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Abstract 

Purpose: Diffusion MRI (dMRI) data typically suffer of significant cross-site variability, which prevents 

naively performing pooled analyses. To attenuate cross-site variability, harmonization methods such as 

the rotational invariant spherical harmonics (RISH) have been introduced to harmonize the dMRI data at 

the signal level. A common requirement of the RISH method, is the availability of healthy individuals 

who are matched at the group level, which may not always be readily available, particularly 

retrospectively. In this work, we propose a framework to harmonize dMRI without matched training 

groups.  

Methods: Our framework learns harmonization features while controlling for potential covariates using 

a voxel-based generalized linear model (RISH-GLM). RISH-GLM allows to simultaneously harmonize data 

from any number of sites while also accounting for covariates of interest, thus not requiring matched 

training subjects. Additionally, RISH-GLM can harmonize data from multiple sites in a single step, 

whereas RISH is performed for each site independently.  

Results: We considered data of training subjects from retrospective cohorts acquired with 3 different 

scanners and performed 3 harmonization experiments of increasing complexity. First, we demonstrate 

that RISH-GLM is equivalent to conventional RISH when trained with data of matched training subjects. 

Secondly, we demonstrate that RISH-GLM can effectively learn harmonization with two groups of highly 

unmatched subjects. Thirdly, we evaluate the ability of RISH-GLM to simultaneously harmonize data 

from 3 different sites.  

Discussion: RISH-GLM can learn cross-site harmonization both from matched and unmatched groups of 

training subjects, and can effectively be used to harmonize data of multiple sites in one single step. 
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Introduction 

Diffusion MRI (dMRI) has become a pivotal technique to investigate brain structure non-invasively
1
. The 

signal measured with dMRI originates from the motion of water molecules at the microscopic scale
2
. In 

combination with appropriate modelling
3
, dMRI allows to infer microstructural properties of tissues. For 

example, diffusion tensor imaging
4,5

 (DTI), one of the most commonly applied dMRI techniques, provides 

metrics such as the mean diffusivity (MD) and the fractional anisotropy
4,6

 (FA), which are related to the 

root mean square displacement and the anisotropy of the diffusion process, and reflect properties of 

the biological environment. Over time, these metrics have become established in the study of white 

matter microstructure, and found application in the study of neurological diseases
7
, including 

Alzheimer’s disease
8
, small vessel disease

9,10
 and frontotemporal dementia

11
, among others.  

A possible limitation to the use of dMRI in clinical research is that its measurements strongly depend on 

the employed MRI hardware and software
12,13

. As such, metrics derived from dMRI can typically be 

compared only within a single site, even when acquisition parameters are kept constant. In the latest 

years, several methods have been proposed to tackle such cross-site variability and harmonize dMRI. 

Broadly speaking, the goal of harmonization methods can be summarized as removing cross-site 

differences while not altering the sensitivity of dMRI to biological effects of interest. Two main families 

of post-processing dMRI harmonization methods have been proposed to date. The first family aims to 

remove batch effects during the analysis steps. Methods such as ComBat
14–16

, for example, aim to 

remove cross-site differences on the final metrics derived from dMRI. As such, harmonization is applied 

independently to each considered dMRI metric, such as FA or MD. The second family of dMRI 

harmonization methods aims to remove cross-site effects on the acquired data before any 

quantification step. Notable examples hereof are the rotational invariant spherical harmonics
17,18

 (RISH) 

framework, or other recently proposed deep learning alternatives
19,20

. Differently from methods such as 

ComBat, which harmonize end-point diffusion metrics independently from each other, RISH and 

comparable frameworks harmonize the source dMRI data. As such, the source data is harmonized once 

as part of the preprocessing pipeline, and can be then reused for multiple analyses with any method of 

choice. For example, we have previously demonstrated that dMRI data of patients with small vessel 

disease
21,22

 can be effectively harmonized with RISH and then be used for both voxel-wise based 

analyses and connectomics.  

One of the challenges when applying dMRI harmonization methods such as RISH, is that they require 

data of healthy participants for calibration between sites. For example, previous work
17

 has 
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demonstrated that the RISH method requires 12 or more training subjects matched at the group level 

for each site to be harmonized, or repeated scans of so-called travelling heads. This can be particularly 

challenging to achieve for studies focusing on patient populations, where healthy controls may not 

always be recruited, or when retrospectively harmonizing multiple different cohorts with differences in 

average age or sex distribution. Furthermore, the concept of matched groups is ill-defined and study 

dependent. In practice, it is very often interpreted as a synonym of age and sex matching, but other 

factors such as education, presence of genetic mutations, among others, may affect the dMRI signal and 

might need to be considered for specific studies.  

In this study, we propose a generalization of the RISH framework that determines cross-site 

harmonization while also considering potential confounders. This new approach accounts for potential 

biases when learning harmonization from unmatched groups of training subjects, and also allows to 

harmonize data from multiple sites in one single step. We demonstrate the potential of this framework 

through three experiments of growing complexity employing dMRI data of subjects from three different 

sites, while controlling for sex and age.    

Methods 

Theory: RISH and RISH-GLM 

The conventional RISH harmonization method is based on the representation of diffusion MRI data 

acquired at a certain b-value (i.e., a diffusion “shell”) with spherical harmonics. Spherical harmonics are 

a set of functions on the unit sphere characterized by an order and a degree. For each order i, rotational 

invariant representations (i.e., RISH coefficients) can be determined, and are indicated as �� . Mirzaalian 

et al. and subsequent works
17,23

 have shown that it is possible to harmonize dMRI data by learning the 

scaling factors between corresponding RISH coefficients determined in two groups of matched training 

subjects. The same framework can be also used to harmonize multi-shell data effectively by harmonizing 

each shell independently
18

. The harmonization essentially determines a voxel-wise scaling factor 

associated with each RISH feature to map a target site to a reference site. Mathematically, the scaling 

coefficient � associated to the spherical harmonics of order i can be written as  

�� � ��,� ��,��  

where � indicate the average RISH features of the reference (R) and target sites (T). Subsequently, dMRI 

datasets from the target site can be harmonized as follows: 1) dMRI data is converted to spherical 
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harmonics; 2) their RISH features calculated and multiplied by the scaling factor ��; 3) harmonized dMRI 

data is reconstructed from the corrected spherical harmonics representation. The assumption behind 

this approach is that cross-site differences in � purely originate from scanner-related properties. For this 

assumption to hold, the groups from which the � values are computed must be matched across all 

factors that may affect the dMRI signal. In practice, matching for all relevant factors can be challenging. 

When this is not the case, residual systematic group differences will be assimilated into the scaling 

factors, potentially biasing the factors and making them less generalizable to harmonize other subjects 

from the same site.  

To alleviate the matching requirement, we propose a new formulation based on a general linear model 

(GLM) that decomposes the effect of confounders such as age and sex on the RISH features: 

���,���,�� � �	� 	� 
��
 � ��,���,���,���� 

where 	 are dummy variables assuming a value of 1 when a subject belongs to a certain site, and 0 

otherwise. This approach, dubbed RISH-GLM, is based on two assumptions: 1) that the relationship 

between RISH features and covariates is linear in the considered range; 2) limited collinearity and 

interaction between different covariates. Of note, linearity in the relation between covariates and RISH-

features, does not imply nor require linearity between covariates and diffusion metrics (e.g., fractional 

anisotropy). The RISH-GLM formulation allows to alleviate the need to match the average demographics 

at the group level across all sites. In practice, however, a reasonably even distribution of the effects of 

interest across sites is still needed to reliably estimate the associated coefficients �, from which the 

scaling coefficients can be determined as �� � ��,� ��,	� . The formulation above can readily be extended 

to account for multiple sites by considering additional columns on the right side as follows: 

� ��,���,��� � � �	� 	��     � 
��
 � ��,���,��� � 

MRI data 

We retrospectively collected data from the Frontotemporal Dementia Risk Cohort
24

 (FTD-RISC), which is 

a longitudinal study following up individuals at risk of frontotemporal dementia (FTD) curated at the 

Erasmus MC University Medical Center in Rotterdam (the Netherlands). In FTD-RISC, three major 
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combinations of MRI hardware and software have been employed, which we refer to as Site 1, Site 2, 

Site 3. Data from all sites are used throughout this study to demonstrate the potential of GLM-RISH. T1-

weighted MRI data were acquired at all sites with a resolution of 1x1x1mm
3
 isotropic. dMRI data were 

acquired at all sites with a similar dMRI protocol featuring 1 b = 0 s/mm
2
 volume, and 60 gradient 

directions at b = 1000 s/mm
2
. Data of Site 1 were acquired with a 3T Philips Achieva scanner located at 

Leiden University Medical Center (the Netherlands) running on software release R5 with a 32 channels 

head coil. At this site, key imaging parameters were voxel size 2x2x2mm
3
, TE=80ms, TR=9.25ms. Data of 

Site 2 were acquired with a GE Healthcare MR750 3T scanner located at Erasmus Medical Center (the 

Netherlands) with a 48 channels head coil. At this site, key imaging parameters were voxel size 

2x2x2mm
3
, TE=57ms, TR=9s. Data of Site 3 were acquired with an older version of the scanner at Site 1, 

running on software release R4 and equipped with an 8 channels head coil. At this site, dMRI data were 

acquired with voxel size 2x2x2mm
3
, TE=80ms, TR=8.25s. For this study, only data of healthy control 

subjects (non-carriers) and pathogenic variant carriers who did not have FTD-related symptoms at the 

time of scanning were considered.  

MRI processing  

MRI data was processed with a previously presented automated processing pipeline
25

. T1-weighted data 

was processed with CAT12 (https://neuro-jena.github.io/cat/) to remove bias fields and perform skull 

stripping. dMRI data was processed with MRIToolkit (https://github.com/delucaal/MRIToolkit) and  

ExploreDTI
26,27

 to perform signal drift correction
28

, then denoised with the MPPCA method
29

. 

Subsequently, corrections for Gibbs ringing
30

, motion and EPI corrections were performed, including b-

matrix rotation
31 

EPI distortions were corrected by means of a non-linear registration to the T1-weighted 

data at a 2mm resolution. Robust estimation of the diffusion tensor was performed using REKINDLE
32

, 

then the fractional anisotropy (FA) and the mean diffusivity (MD) were calculated
5
. Quality assessment 

of the data was performed by generating summary screenshots of FA, MD and fit residuals of each 

dataset, which were visually inspected by a trained researcher (ADL). Data exhibiting excessive motion 

or apparent artifacts (e.g., due to braces or other interference sources) were discarded. 

Harmonization experiments 

We refer to RISH[matched/unmatched] and RISH-GLM[matched/unmatched] to indicate whether the 

methods were trained with matched or unmatched groups of participants from different sites, 

respectively. To perform RISH and RISH-GLM harmonization, spherical harmonics were fitted to dMRI 

data using in-house software written in MATLAB, which implemented L2 regularized least squares. RISH 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 28, 2025. ; https://doi.org/10.1101/2024.05.01.591994doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.01.591994
http://creativecommons.org/licenses/by-nd/4.0/


 7 

features were then calculated and spatially normalized to a study specific template as previously 

proposed 
17

. The code used to perform the aforementioned steps is openly available at 

https://github.com/delucaal/RISH-GLM. 

We evaluated the performance of RISH-GLM as compared to conventional RISH with three experiments 

of growing complexity. Table 1 shows an overview of the datasets used in the following three 

experiments. 

Datasets N (per site) Age (years) Sex (F) 

Dataset 1  15 (site 1) vs 15 (site 2) 50.2 ± 12.2 vs 52.8 ± 11.1 47% vs 33% 

Dataset 2 18 (site 1) vs 18 (site 2) 35.4 ± 6.1 vs 56.4 ± 8.5 44% vs 39% 

Dataset 3 
15 (site 1) vs 15 (site 2) vs 15 

(site 3) 

48.4 ± 10.2 vs 52.8 ± 10.8 vs 

56.5 ± 8.9 
40% vs 33% vs 53% 

Dataset 4 
15 (site 1) vs 15 (site 2) vs 15 

(site 3) 

52.3 ± 7.5 vs 55.5 ± 10.1 vs 

50.5 ± 7.6 
40% vs 40% vs 40% 

Table 1: An overview of the datasets used to train RISH and RISH-GLM in the three 

experiments. N = sample size of each site. F = female 

In experiment 1, we investigate whether RISH-GLM is equivalent to the conventional RISH method when 

trained on data of 15 individuals matched at the group level for both age and sex from Dataset 1. For 

each spherical harmonics’ order, the scaling factors were computed with both RISH and RISH-GLM 

accounting for both age and sex, and visually compared. Subsequently, the training data from Site 2 was 

harmonized, and the diffusion tensor model was fit 
32

as mentioned in the previous section. FA maps 

were computed and registered to a common space using the TBSS_PNL pipeline 

(https://github.com/pnlbwh/tbss). In short, this pipeline is based on the FSL TBSS
33

 approach, but 

replaces the registration steps with ANTS
34

 for additional spatial accuracy. Boxplots of FA computed on 

the white matter skeleton were compared before and after harmonization. Given that FA is known to be 

strongly associated with age
35

, we additionally visualized their relation by means of scatterplots, and 

evaluated their Pearson correlation coefficient before and after harmonization. As no ground truth 

exists for age and sex effects, we evaluated the agreement between the effects estimated by RISH-GLM 

on the whole datasets and age and sex effects within the individual sites by means of Pearson 

correlations. To estimate the effects within the individual sites, general linear models accounting for 

age, sex and intercept were estimated at the voxel-level for site 1 and site 2 independently.  
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Subsequently, in experiment 2, we evaluated the feasibility of removing scanner-related cross-site 

differences by learning harmonization with two age-unmatched groups of subjects from Dataset 2. RISH-

GLM was trained by providing age and sex of each individual as covariates. As in the previous 

experiment, we compared the scaling factors corresponding to different RISH features, and visually 

inspected the spatial maps corresponding to age and sex effects. Harmonization was applied to the 

training set (Dataset 2). Boxplots of FA and scatterplots of FA as a function of age were derived as 

explained in experiment 1. Considering the large age difference between the two groups in Dataset 2, 

we anticipated to observe differences in FA between the two groups before harmonization. We 

expected such differences not to be completely removed after harmonization if the applied method 

truly removes only scanner-related differences and not biological effects. Furthermore, we expected a 

successful harmonization to recover a Pearson correlation coefficient between age and FA as similar as 

possible to the one determined in experiment 1. The same analyses were repeated on an independent 

dataset (Dataset 1) for validation purposes. We anticipated that RISH-GLM harmonization trained with 

age-unmatched subjects (Dataset 2) would generalize to age-matched subjects (Dataset 1), whereas 

RISH harmonization would not. 

In experiment 3, we evaluated whether the RISH-GLM framework allows to effectively harmonize data 

from multiple sites from Dataset 3 in a single step. FA maps were calculated and aligned to a common 

space as previously explained. Next to boxplots of FA derived on the white matter skeleton, we 

additionally performed voxel-wise t-tests while correcting for age and sex to also evaluate the 

effectiveness of RISH-GLM at removing potential regional cross-site differences. Comparisons between 

the three sites were performed pairwise (i.e., Site1 vs Site 2 and Site 3, Site 2 vs Site 3) using FSL 

randomise with threshold free cluster enhancement. Finally, to validate the one-step RISH-GLM 

harmonization on independent subjects, we applied the trained harmonization to age and sex-matched 

subjects of dataset 4, which shared only 2 out of 45 subjects with dataset 3. Here we evaluated the 

effectiveness of RISH-GLM at removing cross-site differences by means of boxplots of FA calculated on 

the white matter skeleton, and by evaluating the relation between FA and age as in the previous 

experiments. 

In all experiments, Site1 was used as reference and its values should remain constant. However, 

boxplots of the reference site might exhibit slight differences because of how the TBSS_PNL pipeline – 

used to compute skeletonized values for the boxplots – inherently works. TBSS_PNL constructs a white 

matter skeleton based on all input data (both reference and target sites). Since harmonization alters the 
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target site’s data, the global skeleton changes slightly, which can introduce minor shifts in the reference 

site’s FA distributions 

Results 

Experiment 1: RISH-GLM and RISH with matched training subjects (expect no 

differences) 

Figure 1 shows the scaling maps �� corresponding to spherical harmonics up to order 6 that were 

calculated with RISH and RISH-GLM using training subjects matched for age and sex at the group level 

from two different sites (hence the “[Matched]” suffix). The maps calculated by both methods are 

remarkably similar, as shown by the corresponding relative difference maps. The average relative 

differences between RISH[Matched] and RISH-GLM[Matched] are 0.38% for �
, 0.73% for �	, 1.32% for 

��, and 1.45% for ��. While differences are globally less than 2%, local differences up to 20% can be 

appreciated in the bottom row of Figure 1. Such differences are mostly located in areas of partial 

volume with cerebrospinal fluid or grey matter, but not in deep white not in white matter, and might 

originate from small imbalances in covariates or site-specific artefacts. Indeed, age and sex maps 

estimated with RISH-GLM (Supporting Information Fig. S1) show that these two covariates can have a 

small but non-zero spatially varying effect on RISH scales, even when these are calculated in two 

matched groups.   

In dataset 1, age and sex effects estimated with RISH-GLM in white matter are generally in agreement 

with age effects calculated within site 1 and site 2 independently. The correlation coefficient between 

age effects estimated in the whole cohort and in sites 1/2 are 0.80/0.74 for �
, 0.86/0.87 for �	, 

0.62/0.83 for ��, 0.55/0.83 for ��, respectively. The correlation coefficient for sex effects estimated in 

the whole cohort and in sites 1/2 are 0.75/0.70 for �
, 0.72/0.70 for �	, 0.53/0.89 for ��, 0.56/0.89 for 

��, respectively. 

Figure 2 shows boxplots of average FA values of Site 1 and Site 2 obtained on the white matter skeleton 

before harmonization, and after harmonization with RISH and RISH-GLM. Before harmonization, a 

relative difference in average FA values between Site 1 and Site 2 equal to -9.7% (significant t-test, 

p≤0.05) can be observed, which is effectively removed by both RISH (0.5%, p=0.80) and RISH-GLM (1.7%, 

p=0.37). The second row of Figure 2 shows the existence of a negative relation between age and FA 

within individual sites. When pooling unharmonized data together (first row), a biased correlation 

coefficient (rho) equal to -0.5 can be observed. After harmonization with both RISH and RISH-GLM, a 
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linear negative relation between age and FA can be observed with equal correlation coefficients rho = -

0.78. In both cases, the measurements from each site are well distributed around the regression line.   

 

Figure 1: Voxel-wise scaling maps calculated in dataset 1 using group level-matched 

training subjects with RISH (first row), RISH-GLM (second row) and their difference 

(last row) for different orders of spherical harmonics (columns). Scaling maps 

calculated from both methods are globally similar, but local differences up to ±20% 

can be noticed particularly at the interface between grey matter and cerebrospinal 

fluid, and in the deep white matter for �� and ��. 
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Figure 2: The top row shows boxplots of average FA values in the white matter 

skeleton per site of dataset 1, before harmonization (first column), after 

harmonization with RISH (middle column) and with RISH-GLM (last column). The 

second row shows scatterplots of the same average FA values as a function of age. 

Harmonization with both RISH and RISH-GLM was trained with group level-matched 

subjects.  

 

Experiment 2: RISH-GLM and RISH with unmatched training subjects 

Figure 3 shows the scaling maps calculated for different orders of spherical harmonics with RISH and 

RISH-GLM trained with two groups of subjects that were not matched at the group level (hence the 

suffix “[Unmatched]”). In contrast to Figure 1, where RISH and RISH-GLM produced similar scaling maps, 

large differences between the two methods can be observed when using unmatched training subjects, 

particularly for higher orders of spherical harmonics. Compared to the reference scaling maps calculated 

with RISH with matched subjects (Figure 1), scaling maps calculated with unmatched subjects with RISH 

show large differences particularly around the ventricles, and at the interface between grey matter and 

cerebrospinal fluid for �
 and �	. For higher spherical harmonics orders (i.e., ��, ��), widespread 

differences in both the white and the grey matter can be observed. Compared to the reference 
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(RISH[matched]), average relative differences of RISH[unmatched] and RISH-GLM[unmatched] are -

10.2% and -3.3% for �
, -12.0% and -2.6% for �	, -10.5% and 2.9% for ��, -10.6% and 3.1% for ��, 

respectively, highlighting that scaling maps computed with RISH-GLM[unmatched] are on average closer 

to the reference(RISH[matched]) than RISH[unmatched].  

 

Figure 3: Voxel-wise scaling maps calculated using group age-unmatched training 

subjects (dataset 2) with RISH (first row), RISH-GLM (second row) and their 

difference (last row) for different orders of spherical harmonics (columns). Compared 

to Figure 1 (matched training groups), scaling maps calculated show different 

patterns with local differences up to ±50%. 
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Figure 4: Percentage effect of age and sex estimated by RISH-GLM[Unmatched] in 

dataset 2. Age effects are prevalent at the interface between cerebrospinal fluid and 

white/grey matter for �
, and in the white matter for �	 and ��. The age effect map 

for �� seems to be dominated by noise effects, given the low anatomical contrast, 

and the presence of clear stripes due to ghosting artefacts. Similar observations hold 

for sex effects. 

Figure 4 shows the spatial coefficients of age and sex effects associated to different spherical harmonics 

orders. Considering �
, it can be appreciated that age has a large effect around the ventricles and at the 

interface between grey matter and cerebrospinal fluid. At higher orders, age has a stronger effect on the 

brain white matter, particularly in the corpus callosum and corticospinal tracts. Similar observations also 

hold for sex effects. Importantly, both covariates have the largest effects in areas where RISH[matched] 

and RISH-GLM[unmatched] differ the most. In dataset 2, age and sex effects estimated with RISH-GLM in 

white matter are generally in agreement with age effects calculated within groups of Dataset 2 

independently. The correlation coefficient between age effects estimated in the whole cohort and in 

sites 1/2 are 0.58/0.80 for �
, 0.56/0.80 for �	, 0.25/0.90 for ��, 0.26/0.89 for ��, respectively. The 

correlation coefficient for sex effects estimated in the whole cohort and in sites 1/2 are 0.66/0.68 for �
, 

0.69/0.64 for �	, 0.50/0.81 for ��, 0.51/0.80 for ��, respectively. 

In Figure 5, we evaluated the average FA values calculated in the white matter skeleton of the 

unmatched groups. Before harmonization, differences in average FA values equal to -4.8% (p≤0.05) 

between the two sites can be observed. Importantly, such differences can originate from both scanner-

specific differences as well as from true biological effects given the large age span. Before 

harmonization, no correlation is observed between age and FA. In this situation, applying 

RISH[Unmatched] while ignoring age and sex effects reduces the average FA difference between the two 

groups to 0.1% (p=0.95), but suppresses the expected difference between two groups with largely 

different age distributions
35,36

. After harmonization with RISH-GLM[Unmatched], a relative difference in 

average FA values equal to 4.6% can be observed (p≤0.05), together with a linear negative relation 

between age and average FA that is in line with what was observed in Figure 2 (correlation coefficient 

rho = -0.64 vs -0.78 in Figure 2). Similar considerations hold also for MD, as shown in Supporting 

Information Fig. S2. 

Subsequently, we have applied RISH[Unmatched] and RISH-GLM[Unmatched] to harmonize the data of 

the 2 matched groups of Dataset 1, for which no average difference in FA values is expected after 

harmonization. The boxplots shown in Figure 6 showcase how RISH-GLM[Unmatched] can effectively 

remove the cross-site differences in FA between the two groups (average relative difference 0.5%, 
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p=0.71), whereas RISH[Unmatched] does not (average relative difference -4.4%, p≤0.05). When looking 

at the relation between age and FA, the application of RISH-GLM[Unmatched] recovers the same age-FA 

relation observed also in Figure 2 and Figure 5. Similarly, RISH-GLM[Unmatched] effectively harmonizes 

also MD, as shown in Supporting Information Fig. S3, whereas RISH[Unmatched] does not.  

 

Figure 5: Boxplots of average FA values from two unmatched groups of healthy 

controls from Site1 and Site2 (dataset 2), before harmonization, and after 

harmonization with RISH and RISH-GLM. Before harmonization, an average 

difference in FA between the two groups can be observed. While this could be 

plausible given the unmatched nature of the two groups, there is an unexpected lack 

of correlation between age and FA before harmonization. Harmonization with 

RISH[Unmatched] removes the difference between the two groups. Consequently, a 

mild negative correlation between age and FA is observed, but the datapoints from 

both sites are not well distributed around the regression line, indicating a biased fit. 

After harmonization with RISH-GLM[Unmatched], a difference between the two 

groups in average FA values is observed, as expected, as well as a clear negative 

relation between age and FA.  
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Figure 6: Boxplots of average FA values from two matched groups from Site1 and 

Site2 (dataset 2) before harmonization, and after applying RISH and RISH-GLM 

trained on unmatched data (Figure 5). No differences in average FA values are 

observed after harmonization with RISH-GLM, as expected for two matched groups. 

The application of RISH-GLM also allows to reveal the same negative correlation 

between age and FA observed in the previous figures. 

 

Experiment 3: One step harmonization 

We investigated the ability of RISH-GLM to harmonize data from 3 sites in a single step. Example axial 

slices of the training scales derived with RISH and RISH-GLM between corresponding pairs of sites are 

shown in Supporting Information Fig. S4. Scaling maps computed from both methods have similar 

appearance, it can be appreciated how the scaling computed with RISH-GLM are higher on average than 

those computed with RISH. The presence of ghosting artefacts can be appreciated in the scaling maps �� 

and ��, particularly with RISH-GLM. For this method, systematic artefacts can be learnt as part of cross-

site differences, and can propagate to age and sex effect maps, as shown in Supporting Information Fig. 

S5. We subsequently evaluated differences in voxel-wise FA values between pairs of sites by means of 

permutations tests corrected by age and sex, obtaining the maps shown in Figure 7. Before 

harmonization, 32.1%, 0.25% and 29.6% of the brain voxels were statistically different when comparing 
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Site 1 to Site 2, Site 1 to Site 3, and Site 2 to Site 3, respectively. After harmonization, the amount of 

significantly different voxels was reduced to 0.1%, 0.1% and 0.4%, respectively. Similar observations 

apply to MD, for which significant differences were observed in respectively 25.6%, 0%, and 31.6% of 

brain voxels when comparing sites in the same pairwise as previously reported. After harmonization, 

significant differences were reduced to 0.1%, 0%, 1.2% of brain voxels, respectively. 

To validate the method, we have applied RISH-GLM to harmonize the independent dataset 4. Results, 

which are reported in Figure 8, demonstrate that RISH-GLM can effectively reduce the differences 

between all cohorts, and recover the same relation between age and FA/MD previously observed in 

Figure 2, Figure 5 and Supporting Information Fig. S6.  

 

Figure 7: Example axial (left) and coronal (right) slices showing differences in average 

FA values at the voxel-level between pairs of sites of dataset 3 by applying a 

permutation test corrected for age and sex with a general linear model to three 

unmatched groups. Before harmonization, minimal to no differences are observed 

between Site1 and Site3. Conversely, extensive differences are observed between 

Site2 and the other sites. After harmonization with RISH-GLM in a single-step, most 

differences are effectively removed. 
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Figure 8: A comparison of average FA and MD values calculated in the white matter 

skeleton for three matched groups of subjects from Site1, Site2 and Site3 (dataset 4)  

before and after harmonization in a single step with RISH-GLM. After harmonization, 

no statistically significant difference between the three sites can be observed in both 

FA and MD, and values are well distributed around the regression line in the 

correlation plot between age and FA for all sites. 

Discussion 

In this work, we have introduced a novel approach to perform RISH-based harmonization of the dMRI 

signal without need for training subjects matched at the group-level. Our approach does so by learning 

the voxel-wise effects of covariates on RISH scaling coefficients with a GLM (RISH-GLM). Our results 

demonstrate that RISH-GLM is effective in learning cross-site harmonization from unmatched training 

groups and can be used to harmonize data from multiple sites effectively in a single step.  

The advent of dMRI harmonization methods such as RISH allows studies to overcome the barriers of 

single-site analyses, unharnessing the potential of retrospectively collected data to boost sample sizes. 

However, the applicability of such frameworks can be challenging when considering multiple cohorts 

selected with different inclusion criteria, because their requirement of matched training. Importantly, 

the results shown in Figure 5 and Figure 6 demonstrate that conventional RISH is unsuitable to learn 
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cross-site harmonization with unmatched groups, as that would lead to a removal of both cross-site and 

biological effects (e.g., aging, Figure 5), or to the introduction of biases (Figure 6). RISH-GLM can 

effectively tackle this limitation by lifting the need for matched training groups, as demonstrated in 

Figure 6 and Figure 8.  

The ability to learn cross-site harmonization without matched cohorts could support several efforts in 

both clinical and neuroscientific research. Firstly, RISH-GLM could simplify the harmonization of cohorts 

with only partly overlapping covariates of interest. This could be for example age, in the case of studies 

pooling retrospective cohorts with distinct age ranges to cover the whole lifespan. Secondly, it could 

support further disentangling scanner effects from confounding biological effects than conventional 

RISH, particularly when learning harmonization from groups which are matched on average but feature 

relevant variance in covariates. In the study of dementia, for example, population cohorts, memory 

clinic cohorts, and population with different injury aetiologias could be potentially harmonized while 

accounting for key factors that could otherwise bias the harmonization process, such as differences in 

education, ethnicity, sex distributions, exposure to specific risk factors, lesion burden, etc.  

While retrospective data is arguably the main application goal of post-processing dMRI harmonization 

methods such as RISH-GLM, they could prove advantageous also to support prospective studies. In 

general, accurate matching of acquisition hardware and sequence parameters can already reduce cross-

site dMRI variability, as shown by previous initiatives in frontotemporal
37

 and vascular dementia
38

. Yet, 

subtle differences between vendors, calibration, and characteristics of individual scanners might still 

dictate the existence of cross-site differences. Furthermore, even when prospective matching is 

achieved successfully at the start of a study, subsequent hardware changes and software updates might 

still introduce acquisition effects in long multiyear prospective studies. In the future, software versions 

and coil updates could be considered as covariates of interest in RISH-GLM to attempt limiting their 

effect on the acquired data.     

When comparing scaling maps computed with RISH-GLM using matched datasets to those computed 

with RISH (Figure 1), local relative differences up to 20% can be observed close to the WM-GM and WM-

CSF interfaces. This is likely due to taking into account age and sex effects during estimation, and 

suggests that such features may be locally relevant even in matched datasets. This observation is 

supported by the fact that relative differences between unmatched groups, shown in Fig. 3, exhibit 

spatial patterns that are consistent with those of Fig. 1, but with larger amplitude. Despite such local 

differences, when comparing FA and MD of matched groups (Fig. 2 and Supporting Information Fig. S2), 
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we did not observe any relevant group-difference with both RISH and RISH-GLM. However, our analysis 

clearly focused on the WM skeleton, whereas most differences between RISH and RISH-GLM are located 

close to WM/GM interface. As such, future studies should investigate the potential of RISH and RISH-

GLM on more sophisticated analyses such as fiber tractography, where the transition of fibers between 

tissue types is crucial to achieve meaningful results.   

It is important to acknowledge some limitations of this study. As explained in the methods section, RISH-

GLM is based on assumptions that might not always hold true. An important assumption is the existence 

of a linear relation between covariates of interest and RISH features, at least within the range of 

covariates used for training. In the case of age, for example, little is known about its exact relation to 

RISH features. Furthermore, RISH-GLM has primarily been designed to account for systematic cross-site 

biases, and its ability to capture non-systematic effects leading to different subject ranking across sites
39

 

remains unclear. Evaluating such aspects and validating the assumptions of RISH-GLM throughout the 

lifespan will require dedicated studies, or an additional validation in cohorts including so-called 

travelling-heads, i.e., groups of subjects travelling across sites and scanned with highly controlled 

experimental conditions to ensure minimal variance of their measurements across sites
13,39

 (e.g., ideally 

even considering confounders such as time of the day
40

). Nevertheless, we observe that RISH-GLM is 

effective at recovering consistent relations between age and FA throughout the experiments of this 

work. Of note, the assumption of linearity between covariates and RISH features does not imply the 

need for linearity between covariates and derived metrics such as FA, given that RISH features are non-

linear descriptors of the diffusion signal. This is particularly relevant as previous studies
35,41

 of diffusion 

tensor imaging metrics across the lifespan have demonstrated the existence of a quadratic – locally 

linear – relation between age and fractional anisotropy, for example. Another assumption of RISH-GLM 

is that the effects of covariates is similar across training cohorts. As a consequence, training directly with 

non-homogeneous groups – such as patients with different pathologies – is discouraged. In this study, 

we used data from a retrospective cohort of individuals that were initially marked as at risk for 

frontotemporal dementia, which might have introduced a selection bias towards effects not explicitly 

accounted for. Furthermore, we only focused on modelling the effect of age and sex, and did not 

consider other relevant confounders such as education.  

In conclusion, we have introduced a novel framework to learn cross-site harmonization while accounting 

for covariates of interests, and demonstrated its effectiveness to learn harmonization between two age 

unmatched groups with an average age difference of over two decades. 
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Figure and table captions 

Table 1: An overview of the datasets used to train RISH and RISH-GLM in the three 

experiments. N = sample size of each site. F = female 

Figure 1: Voxel-wise scaling maps calculated in dataset 1 using group level-matched training 

subjects with RISH (first row), RISH-GLM (second row) and their difference (last row) for 

different orders of spherical harmonics (columns). Scaling maps calculated from both methods 

are globally similar, but local differences up to ±20% can be noticed particularly at the 

interface between grey matter and cerebrospinal fluid, and in the deep white matter for �� 

and ��. 

Figure 2: The top row shows boxplots of average FA values in the white matter skeleton per 

site of dataset 1, before harmonization (first column), after harmonization with RISH (middle 

column) and with RISH-GLM (last column). The second row shows scatterplots of the same 

average FA values as a function of age. Harmonization with both RISH and RISH-GLM was 

trained with group level-matched subjects.  

Figure 3: Voxel-wise scaling maps calculated using group age-unmatched training subjects 

(dataset 2) with RISH (first row), RISH-GLM (second row) and their difference (last row) for 

different orders of spherical harmonics (columns). Compared to Figure 1 (matched training 

groups), scaling maps calculated show different patterns with local differences up to ±50%. 

Figure 4: Percentage effect of age and sex estimated by RISH-GLM[Unmatched] in dataset 2. 

Age effects are prevalent at the interface between cerebrospinal fluid and white/grey matter 

for �
, and in the white matter for �	 and ��. The age effect map for �� seems to be 

dominated by noise effects, given the low anatomical contrast, and the presence of clear 

stripes due to ghosting artefacts. Similar observations hold for sex effects. 
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Figure 5: Boxplots of average FA values from two unmatched groups of healthy controls from 

Site1 and Site2 (dataset 2), before harmonization, and after harmonization with RISH and RISH-

GLM. Before harmonization, an average difference in FA between the two groups can be 

observed. While this could be plausible given the unmatched nature of the two groups, there 

is an unexpected lack of correlation between age and FA before harmonization. Harmonization 

with RISH[Unmatched] removes the difference between the two groups. Consequently, a mild 

negative correlation between age and FA is observed, but the datapoints from both sites are 

not well distributed around the regression line, indicating a biased fit. After harmonization 

with RISH-GLM[Unmatched], a difference between the two groups in average FA values is 

observed, as expected, as well as a clear negative relation between age and FA.  

Figure 6: Boxplots of average FA values from two matched groups from Site1 and Site2 

(dataset 2) before harmonization, and after applying RISH and RISH-GLM trained on 

unmatched data (Figure 5). No differences in average FA values are observed after 

harmonization with RISH-GLM, as expected for two matched groups. The application of RISH-

GLM also allows to reveal the same negative correlation between age and FA observed in the 

previous figures. 

Figure 7: Example axial (left) and coronal (right) slices showing differences in average FA values 

at the voxel-level between pairs of sites of dataset 3 by applying a permutation test corrected 

for age and sex with a general linear model to three unmatched groups. Before harmonization, 

minimal to no differences are observed between Site1 and Site3. Conversely, extensive 

differences are observed between Site2 and the other sites. After harmonization with RISH-

GLM in a single-step, most differences are effectively removed. 

Figure 8: A comparison of average FA and MD values calculated in the white matter skeleton 

for three matched groups of subjects from Site1, Site2 and Site3 (dataset 4)  before and after 

harmonization in a single step with RISH-GLM. After harmonization, no statistically significant 

difference between the three sites can be observed in both FA and MD, and values are well 

distributed around the regression line in the correlation plot between age and FA for all sites. 

Figure S1: Percentage effect of age and sex estimated by RISH-GLM[Matched]. Age effects are 

prevalent at the interface between cerebrospinal fluid and white/grey matter for �
, and in 

the white matter for �	 and ��. The age effect map for �� seems to be dominated by noise 

effects, given the low anatomical contrast, and the presence of clear stripes due to ghosting 

artefacts. Similar observations hold for sex effects. 

Figure S2: The top row shows boxplots of average MD values in the white matter skeleton per 

site, before harmonization (first column), after harmonization with RISH (middle column) and 

with RISH-GLM (last column). The second row shows scatterplots of the same average MD 

values as a function of age. Harmonization with both RISH and RISH-GLM was trained with 

group level-matched subjects. 

Figure S3: Boxplots of average MD values from two unmatched groups of healthy controls 

from Site1 and Site2, before harmonization, and after harmonization with RISH and RISH-GLM. 

Before harmonization an unexpected negative relation between age and MD is observed. 

Harmonization with RISH removes any relation between age and MD.  After harmonization 

with RISH-GLM[Unmatched], a positive relation between age and MD is observed, as expected 

based on previous literature.  
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Figure S4: Scaling maps calculated between pairs of sites with RISH, and in one single step with 

RISH-GLM on all three sites considered in Experiment 3. 

Figure S5: Percentage effect of age and sex on RISH features of different orders as determined with 

RISH-GLM. 

Figure S6: Boxplots of average MD values from two matched groups from Site1 and Site2 

before harmonization, and after applying RISH and RISH-GLM trained on unmatched data 

(Figure 5). No differences in average MD values are observed after harmonization with RISH-

GLM, as expected for two matched groups. The application of RISH-GLM also allows to reveal 

the same positive correlation between age and MD observed in the previous figures. 
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