

1 Decipher: A computational pipeline to extract context- 2 specific mechanistic insights from single-cell profiles

3

4 Edgar Basto^{1,2}, Bilal Wajid^{1,3,4}, James Read^{1,5}, Jesse Armitage^{7,8}, Jason Waithman^{7,8}, Michael Small², and
5 Anthony Bosco^{1,5,6,†}

6

7 ¹INSiGENe Pty Ltd, Perth, WA, Australia

8 ²Department of Mathematics and Statistics, University of Western Australia, WA, Australia

9 ³Ibn – Sina Research & Development Division, Sabz-Qalam, Lahore 54000, Pakistan

10 ⁴Dhani School of Science and Engineering, Habib University, Karachi, Pakistan

11 ⁵Asthma & Airway Disease Research Center, The BIO5 Institute, The University of Arizona, Tucson, AZ

12 ⁶Department of Immunobiology, The University of Arizona College of Medicine, Tucson, AZ

13 ⁷School of Biomedical Sciences, University of Western Australia, WA, Australia

14 ⁸Telethon Kids Institute, WA, Australia

15

16 [†]Corresponding author: anthony.bosco@insigene.com

17

18 *Competing Interests Statement:*

19 AB is the founder of the start-up company INSiGENe Pty Ltd that funded this work. AB is a co-founder, equity
20 holder, and director of the startup company Respiradigm Pty Ltd that is unrelated to this work. EB received a
21 scholarship from INSiGENe Pty Ltd to conduct this work.

22

23 Abstract

24

25 The advent of single-cell profiling technologies has revolutionized our understanding of the cellular and
26 molecular states that underpin disease. However, current computational tools struggle to recover both
27 known and novel mechanistic insights at distinct layers of biological regulation. Here, we present *Decipher*,
28 a novel computational pipeline that builds integrated cell signalling networks from single-cell profiles in a
29 context-specific, data-driven manner and identifies the key cellular and molecular events that drive disease.
30 We benchmarked *Decipher* against existing tools and found it could recover known, experimentally
31 determined cytokine signalling pathways, whilst maintaining the flexibility to detect novel pathways and
32 context-specific effects. Notably, *Decipher* produces global cell-to-cell signalling maps that are
33 interpretable. We utilised *Decipher* to unveil the cellular and molecular mechanisms driving a novel
34 population of inflammatory monocytes enriched with interferon stimulated genes that is markedly
35 increased in frequency following secondary immunization with the Pfizer-BioNTech COVID-19 mRNA
36 vaccine. Finally, we employed *Decipher* to interrogate regulon profiles from covid-19 patients with mild
37 versus severe disease, and we found that progression to severe disease was associated with a loss of
38 interferon signalling transcription factors (Irf7, Irf9, STAT1, STAT2) and a gain of factors that drive
39 inflammation and cellular stress responses (NFkB, HIF-1a, ATF3, ATF4). Taken together, our findings
40 demonstrate that *Decipher* can decode signalling pathways and report on ligand-receptor mediated
41 transcription factor-target gene networks that underlie processes in homeostasis, disease, and cellular
42 responses to therapies. We present *Decipher* as an invaluable new tool for the discovery of novel
therapeutic targets and the development of new medicines.

43

1 Main

44

45 Complex multicellular life forms execute a multitude of high-level biological functions, including
46 growth, differentiation, metabolism and homeostasis. These functions are mediated by interactions among
47 multiple cell types through diverse molecules, such as ligands and receptors¹. The advent of single-cell
omics, which profiles biological systems at single-cell resolution², along with computational tools that infer

48 patterns of cell-to-cell communication from such data^{3,4}, have furthered our understanding of the role of
49 intercellular interactions in diverse contexts such as the maternal-fetal interface⁵, wound healing⁴, human
50 development⁶ and cancer⁷.

51 While inferring cell-cell communication patterns is an active area of method development, with
52 over one-hundred available tools catalogued by Armingol et al.⁸, most share two key limitations: they
53 overlook the downstream transcriptional effects of upstream signalling events⁹, and even those that
54 consider such effects often rely heavily on pre-defined knowledge graphs to connect upstream signalling to
55 cellular responses.

56 Accounting for downstream effects is essential, as it reveals how cellular interactions reprogram
57 gene expression and ultimately drive disease processes⁷, insights which are lost when analyses stop at
58 ligand-receptor pairs alone. Conversely, integrating curated knowledge graphs can improve the reliability
59 and accuracy of inferred networks¹⁰, but at the same time, they can also bias the results towards well-
60 studied pathways¹¹, and obscure novel or context-specific signalling.

61 We surveyed eleven computational tools that analyse cell-cell communication and explicitly
62 account for downstream signalling. We found that most methods tend to rely on curated molecular
63 interaction databases, limiting their findings to well-studied relationships. This is the case for Pathway-
64 centric methods (SoptSC¹², CommPath¹³), Multilayer knowledge-graph methods (NicheNet⁷, LRLoop¹⁴,
65 Scriabin¹⁵) and Transcription-factor-centric methods (ScMLNet¹⁶, CellCall¹⁷, scSeqComm¹⁸, SPARTAN¹⁹). *De*
66 *novo* network inference tools (CytoTalk²⁰, DIALOGUE²¹), in contrast, avoid this reliance on prior knowledge
67 by reconstructing networks directly from expression data, yet the resulting relationships often lack
68 mechanistic context. In both cases, the methodology limits the ability to identify novel signalling pathways.

69 To address these gaps, we developed *Decipher*, a novel computational platform that builds
70 integrated signalling networks that operate between and within cells, capturing both ligand-receptor
71 signalling and transcription factor-target gene regulatory activity. *Decipher* utilizes prior-knowledge
72 approaches when considering these networks separately, and data-driven network inference when
73 integrating them. Thus, *Decipher* carefully balances the ability to accurately prioritize signalling mechanisms
74 with the necessity to detect previously unidentified pathways.

75 2 Results

76 *Decipher* requires annotated single-cell RNA-seq profiles from two experimental conditions, a
77 database of interacting ligand-receptor (LR) pairs and a reference gene regulatory network capturing
78 relationships between transcription factors (TF) and their downstream target genes. A *Decipher* analysis is
79 not limited to any specific source of prior knowledge, however, by default we use LR pairs from
80 connectomeDB2020²² and a base network from CellOracle²³. In addition, as gene regulatory network wiring
81 is context-specific²⁴, we leverage further functionality from CellOracle²³ to tailor the base network to the
82 experimental and cellular context of each cell type, retaining only the edges that show evidence of being
83 active.

84 To score LR signalling, *Decipher* relies on reconstructed integrated signalling networks to link
85 intercellular signalling potential to downstream transcription factor activity. Signalling potential refers to
86 the capacity of cells to engage in differential signalling and is estimated as the mean-product²² of ligand and
87 receptor expression across meta-cells²⁵ (a strategy we employ to limit dropout effects). Transcription factor
88 activity reflects the influence TFs exert within the cell and is inferred by applying an overdispersion-based
89 scoring function from PAGODA2^{26,27} to the expression profile of the target gene set for each transcription
90 factor, as per the tailored gene regulatory networks. To reconstruct integrated signalling networks, the

91 calculated interaction potentials and TF activities are used as the predictor and target variables in a random
 92 forest regression model, whose feature importance values represent the edge weights connecting LR pairs
 93 to TFs within the network. The sign of the Spearman correlation between each predictor-target pair
 94 designates the mode of influence of that edge. Together, these steps yield a weighted, signed integrated
 95 signalling network that captures how extracellular cues propagate to transcriptional responses.

96 To quantify the activity of each LR pair i across conditions, *Decipher* integrates the predicted
 97 regulatory weight $w_{i,f}$ between LR pair i and transcription factor f with the observed changes in TF activity
 98 Δ_f , defined as the difference in median TF activity between conditions. The resulting *Decipher* score S is
 99 computed as:

100
$$S = \sum_{f \in F} w_{i,f} \cdot \Delta_f$$

101 Where F denotes the set of TFs relevant to a given cell type. This formulation prioritizes LR pairs that are
 102 both influential (high $w_{i,f}$ indicating a strong regulatory relationship) and associated with responsive TFs
 103 (a large Δ_f signals a substantial intracellular change). *Decipher* scores support three core layers of
 104 analysis: cell-to-cell LR signalling, LR-to-TF regulatory signalling and TF-target gene regulation (Fig. 1).

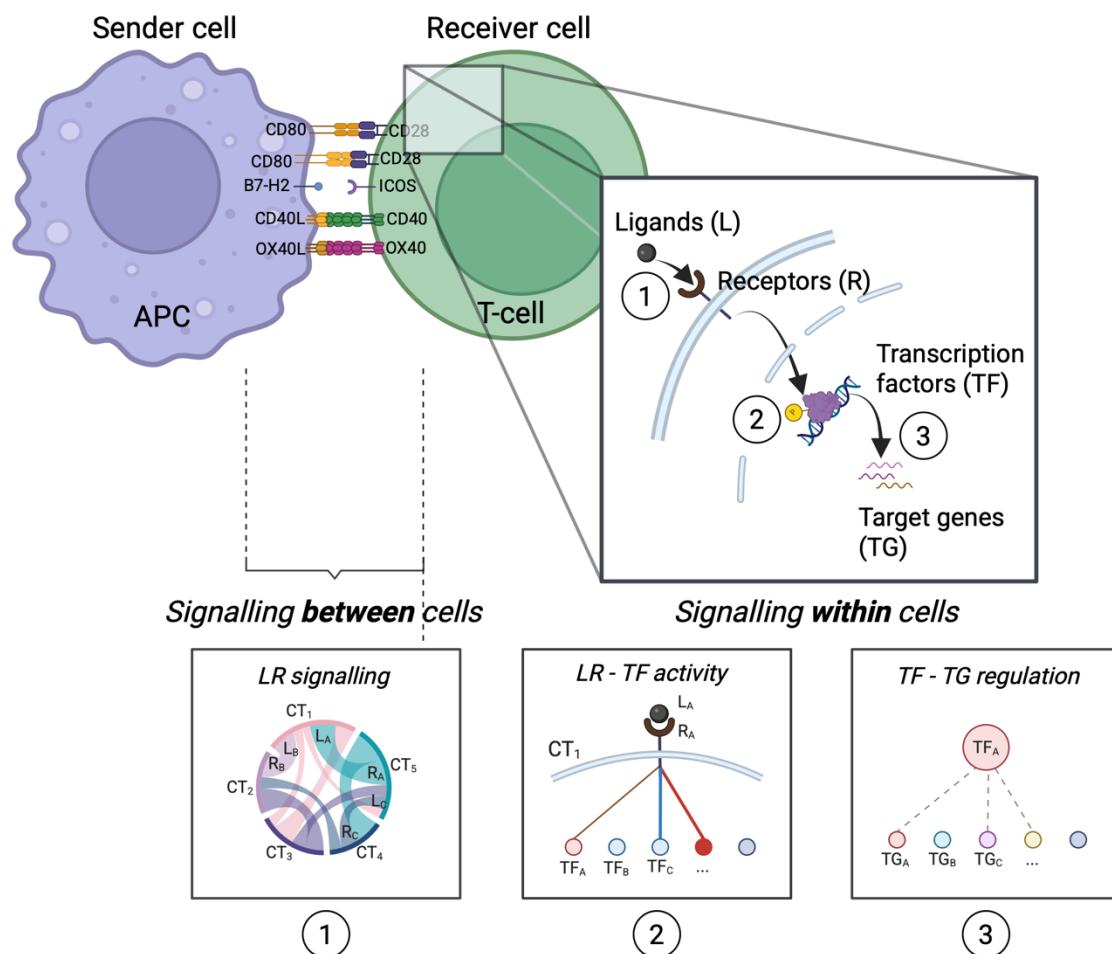


Figure 1. Overview of the *Decipher* framework for integrating intercellular and intracellular signalling. *Decipher* connects ligand-receptor (LR) interactions between a sender cell (e.g., antigen-presenting cell, APC) and a receiver cell (e.g., T-cell) to downstream transcription factor (TF) activity and target gene (TG) regulation. The framework consists of three hierarchical layers: (1) ligand-receptor interactions, (2) the interaction between LR pairs and TF activity profiles, (3) TF-target gene regulation. Together, these layers capture key signalling pathways both between and within cells.

105 **Benchmarking Decipher with other cell-cell communication methods**

106 To demonstrate the utility of *Decipher* in extracting insights into the cellular and molecular
107 responses to a perturbation, we applied *Decipher* to twelve publicly available scRNA-seq datasets
108 (Methods) focused on immune responses to viral and bacterial infections²⁸⁻³¹, vaccination^{32,33}, autoimmune
109 conditions^{34,35}, genetic disorders³⁶, chronic disease³⁷, and cancer^{38,39}. We compared *Decipher* with four
110 other cell-cell communication methods: two that account for intracellular responses (NicheNet⁷ and
111 LIANA+⁴⁰) and two that focus solely on intercellular signalling (Connectome⁴¹ and NATMI²²).

112 We first profiled the general characteristics of the LR interaction scores produced by each method,
113 including the total number of reported LR pairs and the corresponding distribution of their scores. Although
114 the number of reported interactions by each method is not strictly a measure of performance, it can be
115 informative about how a method balances sensitivity and specificity.

116 We observed that *Decipher* reports two orders of magnitude fewer interactions than NicheNet,
117 NATMI, and Connectome, and one order of magnitude fewer interactions than LIANA+ (Fig. 2a). Methods
118 further differed in the characteristics of the distributions of their prioritization scores (Fig. 2b). Only
119 *Decipher*, LIANA+, and NATMI produced negative and positive scores, which indicate inhibition and
120 activation of signalling, respectively. The score distributions produced by the five methods formed four
121 distinct patterns. *Decipher* displayed a sharp peak at zero with long, exponentially decaying tails. NicheNet
122 had a peak at a moderately positive value and much shorter tails. LIANA+ and NATMI displayed bimodal
123 distributions, with peaks at moderately negative and moderately positive values, with NATMI exhibiting
124 especially short tails. Lastly, Connectome exhibited a sharp peak at zero and a long right tail, though the
125 decay was less steep.

126 Consensus among methods was limited. Overlap between the top-100 ranked LR pairs per dataset
127 (Fig. 2c) showed that NicheNet reported the greatest number of unique interactions. In comparison to other
128 methods, NicheNet displayed few two-way intersections, whereas three-way overlap was most frequent
129 among *Decipher*, NicheNet, and LIANA+. Four- and five-way overlaps were rare. Agreement in ranking was
130 assessed on the top-100 ranked consensus LR pairs using Spearman correlation and search depth (Fig. 2d),
131 defined as the rank position within each method required to retrieve all 100 consensus interactions.
132 *Decipher* required the smallest search depth in every pairwise comparison. LIANA+ displayed a similar
133 profile to *Decipher*, except when compared with NATMI. NATMI and Connectome showed moderate mutual
134 agreement, while NicheNet required markedly deeper searches to align with NATMI and Connectome.
135 Spearman correlation further highlighted structural differences among methods. NATMI and Connectome
136 displayed the highest consensus among all pairs. *Decipher*, NicheNet and LIANA+ were weakly to
137 moderately correlated with one another. In contrast, NATMI was negatively correlated with this group.

138 We benchmarked each method against CytoSig⁴², which predicts cytokine activity for 62 ligands
139 based on experimentally determined gene expression signatures. Because NicheNet shares training data
140 with CytoSig⁴³, we treated NicheNet as a positive control. In some datasets, CytoSig detected an insufficient
141 number of active ligands (median z-score ≥ 2) to construct reliable ROC curves. *Decipher*, NicheNet and
142 NATMI achieved the highest upper-range AUC values, although the latter two exhibited a few low-
143 performing outliers. Connectome showed intermediate performance with modest variance, whereas
144 LIANA+ displayed limited predictive power in this benchmark.

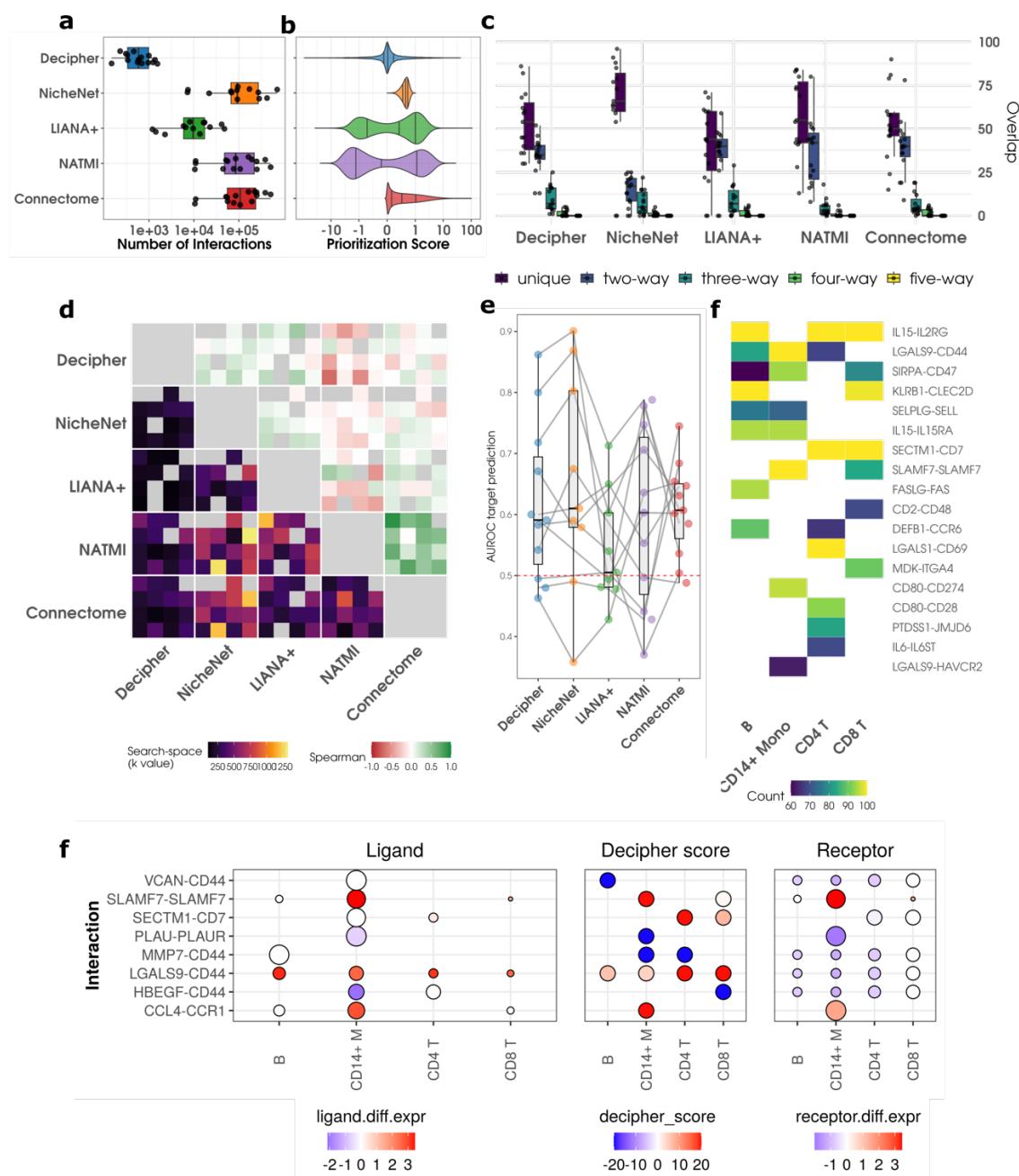


Figure 2. Comparison of predicted ligand-receptor activity across methods. (a) Box plots summarizing the number of reported interactions for each method across all datasets. (b) Violin plots of the combined distributions of predicted interaction scores for each method across all datasets. (c) Box plot of the overlap between methods for the top 100 interactions in each dataset. The plot displays the number of interactions unique to each method, as well as the number of two-way, three-way, four-way, and five-way overlap. (d) Compound heatmap of the search space (bottom-left of heatmap) required to find 100 overlapping LR pairs that are both highly ranked, as well as Spearman correlations (top-right of heatmap) between the rankings of the top 100 overlapping LR pairs. The search space is displayed using a Viridis scale, where darker colours indicate a smaller search space and brighter colours a larger one. A smaller search space indicates a greater degree of agreement between methods. Spearman correlation utilizes a red to green colour scale, where red indicates negative Spearman correlation, green positive correlation, and white no correlation. (e) Beeswarm plot of AUC scores for eleven datasets benchmarking the performance of Decipher and other frameworks against CytoSig scores as true labels. We omitted the lupus and sepsis datasets from this comparison, as CytoSig did not define enough active ligands to construct reliable ROC curves. (f) Heatmap indicating the consistency of interactions prioritized

by Decipher across 100 runs on the dataset of lupus patient response to interferon- β ⁴⁴ with distinct random seeds. White indicates that a ligand-receptor pair was not relevant to a particular cell type. (g) System-level signalling for the same dataset. The left subplot displays ligand-level statistics for the sender cell type, while the right subplot presents receptor-statistics for the receiver cell type. The size of the bubbles indicates the relative expression of the gene in the corresponding cell type, whereas the colour indicates the differential expression of that gene in case vs control. The central subplot presents *Decipher* scores for all receiver cell types. Here, blue indicates that a LR pair is predicted to be inhibited, and red activated.

145 Because *Decipher* includes stochastic steps, we tested its robustness to changes in the initial
146 random seed. The analysis was repeated 100 times on a dataset of lupus patient response to interferon-
147 β ⁴⁴ distributed through the ExperimentHub package from Bioconductor⁴⁵. Across the majority of the 100
148 runs, the same LR pairs were consistently prioritized (Fig. 2f); for example, IL15-IL2RG dominated B, CD4 T,
149 and CD8 T cell rankings, whereas LGALS9-CD44 was frequently the leading interaction for CD14 $^{+}$ monocytes.

150 Lastly, we compared the visual outputs of *Decipher*, NicheNet and Liana+. Each tool conveys two
151 metrics: the signalling potential of individual ligands and receptors, and an activity score for every LR pair.
152 To convey the signalling potential, *Decipher* reports on the normalized proportion of transcripts originating
153 from each cell type, whereas NicheNet relies on the average expression of each ligand and receptor. Liana+
154 does not convey this information. Differential signalling, on the other hand, is captured by all three methods
155 by reporting on the differential expression of the ligand or receptor separately. Because *Decipher*
156 aggregates all sender cell types into a single mixed cluster, it presents fewer visual outputs than the other
157 methods. Reformatting NicheNet and Liana+ outputs for the infant response to Poly-IC comparison to the
158 same visual output format as *Decipher* highlighted this increase in complexity (Supplementary Fig. SF.1).

159 **Extracting mechanistic insights from predictions made by *Decipher***

160 To assess the capacity of *Decipher* to extract mechanistic insights and identify candidate
161 therapeutic targets from single-cell profiles, we focused on two studies related to COVID-19: a study
162 investigating the immune response to the Pfizer-BioNTech COVID-19 vaccine in humans³³ and a study
163 profiling PBMCs from patients with mild or severe COVID-19³¹. Both studies included baseline, unvaccinated
164 or healthy, controls.

165 In the vaccination study, Arunachalam et al.³³ described the strong activation of the innate immune
166 system and the emergence of a novel CD14 $^{+}$ BDCA1 $^{+}$ PD-L1 (cluster C8) monocyte subpopulation one day
167 post-secondary vaccination. Moreover, Arunachalam et al. characterized the intracellular activity of this
168 subpopulation, identifying activation of STAT1, STAT2, STAT3, IRF1 and IRF8 TFs, and associatively linked
169 the observed response to interferon gamma (IFNG) signalling, hypothesizing that these two factors were a
170 key component of the programmed immune response after vaccination.

171 We applied *Decipher* to identify the upstream and downstream signals driving activation of the C8
172 monocyte subpopulation. The intracellular response of the C8 cluster showed strong upregulation in
173 subsets of the IRF and STAT family of TFs: IRF2, IRF7, IRF8, STAT1, and STAT2, consistent with observations
174 reported by Arunachalam et al.³³, (Fig. 3a). *Decipher* also detected IFNG signalling into the C8
175 subpopulation (Fig. 3b), in further accordance with the reference study³³. In addition, we observed
176 autocrine and paracrine signalling into the C8 monocytes through SLAMF7, CCL2, and C1QB pathways, as
177 well as inhibited signalling via PRG4-TLR2 and HGF-CD44 pathways (Fig. 3b). We further characterized the
178 downstream TF response to prioritized LR pairs and observed that C1QB, CCL2, and SLAMF7 activation are
179 strongly related to STAT2, IRF2, IRF7, and IRF8 activity, as well as moderately related to a much broader
180 transcription factor response (Fig. 3c). IFNG, as well as other activated pathways identified by *Decipher*,
181 such as SPN and HGF, exhibited a more exclusive response.

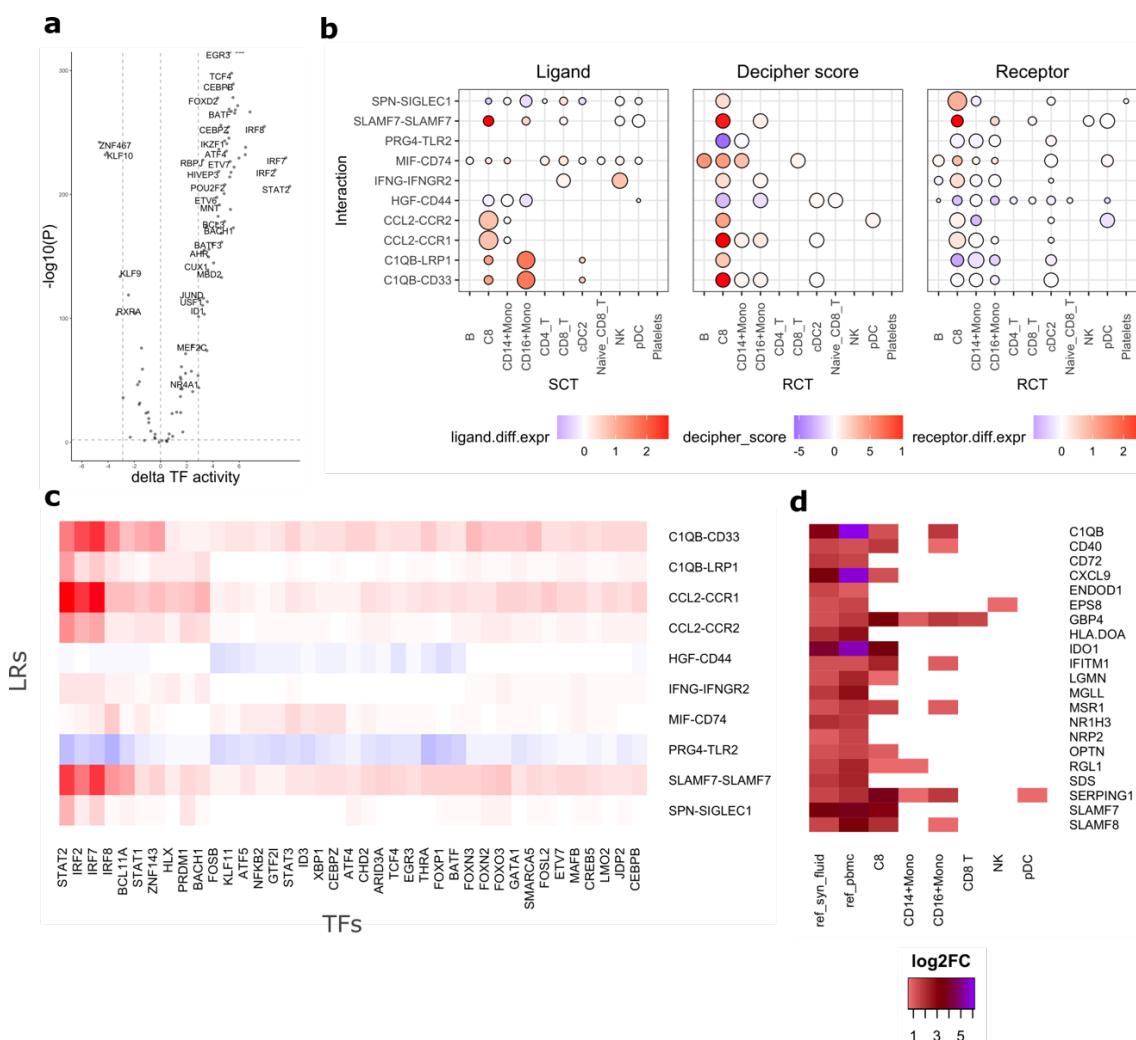


Figure 3. Mechanistic insights in the Pfizer–BioNTech COVID-19 vaccine comparison. (a) Volcano plot of changes in transcription factor (TF) activity in the C8 cluster on day one post-secondary vaccination vs baseline. (b) Multi-panel plot of global dynamics from the top 10 identified ligand-receptor (LR) pairs in the C8 cluster. (c) Heatmap of individual LR-TF *Decipher* scores for the LR pairs highlighted in the *Decipher* multi-panel plot. (d) Heatmap of reference log fold-changes from the SLAMF7-high gene signature in synovial fluid (ref_{syn}_fluid) and PBMCs (ref_{pbmc}) from sorted CD14⁺ monocytes (Simmons et al.⁴⁶), shown alongside differential expression profiles from three monocyte populations (C8, CD14⁺, and CD16⁺), as well as CD8 T, NK, and pDC cells.

182 To validate the predicted SLAMF7 signalling, we compared differential expression signatures of C8
 183 monocytes, CD16⁺ monocytes, CD8 T, NK, and pDC cells with a published signature of SLAMF7^{high}
 184 macrophages from synovial fluid and PBMCs in an inflammatory setting⁴⁶. The C8 signature, and to a lesser
 185 extent the CD16⁺ signature, matched the reference (Fig. 3d). Although pDCs, NK cells and CD8 T cells express
 186 SLAMF7, their differential expression signatures did not match the reference signatures, nor did *Decipher*
 187 identify them as receiving signalling via SLAMF7.

188 We next compared mild and severe COVID-19 samples. Cell types were annotated with Azimuth⁴⁷
 189 using its PBMC reference annotated dataset. Analysis was restricted to cell types that were sufficiently
 190 abundant and exhibited either changes in differential expression or in proportion across conditions (Fig.
 191 4a). Out of the 29 cell types identified by Azimuth, fourteen represented less than 1% of the total cell pool
 192 and were excluded. Abundance differences were further assessed with scCODA⁴⁸, which identified six cell
 193 types that presented significant changes in abundance (FDR < 0.05): B naive cells, CD16⁺ monocytes, CD4

194 TCMs, CD8 cells, NK cells, and plasmablasts. To elucidate changes in these populations, we calculated the
 195 total number of differentially expressed genes (DEGs), as well as the proportion corresponding to mild
 196 versus severe and up- vs down-regulation (Fig. 4c).

197

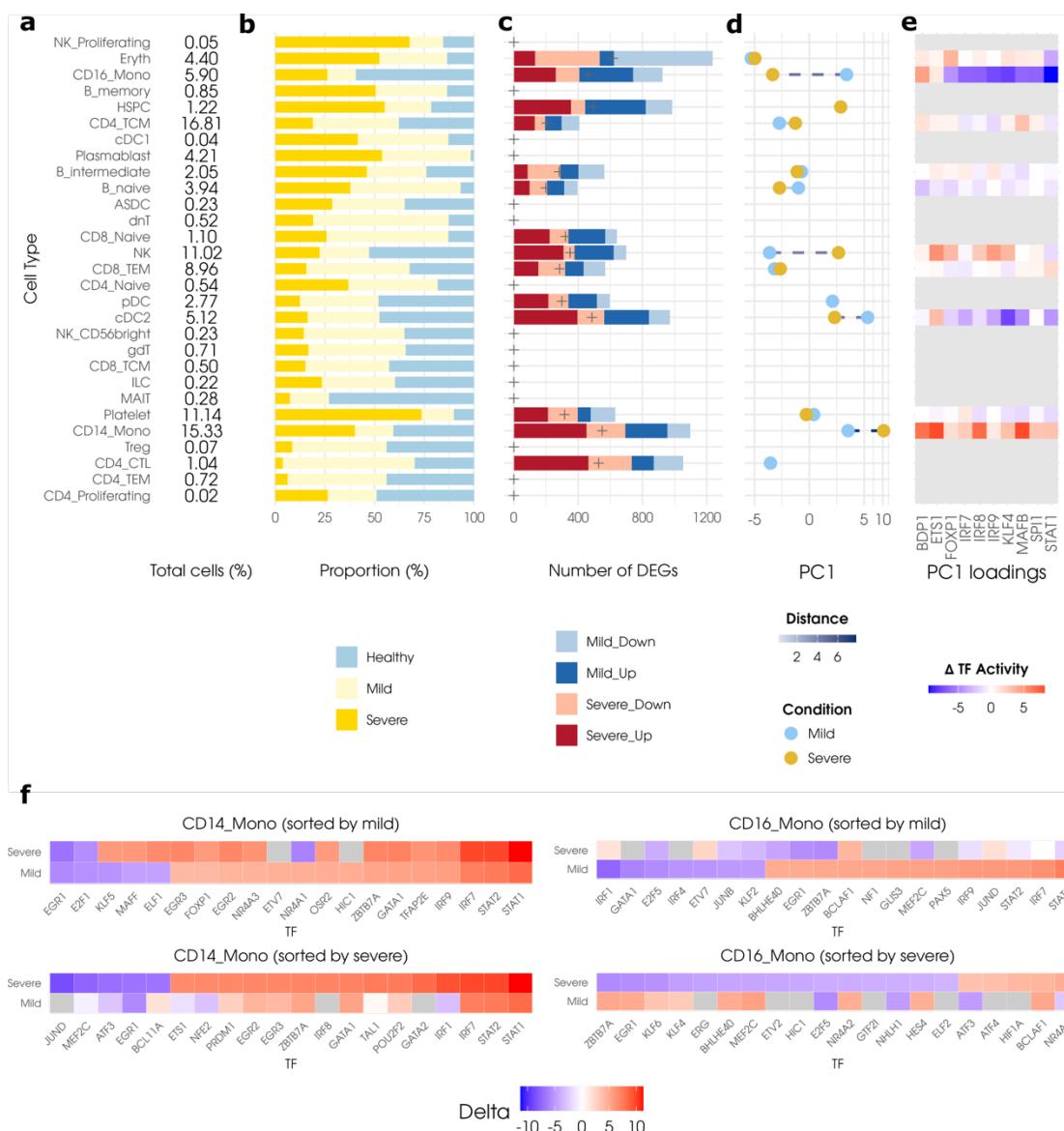


Figure 4. Cell-type-specific transcriptional differences in mild and severe COVID-19. (a) Text summarizing the total proportion of each cell type across the three conditions (Healthy, Mild, and Severe). (b) Bar plot of the relative proportion of each cell type for each condition. Guide vertical lines are displayed at the 33% and 66% values. (c) Bar plot of total number of differentially expressed genes and changes in the proportion of upregulated vs downregulated genes. Crosshairs in each bar indicate the 50% mark of the number of differentially expressed genes. (d) Line plot of the first principal component embedding of changes in TF activity by cell type and condition. Cell types across conditions are joined by a dotted line whose colour reflects the distance (Euclidean) between them. (e) Heatmap of differences in changes in TF activity (mild – severe) for top 10 PC1 loadings. (f) Differential TF activity plots for CD16+ Monocytes and CD14+ Monocytes, sorted by absolute value of change in TF activity for that given cell type in either the mild or severe condition.

198 We then quantified changes in transcription factor (TF) activity in the two comparisons and
199 projected the change in TF activity scores onto a reduced-dimensional representation via principal
200 component analysis. Four cell types: CD14⁺ monocytes, CD16⁺ monocytes, NK and CDC2 cells, showed
201 the largest differences in the first principal component embedding between the mild and severe
202 conditions (Fig. 4d). The loadings corresponding to the first principal component accounted for 36.7%
203 of the observed variance and included interferon-related transcription factors IRF7, IRF8, IRF9 and
204 STAT1 (Fig. 4e). Critically, a cell-type- and condition-dependent divergent response to mild and severe
205 COVID-19 was apparent in the direction of change along the PC1 axis. Heatmaps of the delta in the
206 change in TF activity between mild and severe, calculated as the subtraction of the mild scores from
207 the severe scores, further showcased evidence for this divergent response; CD16⁺ monocytes in severe,
208 for example, exhibited inhibition in most TFs related to PC1, whereas CD14⁺ monocytes in severe
209 exhibited strong activation of those same TFs (Fig. 4e). Together, these observations suggest that these
210 cell types underwent substantial transcriptional reprogramming, particularly in interferon-related
211 functions, between the mild and severe states.

212 To further corroborate this observation, we visualized changes in TF activity sorted by the absolute
213 values for both mild and severe conditions for CD14⁺ and CD16⁺ monocytes (fig. 4f). Here, we observed that
214 CD16⁺ monocytes from the mild condition display strong differential activation of interferon-related
215 transcription factors (STAT1, IRF7, STAT2, JUND, and IRF9), which were not upregulated in CD16⁺ monocytes
216 from the severe condition. This difference appears reversed in CD14⁺ monocytes, albeit the effect does not
217 speak to a divergent response, but rather to a change in intensity of activation.

218 To further characterize this divergence in intracellular programs we examined comparative
219 network representations across the three layers produced by the *Decipher* analysis for both the mild and
220 severe comparisons of the two monocyte subpopulations (Fig. 5). The LR signalling of these networks
221 showed that CD14⁺ monocytes in the severe condition exhibited the strongest activation of intercellular
222 signalling: via CD63, SIGLEC1, SELL and ITGB2 receptors. In addition, pDCs only played a role in signalling in
223 the mild condition. We again observed markers of type I interferon signalling via the TFs IRF7, IRF9, STAT1
224 and STAT2, active in CD14⁺ monocytes from both mild and severe COVID, and in CD16⁺ Monocytes from
225 mild COVID only. In CD16⁺ monocytes from severe COVID, there is a complete loss of type I interferon
226 signalling TFs. Moreover, this loss of type I interferon TFs is associated with a gain in TFs that drive
227 inflammation (NFkB2) and responses to oxidative and cellular stress (HIF-1A, ATF3, ATF4).

228

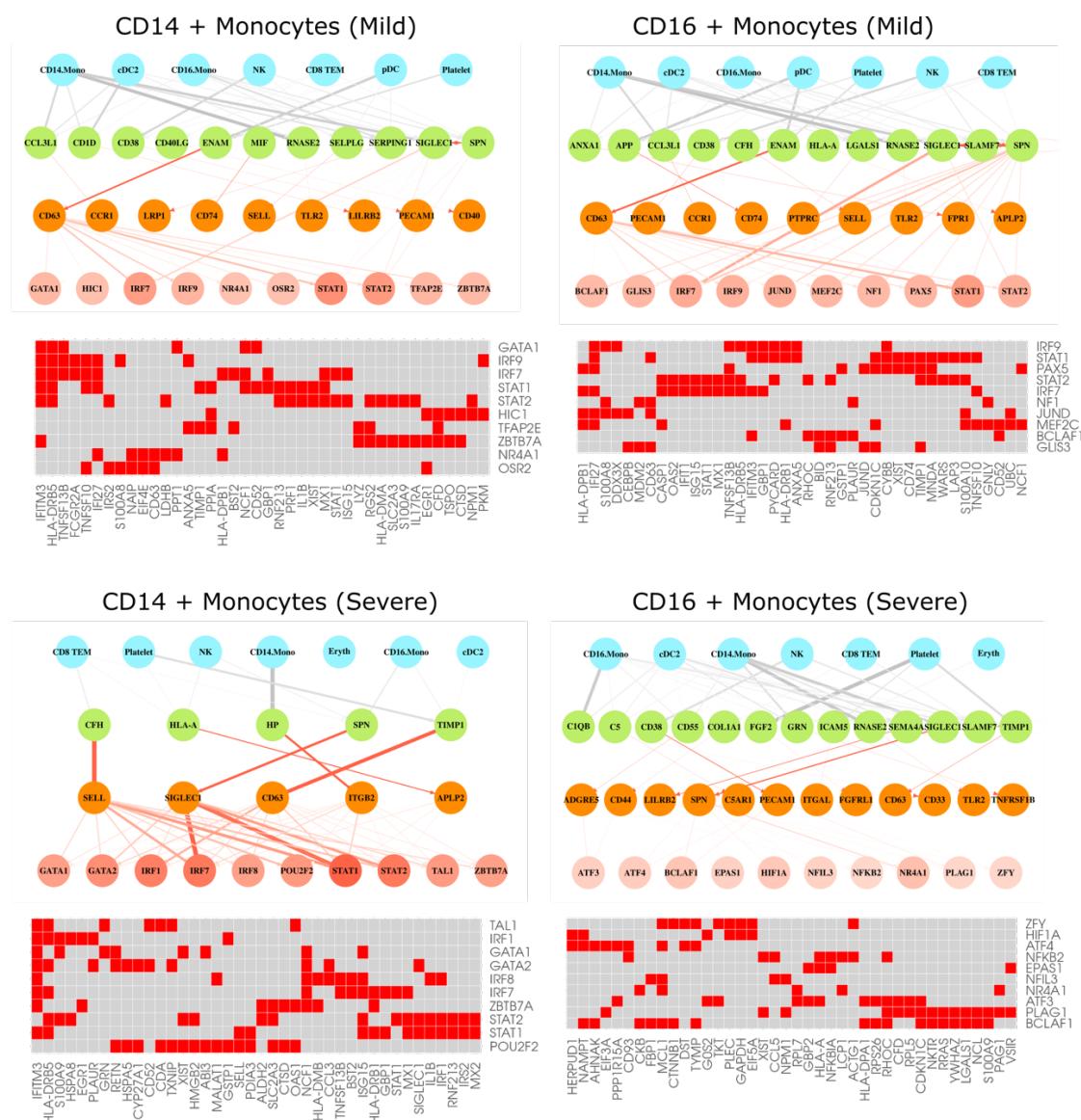


Figure 5. Multi-layer visualizations of Decipher results for CD14⁺ Monocytes and CD16⁺ monocytes in mild and severe COVID-19.
 Network graphs displaying sender cell type (blue), ligand (green), receptor (orange) and transcription factors (TFs) for the CD14⁺ and CD16⁺ monocytes in mild and severe COVID-19. Each network is constrained to the top 10 upregulated TFs, coloured by the change in calculated TF activity. Edges between sender cell types and ligands are weighted by the proportion of total ligand expression (normalized by cell count) expressed by each cell type. Additionally, only the top three cell types producing a given ligand are given an edge with that ligand. In addition, only ligands and receptors involved in the top 20 interactions by Decipher score and strongly associated with the top TFs (based on permutation importance) were considered. Lastly, each network is accompanied by a heatmap of downstream target genes (TG) for each TF. We limited these target genes to the top 40 most researched genes (within the set of target genes for the selected TFs), as determined by the number of publications that mention said gene in PubMed⁴⁹. Red colour within the heatmap indicates the existence of a regulatory relationship between a TF and a TG. All four plots share the same scale for the node colours (applicable to TFs) and widths or colours of edges.

231 3 Discussion

232 Decoding the cellular and molecular events that drive disease processes and cellular responses to
233 therapies requires the development of new methods that can extract deep mechanistic insights at multiple
234 layers of regulation from single-cell profiles. Cell-cell communication is one of these critical layers, as it
235 mediates many of the functions necessary for multicellular life. However, among the methods that study
236 intercellular communication, most only focus on upstream ligand-receptor interactions and fail to consider
237 downstream effects. Among the subset of methods that do account for multiple regulatory levels, most
238 tend to overly rely on prior knowledge, limiting their findings to well-characterized relationships. Those
239 that do rely primarily on data-driven network reconstruction often lack mechanistic context and may not
240 even possess sufficient predictive power for network inference⁵⁰. In both instances, the methodology limits
241 the ability to identify novel signalling pathways. Toward this goal, we developed *Decipher*, a novel
242 computational pipeline that builds integrated cell-signalling networks from single-cell profiles and unveils
243 key cellular and molecular events that drive biological responses. *Decipher* employs both prior knowledge
244 and data-driven approaches to strike a balance between novelty and accuracy. We found that *Decipher*
245 performed as well as or better than other state-of-the-art cell-cell communication methods, while also
246 generating more interpretable visualizations. To test the ability of *Decipher* to extract mechanistic insights,
247 we analysed two COVID-19 single-cell datasets. In the first study, we identified the upstream signals that
248 drive a previously described monocyte subpopulation critical to the immune response post Pfizer-BioNTech
249 COVID-19 vaccination. In the second study, we characterized the difference in cellular responses of
250 monocytes in mild and severe COVID-19, which aligned with current understanding of the mechanisms of
251 this disease. Taken altogether, our findings suggest that *Decipher* can decode signalling pathways and
252 report on mechanistic relationships captured through ligand-receptor mediated transcription factor –
253 target gene networks.

254 We benchmarked *Decipher* against four established cell-cell communication methods and found
255 that *Decipher* returns a tightly prioritized set of molecular pathways with scores that capture both the
256 strength and mode of influence across ligands, receptors, transcription factors and target genes. While
257 agreement among methods was generally low, as previously noted for other methods by Dimitrov et al.¹¹
258 we did observe that tools limited to exploring only ligand-receptor interactions behaved differently from
259 those that included intracellular signalling as well. When evaluated against ligand activity predictions from
260 CytoSig⁴², *Decipher* performed as well as or better than other methods, while maintaining the flexibility to
261 detect novel pathways by reducing its reliance on prior knowledge. Importantly, *Decipher* consistently
262 prioritized top ligand-receptor pairs across runs, suggesting robustness in its analysis. We further observed
263 that, by pooling all sender cell types into a single mixed cluster, *Decipher* produced signalling maps that
264 reduce visual clutter without sacrificing biological insight. Thus, *Decipher* offers a balance between highly
265 prioritized interactions, concise visualisations and competitive predictions.

266 To evaluate the capacity of *Decipher* to extract mechanistic insights from single-cell profiles, we
267 analysed two COVID-19 scRNA-seq studies profiling PBMCs: the first from individuals one day post-
268 secondary Pfizer-BioNTech COVID-19 vaccination, and the second from patients with mild or severe COVID-
269 19. We employed *Decipher* to recover the underlying mechanism driving a novel subpopulation of
270 CD14⁺BDCA1⁺PD-L1⁺ monocytes identified by Arunachalam et al. to be markedly increased in frequency
271 following secondary vaccination and characterized by Type I interferon response, TLR and inflammation,
272 with elevated activity of interferon and STAT TFs and reduced activity of AP-1 TFs³³. *Decipher* analysis
273 confirmed the previously reported upregulation of IFN (IRF2, IRF7, IRF8) and STAT (STAT1, STAT2, STAT3)
274 family of TFs, as well as displayed significant crosstalk between innate immune cell types, as well as
275 autocrine signalling in C8 cells, a common phenomenon in cell-cell communication³. We confirmed previous
276 data demonstrating that interferon gamma (IFNG) is a driver of the C8 population³³, as well as identified

277 CD8 T and NK cells as the primary producers of this ligand⁵¹. IFNG, however, was not the strongest signal
278 found by *Decipher*, as we also found significant signalling through the SLAMF7, CCL2 and C1QB ligands into
279 the C8 cluster. Notably, SLAMF7 is a self-ligand receptor from the signalling lymphocytic activation molecule
280 (SLAM) family and a potent regulator of interferon responses⁵² and inflammatory macrophage activation⁴⁶.
281 Importantly, IFNG and SLAMF7 have been previously implicated as a driver of a super-activated
282 macrophage state present in autoimmune diseases and severe COVID-19⁴⁶.

283 The response to SARS-CoV-2 infection involves an interplay of immune pathways that determine
284 disease severity. During the early stages of SARS-CoV-2 infection, it is crucial to mount a robust type I
285 interferon response to limit the spread of infection and prime adaptive immune responses that promote
286 viral clearance. In patients with severe disease, delayed and ineffective interferon responses result in
287 increased viral loads. SARS-CoV-2 proteins inhibit interferon signalling at multiple steps in the pathway and
288 promote NFkB signalling, resulting in a cytokine storm that drives severe disease⁵³. Oxidative stress and
289 excessive tissue damage activates inflammasomes, further driving the cytokine storm, which in turn
290 promotes vascular permeability, decreased oxygen levels in the blood, multi-organ damage, and respiratory
291 failure⁵³. *Decipher* analysis of monocyte responses in patients with COVID-19 found that transcription
292 factors that mediate interferon responses (e.g. IRF7, IRF9, STAT1, STAT2) were strongly activated in CD14⁺
293 monocytes from patients with both mild and severe disease. However, in CD16⁺ monocytes from patients
294 with severe disease, we observed a loss of interferon transcription factors and a gain of NFkB and other
295 factors that mediate responses to oxidative and cellular stress (HIF-1a, ATF3, ATF4). Importantly, this was
296 not observed in patients with mild disease. In this context it is noteworthy that about 10% of blood
297 monocytes are infected with SARS-CoV-2 in patients with COVID-19⁵⁴. Given that monocytes do not
298 express the viral entry receptor ACE2, virus is taken up by monocytes via antibody-mediated opsonisation
299 through the Fcγ receptor CD16⁵⁴. Once inside monocytes, the viral proteins will inhibit interferon signalling,
300 promote NFkB signalling and inflammasome activation and drive a systemic cytokine storm.

301 *Decipher* has limitations that should be acknowledged. We observed intracellular activity to be
302 imbalanced, where some cell types have a greater number of differentially activated TFs. While this is
303 expected behaviour, it may affect the ability to compare prioritization scores between cell types. To address
304 this, a potential alternative could be to perform scaling on TF activity and introduce a normalization factor,
305 in similar manner to scSeqComm¹⁸. We also observed that TF activity was highly correlated within each cell
306 type. Although multi-collinearity is a known property of biological networks, in the context of our analysis
307 it does pose a problem, as LR pairs that are most predictive of the activity of a TF are likely to be selected
308 for other TFs. Here, we suggest implementing new scoring strategies for TF activity, something that is in
309 active development by the bioinformatics community. Conceptually, *Decipher* currently does not consider
310 the fact that signalling occurs within local niches nor account for feedback control or response dynamics.
311 These issues can be addressed, for example, by extending *Decipher* to spatial transcriptomics data and by
312 modelling this dynamical systems behaviour. Despite these limitations, our findings demonstrate the utility
313 of *Decipher* to decode biological processes and, in doing so, unveil novel therapeutic targets for
314 experimental validation and clinical development. We present *Decipher* as a modular pipeline that
315 quantifies active ligand-receptor pairs, accounts for downstream intracellular responses and maps cell-cell
316 communication at a systems level. We believe that *Decipher* will be invaluable as a tool to accelerate the
317 identification of novel therapeutic targets for human diseases, as well as accelerate the development of
318 new medicines.

319

320

321

322 4 Methods

323

324 **Collection and processing of single-cell transcriptomic data of poly-IC stimulation to human blood**
325 **mononuclear cells from Read et al.**²⁸ Processed single-cell data was directly obtained from the
326 original authors. We used the original cell type labels, so no further preprocessing was required.
327 Alternatively, the data are available from Gene Expression Omnibus (Accession Number GSE184383).

328

329 **Collection and processing of mouse single-cell transcriptomic data of lung-tissue response to BCG**
330 **vaccination from Lee et al.**³² Count data was downloaded from Gene Expression Omnibus (Accession
331 Number: GSE244126). No cell type labels were provided, so we used ScType⁵⁵ along with two
332 reference tissue profiles (Immune system and lung) to assign cell type labels to each cluster, retaining
333 the label with the largest score for each cluster.

334

335 **Collection and processing of human single-cell transcriptomic data of human PBMC response to**
336 **Pfizer-BioNTech vaccination from Arunachalam et al.**³³ Count data and phenotypic data were
337 downloaded from Gene Expression Omnibus (Accession Number: GSE171964). We used the original
338 cell type labels, so no further preprocessing was required.

339

340 **Collection and processing of single-cell transcriptomic data of PBMCs from subjects with Systemic**
341 **Lupus (SLE) and healthy control from Perez et al.**³⁴ Count data, including phenotypic data, was
342 downloaded from Gene Expression Omnibus (Accession number: GSE174188). We used the original
343 cell type labels, so no further preprocessing was required. We constrained our analysis to the subset
344 of samples belonging to female individuals of Asian ancestry that were either classified as healthy or
345 as 'managed' SLE cases.

346

347 **Collection and processing of single-cell transcriptomic data of PBMCs from ICU patients with and**
348 **without sepsis from Reyes et al.**²⁹ Count data with phenotypic information were downloaded from
349 the Broad Institute Single-cell Portal (Accession Number: SCP548). We used the original cell type
350 labels, so no further preprocessing was required.

351

352 **Collection and processing of single-cell transcriptomic data of PBMCs from breast cancer patients**
353 **treated with immune checkpoint blockade from Bassez et al.**³⁸ Processed single-cell data was
354 downloaded directly from Diether Lambrecht's laboratory website, through their Data portal. We
355 used the original cell type labels, so no further preprocessing was required.

356

357 **Collection and processing of single-cell transcriptomic data of PBMCs from patients with mild or**
358 **severe COVID-19 from Arunachalam et al.**³¹ Count data of PBMCs from mild and severe COVID-19
359 patients was downloaded from GEO (accession number: GSE155673). Only samples corresponding
360 to actual RNA-seq experiments were selected (cov01–cov04, cov07–cov12, cov17–cov18). For each
361 sample, the corresponding barcodes.tsv.gz and matrix mtx.gz files were retrieved. Separate Seurat
362 objects were created for each sample and merged into a single object, with sample identifiers
363 tracked in metadata. Sample-level metadata (age, sex, disease status, severity, and days since
364 symptom onset) were curated from GEO and merged with cell-level metadata. We followed the
365 preprocessing protocol outlined in the original study to produce cluster-level marker genes
366 distinguishing severe and mild COVID-19 from Healthy controls. We applied the Azimuth pipeline⁴⁷
367 to label cell types (at level-2 resolution).

368

369 **Collection and processing of single-cell transcriptomic data from the CellxGene collection**⁵⁶.
370 Processed single-cell datasets were downloaded as annotated .h5ad objects from the CZ CellxGene
371 portal. For each dataset, we applied consistent preprocessing steps: cells with fewer than 200

372 detected genes were removed. Datasets were optionally subset based on disease or condition
373 annotations, depending on the study context. The AnnData objects were parsed in Python, and we
374 verified that raw count matrices contained integer values. Metadata, gene names, and filtered count
375 matrices were extracted and saved in standard formats. Where applicable, Ensembl gene IDs were
376 converted to HGNC symbols. Resulting count matrices and metadata was used to create Seurat
377 objects in R, with cleaned cluster annotations and standardized condition labels. Original cell type
378 and disease labels were retained throughout
379

380 This workflow was applied to: PBMCs from healthy individuals and patients with influenza from Lee
381 et al.³⁰; Pancreatic islets from healthy donors and individuals with type 1 diabetes from Fasolino et
382 al.³⁵; Head and neck squamous cell carcinoma samples from Jenkins et al.³⁹; Kidney samples from
383 healthy individuals and chronic kidney disease patients from Lake et al.³⁷; and Bronchial biopsy
384 samples from cystic fibrosis patients and healthy controls from Berg et al.³⁶.
385

386 **Preprocessing pipeline.** If needed, a standard preprocessing pipeline based on Seurat⁴⁷ is delineated
387 in “Supplementary Note 1: Preprocessing pipeline for single-cell profiles”. Said pipeline addresses
388 standard scRNA-seq preprocessing, beginning after the raw data has been read aligned to produce
389 gene counts \mathbf{D} . In brief, this preprocessing pipeline covers the filtering out poor-quality, invalid, or
390 damaged cells, normalization of gene counts, using these counts to produce clusters \mathbb{G}_j of similar
391 cells and determining representative genes for each cluster for downstream cell-labelling. To aid
392 with interpretability of results, we recommend clusters are labelled using expert judgement. If expert
393 judgement is not available, there are several cell type labelling tools, one of which we used (ScType⁵⁵)
394 to pre-process lung-tissue data from Lee et al³².
395

396 **Meta-cell generation.** To remove noise and account for zero-inflation of gene counts in scRNA-seq
397 data, we applied the method proposed by Baran et al.²⁵ with parameters determined from guidelines
398 by Obradovic et al.⁵⁷ Here, randomly-sampled individual single-cell profiles from each condition and
399 cell type were aggregated into meta cells by adding the counts of each gene across similar cells
400 (based on Euclidean distance of their gene counts). The number of cells per meta-cell, k , was
401 determined such that for most cell types, the median gene count per cell was between 7,500 and
402 10,000⁵⁷. We constrained the number of meta-cells such that each cell type had the same number
403 of meta-cells, and, on average, no cell appeared in more than one meta-cell. In addition, we include
404 a parameter to limit the number of meta-cells generated for each cluster-condition pair. This
405 prevents overrepresentation of large cell groups and ensures computational tractability by capping
406 the number of meta-cells at 600 per group, which typically exceeds the number of features modelled
407 in downstream analyses. Lastly, each meta-cell was normalized by its new library size and scaled by
408 a factor of 10^6 for interpretability.
409

410 **Interaction potential between clusters.** As a pre-requisite to determine which ligand-receptor (LR)
411 pairs are actively modulating a system’s response, we first confirmed that these same LR pairs had
412 the potential to signal. Here, we relied on the reference LR pair database ConnectomeDB2020²². LR
413 interactions in ConnectomeDB2020 were manually curated, based on literature support, and
414 focused on monomeric interactions, i.e. a single ligand interacts with a single receptor. This aligned
415 with our current version of the pipeline, as *Decipher* currently does not support multimeric
416 interactions.
417

418 We retained any ligand that was expressed in at least 10% of cells in any cell type and condition. We
419 addressed ligands at a global level because we assumed that ligand-concentration in the
420 environment is the driver of signalling, as opposed to ligand production by a single cluster. Receptors
421 were filtered on a cluster-by-cluster basis. For each cell type, a receptor was only retained if it was
422 expressed in at least 10% of the cells in either condition. Receptors were treated as cluster-specific

423 because receptor signalling is biologically constrained to individual cells. Together, this yielded a
424 cluster-specific list of LR pairs.

425
426 The condition-specific interaction potential p of a ligand-receptor pair i in each meta-cell from a
427 receiver cell type was calculated as:

428
429
$$p = \sqrt{\bar{l} \times r}$$

430

431 Where \bar{l} represents the mean ligand expression of ligand l across all cell types in each condition and
432 r represents the receptor expression in a meta-cell. We performed the Wilcoxon Rank Sum test as
433 implemented in the *FindMarkers* function from the *Seurat* package to identify differentially
434 expressed interactions ($p_{adj} < 0.01$ & $\log_2(\cdot) > 0.1$) across conditions. Here, we assumed that the
435 interaction potential had to exhibit some change across conditions to be relevant for downstream
436 analysis.

437
438 A significant portion of selected LR pairs exhibited high correlation with each other and thus could
439 affect downstream statistical modelling. Highly correlated LR pairs occurred primarily when multiple
440 ligands shared a single receptor (Supplementary Fig. SF.2). Therefore, we focused on selecting
441 representative interactions for those interactions whose receptors had multiple complementary
442 ligands. To identify which interactions behaved similarly across samples, we calculated the distance
443 between each pair of interactions as:

444
445
$$d(\mathbf{p}_a, \mathbf{p}_b) = 1 - \rho_s(\mathbf{p}_a, \mathbf{p}_b)$$

446

447 Where \mathbf{p}_a and \mathbf{p}_b represent the vector of interactions potentials for two LR pairs, and $\rho_s(\cdot)$
448 represents the Spearman correlation function. We performed hierarchical clustering on these
449 distances to define clusters of similarly behaving interactions. Subsets produced by hierarchical
450 clustering were defined using a distance metric threshold; we set this parameter so that we
451 produced approximately the same number of clusters as unique receptors within our features.
452 Lastly, we randomly selected and retained one representative LR interaction from each subset.

453
454 **Context-specific GRNs for each cluster.** We relied on base gene regulatory networks provided by
455 *CellOracle*²³, as these were generated using single-cell ATAC-seq data which, unlike computationally
456 derived gene regulatory networks, ensures there is biological evidence of a relationship between a
457 transcription factor (TF) and a target gene (TG). We further relied on *CellOracle* to tailor this network
458 to each cell type. *CellOracle* is implemented as a Python pipeline, which required converting our
459 *Seurat* objects to Python objects. Given difficulties with mapping *Seurat* objects to the required
460 format, we converted our count matrices to Python-compatible matrices and re-processed these
461 counts using the *Scanpy*⁵⁸ pipeline. The pipeline consisted of removing genes with no counts,
462 normalizing cell counts by library size, filtering normalized counts to retain only the top 3,000 most
463 variable genes, which were re-normalized by their new library size, and taking the natural logarithm
464 and scaling these counts to unit variance and zero mean. We ran the *get_links()* function from the
465 *cellOracle* pipeline on the scaled counts to tailor the base gene regulatory network to each cell type.

466
467 The tailored gene regulatory networks produced by *CellOracle* proved too dense, so we only retained
468 the strongest 20,000 edges in the network (based on the absolute values of their weights). This first
469 pruning was a more global, entire-network based-pruning. We complemented this global pruning
470 with a more local pruning of edges, such that for each TF present in the network, we restricted its
471 outdegree to a maximum of 40 edges, retaining the largest edges within each sub-network. We
472 performed pruning of the network to increase the heterogeneity of regulons (as large regulons
473 naturally tended to have overlap with smaller regulons).

474
475 **Scoring TF activity.** Using the tailored networks, we proceeded to calculate the activity of individual
476 TFs based upon the expressions of their TGs using elements of PAGODA2²⁷. We applied PAGODA2's
477 'mixture model' to the meta-cell count matrix to derive a matrix of residuals, capturing the over- or
478 under-dispersion of each gene in each meta-cell. We applied PAGODA2's function
479 *testPathwayOverdispersion()* to the residual matrix. This function is an implementation of the
480 implicitly restarted Lanczos bidiagonalization algorithm, which returns the first principal component
481 for a given. For each meta-cell, we projected its residual vector onto that first principal component,
482 obtaining a meta-cell-specific activity score. The collection of these scores across all meta-cells was
483 then standardized to yield a TF activity score.

484
485 Relevant TFs for each cell-type were then selected based on statistically significant deviations in their
486 activity across conditions. Specifically, we assessed significance (two-tailed, $p < 0.05$) by comparing
487 TF activity scores to a null distribution of scores generated from randomized gene regulatory
488 networks, in which target genes were shuffled independently for each TF while preserving the
489 number of targets.

490
491 **Building integrated signalling networks.** For each cluster, we began by assuming that LR pairs and
492 TFs formed a directed bipartite network where each ligand-receptor pair had the potential to
493 influence every transcription factor. We then refined this network by inferring both the weights and
494 mode of influence (direction) of each edge. To do so, we modelled the relationship between LR pairs,
495 represented by their interaction potentials, and transcription factors, represented by their TF activity
496 profiles.

497
498 For each cell type, we formulated this as n separate regression problems, one for each TF f ,
499 represented by its TF activity vector, \mathbf{t}_f . For each TF f , we modelled its relationship with all LR pairs
500 signalling potential \mathbf{P} relevant to that cell type as:

501
502
$$\mathbf{t}_f \approx R_f(\mathbf{P})$$

503
504 Where $R_f(\cdot)$ represents the regression function mapping ligand-receptor interaction potentials to
505 the activity of TF f . Here, we used a Random Forest regressor.

506
507 For each regression problem, we further calculated each feature's permutation importance metric
508 as:

509
510
$$imp(\mathbf{p}; R_f(\cdot))$$

511
512 Where $imp(\cdot)$ represents the importance function, which randomly shuffles the interaction
513 potential vector \mathbf{p} to calculate the impact of permuting a given interaction on model performance.
514 The importance metric was used as the weight of the edge between LR pairs and transcription
515 factors. Furthermore, as LR pairs can either activate or suppress TF activity, we estimated the mode
516 of influence for each edge as the sign of the Spearman correlation between each predictor-target
517 pair in the model.

518
519 Repeated across n problems this yields a weighted adjacency matrix \mathbf{A} connecting all LR interactions
520 and TFs in each cell type. Naturally, it is possible to extend this network to include target genes, as
521 this information is already encoded in the tailored, cluster-specific gene regulatory networks.

522
523 **Scoring differential ligand-receptor activity.** Having obtained cluster-specific signed, weighted, and
524 directed iSNs comprising ligands, receptors and TFs, we utilized these networks to score LR

525 interactions for each cell type. Since *Decipher* was designed to compare signalling at the cell type
526 level, we first calculated the changes in intracellular TF activity for each cluster as the difference in
527 median TF activity for each TF f across conditions, Δ_f .

528
529 Differential activity is then captured by the *Decipher* score S , which is represented by:
530

$$531 \quad S = \sum_{f \in F} w_{i,f} \cdot \Delta_f$$

532
533 Where F represents all TFs relevant to a given cell type, and $w_{i,f}$ represents the weight between a
534 ligand-receptor pair i and a TF f .

535
536 Taken altogether, with this approach, we achieve our two primary aims of building cluster-specific
537 Integrated Signalling Networks and scoring interaction activity based on such a network.

538 **CytoSig ligand activity.** We estimated ligand activity with CytoSig⁴². For each cluster, we only
539 retained genes with non-zero total counts across all cells. Gene counts were normalized by total cell
540 count, scaled by a factor of 100,000, and log-transformed using $\log_2(x + 1)$. We defined a
541 differential expression profile for each case cell by subtracting the mean expression of control cells
542 from the log-transformed expression values. We applied CytoSig to the differential expression
543 profiles of cells in each cluster, producing z-scores for the ligand activity in each cell.

544 **Evaluation of ligand-activity prediction.** We evaluated how well ligand-receptor predictions from
545 each method aligned with the CytoSig model. Here, ligands were assumed to be active if they
546 displayed an absolute median z-score > 2 . Most methods reported scores for some ligands but not
547 others, so we assumed that no prediction implied no activity, and assigned these ligands zero values.
548 Except *Decipher*, all methods output scores for each sender-receiver cell type pair. Therefore, we
549 reduced these scores to a single score per ligand and receiver cell type by selecting the LR interaction
550 with the highest absolute score involving that ligand.

551 References

- 552 1. Armingol, E., Officer, A., Harismendy, O. & Lewis, N. E. Deciphering cell–cell interactions
553 and communication from gene expression. *Nat Rev Genet* (2020) doi:10.1038/s41576-
554 020-00292-x.
- 555 2. Baysoy, A., Bai, Z., Satija, R. & Fan, R. The technological landscape and applications of
556 single-cell multi-omics. *Nature Reviews Molecular Cell Biology* vol. 24 695–713 Preprint
557 at <https://doi.org/10.1038/s41580-023-00615-w> (2023).
- 558 3. Ramilowski, J. A. *et al.* A draft network of ligand–receptor-mediated multicellular
559 signalling in human. *Nat Commun* **6**, 7866 (2015).
- 560 4. Jin, S. *et al.* Inference and analysis of cell-cell communication using CellChat. *Nat Commun*
561 **12**, (2021).
- 562 5. Vento-Tormo, R. *et al.* Single-cell reconstruction of the early maternal–fetal interface in
563 humans. *Nature* **563**, 347–353 (2018).
- 564 6. Garcia-Alonso, L. *et al.* Single-cell roadmap of human gonadal development. *Nature* **607**,
565 540–547 (2022).

566 7. Browaeys, R., Saelens, W. & Saeys, Y. NicheNet: modeling intercellular communication
567 by linking ligands to target genes. *Nat Methods* **17**, 159–162 (2020).

568 8. Armingol, E., Baghdassarian, H. M. & Lewis, N. E. The diversification of methods for
569 studying cell-cell interactions and communication. *Nature Reviews Genetics* Preprint at
570 <https://doi.org/10.1038/s41576-023-00685-8> (2024).

571 9. Almet, A. A., Cang, Z., Jin, S. & Nie, Q. The landscape of cell-cell communication through
572 single-cell transcriptomics. *Current Opinion in Systems Biology* vol. 26 12–23 Preprint at
573 <https://doi.org/10.1016/j.coisb.2021.03.007> (2021).

574 10. Stock, M. *et al.* Leveraging prior knowledge to infer gene regulatory networks from
575 single-cell RNA-sequencing data. *Molecular Systems Biology* Preprint at
576 <https://doi.org/10.1038/s44320-025-00088-3> (2025).

577 11. Dimitrov, D. *et al.* Comparison of methods and resources for cell-cell communication
578 inference from single-cell RNA-Seq data. *Nat Commun* **13**, (2022).

579 12. Wang, S., Karikomi, M., Maclean, A. L. & Nie, Q. Cell lineage and communication network
580 inference via optimization for single-cell transcriptomics. *Nucleic Acids Res* **47**, (2019).

581 13. Lu, H. *et al.* CommPath: An R package for inference and analysis of pathway-mediated
582 cell-cell communication chain from single-cell transcriptomics. *Comput Struct Biotechnol
583 J* **20**, 5978–5983 (2022).

584 14. Xin, Y. *et al.* LRLoop: a method to predict feedback loops in cell-cell communication.
585 *Oxford Bioinformatics* **38**, 4117–4126 (2022).

586 15. Wilk, A. J., Shalek, A. K., Holmes, S. & Blish, C. A. Comparative analysis of cell-cell
587 communication at single-cell resolution. *Nat Biotechnol* (2023) doi:10.1038/s41587-
588 023-01782-z.

589 16. Cheng, J., Zhang, J., Wu, Z. & Sun, X. Inferring microenvironmental regulation of gene
590 expression from single-cell RNA sequencing data using scMLnet with an application to
591 COVID-19. *Brief Bioinform* **22**, 988–1005 (2021).

592 17. Zhang, Y. *et al.* CellCall: Integrating paired ligand-receptor and transcription factor
593 activities for cell-cell communication. *Nucleic Acids Res* **49**, 8520–8534 (2021).

594 18. Baruzzo, G., Cesaro, G. & Camillo, B. Di. Identify, quantify and characterize cellular
595 communication from single-cell RNA sequencing data with scSeqComm.
596 *BIOINFORMATICS* **38**, 1920–1929 (2022).

597 19. Ma, X. *et al.* SPaRTAN, a computational framework for linking cell-surface receptors to
598 transcriptional regulators. *Nucleic Acids Res* **49**, 9633–9647 (2021).

599 20. Hu, Y., Peng, T., Gao, L. & Tan, K. CytoTalk: De novo construction of signal transduction
600 networks using single-cell transcriptomic data. *Sci. Adv* **7**, (2021).

601 21. Jerby-Arnon, L. & Regev, A. DIALOGUE maps multicellular programs in tissue from
602 single-cell or spatial transcriptomics data. *Nat Biotechnol* **40**, 1467–1477 (2022).

603 22. Hou, R., Denisenko, E., Ong, H. T., Ramilowski, J. A. & Forrest, A. R. R. Predicting cell-to-
604 cell communication networks using NATMI. *Nat Commun* **11**, (2020).

605 23. Kamimoto, K. *et al.* Dissecting cell identity via network inference and in silico gene
606 perturbation. *Nature* **614**, 742–751 (2023).

607 24. Wang, Y. *et al.* Reprogramming of regulatory network using expression uncovers sex-
608 specific gene regulation in *Drosophila*. *Nat Commun* **9**, (2018).

609 25. Baran, Y. *et al.* MetaCell: Analysis of single-cell RNA-seq data using K-nn graph partitions.
610 *Genome Biol* **20**, (2019).

611 26. Fan, J. *et al.* Characterizing transcriptional heterogeneity through pathway and gene set
612 overdispersion analysis. *Nat Methods* **13**, 241–244 (2016).

613 27. Barkas, N., Petukhov, V., Kharchenko, P. & Biederstedt, E. pagoda2: Single Cell Analysis
614 and Differential Expression. Preprint at <https://CRAN.R-project.org/package=pagoda2>
615 (2022).

616 28. Read, J. F. *et al.* Lipopolysaccharide-induced interferon response networks at birth are
617 predictive of severe viral lower respiratory infections in the first year of life. *Front
618 Immunol* **13**, (2022).

619 29. Reyes, M. *et al.* An immune-cell signature of bacterial sepsis. *Nature Medicine* vol. 26
620 333–340 Preprint at <https://doi.org/10.1038/s41591-020-0752-4> (2020).

621 30. Seok Lee, J. *et al.* Immunophenotyping of COVID-19 and Influenza Highlights the Role of
622 Type I Interferons in Development of Severe COVID-19. *Sci. Immunol* vol. 5
623 <https://www.science.org> (2020).

624 31. Arunachalam, P. S. *et al.* Systems Biological Assessment of Immunity to Mild versus Severe
625 COVID-19 Infection in Humans. <https://www.science.org>.

626 32. Lee, A. *et al.* BCG vaccination stimulates integrated organ immunity by feedback of the
627 adaptive immune response to imprint prolonged innate antiviral resistance. *Nat
628 Immunol* (2023) doi:10.1038/s41590-023-01700-0.

629 33. Arunachalam, P. S. *et al.* Systems vaccinology of the BNT162b2 mRNA vaccine in humans.
630 *Nature* **596**, 410–416 (2021).

631 34. Perez, R. K. *et al.* Single-cell RNA-seq reveals cell type-specific molecular and genetic
632 associations to lupus. *Science* (1979) **376**, (2022).

633 35. Fasolino, M. *et al.* Single-cell multi-omics analysis of human pancreatic islets reveals
634 novel cellular states in type 1 diabetes. *Nat Metab* **4**, 284–299 (2022).

635 36. Berg, M. *et al.* Evidence for altered immune-structural cell crosstalk in cystic fibrosis
636 revealed by single cell transcriptomics. *Journal of Cystic Fibrosis* (2025)
637 doi:10.1016/j.jcf.2025.01.016.

638 37. Lake, B. B. *et al.* An atlas of healthy and injured cell states and niches in the human
639 kidney. *Nature* **619**, 585–594 (2023).

640 38. Bassez, A. *et al.* A single-cell map of intratumoral changes during anti-PD1 treatment of
641 patients with breast cancer. *Nat Med* **27**, 820–832 (2021).

642 39. Jenkins, B. H. *et al.* Single cell and spatial analysis of immune-hot and immune-cold
643 tumours identifies fibroblast subtypes associated with distinct immunological niches
644 and positive immunotherapy response. *Mol Cancer* **24**, (2025).

645 40. Dimitrov, D. *et al.* LIANA+: an all-in-one cell-cell communication framework. *bioRxiv*
646 (2023) doi:10.1101/2023.08.19.553863.

647 41. Raredon, M. S. B. *et al.* Computation and visualization of cell-cell signaling topologies in
648 single-cell systems data using Connectome. *Sci Rep* **12**, (2022).

649 42. Jiang, P. *et al.* Systematic investigation of cytokine signaling activity at the tissue and
650 single-cell levels. *Nat Methods* **18**, 1181–1191 (2021).

651 43. Browaeys, R. Evaluation of NicheNet's ligand-target predictions.
652 https://github.com/saeyslab/nichenet/blob/master/vignettes/model_evaluation.md.

653 44. Kang, H. M. *et al.* Multiplexed droplet single-cell RNA-sequencing using natural genetic
654 variation. *Nat Biotechnol* **36**, 89–94 (2018).

655 45. Huber, W. *et al.* Orchestrating high-throughput genomic analysis with Bioconductor. *Nat*
656 *Methods* **12**, 115–121 (2015).

657 46. Simmons, D. P. *et al.* SLAMF7 engagement superactivates macrophages in acute and
658 chronic inflammation , Accelerating Medicines Partnership (AMP) RA/SLE Network †,
659 Deepak A. *Sci. Immunol* **7**, 2846 (2022).

660 47. Hao, Y. *et al.* Integrated analysis of multimodal single-cell data. *Cell* **184**, 3573-3587.e29
661 (2021).

662 48. Büttner, M., Ostner, J., Müller, C. L., Theis, F. J. & Schubert, B. scCODA is a Bayesian model
663 for compositional single-cell data analysis. *Nat Commun* **12**, (2021).

664 49. PubMed. <https://www.ncbi.nlm.nih.gov/pubmed/> (1946).

665 50. Petri, T., Altmann, S., Geistlinger, L., Zimmer, R. & Küffner, R. Addressing false discoveries
666 in network inference. *Bioinformatics* **31**, 2836–2843 (2015).

667 51. Li, C. *et al.* Mechanisms of innate and adaptive immunity to the Pfizer-BioNTech
668 BNT162b2 vaccine. *Nat Immunol* **23**, 543–555 (2022).

669 52. O'Connell, P. *et al.* SLAMF7 Is a Critical Negative Regulator of IFN- α -Mediated CXCL10
670 Production in Chronic HIV Infection. *The Journal of Immunology* **202**, 228–238 (2019).

671 53. Hiti, L. *et al.* The immunopathogenesis of a cytokine storm: The key mechanisms
672 underlying severe COVID-19. *Cytokine and Growth Factor Reviews* Preprint at
673 <https://doi.org/10.1016/j.cytofr.2024.12.003> (2025).

674 54. Junqueira, C. *et al.* Fc γ R-mediated SARS-CoV-2 infection of monocytes activates
675 inflammation. *Nature* **606**, 576–584 (2022).

676 55. Ianevski, A., Giri, A. K. & Aittokallio, T. Fully-automated and ultra-fast cell-type
677 identification using specific marker combinations from single-cell transcriptomic data.
678 *Nat Commun* **13**, (2022).

679 56. Abdulla, S. *et al.* CZ CELLxGENE Discover: a single-cell data platform for scalable
680 exploration, analysis and modeling of aggregated data. *Nucleic Acids Res* **53**, D886–D900
681 (2025).

682 57. Vlahos, L. *et al.* Systematic, Protein Activity-based Characterization of Single Cell State.
683 doi:10.1101/2021.05.20.445002.

684 58. Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: Large-scale single-cell gene expression data
685 analysis. *Genome Biol* **19**, (2018).

686

687 **Acknowledgements**

688 We would like to acknowledge Dr. J Heng from Remotely Consulting for the services provided in
689 English-language editing of the manuscript, as well as for his valuable feedback on *Decipher*.
690