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Summary

PfEMPI1 is a variable antigen displayed on erythrocytes infected with the malaria parasite
Plasmodium falciparum. PFEMP1 mediates binding of the infected cell to the endothelium of blood
vessels, a cause of severe malaria. Each parasite encodes ~60 different PFEMP1 variants but only
one is expressed at a time. Switching between variants underlies immune evasion in the host and
variant-specific severity of disease. PFEMP1 is difficult to study due to expression heterogeneity
between parasites which also renders genetic modification approaches ineffective. Here, we used
selection linked integration (SLI) to generate parasites all expressing the same PfEMP1 variant and
genome edit the expressed locus. Moving this system from the reference strain 3D7 to IT4 resulted
in PFEMP1 expressor parasites with effective receptor binding capacities. We also introduce a
second version of SLI (SLI2) to introduce additional genome edits. Using these systems, we study
PfEMP1 trafficking, generate cell lines binding to the most common endothelial receptors, survey

the protein environment from functional PFEMP1 in the host cell and identify new proteins needed
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for PFEMP1 mediated sequestration. These findings show the usefulness of the system to study the

key virulence factor of malaria parasites.

Introduction

A key factor for the pathology of the human malaria parasite Plasmodium falciparum is its capacity
to render the infected red blood cells (RBCs) adherent to the endothelium of blood vessels !. This
cytoadhesion allows the parasite to escape spleen-mediated clearance of infected RBCs 2 but causes
sequestration of infected RBCs in major organs, which can lead to severe, life-threatening

complications including cerebral malaria 3.

Cytoadhesion is mediated by members of the P. falciparum erythrocyte membrane protein 1
(PtEMP1) family. PfEMP1s are 150 — 450 kDa single-pass transmembrane proteins inserted into the
membrane of the infected RBC *7. PfEMP1s are encoded by the two-exon var genes, with exon 1
encoding the variable extracellular part of PfEMP1 which has diversified to bind different host
receptors such as CD36, ICAM-1, EPCR and CSA through its DBL and CIDR domains *"~!3. The
var exon 2 encodes a conserved intracellular C-terminal part, the acidic terminal segment (ATS),
which anchors the PFEMP1 underneath the RBC membrane in so-called knobs, parasite-induced
elevations of the RBC membrane which contribute to efficient cytoadhesion of the infected RBC '+
16 Each parasite genome contains ~45-90 var genes that differ in sequence within and between
parasites, but confers each parasite a similar repertoire of human receptor-binding phenotypes >!"-1°,
Each parasite expresses only one var gene at a given time but can switch to a different var gene,
resulting in antigenic variation '2%2! While the diversity of var genes between isolates is high, the
unique VAR2CSA PfEMPI binding placental CSA - the cause of the detrimental sequestration

leading to pregnancy malaria - is much more conserved between different isolates *'°.

PfEMP1 is the major target for the protective acquired immune response *? and var gene switching is
important to escape immune recognition and a mechanism to establish long-term infection in the host
21-27 Specific PfFEMP1 variants are associated with pathology in the human host and with its immune
status !32%2°  Understanding the binding properties of individual PfEMP1 variants, antibody

recognition and switching is therefore critical to understand the pathology of malaria.

How PfEMP1 reaches its final destination at the host cell membrane is only partially understood.
Exported parasite proteins are translocated by the PTEX complex into the host cell but it is not fully
clear if this is also true for PFEMP1 *°=°, Once in the host cell, PFEMP1 is most abundantly found at

parasite-induced vesicular cisternae termed Maurer’s clefts, and only a small fraction of all PFEMP1
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molecules reach the host cell surface '®. How PfEMP1 is transported within the host cell to reach the
surface is unclear but a number of other exported proteins, e.g., SBP1 and PTP1-7 are needed for that

process 207,

A key problem in studying PfEMP1 lies in the heterogenous var gene expression of the parasites in
cell culture. This results in a mixed population of cells that have different antigenic and binding
properties. Selective enrichment of binding phenotypes through elaborate panning of parasites against

receptors or antibodies 4043

or the utilization of parasite strains with more stable PFEMP1 expression,
such as CS2 *** have previously been used to circumvent this issue. A further problem is that
specific PFEMP1s can be difficult to detect at the protein level. Antibodies against the conserved ATS
do not distinguish between PfEMP1 variants and often cross-react with RBC spectrin *°. Extracellular
domain specific antibodies need to be generated for each newly studied PfEMP1 7. Furthermore, the
large size hampers episomal expression and in some cases episomally expressed mini-PfEMP1s were
used as a surrogate, e.g. to study PfEMP1 trafficking %3447 Finally, research questions needing

genetic modification of PFEMP1s pose the problem that the modified locus is only expressed in some

of the parasites.

Here we use selection linked integration (SLI) *® to generate parasite lines that each predominantly
express one specific PFEMP1 #°. This permitted us to generate different parasite lines with binding
specificities against all major binding receptors and parasites with modified PfEMP1ls. We also
introduce SLI version 2 (SLI2) to obtain a second genomic integration in parasites that already have
a SLI-based alteration to express a specific tagged PFEMP1. We show that our approach can be used
to study mutually exclusive expression of var genes, track the activated PFEMP1 via a small tag, study
its trafficking, endothelial receptor binding, its proxiome in living parasites and identify novel

proteins needed for PFEMP1-mediated cytoadhesion.

Results

Activation of specific PFEEMP1 in the total cell population in 3D7 parasites

Using SLI *, parasites were genetically modified to be resistant to G418 if expressing a targeted var
gene (Fig. 1A), permitting selection of a population of parasites expressing the desired PFEMP1. In
addition, the chosen PfEMP1 obtains a C-terminal 3xHA tag to specifically detect it (Fig. 1A). We
first aimed to generate two different 3D7 parasite lines: in the first we targeted PF3D7 0809100,
(3D7var0809100, the predominant var gene in our 3D7 wildtype (Fig. SIA)), and in the second
PF3D7 1200600, the 3D7 VAR2CSA-encoding var gene. Cell lines with the expected genomic
modification were obtained in both cases (3D7var0809100-HA®"® and 3D7var2csa-HA®% parasites)
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and the HA-tagged PfFEMP1 was detected at the Maurer's clefts in the host cell (Fig. 1B, C), indicating
that the cells in the culture expressed the desired PFEMP1 and that it could conveniently be detected
via the epitope tag. qPCR showed predominant expression of the activated var genes (Fig. 1E, F).
This was confirmed by RNA-Seq (Figure S1B, Table S2), which showed high read coverage across
the desired var gene whereas transcripts of all other var genes were negligible (example in Figure
SI1C, Table S2). As PfEMPI1 surface exposure is not typically detected using standard
immunofluorescence assays, we conducted trypsin digestion assays with intact infected RBCs °
which showed a protected fragment indicative of surface exposure of the HA-tagged PfEMP1 (Fig.
1D). When we lifted G418 pressure for 3 weeks, the dominance of the targeted PFEMP1 declined in
favour of a more heterogenous var expression profile, indicating that switching to other vars was still

possible in these parasites (Fig. 1E, F).

Previous work indicated that SLI to select parasites expressing a specific var gene can influence
transcription of neighbouring genes that are oriented head-to-tail **. We did not observe activation of
head-to-tail oriented rifs in our 3D7var0809100-HA®"® and 3D7var2csa-HA® SLI lines, as the
corresponding rifs showed no or negligible transcription in RNA-Seq (Fig. S1D). To further look into
co-activation, we used SLI to select for parasites expressing a var gene that shares a promotor region
with a 7if gene in a head-to-head orientation (PF3D7_0425800: cell line 3D7var0425800-HA )
(Fig. 1G, Fig. S1E). Correct integration of the plasmid into the genome and expression of the tagged
PfEMP1 was confirmed (Fig. 1G). RNA-Seq showed predominant expression of the activated var
gene (Fig. 1G) but also transcription of the neighbouring rif gene (Fig. S1F) with ~40% of all rif
transcripts belonging to this rif gene (PF3D7_0425700) (Fig. S1G).

We also activated two rif genes (PF3D7_0425700: cell line 3D7rif0425700-HA®"® and
PF3D7_1254800: cell line 3D7rif1254800-HA™) (Fig. S1H). The two resulting cell lines had the
correct genomic modification and IFAs indicated expression of the HA-tagged RIFINs (Fig. S1H).
qPCR showed that in both lines the activated rif gene was the most expressed (~65% and ~40% of rif
transcripts) (Fig. S1I). While in the 3D7rif1254800-HA®"® parasite line the var expression profile
looked similar to the 3D7 parent with predominant expression of var PF3D7 0809100 located on a
different chromosome (Fig. S1I), activation of 3D7rif0425700 (which in contrast to 3D7rif1254800
has a var gene in head-to-head orientation) led to co-activation of the neighbouring var gene
(PF3D7 _0425800) (Fig. S1I). Overall, the data with activated vars and rifs suggests that neighbouring
genes can be co-activated if in head-to-head orientation, likely due to a shared promotor region
affected by the epigenetic changes resulting in the expression of the SLI-targeted var gene. While

SLI-activation of rif genes also led to the dominant expression of the targeted rif gene, other rif genes
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still took up a substantial proportion of all detected rif transcripts, speaking against a mutually

exclusive expression in the manner seen with var genes.

Validation of a parasite line with impaired mutually exclusive var expression

Previous work described a 3D7 line expressing multiple var genes in single infected RBCs ', likely
due to a defective var regulation system, here designated 3D7MEEP (for “mutually exclusive
expression defective”). We used SLI to obtain parasites expressing PF3D7 0425800 in the 3D7MEED
parasites (3D7MEEPyvar0425800-HA®®) (Fig. 1H). In contrast to standard 3D7 with the same SLI
modification to express 3D7var0425800, 3D7TMEEP showed elevated levels of transcription of multiple
var genes in addition to the activated one, both by qPCR (Fig. S1E) and by RNA-Seq (Fig. 1H, I).
Anti-HA IFAs showed that the 3D7MEED parasite nevertheless expressed the activated PFEMP1 (all
trophozoites were HA-positive in [FAs (n = 82 parasites from 4 independent experiments)) (Fig. 1H),
indicating that individual parasites expressed multiple var genes. This line might therefore be an

interesting tool to study mutually exclusive expression, silencing and switching mechanisms.

In an attempt to find changes that may cause the MEED phenotype, we compared all differentially
expressed transcripts (161 down- and 93 up-regulated using a log2 fold change of >2 and Padjusted
of < 0.05 as cut off) of the 3D7 vs 3D7MEED parasites (Fig. 1], Table S3). This confirmed the
upregulation of most var genes in the 3D7MEEP parasites. Members of some other gene families
encoding exported proteins and genes of other exported proteins were also upregulated. Many of these
may be co-regulated with the vars, as for instance many of the upregulated rif gene loci are close to
upregulated var loci (Table S3). However, a few genes encoding exported proteins were also
downregulated. Concentrating on non-exported proteins to identify potential changes responsible for
the MEED phenotype, we noticed that the transcripts encoding the ApiAP2 protein SIP2 3 were down
~8 fold (pAdjusted ~0.025) (Fig. 1J, Table S3). SIP2 was previously shown to bind heterochromatin
in subtelomeric and telomeric regions, including certain var promoters 2, Its downregulation might
result in changes to chromosome end biology influencing var silencing. The other potentially causal
change was an upregulation of the non-coding RNA ruf6 for which overexpression has been shown
to impair monoallelic var gene expression **. While both sip2 downregulation and 7uf6 upregulation
are possible explanations for the relaxed silencing of var genes in the 3D7MEEP parasites, independent

experiments are needed to confirm that any of these changes are reasons for the MEED phenotype.

Transport of PFEMP1 into the host cell
Next, we tested if SLI would permit to obtain parasites all expressing a modified PFEMP1 to track
and study its transport. Limited overlap of PFEMP1 with PTEX components had raised the question


https://doi.org/10.1101/2024.04.30.591946
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.04.30.591946; this version posted November 11, 2025. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

whether it is transported via PTEX or not 3**°. While ablating PTEX function blocks PfEMP1
transport, indicating PTEX-dependent PfEMP1 transport 3!, this may also be an indirect effect as
inhibiting PTEX function also blocks the transport of other exported proteins essential for PFEMP1
transport. To directly assess PfEMP1 transport through PTEX, we used SLI to obtain parasites
expressing VAR-0809100 (PF3D7_0809100) or VAR2CSA (PF3D7_1200600) and at the same time
tagged them with mDHFR-3xHA (Fig 2A and Fig. S2). The folding of the mDHFR domain can be
stabilised by addition of WR99210 (WR) which prevents transport through translocons requiring
unfolding 3 and can be used to assess PTEX passage of soluble and transmembrane proteins in P.
falciparum parasites >>¢ (Fig. 2A). Both mDHFR-fused PfEMP1s were efficiently exported to the
Maurer’s clefts but not blocked when WR was added (Fig. 2A). While this suggests that PFEMP1
might not be transported via PTEX, we previously noted that the length of the region between the
transmembrane and mDHFR domain influences its blocking properties in exported transmembrane
proteins 7 and it therefore cannot be fully excluded that this protein still uses PTEX for transport. To
circumvent this problem, we exploited the property of proteins that — when fused to mDHFR — can
be conditionally arrested in the PTEX translocon, preventing the passage of other exported proteins
37, Blocking PTEX in that manner (using SBP1-mDHFR-GFP conditionally arrested in PTEX)
prevented PfEMPI1 transport (Fig. 2B), suggesting the need of PTEX function for PFEMP1 transport.
However, similarly to previous work inactivating PTEX components '3, this does not exclude that
PfEMP1 trafficking was prevented due to other exported proteins needed for PfEMPI1 that were
themselves prevented from export through PTEX. We therefore expressed the PTEX blocking
construct later in the cycle (using the crt promoter) in an attempt to block PTEX passage only after
the PFEMP1 trafficking proteins had already reached the host cell (Fig. 2C). Using this strategy, the
early expressed PfEMP1-transport protein REX1 was still exported while a later-stage episomally
expressed mScarlet-tagged KAHRP reporter could be blocked and was used to monitor clogging of
PTEX after the parasite ring stage (Fig. 2C, D). We then inspected REX1 and PfEMP1 transport in
the cells where the KAHRP-mScarlet reporter showed a late block of PTEX (Fig. 2D). REX1 was
exported in most of the cells with a blocked KAHRP reporter, indicating that proteins needed for
PfEMP1 trafficking were not hindered in reaching the host cell (Fig. 2D). However, PfEMP1, which
is later expressed, showed accumulation around the parasite in the majority of cells (Fig. 2C). This
indicated that clogging PTEX later in the cycle prevented PFEMP1 transport, supporting that PFEMP1
passes through PTEX. While we monitored only REX1, most PFEMP1-trafficking proteins

show a similar early expression 3+°%5
PfEMP1 passes through PTEX. This would also mean that the mDHFR-based translocation block is
not effective in the PFEEMP1-mDHFR fusion construct.

, indicating the effect may be direct, favouring the idea that
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SLI PFEMP1 expressor cell lines for binding studies using 1'T4 parasite strain

Next, we tested whether SLI PfEMP1-expressor parasites are useful for PFEMP1 binding studies.
Initial experiments using 3D7 parasites with activated vars showed no or only minimal binding of
infected RBCs to receptors (see below). We therefore moved to the FCR3/IT4 clone generally

6061 and used SLI to generate parasites expressing

considered a cytoadhesion-competent parasite line
PfIT 040025500 (IT4var66), predicted to encode a CD36-binding PfEMP1 ¢* with a similar domain
composition to 3D7var080910, as well as PfIT 120006100 (/T4var2csa), encoding the 1T4
VAR2CSA variant (Fig. 3A, B). Also, in IT4, SLI was effective to obtain parasites expressing the
targeted vars and based on [FAs the HA-tagged PfEMP1 was expressed in the corresponding parasite
lines (Fig. 3A, B). RNA-Seq showed predominant expression of the activated var genes (Fig. 3C,
Table S2), and trypsin assays that the expressed PTEMP1 was presented on the RBC surface (Fig.
3D). For binding studies, we developed and validated a semi-automated pipeline to score the number
of bound infected RBCs in binding assays to permit the unbiased and higher throughput scoring of
bound infected RBCs and increase the number of fields that can be analysed per assay (Fig. S3). Both
IT4 lines showed the expected receptor binding. The IT4var2csa-HA®"% infected RBCs bound both
decorin-coated slides and endothelial cells expressing CSA (HBEC-51) and binding was inhibited by
soluble CSA (Fig. 3E, F). RBCs infected with IT4var66-HA®"® bound to CHO-CD36 but not CHO-
GFP or CHO-ICAM-1 cells (Fig. 3G). In contrast, the 3D7 parasites expressing VAR2CSA
(3D7var2csa-HA®"®) or 3D7var0809100 (3D7var0809100-HA®°, predicted to bind CD36 %) did
not or only poorly bind their respective receptors (Fig. 3E-G) despite the expressed PFEMP1 being
detectable on the surface (Fig 1D). While the binding properties of PFEMP1 are difficult to compare
between strains, VAR2CSA was chosen because it is well-conserved between isolates, permitting a
comparison of binding efficiencies between 3D7 and I1T4. Hence, these findings indicate that IT4 is

a better cytoadhesion binder than the 3D7 used in our lab.

VAR2CSA is assumed to be the only PFEMP1 encoded in the genome that binds CSA. No binding to
CSA was observed with the parental 1T4 parasites (Fig. 3E, F) in agreement with the low levels of
var2csa transcripts in these parasites (Fig. S1J). This indicated that SLI targeting var2csa selected
this binding phenotype from undetectable levels. Overall, we conclude that SLI generated PfEMP1
expressor lines in IT4 can be used to study binding of specific PFEMP1 and that 3D7 - at least the

version from our lab - is less suitable.

IT4 parasites with further binding properties
In order to extend the repertoire of cell lines to study PFEMP1 binding, we selected two known or

suspected CD36- and ICAM-1-binders (PfIT _060021400; cell line IT4var01-HA®% and
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PfIT 120024500; cell line IT4var16-HA®) 6395 and an EPCR-binder (PfIT_010005000: cell line
IT4var19-HA®) 13, Correct generation of the cell lines and expression of the desired var gene was
confirmed (Fig. 4A-C). Trypsin assays showed surface exposure of the /74var(01 and IT4varl6 but
not IT4var19 encoded PFEMP1 (Fig. 4D). Both, RBCs infected with IT4var01-HA®® and IT4var16-
HA® bound to CHO-CD36 and CHO-ICAM-1 cells but not GFP-expressing CHO cells, in
agreement with the expected binding properties (Fig. 4E). IT4var16-HA®% parasites showed a higher
binding capacity to ICAM-1 than IT4var01-HA®® parasites whereas 1T4var01-HA®% parasites
showed proportionally more binding to CD36 than 1T4varl6-HA®"® parasites (Fig. 4E). In contrast,
the IT4var19-HA®"® parasites showed no significant binding to EPCR, CD36 or ICAM-1 (Fig. 4F).
However, after five rounds of panning against EPCR-expressing CHO cells, the panned 1T4var19-
HA®® parasites exhibited significant binding to EPCR and to a lower degree to ICAM-1 (Fig. 4F)
even though the var transcript profile was not noticeably altered compared to the unpanned IT4var19-
HA® parasites and still showed predominant expression of IT4varl9 with similar overall var
transcript levels (Fig. 4G; Fig. S1K). Trypsins assay of the panned parasites showed surface
expression of IT4VAR19-HA (Fig. 4H), contrasting with the unpanned parasites (Fig. 4D). RNA-
Seq indicated only few genes differently transcribed in the panned compared to the unpanned
IT4var19-HA®® parasites (Fig. 41). Interestingly this included the two paralogs of ptp3 that both
were upregulated after panning. The single p#p3 gene in 3D7 encodes a protein needed for PFTEMP1
surface display in 3D7 *, suggesting low ptp3 expression as the reason for failure of the unpanned
IT4var19-HA®® parasites to bind. As the two ptp3 loci in IT4 are more than ten genes apart, including
3 genes with comparable expression levels (to the ptp3 genes) that were not differentially expressed
in the panned parasites (PfIT_ 140083600, PfIT 140084100, PfIT 140084200), the initially low

expression likely was not due to a genomic deletion but plastically altered transcription of p¢p3 genes.

In summary, we obtained parasites binding to the most common receptors although in the case of
EPCR we had to pan the parasites and detected binding to ICAM-1 in addition to EPCR which was

unexpected 404366,

Additional genomic modification in SLI cell lines by using SLI2

To further exploit the SLI-generated PFEMP1 expressor parasites, we generated a second SLI plasmid
system with different selection markers termed SLI2 to modify the genome of parasites already
carrying a SLI modification (Fig. SA). To test SLI2, we used the IT4var01-HA®"® line and applied
SLI2 to disrupt PTP1 *, a Maurer’s clefts located PFEMP1 trafficking protein. Integration of the SLI2
plasmid into the correct genomic locus and perpetuation of the first genomic modification was

confirmed by diagnostic PCR (Fig. 5B). Live cell imaging showed a GFP signal in the food vacuole
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and faint diffused signal in the host cell, confirming successful inactivation of PTP1 (Fig. 5C). IFAs
showed that in the PTP1-TGD parasites, SBP1 and PfEMP1 were found in many small foci in the
host cell that exceeded the average number of ~ 15 Maurer’s clefts typically found per infected RBC
67 (Fig. 5D). This phenotype resembled the previously reported Maurer’s clefts phenotype of the PTP1
knock out in CS2 parasites *. PFEMP1 was still transported into the host cell in the PTP1 disruption
parasites (Fig. 5D) but PFEMP1 was no longer surface exposed (Fig. SE) and the parasites failed to
bind to CD36 and ICAM-1 (Fig. 5F), indicating that the IT4var01-HA®% parasites with the PTP1-
TGD had lost their ability for cytoadhesion. While we did not detect the failure of PFEMP1 transport
into the host cell, the binding phenotype agrees with previous work **. Hence, SLI2 permits the
study of other proteins in SLI generated PFEMP1 expressor lines, for instance to study trafficking and
binding of PfEMP1.

Proxiome of activated PFEMP1 using BiolD

Next we assessed whether SLI could be used to obtain proxiomes (proximal proteins and interactors)
of PfEMPI in living parasites by generating parasites expressing a PfEMP1 fused with the
promiscuous biotin ligase BirA* to carry out BiolD . For this we chose IT4var0l and generated
three SLI cell lines with BirA* in different positions of that PFEMP1 (IT4var01-BirA*Pos]¢nd, 2endo
and -3°"%) (Fig. 6A-D, Fig. S5). In position 1 BirA* was C-terminal to the ATS, in position 2 between
transmembrane domain and ATS and in position 3 directly upstream of the transmembrane domain
(Fig. 6A-D; note that /T4var0I-BirA*Pos3 lacked the intron (Data S1)). The resulting cell lines
predominantly expressed the modified PFEMP1 (as judged by IFA and RNA-Seq), the PFEMP1 was
on the surface and the infected RBCs showed the expected binding pattern (Fig. 6B-F). Parasites
expressing the position 3 PfEMP1 construct showed less binding, suggesting partial impairment of
placing BirA* into the extracellular part of PfEMPI1. Nonetheless, overall the BirA* modified
PfEMP1 were functional (Fig. 6F). BirA* in the PFEMP1 was active as judged by streptavidin blots
which showed biotinylation with all 3 cell lines but not with the IT4 parent (Fig. 6G). Next, we carried
out BiolD experiments with these cell lines, analysing enrichment of biotinylated proteins over IT4
in two sequential protein extracts: first the proteins extractable by mild detergents (Fig. S5, Table S4)
and the proteins requiring extraction with SDS to release more structurally connected proteins (Fig.
6H-J, Fig. S5, Table S4). In all experiments, the tagged PfEMP1 (but no other PFEEMP1) was highly
enriched due to self-biotinylation. Comparably few proteins were enriched in the mild detergent
fraction (Fig. S5), but the SDS-fraction contained many proteins known to be important for PFEMP1
trafficking, including for instance SBP1, MAHRP1, REX1 and several PTPs (1, 2, 4, 5, 7), indicating
efficient detection of PfEMP1 trafficking factors (Fig. 6H-J, Fig. S5). In addition, other exported

proteins, were detected. This for instance included proteins of the MSRP6 complex found at the


https://doi.org/10.1101/2024.04.30.591946
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.04.30.591946; this version posted November 11, 2025. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

Maurer's clefts which is involved in anchoring the clefts but has no role in PfEMP1 transport ¢/,
several PHISTs ® and exported proteins with unknown function here termed EMP1 interacting

candidate 1-6 (EMPIC1-6) (Fig. 6H-J, Table S4).

Interestingly, the repertoire and relative enrichment of the proteins detected in the BiolDs with the
three constructs was remarkably similar (Fig. 6H-J and Fig. S6A, Table S4), including position 3
where BirA* is located on the C-terminal side of the transmembrane domain. This supports the
hypothesis that PFEMP1 is not transported as an integral membrane protein 3772 as BirA* in the N-
terminal part appears to have had access to biotinylate the same proteins as BirA* in the C-terminal
part. While there was little evidence for topology-specific interactors, several of the detected PHISTs
(PfIT 120058000, PfIT 040006400; PfIT 130076100) as well as GEXP10 and the less efficiently
d 48.73-77

enriched PTEF are known to be RBC membrane localize

included hits from surface exposed PfEMP1. The hits obtained with the 3 PfEMP1 BirA*-fusion

, indicating that the proxiome also

constructs were also more similar to each other than to a general Maurer’s clefts proxiome or that of
the MSRP6 Maurer’s clefts binding domain ¢, suggesting specificity for PAEMP1 (Fig. S6B). Further,
hits from other structures than Maurer’s clefts, such as the tether protein MAHRP2 7® and the known
7980 and likely ®' J-dot proteins HSP70x, GEXP18, and PHIST P2 (PfIT_120006500; Table S4)
further supported that the PfEMP1 proxiome covered hits beyond its dominant location at the

Maurer’s clefts.

One notable difference between the hits of the 3 PfTEMP1 BirA*-fusion constructs was that the
position 1 construct detected 7 PHISTs, whereas the position 2 and 3 constructs only detected 3 and
2 PHISTs of which one was not detected with position 1 (Fig. 6H-J and Fig. S6A, Table S4). In
addition, some of the PTPs (PTP1 and PTP7) appeared to be differentially enriched in the 3 positions.
Finally, position 1 detected the largest number of enriched proteins, possibly because the larger
distance from the transmembrane domain permitted more efficient labelling or because this part of

the construct is in proximity to a larger number of proteins.

Taken together, these experiments detected most of the proteins previously implicated with PEEMP1
transport and surface display, indicating these proxiomes give a valid representation of proteins in

contact with PfTEMP1.

Identification of novel proteins needed for PFEMP1-mediated cytoadhesion
We selected several proteins from the PFEMP1 proxiomes (Fig. 6H-J, Table S4) that previously had
not been connected with PFEMP1 transport and used SLI2 to generate full length tagged versions
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(Fig. S7A) as well as disruptions (Fig. S7B) by targeting the corresponding genes in the [T4var01-
BirA*Pos1"® parasites to assess whether they could be needed for PFEMP1-mediated cytoadhesion.
This included PfIT 020007200 that we had previously identified as a PEXEL negative exported
protein (PNEP) exported to the host RBC periphery ** and that was implicated in VAR2CSA
translation and named P. falciparum translation enhancing factor (PTEF) . We also included
TryThrA (PfIT_080035200), a PNEP * that was a prominent hit in the BioIDs with all positions,
including in the Triton fraction as well as EMPIC3 (PfIT_070007400), also a PNEP %2 detected with
all 3 PFEMP1 BiolD constructs with intermediate to high enrichment (Table S4; Fig. 7A). In addition,
we included PeMP2 (PfIT 050006400), a member of the MSRP6 complex ¢, not previously tested
for its function in PFEMP1-mediated cytoadhesion.

Full length endogenously Ty1-tagged TryThrA, EMPIC3 and PeMP2 showed IFA patterns consistent
with the reported localizations of these proteins in the host cell (Fig. S7A) 6732 For TryThrA-Ty*d
and EMPIC3-Ty*"® we observed cells where the Tyl signal appeared as circles that likely
corresponds to the Maurer’s clefts periphery and only partially overlapped with the HA signal of
PfEMPI1 (Fig. S7A). This staining pattern is reminiscent of the subcompartmentalization of different

proteins at the Maurer’s clefts previously observed by superresolution microscopy *°.

Next, we examined the parasites wherein the selected candidates had been disrupted. While the SLI2-
based disruptions of PTEF and PeMP2 did not result in loss of parasite binding to CD36 and ICAM-1,
the TryThrA- and EMPIC3-TGDs resulted in markedly reduced binding (Fig. 7B), indicating
TryThrA and EMPIC3 are novel proteins needed for cytoadhesion. Interestingly, the TryThrA-TGD
parasites showed atypical localization of PFEMP1, SBP1, REX1 (dispersed signal in the host cell in
addition to foci; disproportionally strong foci) but not KAHRP, pointing to a defect of the Maurer’s
clefts or protein transport to these structures, while in the EMPIC3-TGD parasites PFEMP1, SBP1
and REX1 showed a localization typical for Maurer’s clefts with clearly defined foci and absence of

a dispersed pool (Fig. S7B).

In order to better define the phenotype in the TryThrA-TGD parasites, we transfected this and the
EMPIC3-TGD parasite line with an episomal plasmid mediating expression of mCherry tagged
SBP1, permitting analysis of live, unfixed parasites. As we had already used 4 selection markers to
generate these parasites, we employed a plasmid encoding a mutated version of the lactate transporter
FNT 88586 that confers resistance to the chemical BH267.meta *’, to transfect these parasites and
episomally express SBP1-mCherry (Fig. S8A). While in the EMPIC3-TGD parasites SBP1-mCherry
was found in foci in the host cell typical for Maurer’s clefts (Fig. S8B), the majority of the TryThrA-
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TGD parasites showed an additional soluble pool of SBP1-mCherry in the host cell (Fig. S8C). Some
TryThrA-TGD parasites also contained foci of increased intensity, suggesting enlarged or aggregated
Maurer’s clefts (Fig. S8C). As the IFAs showed a similar phenotype for REX1 and PfEMPI, the
TryThrA-TGD parasites appear to have a defect in the localization of multiple Maurer’s clefts
proteins and possibly the morphology of the Maurer’s clefts. These changes likely are responsible for
the cytoadhesion defect in the TryThrA-TGD. In contrast no obvious changes explaining the binding
phenotype were detected in the EMPIC3-TGD parasites.

To ensure the cytoadhesion defect was not due to unrelated changes that had occurred during
generation of the TGDs, we sequenced the genome of the TryThrA and EMPIC3 TGD lines. No
major changes compared to the cytoadherent IT4var01-BirA*Pos1®™ parent were detected that
would explain the cytoadhesion defect (Table S5). Surface trypsin treatment assays showed that in
both cases some PfEMP1 was still surface exposed (Fig. 7C), indicating that transport to the surface
was either merely reduced or that an impairment of the correct presentation of PFEMP1 on the surface
caused the binding defect. To ensure this was not due to limitations of the trypsin assay, we also
disrupted PTP7, which also was a prominent hit in our BiolDs (Fig. 61) and is a well-characterised
PfEMP1 trafficking protein that results in loss of surface transport when disrupted *°. We confirmed
the cytoadhesion defect in the parasite with a disrupted PTP7 (Fig. 7B) and in contrast to the TryThrA
and EMPIC3 TGD cell lines, trypsin assays indicated that there is no IT4VARO1-HA on the surface
in that cell line (Fig. 7C).

In conclusion, we identified two novel proteins (TryThrA and EMPIC3) needed for PFEMP1 function.
Given that many of the known PfEMPI1 trafficking proteins were detected in the proxiomes and
testing some of the others revealed more such proteins, we assume that the BiolD experiments give
a relevant representation of the protein environment of PFEMP1 and likely contain further proteins

important for cytoadhesion.

Discussion

PfEMP1 is central for the virulence of P. falciparum parasites 3 and the main target of antibody
mediated immunity in symptomatic malaria patients 2%, but studying these important proteins is
challenging. Using SLI we here generated cell lines predominantly expressing a PFEMP1 of choice
and show that this facilitates the study of diverse aspects of PFEMP1 biology, including mutually
exclusive expression, trafficking, interactome and receptor binding. A small epitope tag permits
reliable tracking of the SLI-targeted PfEMP1, avoiding issues detecting specific variants or the ATS.

In addition, we show that larger tags such as a mDHFR domain or BirA* can be added and used to
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study transport or obtain the proxiome of functional PfEMPI1 from living parasites. This also
highlights positions in the PFEMP1 sequence where larger tags are tolerated, including in the external
region, although the latter reduced the binding efficiency to some extent. Importantly, SLI ensures
expression of the modified locus, which would be difficult with other approaches. We further
introduce a second SLI system (SLI2) which permits a convenient further genomic modification while
maintaining expression of the desired PfEMP1. This will also be of general usefulness to obtain

double genome edited parasites.

The generated lines were capable to switch when G418 was lifted, indicating the system can be used
to study switching and mutually exclusive expression of var genes. However, it should be noted that
it is not known whether all mechanisms controlling mutually exclusive expression and switching

remain intact in parasites with SLI-activated var genes.

Previous work indicated co-activation of genes in a head-to-tail position to the SLI-activated variant
gene *. We here only found evidence of co-activation with the activated var with genes in a head-to-
head orientation, suggesting this occurred due to a shared promoter, rather than a general relaxation
of silenced chromatin around the active var gene. Similar head-to-head activation had been detected
when parasites expressing specific var genes were enriched by panning *'. However, it is unclear if
this can be generalized and it is possible that different var loci respond differently. We also confirmed
reduced mutually exclusive expression in a previously published 3D7 cell line *! that we here termed

3D7MEED and may be useful to study var silencing mechanisms.

PfEMP1-receptor binding and neutralising antibody mechanisms are increasingly being understood
on a structural level and are relevant to understand malaria pathology and effectivity of the immune
response in patients 5%°. The straight forward capacity to generate cytoadherent parasite lines
uniformly expressing a single PFEMP1 of interest opens up approaches to study receptor-binding as
well as antibody-binding and inhibition using native as well as modified PFEMP1. The latter could
be done by inserting point mutations, remove, exchange or alter domains e.g. by modifications

directly in the original SLI plasmid or using CRISPR in the SLI-activated line.

An unexpected finding of this work was that IT4varl9-expressing parasites bound ICAM-1 in
addition to EPCR as this is considered a PFEMP1 that only binds EPCR #%43%¢_although some studies
indicated that it may bind additional receptors **°!. Interestingly, selection for EPCR-binding was
required to achieve avid EPCR binding of the /74var19 expressor line. While this binding selection

did not change the var expression profile and IT4varl9 remained the dominantly expressed PFEMP1,
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we can not exclude this resulted in other changes that could have led to ICAM-1 binding. Selection
for EPCR-binding was accompanied by higher expression of ptp3 genes previously shown to affect
PfEMP1 presentation and cytoadhesion 4, suggesting this as a reason why these parasites did not
initially bind. As our findings indicate this was not due to a genome deletion, this raises the possibility
of an additional layer controlling surface display through expression of PTP3 as an accessory factor
by binding selection. Thus, the combination of uniform var expression and phenotype selection may
enable detection of hitherto unrecognized PfEMP1 receptor phenotypes and phenomena controlling

PfEMP1 surface display.

In the course of this work the binding phenotype of the IT4var19 expressor line remained stable over
many weeks without further panning. However, given that initial panning had been needed for this
particular line, it might be advisable for future studies to monitor the binding phenotype if the line is

used for experiments requiring extended periods of cultivation.

Previous work has indicated that mutants of the different proteins involved in PfEMP1 trafficking
block its transport at different points on the way to the RBC surface, including at or before passing
into the RBC *7*** Considering the results here and work on SBP1 disrupted parasites ®’, none of
these proteins seem to influence PFEMP1 before it reaches the Maurer's clefts. This aligns with the
location of these proteins, which suggest that they function in the host cell. This would mean that the
effect of PTEX inactivation on PfEMP1 transport 33 is likely direct, as the exported PfEMP1-
trafficking proteins (if prevented from reaching the host cell due to the PTEX block) would not
influence PFEMP1 before it reached the host cell. Together with the result from the stage-specific
block of PTEX in this work, the currently most plausible scenario is that PfEMP1 is transported by
PTEX after which other exported proteins are needed for transport to the surface and correct surface
display. Why the mDHFR-fused PfEMP1 was not prevented in transport when WR was added is
unclear, but may be due to the long region between the transmembrane domain and mDHFR 7 or due
to the lack of GFP which might contribute to the effectivity of folding stabilized mDHFR to prevent

translocation.

While our data indicates PFEMP1 uses PTEX to reach the host cell, this could be expected to have
resulted in the identification of PTEX components in the PEEMP1 proxiomes, which was not the case.
However, as BirA* must be unfolded to pass through PTEX, it likely is unable to biotinylate
translocon components unless PFEMP1 is stalled during translocation. For this reason, a lack of PTEX

components in the PFEMP1 proxiomes does not necessarily exclude passage through PTEX.
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The PfEMP1 proxiome presented here comprised many of the known proteins required for PFEMP1-
mediated cytoadhesion. There was a considerable overlap with the Maurer’s clefts proxiome, where
many of these proteins are localized. It, however, also included proteins experimentally confirmed to
be located at other sites in the host cell, including the host cell membrane. Hence, despite the small
number of PFEMP1 molecules displayed at the host cell surface '°, the proxiomes included hits from
that site. A protein notably absent from our PfEMP1 proxiomes was the major knob component
KAHRP 274 While this was surprising in light of the original in vitro binding studies *>~’, a newer
study was unable to detect an interaction of KAHRP with the ATS but found interaction with PHIST
domains *%. These findings match our proxiome data which, particularly with the position 1 construct,
detected many PHIST proteins and suggests that PHISTs may be in more direct contact with the ATS
than KAHRP. This also agrees with recent BiolDs with KAHRP as a bait that did not efficiently

detect PFEMP1 whereas PTP4 as bait did 7.

We here report two new proteins needed for PFEMP1-mediated cytoadhesion. As we still detected
some surface exposure of PFEMP1, the cytoadhesion defect was either due to reduced transport to the
surface or due to incorrect surface display of PFEMP1. One of the identified proteins, TryThrA was
in a recent study with 3D7 found to be dispensable for cytoadhesion *°. It is possible that this
discrepancy is due to the different P. falciparum strains used. In P. berghei IPIS3, which belongs to
the same group of tryptophane-threonine-rich domain proteins, was recently found to be important
for sequestration in rodent malaria '%°. Although mouse infecting malaria parasites do not possess
PfEMP1, they do harbor orthologous machinery needed for sequestration, suggesting that virulence
factor transport is evolutionary conserved even if the virulence factor is different '°!. This raises the
possibility that tryptophan-threonine-rich domain proteins belong to the conserved core of this
machinery, similar to SBP1 and MAHRP1 '°!. PTEF, selected because of its location at the host cell
membrane *® and previous linked to VAR2CSA translation 7, did not influence cytoadhesion of

IT4VAROL.

The SLI system does have limitations for study of var and PfEMP1 biology. For example, if the
targeted exon 2 region is too similar to that of other var genes, the SLI plasmid might insert into an
unwanted var gene. This can be solved by providing a codon-changed exon 2 region in the SLI
plasmid and shifting the targeting sequence upstream where there is high sequence variation. The
feasibility of such an approach was shown here by generating the cell lines to insert BirA* into
position 2 and 3 of IT4AVAROI. Another limitation is that the discovery of PfEMP1-binding to
unknown receptors may be difficult if, as seen with the IT4var19-HA® parasites, panning for

receptor binding is required to select for that binding. However, as most PFEMP1 will bind CD36 or
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EPCR, pre-selection on these receptors may enable studies of putative receptor-interactions.
Alternatively, assuming PTP3 expression is causal and the only factor why the IT4var19-HA®°
parasites had to be panned, episomal expression of PTP3 could ameliorate this and possibly be used

to generally enhance surface display and binding.
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Methods

Cloning of plasmid constructs

For genome integration constructs, homology regions encoding the C-terminus of target genes (for
C-terminal tagging) or a region in the N-terminal part (for TGDs) were PCR amplified from 3D7 or
IT4 gDNA (Monarch gDNA Purification Kit, NEB or QIAGEN DNA extraction kit) and cloned into
pSLI *® or pSLI2 using Gibson assembly ' or T4 ligase. Plasmids, including the SLI2 plasmids and
the FNT resistance plasmid for episomal expression of SBP1-mCherry, are shown in Data S1. For
the Position 1 BirA* fusion plasmids, the targeting region followed by a 7xGGGS linker, a previously

used sequence encoding BirA* 10

and a 3xHA-tag was cloned into pSLI. For position 2 and position
3 plasmids, the part of PFEMP1 encoded C-terminal to BirA* was synthesised with a different codon
usage (GenScript) to prevent integration into the genome in that region and was cloned together with
the targeting region (Position 2: until amino acid 2415; Position 3: until amino acid 2376), the region
encoding BirA* flanked by short linkers and a 3xHA-tag into pSLI. For the episomal early stage

blocking construct SBP1-mDHFR-GFP was cloned into pARL2 containing a mal7 promotor *%. For
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the tagging of PFEMP1 with mDHFR, homology regions encoding the C-terminus of the target var
genes were cloned into pSLI with a mDHFR domain between the targeting region and a 3xHA-tag.
To ensure there were no undesired mutations, all cloned inserts were sequenced by Sanger sequencing

(Microsynth).

Parasite culture

P. falciparum parasites (3D7 1% and 1T4 '°7 were cultured using standard procedures !%. The parasites
were maintained in RPMI1640 supplemented with 0.5% Albumax (Life Technologies) and human
0+ erythrocytes (University Medical Center Hamburg-Eppendorf (UKE), Germany) at a haematocrit
of 5% at 37°C under an atmosphere consisting of 1% O2, 5% COz, and 94% No.

Transfection, SLI and confirmation of correct genome integration

Late schizont stage parasites were purified using percoll as described '%°, using 60% percoll for 3D7
and 64 % for IT4 parasites. Fifty pug of purified plasmid DNA (Qiagen) were transfected using the
Amaxa system (Lonza Nucleofector [ AAD-1001N, program U-033) following previously described
protocols ''°. Transfectants were selected with either 4 nM WR99210 (Jacobus Pharmaceuticals;
pSLI) or 2 pg/ul blasticidin S (Life Technologies; pSLI2). SLI for selection of parasites with the
plasmid integrated into the genome was done as described *® by adding 400 pg/mL G418
(ThermoFisher; pSLI) or 0.9 uM DSM1 (Sigma Aldrich; pSLI2) to the culture. After the parasitaemia
recovered under drug selection, genomic DNA was isolated and correct genomic integration of the
plasmid in the knock-in parasites was verified by PCR as described *®. For transfection of the plasmid
harboring the mutated gene encoding PfFNT (amino acid change G 107 S) * BH267.meta " was
used at 5 uM until parasites appeared after which the concentration of drug was dropped to 2.5 uM

to maintain the culture.

Immunofluorescence and streptavidin-fluorescence assay

IFAs were performed as described '!!. Briefly, pelleted parasites (2000g for 5 min) were washed with
Ix PBS and applied at a haematocrit of 1-2.5% to 10-well glass slides, air-dried and fixed in acetone
for 30 min. Wells were rehydrated with 1x PBS, then washed 5 times with 1x PBS. Antibodies were
applied in 1x PBS containing 3% BSA. Primary antibodies were rat anti-HA (Roche), 1:2000; rabbit
anti-HA (Cell Signaling Technology), 1:1000; rabbit anti-SBP1-C °’, 1:2500; rabbit anti-KAHRP
(kind gift of Prof. Brian Cooke), 1:500; mouse anti-EXP2 (European Malaria Reagent Repository)
used 1:500; rabbit anti-REX1 °7, 1:10000; mouse anti-Ty1 (Sigma Aldrich), 1:20000; rat anti-RFP
(Chromotek), 1:1000; mouse anti-GFP (Roche) used 1:1000 and rabbit anti-GFP (Thermo), 1:1000.
For secondary antibodies donkey anti-rabbit conjugated with Alexa Fluor-488, or -594, goat anti-
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rabbit conjugated with Alexa-647, goat anti-mouse conjugated with Alexa Fluor-488, goat anti-rat
conjugated with Alexa Fluor-488, or -594 (Invitrogen) were used (all 1:2000). Secondary antibodies
were applied together with 4°,6’-diamidine-2’-phenylindole dihydrochloride (DAPI) (1pug/ml) or
Hoechst (50ng/ml; Cayman) (as indicated in the figure legends) for staining of parasite nuclei. For
the Streptavidin-fluorescence assay, streptavidin coupled to Alexa Fluor 594 (Invitrogen) was added
(1:2000) together with the secondary antibody. Slides were mounted with Dako (Sigma Aldrich) and

covered with a cover slip.

Fluorescence microscopy imaging

Live or fixed parasites were imaged with a Zeiss Axiolmager M1 or M2 equipped with a Hamamatsu
Orca C4742-95 camera using a 100%/1.4-numerical or a 63x/1.4-numerical aperture lens. AxioVision
software (version 4.7) was employed to capture the images. Live cell imaging of parasites expressing
fluorescent proteins was performed as previously described !!2. To stain the parasites DNA, parasites
were incubated with either 1 pg/ul of DAPI (Roche) or 50 ng/ml Hoechst 33342 (as indicated in the
figure legends) in parasite medium for 10 min at 37°C. Images were processed in Corel Photo-Paint

(version 2021) and arranged in Corel Draw (version 2021).

Trypsin assay to assess PFEMP1 surface exposure

Parasite cultures with 5-10% parasitaemia were synchronised for rings using sorbitol ''* and then
grown for 12 h at 37°C. The resulting trophozoite stage parasites were isolated with a percoll gradient
as described ''* for 3D7 cell lines. For IT4 parasites, an adjusted gradient with 80%, 64% and 40%
percoll was used. The purified infected erythrocytes were washed and split into two samples. One
sample was incubated with 50 pg/ml TPCK-treated Trypsin (Merck) in 1x PBS at 37°C for 30 min
while the other sample (control) was incubated in 1x PBS alone. Thereafter trypsin inhibitor from
soybean (Sigma Aldrich) was added (1 mg/ml final concentration) and the samples were incubated
on ice for 15 min. The cells were washed in 1 x PBS then lysed in 100 pl lysis buffer (4% SDS, 0.5%
Triton X-100 in 0.5x PBS), containing 1 mg/ml trypsin inhibitor, | mM PMFS (Thermo Fischer) and
1x protein inhibitor cocktail (Roche). Extracts were immediately subjected to SDS PAGE or frozen

at -20°C until needed.

Binding assays

For binding assays, Chinese Hamster Ovary (CHO-745 or CHO-K1) cells that express CD36, ICAM-
1, GFP ® or EPCR (in CHO-K1) '!*| or human brain endothelial cells HBEC-5i cells (American Type
Culture Collection (ATCC), Manassas, VA, USA; no. CRL-3245) were seeded two (1 x 10° cells/ml)

or three (2 x 10° cells/ml) days before the binding assay into a 24-well plate containing coverslips
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(0.5 ml/well). For binding assays against decorin (chondroitin sulfate proteoglycan from bovine
articular cartilage previously used for VAR2CSA binding ''®), the coverslips in 24-well plates were
incubated overnight at 4°C with decorin solution (5 pg/ml in PBS), thereafter washed with 1x PBS,
blocked with 1 % BSA in 1x PBS for 2 h and washed with 1x PBS twice ''7. Knobby parasites of the
tested cell lines were enriched using 1 % gelatine in glucose-free RPMI (16,4 g/l RPMI-HEPES
(Applichem), 0.05 g/l hypoxanthine (Sigma Aldrich), 30 ml/l NaHCOs3 (7.5 %) (Merck) and 250 pl/l
gentamycin (Ratiopharm) in H20, pH 7.2) as described !'8. After washing in binding medium (16,4
g/l RPMI-HEPES and 20 g/I glucose in H20, pH 7.2), number of erythrocytes/ml (Neubauer counting
chamber) and % infected erythrocytes (Giemsa smears) were determined and the suspension adjusted
to 2x10° infected erythrocytes/ml in binding medium. The wells with the CHO or HBEC-5i cells were
incubated with binding medium for 30 min before the parasite suspension was added to the wells (500
ul/well). Per experiment, three wells per parasite cell line and receptor were used. In the binding
assays with decorin and HBEC-5i, the parasites suspension was split and either incubated with soluble
CSA (100 pg/ml) or soluble BSA (100 pg/ml) (control) for 30 min at 37°C before adding the infected
erythrocytes to the wells. The plates were then incubated for 60 min at 37°C for binding, with careful
shaking every 15 min. The coverslips were washed 6 times by carefully dunking them into binding
medium and blotting excess medium on paper after every dunk. The coverslips were then laid face-
down parallel to the table in a washing plate that was angled at 45° (with the face-side hanging free
in the binding medium) and incubated for 30 min at room temperature. Immediately after, the
coverslips were fixed in 1% glutaraldehyde in 1x PBS for 30 min and stained with filtered 10%
Giemsa (Merck) in 1x PBS for 15 min. The stained coverslips were washed in water and glued with
CV-Mount (Leica) face-down onto glass slides. Five images per coverslip (per experiment 15 images
per parasite line and condition) were captured with a Thermo Fisher EVOS x1 (75 % light intensity

at 40x magnification).

Automated counting of binding assays

3 19 and

The evaluation of images of binding assays was automated using Ilastik v1.3.3post
CellProfiler v4.2.1 '2° (Fig. S3). First the images of the binding assays were processed with a trained
Ilastik model for the segmentation of the foreground (infected erythrocytes) and background
(CHO/HBEC-5i cells and plastic). For the training, the pixel classification module was manually
trained with 20 microscopy images representing different shapes of infected erythrocytes,
backgrounds, and artefacts. All the color/intensity, edge and texture features were enabled for
training. The resulting processed images were exported as probability images with pixel intensities

from 0.0 — 1.0 for the probability of a foreground pixel (regression values; 1.0 = 100 % probability
for foreground pixel). Ilastik pre-processed images were then fed to a CellProfiler pipeline (Fig. S3)
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using the “IdentifyPrimaryObjects” module to identify and count roundish objects with a diameter of
15 — 35 pixel units. Robust background thresholding and de-clumping by shape was selected. Number
of counted infected erythrocytes scored per image was given out as a spreadsheet. To show the
reliability of the automated pipeline in comparison to the manual scoring statistical tests between the

two methods were conducted as shown in Fig. S3.

RNA-Seq and qPCR analysis

Synchronous ring-stage parasites with a parasitemia of 3 - 5%, from 10 ml of culture were pelleted at
800 g and dissolved in 5 pellet volumes of Trizol (Thermo Fischer), thoroughly mixed, incubated for
5 min at 37°C and immediately stored at -80°C until RNA isolation. To purify the RNA, the Trizol
sample was thawed, 1/5 volume of chloroform added, thoroughly mixing and centrifuged at 16000 g
for 30 min at 4°C. The resulting clear supernatant was transferred to a new tube and processed using
the Qiagen miRNeasy Mini Kit according to the manufacturer’s instructions. RNA integrity was
assessed using the Agilent 2100® bioanalyzer system with the RNA 6000 Pico Kit. All samples had
a RIN > 8, our cutoff for inclusion.

Ribosomal RNA was removed using QIAseq FastSelect RNA Removal Kit. Libraries were prepared
with the QIASeq Stranded mRNA Library Kit and sequenced on an Illumina NextSeq 550 system
with NextSeq 500/550 Mid Output Kit v2.5 (150 cycles). Raw reads were mapped with hisat2
(version 2.2.1) to the respective reference genomes sourced from PlasmoDB !?' (IT4: Release 58;
3D7: Release 62). Mapped reads were sorted and indexed with samtools (version 1.17). Reads
mapped to genomic features were counted using featureCounts (version 2.0.4). For var genes, only
reads mapping to exon 1 were considered, for rifs, reads to the entire coding region were included.
The data have been deposited in NCBI's Gene Expression Omnibus '°? and are accessible through
GEO Series accession number GSE267413. Python3 (version 3.11.4) and bioinfokit (version 2.1.2)
were used to normalize the reads to transcripts per million (TPM) as well as to create the coverage
plots with matplotlib (version 3.7.2). Volcano plot was done in GraphPad Prism. Differential gene
expression analysis for panned against unpanned parasites was performed in R with the DESeq2
(version 1.42.0) package.

Quantification of var and rif transcript levels were measured relative to internal control gene seryl-
tRNA synthetase by real-time quantitative PCR using primers specific to each 3D7 var or rif gene as

previously described 122,

Assays to analyse PFEMP1 transport into the host cell
Assays assessing the transport of PFEMP1 fused directly to mDHFR **, were done as described °

with some modifications: schizont stages of the corresponding lines were purified with Percoll and
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allowed to invade for 8 hours, followed by synchronisation with 5% sorbitol % to obtain ring stages
with an age of 0-8 hours post invasion, the culture split into one with 4 nM WR and one without
(control) and grown for 24 h before analysis by IFA. For co-blocking assays >/, where transport
through PTEX was assessed indirectly by conditionally clogging it with another exported protein
fused to mDHFR, the parasite cultures were synchronized using percoll to obtain schizonts as
described % and grown for 24 h in the presence or absence of 4 nM WR followed by analysis of
export by live cell imaging or IFA. For the late stage PTEX block the pARL2-SBP1-mDHFR-GFP-
2A-KAHRP-mScarlet plasmid was utilized °’.

BiolD, mass spectrometry and data analysis

For proximity biotinylation, biotin (50 uM final) was added to asynchronous parasites expressing the
BirA*-PfEMP1 fusion constructs as well as to IT4 parent parasites (5% parasitemia, 150 ml per
condition and experiment) and cultured for 24 h with one exchange of medium with fresh biotin after
12 h. Thereafter, the parasites were washed twice with DPBS before they were subjected to saponin
lysis (0.03% saponin in DPBS) on ice for 10 min, followed by five washes in DPBS before lysis in 2
ml lysis buffer (50 nM Tris-HCL pH7.5, 500 mM NacCl, 1% Triton-X-100, 1 mM DTT, 1 mM PMSF
and 1x protein inhibitor cocktail) and storage at -80°C. For isolation of proteins, the samples were
thawed and frozen two times before centrifugation at 16,000 g for 10 min. The supernatant (Triton-
extract) was saved and the pellet frozen, thawed and once more extracted using 4% SDS in 50 nM
Tris-HCI pH7.5, 500 mM NaCl, 1% Triton-X-100, I mM DTT (SDS-extract). The SDS extract was
transferred to a fresh tube and cleared by centrifugation at 16’000 g for 10 min. For the purification
of biotinylated proteins, both extracts (Triton and SDS) were diluted 2:1 in 50 nM Tris-HCI and
incubated with 50 ul Streptavidin Sepharose (GE Healthcare) overnight at 4°C while rotating. The
beads were washed twice in lysis buffer, once in H20, twice in Tris-HCI pH 7.5 and three times in
100 nM Triethylammonium bicarbonate buffer (Sigma Aldrich). The proteins on the beads were
digested as described 2. Briefly, the beads were treated with 50 pl elution buffer (2 M Urea in 100
mM Tris pH 7.5 containing 10 mM DTT) at room temperature, shaking for 20 min. Subsequently,
iodoacetamide (IAA) was added to a final concentration of 50 mM and the samples were further
incubated in the dark, shaking for 10 min. The proteins were then treated with 0.25 pg Trypsin/LysC
(Promega, #V5072), while shaking at room temperature. After two hours, the supernatants containing
eluted proteins were collected and the beads were immersed with an extra 50 pl of elution buffer for
5 min at room temperature. The supernatant was pooled with the previous elution and the final 100
ul of eluted proteins were supplemented with 0.1 pg of Trypsin/LysC and treated overnight while
shaking at room temperature. The protein samples were then desalted on Stagetips using C18

membranes '** and eluted in 80% acetonitrile, 0.1% Formic acid.
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The acetonitrile was evaporated in a SpeedVac and the concentrated sample was then reconstituted
to a final volume of 12 pl with 0.1% Formic acid. To analyse the sample by mass spectrometry, 5 pl
of sample was analysed during a 60 min on an Easy-nLC 1000 (Thermo Fisher Scientific) with a 30
cm Cl8-reverse phase column coupled on-line to an Orbitrap Exploris 480 mass spectrometer
(Thermo Fisher Scientific). Data was acquired in top20 mode with a dynamic exIclusion of 45 sec.

Raw mass spectrometry data were processed using MaxQuant '?° (version 1.6.6.0). Parameters were
set to default except for the following: Deamidation (NQ) was added as a variable modification
together with oxidation (M) and acetyl (N-term). Match-between-runs and re-quantify options were
enabled with default parameters and iBAQ values were calculated. Mass spectra were compared to
peptide masses from the Plasmodium falciparum 1T4 annotated proteome (PlasmoDB v64). The
“proteinGroups” file from MaxQuant output was analysed using the Perseus software package '*°
(version 1.4.0.20). The data were filtered against peptides assigned as “only identified by site”,
“reverse” and/or “potential contaminant” hits in the datasets. IBAQ values were transformed to log2
values and missing values were imputed following a normal distribution. Data obtained from Triton-
extraction and SDS-extraction were analysed separately. Significant outliers were identified at each
position by using the two-sided Benjamini-Hochberg test with an FDR cut-off of 0.05. The mass
spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the

PRIDE ! partner repository with the dataset identifier PXD052297.

Western Blot analysis

Western blots were conducted as described ''%. In brief, preparation of extracts from the BiolD
experiments or the trypsin cleavage assays were centrifuged at 16’000 g and the supernatant was
mixed with 4x Laemmli sample buffer. Samples were incubated for 10 min at 90°C before they were
applied to 10% polyacrylamide gels for sodium dodecyl sulfate polyacrylamide gel electrophoresis.
The proteins separated on the gels were transferred to nitrocellulose membranes (Amershan Protan
membranes, GE Healthcare) using transfer buffer (0.192 M Glycine, 0.1% SDS, 25 mM Tris and 20%
methanol in H20). For the detection of proteins by antibodies, membranes were blocked in 5% skim
milk (Roth) in 1x TBS (50mM Tris and 150 mM NaCl in H20) for 2 h at room temperature, washed
three times with 1x TBS with 1% Tween and incubated in 1x TBS with 3% skim milk with the first
antibody rolling overnight at 4°C. First antibodies were rat anti-HA (Roche) (1:1000); rabbit anti-
SBP1-N (1:4000) 7 or rabbit anti-aldolase (1:4000) 7. Secondary antibodies were horseradish
peroxidase (HRP)-conjugated anti-rat (Dianova) (1:2000) or HRP-conjugated anti-rabbit (Dianova)
(1:2000) and were applied in 1x TBS with 3% skim milk and incubated rolling for 2 h at room
temperature. For the detection of biotinylated proteins, HRP-conjugated streptavidin was used in 5%

BSA in 1x TBS as described *7 and incubated by rolling overnight at 4°C. After secondary antibody
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or HRP-conjugated streptavidin incubation, the membrane was washed 3 times in 1x TBS with 1%
Tween, then 5 ml ECL solution A (0.025% luminol (Sigma Aldrich) in 0.1 M Tris-HCL in H20, pH
8.6) was mixed with 500 ul ECL solution B (6,7 mM p-Coumaric acid in DMSO) and 1.5 pl H202
and applied to the membrane before the ECL signal was detected with a ChemiDoc XRS imaging
system (Bio-Rad).

Whole genome sequencing and analysis

Genome sequencing was done essentially as described !*®. The NEBMonarch Genomic DNA
Purification Kit was used to prepare genomic DNA from 50 ml cultures of the TryThrA and EMPIC3
TGD parasites (both generated in the I1T4varl-BirA*Pos1°® background) and from the parent
(IT4varl-BirA*Pos1°"). BGI TECH SOLUTIONS (Hong Kong) carried out DNBSEQ PE100
sequencing and bioinformatic analysis. This included calling of SNP, InDel, SV, and CNV compared
to IT4 reference. The data was deposited at GEO (Accession number GSE275671) which also
includes technical details on sample preparation and filtering. All SNPs leading to a stop or potential
splice mistake, all INDELs leading to frame shifts, all SVs and CNVs indicating gene or partial gene
loss in the VarO1-TGD parasites that were not present in the parent (IT4-VarOl parasites) were
manually assessed by inspecting the reads in that region. Only changes affecting exported proteins
were considered and were manually re-assessed in all 3 lines by analysing the individual reads. In

addition, known PfEMP1 trafficking genes were manually checked for differences.

Quantification, statistical analysis and figure construction

P values are indicated in the figure and P<0.05 was considered as significant. All error bars shown
are standard deviations. Statistical significance was determined by unpaired t-test. A ratio-paired t-
test was used for the comparison between the individual images of the binding assays evaluated by
manual scoring and the automated pipeline. Statistical analysis was done in GraphPad Prism (version
9). Intraclass correlation coefficient (ICC) was calculated using excel (Microsoft); Two-factor
ANOVA without replication was applied; ICC was calculated with the variations of the ANOVA;
ICC = MSRrow-MSError/MSrow+dfcolumnXM SErrorH(dfcoumnt1)X(MScolumn-M SError)/(dfrow+1).  Graphs
were done in GraphPad (version 9) and transferred to CorelDraw (version 2021) with adjustments to

style without altering the data. Corel Draw (version 2021) was used to prepare the figures.
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Figure 1. SLI-activation of var genes in 3D7. (A) Schematic for SLI strategy. HR: homology region; ATS: acidic
terminal segment; NTS: N-terminal segment; 2A: T2A skip peptide; NEO-R: G418-resistance; hDHFR: human
dihydrofolate reductase; arrows P1-4: primers for diagnostic PCR; X: desired var gene. (B, C) Activation of indicated
PfEMP1. Scheme shows domain organisation. Agarose gels show PCR products confirming correct integration of the SLI
plasmid. Product over 5 integration junction (5): P1+P2; 3” integration junction (3’): P3+P4; original locus (ori): P1+P4;
see (A) for primer positions, see Table S6 for sequence of primers used; 3D7: parent; Int: integrant cell line. Fluorescence
microscopy images show [FAs with indicated antibodies. Nuclei: Hoechst 33342; DIC: differential interference contrast;
size bars 5 um. (D) Western blot of trypsin cleavage assays with indicated parasites. Asterisks show protected PFEMP1
fragment. a-SBP1-N: control for integrity of host cell (breach of RBC membrane would result in a smaller SBP1
fragment). Marker in kDa. Replicates and full blots in Figure S4. (E, F) Pie charts with proportions of total var gene
transcripts determined by qPCR of the indicated cell lines on G418 and after lifting G418. (G, H) Activation of
PF3D7_0425800 in 3D7 or 3D7MEEP, Scheme shows domain organisation. Agarose gels show PCR products confirming
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correct integration of the SLI plasmid as described in (A). Fluorescence microscopy images show IFAs as described in
(B, C). Pie charts show proportions of total var gene transcripts of the indicated cell lines determined by RNAseq
(normalized to TPM). (I) SuperPlot '?? showing percentage (log scale) of total var gene transcripts for non-activated var
genes of the indicated cell line determined by RNAseq (normalized to TPM; small grey dots: individual var genes; large
coloured dots: average of each replicate; bars: mean of averages of replicates with SD; n =3 biological replicates; unpaired
t-test; p-values indicated). See also Figure S1 and S4. (J) Volcano plot showing differential expression (RNASeq) of 3D7
or 3D7MEED hoth containing the same SLI modification to express PF3D7_0425800. Selected hits were colour coded as
indicated. “Exported” refers to all proteins that are known or predicted to be exported but do not fall into the selected
families of exported proteins labelled with other colours. Short names are given for colour coded hits when available (full

names, accession and total data in Table S3).
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Figure 2. Clogging PTEX prevents PFEMP1 transfer into the host cell. (A) Scheme: options for impact of WR-induced
stabilisation of mDHFR folding on PfEMP1 export. Relevant domains of modified PfEMP1 indicated. Fluorescence
microscopy images of IFAs with parasites of the indicated cell line + and — WR with the indicated antibodies. Nuclei:
Hoechst 33342; DIC: differential interference contrast; size bars 5 um. (B) Effect of blocking PTEX (+WR) with early
(mal7 promoter) expressed SBP1-mDHFR-GFP on PfEMP1 export. Relevant expressed products are shown. Live cell
images (top rows) and IFAs (bottom rows; as described in (A)) of parasites grown + and - WR. Graph: quantification of
parasites with a PFEMP1 export phenotype + and - WR (4 biological replicates; dots: % cells per replicate; bars: mean of
replicates with SD; n = 26 parasites per experiment and condition; +WR only parasites with an SBP1-mDHFR-GFP
export phenotype were scored; unpaired t-test; p-values indicated). Scheme shows WR-dependent clogging of PTEX
(right) or control (left); features explained in (A). (C) Effect of blocking PTEX with late (crt promoter) expressed SBP1-
mDHFR-GFP-2A-KAHRP-mScarlet on PfEMP1 export. Relevant expressed products are shown. Live cell images (top
rows) and IFAs (bottom rows, as described in (A)) + and - WR. Graph: quantification of parasites with PFEMP1 or REX1
export phenotype + and - WR (3 biological replicates; -WR, PfEMP1: n = 34, 76, 60; +WR, PfEMP1: n = 18, 48, 30; -
WR, REX1: n =18, 27, 35; +WR, REX1: n = 12, 31, 25; +WR, only parasites with an KAHRP-mScarlet (late PTEX
block reporter) export phenotype were scored (dots: % cells per replicate; bars: mean of replicates with SD; unpaired t-
test; p-values indicated). Scheme shows WR-dependent clogging of PTEX (right) or control (left); features explained in
(A); note that due to late block, early expressed REX1 is in the host cell in both conditions. See also Figure S2.
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Figure 3. Activated PfEMP1s in IT4 are functional and cytoadherent. (A, B) Activation of indicated PfEMPI.
Scheme shows domain organisation. Agarose gel shows PCR products confirming correct integration of the SLI plasmid
as described in Fig. 1A, see Table S6 for sequence of primers used; IT4: parent; Int: integrant cell line. Fluorescence
microscopy images show IFAs with indicated antibodies. Nuclei: Hoechst 33342; DIC: differential interference contrast;
size bars 5 um. (C) Pie charts show proportions of total var gene transcripts of the indicated cell lines determined by
RNAseq (normalized to TPM). (D) Western blot of trypsin cleavage assays with indicated parasites. Asterisks show
protected PEEMP1 fragment. a-SBP1-N: control for integrity of host. Marker in kDa. Replicates and full blots in Figure
S4. (E, F) SuperPlots showing binding assays of indicated cell lines against decorin or CSA-expressing HBEC-5i cells
(3 biological replicates with 15 fields of view/experiment and condition; bars: mean of averages of replicates with SD;
unpaired t-test; p-values are indicated). Small grey dots: bound iE/field of view, extrapolated to mm?. Larger coloured
dots: average of bound iE/mm?/replicate. Same colour indicates experiment conducted in parallel. iE: infected
erythrocytes. (G) SuperPlot of binding assays of indicated cell lines against CHO cells expressing GFP, CD36 or ICAM-
1 (3 biological replicates with 15 field of views/ experiment and condition; bars: mean of averages of replicates with SD;
unpaired t-test; p-values are indicated). Small grey dots: bound iE/field of view, extrapolated to mm?2. Larger coloured

dots: average bound iE/mm?replicate. iE: infected erythrocytes.
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Figure 4. Activation of further PFEMP1s with different binding properties in IT4. (A, B, C) Activation of indicated
PfEMP1. Scheme shows domain organisation. Agarose gel shows PCR products confirming correct integration of the SLI
plasmid as described in Fig. 1A, see Table S6 for sequence of primers used; IT4: parent; Int: integrant cell line. Asterisks
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indicate non-specific bands; for the original locus this likely includes bands from other var genes that result in PCR
products of slightly different size to that of the correct var gene. Fluorescence microscopy images show IFAs with
indicated antibodies. Nuclei: Hoechst 33342; DIC: differential interference contrast; size bars 5 pm. Pie charts show
proportions of total var gene transcripts of the indicated cell lines determined by RNAseq (normalized to TPM). (D)
Western blot of trypsin cleavage assays with indicated parasites. Asterisks show protected PFEMP1 fragment. a-SBP1-
N: control for integrity of host cell. Marker in kDa. Replicates and full blots in Figure S4. (E, F) SuperPlots of binding
assays of indicated cell lines against CHO cells expressing GFP, CD36, ICAM-1 or EPCR (3 biological replicates with
15 fields of view/experiment and condition; bars: mean of averages of replicates with SD; unpaired t-test; p-values are
indicated). Small grey dots: bound iE/field of view, extrapolated to mm?. Larger coloured dots: average of bound
iE/mm?*replicate. iE: infected erythrocytes. (G, H) Pie chart showing proportions of total var gene transcripts as
determined by RNAseq (normalized to TPM) and Western blot of trypsin cleavage assay as described in (D) of IT4var19-
HA®% parasites after five rounds of panning on EPCR. See also Figure S1. (I) Volcano plot showing differential
expression analysis (DeSeq2) of EPCR-panned against unpanned IT4var19-HA®® parasites.
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Figure 5. Second endogenous modification with SLI2 in a SLI var gene cell line. (A) Schematic for SLI2 strategy for
second genome modification in SLI cell line with activated var gene. HR: homology region; ATS: acidic terminal
segment; NTS: NTS domain; 2A: T2A skip peptide; NEO-R: neomycin-resistance gene; yDHODH: yeast dihydroorotate
dehydrogenase; BSD: Blasticidin-S-deaminase gene, arrows P1-8 primers for diagnostic PCR; X: desired var gene; PTP1:
PfEMP1 transport protein 1. (B) Agarose gel shows PCR products confirming correct integration of the SLI2 plasmid and
perpetuation of the SLI plasmid integration. SLI2 integration: product over 5" integration junction (5”): PS + P8; over 3’
integration junction (3”): P7 + P6; original locus (ori): PS5 + P6; SLI integration PCRs as described in Fig. 1A; IT4: parent;
Int: integrant cell line; primers in Table S6. (C) Fluorescence microscopy images of live IT4varl-HA®+PTP1TGD-
GFP parasites. (D) Fluorescence microscopy images of IFAs with indicated antibodies. Nuclei: Hoechst 33342; DIC:
differential interference contrast; size bars 5 um. Nuclei: Hoechst 33342; DIC: differential interference contrast; size bars
5 um. (E) Western blot of trypsin cleavage assays with IT4varl-HA®"®+PTP1-TGD parasites. a-SBP1-N: control for
integrity of host cell. Marker in kDa. Replicates and full blots in Figure S4. (F) SuperPlot of binding assays of indicated
cell lines against CHO cells expressing GFP, CD36 or ICAM-1 (3 biological replicates with 15 fields of view/experiment
and condition; bars: mean of averages of replicates with SD; unpaired t-test; p-values are indicated). Small grey dots:
bound iE/field of view, extrapolated to mm?. Larger coloured dots: average of bound iE/mm?/replicate. iE: infected

erythrocytes.
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Figure 6. Proxiome of PFEMP1 from living parasites. (A) Schematic of the three different 3xHA-tagged BirA*-IT4varl
fusion constructs and the position respective to the membrane in the fusion constructs reaching the host cell surface. (B,
C, D) Confirmation of the activation and modification of the indicated IT4varl-BirA* fusions. Fluorescence microscopy
images show IFAs with indicated antibodies or streptavidin. Nuclei: Hoechst 33342; DIC: differential interference
contrast; size bars 5 um. Pie charts show proportions of total var gene transcripts of the indicated cell lines determined
by RNAseq (normalized to TPM). (E) Western blot of trypsin cleavage assays with indicated parasites. Asterisks show
protected PfEMP1 fragment. a-SBP1-N: control for integrity of host cell. Marker in kDa. Replicates and full blots in
Figure S4. (F) SuperPlot of binding assays of indicated cell lines against CHO cells expressing GFP, CD36 or ICAM-1
(3 biological replicates with 15 fields of view/experiment and condition; bars: mean of averages of replicates with SD;
unpaired t-test; p-values are indicated). Small grey dots: bound iE/field of view, extrapolated to mm?. Larger coloured
dots: average of bound iE/mm?/replicate. iE: infected erythrocytes. (G) Western blot of extracts of the indicated cell lines
after incubation with biotin for 24 hours. Streptavidin probes biotinylated proteins; o-aldolase is the loading control. (H,
I, J) Volcano plots showing enrichment of biotinylated proteins extracted with SDS from the indicated cell lines compared
to IT4 wildtype parasites (24 hours growth with biotin) (full data in Table S4). Only the quadrant with positive enrichment
is shown, full plots in Figure S5 and further comparisons in Figure S6. Hits are colour coded as indicated and short names
are given in the plot for known proteins. Phists and other exported proteins without short name were numbered (accessions

are found under abbreviations in Table S4).
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Figure 7. New proteins needed for PFEMP1 cytoadherence function. (A) Domain schematic of candidates selected for
analysis (Tyl-tagging and disruption (TGD) using SLI2) in IT4varl-BirA*Pos1°"®, (B) SuperPlot of binding assays of
the indicated cell lines against CHO cells expressing GFP, CD36 or ICAM-1 (3 or 4 (control and PTEF-TGD) biological
replicates with 15 fields of view/experiment and condition; bars: mean of averages of replicates with SD; unpaired t-test;
p-values are indicated). Small grey dots: bound iE/field of view, extrapolated to mm?. Larger coloured dots: average of
bound iE/mm?/replicate. iE: infected erythrocytes. (C) Western blot of trypsin cleavage assays with indicated parasites.
Asterisks show protected PFEMP1 fragment. a-SBP1-N: control for integrity of host cell. Marker in kDa. Replicates and
full blots in Figure S4. See also Figure S7 and S8.
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