when examining the CanFam3.1 assembly [96], which could 
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introduce noise into our results. Despite these limitations, the significant relationship between 

FROH and certain phenotypic traits suggest that inbreeding from domestication and artificial 

selection played a strong role in shaping complex non-disease traits within breed dogs.  

In summary, our work has further elucidated the genetic structure of quantitative trait 

architecture in dogs. We also highlight how inbreeding, quantified in the form of ROH, occurred 

alongside selection for extreme phenotypes during breed formation. These ROH tag regions of 

the genome associated with complex non-disease phenotypes.  

Methods 

Data filtering and categorizations 

In this study, we utilized whole genome sequences from 722 canids, which included various wild 

species, dingoes, and domestic dogs [29]. This data can be accessed via NCBI accession number 

PRJNA448733. All filtering was accomplished using BCFtools [97] where we retained only 

biallelic SNPs and sites of genotype quality score greater or equal to 20. Additionally, we 

removed any missing genotype rates above 10% and removed variants from sex chromosomes. 

Our filtered data consisted of 4,053,761 biallelic loci for all 38 pairs of autosomal chromosomes. 

Given the nature of our study, we removed all wild canids, mixed-breed individuals, and samples 

for which breed information was unavailable. Each remaining sample was categorized by 

common name or breed [29]. These classifications were informed by neighbor joining trees of 

domestic dogs [21] and American Kennel Club (AKC) groupings [98] . This resulted in 13 breed 

groups namely, Ancient Spitz (31 individuals and 11 breeds), Herding (76 individuals and 15 

breeds), Mastiff-like (65 individuals and 15 breeds), Retrievers (50 individuals and 6 breeds), 
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Scent Hound (23 individuals and 10 breeds), Small Terrier (102 individuals and 8 breeds), 

Terriers (16 individuals and 7 breeds), Spaniels (22 individuals and 8 breeds), Toy Dogs (18 

individuals and 7 breeds), Working Dogs (44 individuals and 10 breeds), Sight Hound (21 

individuals and 9 breeds), Village Dogs (75 individuals and 13 regions), and Chinese Indigenous 

dogs (15 individuals). Overall, our working dataset included 558 individuals and 106 different 

breeds (Table S10). 

Calling Runs of Homozygosity 

To call runs of homozygosity (ROH) we used a likelihood-based inference method called 

GARLIC v1.6.0a [99]. This method uses a logarithm of odds (LOD) score measure of 

autozygosity, which is applied in a sliding window for the entire genome [100]. GARLIC 

requires input data with genotype and sample information in the form of TPED and TFAM files, 

which were generated using PLINK 2.0 [101] We generated a TGLS file to obtain per-genotype 

likelihoods. We employed genotype likelihood data in the form of GQ to account for errors in 

phred-scaled probability. Next, a window size of 100 SNPs was chosen based on SNP density 

(Fig. S28), with the window incrementally advancing by 10 SNPs at each step. GARLIC offers 

built-in ROH length classification, for which we defined 6 classes: <1 Mbp, 1-2 Mbp, 2-3 Mbp, 

3-4 Mbp, 4-5 Mbp, and >5 Mbp. To account for sample size differences in allele frequency 

estimation, we set the number of resamples to 40. All other flags were set to default, and the 

following parameters were used: --auto-winsize --auto-overlap-frac --winsize 100 --centromere -

-size-bounds 1000000 2000000 3000000 4000000 5000000 --tped --tfam --tgls –gl-type GQ --

resample 40 --out. To eliminate segments that were noisy, very short, and common, we filtered 

to retain ROH segments longer than 0.5 Mbp.  

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 15, 2025. ; https://doi.org/10.1101/2024.05.01.592072doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.01.592072
http://creativecommons.org/licenses/by-nc/4.0/


We conducted independent ROH calling for breeds with at least 10 individuals. Breeds 

consisting of fewer than 10 members were integrated into their respective breed groups (Table 

S11). Subsequently, ROH calls from all breeds, irrespective of individual numbers, were 

combined into their respective breed groups for further analysis. For each individual, we 

examined: 1) the relationship between coverage and FROH (Fig. S29) and 2) the relationship 

between the total number of runs of homozygosity (nROH) and total length of runs of 

homozygosity (sROH) (Fig. S30)).For each individual and breed group, we calculated the 

arithmetic mean and range of both total nROH and total sROH, while binning them based on ROH 

size classification. The longest total sROH (2141.22 Mbp) and the highest total nROH (1039) were 

identified in two individuals - PER00747 and PER00393, respectively - from the small terrier 

Yorkshire breed. PER00747 was sequenced at a low depth (~2x), which inflated sROH. To 

mitigate the effects of low depth PER00747 and PER00393 were removed from downstream 

analysis. 

Inbreeding coefficient  

For each sample and breed group, we computed the inbreeding coefficient, FROH, defined as the 

fraction of autosomal genome in ROH regions [102]:  

�
�� �  
� 
��

�
���

 

Where sROH is the sum of the length of runs of homozygosity in an individual’s genome and LAuto 

is the length of autosomal genome in base pairs. An autosomal genome length of 2,203,764,842 

base pairs was used since variants were called with the CanFam3.1 (NCBI RefSeq assembly: 

GCF_000002285.3) reference genome.  
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ROH Sharing Matrix 

We generated an ROH sharing matrix, a square matrix that quantifies the sum of ROH overlaps 

between two individuals. This allowed us to analyze shared ROH patterns among dog breeds. To 

populate this matrix, we first generated individual ROH bed files for each sample. We then used 

BEDTools [103] to identify overlapping regions between pairs of ROH data. The following 

parameters were used: bedtools intersect -wao. 

Phenotype data 

We updated the phenotypic data [29] for 13 traits: bulky, drop ears, furnish, hairless, height, 

large ears, length of fur, lifespan, long legs, muscled, weight, white chest, and white head. For 

the three continuous traits, namely height, weight, and lifespan, we used average values obtained 

from AKC [98] (Table S12). We chose to use breed average values because this was previously 

shown to be a reliable measure for association tests [29, 38, 43, 93–95]. When sex-specific 

information was available, it was incorporated into the dataset; otherwise, we applied the same 

values for both males and females. We applied min-max scaling to normalize the three 

continuous traits and further categorized them into small and large groups based on the average 

weight (21.66kg) of all individuals (Tables S13-S15). For the remaining 10 traits, we averaged 

the values by the phenotypic data available for their respective breeds (Table S16). We used 

binary encoding to assign a value of 1 to individuals expressing the trait and 0 to those who did 

not. 
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Association tests 

We computed the association between FROH and the 13 phenotypes using GMMAT, an R 

package that performs association tests with generalized linear mixed models (GLMM) [104]. To 

fit the GLMM, we used the built-in function glmmkin, which allowed us to examine the 

continuous traits (height, weight, and lifespan) as the quantitative phenotype traits. This also 

enabled us to include individual FROH as a covariate and use the ROH sharing matrix as a kinship 

matrix. We fit the model assuming a Gaussian distribution for the continuous phenotypes and 

used the identity link function. For associations between height, weight, and lifespan with FROH, 

we used the updated average phenotypic values of the breed for all 466 individuals (Fig. S31 and 

Supplementary Text). Based on our association tests and previous studies [105, 106], weight and 

FROH have been observed to have a significant association, thus we included them as covariates 

in our models. Weight and the interaction of weight and FROH were used as covariates across 

three data subsets (all individuals, small individuals, and large individuals) (Table S4). To fit the 

GLMM to the 10 binary traits, we specified the binomial distribution as the family and used the 

logit link function. Samples with no information available on the presence or absence of these 

phenotypes were removed from analysis. Due to lack of phenotype information, Chinese 

indigenous dogs and village dogs were excluded from the association tests.  

ROH-mapping GWAS 

To explore the biological mechanisms through which ROH-associated SNPs influence 

phenotypic traits, we conducted Genome-Wide Association Studies (GWAS). We generated a 

dataset that examined the occurrence of SNPs in ROH regions using BCFtools intersect and 

BCFtools subtract [97]. Any SNPs located outside of ROH regions were removed. Using 
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GMMAT, we fit GLMM models assuming a recessive genetic model for quantitative traits 

(height, weight, and lifespan), incorporating ROH-associated SNPs as covariates, an ROH 

sharing matrix for kinship structure, and a Gaussian distribution with an identity link function 

[104]. Additionally, given that breed structure has a particularly strong effect in dogs, we utilized 

a kinship matrix quantified by pairwise ROH sharing between individuals when associating traits 

with FROH. This procedure follows from an approach from a study on disease traits [37]. Lastly, 

we fit GLMM models using weight and the product of weight and FROH as covariates for the 

three data subsets (all individuals, small individuals, and large individuals) (Table S5). To obtain 

the effective sample size, adjusted for auto correlations between sites, we used the option 

effectiveSize within the coda R package [107]. To calculate the number of independent tests we 

used p-values for every SNP as the input, thus incorporating autocorrelation caused by LD. This 

approach was shown to be effective for correcting for structure previously [108]. To obtain the 

Genome-Wide Significance (GWS) and Suggestive-Wide Significance (SWS) thresholds, we 

used the Bonferroni correction with respect to effective sample size [109–111]: 

Genome-wide significance threshold �  
���10�
�.��

��������� ������ ����
� 

Suggestive-wide significance threshold �  
���10�
�.�

��������� ������ ����
� 

To correct for population stratification, we calculated the genomic inflation factor, λ [112, 113]. 

We corrected the log-scaled p-values by dividing them by the genomic inflation factor (Table 

S5). To visualize the GWAS summary statistics, we used an R package, qqman to create Q-Q 

and Manhattan plots [114].  
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Accession Numbers 

Whole genome sequence data is available on NCBI, accession number: PRJNA448733. The 

source phenotype data was obtained from [29]. All summary data are contained within the article 

and its supplementary information. 
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