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Abstract

Runs of homozygosity (ROH) are genomic regions that arise when two copies of identical
haplotypes are inherited from a shared common ancestor. In this study, we leverage ROH to
identify associations between genetic diversity and non-disease phenotypes in Canis lupus
familiaris (dogs). We find significant association between the ROH inbreeding coefficient (Fron)
and several phenotypic traits. These traits include height, weight, lifespan, muscled, white
coloring of the head and chest, furnishings, and fur length. After correcting for population
structure, we identified more than 45 genes across the examined quantitative traits that exceed
the threshold for suggestive significance. We observe distinct distributions of inbreeding and
elevated levels of long ROH in modern breed dogs compared to more ancient breeds, which
aligns with breeding practices during Victorian era breed establishment. Our results highlight the
impact of non-additive variation and of polygenicity on complex quantitative phenotypes in dogs

due to domestication and the breed formation bottleneck.
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Background

For over a century, scholars and dog-enthusiasts alike have sought to unravel the complex
evolutionary history of man’s best friend [1]. Canislupus familiaris (dogs) have intrigued
researchers, across scientific fields, due to their close knit ties to our species [2] and unique
genetic features [3-5]. While the exact origins of domestication remain elusive, understanding
the impact of this process on the phenotypic variance and evolutionary history of the species is

important.

In the 19th century, Darwin suggested that the broad range of features exhibited in
modern breeds is conducive to a descendancy from multiple canid species, including wolves and
jackals. In his accounts on variation, he argues that a single ancestral origin from the gray wolf
(Canislupus) seems to contradict the historical and archeological evidence available. Given that
many wild species of the genus Canis have the potential to interbreed, Darwin’s proposal held
fast for many years [1]. Advances in genome technology provided scientists with a new approach
to studying dog ancestry, offering insights that complement and, in some cases, challenge the
conclusions drawn from archaeological and historical evidence [6]. One commonly used
approach is mitochondrial DNA (mtDNA) analysis which allows researchers to trace maternal
ancestry. Using samples collected from dogs, wolves, and several other wild canid species,
researchers found the similarity between dogs and the gray wolf to be significantly higher than
that of dogs and any other wild canid species [7, 8]. In recent years, whole genome sequence
(WGS) data has increasingly focused on the wolf-dog relationship, further supporting this

finding and making it a primary area of investigation in contemporary studies [4, 9, 10].
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While most agree that dogs were the first domesticated species, establishing their spatial
and temporal roots has been a challenge [11]. The earliest depictions of human-canine ties come
by means of cave paintings discovered in Saudi Arabia [12]. This cooperative hunting scene is
believed to be 8000 to 9000 years old, but evidence gathered from burial sites predict an earlier
origin of domestication [13]. The first dates back approximately 12,000 years ago to the Natufian
in Northern Israel, where they discovered three sets of dog remains buried with a human [14,
15]. Additionally, a dog-like mandible was recovered at a burial site in Bonn-Oberkassel,
Germany. This Northern European sample is believed to be about 14,000 years old [16, 17],
however genetic work has added an additional layer of evidence for an even older wolf-dog

divergence.

Genomic work, based on mtDNA and WGS data, currently offers two potential
explanations for the origins of domestication. The first is that early dogs were a result of a single
domestication event from gray wolves in East Asia between 16,000 and 100,000 years ago. The
hypothesis stems from the limited haplotypic diversity in dogs, which may suggest a genetic
bottleneck where domesticated dogs originated from a small-closely-related population of gray
wolves [7]. Additionally, high levels of genetic diversity from the region south of the Yangtze

River, indicate an older divergence than other areas in Europe and Asia. [18-20].

The second genomic narrative centers upon the theory that haplogroups entered the dog
lineage at different times and places. Using nuclear genomic single nucleotide polymorphism
(SNP) analysis, one study found evidence for allele sharing in Asian dog breeds and Asian
wolves as well as European dog breeds and European wolves [21]. This work suggests that there
were several founder events derived from separate wolf populations. Further WGS work has

documented significant genetic differences in Eastern and Western Eurasian dog populations,
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providing further support for multiple domestication events [22, 23]. Despite these findings, the
origins of domestication in dogs remain a hot topic of debate, warranting the need for additional

studies exploring the complexities of their history.

While the early evolution of dogs from wolves marked a significant shift between
species, the more recent history of established dog breeds has shaped evolution within the
species itself. During the Victorian era, the selective breeding of aesthetically desirable traits led
to the emergence of hundreds of new breeds. Breed establishment typically involved a limited
number of founding members, resulting in high levels of inbreeding and dramatic loss of genetic
diversity [3, 24-28]. Founder effects, such as this, restrict the gene pool and result in long
stretches of DNA sharing between individuals. Shared segments derived from a single common
ancestor are said to be identical-by-descent (IBD). Segments of the genome inherited IBD, when
found within an individual, are commonly referred to as runs of homozygosity (ROH). Artificial
selection for extreme phenotypes during breed formation made much of the genome homozygous
and simplified complex trait architecture in dogs, which has facilitated the study of phenotypic

associations between breeds [3, 29, 30].

Studies of ROH in humans have revealed associations with numerous complex disease
and non-disease phenotypes, which provide valuable insight on the impact of genetic diversity on
health and evolutionary processes [31-36]. Similar work has been done in dogs, providing
evidence of association between ROH and several disease phenotypes [3, 30, 37]. Additionally,
previous studies have explored the influence of genetic variants on quantitative traits such as; leg
length, wrinkled skin, coat color, hair length, and skeletal shape [38—42]. Despite these advances,

associations with complex non-disease phenotypes in dogs are relatively unexplored [43].
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In this study, we investigate the relationship between the genomic consequences of
domestication and complex (non-disease) trait architecture by using the distribution of ROH to
provide insights on complex phenotypic architecture. To examine the relationship between ROH
and non-disease phenotypes in dogs, we analyzed 556 canid whole-genome sequences and
characterized the genomic distribution of ROH. After accounting for breed structure, we test for
associations between the total ROH coverage of the genome (as measured by Fron) among 13
breed groups with 13 phenotypes. Finally, we perform an ROH-mapping genome-wide
association study and identify multiple genetic variants associated with phenotype, namely

height, weight, and lifespan.

Results

ROH distribution

ROH were categorized into 6 length classes: Class A (0.5 - 1 Mbp), Class B (1 - 2 Mbp), Class C
(2 - 3 Mbp), Class D (3 - 4 Mbp), Class E (4 - 5 Mbp), and Class F (>5 Mbp). For our 556
samples, the mean number of ROH (nron) was 37.06 and the mean length of ROH (Sgon) Was
94.17 Mbp. These parameters were also computed for each ROH length class: Class A (ngon =
99.44; sron = 68.39 Mbp), Class B (nron = 50.29; Sron = 70.36 Mbp), Class C (nron = 21.60;
Sron = 52.81 Mbp), Class D (Nrown = 13.07; Sron = 45.23 Mbp), Class E (nron = 9.21; Sron

=41.15 Mbp), and Class F (nron = 28.77; sron = 287.05 Mbp) (Table 1, Table 2).

Domestic dog clades showed a distinct pattern of genetic diversity, with higher levels of
long ROH (>5 Mbp) when compared with Chinese indigenous dogs (light green) and village

dogs (royal blue) (Figs. 1 & 2). The highest total nron (641) was observed in Dingo01 and the


https://doi.org/10.1101/2024.05.01.592072
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.01.592072; this version posted September 15, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

highest total sron (1643.98 Mbp) was observed in NGSD2, both individuals were from the
Ancient Spitz breed group (Table S1). Terriers had the smallest mean ngon and the smallest

mean Sron When compared with the remaining 11 breed groups (Tables 1 & 2).
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Fig. 1. Relationship between the number of runs of homozygosity (nron) and ROH size
classin Mbp for all breed groups. The x-axis represents the ROH size in Mbp. The y-axis
represents the number of ROH. Each violin plot depicts the distribution of the total number of
ROH within length classes 0.5-1 Mbp, 1-2 Mbp, 2-3 Mbp, 3-4 Mbp, 4-5 Mbp and >5 Mbp for
each breed group.

Table 1: ngon acrossall breed groups and ROH length classification. Thistable details the
range and mean + standard deviation of the number of runs of homozygosity for each breed
group and ROH length classification.

Breed Mean Range Mean Mean Mean Mean Mean Mean
Group NRoH NRoH NRoH NRoH NRoH NRoH NRoH NRoH
for for for for for for

ClassA | ClassB | ClassC | ClassD | ClassE | ClassF
(05-1 |(@1-2 (2-3 (3-4 (4-5 (>5
Mbp) Mbp) Mbp) Mbp) Mbp) Mbp)

Ancient 4710+ |[3-338 13342+ | 6513+ | 2471+ [13.90+ [9.87= 35.58 +
Spitz 58.20 85.63 40.00 11.23 4.31 3.97 18.29

Retrievers |[38.83+ |[0-138 10642+ | 5396+ |2398+ |[13.1=% 9.94 26.3

34.58 13.75 9.05 6.39 4.31 3.32 11.77
Mastiff 3837+ | 0-117 78.6 + 54 + 2746+ 1691+ |1218+ |41.08=
Like 26.65 14.12 17.53 11.19 7.55 6.53 19.83
Herding 3788+ | 0-257 97.76+ | 4847+ |21+ 1391+ |108+ 3532+

33.97 32.29 10.17 7.22 5.79 551 19.08
Scent 40.25+ |[1-160 11326+ | 53.65+ | 22.7%* 13.3 % 9.09 = 27.48 £
Hound 37.52 21.76 9.85 6.35 4.87 4.92 12.44
Small 4093+ [0-277 11358+ | 60.27+ |24.08+ |[1431+ |[898=% 2438
Terrier 41.19 39.05 17.74 9.18 6.32 4.61 16

Terriers 3056+ |9-122 90.75+ |56.25+ |3181+ |18.88+ |[1588+ |[53.75%
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33.01 15.75 11.22 7.75 6.21 4.66 10.77
Spaniels 36.29+ | 5-144 101.18+ | 61 % 2873+ | 1814+ |14+ 41.64 +
35.23 20.19 9.23 5.37 5.35 5.19 14.62

Sighthound | 45.29+ [ 0-192 138.67+ | 63.33+ | 2167+ |[13.86+ [8.19%+ 26 +
48.55 31.05 20.63 8.98 7.57 4.76 15.86

Toy Dogs 4119+ ([1-187 11456+ | 56.17+ | 2406+ |[14.78x |[944= 28.11+

40.77 31.06 25.99 13.48 9.78 6.46 15.34
Working 3829+ | 1-129 85.18+ |50.02+ |2736+ |17% 1182+ | 38.34=
Dogs 27.43 16.07 15.37 12.12 7.86 5.51 13.11
Village 205+ 0-261 80.12+ | 2379+ |6.33% 351 2.09 715+
Dogs 31.83 33.69 13.69 5.77 4.76 2.64 11.03

Chinese 1436+ | 0-103 6153+ | 1467+ |4+£331 |1.27% 1+£132 |367%
Indigenous | 22.91 16.63 5.79 1.29 5.37
Dogs
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Fig. 2. Relationship between the sum of lengths of runs of homozygosity (Sron) and ROH
size classes. The x-axis represents our defined ROH size classesin Mbp. The y-axis represents
Sron, Which also has units of Mbp. Each violin plot depicts the distribution of the sum of ROH
within length ranges 0.5-1 Mbp, 1-2 Mbp, 2-3 Mbp, 3-4 Mbp, 4-5 Mbp and >5 Mbp for each
breed group.

Table 2: skon acrossall breed groups and ROH length classification. The table contains the
range and mean * standard deviation of the sum of lengths of runs of homozygosity for each
breed group and ROH length classification.
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Breed Mean Range Mean Mean Mean Mean Mean Mean
Group SROH SROH SroH for | Sron for | Sron for | Srow for | Sron for | Sron for
(Mbp) (Mbp) ClassA | ClassB | ClassC | ClassD | ClassE | ClassF
(05-1 |(1-2 (2-3 (3-4 (4-5 >5

Mbp) Mbp) Mbp) Mbp) Mbp) Mbp)

Ancient 11956+ | 13.73 - 92.20 90.67 £ 60.33+ |48.30% 44,14 + 381.60 =

Spitz 162.09 1113.00 | 59.41 54.30 27.20 17.51 255.7
Retrievers | 89.28 + 0- 72.96 75.50 £ 57.37 4522 + 44.47 + 240.17 +
86.63 598.02 9.44 13.25 16.00 15.07 14.90 125.98
Mastiff 126.47+ | 0- 54,77 + 76.97 £ 67.21 + 58.57 + 54.38 + 446.89 +
Like 176.91 1029.28 | 9.71 25.95 27.55 25.92 29.38 247.25
Herding 105.25+ | O- 67.24 + 67.53 + 51.27 £ 48.23 + 48.26 + 348.94 +

139.34 861.74 21.71 14.78 17.64 20.12 24.73 206.94

Scent 9919+ | 459- 77.78x | 7484 5526+ |4590% |[40.62+ |300.75«%
Hound 113.14 946.54 14.73 15.22 15.67 16.82 21.78 159.58
Small 89.41 0- 7820+ | 84.24= 59.07+ |49.63+ |40.18= 225.15
Terrier 96.13 690.33 26.38 24.77 22.76 22.10 20.51 170.89

Terriers 75.86 28.77 - 63.93 = 79.69 77.98 = 65.84 71.06+ | 54171+

116.57 951.29 10.90 16.00 19.72 21.84 20.79 161.42
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Spaniels 94.03 £ 23.23 - 70.13 % 85.21 % 70.39 62.52 + 62.55 427.24

127.54 856.91 12.83 12.79 13.56 18.65 23.16 190.19

Sighthound | 94.65 £ 0- 95.24 86.87 £ 53.04+ | 4798+ 36.54 + 248.26 +

96.81 591.60 21.50 29.21 22.07 26.13 21.32 149.49

Toy Dogs | 97.01 + 412 - 78.92 £ 79.01 58.31+ 50.45 + 42.33 £ 273.02 £

107.57 602.43 22.17 36.61 33.13 33.72 28.82 162.01

Working 11289+ | 4.74 - 58.67+ | 70.67 = 66.54+ |5883% |[5276+ |369.85«%
Dogs 130.13 658.42 11.14 22.08 29.19 27.51 24.70 139.08
Village 33.24 0- 5407+ | 32.65=* 1530 1204+ | 935% 76.00 £
Dogs 59.75 554.84 23.09 19.59 13.97 16.34 11.72 127.67
Chinese 19.82 0- 41.03+ | 20.00+ 953+ 427 441 * 39.67 =
Indigenous | 35.06 309.27 11.34 7.64 7.68 4.24 5.87 75.16
Dogs

Next, we explored the relationship between the total number of ROH (nrown) and the total
lengths of ROH (sron) (Fig. 3). We observed significantly higher mean values for both ngon and
Sron for the domesticated breed dogs relative to the domesticated non-breed Chinese indigenous
dogs and village dogs. Breed dogs also tended to fall off of the y=x line when nroy Was
compared to Sron. The accumulation of long ROH within breed dogs in the recent time was most
drastic in Terrier clade, where we also observed the largest Fron (Table 3). We observed the

largest variance in NROH in the Small Terriers, which include breeds such as the Australian
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Terrier, Cairn Terrier, Jack Russell Terrier, Norwich Terrier, Scottish Terrier, Tibetan Terrier,
West Highland, White Terrier, and Yorkshire Terrier. We also observed quite a bit of variance in
Ancient Spitz, Village dogs, Herding, Mastiff-like, and Toy dogs. Conversely, Chinese
Indigenous dogs, Terriers, Spaniels, Retrievers, and Scent Hound cluster together quite tightly.

The Spaniels fall somewhere between these groups.

We were also interested in whether any of ROH hotspots were shared across clades or
between breed dogs and domesticated non-breed dog populations. We examined ROH coverage
per site for each chromosome and plot sites where more than 50% of individuals within each
clade have a ROH (Fig. S1-S16). There were clear hotspots within clades on every chromosome.
Some of these hotspots corresponded with recombination rate, such as on chromosome 22, where
we observed lower recombination rate in regions where there were shared ROH hotspots among
all individuals. Conversely, on chromosome 12 we observed a high recombination rate, and very
few shared ROH hotspots among individuals. Moreover, we observed very few shared ROH
hotspots among different clades. One stand out was chromosome 28, where we observed a
shared ROH hotspot among Ancient Spitz, Mastiff Like, Retrievers and Terriers (Fig. S13).
Likewise on chromosome 32, we observed a shared ROH hotspot among Mastiff-Like, Scent
Hound, Terriers and Toy Dogs (Fig. S14). The majority of hotspots were shared within a clade.
This was best shown on chromosome 17, where we found multiple clade-specific ROH hotspots
(Fig. S9). The same pattern was seen on chromosomes 31-38, with a few instances of sharing
between Mastiff-like breeds and Terriers (Fig. S13 - S16). Lastly, we rarely observed any peaks

for village dogs and Chinese Indigenous dogs (Fig. S3 - S16).
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Fig. 3: Relationship between the sum of lengths of runs of homozygosity (skon) and the
number of runsof homozygosity (nrow) for each breed group. The x-axis and the y-axis
represent the SROH and nROH, respectively. The black lineisy=x.
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Next, we examined the level of inbreeding within clades by computing the inbreeding
coefficient, Fron, for each individual and each breed group (Tables 3 & S2). To account for the
distribution of Fron across all breed groups, we computed mean Fron (Table 3). High levels of
mean Fron Were observed in breed dogs’ clades. Fron mean values in breed dogs ranged from
0.41 £0.07 in Terriers to 0.24 £ 0.07 in Retrievers. The lowest mean values were observed in
non-breed dogs, namely Chinese Indigenous Dogs (0.05 £ 0.04) and Village Dogs (0.09 + 0.08).
This result was expected and provides support for breed dogs sharing a more recent common

ancestor and more background relatedness relative to village or Chinese indigenous dogs [3].

Table 3: Fron acrossall breed groups. The table represents the mean + standard deviation of
Fron for each breed group.

Breed Group Mean Fron
Terriers 0.41+0.07
Spaniels 0.35+0.09
Mastiff-Like 0.34+0.15
Ancient Spitz 0.33+0.17
Working Dog 0.31£0.09
Herding 0.29+0.11
Scent Hound 0.27 +0.08
Toy Dogs 0.26 +0.13
Sight Hound 0.26 +0.10
Small Terrier 0.24+0.10
Retriever 0.24 +£0.07
Village Dogs 0.09 £0.08
Chinese Indigenous Dogs | 0.05+0.04
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Association between Fron and phenotypic traits

Next, we wondered whether Fron could be used to detect non-additivity in quantitative (non-
disease) phenotypes in dogs. Following an approach that was recently used in disease phenotypes
in dogs [37] and quantitative and disease phenotypes in humans [32, 33, 44-48], we searched for
non-additive effects by correlating Fron and 13 breed averaged phenotypes (bulky, drop ears,
furnish, hairless, height, large ears, length of fur, lifespan, long legs, muscled, weight, white
chest, and white head). The three quantitative phenotypes had significant associations with Fron:
breed average height (8 = 0.31 and p = 4.05 x 1073), breed average weight (8 = 0.19 and

p = 1.19 x 1072), and breed average lifespan (8 = —0.14andp = 4.44 x 10~2) (Fig. 4). In
breed dogs, we found that as Fron increased by 1%; breed average height increased by 0.192 cm,
breed average weight increased by 0.14 kg, and breed average lifespan decreased by 0.014 years.
The statistical analysis, including normalized coefficient effect size (either B or log odds), p-
values, and confidence intervals for quantitative traits (breed average height, breed average
weight, and breed average lifespan) are shown in Table S3. Significant associations with Fron
were present in 5 out of the 10 remaining qualitative phenotypes: muscled (f = 7.96 and

p = 9.68 x 10711), white chest (8 = 3.49 and p = 5.36 X 10~°), white head (8 = 4.26 and

p = 1.55 x 107%), length of fur (8 = —1.88 and p = 1.27 x 10~2), and furnish (8 = —2.50
and p = 8.24 x 1073) (Fig. 5, Table S4). Across all breed groups, as Fron increased, white
chest, white head and muscled phenotypes also increased, whereas length of fur and furnish

phenotypes decreased.
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Fig. 4. Relationship between effect Size and breed averaged phenotypic traits. The y-axis
represents the phenotypes for which the associations were tested. These are binned into 3
categories (small individuals, large individuals, and all individuals). The x-axis represents the
normalized beta coefficients (5) for each trait. Sgnificant effects of Fron 0N @ phenotype
(nominal p < 0.05) are indicated by a red point. An effect size larger than O indicates an
increase of that trait value with respect to Fron, and less than O represents a decrease in that
trait value.
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ROH-mapping GWAS

Finally, we sought to identify the ROH-associated genomic regions that influence our
quantitative traits of interest (weight, lifespan, or height). Thus, we performed a GLMM-based
GWAS (Fig. 6, Fig. 7, Fig. 8, and Fig. S17-S25) using presence/absence of ROH across
individuals as the phenotype predictor for each locus. For exact significant threshold values, see

Tables S4 - S5.

For breed average height, we found 27 SNPs above the Suggestive-Wide Significance
(SWS) threshold and 18 SNPs above the Genome-Wide Significance (GWS) threshold when
testing for all individuals in our sample (Fig. 6A). Notably, a single SNP on chromosome 24
(position 22647289) had the strongest associated genomic signal with height (p = 3.46 x
107°). This region corresponds with the gene SNTA1. Additionally, genes CERS3 (7 SNPs) on
chromosome 3, CBFA2T2 (16 SNPs) on chromosome 24, and SNTAL (4 SNPs) on chromosome
24 were observed to be above the SWS threshold and contained multiple SNPs within their
transcription regions (Table S6). SNPs linked to these three genes were also above the GWS

threshold.

For small individuals, 34 SNPs were observed to be above the SWS threshold and 17
SNPs were observed to be above the GWS threshold when tested for association with height
(Fig. 6B). A single SNP on chromosome 9 (position 45711401) had the strongest associated
genomic signal (p = 1.44 x 107°), which corresponds with the gene PITPNA. Across our small
subgroup we identified additional genomic variants above the SWS threshold for weight: on
chromosome 3, CERS3 (3 SNPs), IGF1R (1 SNP), LRRC28 (1 SNP), and TTC23 (3 SNPs); on

chromosome 9, PITPNA (4 SNPs), SLC43A2 (2 SNPs), VP53 (2 SNPs), and RPH3AL (4
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SNPs); on chromosome 18, HGF (2 SNPs); on chromosome 22, COMMDSG6 (1 SNP); on
chromosome 24, CBFA2T2 (7 SNPs) and SNTAL (4 SNPs) (Table S6). Only SNPs associated
with TTC23, PITPNA, SLC43A2, RPH3AL, CBFA2T2, and SNTAL were above the GWS
threshold. For large individuals, a single SNP on chromosome 11 (position 9943557), which is
linked to PRR16, was observed to be above the SWS threshold for height (Fig. 6C). For an

extended table containing all the observed genes associated with height refer to Table S6.
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Fig. 6. Manhattan plotsfor GLMM-based GWAS using presence/absence of ROH for body
height. A. All individuals B. Small Individuals C. Large Individuals. The x-axis represents the
genomic position. The y-axis represents the 10g10 base transformed p-values. Sngle nucleotide
polymor phisms are represented by a single point. The red horizontal line indicates the genome
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exception of IGF1R. Marked genes are not drawn to scale.
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For breed average weight, 66 SNPs were observed above the SWS threshold and 45
SNPs above the GWS threshold, when including all individuals in our sample (Fig. 7A). Nearly
half of the SNPs above the SWS threshold (30 SNPs) were found within genes on chromosome
24. A single SNP, on chromosome 32 (position 11413601) had the strongest association with
weight (p =3.24 x 10~7). This was observed within PKD2, a gene that encodes for protein
kinase D2. Across all samples we identified several other SNPS to be above the SWS threshold
for weight: on chromosome 3, CERS3 (7 SNPs); on chromosome 20, ZXDC (3 SNPs) and
TXNRD3 (1 SNP); on chromosome 24, SNTA1 (5 SNPs), CBFA2T2 (19 SNPs), ZNF341 (2
SNPs), and CHMP4B (4 SNPs); on chromosome 32, SEPT11 (1 SNP), CCNI (1 SNP), PKD2 (11
SNPs), SGMX (4 SNPs) and CYP2UL1 (3 SNPs); on chromosome 35, SPIDR (5 SNPs) (Table
S7). The genes on chromosomes 3, 20, 24, and 35 all had SNPs above the GWS threshold. The

only gene from chromosome 32 with SNPs above the GWS threshold was PKD2.

For small individuals, 31 SNPs were observed above the SWS threshold and 19 SNPS
above the GWS threshold (Fig. 7B). Nearly a third of those above the SWS threshold (i.e. 20
SNPs) belong to chromosome 24. A single SNP on chromosome 24 (position 22660667) had the
strongest association with weight (p = 5.88 x 1077) and is linked to the protein-coding gene
SNTAL (Fig. 7B). For our subgroup of small individuals, we found SNPs above the SWS
threshold for weight to be linked to the following genes: on chromosome 3, CERS3 (1 SNP); on
chromosome 9, RPH3AL (4 SNPs), PITPNA (4 SNPs), and SLC43A2 (2 SNPs); on chromosome
24, ADAM33 (2 SNPs), SIGLEC1 (2 SNPs), HSPA12B (1 SNP), SNTAL (4 SNPs), CBFA2T2 (9
SNPs), ZNF341 (1 SNP) and CHMP4B (1 SNP) (Table S7). SNPs on genes PITPNA, SLC43A2,
SNTAL, CBFA2T2, and ZNF341 were above the GWS threshold. In contrast, for the subgroup of

large individuals, 10 SNPs were above the SWS threshold and 5 SNPs were above the GWS
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threshold (Fig. 7C). Only two genes reached significance in large individuals: on chromosome
32, PKD2 (4 SNPs) and on chromosome 35, SPIDR (6 SNPs). All the SNPs linked to these two
genes were above the SWS threshold for weight (Table S7). SNPs on both of these genes were
also above the GWS threshold. For an extended table containing all the observed genes

associated with weight refer to Table S7.
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Fig. 7. Manhattan plotsfor GLMM-based GWAS using presence/absence of ROH for body
weight. A. All individuals B. Small Individuals C. Large Individuals. The x-axis represents the
genomic position. The y-axis represents the 1og10 base transformed p-values. Sngle nucleotide
polymor phisms are represented by a single point. The red horizontal line indicates the genome
wide significance (GWS) threshold, and the blue horizontal line indicates the suggestive wide
significance (SWS) threshold. Only genes above the GWSthreshold are labeled. Marked genes
are not drawn to scale.

For breed average lifespan, 10 SNPs were observed above the SWS threshold and only 4 SNPs
were above the GWS threshold when tested across all individuals (Fig. 8A). The strongest
associated SNP (p = 2.21 x 10~°) was located on chromosome 20 (position 789204) within the
gene TXNRD3. Across all samples we identified several other SNPS to be above the SWS
threshold for lifespan: on chromosome 20, ZXDC (2 SNPs) and TXNRD3 (1 SNP); on
chromosome 32, SEPT11 (1 SNP); on chromosome 33, DRD3 (5 SNPs) and TIGIT (1 SNP)
(Table S8). All, but SEPT11, had one SNP above the GWS threshold. For our subgroup of small
individuals, we only found a gene on chromosome 12 RUNX2 (4 SNPs), to be above the SWS
threshold. (Fig. 8B and Table S8). For our subgroup of large individuals, we found 9 SNPs to be
above the SWS threshold, all of which were also above the GWG threshold (Fig. 8C). The
strongest associated SNP (p = 1.17 x 1078) was located on chromosome 20 (position 789204)
within the gene TXNRD3. All genes with SNPs above the significance thresholds (TXNRD3 (1
SNP), ZXDC (3 SNPs), CFAP100 (4 SNPs), and SLC41A3 (1 SNP)) were located on
chromosome 20 (Table S8). For an extended table containing all the observed genes associated

with lifespan refer to Table S8.
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Fig. 8. Manhattan plotsfor GLMM-based GWAS using presence/absence of ROH for
lifespan. A. All individuals B. Small Individuals C. Large Individuals. The x-axis represents the
genomic position. The y-axis represents the 1og10 base transformed p-values. Sngle nucleotide
polymorphisms are represented by a single point. The red horizontal line indicates the genome
wide significance (GWS) threshold, and the blue horizontal line indicates the suggestive wide
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significance (SWS) threshold. Only genes above the GWS threshold are labeled. Marked genes
are not drawn to scale.

Conclusions

Our work provides in-depth analysis of patterns of runs of homozygosity (ROH) in domesticated
breed dogs and non-breed domesticated village and Chinese Indigenous dogs, highlighting how
the domestication and breed formation has shaped genetic diversity and trait architecture. We
demonstrate that ROH, quantified as the total fraction of the genome within a run of
homozygosity, Fron, can be used to uncover traits that are not fully additive. We focus on ROH
because these genomic segments reflect recent demography and inbreeding [49, 50]. For breed
dogs, there is a large fraction of the genome within long ROH because of the small number of
individuals used for breed establishment. These long ROH are a result of very recent parental
relatedness and are inextricably linked to this species’ complex evolutionary, domestication, and

breed formation history.

Previous research has shown that dogs originated from an isolated wolf population(s),
and recent strong artificial selection drove breed emergence [3, 51]. Strong artificial selection
during breed formation resulted in low genetic diversity and high homozygosity within breeds,
alongside the large phenotypic variance between breeds [38]. Artificial selection, in the case of
dogs, was achieved through inbreeding, and also led to the significant sharing of common
genetic variants [52]. Artificial selection for specific phenotypic characteristics during breed
establishment and subsequent breed standardization have resulted in homogeneity of both the
phenotypic and genotypic variation within a breed. Further, when looking between breeds,
previous work has shown that occasionally a dog with a desirable trait in one breed is also used

to introduce the same phenotype in another breed, which creates a network of genetic relatedness
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through shared common haplotypes between breeds [53]. In sum, because artificial selection was
often achieved through inbreeding, and breed standards reduced the effective population size of
each breed, we expect both phenomena to be reflected through shared haplotypic information

between breeds and distinct patterns of homozygosity within breeds.

For example, we show that domesticated breed dogs have unique patterns of ROH in
their genome, and on average carry more of their genome within long ROH than domesticated
non-breed village and Chinese indigenous dogs (Table 2). Conversely, the village dogs and
Chinese indigenous dogs which did not experience selection from breed formation have the
lowest values for mean ROH distribution. Taken together our results correspond with the higher
degree of relatedness among all domestic breed group individuals. This was expected given the
known high levels of inbreeding during breed establishment. Our results also highlight village
and Chinese indigenous dogs as more outbred populations given lower ROH proportion when
compared to breed dogs. Specifically, we observe lower levels of mean nron and mean sgron in
Chinese indigenous dogs. This is in line with the origins of the Chinese indigenous dogs, which
is highlighted by relaxed trait selection during establishment of the population [54]. The relaxed
selection may have resulted in overall higher levels of genetic diversity. Additionally, village
dogs also harbor lower values for mean nron and mean sgon (Table 1 and Table 2), consistent

with them having not experienced an additional bottleneck during breed formation [37].

Turning to ROH hotspots, we found that there was some relationship with recombination
rate per chromosome and the density of ROH hotspots, though recombination certainly does
explain some of the observed hotspot and coldspots, it does not fully explain all of the patterns
that we observed (Fig. S1 & S4). For example, on many chromosomes, we observe at least one

ROH hotspot (across breed dogs and village dogs) in a region where recombination rates peaks.
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This is also consistent with the conclusions from previous studies which suggest recombination
rates are not the only factor leading to ROH hotspots or coldspots [36, 37]. Our results show that
the ROH patterns we observe are likely driven by demography (domestication), artificial
selection (breed formation), and inbreeding. These processes have resulted in unique ROH
patterns within breeds, sharing across breeds, and very little ROH sharing between breed dogs

and non-breed village dogs.

We also examine the relationship between ROH and non-disease traits. We observe that
the relationship between breed average height and Fron is positive when using all breed dogs
(Fig. 4). This positive effect size opposes recently published work in human populations [55-57].
This may be a result of combining the effect sizes of multiple sizes of dogs (i.e. large and small
dogs). When we partition by weight, our results correspond to previous studies on height in
breed dogs [58]. As one might expect, we also find a positive  when testing for the relationship
between Fron and weight. We also observe a negative 3 with respect to the relationship between
Fron and lifespan, indicating an association with inbreeding and survival to old age. This result
is consistent with the findings in dogs where an association with disease phenotypes was
observed [37]. Thus, when we partition dogs by weight [59], we find a trend where large dog
breeds have a shorter lifespan (f = —0.15) and small dogs have a longer lifespan (8 = 0.11).
However, our results were not significant (Table S3). Previous studies have linked size with
longevity, and this remains an interesting area for future work [60]. When we include lifespan as
a covariate when associating Fron and breed average height in all individuals, we still find a
nominally significant, but larger p-value, of 0.034. Further, the effect size of Fron 0N height
decreases from  ~ 0.31 to 8 ~ 0.19. We also observe a negative (f ~ -0.83) and significant

relationship between height and lifespan (p = 6.41 x 107*1).
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Our GWAS using ROH identifies several significant associations between SNPs and the
quantitative traits: height, weight, and lifespan (Table S6, Table S7, and Table S8). When
utilizing data for all individuals, there were three hits CERS3 (chromosome 3), CBFA2T2
(chromosome 24) and SNTAL (chromosome 24) above the GWS threshold for height. In previous
studies, these three genes were found to harbor genetic variants associated with human height
[61, 62]. Additionally, human genetics studies have found CERS3 to be linked with Body-Mass
Index (BMI) [63]. We see that many of the significant genic hits within our subgroup of small
individuals (PITPNA, LRRC28, TTC23, HGF, SLC43A2, and VP53) are already associated with
human height [62, 64]. We also observe a new relationship between RPH3AL and height.
Though there is limited research on RPH3AL, its role in exocytosis and the secretion of growth
hormones in humans has been noted [65]. Importantly, the signal within IGF1R replicated, and
was above the SWS threshold. A mutation in IGF1R was linked with height in small dog breeds,
like Chihuahuas [58]. Lastly for small individuals, COMMDG6 was shown to be associated with
height. COMMDS6 has primarily been studied in relation to immune function, and to our
knowledge, no studies to date have reported any associations between this gene and height [66].
In the subgroup of large individuals, the only gene above the SWS threshold was PRR16

(chromosome 11), which has been previously associated with human height [62].

For weight, across all our samples, our GWAS results pinpoint PKD2 (chromosome 32)
to be the most strongly associated. Mouse models have shown the presence of PKD2 has been
linked to an increase in fat absorption, potentially promoting obesity [67]. Several other genes,
with significant associations in our study, have been linked to weight in other species. SNTAL
was found to be associated with the Live Body Weight (LBW) of goats, which is a factor often

used to assess livestock health [68]. Another gene, CBFA2T2, was shown to regulate
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adipogenesis in both humans and mice, which can affect obesity when its expression is altered
[69-71]. TXNRD3 influences adipocyte differentiation through its involvement in the Wnt
signaling pathway, a key process in the regulation of body fat and energy storage [72—74].
CERSS3, also associated with height, has been linked with Body Mass Index (BMI) in humans
[63]. Additionally, the genes SPIDR, and ZNF341 have been associated with total body fat and
bone mineral content, respectively [75-77]. CHMPA4B has been linked to the human birth weight,
no studies have directly linked it to obesity and/or body mass. [78, 79]. Similarly, ZXDC has
primarily been investigated in the context of immune system regulation and cancer biology. To
our knowledge, this is the first association with weight thus far, which provides an additional
avenue for future researchers to explore. In our subgroup of small individuals, we identify
similar associations between weight and the genes SNTAL, ZNF341, and CBFA2T2.
Additionally, we identify new associations specific to this subgroup with PITPNA (also
associated with height) and SLC43A2. Both of these genes were shown to decrease body weight
in knockout mice [80, 81]. In the subgroup of larger individuals, we find two genes to be

associated with weight, PKD2 and SPIDR, both of which are associated with body fat.

For lifespan, we highlight several associations of interest. When testing all samples, we
find significant SNPs linked to the genes: TXNRD3, DRD3, TIGIT, SEPT11 and ZXDC.
TXNRDS3 has been previously associated with lower survival rates for various types of cancers
[82]. However, to our knowledge, no previous studies have found an explicit connection between
TXNRD3 and lifespan. The gene that encodes the D3 dopamine receptor, DRD3, is associated
with schizophrenia, which has too been linked with decreased life expectancy [83, 84]. We
observe significant signals at TIGIT and SEPT11, which both have been tied to the promotion of

tumor growth and reduced longevity [85-87]. ZXDC was previously associated with cervical
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cancer metastasis, which has a significant negative impact on patient survival [88]. In small
dogs, we saw an association with RUNX2, which has also been associated with multiple cancers
and poor patient prognosis [89]. In large individuals, our GWAS revealed S.C41A3 to be
associated with lifespan. A relationship between this gene and liver hepatocellular carcinoma,
which is the second primary contributor of carcinoma-associated death, has been established
[90]. Another gene found in the group of large individuals is CFAP100, which to our knowledge

has not previously been linked to lifespan.

Overall, our GWAS suggests that quantitative traits in dogs are polygenic with multiple
variants associated with a trait, and some traits are not entirely additive. The newly identified
genes, which have not been observed in previous studies, could be used as candidates in future
functional exploration. The presence of these genes also highlights new avenues to explore
complex trait architecture and non-additivity in domesticated species. In humans, there have
been 25,551 associations with height, 2,233 associations with weight, and 664 associations with
lifespan as of 2023 [91]. After correcting for inflation, we recover a total of 50 associations with
height, 84 associations with weight, and 21 associations with lifespan. This corresponds to
previous work, which has suggested that dogs have a more simplified complex trait architecture

than humans. [38, 92].

Importantly, we conducted an additional test to validate our ROH based GWAS by
attempting to replicate a previously identified peak that was known to be homozygous on
chromosome 13 within RSPO2 for furnishings in dogs [29]. We can identify the same peak on
chromosome 13 for RSPO2 (Fig. S26), though it did not meet genome-wide or suggestive
significance after p-values were corrected (Fig. S27). In addition to this peak, we observe

additional peaks that had not been previously identified. Replicating this peak suggests our
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approach, which corresponds to different information, is powerful and worthwhile. Notably,
similar power in human GWAS requires hundreds of thousands or even a million individuals
[61, 62]. Here, we capture non-additivity when using ROH-mapping GWAS, and we can capture
this information with less than 1000 dogs. This is due to the unique domestication and breed
formation bottlenecks that dogs experienced that simplified complex trait architecture [29, 38,

43, 93-95].

There are some limitations in the work that we would like to highlight. First, the
phenotypic values used in the analysis were calculated based on the breed average, restricting us
to study associations between breeds. In other words, the within breed values would not yield
any significant results as the expected association between the trait and Fron would be 0, due to
using a breed average phenotype. Using the breed average has been previously validated [29, 38,
43, 93-95] but the assumption does come with caveats. For example, when using a breed average
value, we are ignoring variance among individuals within a breed. This variance within the breed
is quite small due to the strict standards of the AKC. To this end, we mathematically show that if
the within breed variance is small, the effect size computed from individual level data will be
equivalent to the effect size from using the average. However, bias can be introduced in some
cases when aggregating across breeds. Secondly, breed group categorization based on both
neighbor-joining trees and AKC could potentially still introduce errors when grouping some
breeds. Additionally, we did observe that there was a concentration of peaks in the last few
chromosomes (Fig. S8, Table S9). We believe that the large number of peaks on the smaller
chromosomes could be due to stronger linkage disequilibrium in the smaller chromosomes, thus
amplifying the strength of the signal. Alternatively, some chromosomes (such as chromosome

32) have a higher GC content when examining the CanFam3.1 assembly [96], which could
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introduce noise into our results. Despite these limitations, the significant relationship between
Frown and certain phenotypic traits suggest that inbreeding from domestication and artificial

selection played a strong role in shaping complex non-disease traits within breed dogs.

In summary, our work has further elucidated the genetic structure of quantitative trait
architecture in dogs. We also highlight how inbreeding, quantified in the form of ROH, occurred
alongside selection for extreme phenotypes during breed formation. These ROH tag regions of

the genome associated with complex non-disease phenotypes.

M ethods

Data filtering and cateqorizations

In this study, we utilized whole genome sequences from 722 canids, which included various wild
species, dingoes, and domestic dogs [29]. This data can be accessed via NCBI accession number
PRJINA448733. All filtering was accomplished using BCFtools [97] where we retained only
biallelic SNPs and sites of genotype quality score greater or equal to 20. Additionally, we
removed any missing genotype rates above 10% and removed variants from sex chromosomes.
Our filtered data consisted of 4,053,761 biallelic loci for all 38 pairs of autosomal chromosomes.
Given the nature of our study, we removed all wild canids, mixed-breed individuals, and samples
for which breed information was unavailable. Each remaining sample was categorized by
common name or breed [29]. These classifications were informed by neighbor joining trees of
domestic dogs [21] and American Kennel Club (AKC) groupings [98] . This resulted in 13 breed
groups namely, Ancient Spitz (31 individuals and 11 breeds), Herding (76 individuals and 15

breeds), Mastiff-like (65 individuals and 15 breeds), Retrievers (50 individuals and 6 breeds),
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Scent Hound (23 individuals and 10 breeds), Small Terrier (102 individuals and 8 breeds),
Terriers (16 individuals and 7 breeds), Spaniels (22 individuals and 8 breeds), Toy Dogs (18
individuals and 7 breeds), Working Dogs (44 individuals and 10 breeds), Sight Hound (21
individuals and 9 breeds), Village Dogs (75 individuals and 13 regions), and Chinese Indigenous
dogs (15 individuals). Overall, our working dataset included 558 individuals and 106 different

breeds (Table S10).

Calling Runs of Homozyqgosity

To call runs of homozygosity (ROH) we used a likelihood-based inference method called
GARLIC v1.6.0a [99]. This method uses a logarithm of odds (LOD) score measure of
autozygosity, which is applied in a sliding window for the entire genome [100]. GARLIC
requires input data with genotype and sample information in the form of TPED and TFAM files,
which were generated using PLINK 2.0 [101] We generated a TGLS file to obtain per-genotype
likelihoods. We employed genotype likelihood data in the form of GQ to account for errors in
phred-scaled probability. Next, a window size of 100 SNPs was chosen based on SNP density
(Fig. S28), with the window incrementally advancing by 10 SNPs at each step. GARLIC offers
built-in ROH length classification, for which we defined 6 classes: <1 Mbp, 1-2 Mbp, 2-3 Mbp,
3-4 Mbp, 4-5 Mbp, and >5 Mbp. To account for sample size differences in allele frequency
estimation, we set the number of resamples to 40. All other flags were set to default, and the
following parameters were used: --auto-winsize --auto-overlap-frac --winsize 100 --centromere -
-size-bounds 1000000 2000000 3000000 4000000 5000000 --tped --tfam --tgls —gl-type GQ --
resample 40 --out. To eliminate segments that were noisy, very short, and common, we filtered

to retain ROH segments longer than 0.5 Mbp.
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We conducted independent ROH calling for breeds with at least 10 individuals. Breeds
consisting of fewer than 10 members were integrated into their respective breed groups (Table
S11). Subsequently, ROH calls from all breeds, irrespective of individual numbers, were
combined into their respective breed groups for further analysis. For each individual, we
examined: 1) the relationship between coverage and Fron (Fig. S29) and 2) the relationship
between the total number of runs of homozygosity (nron) and total length of runs of
homozygosity (sron) (Fig. S30)).For each individual and breed group, we calculated the
arithmetic mean and range of both total nroy and total sron, While binning them based on ROH
size classification. The longest total sron (2141.22 Mbp) and the highest total nron (1039) were
identified in two individuals - PER00747 and PER00393, respectively - from the small terrier
Yorkshire breed. PER00747 was sequenced at a low depth (~2x), which inflated Sgon. TO
mitigate the effects of low depth PER00747 and PER00393 were removed from downstream

analysis.

I nbreeding coefficient

For each sample and breed group, we computed the inbreeding coefficient, Fron, defined as the

fraction of autosomal genome in ROH regions [102]:

S ROH

Fron = I
'Auto

Where sron 1S the sum of the length of runs of homozygosity in an individual’s genome and Lauto
is the length of autosomal genome in base pairs. An autosomal genome length of 2,203,764,842
base pairs was used since variants were called with the CanFam3.1 (NCBI RefSeq assembly:

GCF_000002285.3) reference genome.
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ROH Sharing M atrix

We generated an ROH sharing matrix, a square matrix that quantifies the sum of ROH overlaps
between two individuals. This allowed us to analyze shared ROH patterns among dog breeds. To
populate this matrix, we first generated individual ROH bed files for each sample. We then used
BEDTools [103] to identify overlapping regions between pairs of ROH data. The following

parameters were used: bedtools intersect -wao.

Phenotype data

We updated the phenotypic data [29] for 13 traits: bulky, drop ears, furnish, hairless, height,
large ears, length of fur, lifespan, long legs, muscled, weight, white chest, and white head. For
the three continuous traits, namely height, weight, and lifespan, we used average values obtained
from AKC [98] (Table S12). We chose to use breed average values because this was previously
shown to be a reliable measure for association tests [29, 38, 43, 93-95]. When sex-specific
information was available, it was incorporated into the dataset; otherwise, we applied the same
values for both males and females. We applied min-max scaling to normalize the three
continuous traits and further categorized them into small and large groups based on the average
weight (21.66kg) of all individuals (Tables S13-S15). For the remaining 10 traits, we averaged
the values by the phenotypic data available for their respective breeds (Table S16). We used
binary encoding to assign a value of 1 to individuals expressing the trait and O to those who did

not.
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Association tests

We computed the association between Fron and the 13 phenotypes using GMMAT, an R
package that performs association tests with generalized linear mixed models (GLMM) [104]. To
fit the GLMM, we used the built-in function glmmkin, which allowed us to examine the
continuous traits (height, weight, and lifespan) as the quantitative phenotype traits. This also
enabled us to include individual Fron as a covariate and use the ROH sharing matrix as a kinship
matrix. We fit the model assuming a Gaussian distribution for the continuous phenotypes and
used the identity link function. For associations between height, weight, and lifespan with Fron,
we used the updated average phenotypic values of the breed for all 466 individuals (Fig. S31 and
Supplementary Text). Based on our association tests and previous studies [105, 106], weight and
Fron have been observed to have a significant association, thus we included them as covariates
in our models. Weight and the interaction of weight and Fron Were used as covariates across
three data subsets (all individuals, small individuals, and large individuals) (Table S4). To fit the
GLMM to the 10 binary traits, we specified the binomial distribution as the family and used the
logit link function. Samples with no information available on the presence or absence of these
phenotypes were removed from analysis. Due to lack of phenotype information, Chinese

indigenous dogs and village dogs were excluded from the association tests.

ROH-mapping GWAS

To explore the biological mechanisms through which ROH-associated SNPs influence
phenotypic traits, we conducted Genome-Wide Association Studies (GWAS). We generated a
dataset that examined the occurrence of SNPs in ROH regions using BCFtools intersect and

BCFtools subtract [97]. Any SNPs located outside of ROH regions were removed. Using
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GMMAT, we fit GLMM models assuming a recessive genetic model for quantitative traits
(height, weight, and lifespan), incorporating ROH-associated SNPs as covariates, an ROH
sharing matrix for kinship structure, and a Gaussian distribution with an identity link function
[104]. Additionally, given that breed structure has a particularly strong effect in dogs, we utilized
a kinship matrix quantified by pairwise ROH sharing between individuals when associating traits
with Fron. This procedure follows from an approach from a study on disease traits [37]. Lastly,
we fit GLMM models using weight and the product of weight and Fron as covariates for the
three data subsets (all individuals, small individuals, and large individuals) (Table S5). To obtain
the effective sample size, adjusted for auto correlations between sites, we used the option
effectiveSize within the coda R package [107]. To calculate the number of independent tests we
used p-values for every SNP as the input, thus incorporating autocorrelation caused by LD. This
approach was shown to be effective for correcting for structure previously [108]. To obtain the
Genome-Wide Significance (GWS) and Suggestive-Wide Significance (SWS) thresholds, we

used the Bonferroni correction with respect to effective sample size [109-111]:

0.05

Genome-wide significance threshold = —lo glO(Effective Sampie Size

)

0.1

Suggestive-wide significance threshold = —1log10¢(

)

Effective Sample Size

To correct for population stratification, we calculated the genomic inflation factor, A [112, 113].
We corrected the log-scaled p-values by dividing them by the genomic inflation factor (Table
S5). To visualize the GWAS summary statistics, we used an R package, qgman to create Q-Q

and Manhattan plots [114].
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Accession Numbers

Whole genome sequence data is available on NCBI, accession number: PRINA448733. The
source phenotype data was obtained from [29]. All summary data are contained within the article

and its supplementary information.
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