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Abstract 23	

The advent of single-cell profiling technologies has revolutionized our understanding of the cellular and 24	
molecular states that underpin disease. However, current computational tools struggle to recover both 25	
known and novel mechanistic insights at distinct layers of biological regulation. Here, we present Decipher, 26	
a novel computational pipeline that builds integrated cell signalling networks from single-cell profiles in a 27	
context-specific, data-driven manner and identifies the key cellular and molecular events that drive disease. 28	
We benchmarked Decipher against existing tools and found it could recover known, experimentally 29	
determined cytokine signalling pathways, whilst maintaining the flexibility to detect novel pathways and 30	
context-specific effects. Notably, Decipher produces global cell-to-cell signalling maps that are 31	
interpretable. We utilised Decipher to unveil the cellular and molecular mechanisms driving a novel 32	
population of inflammatory monocytes enriched with interferon stimulated genes that is markedly 33	
increased in frequency following secondary immunization with the Pfizer-BioNTech COVID-19 mRNA 34	
vaccine. Finally, we employed Decipher to interrogate regulon profiles from covid-19 patients with mild 35	
versus severe disease, and we found that progression to severe disease was associated with a loss of 36	
interferon signalling transcription factors (Irf7, Irf9, STAT1, STAT2) and a gain of factors that drive 37	
inflammation and cellular stress responses (NFkB, HIF-1a, ATF3, ATF4). Taken together, our findings 38	
demonstrate that Decipher can decode signalling pathways and report on ligand-receptor mediated 39	
transcription factor-target gene networks that underlie processes in homeostasis, disease, and cellular 40	
responses to therapies. We present Decipher as an invaluable new tool for the discovery of novel 41	
therapeutic targets and the development of new medicines. 42	

1	Main	43	

Complex multicellular life forms execute a multitude of high-level biological functions, including 44	
growth, differentiation, metabolism and homeostasis. These functions are mediated by interactions among 45	
multiple cell types through diverse molecules, such as ligands and receptors1. The advent of single-cell 46	
omics, which profiles biological systems at single-cell resolution2, along with computational tools that infer 47	
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patterns of cell-to-cell communication from such data3,4, have furthered our understanding of the role of 48	
intercellular interactions in diverse contexts such as the maternal-fetal interface5, wound healing4, human 49	
development6 and cancer7. 50	

While inferring cell-cell communication patterns is an active area of method development, with 51	
over one-hundred available tools catalogued by Armingol et al.8, most share two key limitations: they 52	
overlook the downstream transcriptional effects of upstream signalling events9, and even those that 53	
consider such effects often rely heavily on pre-defined knowledge graphs to connect upstream signalling to 54	
cellular responses.  55	

Accounting for downstream effects is essential, as it reveals how cellular interactions reprogram 56	
gene expression and ultimately drive disease processes7, insights which are lost when analyses stop at 57	
ligand-receptor pairs alone. Conversely, integrating curated knowledge graphs can improve the reliability 58	
and accuracy of inferred networks10, but at the same time, they can also bias the results towards well-59	
studied pathways11, and obscure novel or context-specific signalling. 60	

We surveyed eleven computational tools that analyse cell-cell communication and explicitly 61	
account for downstream signalling. We found that most methods tend to rely on curated molecular 62	
interaction databases, limiting their findings to well-studied relationships. This is the case for Pathway-63	
centric methods (SoptSC12, CommPath13), Multilayer knowledge-graph methods (NicheNet7, LRLoop14, 64	
Scriabin15) and Transcription-factor-centric methods (ScMLNet16, CellCall17, scSeqComm18, SPARTAN19). De 65	
novo network inference tools (CytoTalk20, DIALOGUE21), in contrast, avoid this reliance on prior knowledge 66	
by reconstructing networks directly from expression data, yet the resulting relationships often lack 67	
mechanistic context. In both cases, the methodology limits the ability to identify novel signalling pathways.  68	

To address these gaps, we developed Decipher, a novel computational platform that builds 69	
integrated signalling networks that operate between and within cells, capturing both ligand-receptor 70	
signalling and transcription factor-target gene regulatory activity. Decipher utilizes prior-knowledge 71	
approaches when considering these networks separately, and data-driven network inference when 72	
integrating them. Thus, Decipher carefully balances the ability to accurately prioritize signalling mechanisms 73	
with the necessity to detect previously unidentified pathways. 74	

2	Results	75	

Decipher requires annotated single-cell RNA-seq profiles from two experimental conditions, a 76	
database of interacting ligand-receptor (LR) pairs and a reference gene regulatory network capturing 77	
relationships between transcription factors (TF) and their downstream target genes. A Decipher analysis is 78	
not limited to any specific source of prior knowledge, however, by default we use LR pairs from 79	
connectomeDB202022 and a base network from CellOracle23. In addition, as gene regulatory network wiring 80	
is context-specific24, we leverage further functionality from CellOracle23 to tailor the base network to the 81	
experimental and cellular context of each cell type, retaining only the edges that show evidence of being 82	
active.  83	

To score LR signalling, Decipher relies on reconstructed integrated signalling networks to link 84	
intercellular signalling potential to downstream transcription factor activity. Signalling potential refers to 85	
the capacity of cells to engage in differential signalling and is estimated as the mean-product22 of ligand and 86	
receptor expression across meta-cells25 (a strategy we employ to limit dropout effects). Transcription factor 87	
activity reflects the influence TFs exert within the cell and is inferred by applying an overdispersion-based 88	
scoring function from PAGODA226,27 to the expression profile of the target gene set for each transcription 89	
factor, as per the tailored gene regulatory networks. To reconstruct integrated signalling networks, the 90	
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calculated interaction potentials and TF activities are used as the predictor and target variables in a random 91	
forest regression model, whose feature importance values represent the edge weights connecting LR pairs 92	
to TFs within the network. The sign of the Spearman correlation between each predictor-target pair 93	
designates the mode of influence of that edge. Together, these steps yield a weighted, signed integrated 94	
signalling network that captures how extracellular cues propagate to transcriptional responses. 95	

  To quantify the activity of each LR pair 𝑖  across conditions, Decipher integrates the predicted 96	
regulatory weight 𝑤!,# between LR pair 𝑖 and transcription factor 𝑓 with the observed changes in TF activity 97	
Δ#, defined as the difference in median TF activity between conditions. The resulting Decipher score S is 98	
computed as: 99	

𝑆 = 	(𝑤!,# ⋅ Δ#
#∈%

 100	

Where 𝐹 denotes the set of TFs relevant to a given cell type. This formulation prioritizes LR pairs that are 101	
both influential (high 𝑤!,# indicating a strong regulatory relationship) and associated with responsive TFs 102	
(a large Δ# signals a substantial intracellular change). Decipher scores support three core layers of 103	
analysis: cell-to-cell LR signalling, LR-to-TF regulatory signalling and TF-target gene regulation (Fig. 1).  104	
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Figure	1.	Overview	of	the	Decipher	framework	for	integrating	intercellular	and	intracellular	signalling.	Decipher	connects	
ligand-receptor	(LR)	interactions	between	a	sender	cell	(e.g.,	antigen-presenting	cell,	APC)	and	a	receiver	cell	(e.g.,	T-cell)	to	
downstream	transcription	factor	(TF)	activity	and	target	gene	(TG)	regulation.	The	framework	consists	of	three	hierarchical	
layers:	 (1)	 ligand-receptor	 interactions,	 (2)	 the	 interaction	between	LR	pairs	and	TF	activity	profiles,	 (3)	TF-target	gene	
regulation.	Together,	these	layers	capture	key	signalling	pathways	both	between	and	within	cells. 

Benchmarking Decipher with other cell-cell communication methods 105	

To demonstrate the utility of Decipher in extracting insights into the cellular and molecular 106	
responses to a perturbation, we applied Decipher to twelve publicly available scRNA-seq datasets 107	
(Methods) focused on immune responses to viral and bacterial infections28–31, vaccination32,33, autoimmune 108	
conditions34,35, genetic disorders36, chronic disease37, and cancer38,39. We compared Decipher with four 109	
other cell-cell communication methods: two that account for intracellular responses (NicheNet7 and 110	
LIANA+40) and two that focus solely on intercellular signalling (Connectome41 and NATMI22). 111	

We first profiled the general characteristics of the LR interaction scores produced by each method, 112	
including the total number of reported LR pairs and the corresponding distribution of their scores. Although 113	
the number of reported interactions by each method is not strictly a measure of performance, it can be 114	
informative about how a method balances sensitivity and specificity.  115	

We observed that Decipher reports two orders of magnitude fewer interactions than NicheNet, 116	
NATMI, and Connectome, and one order of magnitude fewer interactions than LIANA+ (Fig. 2a). Methods 117	
further differed in the characteristics of the distributions of their prioritization scores (Fig. 2b). Only 118	
Decipher, LIANA+, and NATMI produced negative and positive scores, which indicate inhibition and 119	
activation of signalling, respectively. The score distributions produced by the five methods formed four 120	
distinct patterns. Decipher displayed a sharp peak at zero with long, exponentially decaying tails.  NicheNet 121	
had a peak at a moderately positive value and much shorter tails. LIANA+ and NATMI displayed bimodal 122	
distributions, with peaks at moderately negative and moderately positive values, with NATMI exhibiting 123	
especially short tails. Lastly, Connectome exhibited a sharp peak at zero and a long right tail, though the 124	
decay was less steep. 125	

Consensus among methods was limited. Overlap between the top-100 ranked LR pairs per dataset 126	
(Fig. 2c) showed that NicheNet reported the greatest number of unique interactions. In comparison to other 127	
methods, NicheNet displayed few two-way intersections, whereas three-way overlap was most frequent 128	
among Decipher, NicheNet, and LIANA+. Four- and five-way overlaps were rare. Agreement in ranking was 129	
assessed on the top-100 ranked consensus LR pairs using Spearman correlation and search depth (Fig. 2d), 130	
defined as the rank position within each method required to retrieve all 100 consensus interactions. 131	
Decipher required the smallest search depth in every pairwise comparison. LIANA+ displayed a similar 132	
profile to Decipher, except when compared with NATMI. NATMI and Connectome showed moderate mutual 133	
agreement, while NicheNet required markedly deeper searches to align with NATMI and Connectome. 134	
Spearman correlation further highlighted structural differences among methods. NATMI and Connectome 135	
displayed the highest consensus among all pairs. Decipher, NicheNet and LIANA+ were weakly to 136	
moderately correlated with one another. In contrast, NATMI was negatively correlated with this group. 137	

We benchmarked each method against CytoSig42, which predicts cytokine activity for 62 ligands 138	
based on experimentally determined gene expression signatures. Because NicheNet shares training data 139	
with CytoSig43, we treated NicheNet as a positive control. In some datasets, CytoSig detected an insufficient 140	
number of active ligands (median z-score ≥ 2) to construct reliable ROC curves. Decipher, NicheNet and 141	
NATMI achieved the highest upper-range AUC values, although the latter two exhibited a few low-142	
performing outliers. Connectome showed intermediate performance with modest variance, whereas 143	
LIANA+ displayed limited predictive power in this benchmark. 144	
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Figure 2. Comparison of predicted ligand-receptor activity across methods. (a) Box plots summarizing the number of reported 
interactions for each method across all datasets. (b) Violin plots of the combined distributions of predicted interaction scores for 
each method across all datasets. (c) Box plot of the overlap between methods for the top 100 interactions in each dataset. The 
plot displays the number of interactions unique to each method, as well as the number of two-way, three-way, four-way, and five-
way overlap. (d) Compound heatmap of the search space (bottom-left of heatmap) required to find 100 overlapping LR pairs that 
are both highly ranked, as well as Spearman correlations (top-right of heatmap) between the rankings of the top 100 overlapping 
LR pairs. The search space is displayed using a Viridis scale, where darker colours indicate a smaller search space and brighter 
colours a larger one. A smaller search space indicates a greater degree of agreement between methods. Spearman correlation 
utilizes a red to green colour scale, where red indicates negative Spearman correlation, green positive correlation, and white no 
correlation. (e) Beeswarm plot of AUC scores for eleven datasets benchmarking the performance of Decipher and other 
frameworks against CytoSig scores as true labels. We omitted the lupus and sepsis datasets from this comparison, as CytoSig did 
not define enough active ligands to construct reliable ROC curves. (f) Heatmap indicating the consistency of interactions prioritized 
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by Decipher across 100 runs on the dataset of lupus patient response to interferon-β44 with distinct random seeds. White indicates 
that a ligand-receptor pair was not relevant to a particular cell type. (g) System-level signalling for the same dataset. The left sub-
plot displays ligand-level statistics for the sender cell type, while the right sub-plot presents receptor-statistics for the receiver cell 
type. The size of the bubbles indicates the relative expression of the gene in the corresponding cell type, whereas the colour 
indicates the differential expression of that gene in case vs control. The central sub-plot presents Decipher scores for all receiver 
cell types. Here, blue indicates that a LR pair is predicted to be inhibited, and red activated.  

Because Decipher includes stochastic steps, we tested its robustness to changes in the initial 145	
random seed. The analysis was repeated 100 times on a dataset of lupus	patient	response	to	interferon-146	
β44 distributed through the ExperimentHub package from Bioconductor45. Across the majority of the 100 147	
runs, the same LR pairs were consistently prioritized (Fig. 2f); for example, IL15-IL2RG dominated B, CD4 T, 148	
and CD8 T cell rankings, whereas LGALS9-CD44 was frequently the leading interaction for CD14+ monocytes. 149	

Lastly, we compared the visual outputs of Decipher, NicheNet and LIANA+. Each tool conveys two 150	
metrics: the signalling potential of individual ligands and receptors, and an activity score for every LR pair. 151	
To convey the signalling potential, Decipher reports on the normalized proportion of transcripts originating 152	
from each cell type, whereas NicheNet relies on the average expression of each ligand and receptor. LIANA+ 153	
does not convey this information. Differential signalling, on the other hand, is captured by all three methods 154	
by reporting on the differential expression of the ligand or receptor separately. Because Decipher 155	
aggregates all sender cell types into a single mixed cluster, it presents fewer visual outputs than the other 156	
methods. Reformatting NicheNet and LIANA+ outputs for the infant response to Poly-IC comparison to the 157	
same visual output format as Decipher highlighted this increase in complexity (Supplementary Fig. SF.1). 158	

Extracting mechanistic insights from predictions made by Decipher 159	

To assess the capacity of Decipher to extract mechanistic insights and identify candidate 160	
therapeutic targets from single-cell profiles, we focused on two studies related to COVID-19: a study 161	
investigating the immune response to the Pfizer-BioNTech COVID-19 vaccine in humans33 and a study 162	
profiling PBMCs from patients with mild or severe COVID-1931. Both studies included baseline, unvaccinated 163	
or healthy, controls. 164	

In the vaccination study, Arunachalam et al.33 described the strong activation of the innate immune 165	
system and the emergence of a novel CD14+BDCA1+PD-L1 (cluster C8) monocyte subpopulation one day 166	
post-secondary vaccination. Moreover, Arunachalam et al. characterized the intracellular activity of this 167	
subpopulation, identifying activation of STAT1, STAT2, STAT3, IRF1 and IRF8 TFs, and associatively linked 168	
the observed response to interferon gamma (IFNG) signalling, hypothesizing that these two factors were a 169	
key component of the programmed immune response after vaccination. 170	

We applied Decipher to identify the upstream and downstream signals driving activation of the C8 171	
monocyte subpopulation. The intracellular response of the C8 cluster showed strong upregulation in 172	
subsets of the IRF and STAT family of TFs: IRF2, IRF7, IRF8, STAT1, and STAT2, consistent with observations 173	
reported by Arunachalam et al.33,  (Fig. 3a). Decipher also detected IFNG signalling into the C8 174	
subpopulation (Fig. 3b), in further accordance with the reference study33. In addition, we observed 175	
autocrine and paracrine signalling into the C8 monocytes through SLAMF7, CCL2, and C1QB pathways, as 176	
well as inhibited signalling via PRG4-TLR2 and HGF-CD44 pathways (Fig. 3b). We further characterized the 177	
downstream TF response to prioritized LR pairs and observed that C1QB, CCL2, and SLAMF7 activation are 178	
strongly related to STAT2, IRF2, IRF7, and IRF8 activity, as well as moderately related to a much broader 179	
transcription factor response (Fig. 3c). IFNG, as well as other activated pathways identified by Decipher, 180	
such as SPN and HGF, exhibited a more exclusive response.  181	
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Figure 3. Mechanistic insights in the Pfizer–BioNTech COVID-19 vaccine comparison. (a) Volcano plot of changes in transcription 
factor (TF) activity in the C8 cluster on day one post-secondary vaccination vs baseline. (b) Multi-panel plot of global dynamics from 
the top 10 identified ligand–receptor (LR) pairs in the C8 cluster. (c) Heatmap of individual LR–TF Decipher scores for the LR pairs 
highlighted in the Decipher multi-panel plot. (d) Heatmap of reference log fold-changes from the SLAMF7-high gene signature in 
synovial fluid (ref_syn_fluid) and PBMCs (ref_pbmc) from sorted CD14+ monocytes (Simmons et al.46), shown alongside differential 
expression profiles from three monocyte populations (C8, CD14+, and CD16+), as well as CD8 T, NK, and pDC cells. 

To validate the predicted SLAMF7 signalling, we compared differential expression signatures of C8 182	
monocytes, CD16+ monocytes, CD8 T, NK, and pDC cells with a published signature of SLAMF7high 183	
macrophages from synovial fluid and PBMCs in an inflammatory setting46. The C8 signature, and to a lesser 184	
extent the CD16+ signature, matched the reference (Fig. 3d). Although pDCs, NK cells and CD8 T cells express 185	
SLAMF7, their differential expression signatures did not match the reference signatures, nor did Decipher 186	
identify them as receiving signalling via SLAMF7. 187	

  We next compared mild and severe COVID-19 samples. Cell types were annotated with Azymuth47 188	
using its PBMC reference annotated dataset. Analysis was restricted to cell types that were sufficiently 189	
abundant and exhibited either changes in differential expression or in proportion across conditions (Fig. 190	
4a). Out of the 29 cell types identified by Azimuth,	fourteen represented less than 1% of the total cell pool 191	
and were excluded. Abundance differences were further assessed with scCODA48, which identified six cell 192	
types that presented significant changes in abundance (FDR < 0.05): B naive cells, CD16+ monocytes, CD4 193	
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TCMs, CD8 cells, NK cells, and plasmablasts. To elucidate changes in these populations, we calculated the 194	
total number of differentially expressed genes (DEGs), as well as the proportion corresponding to mild 195	
versus severe and up- vs down-regulation (Fig. 4c).  196	

 197	

 

 

Figure 4. Cell-type-specific transcriptional differences in mild and severe COVID-19. (a) Text summarizing the total proportion of 
each cell type across the three conditions (Healthy, Mild, and Severe). (b) Bar plot of the relative proportion of each cell type for 
each condition. Guide vertical lines are displayed at the 33% and 66% values. (c) Bar plot of total number of differentially expressed 
genes and changes in the proportion of upregulated vs downregulated genes. Crosshairs in each bar indicate the 50% mark of the 
number of differentially expressed genes. (d) Line plot of the first principal component embedding of changes in TF activity by cell 
type and condition. Cell types across conditions are joined by a dotted line whose colour reflects the distance (Euclidean) between 
them. (e) Heatmap of differences in changes in TF activity (mild – severe) for top 10 PC1 loadings. (f) Differential TF activity plots 
for CD16+ Monocytes and CD14+ Monocytes, sorted by absolute value of change in TF activity for that given cell type in either the 
mild or severe condition.  
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We	then	quantified	changes	in	transcription	factor	(TF)	activity	in	the	two	comparisons	and	198	
projected	the	change	 in	TF	activity	scores	onto	a	reduced-dimensional	representation	via	principal	199	
component	analysis.	Four	cell	types:	CD14+	monocytes,	CD16+	monocytes,	NK	and	CDC2	cells,	showed	200	
the	 largest	 differences	 in	 the	 first	 principal	 component	 embedding	 between	 the	 mild	 and	 severe	201	
conditions	(Fig.	4d).	The	loadings	corresponding	to	the	first	principal	component	accounted	for	36.7%	202	
of	the	observed	variance	and	included	interferon-related	transcription	factors	IRF7,	IRF8,	IRF9	and	203	
STAT1	(Fig.	4e).	Critically,	a	cell-type-	and	condition-dependent	divergent	response	to	mild	and	severe	204	
COVID-19	was	apparent	in	the	direction	of	change	along	the	PC1	axis.	Heatmaps	of	the	delta	in	the	205	
change	in	TF	activity	between	mild	and	severe,	calculated	as	the	subtraction	of	the	mild	scores	from	206	
the	severe	scores,	further	showcased	evidence	for	this	divergent	response;	CD16+	monocytes	in	severe,	207	
for	 example,	 exhibited	 inhibition	 in	most	TFs	 related	 to	PC1,	whereas	CD14+	monocytes	 in	 severe	208	
exhibited	strong	activation	of	those	same	TFs	(Fig.	4e).	Together,	these	observations	suggest	that	these	209	
cell	 types	 underwent	 substantial	 transcriptional	 reprogramming,	 particularly	 in	 interferon-related	210	
functions,	between	the	mild	and	severe	states.	211	

To further corroborate this observation, we visualized changes in TF activity sorted by the absolute 212	
values for both mild and severe conditions for CD14+ and CD16+ monocytes (fig. 4f). Here, we observed that 213	
CD16+ monocytes from the mild condition display strong differential activation of interferon-related 214	
transcription factors (STAT1, IRF7, STAT2, JUND, and IRF9), which were not upregulated in CD16+ monocytes 215	
from the severe condition.	This difference appears reversed in CD14+ monocytes, albeit the effect does not 216	
speak to a divergent response, but rather to a change in intensity of activation.  217	

To further characterize this divergence in intracellular programs we examined comparative 218	
network representations across the three layers produced by the Decipher analysis for both the mild and 219	
severe comparisons of the two monocyte subpopulations (Fig. 5).  The LR signalling of these networks 220	
showed that CD14+ monocytes in the severe condition exhibited the strongest activation of intercellular 221	
signalling: via CD63, SIGLEC1, SELL and ITGB2 receptors. In addition, pDCs only played a role in signalling in 222	
the mild condition. We again observed markers of type I interferon signalling via the TFs IRF7, IRF9, STAT1 223	
and STAT2, active in CD14+ monocytes from both mild and severe COVID, and in CD16+ Monocytes from 224	
mild COVID only. In CD16+ monocytes from severe COVID, there is a complete loss of type I interferon 225	
signalling TFs. Moreover, this loss of type I interferon TFs is associated with a gain in TFs that drive 226	
inflammation (NFkB2) and responses to oxidative and cellular stress (HIF-1A, ATF3, ATF4).  227	

 228	
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Figure 5. Multi-layer visualizations of Decipher results for CD14+ Monocytes and CD16+ monocytes in mild and severe COVID-19. 
Network graphs displaying sender cell type (blue), ligand (green), receptor (orange) and transcription factors (TFs) for the CD14+ 
and CD16+ monocytes in mild and severe COVID-19. Each network is constrained to the top 10  upregulated TFs, coloured by the 
change in calculated TF activity. Edges between sender cell types and ligands are weighted by the proportion of total ligand 
expression (normalized by cell count) expressed by each cell type. Additionally, only the top three cell types producing a given 
ligand are given an edge with that ligand. In addition, only ligands and receptors involved in the top 20 interactions by Decipher 
score and strongly associated with the top TFs (based on permutation importance) were considered. Lastly, each network is 
accompanied by a heatmap of downstream target genes (TG) for each TF. We limited these target genes to the top 40 most 
researched genes (within the set of target genes for the selected TFs), as determined by the number of publications that mention 
said gene in PubMed49. Red colour within the heatmap indicates the existence of a regulatory relationship between a TF and a TG. 
All four plots share the same scale for the node colours (applicable to TFs) and widths or colours of edges. 

	229	

	230	
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3	Discussion	231	

Decoding the cellular and molecular events that drive disease processes and cellular responses to 232	
therapies requires the development of new methods that can extract deep mechanistic insights at multiple 233	
layers of regulation from single-cell profiles. Cell-cell communication is one of these critical layers, as it 234	
mediates many of the functions necessary for multicellular life. However, among the methods that study 235	
intercellular communication, most only focus on upstream ligand-receptor interactions and fail to consider 236	
downstream effects. Among the subset of methods that do account for multiple regulatory levels, most 237	
tend to overly rely on prior knowledge, limiting their findings to well-characterized relationships. Those 238	
that do rely primarily on data-driven network reconstruction often lack mechanistic context and may not 239	
even possess sufficient predictive power for network inference50. In both instances, the methodology limits 240	
the ability to identify novel signalling pathways. Toward this goal, we developed Decipher, a novel 241	
computational pipeline that builds integrated cell-signalling networks from single-cell profiles and unveils 242	
key cellular and molecular events that drive biological responses. Decipher employs both prior knowledge 243	
and data-driven approaches to strike a balance between novelty and accuracy. We found that Decipher 244	
performed as well as or better than other state-of-the-art cell-cell communication methods, while also 245	
generating more interpretable visualizations. To test the ability of Decipher to extract mechanistic insights, 246	
we analysed two COVID-19 single-cell datasets. In the first study, we identified the upstream signals that 247	
drive a previously described monocyte subpopulation critical to the immune response post Pfizer-BioNTech 248	
COVID-19 vaccination. In the second study, we characterized the difference in cellular responses of 249	
monocytes in mild and severe COVID-19, which aligned with current understanding of the mechanisms of 250	
this disease. Taken altogether, our findings suggest that Decipher can decode signalling pathways and 251	
report on mechanistic relationships captured through ligand-receptor mediated transcription factor – 252	
target gene networks.  253	

We benchmarked Decipher against four established cell-cell communication methods and found 254	
that Decipher returns a tightly prioritized set of molecular pathways with scores that capture both the 255	
strength and mode of influence across ligands, receptors, transcription factors and target genes. While 256	
agreement among methods was generally low, as previously noted for other methods by Dimitrov et al.11 257	
we did observe that tools limited to exploring only ligand-receptor interactions behaved differently from 258	
those that included intracellular signalling as well. When evaluated against ligand activity predictions from 259	
CytoSig42, Decipher performed as well as or better than other methods, while maintaining the flexibility to 260	
detect novel pathways by reducing its reliance on prior knowledge. Importantly, Decipher consistently 261	
prioritized top ligand-receptor pairs across runs, suggesting robustness in its analysis. We further observed 262	
that, by pooling all sender cell types into a single mixed cluster, Decipher produced signalling maps that 263	
reduce visual clutter without sacrificing biological insight. Thus, Decipher offers a balance between highly 264	
prioritized interactions, concise visualisations and competitive predictions. 265	

To evaluate the capacity of Decipher to extract mechanistic insights from single-cell profiles, we 266	
analysed two COVID-19 scRNA-seq studies profiling PBMCs: the first from individuals one day post-267	
secondary Pfizer-BioNTech COVID-19 vaccination, and the second from patients with mild or severe COVID-268	
19. We employed Decipher to recover the underlying mechanism driving a novel subpopulation of 269	
CD14+BDCA1+PD-L1+ monocytes identified by Arunachalam et al. to be markedly increased in frequency 270	
following secondary vaccination and characterized by Type I interferon response, TLR and inflammation, 271	
with elevated activity of interferon and STAT TFs and reduced activity of AP-1 TFs33. Decipher analysis 272	
confirmed the previously reported upregulation of IFN (IRF2, IRF7, IRF8) and STAT (STAT1, STAT2, STAT3) 273	
family of TFs, as well as displayed significant crosstalk between innate immune cell types, as well as 274	
autocrine signalling in C8 cells, a common phenomenon in cell-cell communication3. We confirmed previous 275	
data demonstrating that interferon gamma (IFNG) is a driver of the C8 population33, as well as identified 276	
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CD8 T and NK cells as the primary producers of this ligand51. IFNG, however, was not the strongest signal 277	
found by Decipher, as we also found significant signalling through the SLAMF7, CCL2 and C1QB ligands into 278	
the C8 cluster. Notably, SLAMF7 is a self-ligand receptor from the signalling lymphocytic activation molecule 279	
(SLAM) family and a potent regulator of interferon responses52 and inflammatory macrophage activation46. 280	
Importantly, IFNG and SLAMF7 have been previously implicated as a driver of a super-activated 281	
macrophage state present in autoimmune diseases and severe COVID-1946.  282	

The response to SARS-CoV-2 infection involves an interplay of immune pathways that determine 283	
disease severity. During the early stages of SARS-Cov2 infection, it is crucial to mount a robust type I 284	
interferon response to limit the spread of infection and prime adaptive immune responses that promote 285	
viral clearance. In patients with severe disease, delayed and ineffective interferon responses result in 286	
increased viral loads. SARS-CoV2 proteins inhibit interferon signalling at multiple steps in the pathway and 287	
promote NFkB signalling, resulting in a cytokine storm that drives severe disease53. Oxidative stress and 288	
excessive tissue damage activates inflammasomes, further driving the cytokine storm, which in turn 289	
promotes vascular permeability, decreased oxygen levels in the blood, multi-organ damage, and respiratory 290	
failure53. Decipher analysis of monocyte responses in patients with COVID-19 found that transcription 291	
factors that mediate interferon responses (e.g. IRF7, IRF9, STAT1, STAT2) were strongly activated in CD14+ 292	
monocytes from patients with both mild and severe disease. However, in CD16+ monocytes from patients 293	
with severe disease, we observed a loss of interferon transcription factors and a gain of NFkB and other 294	
factors that mediate responses to oxidative and cellular stress (HIF-1a, ATF3, ATF4). Importantly, this was 295	
not observed in patients with mild disease. In this context it is noteworthy that about 10% of blood 296	
monocytes are infected with SARS-CoV2 in patients with covid disease54. Given that monocytes do not 297	
express the viral entry receptor ACE2, virus is taking up by monocytes via antibody-mediated opsonisation 298	
through the Fcγ receptor CD1654. Once inside monocytes, the viral proteins will inhibit interferon signalling, 299	
promote NFkB signalling and inflammasome activation and drive a system cytokine storm. 300	

Decipher has limitations that should be acknowledged. We observed intracellular activity to be 301	
imbalanced, where some cell types have a greater number of differentially activated TFs. While this is 302	
expected behaviour, it may affect the ability to compare prioritization scores between cell types. To address 303	
this, a potential alternative could be to perform scaling on TF activity and introduce a normalization factor, 304	
in similar manner to scSeqComm18. We also observed that TF activity was highly correlated within each cell 305	
type. Although multi-collinearity is a known property of biological networks, in the context of our analysis 306	
it does pose a problem, as LR pairs that are most predictive of the activity of a TF are likely to be selected 307	
for other TFs. Here, we suggest implementing new scoring strategies for TF activity, something that is in 308	
active development by the bioinformatics community. Conceptually, Decipher currently does not consider 309	
the fact that signalling occurs within local niches nor account for feedback control or response dynamics. 310	
These issues can be addressed, for example, by extending Decipher to spatial transcriptomics data and by 311	
modelling this dynamical systems behaviour. Despite these limitations, our findings demonstrate the utility 312	
of Decipher to decode biological processes and, in doing so, unveil novel therapeutic targets for 313	
experimental validation and clinical development. We present Decipher as a modular pipeline that 314	
quantifies active ligand-receptor pairs, accounts for downstream intracellular responses and maps cell-cell 315	
communication at a systems level. We believe that Decipher will be invaluable as a tool to accelerate the 316	
identification of novel therapeutic targets for human diseases, as well as accelerate the development of 317	
new medicines.  318	

 319	

 320	

 321	
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4	Methods	322	

 323	
Collection and processing of single-cell transcriptomic data of poly-IC stimulation to human blood 324	
mononuclear cells from Read et al.28 Processed single-cell data was directly obtained from the 325	
original authors. We used the original cell type labels, so no further preprocessing was required. 326	
Alternatively, the data are available from Gene Expression Omnibus (Accession Number GSE184383). 327	
 328	
Collection and processing of mouse single-cell transcriptomic data of lung-tissue response to BCG 329	
vaccination from Lee et al.32 Count data was downloaded from Gene Expression Omnibus (Accession 330	
Number: GSE244126). No cell type labels were provided, so we used ScType55 along with two 331	
reference tissue profiles (Immune system and lung) to assign cell type labels to each cluster, retaining 332	
the label with the largest score for each cluster. 333	
 334	
Collection and processing of human single-cell transcriptomic data of human PBMC response to 335	
Pfizer-BioNtech vaccination from Arunachalam et al.33 Count data and phenotypic data were 336	
downloaded from Gene Expression Omnibus (Accession Number: GSE171964). We used the original 337	
cell type labels, so no further preprocessing was required. 338	
 339	
Collection and processing of single-cell transcriptomic data of PBMCs from subjects with Systemic 340	
Lupus (SLE) and healthy control from Perez et al.34 Count data, including phenotypic data, was 341	
downloaded from Gene Expression Omnibus (Accession number: GSE174188). We used the original 342	
cell type labels, so no further preprocessing was required. We constrained our analysis to the subset 343	
of samples belonging to female individuals of Asian ancestry that were either classified as healthy or 344	
as ‘managed’ SLE cases. 345	
 346	
Collection and processing of single-cell transcriptomic data of PBMCS from ICU patients with and 347	
without sepsis from Reyes et al.29 Count data with phenotypic information were downloaded from 348	
the Broad Institute Single-cell Portal (Accession Number: SCP548). We used the original cell type 349	
labels, so no further preprocessing was required.  350	
 351	
Collection and processing of single-cell transcriptomic data of PBMCS from breast cancer patients 352	
treated with immune checkpoint blockade from Bassez et al.38 Processed single-cell data was 353	
downloaded directly from Diether Lambrecht’s laboratory website, through their Data portal. We 354	
used the original cell type labels, so no further preprocessing was required.  355	
 356	
Collection and processing of single-cell transcriptomic data of PBMCS from patients with mild or 357	
severe COVID-19 from Arunachalam et al.31 Count data of PBMCs from mild and severe COVID-19 358	
patients was downloaded from GEO (accession number: GSE155673). Only samples corresponding 359	
to actual RNA-seq experiments were selected (cov01–cov04, cov07–cov12, cov17–cov18). For each 360	
sample, the corresponding barcodes.tsv.gz and matrix.mtx.gz files were retrieved. Separate Seurat 361	
objects were created for each sample and merged into a single object, with sample identifiers 362	
tracked in metadata. Sample-level metadata (age, sex, disease status, severity, and days since 363	
symptom onset) were curated from GEO and merged with cell-level metadata. We followed the 364	
preprocessing protocol outlined in the original study to produce cluster-level marker genes 365	
distinguishing severe and mild COVID-19 from Healthy controls. We applied the Azimuth pipeline47 366	
to label cell types (at level-2 resolution). 367	
 368	
Collection and processing of single-cell transcriptomic data from the CellxGene collection56. 369	
Processed single-cell datasets were downloaded as annotated .h5ad objects from the CZ CellxGene 370	
portal. For each dataset, we applied consistent preprocessing steps: cells with fewer than 200 371	
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detected genes were removed. Datasets were optionally subset based on disease or condition 372	
annotations, depending on the study context. The AnnData objects were parsed in Python, and we 373	
verified that raw count matrices contained integer values. Metadata, gene names, and filtered count 374	
matrices were extracted and saved in standard formats. Where applicable, Ensembl gene IDs were 375	
converted to HGNC symbols. Resulting count matrices and metadata was used to create Seurat 376	
objects in R, with cleaned cluster annotations and standardized condition labels. Original cell type 377	
and disease labels were retained throughout  378	
 379	
This workflow was applied to: PBMCs from healthy individuals and patients with influenza from Lee 380	
et al.30; Pancreatic islets from healthy donors and individuals with type 1 diabetes from Fasolino et 381	
al.35 ; Head and neck squamous cell carcinoma samples from Jenkins et al.39; Kidney samples from 382	
healthy individuals and chronic kidney disease patients from Lake et al.37; and Bronchial biopsy 383	
samples from cystic fibrosis patients and healthy controls from Berg et al.36. 384	
 385	
Preprocessing pipeline.  If needed, a standard preprocessing pipeline based on Seurat47 is delineated 386	
in “Supplementary Note 1: Preprocessing pipeline for single-cell profiles”. Said pipeline addresses 387	
standard scRNA-seq preprocessing, beginning after the raw data has been read aligned to produce 388	
gene counts 𝑫. In brief, this preprocessing pipeline covers the filtering out poor-quality, invalid, or 389	
damaged cells, normalization of gene counts, using these counts to produce clusters 𝔾& of similar 390	
cells and determining representative genes for each cluster for downstream cell-labelling. To aid 391	
with interpretability of results, we recommend clusters are labelled using expert judgement. If expert 392	
judgement is not available, there are several cell type labelling tools, one of which we used (ScType55) 393	
to pre-process lung-tissue data from Lee et al32.  394	
 395	
Meta-cell generation. To remove noise and account for zero-inflation of gene counts in scRNA-seq 396	
data, we applied the method proposed by Baran et al.25 with parameters determined from guidelines 397	
by Obradovic et al.57 Here, randomly-sampled individual single-cell profiles from each condition and 398	
cell type were aggregated into meta cells by adding the counts of each gene across similar cells 399	
(based on Euclidean distance of their gene counts). The number of cells per meta-cell, 𝑘 , was 400	
determined such that for most cell types, the median gene count per cell was between 7,500 and 401	
10,00057. We constrained the number of meta-cells such that each cell type had the same number 402	
of meta-cells, and, on average, no cell appeared in more than one meta-cell. In addition, we include 403	
a parameter to limit the number of meta-cells generated for each cluster-condition pair. This 404	
prevents overrepresentation of large cell groups and ensures computational tractability by capping 405	
the number of meta-cells at 600 per group, which typically exceeds the number of features modelled 406	
in downstream analyses. Lastly, each meta-cell was normalized by its new library size and scaled by 407	
a factor of 10' for interpretability. 408	
 409	
Interaction potential between clusters. As a pre-requisite to determine which ligand-receptor (LR) 410	
pairs are actively modulating a system’s response, we first confirmed that these same LR pairs had 411	
the potential to signal. Here, we relied on the reference LR pair database ConnectomeDB202022. LR 412	
interactions in ConnectomeDB2020 were manually curated, based on literature support, and 413	
focused on monomeric interactions, i.e. a single ligand interacts with a single receptor. This aligned 414	
with our current version of the pipeline, as Decipher currently does not support multimeric 415	
interactions.  416	
 417	
We retained any ligand that was expressed in at least 10% of cells in any cell type and condition. We 418	
addressed ligands at a global level because we assumed that ligand-concentration in the 419	
environment is the driver of signalling, as opposed to ligand production by a single cluster. Receptors 420	
were filtered on a cluster-by-cluster basis. For each cell type, a receptor was only retained if it was 421	
expressed in at least 10% of the cells in either condition. Receptors were treated as cluster-specific 422	
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because receptor signalling is biologically constrained to individual cells. Together, this yielded a 423	
cluster-specific list of LR pairs. 424	

 425	
The condition-specific interaction potential 𝑝 of a ligand-receptor pair 𝑖 in each meta-cell from a 426	
receiver cell type was calculated as: 427	
	428	

𝑝 = 3𝑙 ̅ × 𝑟	429	
 430	
Where 𝑙 ̅represents the mean ligand expression of ligand 𝑙 across all cell types in each condition and 431	
𝑟 represents the receptor expression in a meta-cell. We performed the Wilcoxon Rank Sum test as 432	
implemented in the FindMarkers function from the Seurat package to identify differentially 433	
expressed interactions 8𝑝()& < 0.01	& log*(⋅) > 0.1B across conditions. Here, we assumed that the 434	
interaction potential had to exhibit some change across conditions to be relevant for downstream 435	
analysis. 436	
 437	
A significant portion of selected LR pairs exhibited high correlation with each other and thus could 438	
affect downstream statistical modelling. Highly correlated LR pairs occurred primarily when multiple 439	
ligands shared a single receptor (Supplementary Fig. SF.2). Therefore, we focused on selecting 440	
representative interactions for those interactions whose receptors had multiple complementary 441	
ligands. To identify which interactions behaved similarly across samples, we calculated the distance 442	
between each pair of interactions as: 443	
 444	

𝑑(𝒑(, 𝒑+) = 1 − 𝜌,(𝒑(, 𝒑+)	 445	
 446	
Where 𝒑(  and 𝒑+  represent the vector of interactions potentials for two LR pairs, and 𝜌,(⋅) 447	
represents the Spearman correlation function. We performed hierarchical clustering on these 448	
distances to define clusters of similarly behaving interactions. Subsets produced by hierarchical 449	
clustering were defined using a distance metric threshold; we set this parameter so that we 450	
produced approximately the same number of clusters as unique receptors within our features. 451	
Lastly, we randomly selected and retained one representative LR interaction from each subset. 452	
 453	
Context-specific GRNs for each cluster. We relied on base gene regulatory networks provided by 454	
CellOracle23, as these were generated using single-cell ATAC-seq data which, unlike computationally 455	
derived gene regulatory networks, ensures there is biological evidence of a relationship between a 456	
transcription factor (TF) and a target gene (TG). We further relied on CellOracle to tailor this network 457	
to each cell type. CellOracle is implemented as a Python pipeline, which required converting our 458	
Seurat objects to Python objects. Given difficulties with mapping Seurat objects to the required 459	
format, we converted our count matrices to Python-compatible matrices and re-processed these 460	
counts using the Scanpy58 pipeline. The pipeline consisted of removing genes with no counts, 461	
normalizing cell counts by library size, filtering normalized counts to retain only the top 3,000 most 462	
variable genes, which were re-normalized by their new library size, and taking the natural logarithm 463	
and scaling these counts to unit variance and zero mean. We ran the get_links() function from the 464	
cellOracle pipeline on the scaled counts to tailor the base gene regulatory network to each cell type. 465	
 466	
The tailored gene regulatory networks produced by CellOracle proved too dense, so we only retained 467	
the strongest 20,000 edges in the network (based on the absolute values of their weights). This first 468	
pruning was a more global, entire-network based-pruning. We complemented this global pruning 469	
with a more local pruning of edges, such that for each TF present in the network, we restricted its 470	
outdegree to a maximum of 40 edges, retaining the largest edges within each sub-network. We 471	
performed pruning of the network to increase the heterogeneity of regulons (as large regulons 472	
naturally tended to have overlap with smaller regulons.  473	
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 474	
Scoring TF activity. Using the tailored networks, we proceeded to calculate the activity of individual 475	
TFs based upon the expressions of their TGs using elements of PAGODA227. We applied PAGODA2’s 476	
‘mixture model’ to the meta-cell count matrix to derive a matrix of residuals, capturing the over- or 477	
under-dispersion of each gene in each meta-cell. We applied PAGODA2’s function 478	
testPathwayOverdispersion() to the residual matrix. This function is an implementation of the 479	
implicitly restarted Lanczos bidiagonalization algorithm, which returns the first principal component 480	
for a given. For each meta-cell, we projected its residual vector onto that first principal component, 481	
obtaining a meta-cell-specific activity score. The collection of these scores across all meta-cells was 482	
then standardized to yield a TF activity score. 483	
 484	
Relevant TFs for each cell-type were then selected based on statistically significant deviations in their 485	
activity across conditions. Specifically, we assessed significance (two-tailed, 𝑝 < 0.05) by comparing 486	
TF activity scores to a null distribution of scores generated from randomized gene regulatory 487	
networks, in which target genes were shuffled independently for each TF while preserving the 488	
number of targets. 489	
 490	
Building integrated signalling networks. For each cluster, we began by assuming that LR pairs and 491	
TFs formed a directed bipartite network where each ligand-receptor pair had the potential to 492	
influence every transcription factor. We then refined this network by inferring both the weights and 493	
mode of influence (direction) of each edge. To do so, we modelled the relationship between LR pairs, 494	
represented by their interaction potentials, and transcription factors, represented by their TF activity 495	
profiles. 496	
 497	
For each cell type, we formulated this as 𝑛  separate regression problems, one for each TF 𝑓 , 498	
represented by its TF activity vector, 𝒕#. For each TF 𝑓, we modelled its relationship with all LR pairs 499	
signalling potential 𝑷 relevant to that cell type as: 500	
 501	

𝒕# ≈ 𝑅#(𝑷) 502	
 503	
Where 𝑅#(⋅) represents the regression function mapping ligand-receptor interaction potentials to 504	
the activity of TF 𝑓. Here, we used a Random Forest regressor.  505	
 506	
For each regression problem, we further calculated each feature’s permutation importance metric 507	
as: 508	
 509	

𝑖𝑚𝑝(𝒑; 𝑅#(⋅)) 510	
 511	
Where 𝑖𝑚𝑝(⋅)  represents the importance function, which randomly shuffles	 the	 interaction	512	
potential	vector	𝒑	to	calculate	the	impact	of	permuting	a given interaction on model performance. 513	
The importance metric was used as the weight of the edge between LR pairs and transcription 514	
factors. Furthermore, as LR pairs can either activate or suppress TF activity, we estimated the mode 515	
of influence for each edge as the sign of the Spearman correlation between each predictor-target 516	
pair in the model.  517	
 518	
Repeated across 𝑛 problems this yields a weighted adjacency matrix 𝑨 connecting all LR interactions 519	
and TFs in each cell type. Naturally, it is possible to extend this network to include target genes, as 520	
this information is already encoded in the tailored, cluster-specific gene regulatory networks. 521	
 522	
Scoring differential ligand-receptor activity. Having obtained cluster-specific signed, weighted, and 523	
directed iSNs comprising ligands, receptors and TFs, we utilized these networks to score LR 524	
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interactions for each cell type. Since Decipher was designed to compare signalling at the cell type 525	
level, we first calculated the changes in intracellular TF activity for each cluster as the difference in 526	
median TF activity for each TF 𝑓 across conditions, Δ#.  527	
 528	
Differential activity is then captured by the Decipher score S, which is represented by: 529	
 530	

𝑆 = 	(𝑤!,# ⋅ Δ#
#∈%

 531	

 532	
Where 𝐹 represents all TFs relevant to a given cell type, and 𝑤!,# represents the weight between a 533	
ligand-receptor pair 𝑖 and a TF 𝑓. 534	
 535	
Taken altogether, with this approach, we achieve our two primary aims of building cluster-specific 536	
Integrated Signalling Networks and scoring interaction activity based on such a network. 537	

CytoSig ligand activity. We estimated ligand activity with CytoSig42. For each cluster, we only 538	
retained genes with non-zero total counts across all cells. Gene counts were normalized by total cell 539	
count, scaled by a factor of 100,000, and log-transformed using log*(𝑥 + 1) . We defined a 540	
differential expression profile for each case cell by subtracting the mean expression of control cells 541	
from the log-transformed expression values. We applied CytoSig to the differential expression 542	
profiles of cells in each cluster, producing z-scores for the ligand activity in each cell. 543	

Evaluation of ligand-activity prediction. We evaluated how well ligand-receptor predictions from 544	
each method aligned with the CytoSig model. Here, ligands were assumed to be active if they 545	
displayed an absolute median z-score > 2. Most methods reported scores for some ligands but not 546	
others, so we assumed that no prediction implied no activity, and assigned these ligands zero values. 547	
Except Decipher, all methods output scores for each sender-receiver cell type pair. Therefore, we 548	
reduced these scores to a single score per ligand and receiver cell type by selecting the LR interaction 549	
with the highest absolute score involving that ligand. 550	
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