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Abstract

Purpose: Diffusion MRI (dMRI) data typically suffer of significant cross-site variability, which prevents
naively performing pooled analyses. To attenuate cross-site variability, harmonization methods such as
the rotational invariant spherical harmonics (RISH) have been introduced to harmonize the dMRI data at
the signal level. A common requirement of the RISH method, is the availability of healthy individuals
who are matched at the group level, which may not always be readily available, particularly
retrospectively. In this work, we propose a framework to harmonize dMRI without matched training

groups.

Methods: Our framework learns harmonization features while controlling for potential covariates using
a voxel-based generalized linear model (RISH-GLM). RISH-GLM allows to simultaneously harmonize data
from any number of sites while also accounting for covariates of interest, thus not requiring matched
training subjects. Additionally, RISH-GLM can harmonize data from multiple sites in a single step,

whereas RISH is performed for each site independently.

Results: We considered data of training subjects from retrospective cohorts acquired with 3 different
scanners and performed 3 harmonization experiments of increasing complexity. First, we demonstrate
that RISH-GLM is equivalent to conventional RISH when trained with data of matched training subjects.
Secondly, we demonstrate that RISH-GLM can effectively learn harmonization with two groups of highly
unmatched subjects. Thirdly, we evaluate the ability of RISH-GLM to simultaneously harmonize data

from 3 different sites.

Discussion: RISH-GLM can learn cross-site harmonization both from matched and unmatched groups of

training subjects, and can effectively be used to harmonize data of multiple sites in one single step.
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Introduction

Diffusion MRI (dMRI) has become a pivotal technique to investigate brain structure non-invasively’. The
signal measured with dMRI originates from the motion of water molecules at the microscopic scale’. In
combination with appropriate modelling®, dMRI allows to infer microstructural properties of tissues. For
example, diffusion tensor imaging™” (DTI), one of the most commonly applied dMRI techniques, provides
metrics such as the mean diffusivity (MD) and the fractional anisotropy*® (FA), which are related to the
root mean square displacement and the anisotropy of the diffusion process, and reflect properties of
the biological environment. Over time, these metrics have become established in the study of white
matter microstructure, and found application in the study of neurological diseases’, including

9,10

Alzheimer’s disease®, small vessel disease”’® and frontotemporal dementia'’, among others.

A possible limitation to the use of dMRI in clinical research is that its measurements strongly depend on

1213 " As such, metrics derived from dMRI can typically be

the employed MRI hardware and software
compared only within a single site, even when acquisition parameters are kept constant. In the latest
years, several methods have been proposed to tackle such cross-site variability and harmonize dMRI.
Broadly speaking, the goal of harmonization methods can be summarized as removing cross-site
differences while not altering the sensitivity of dMRI to biological effects of interest. Two main families
of post-processing dMRI harmonization methods have been proposed to date. The first family aims to
remove batch effects during the analysis steps. Methods such as ComBat™°, for example, aim to
remove cross-site differences on the final metrics derived from dMRI. As such, harmonization is applied
independently to each considered dMRI metric, such as FA or MD. The second family of dMRI
harmonization methods aims to remove cross-site effects on the acquired data before any
quantification step. Notable examples hereof are the rotational invariant spherical harmonics*’*® (RISH)

1920 Differently from methods such as

framework, or other recently proposed deep learning alternatives
ComBat, which harmonize end-point diffusion metrics independently from each other, RISH and
comparable frameworks harmonize the source dMRI data. As such, the source data is harmonized once
as part of the preprocessing pipeline, and can be then reused for multiple analyses with any method of
choice. For example, we have previously demonstrated that dMRI data of patients with small vessel

21,22

disease can be effectively harmonized with RISH and then be used for both voxel-wise based

analyses and connectomics.

One of the challenges when applying dMRI harmonization methods such as RISH, is that they require

data of healthy participants for calibration between sites. For example, previous work!’ has
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demonstrated that the RISH method requires 12 or more training subjects matched at the group level
for each site to be harmonized, or repeated scans of so-called travelling heads. This can be particularly
challenging to achieve for studies focusing on patient populations, where healthy controls may not
always be recruited, or when retrospectively harmonizing multiple different cohorts with differences in
average age or sex distribution. Furthermore, the concept of matched groups is ill-defined and study
dependent. In practice, it is very often interpreted as a synonym of age and sex matching, but other
factors such as education, presence of genetic mutations, among others, may affect the dMRI signal and

might need to be considered for specific studies.

In this study, we propose a generalization of the RISH framework that determines cross-site
harmonization while also considering potential confounders. This new approach accounts for potential
biases when learning harmonization from unmatched groups of training subjects, and also allows to
harmonize data from multiple sites in one single step. We demonstrate the potential of this framework
through three experiments of growing complexity employing dMRI data of subjects from three different

sites, while controlling for sex and age.

Methods

Theory: RISH and RISH-GLM

The conventional RISH harmonization method is based on the representation of diffusion MRI data
acquired at a certain b-value (i.e., a diffusion “shell”) with spherical harmonics. Spherical harmonics are
a set of functions on the unit sphere characterized by an order and a degree. For each order j, rotational
invariant representations (i.e., RISH coefficients) can be determined, and are indicated as L;. Mirzaalian
et al. and subsequent works*”** have shown that it is possible to harmonize dMRI data by learning the
scaling factors between corresponding RISH coefficients determined in two groups of matched training
subjects. The same framework can be also used to harmonize multi-shell data effectively by harmonizing
each shell independently’®. The harmonization essentially determines a voxel-wise scaling factor
associated with each RISH feature to map a target site to a reference site. Mathematically, the scaling

coefficient ¥ associated to the spherical harmonics of order i can be written as

19i = O-i’R/O-i'T

where o indicate the average RISH features of the reference (R) and target sites (T). Subsequently, dMRI

datasets from the target site can be harmonized as follows: 1) dMRI data is converted to spherical
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harmonics; 2) their RISH features calculated and multiplied by the scaling factor 9J;; 3) harmonized dMRI
data is reconstructed from the corrected spherical harmonics representation. The assumption behind
this approach is that cross-site differences in ¢ purely originate from scanner-related properties. For this
assumption to hold, the groups from which the o values are computed must be matched across all
factors that may affect the dMRI signal. In practice, matching for all relevant factors can be challenging.
When this is not the case, residual systematic group differences will be assimilated into the scaling
factors, potentially biasing the factors and making them less generalizable to harmonize other subjects

from the same site.

To alleviate the matching requirement, we propose a new formulation based on a general linear model

(GLM) that decomposes the effect of confounders such as age and sex on the RISH features:

oin Bir
L

[gi T] =[Sz Sr COV] ﬂi,T
’ Bi.cov

where S are dummy variables assuming a value of 1 when a subject belongs to a certain site, and 0
otherwise. This approach, dubbed RISH-GLM, is based on two assumptions: 1) that the relationship
between RISH features and covariates is linear in the considered range; 2) limited collinearity and
interaction between different covariates. Of note, linearity in the relation between covariates and RISH-
features, does not imply nor require linearity between covariates and diffusion metrics (e.g., fractional
anisotropy). The RISH-GLM formulation allows to alleviate the need to match the average demographics
at the group level across all sites. In practice, however, a reasonably even distribution of the effects of

interest across sites is still needed to reliably estimate the associated coefficients 5, from which the

scaling coefficients can be determined as 9; = B"'l/ﬁ, ) The formulation above can readily be extended
i,
to account for multiple sites by considering additional columns on the right side as follows:

Oi R ﬁi,R
[Ui,T1]=[5R Sr1 o COV]|Biry

MRI data
We retrospectively collected data from the Frontotemporal Dementia Risk Cohort* (FTD-RISC), which is
a longitudinal study following up individuals at risk of frontotemporal dementia (FTD) curated at the

Erasmus MC University Medical Center in Rotterdam (the Netherlands). In FTD-RISC, three major
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combinations of MRI hardware and software have been employed, which we refer to as Site 1, Site 2,
Site 3. Data from all sites are used throughout this study to demonstrate the potential of GLM-RISH. T1-
weighted MRI data were acquired at all sites with a resolution of 1x1x1mm? isotropic. dMRI data were
acquired at all sites with a similar dMRI protocol featuring 1 b = 0 s/mm? volume, and 60 gradient
directions at b = 1000 s/mm?®. Data of Site 1 were acquired with a 3T Philips Achieva scanner located at
Leiden University Medical Center (the Netherlands) running on software release R5 with a 32 channels
head coil. At this site, key imaging parameters were voxel size 2x2x2mm?, TE=80ms, TR=9.25ms. Data of
Site 2 were acquired with a GE Healthcare MR750 3T scanner located at Erasmus Medical Center (the
Netherlands) with a 48 channels head coil. At this site, key imaging parameters were voxel size
2x2x2mm?, TE=57ms, TR=9s. Data of Site 3 were acquired with an older version of the scanner at Site 1,
running on software release R4 and equipped with an 8 channels head coil. At this site, dMRI data were
acquired with voxel size 2x2x2mm?®, TE=80ms, TR=8.25s. For this study, only data of healthy control
subjects (non-carriers) and pathogenic variant carriers who did not have FTD-related symptoms at the

time of scanning were considered.

MRI processing
MRI data was processed with a previously presented automated processing pipeline®. T1-weighted data

was processed with CAT12 (https://neuro-jena.github.io/cat/) to remove bias fields and perform skull

stripping. dMRI data was processed with MRIToolkit (https://github.com/delucaal/MRIToolkit) and

2627 to perform signal drift correction®®, then denoised with the MPPCA method®.

ExploreDTI
Subsequently, corrections for Gibbs ringing®®, motion and EPI corrections were performed, including b-
matrix rotation>" EPI distortions were corrected by means of a non-linear registration to the T1-weighted
data at a 2mm resolution. Robust estimation of the diffusion tensor was performed using REKINDLE®,
then the fractional anisotropy (FA) and the mean diffusivity (MD) were calculated’. Quality assessment
of the data was performed by generating summary screenshots of FA, MD and fit residuals of each

dataset, which were visually inspected by a trained researcher (ADL). Data exhibiting excessive motion

or apparent artifacts (e.g., due to braces or other interference sources) were discarded.

Harmonization experiments

We refer to RISH[matched/unmatched] and RISH-GLM[matched/unmatched] to indicate whether the
methods were trained with matched or unmatched groups of participants from different sites,
respectively. To perform RISH and RISH-GLM harmonization, spherical harmonics were fitted to dMRI

data using in-house software written in MATLAB, which implemented L2 regularized least squares. RISH
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features were then calculated and spatially normalized to a study specific template as previously
proposed /. The code used to perform the aforementioned steps is openly available at

https://github.com/delucaal/RISH-GLM.

We evaluated the performance of RISH-GLM as compared to conventional RISH with three experiments
of growing complexity. Table 1 shows an overview of the datasets used in the following three

experiments.

Datasets N (per site) Age (years) Sex (F)
Dataset 1 15 (site 1) vs 15 (site 2) 50.2+12.2vs52.8+11.1 47% vs 33%
Dataset 2 18 (site 1) vs 18 (site 2) 35.4+6.1vs56.4+8.5 44% vs 39%
15 (site 1) vs 15 (site 2) vs 15 48.4 +10.2 vs 52.8+ 10.8 vs
Dataset 3 40% vs 33% vs 53%
(site 3) 56.5+8.9
15 (site 1) vs 15 (site 2) vs 15 52.3+7.5vs55.5+10.1vs
Dataset 4 40% vs 40% vs 40%
(site 3) 50.5%7.6

Table 1: An overview of the datasets used to train RISH and RISH-GLM in the three
experiments. N = sample size of each site. F = female

In experiment 1, we investigate whether RISH-GLM is equivalent to the conventional RISH method when
trained on data of 15 individuals matched at the group level for both age and sex from Dataset 1. For
each spherical harmonics’ order, the scaling factors were computed with both RISH and RISH-GLM
accounting for both age and sex, and visually compared. Subsequently, the training data from Site 2 was
harmonized, and the diffusion tensor model was fit **as mentioned in the previous section. FA maps
were computed and registered to a common space using the TBSS_PNL pipeline
(https://github.com/pnlbwh/tbss). In short, this pipeline is based on the FSL TBSS®® approach, but
replaces the registration steps with ANTS* for additional spatial accuracy. Boxplots of FA computed on
the white matter skeleton were compared before and after harmonization. Given that FA is known to be
strongly associated with age®, we additionally visualized their relation by means of scatterplots, and
evaluated their Pearson correlation coefficient before and after harmonization. As no ground truth
exists for age and sex effects, we evaluated the agreement between the effects estimated by RISH-GLM
on the whole datasets and age and sex effects within the individual sites by means of Pearson
correlations. To estimate the effects within the individual sites, general linear models accounting for

age, sex and intercept were estimated at the voxel-level for site 1 and site 2 independently.
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Subsequently, in experiment 2, we evaluated the feasibility of removing scanner-related cross-site
differences by learning harmonization with two age-unmatched groups of subjects from Dataset 2. RISH-
GLM was trained by providing age and sex of each individual as covariates. As in the previous
experiment, we compared the scaling factors corresponding to different RISH features, and visually
inspected the spatial maps corresponding to age and sex effects. Harmonization was applied to the
training set (Dataset 2). Boxplots of FA and scatterplots of FA as a function of age were derived as
explained in experiment 1. Considering the large age difference between the two groups in Dataset 2,
we anticipated to observe differences in FA between the two groups before harmonization. We
expected such differences not to be completely removed after harmonization if the applied method
truly removes only scanner-related differences and not biological effects. Furthermore, we expected a
successful harmonization to recover a Pearson correlation coefficient between age and FA as similar as
possible to the one determined in experiment 1. The same analyses were repeated on an independent
dataset (Dataset 1) for validation purposes. We anticipated that RISH-GLM harmonization trained with
age-unmatched subjects (Dataset 2) would generalize to age-matched subjects (Dataset 1), whereas

RISH harmonization would not.

In experiment 3, we evaluated whether the RISH-GLM framework allows to effectively harmonize data
from multiple sites from Dataset 3 in a single step. FA maps were calculated and aligned to a common
space as previously explained. Next to boxplots of FA derived on the white matter skeleton, we
additionally performed voxel-wise t-tests while correcting for age and sex to also evaluate the
effectiveness of RISH-GLM at removing potential regional cross-site differences. Comparisons between
the three sites were performed pairwise (i.e., Sitel vs Site 2 and Site 3, Site 2 vs Site 3) using FSL
randomise with threshold free cluster enhancement. Finally, to validate the one-step RISH-GLM
harmonization on independent subjects, we applied the trained harmonization to age and sex-matched
subjects of dataset 4, which shared only 2 out of 45 subjects with dataset 3. Here we evaluated the
effectiveness of RISH-GLM at removing cross-site differences by means of boxplots of FA calculated on
the white matter skeleton, and by evaluating the relation between FA and age as in the previous

experiments.

In all experiments, Sitel was used as reference and its values should remain constant. However,
boxplots of the reference site might exhibit slight differences because of how the TBSS_PNL pipeline —
used to compute skeletonized values for the boxplots — inherently works. TBSS_PNL constructs a white

matter skeleton based on all input data (both reference and target sites). Since harmonization alters the
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target site’s data, the global skeleton changes slightly, which can introduce minor shifts in the reference

site’s FA distributions

Results

Experiment 1: RISH-GLM and RISH with matched training subjects (expect no

differences)

Figure 1 shows the scaling maps 9; corresponding to spherical harmonics up to order 6 that were
calculated with RISH and RISH-GLM using training subjects matched for age and sex at the group level
from two different sites (hence the “[Matched]” suffix). The maps calculated by both methods are
remarkably similar, as shown by the corresponding relative difference maps. The average relative
differences between RISH[Matched] and RISH-GLM[Matched] are 0.38% for 9, 0.73% for 9,, 1.32% for
Y,, and 1.45% for Y. While differences are globally less than 2%, local differences up to 20% can be
appreciated in the bottom row of Figure 1. Such differences are mostly located in areas of partial
volume with cerebrospinal fluid or grey matter, but not in deep white not in white matter, and might
originate from small imbalances in covariates or site-specific artefacts. Indeed, age and sex maps
estimated with RISH-GLM (Supporting Information Fig. S1) show that these two covariates can have a
small but non-zero spatially varying effect on RISH scales, even when these are calculated in two

matched groups.

In dataset 1, age and sex effects estimated with RISH-GLM in white matter are generally in agreement
with age effects calculated within site 1 and site 2 independently. The correlation coefficient between
age effects estimated in the whole cohort and in sites 1/2 are 0.80/0.74 for 9,, 0.86/0.87 for I,,
0.62/0.83 for 94, 0.55/0.83 for I, respectively. The correlation coefficient for sex effects estimated in
the whole cohort and in sites 1/2 are 0.75/0.70 for 9, 0.72/0.70 for 9,, 0.53/0.89 for 9J,, 0.56/0.89 for

Y, respectively.

Figure 2 shows boxplots of average FA values of Site 1 and Site 2 obtained on the white matter skeleton
before harmonization, and after harmonization with RISH and RISH-GLM. Before harmonization, a
relative difference in average FA values between Site 1 and Site 2 equal to -9.7% (significant t-test,
p<0.05) can be observed, which is effectively removed by both RISH (0.5%, p=0.80) and RISH-GLM (1.7%,
p=0.37). The second row of Figure 2 shows the existence of a negative relation between age and FA
within individual sites. When pooling unharmonized data together (first row), a biased correlation

coefficient (rho) equal to -0.5 can be observed. After harmonization with both RISH and RISH-GLM, a
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linear negative relation between age and FA can be observed with equal correlation coefficients rho = -

0.78. In both cases, the measurements from each site are well distributed around the regression line.

160%
RISH

[Matched]

100%

RISH-GLM

[Matched]

40%

%
20

Difference e L F iR Ry 0

-20

Figure 1: Voxel-wise scaling maps calculated in dataset 1 using group level-matched
training subjects with RISH (first row), RISH-GLM (second row) and their difference
(last row) for different orders of spherical harmonics (columns). Scaling maps
calculated from both methods are globally similar, but local differences up to +20%
can be noticed particularly at the interface between grey matter and cerebrospinal
fluid, and in the deep white matter for 8, and 6.
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Figure 2: The top row shows boxplots of average FA values in the white matter
skeleton per site of dataset 1, before harmonization (first column), after
harmonization with RISH (middle column) and with RISH-GLM (last column). The
second row shows scatterplots of the same average FA values as a function of age.
Harmonization with both RISH and RISH-GLM was trained with group level-matched
subjects.

Experiment 2: RISH-GLM and RISH with unmatched training subjects

Figure 3 shows the scaling maps calculated for different orders of spherical harmonics with RISH and
RISH-GLM trained with two groups of subjects that were not matched at the group level (hence the
suffix “[Unmatched]”). In contrast to Figure 1, where RISH and RISH-GLM produced similar scaling maps,
large differences between the two methods can be observed when using unmatched training subjects,
particularly for higher orders of spherical harmonics. Compared to the reference scaling maps calculated
with RISH with matched subjects (Figure 1), scaling maps calculated with unmatched subjects with RISH
show large differences particularly around the ventricles, and at the interface between grey matter and
cerebrospinal fluid for 9, and 9,. For higher spherical harmonics orders (i.e., ¥,, Ug), widespread

differences in both the white and the grey matter can be observed. Compared to the reference

11
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(RISH[matched]), average relative differences of RISH[unmatched] and RISH-GLM[unmatched] are -
10.2% and -3.3% for ¥y, -12.0% and -2.6% for 9,, -10.5% and 2.9% for 9J,, -10.6% and 3.1% for J,
respectively, highlighting that scaling maps computed with RISH-GLM[unmatched] are on average closer

to the reference(RISH[matched]) than RISH[unmatched].

RISH 160%
[Unmatched]
100%
RISH-GLM
[Unmatched] 40%
%
50
Difference 0
-50

Figure 3: Voxel-wise scaling maps calculated using group age-unmatched training
subjects (dataset 2) with RISH (first row), RISH-GLM (second row) and their
difference (last row) for different orders of spherical harmonics (columns). Compared
to Figure 1 (matched training groups), scaling maps calculated show different
patterns with local differences up to £50%.

100
Age effect

0
Sex effect -100
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Figure 4: Percentage effect of age and sex estimated by RISH-GLM[Unmatched] in
dataset 2. Age effects are prevalent at the interface between cerebrospinal fluid and
white/grey matter for 9, and in the white matter for 9, and 9,. The age effect map
for 9, seems to be dominated by noise effects, given the low anatomical contrast,
and the presence of clear stripes due to ghosting artefacts. Similar observations hold
for sex effects.

Figure 4 shows the spatial coefficients of age and sex effects associated to different spherical harmonics
orders. Considering 9, it can be appreciated that age has a large effect around the ventricles and at the
interface between grey matter and cerebrospinal fluid. At higher orders, age has a stronger effect on the
brain white matter, particularly in the corpus callosum and corticospinal tracts. Similar observations also
hold for sex effects. Importantly, both covariates have the largest effects in areas where RISH[matched]
and RISH-GLM[unmatched] differ the most. In dataset 2, age and sex effects estimated with RISH-GLM in
white matter are generally in agreement with age effects calculated within groups of Dataset 2
independently. The correlation coefficient between age effects estimated in the whole cohort and in
sites 1/2 are 0.58/0.80 for 9,, 0.56/0.80 for ¥,, 0.25/0.90 for IJ,, 0.26/0.89 for I, respectively. The
correlation coefficient for sex effects estimated in the whole cohort and in sites 1/2 are 0.66/0.68 for 9,

0.69/0.64 for 9, 0.50/0.81 for 9J,, 0.51/0.80 for 9, respectively.

In Figure 5, we evaluated the average FA values calculated in the white matter skeleton of the
unmatched groups. Before harmonization, differences in average FA values equal to -4.8% (p<0.05)
between the two sites can be observed. Importantly, such differences can originate from both scanner-
specific differences as well as from true biological effects given the large age span. Before
harmonization, no correlation is observed between age and FA. In this situation, applying
RISH[Unmatched] while ignoring age and sex effects reduces the average FA difference between the two
groups to 0.1% (p=0.95), but suppresses the expected difference between two groups with largely

different age distributions>>>°

. After harmonization with RISH-GLM[Unmatched], a relative difference in
average FA values equal to 4.6% can be observed (p<0.05), together with a linear negative relation
between age and average FA that is in line with what was observed in Figure 2 (correlation coefficient
rho = -0.64 vs -0.78 in Figure 2). Similar considerations hold also for MD, as shown in Supporting

Information Fig. S2.

Subsequently, we have applied RISH[Unmatched] and RISH-GLM[Unmatched] to harmonize the data of
the 2 matched groups of Dataset 1, for which no average difference in FA values is expected after
harmonization. The boxplots shown in Figure 6 showcase how RISH-GLM[Unmatched] can effectively

remove the cross-site differences in FA between the two groups (average relative difference 0.5%,
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p=0.71), whereas RISH[Unmatched] does not (average relative difference -4.4%, p<0.05). When looking
at the relation between age and FA, the application of RISH-GLM[Unmatched] recovers the same age-FA
relation observed also in Figure 2 and Figure 5. Similarly, RISH-GLM[Unmatched] effectively harmonizes

also MD, as shown in Supporting Information Fig. S3, whereas RISH[Unmatched] does not.

Training: unmatched groups

Before harmonization RISH[unmatched] RISH-GLM[unmatched]
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Figure 5: Boxplots of average FA values from two unmatched groups of healthy
controls from Sitel and Site2 (dataset 2), before harmonization, and after
harmonization with RISH and RISH-GLM. Before harmonization, an average
difference in FA between the two groups can be observed. While this could be
plausible given the unmatched nature of the two groups, there is an unexpected lack
of correlation between age and FA before harmonization. Harmonization with
RISH[Unmatched] removes the difference between the two groups. Consequently, a
mild negative correlation between age and FA is observed, but the datapoints from
both sites are not well distributed around the regression line, indicating a biased fit.
After harmonization with RISH-GLM[Unmatched], a difference between the two
groups in average FA values is observed, as expected, as well as a clear negative
relation between age and FA.
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Validation: matched groups
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Figure 6: Boxplots of average FA values from two matched groups from Sitel and
Site2 (dataset 2) before harmonization, and after applying RISH and RISH-GLM
trained on unmatched data (Figure 5). No differences in average FA values are
observed after harmonization with RISH-GLM, as expected for two matched groups.
The application of RISH-GLM also allows to reveal the same negative correlation
between age and FA observed in the previous figures.

Experiment 3: One step harmonization

We investigated the ability of RISH-GLM to harmonize data from 3 sites in a single step. Example axial
slices of the training scales derived with RISH and RISH-GLM between corresponding pairs of sites are
shown in Supporting Information Fig. S4. Scaling maps computed from both methods have similar
appearance, it can be appreciated how the scaling computed with RISH-GLM are higher on average than
those computed with RISH. The presence of ghosting artefacts can be appreciated in the scaling maps 9,
and 9, particularly with RISH-GLM. For this method, systematic artefacts can be learnt as part of cross-
site differences, and can propagate to age and sex effect maps, as shown in Supporting Information Fig.
S5. We subsequently evaluated differences in voxel-wise FA values between pairs of sites by means of
permutations tests corrected by age and sex, obtaining the maps shown in Figure 7. Before

harmonization, 32.1%, 0.25% and 29.6% of the brain voxels were statistically different when comparing
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Site 1 to Site 2, Site 1 to Site 3, and Site 2 to Site 3, respectively. After harmonization, the amount of
significantly different voxels was reduced to 0.1%, 0.1% and 0.4%, respectively. Similar observations
apply to MD, for which significant differences were observed in respectively 25.6%, 0%, and 31.6% of
brain voxels when comparing sites in the same pairwise as previously reported. After harmonization,

significant differences were reduced to 0.1%, 0%, 1.2% of brain voxels, respectively.

To validate the method, we have applied RISH-GLM to harmonize the independent dataset 4. Results,
which are reported in Figure 8, demonstrate that RISH-GLM can effectively reduce the differences
between all cohorts, and recover the same relation between age and FA/MD previously observed in

Figure 2, Figure 5 and Supporting Information Fig. S6.

Voxel-wise GLM |age,sex
Sitel vs Site2 Sitel vs Site3  Site2 vs Site3 Sitel vs Site2  Sitel vs Site3  Site2 vs Site3

' LY )

C¥ T O

A A A i

Before harm.

RISH-GLM

2y

Figure 7: Example axial (left) and coronal (right) slices showing differences in average
FA values at the voxel-level between pairs of sites of dataset 3 by applying a
permutation test corrected for age and sex with a general linear model to three
unmatched groups. Before harmonization, minimal to no differences are observed
between Sitel and Site3. Conversely, extensive differences are observed between
Site2 and the other sites. After harmonization with RISH-GLM in a single-step, most
differences are effectively removed.
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Harmonization trained on unmatched groups and applied to matched groups
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Figure 8: A comparison of average FA and MD values calculated in the white matter
skeleton for three matched groups of subjects from Sitel, Site2 and Site3 (dataset 4)
before and after harmonization in a single step with RISH-GLM. After harmonization,
no statistically significant difference between the three sites can be observed in both
FA and MD, and values are well distributed around the regression line in the
correlation plot between age and FA for all sites.
Discussion

In this work, we have introduced a novel approach to perform RISH-based harmonization of the dMRI

signal without need for training subjects matched at the group-level. Our approach does so by learning

the voxel-wise effects of covariates on RISH scaling coefficients with a GLM (RISH-GLM). Our results

demonstrate that RISH-GLM is effective in learning cross-site harmonization from unmatched training

groups and can be used to harmonize data from multiple sites effectively in a single step.

The advent of dMRI harmonization methods such as RISH allows studies to overcome the barriers of

single-site analyses, unharnessing the potential of retrospectively collected data to boost sample sizes.

However, the applicability of such frameworks can be challenging when considering multiple cohorts

selected with different inclusion criteria, because their requirement of matched training. Importantly,

the results shown in Figure 5 and Figure 6 demonstrate that conventional RISH is unsuitable to learn
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cross-site harmonization with unmatched groups, as that would lead to a removal of both cross-site and
biological effects (e.g., aging, Figure 5), or to the introduction of biases (Figure 6). RISH-GLM can
effectively tackle this limitation by lifting the need for matched training groups, as demonstrated in

Figure 6 and Figure 8.

The ability to learn cross-site harmonization without matched cohorts could support several efforts in
both clinical and neuroscientific research. Firstly, RISH-GLM could simplify the harmonization of cohorts
with only partly overlapping covariates of interest. This could be for example age, in the case of studies
pooling retrospective cohorts with distinct age ranges to cover the whole lifespan. Secondly, it could
support further disentangling scanner effects from confounding biological effects than conventional
RISH, particularly when learning harmonization from groups which are matched on average but feature
relevant variance in covariates. In the study of dementia, for example, population cohorts, memory
clinic cohorts, and population with different injury aetiologias could be potentially harmonized while
accounting for key factors that could otherwise bias the harmonization process, such as differences in

education, ethnicity, sex distributions, exposure to specific risk factors, lesion burden, etc.

While retrospective data is arguably the main application goal of post-processing dMRI harmonization
methods such as RISH-GLM, they could prove advantageous also to support prospective studies. In
general, accurate matching of acquisition hardware and sequence parameters can already reduce cross-
site dMRI variability, as shown by previous initiatives in frontotemporal®’ and vascular dementia®®. Yet,
subtle differences between vendors, calibration, and characteristics of individual scanners might still
dictate the existence of cross-site differences. Furthermore, even when prospective matching is
achieved successfully at the start of a study, subsequent hardware changes and software updates might
still introduce acquisition effects in long multiyear prospective studies. In the future, software versions
and coil updates could be considered as covariates of interest in RISH-GLM to attempt limiting their

effect on the acquired data.

When comparing scaling maps computed with RISH-GLM using matched datasets to those computed
with RISH (Figure 1), local relative differences up to 20% can be observed close to the WM-GM and WM-
CSF interfaces. This is likely due to taking into account age and sex effects during estimation, and
suggests that such features may be locally relevant even in matched datasets. This observation is
supported by the fact that relative differences between unmatched groups, shown in Fig. 3, exhibit
spatial patterns that are consistent with those of Fig. 1, but with larger amplitude. Despite such local

differences, when comparing FA and MD of matched groups (Fig. 2 and Supporting Information Fig. S2),
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we did not observe any relevant group-difference with both RISH and RISH-GLM. However, our analysis
clearly focused on the WM skeleton, whereas most differences between RISH and RISH-GLM are located
close to WM/GM interface. As such, future studies should investigate the potential of RISH and RISH-
GLM on more sophisticated analyses such as fiber tractography, where the transition of fibers between

tissue types is crucial to achieve meaningful results.

It is important to acknowledge some limitations of this study. As explained in the methods section, RISH-
GLM is based on assumptions that might not always hold true. An important assumption is the existence
of a linear relation between covariates of interest and RISH features, at least within the range of
covariates used for training. In the case of age, for example, little is known about its exact relation to
RISH features. Furthermore, RISH-GLM has primarily been designed to account for systematic cross-site
biases, and its ability to capture non-systematic effects leading to different subject ranking across sites>°
remains unclear. Evaluating such aspects and validating the assumptions of RISH-GLM throughout the
lifespan will require dedicated studies, or an additional validation in cohorts including so-called
travelling-heads, i.e., groups of subjects travelling across sites and scanned with highly controlled

experimental conditions to ensure minimal variance of their measurements across sites™>*” (

e.g., ideally
even considering confounders such as time of the day*°). Nevertheless, we observe that RISH-GLM is
effective at recovering consistent relations between age and FA throughout the experiments of this
work. Of note, the assumption of linearity between covariates and RISH features does not imply the
need for linearity between covariates and derived metrics such as FA, given that RISH features are non-

3541 of diffusion

linear descriptors of the diffusion signal. This is particularly relevant as previous studies
tensor imaging metrics across the lifespan have demonstrated the existence of a quadratic — locally
linear — relation between age and fractional anisotropy, for example. Another assumption of RISH-GLM
is that the effects of covariates is similar across training cohorts. As a consequence, training directly with
non-homogeneous groups — such as patients with different pathologies — is discouraged. In this study,
we used data from a retrospective cohort of individuals that were initially marked as at risk for
frontotemporal dementia, which might have introduced a selection bias towards effects not explicitly

accounted for. Furthermore, we only focused on modelling the effect of age and sex, and did not

consider other relevant confounders such as education.

In conclusion, we have introduced a novel framework to learn cross-site harmonization while accounting
for covariates of interests, and demonstrated its effectiveness to learn harmonization between two age

unmatched groups with an average age difference of over two decades.
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Figure and table captions

Table 1: An overview of the datasets used to train RISH and RISH-GLM in the three
experiments. N = sample size of each site. F = female

Figure 1: Voxel-wise scaling maps calculated in dataset 1 using group level-matched training
subjects with RISH (first row), RISH-GLM (second row) and their difference (last row) for
different orders of spherical harmonics (columns). Scaling maps calculated from both methods
are globally similar, but local differences up to #20% can be noticed particularly at the
interface between grey matter and cerebrospinal fluid, and in the deep white matter for 8,
and 6.

Figure 2: The top row shows boxplots of average FA values in the white matter skeleton per
site of dataset 1, before harmonization (first column), after harmonization with RISH (middle
column) and with RISH-GLM (last column). The second row shows scatterplots of the same
average FA values as a function of age. Harmonization with both RISH and RISH-GLM was
trained with group level-matched subjects.

Figure 3: Voxel-wise scaling maps calculated using group age-unmatched training subjects
(dataset 2) with RISH (first row), RISH-GLM (second row) and their difference (last row) for
different orders of spherical harmonics (columns). Compared to Figure 1 (matched training
groups), scaling maps calculated show different patterns with local differences up to +50%.

Figure 4: Percentage effect of age and sex estimated by RISH-GLM[Unmatched] in dataset 2.
Age effects are prevalent at the interface between cerebrospinal fluid and white/grey matter
for ¥y, and in the white matter for ¥, and ¥,. The age effect map for J4 seems to be
dominated by noise effects, given the low anatomical contrast, and the presence of clear
stripes due to ghosting artefacts. Similar observations hold for sex effects.
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Figure 5: Boxplots of average FA values from two unmatched groups of healthy controls from
Sitel and Site2 (dataset 2), before harmonization, and after harmonization with RISH and RISH-
GLM. Before harmonization, an average difference in FA between the two groups can be
observed. While this could be plausible given the unmatched nature of the two groups, there
is an unexpected lack of correlation between age and FA before harmonization. Harmonization
with RISH[Unmatched] removes the difference between the two groups. Consequently, a mild
negative correlation between age and FA is observed, but the datapoints from both sites are
not well distributed around the regression line, indicating a biased fit. After harmonization
with RISH-GLM[Unmatched], a difference between the two groups in average FA values is
observed, as expected, as well as a clear negative relation between age and FA.

Figure 6: Boxplots of average FA values from two matched groups from Sitel and Site2
(dataset 2) before harmonization, and after applying RISH and RISH-GLM trained on
unmatched data (Figure 5). No differences in average FA values are observed after
harmonization with RISH-GLM, as expected for two matched groups. The application of RISH-
GLM also allows to reveal the same negative correlation between age and FA observed in the
previous figures.

Figure 7: Example axial (left) and coronal (right) slices showing differences in average FA values
at the voxel-level between pairs of sites of dataset 3 by applying a permutation test corrected
for age and sex with a general linear model to three unmatched groups. Before harmonization,
minimal to no differences are observed between Sitel and Site3. Conversely, extensive
differences are observed between Site2 and the other sites. After harmonization with RISH-
GLM in a single-step, most differences are effectively removed.

Figure 8: A comparison of average FA and MD values calculated in the white matter skeleton
for three matched groups of subjects from Sitel, Site2 and Site3 (dataset 4) before and after
harmonization in a single step with RISH-GLM. After harmonization, no statistically significant
difference between the three sites can be observed in both FA and MD, and values are well
distributed around the regression line in the correlation plot between age and FA for all sites.

Figure S1: Percentage effect of age and sex estimated by RISH-GLM[Matched]. Age effects are
prevalent at the interface between cerebrospinal fluid and white/grey matter for 9, and in
the white matter for 9, and 9,. The age effect map for 94 seems to be dominated by noise
effects, given the low anatomical contrast, and the presence of clear stripes due to ghosting
artefacts. Similar observations hold for sex effects.

Figure S2: The top row shows boxplots of average MD values in the white matter skeleton per
site, before harmonization (first column), after harmonization with RISH (middle column) and
with RISH-GLM (last column). The second row shows scatterplots of the same average MD
values as a function of age. Harmonization with both RISH and RISH-GLM was trained with
group level-matched subjects.

Figure S3: Boxplots of average MD values from two unmatched groups of healthy controls
from Sitel and Site2, before harmonization, and after harmonization with RISH and RISH-GLM.
Before harmonization an unexpected negative relation between age and MD is observed.
Harmonization with RISH removes any relation between age and MD. After harmonization
with RISH-GLM[Unmatched], a positive relation between age and MD is observed, as expected
based on previous literature.
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Figure S4: Scaling maps calculated between pairs of sites with RISH, and in one single step with
RISH-GLM on all three sites considered in Experiment 3.

Figure S5: Percentage effect of age and sex on RISH features of different orders as determined with

RISH-GLM.

Figure S6: Boxplots of average MD values from two matched groups from Sitel and Site2
before harmonization, and after applying RISH and RISH-GLM trained on unmatched data
(Figure 5). No differences in average MD values are observed after harmonization with RISH-
GLM, as expected for two matched groups. The application of RISH-GLM also allows to reveal
the same positive correlation between age and MD observed in the previous figures.
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