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ABSTRACT 41 
 42 
Microbial respiration is a key biotic driver of climate change. Warming boosts microbial 43 

population growth, which increases biomass and respiration. This feedback might be disrupted 44 

by adaptation in thermal performance curves (TPCs) –whose shape describes how temperature 45 

drives growth. In this study, we uncover substantial genetic variation (G) in microbial intrinsic 46 

population growth rates (r), demonstrate a causal link between G variation in r and G variation in 47 

TPC shape, and show how this variation constrains r-TPC shape evolution along specific 48 

evolutionary paths across temperatures. We also uncover Gene-by-Environment (G × E) 49 

variation in r, which results in specific signatures in TPC shape and predictable temperature-50 

dependent rapid TPC evolution but also lower G, which could reduce future evolutionary 51 

potential. Overall, we show how temperature-dependent evolution in a linchpin of global 52 

ecosystem function—microbial TPC shape—is determined by a combination of heritable and 53 

non-heritable variation in intrinsic growth rates.  54 

 55 
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INTRODUCTION 65 

Microbes play a central role in regulating the global carbon (C) cycle that controls 66 

climate change (Falkowski et al. 2008). Indeed, soil microbial respiration releases ~94Pg/yr of C 67 

into the atmosphere (Stell et al. 2021) while microalgae fix 30-50 Pg of C/yr globally (Falkowski 68 

1994). Global warming is expected to alter these microbial processes (IPCC 2023), but 69 

anticipating these effects requires a deeper understanding of the biotic and abiotic factors 70 

influencing microbial respiration in a warming world (Rocca et al. 2022; Wieczynski et al. 71 

2023).  72 

One such factor is microbial population growth, which influences total standing biomass, 73 

and hence, total microbial respiration (Savage et al. 2004). The thermal performance curve of 74 

intrinsic population growth rate (r) describes how microbial population growth changes with 75 

temperature (‘r-TPCs’ henceforth, Fig 1). The shape of r-TPCs is controlled by temperature-76 

dependent metabolism: metabolism increases with temperature, and so does r, until an ‘optimal’ 77 

temperature (Topt) is reached (Fig 1a), then r declines as metabolic costs increase (Fig 1a; 78 

Amarasekare & Savage 2012). While r-TPC shape varies across species (Jacob & Legrand 79 

2021;), unimodal shape is the norm (Wieczynski et al. 2021), described by shape parameters 80 

linked to thermal ecology: maximum growth rate (rpeak), minimum and maximum temperatures 81 

for population growth (CTmin and CTmax respectively), and rates of r-TPC increase/decrease with 82 

temperature (Ea, Ed respectively, Fig 1b). Ultimately, differences in r-TPC shape across species 83 

reflect divergent evolutionary trajectories in shape parameters across species and environments 84 

(Angilletta 2009).  85 

While r-TPC shape is expected to evolve in novel environments, anticipating this thermal 86 

adaptation is a major open question, as the r-TPC reflects a species’ ability to cope with 87 
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environmental change. Thermal adaptation hinges on the evolution of intraspecific—heritable—88 

genetic variation and selection favoring genetic variants suited to novel environments (Frankham 89 

2005), so quantifying heritable intraspecific variation in r-TPC shape parameters is central to 90 

understanding r-TPC shape evolution (Kling et al. 2023). From a quantitative genetics 91 

standpoint, the r-TPC represents the reaction norm of the underlying measure of performance, r, 92 

across temperatures among genotypes (Golmulkiewicz et al. 2018). r-TPC intraspecific variation 93 

is thus inextricably linked to that of r. Understanding this link is key to quantifying heritable 94 

variation in r-TPC shape parameters and predicting their response to selection in novel 95 

environments.  96 

To understand the link between intraspecific variation in r and r-TPC shape parameters, 97 

we developed a verbal model using classic quantitative genetics of reaction norms (Fig 1, c-e). 98 

First, environmental variation (E) in r, driven by differential expression of r across temperatures, 99 

but not genotypes, classically manifests as completely overlapping genotypic reaction norms (Fig 100 

1C, first row). Correspondingly, genotypic r-TPCs should also overlap (Fig 1D, first row) as they 101 

are reaction norms extended over multiple temperatures. Overlapping r-TPCs have no variation 102 

in shape parameters (Fig 1e, first row), so E in r should not result in r-TPC shape parameter 103 

variation. Second, genetic variation (G) in r, arising from differential expression of r across 104 

genotypes, but not temperatures, results in “additive” shifts in the intercepts of genotypic 105 

reaction norms—but equal slopes (Fig 1C, second row). These additive shifts translate to parallel 106 

r-TPCs (Fig 1D, second row), with additive variation in their x-axis intercepts (CTmin, CTmax) 107 

and their maximum height (rpeak), but no variation in Topt, Ea, Ed (Fig 1E, second row). Last, 108 

gene-by-environment (G × E) interactions in r, which manifest as changes in intercept and slope 109 

of reaction norms across genotypes and temperatures (Fig 1C, third row), result in non-parallel r-110 
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TPCs (Fig 1D, third row), with greater variation in all shape parameters (Fig 1E, third row). This 111 

conceptual model therefore predicts covariation between heritable genetic variation in r and  112 

variation in CTmin, CTmax, and rpeak, so r-TPCs’ CTmin, CTmax, and rpeak are more likely to be 113 

heritable and respond to selection than Topt , Ea, or Ed, which in turn suggest constraints operating 114 

on possible r-TPC evolutionary trajectories.  115 

To address how r-TPC shape might evolve across temperatures we thus quantify E, G, 116 

and G × E variation in r, and test predictions from our conceptual model. In doing so we reveal 117 

that heritable variation in r results in substantial heritable variation in predicted shape 118 

parameters. We build upon this understanding to quantify the structure of genetic variation and 119 

covariation in shape parameters, and use this information to infer selection and possible r-TPC 120 

evolutionary trajectories of shape parameters across temperatures. Last, we uncover a 121 

mechanism of rapid r-TPC evolution in the presence of G × E variation in r that leads to 122 

temperature-dependent selection on r-TPC shape, but can erase heritable variation, possibly 123 

creating an evolutionary trap that constrains future microbial r-TPC evolution.  124 

 125 

 METHODS 126 

Study system and genotypes  127 

We used Tetrahymena thermophila, a freshwater ciliate protist found across the 128 

Northeastern United States (Zufall et al. 2013) and part of a cosmopolitan genus (Lynn & 129 

Doerder 2012). Protists, unicellular Eukaryotes that dominate oceanic biomass and rank third in 130 

terrestrial biomass, comprise twice the biomass of the Animal Kingdom (Bar-On et al. 2018) and 131 

underpin global ecosystem functioning (Gao et al. 2019). So, while no single species is 132 
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representative of the entire group, understanding thermal adaptation in such an ecologically 133 

pivotal group is meaningful.  134 

 To do so, we sourced 22 unique T. thermophila genotypes: 19 from the Cornell 135 

Tetrahymena Stock Center and 3 from the Chalker lab (Washington University, Appendix 1). 136 

These genotypes, which vary in geographic origin and have well-known genetic differences 137 

(Appendix 1), were chosen to sample existing genetic variation, not for their functional 138 

significance. As most were derived from laboratory cultures, our assemblage likely contains less 139 

variation than natural populations (Zufall et al. 2013), making our results a conservative estimate 140 

of how thermal adaptation might proceed in nature.  141 

 142 

Quantifying r, r-TPCs, and TPC shape parameters  143 

Culture care and maintenance followed standard practices for ciliate Ecology (Appendix 144 

2). Stock cultures were maintained in Percival AL-22 growth chambers with a 12hr day-night 145 

cycle at 22°C. We quantified r-TPCs for all genotypes through growth assays in 3cm diameter 146 

Petri dish microcosms containing 3mL of growth medium at seven temperatures (13, 19, 22, 25, 147 

30, 32, 38°C). Each genotype and temperature combination was replicated six times, totaling 924 148 

microcosms. Experimental temperatures span below and above the average growing season 149 

temperature in T. thermophila’s native range (~23ºC ; NOAA 2024). Microcosms were 150 

initialized at densities of 1ind/mL in 3ml Petri dishes, which results in exponential growth for 1-151 

2 days (Gibert et al. 2022, 2023; Singleton et al. 2021). After 24hrs, we censused the 152 

microcosms through whole-population counts under a stereomicroscope (Leica M205C) and 153 

calculated r across temperatures to characterize the entire r-TPC as log(final density/initial 154 

density)/time, with time = 1 day (Wieczynski et al. 2021). To obtain r-TPC shape parameters, we 155 
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fitted a Sharpe-Schoolfield model (“nls.multstart” v1.3.0 package in R, (Padfield 2023)). Shape 156 

parameters Ea, rpeak, CTmin and Topt (Fig 1b) could be unequivocally estimated from our data, and 157 

so we focused all subsequent analyses on those. These parameters control the rising portion of 158 

the r-TPC (Fig 1b, green) –the “operational temperature range” (DeLong et al. 2017), i.e., what 159 

most organisms are likely to experience in their native geographic ranges.  160 

 161 

Link between heritable genetic variation in r, and r-TPC shape parameters  162 

We quantified E, G and G × E variation in r using function gxeVarComps() in R package 163 

statgenGxE v1.0.5. The function fits a linear model with r as the response variable, and 164 

temperature, genotype, and their interaction as fixed predictors, to calculate effect sizes and 165 

statistical significance. It then fits a second model with all fixed terms treated as random effects 166 

to calculate r variance components (E, G, and G × E). Only G is considered to be heritable, so 167 

the fraction of heritable genetic variation in r, can be estimated as the broad-sense heritability 168 

(H2=G/(E+G+G × E)). However, this expression does not account for inter-treatment and 169 

replicate variability, which inflates E and underestimates H2 (Cullis et al. 2006; Piepho & 170 

Möhring 2007). In the appendix we present three alternative formulations for H2 that address this 171 

issue (Appendix 3). 172 

Next, we tested the predictions of our verbal model (Fig 1) linking heritable variation in r 173 

(G) to heritable variation in r-TPC shape parameters. Since each r-TPC yields a single shape 174 

parameter set, only G variation in shape parameters could be quantified. All other components of 175 

variation (e.g., E, G × E, error) were pooled as residual variance. To evaluate the model's 176 

prediction that G variation in r results in greater G variation in shape parameters rpeak and CTmin 177 

compared to Ea, and Topt (Fig 1e), we tested whether rpeak and CTmin exhibited stronger genetic 178 
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covariance with r than did Ea, and Topt using a multivariate Bayesian Generalized Linear Mixed 179 

Model. The model includes mean-scaled values of r, Ea, rpeak, CTmin and Topt as jointly modeled 180 

response variables, each with their own fixed mean, and Genotype as a random effect to estimate 181 

variances and covariances implemented in R package MCMCglmm v.2.36 (Hadfield 2010). 182 

Variance-covariance priors were obtained by bootstrapping r-TPC data 100 times within each 183 

genotype and re-fitting the Sharpe-Schoolfield model to each bootstrap replicate, generating a 184 

population of shape parameters for each genotype (Appendix 4). Using inverse Wishart priors 185 

(Murphy 2012) did not alter our results. Last, if G variation in r results in greater G in rpeak and 186 

CTmin, these shape parameters should also have greater heritability than Ea, and Topt. To confirm 187 

this, we calculated the broad-sense heritability in r-TPC parameters using the standard 188 

expression H2=G/(G+residual variance) with G and residual variance estimates from the 189 

MCMCglmm model. 190 

 191 

Consequences of heritable variation: selection and evolutionary potential of r-TPC parameters 192 

Heritable r-TPC shape parameters can evolve under selection. To understand how, we 193 

quantified 1) the direction, form, and magnitude of selection on all four shape parameters, 2) 194 

whether and how temperature influenced selection, and, 3) their potential evolutionary responses 195 

across temperatures. We used two approaches: one that neglects genetic correlations between 196 

parameters but allows estimation of non-linear selection (e.g., stabilizing selection), and one that 197 

accounts for genetic correlations and neglects non-linear selection, while enabling predictions of 198 

evolutionary responses across temperatures.  199 

In the first approach, we quantified selection by characterizing the adaptive landscape 200 

(Lande 1976, 1979) as the relationship between shape parameter values and absolute fitness—201 
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classically assumed to a function of r (Lande 1976, 1979) because it reflects average birth and 202 

death rates of individuals, two major fitness components (Lande 1982; Partridge & Harvey 203 

1988). We modeled this relationship for all shape parameter values fitted across genotypes, using 204 

polynomial regression and r as the response, linear and quadratic effects (i.e., non-linear 205 

selection) for each mean-standardized shape parameter, and additive and interactive temperature 206 

effects with the linear and quadratic shape parameter terms (see Appendix 5). We multiplied the 207 

quadratic regression coefficient by two (Stinchcombe et al. 2008). A positive relationship 208 

between r and the focal shape parameter would be evidence of positive directional selection, a 209 

negative relationship would indicate negative directional selection, and no relationship suggests 210 

no directional selection. Stabilizing selection would result in a concave-down relationship, and 211 

disruptive selection would manifest as a concave-up relationship where extreme values have 212 

higher fitness (Lande & Arnold 1983).  213 

The second approach predicts r-TPC shape evolution across temperatures while 214 

accounting for genetic correlations among shape parameters. It uses the multivariate breeder’s 215 

(Lande 1979) and Price’s (Price 1972) equations to estimate direct (i.e., acting on the focal 216 

parameter) and indirect selection (i.e., acting on genetically linked parameters, (Stinchcombe et 217 

al. 2014)). This is achieved by estimating the response to selection of all shape parameters, Δz, 218 

as their covariance with fitness—i.e., the Price equation aspect of this approach– which requires 219 

estimating a genetic variance-covariance matrix (Gzw)—i.e., its multi-variate breeder’s equation 220 

aspect. This matrix includes the genetic variance-covariance matrix (G) of shape parameters as 221 

its first four rows/columns, and their genetic covariation with fitness (W) as the last row/column 222 

(Lande 1976, 1979, 1982). The finite rate of increase R=exp(r) was used as our metric of fitness 223 

but using plain r did not alter our results. From the Price equation, this last row/column also 224 
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equals the vector of predicted trait change, Δz, so Gzw also yields Δz. Then, from the multivariate 225 

Breeder’s equation, Δz = Gβ, where β is the selection gradient (Lande 1979). Provided that G is 226 

invertible, then β =G-1 Δz, to estimate selection.  227 

Positive/negative Δzi values indicate an increase/decrease in the i-th shape parameter, 228 

while positive/negative βi, indicates positive/negative selection operating on the i-th shape 229 

parameter. Alignment between Δzi and βi indicates direct responses to selection (Hansen & 230 

Houle 2008), in our case, by temperature, while misalignment suggest indirect selection through 231 

correlated responses with other shape parameters.  232 

  To estimate Gzw for each temperature, we used subsets of r for each genotype for each 233 

temperature. Shape parameters do not change across temperatures but r does, so the Gzw matrices 234 

only differed in their last row/column across temperatures, i.e., the covariances between shape 235 

parameters and fitness—or Δz. To facilitate this estimation and ensure interpretability, all Gzw 236 

variables were rescaled, which was achieved through the expression Gzw  as =SLS*(1/2F) where 237 

L is a between-genotype covariance matrix, S is a diagonal matrix containing the inverse of each 238 

trait’s standard deviation, and F is the inbreeding coefficient, which equals 1 for clonal lineages 239 

(Falconer 1996). We quantified uncertainty in Gzw entries using a Bayesian posterior distribution 240 

of L matrices (and hence Gzw) and used a multivariate normal likelihood function and non-241 

informative inverse regularized Wishart priors (nu=traits+1) (Murphy 2012), implemented in 242 

evolqg v3.0 R package (Melo et al. 2015). Using MCMCglmm instead of evolqg did not affect 243 

our results (Appendix 6). We took 1000 posterior samples for Gzw to calculate Δz, G, and 𝛃, and 244 

95% maximum density intervals for al estimates.  245 

 246 

Consequences of G × E in r for rapid r-TPC evolution 247 
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 Because G × E variation in r is predicted to result in non-parallel r-TPCs (Fig 1), slight 248 

differences in intrinsic growth rates across temperatures can drive temperature-mediated 249 

differential selection among genotypes (Fig 4a, b). Treating r as proxy for absolute fitness 250 

(Lande 1976), this selection should be strongest at temperatures where r-TPCs differ the most, 251 

i.e., the temperatures with the largest differences in relative fitness.  252 

We empirically tested for temperature-dependent selection among genotypes by setting 253 

up an experimental evolution assay with two fluorescently marked strains (AXS and CU4106, 254 

Fig 4c) with different r-TPCs and relative fitness (Fig 4d, Fig4d inset) across six temperatures 255 

(19, 22, 25, 30, 32, 38ºC), each replicated seven times, and 2 additional single-strain controls per 256 

temperature. The genotypes cannot mate because they belong to the same mating type (mating 257 

type VII, Appendix 1), so only clonal reproduction was possible. We initialized our microcosms 258 

at equal densities (5 ind/mL in mixture treatments, 10ind/mL for single-genotype controls). After 259 

48 hours, we added Cadmium Chloride to induce fluorescence (Appendix 7), confirmed on a 260 

Leica Thunder Cell Culture inverted microscope (Fig 4c and Appendix 8). Thirty minutes later, 261 

we cytometrically censused each sample (Novocyte 2000R). While fluorescently tagged 262 

genotypes can lose their ability to fluoresce over time, they carry a paromomycin resistance gene 263 

(Appendix 7), allowing selection through paromomycin exposure (100μg/mL) prior to counting 264 

and estimating relative frequencies based on fluorescence (Appendices 9-10). Antibiotics can 265 

negatively affect protists and the bacterial communities they feed on, so we replicated this 266 

experiment in paromomycin-free conditions, which did not qualitatively alter our results (see 267 

Appendix Fig S11).  268 

Last, observed changes in genetic frequencies were compared to predicted frequencies by 269 

a classic model of genetic evolution in discrete time parameterized with the r-TPC of both 270 
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experimental genotypes (Fig 4f). The model tracks the frequency of each strain 𝑓!, and assumes 271 

that their absolute fitness, 𝑊!, is a function of their average intrinsic growth rate r (Lande 1976, 272 

1979). The frequency of each strain in the population is determined by the classic recursive 273 

equation, 𝑓!(𝑡 + 1) = 𝑓!(𝑡)(𝑊!/𝑊+ ) [Eq 1.], where 𝑊+  is the average fitness of the population 274 

(∑ 𝑓!𝑊!
"
!#$ = ∑ 𝑓!𝑟!"

!#$ ), and 𝑊!/𝑊+  is fitness the relative fitness of i-th genotype relative to the 275 

entire population. We used each genotype’s r-TPC (AXS, CU4106, Fig 4d) to estimate 𝑊!/𝑊+  276 

across temperatures (i.e., replacing 𝑟!). We forward-solved the recursive equation (Eq 1) under 277 

two scenarios: one in which temperature was constant, and one in which temperature fluctuated 278 

randomly across generations, drawn from a normal distribution with known mean and variance. 279 

This minimal model assumes that differential selection across environments is mostly driven by 280 

differences in r-TPCs, and disregards density- and frequency-dependent selection, sexual 281 

reproduction, mutation, and most all ecological processes.  282 

 283 

RESULTS 284 

Heritable variation in r leads to heritable variation in r-TPC shape parameters 285 

Intrinsic growth rates showed strong temperature responses within genotypes (F = 286 

3092.70, Df = 6, Generalized Eta-Squared (GES) effect size = 0.964,  p≤ 0.001), significant 287 

variability across genotypes (F= 163.65, p ≤ 0.001, Df = 21, GES = 0.832), and significant G × 288 

E interactions (F=29.7, p ≤ 0.001, Df = 122, GES = 0.840), leading to classically unimodal 289 

shapes that varied among genotypes (Fig 2a). Environmental variation (E) accounted for 71.7% 290 

of all observed variation in r, genetic variation (G) explained 6.1% of all variation, and Gene-by-291 

Environment interactions (G × E) explained 11.7%, with 10.5% residual variation (Fig 2b). This 292 

is well within what is expected for life history traits (Hoffmann & Sgrò 2011). Despite a 293 
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relatively modest G compared to E, after accounting for experimental inter-treatment and 294 

replicate variability, r was strongly heritable (H2standard=0.76, H2cullis=0.95, H2piepho=0.91,  295 

Appendix 3).  296 

Shape parameters varied widely across genotypes (e.g., genotype AXS was 3.2 times 297 

more thermally sensitive than A1868 and could grow 3.6 times faster at Topt, Fig 2, and 298 

Appendices 12-13). As predicted, CTmin and rpeak showed strong genetic covariation with r (∣299 

𝐺𝑐𝑜𝑣%&'!" ∣		= 0.65, ∣ 𝐺𝑐𝑜𝑣()*+, ∣		= 0.63, Appendix 14), but there was no evidence of genetic 300 

covariation between r and Topt or Ea (credible intervals contained 0, Appendix 14). Last, shape 301 

parameter heritabilities matched verbal model predictions (H2CTmin=0.945, H2rpeak=0.949, 302 

H2Topt=0.070, H2Ea=0.002), confirming that heritable variation in r results in heritable variation in 303 

CTmin and rpeak, but not Topt or Ea.  304 

 305 

Consequences of G in r: selection and evolvability of r-TPC shape parameters 306 

Without accounting for genetic covariances, selection operated differentially across shape 307 

parameters and was temperature dependent: rpeak was under negative directional selection at low 308 

temperatures (<20°C, Fig 3a, Appendix 15), weakly positive or no directional selection at 309 

intermediate temperatures (between 20 and 30°C, Fig 3a, Appendix 15), and strong positive 310 

directional selection in high temperatures with Ea following a similar pattern (Fig 3b, Appendix 311 

16). CTmin was under negative selection at low/intermediate temperatures but no selection at high 312 

temperatures (Fig 3c, Appendix 17). Last, Topt was under no selection at low temperatures but 313 

under weak then strong stabilizing selection at intermediate and high temperatures, respectively 314 

(Fig 3d, and Appendices 18-19). 315 
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However, we also found clear positive genetic covariances between rpeak and Ea, CTmin 316 

and Ea, and CTmin and Topt (Fig 3e). Consequently, selection acting on highly heritable 317 

parameters CTmin and rpeak could still result in correlated evolution in weakly heritable parameters 318 

Ea, and Topt. Accounting for these genetic covariances, we confirmed differences in selection 319 

across shape parameters whose magnitude and direction also shifted with temperature (Fig 3f), 320 

resulting in possible temperature-dependent shifts in parameters (Fig 3g). Specifically, our 321 

multivariate analysis suggested that selection would favor higher rpeak (and maybe Ea) at high 322 

temperatures, and low Ea and CTmin at low temperatures, but no selection on Topt (Fig 3f), 323 

generally matching univariate predictions (Fig 3g). Overall, the evolutionary responses followed 324 

predicted trajectories from the estimates of selection closely (Fig 3f-g), with a few exceptions 325 

that suggest correlated evolution: positive response of Ea with temperature likely are correlated 326 

responses with rpeak (Fig 3g), which in turn shows strong negative response at low temperatures 327 

despite no selection, likely through correlated evolution with Ea whose negative response is 328 

driven by negative selection in CTmin (Fig 3g). Despite differences in heritability which impose 329 

constraints in r-TPC evolution, genetic correlations among shape parameters allowed for 330 

temperature-dependent evolutionary responses in all of them except Topt, which our results 331 

suggest is under stabilizing selection (Fig 3d).  332 

 333 

Consequences of G × E in r: sorting of standing genetic variation across temperatures  334 

We observed significant temperature-dependent differential selection among genotypes 335 

(Fig 4e), matching theoretical predictions from a simple model of genetic evolution (Fig 4f), 336 

which confirms the hypothesis that G × E in r could set the stage for rapid r-TPC shape evolution 337 

through selection on standing genetic variation (Fig 4a, b). Despite quantitative discrepancies 338 
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between observed and predicted frequencies—notably at 19ºC where the model predicted a 339 

polymorphic population but the data indicated otherwise (Fig 4e, f)—it still correctly predicted 340 

observed changes in genetic frequencies across most temperatures. These results are also robust 341 

to different experimental conditions (Appendix 11) and fluctuating temperatures (Appendix 20), 342 

the latter showing that temperature fluctuations could play a role in determining r-TPC evolution 343 

if r-TPCs show multiple crossing points in a short temperature span. 344 

The results of this experiment were also consistent with our estimated predicted 345 

responses to selection (cf. Fig 3 and Fig 4): lower temperatures led to higher frequencies of the 346 

CU4106 genotype, whose r-TPC has lower Ea and CTmin compared to AXS (Fig 4d), so the 347 

average r-TPC of the population should reflect that and also have lower Ea and CTmin, as 348 

predicted by our multivariate model. At higher temperatures, selection favored AXS, which has 349 

higher Ea, so the ensuing population also should have an average r-TPC with higher Ea (Fig 4d). 350 

Last, rising temperatures led to an increase in genetic variance (~p(1-p) where p is the frequency 351 

of either genotype and 1-p that of the other) compared to lower temperatures (Fig 4e, f)—which 352 

should facilitate adaptation—then a reduction in genetic variance (as genotype CU4106 becomes 353 

less prevalent, Fig 4e, f), which in turn could impede adaptive evolution in the future.  354 

 355 

DISCUSSION 356 

Our study reveals heritable genetic variation in Tetrahymena thermophila’s population 357 

intrinsic growth rates that results in heritable variation in some, but not all, r-TPC shape 358 

parameters (Fig 2), allowing for thermal adaptation in new climates (Fig 3). Observed intra-359 

specific variation in r-TPC shape parameters rivals reported inter-specific variation across 360 

multiple protist species (Wieczynski et al. 2021). We also found that most r-TPC shape 361 
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parameters are under different selection regimes across temperatures (Fig 3), with parameters 362 

CTmin and rpeak being more likely to respond to selection than Ea and Topt, but even weakly-363 

heritable parameters can still evolve through correlated evolution (Fig 3). Consequently, colder 364 

temperatures select for lower CTmin, rpeak, and Ea, and warmer temperatures lead to high rpeak and 365 

Ea (Fig 3). Last, we showed that G × E in r can lead to rapid, predictable shifts in population 366 

genetic makeup across temperatures and r-TPC evolution (Fig 4), in a “plasticity drives 367 

adaptation” scenario (Ghalambor et al. 2007).    368 

While the evolution of microbial TPCs is likely the product of adaptation to local habitats 369 

(Kontopoulos et al. 2020), how r-TPCs will adapt to ongoing rising temperatures remains an 370 

open question. Several canonical evolutionary paths have been proposed: 1)‘Colder-is-Better’ 371 

(CIB), where rising temperatures reduce population growth, leading to lower rpeak, Topt, and Ea 372 

(Kingsolver & Huey 2008). 2) Warmer-Is-Better (WIB), where higher growth rates evolve in 373 

warmer temperatures, leading to TPCs with higher rpeak and Topt (Pawar et al. 2015). And, 3) 374 

Generalist-Specialist-Tradeoff (GST), where species can either evolve towards rapid growth 375 

within a narrow temperature range (i.e., temperature specialists), or slower growth over a broader 376 

temperature range (i.e., temperature generalists), leading to higher rpeak, higher CTmin, and lower 377 

CTmax (Seebacher et al. 2015). Tests of these possible evolutionary paths (Kontopoulos et al. 378 

2020; Montagnes et al. 2022) mostly use inter-species comparisons that often overlook intra-379 

specific variation and genetic associations between shape parameters, and therefore cannot 380 

readily make predictions about r-TPC evolutionary trajectories for any given species. Indeed, 381 

without accounting for genetic associations, our results would suggest support for WIB with 382 

clear directional selection for higher rpeak and Ea under warming climates (Fig 3a, b). Accounting 383 

for genetic covariances, however, suggested more complex evolutionary r-TPC responses than 384 
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currently predicted by theory. Specifically: we show support for WIB as warming should favor r-385 

TPCs with high rpeak and high Ea (Fig 3f, g), but no support for GST, as CTmin and rpeak responded 386 

mostly together (Fig 3f, g). Last, Topt is assumed to evolve under WIB, CIB and GST, but we 387 

found no selection (Fig 3f) –or maybe even weakly stabilizing selection (Fig 3d)– and no 388 

evolutionary response (Fig 3g). This suggesting that neither WIB, CIB and GST can explain 389 

predicted evolutionary responses in T. thermophila, which emphasize the importance of 390 

intraspecific variation and genetic associations to fully understand r-TPC evolution.  391 

When G × E in r is prevalent, we showed that thermal adaptation can occur rapidly 392 

through temperature-dependent selection on r-TPC genotypes (Fig 4), resulting in reduced 393 

genetic variation. Loss of G which could slow down, or impede, future adaptation (Pauls et al. 394 

2013). In other words, we show that phenotypic plasticity in r could lead to adaptive evolution in 395 

r-TPCs in novel climates. That this form of r-TPC evolution could be anticipated from simple 396 

models of genetic evolution, is striking, considering how little information beyond the r-TPC of 397 

each genotype the model accounts for. Yet, r-TPC adaptation in deep time has been suggested to 398 

occur gradually across six different Tetrahymena species (Montagnes et al. 2022), directly 399 

countering our claim that r-TPCs could evolve rapidly through temperature-dependent selection. 400 

We argue that this form of rapid r-TPC evolution may only play out during fast-changing 401 

environmental conditions, not always result in long-term r-TPC change, or be masked by 402 

reversals in selection. In fact, selection often “erases its traces” (Haller & Hendry 2014), and is 403 

strongest under novel conditions, weakening as populations adapt (Caruso et al. 2017)—i.e., “the 404 

paradox of stasis” (Haller & Hendry 2014).  405 

Resulting temperature-dependent loss of genetic diversity of adaptive r-TPC evolution 406 

could impact the persistence of genetically depauperate species under warming. But whether this 407 
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may be the case in nature hinges on quantifying processes that generate diversity (mutation, gene 408 

flow, recombination) in r and r-TPC shape parameters in the wild, and assessing when these 409 

processes could counter loss of genetic diversity after episodes of thermally-induced r-TPC 410 

evolution. T. thermophila has the lowest reported base substitution mutation rate of all species 411 

(Zufall et al. 2016), and limited gene flow (Zufall et al. 2013), but even weak dispersal or rare 412 

mutation events could contribute to r and r-TPC variation and rescue genetic diversity in very 413 

large, rapidly reproducing populations. The prevalence of sexual reproduction in nature is 414 

debated –e.g. ~50% of wild individual T. thermophila cannot reproduce sexually and some 415 

Tetrahymena lineages have lost this ability entirety (Doerder 2014)– but likely important if 416 

present. In fact, T. thermophila possesses two separate genomes, a germinal line (in 417 

micronucleus) and an expressed genome (in macronucleus). Our study focuses on macronuclear 418 

variation, but asexual reproduction following sex results in random distribution of macronuclear 419 

alleles to daughter cells—i.e. phenotypic assortment—potentially generating novel variation in r 420 

and r-TPCs (Tarkington et al. 2023). Moreover, seemingly lost genetic variation could persist in 421 

the population in other individual’s micronuclei and reemerge following sexual reproduction 422 

(Dimond & Zufall 2016). Fully understanding thermal adaptation in nature thus requires 423 

exploring these processes’ interplay, yet, for most organisms, they remain poorly understood. 424 

 425 

Caveats 426 

While bodies of water in T. thermophila’s native range are warming significantly (US EPA 427 

2021) and experiencing more frequent and extreme heatwaves (Tassone et al. 2023), water 428 

temperature typically remains 2-5ºC cooler than air temperature (Stefan & Preud’homme 1993). 429 

Thus, some of the warmer temperatures in our study may be uncommon in T. thermophila’s 430 
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native range. However, strong temperature effects observed at low temperatures suggest these 431 

patterns can still operate in many T. thermophila populations. Also, previous research showed 432 

that most variation in r-TPC shape across species could be collapsed into a single dimension of 433 

variation (Rezende & Bozinovic 2019), suggesting that some of the covariation observed in this 434 

study between shape parameters could be spurious. If these r-TPCs could actually be collapsed 435 

into a single axis of variation, however, we would have expected strong and multiple covariation 436 

between most if not all shape parameters—which was not the case (Fig 3e, f). Interestingly, most 437 

of the genetic variation in shape parameters was observed, as predicted, in CTmin and rpeak, but 438 

these two parameters were not correlated to one another. Perhaps our intraspecific r-TPC 439 

variation results stand in contrast to those observed across species (Rezende and Bozinovic, 440 

2019), but more research is needed to clarify this point.   441 

 442 

Conclusion 443 

Overall, TPCs control the fate of populations (Sinclair et al. 2016), ecological 444 

interactions (Enquist et al. 2015), food web dynamics (Barbour & Gibert 2021; Gibert et al. 445 

2022), and ecosystem processes (Gibert et al. 2015). Yet, TPC evolution in a rapidly warming 446 

world remains conspicuously unknown. Here, we show that r intraspecific variation can drive 447 

temperature-dependent evolution in microbial r-TPCs and have consequences for rapid shifts in 448 

population genetic makeup. Despite studying a single protist species, our findings provide a 449 

foundation for studying thermal adaptation in this diverse and important microbial group and 450 

beyond. Our study emphasizes the importance of temperature in mediating rapid microbial 451 

evolutionary change as we grapple with understanding and predicting organismal responses to an 452 

increasingly warmer world. 453 
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FIGURES 640 
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Figure 3 686 
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Figure 4 713 
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FIGURE LEGENDS 729 
 730 
Figure 1 (a) General shape of the r-TPC. (b) r-TPC shape parameters. Blue-colored shape 731 
parameters, measured in this study, include rpeak, Ea, CTmin and Topt. (c) Top: environmental 732 
variation (E) in r comes from expressing different r across temperatures but not genotypes, and 733 
leads to overlapping reaction norms. Middle: genetic variation (G) in r results from expressing 734 
different r across genotypes, but not temperatures, and leads to additive shifts in reaction norm 735 
intercepts, but not slopes. Bottom: gene-by-environment interactions (G × E) results from 736 
patterns expression of expression of r changing across temperature, leading to shifts in slopes of 737 
reaction norms. (d) Because-rTPCs are multi-temperature reaction norms of r, classic 738 
quantitative genetics can explain how E, G, G × E in r influence r-TPC shape: E in r produces 739 
fully overlapping r-TPCs (top), G in r result in non-overlapping r-TPCs with genotype-specific 740 
intercepts but not slopes (middle), and G × E leads to r-TPCs that vary in intercepts and slopes 741 
(bottom). (e) These r-TPC shape signatures create variation in r-TPC shape parameters: 742 
overlapping r-TPCs show no variation in shape parameters (top), additive shifts in r-TPC 743 
intercepts lead to additive (heritable) variation in rpeak, CTmin, and CTmax (middle), while slope 744 
and intercept variation in r-TPCs creates variation in all shape parameters.    745 
 746 
Figure 2 (a) Observed r-TPCs for all 22 genotypes. Dots represent observed r values, bold lines 747 
represent Sharpe-Schoolfield model fits, and dash lines represent average TPCs across all 748 
experimental genotypes. (b) All 22 TPCs are superimposed and dashed lines represent the 749 
average r-TPC. Inset: amount of variation due to residual, G × E, G, and E variation in r. 750 
 751 
Figure 3 (a) Estimated adaptive landscape across temperatures (i.e., change in fitness with a 752 
change in the underlying shape parameter) for rpeak. Color indicates temperature bins (blue: 10—753 
20ºC, yellow: 20—30ºC, red: 30—40ºC) (b) As in a, but for Ea. (c) As in a, but for CTmin. (d) As 754 
in a, but for Topt. (e) Observed genetic associations between shape parameters. Each dot is a 755 
genotype color-coded as in Fig. 2. In gray, 95% confidence ellipses. ρ represents correlation 756 
coefficients. (f) Estimated multivariate selection coefficient (β, 95% maximum density intervals) 757 
for all shape parameters across temperatures, or eco-evo landscapes(MacColl 2011). (g) 758 
Predicted evolutionary change (Δz, 95% maximum density intervals) for all shape parameters, 759 
across temperatures.      760 
 761 
Figure 4 (a) G × E variation in r-TPCs leads to differential growth of each genotype across 762 
temperatures. (b) Differential growth across temperatures leads to differential selection across 763 
environments and rapid shifts in genetic frequencies across temperatures. (c) First column: 764 
Differential Interference Contrast (DIC) microscopy for two genotypes of the protist 765 
Tetrahymena thermophila (CU4106 and AXS). Second column: fluorescence microscopy image 766 
overlayed on DIC. Only AXS fluoresces (green) due to the expression of Yellow Fluorescent 767 
Protein (YFP). Third column: as in the second column, but for autofluorescence (A. Flu, in pink), 768 
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which both genotypes exhibit. Fourth column: Overlayed DIC, YFP and A.Flu images showing 769 
how the different strains fluoresce once all sources of fluorescence are accounted for. (d) r-TPC 770 
for genotypes CU4106 and AXS. Inset: Measures of relative fitness for both CU4106 and AXS. 771 
This predicts an increase in AXS frequency relative to CU4106 at intermediate temperatures 772 
relative to low or high temperatures. (e) Observed genetic frequencies across temperatures. (f) 773 
Predicted genetic frequencies across temperatures.   774 
 775 
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