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ABSTRACT

Microbial respiration is a key biotic driver of climate change. Warming boosts microbial
population growth, which increases biomass and respiration. This feedback might be disrupted
by adaptation in thermal performance curves (TPCs) —whose shape describes how temperature
drives growth. In this study, we uncover substantial genetic variation (G) in microbial intrinsic
population growth rates (), demonstrate a causal link between G variation in » and G variation in
TPC shape, and show how this variation constrains r-TPC shape evolution along specific
evolutionary paths across temperatures. We also uncover Gene-by-Environment (G X E)
variation in 7, which results in specific signatures in TPC shape and predictable temperature-
dependent rapid TPC evolution but also lower G, which could reduce future evolutionary
potential. Overall, we show how temperature-dependent evolution in a linchpin of global
ecosystem function—microbial TPC shape—is determined by a combination of heritable and

non-heritable variation in intrinsic growth rates.
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INTRODUCTION

Microbes play a central role in regulating the global carbon (C) cycle that controls
climate change (Falkowski et al. 2008). Indeed, soil microbial respiration releases ~94Pg/yr of C
into the atmosphere (Stell et al. 2021) while microalgae fix 30-50 Pg of C/yr globally (Falkowski
1994). Global warming is expected to alter these microbial processes (IPCC 2023), but
anticipating these effects requires a deeper understanding of the biotic and abiotic factors
influencing microbial respiration in a warming world (Rocca et al. 2022; Wieczynski et al.
2023).

One such factor is microbial population growth, which influences total standing biomass,
and hence, total microbial respiration (Savage et al. 2004). The thermal performance curve of
intrinsic population growth rate (r) describes how microbial population growth changes with
temperature (‘7-TPCs’ henceforth, Fig 1). The shape of r-TPCs is controlled by temperature-
dependent metabolism: metabolism increases with temperature, and so does 7, until an ‘optimal’
temperature (Top) is reached (Fig 1a), then 7 declines as metabolic costs increase (Fig 1a;
Amarasekare & Savage 2012). While »-TPC shape varies across species (Jacob & Legrand
2021;), unimodal shape is the norm (Wieczynski et al. 2021), described by shape parameters
linked to thermal ecology: maximum growth rate (fpeak), minimum and maximum temperatures
for population growth (CTmin and CTmax respectively), and rates of 7-TPC increase/decrease with
temperature (Ea, Eq respectively, Fig 1b). Ultimately, differences in »-TPC shape across species
reflect divergent evolutionary trajectories in shape parameters across species and environments
(Angilletta 2009).

While »-TPC shape is expected to evolve in novel environments, anticipating this thermal

adaptation is a major open question, as the r-TPC reflects a species’ ability to cope with
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88  environmental change. Thermal adaptation hinges on the evolution of intraspecific—heritable—
89  genetic variation and selection favoring genetic variants suited to novel environments (Frankham
90  2005), so quantifying heritable intraspecific variation in »-TPC shape parameters is central to
91  understanding »-TPC shape evolution (Kling ef al. 2023). From a quantitative genetics
92  standpoint, the »-TPC represents the reaction norm of the underlying measure of performance, 7,
93  across temperatures among genotypes (Golmulkiewicz et al. 2018). »-TPC intraspecific variation
94 s thus inextricably linked to that of 7. Understanding this link is key to quantifying heritable
95  wvariation in 7-TPC shape parameters and predicting their response to selection in novel
96  environments.
97 To understand the link between intraspecific variation in » and -TPC shape parameters,
98  we developed a verbal model using classic quantitative genetics of reaction norms (Fig 1, c-e).
99  First, environmental variation (E) in 7, driven by differential expression of » across temperatures,
100  but not genotypes, classically manifests as completely overlapping genotypic reaction norms (Fig
101 1C, first row). Correspondingly, genotypic »-TPCs should also overlap (Fig 1D, first row) as they
102 are reaction norms extended over multiple temperatures. Overlapping »-TPCs have no variation
103 in shape parameters (Fig le, first row), so E in 7 should not result in »~-TPC shape parameter
104  variation. Second, genetic variation (G) in 7, arising from differential expression of  across
105  genotypes, but not temperatures, results in “additive” shifts in the intercepts of genotypic
106  reaction norms—but equal slopes (Fig 1C, second row). These additive shifts translate to parallel
107  r-TPCs (Fig 1D, second row), with additive variation in their x-axis intercepts (CTmin, CTmax)
108  and their maximum height (rpeak), but no variation in Topi, Ea, Eq (Fig 1E, second row). Last,
109  gene-by-environment (G X E) interactions in », which manifest as changes in intercept and slope

110  of reaction norms across genotypes and temperatures (Fig 1C, third row), result in non-parallel 7-
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111 TPCs (Fig 1D, third row), with greater variation in all shape parameters (Fig 1E, third row). This
112 conceptual model therefore predicts covariation between heritable genetic variation in » and

113 variation in CTmin, CTmax, and rpeak, $0 7-TPCs’ CTmin, CTmax, and rpeak are more likely to be

114  heritable and respond to selection than Top, Ea, or Eq, which in turn suggest constraints operating
115  on possible -TPC evolutionary trajectories.

116 To address how -TPC shape might evolve across temperatures we thus quantify E, G,
117  and G x E variation in r, and test predictions from our conceptual model. In doing so we reveal
118 that heritable variation in r results in substantial heritable variation in predicted shape

119  parameters. We build upon this understanding to quantify the structure of genetic variation and
120 covariation in shape parameters, and use this information to infer selection and possible »-TPC
121  evolutionary trajectories of shape parameters across temperatures. Last, we uncover a

122 mechanism of rapid »-TPC evolution in the presence of G x E variation in r that leads to

123 temperature-dependent selection on »-TPC shape, but can erase heritable variation, possibly

124 creating an evolutionary trap that constrains future microbial »-TPC evolution.

125

126 METHODS

127 Study system and genotypes

128 We used Tetrahymena thermophila, a freshwater ciliate protist found across the

129  Northeastern United States (Zufall et al. 2013) and part of a cosmopolitan genus (Lynn &

130  Doerder 2012). Protists, unicellular Eukaryotes that dominate oceanic biomass and rank third in
131  terrestrial biomass, comprise twice the biomass of the Animal Kingdom (Bar-On et al. 2018) and

132 underpin global ecosystem functioning (Gao et al. 2019). So, while no single species is
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133 representative of the entire group, understanding thermal adaptation in such an ecologically

134 pivotal group is meaningful.

135 To do so, we sourced 22 unique 7. thermophila genotypes: 19 from the Cornell

136  Tetrahymena Stock Center and 3 from the Chalker lab (Washington University, Appendix 1).
137 These genotypes, which vary in geographic origin and have well-known genetic differences

138  (Appendix 1), were chosen to sample existing genetic variation, not for their functional

139  significance. As most were derived from laboratory cultures, our assemblage likely contains less
140  variation than natural populations (Zufall ef al. 2013), making our results a conservative estimate
141 of how thermal adaptation might proceed in nature.

142

143 Quantifying r, r-TPCs, and TPC shape parameters

144 Culture care and maintenance followed standard practices for ciliate Ecology (Appendix
145 2). Stock cultures were maintained in Percival AL-22 growth chambers with a 12hr day-night
146  cycle at 22°C. We quantified »-TPCs for all genotypes through growth assays in 3cm diameter
147  Petri dish microcosms containing 3mL of growth medium at seven temperatures (13, 19, 22, 25,
148 30, 32, 38°C). Each genotype and temperature combination was replicated six times, totaling 924
149  microcosms. Experimental temperatures span below and above the average growing season

150  temperature in 7. thermophila’s native range (~23°C ; NOAA 2024). Microcosms were

151  initialized at densities of lind/mL in 3ml Petri dishes, which results in exponential growth for 1-
152 2 days (Gibert et al. 2022, 2023; Singleton et al. 2021). After 24hrs, we censused the

153 microcosms through whole-population counts under a stereomicroscope (Leica M205C) and

154 calculated r across temperatures to characterize the entire 7-TPC as log(final density/initial

155  density)/time, with time = 1 day (Wieczynski ef al. 2021). To obtain »-TPC shape parameters, we
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156  fitted a Sharpe-Schoolfield model (“nls.multstart” v1.3.0 package in R, (Padfield 2023)). Shape
157  parameters Ea, rpeak, CTmin and Tope (Fig 1b) could be unequivocally estimated from our data, and
158  so we focused all subsequent analyses on those. These parameters control the rising portion of
159  the »-TPC (Fig 1b, green) —the “operational temperature range” (DeLong et al. 2017), i.e., what
160  most organisms are likely to experience in their native geographic ranges.

161

162 Link between heritable genetic variation in r, and r-TPC shape parameters

163 We quantified E, G and G x E variation in  using function gxeVarComps() in R package
164  statgenGxE v1.0.5. The function fits a linear model with 7 as the response variable, and

165  temperature, genotype, and their interaction as fixed predictors, to calculate effect sizes and

166  statistical significance. It then fits a second model with all fixed terms treated as random effects
167  to calculate » variance components (E, G, and G x E). Only G is considered to be heritable, so
168  the fraction of heritable genetic variation in 7, can be estimated as the broad-sense heritability
169  (H>=G/(E+G+G x E)). However, this expression does not account for inter-treatment and

170  replicate variability, which inflates E and underestimates H? (Cullis et al. 2006; Piepho &

171 Mohring 2007). In the appendix we present three alternative formulations for H? that address this
172 issue (Appendix 3).

173 Next, we tested the predictions of our verbal model (Fig 1) linking heritable variation in
174 (G) to heritable variation in »-TPC shape parameters. Since each »-TPC yields a single shape

175  parameter set, only G variation in shape parameters could be quantified. All other components of
176  variation (e.g., E, G x E, error) were pooled as residual variance. To evaluate the model's

177  prediction that G variation in r results in greater G variation in shape parameters rpcak and CTmin

178  compared to E,, and Top: (Fig 1e), we tested whether rpeax and CTmin exhibited stronger genetic
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179  covariance with  than did E., and Top using a multivariate Bayesian Generalized Linear Mixed
180  Model. The model includes mean-scaled values of 7, Ea, rpeak, CTmin and Topc as jointly modeled
181  response variables, each with their own fixed mean, and Genotype as a random effect to estimate
182  variances and covariances implemented in R package MCMCglmm v.2.36 (Hadfield 2010).

183  Variance-covariance priors were obtained by bootstrapping »-TPC data 100 times within each
184  genotype and re-fitting the Sharpe-Schoolfield model to each bootstrap replicate, generating a
185  population of shape parameters for each genotype (Appendix 4). Using inverse Wishart priors
186  (Murphy 2012) did not alter our results. Last, if G variation in 7 results in greater G in rpeax and
187  CTmin, these shape parameters should also have greater heritability than Ea., and Top. To confirm
188  this, we calculated the broad-sense heritability in »-TPC parameters using the standard

189  expression H>=G/(G+residual variance) with G and residual variance estimates from the

190 MCMCglmm model.

191

192 Consequences of heritable variation: selection and evolutionary potential of r-TPC parameters
193 Heritable »-TPC shape parameters can evolve under selection. To understand how, we
194  quantified 1) the direction, form, and magnitude of selection on all four shape parameters, 2)

195  whether and how temperature influenced selection, and, 3) their potential evolutionary responses
196  across temperatures. We used two approaches: one that neglects genetic correlations between
197  parameters but allows estimation of non-linear selection (e.g., stabilizing selection), and one that
198  accounts for genetic correlations and neglects non-linear selection, while enabling predictions of
199  evolutionary responses across temperatures.

200 In the first approach, we quantified selection by characterizing the adaptive landscape

201  (Lande 1976, 1979) as the relationship between shape parameter values and absolute fitness—
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202  classically assumed to a function of 7 (Lande 1976, 1979) because it reflects average birth and
203  death rates of individuals, two major fitness components (Lande 1982; Partridge & Harvey

204  1988). We modeled this relationship for all shape parameter values fitted across genotypes, using
205  polynomial regression and r as the response, linear and quadratic effects (i.e., non-linear

206  selection) for each mean-standardized shape parameter, and additive and interactive temperature
207  effects with the linear and quadratic shape parameter terms (see Appendix 5). We multiplied the
208  quadratic regression coefficient by two (Stinchcombe et al. 2008). A positive relationship

209  between r and the focal shape parameter would be evidence of positive directional selection, a
210  negative relationship would indicate negative directional selection, and no relationship suggests
211  no directional selection. Stabilizing selection would result in a concave-down relationship, and
212 disruptive selection would manifest as a concave-up relationship where extreme values have
213 higher fitness (Lande & Arnold 1983).

214 The second approach predicts »-TPC shape evolution across temperatures while

215  accounting for genetic correlations among shape parameters. It uses the multivariate breeder’s
216  (Lande 1979) and Price’s (Price 1972) equations to estimate direct (i.e., acting on the focal

217  parameter) and indirect selection (i.e., acting on genetically linked parameters, (Stinchcombe et
218 al 2014)). This is achieved by estimating the response to selection of all shape parameters, Az,
219  as their covariance with fitness—i.e., the Price equation aspect of this approach— which requires
220  estimating a genetic variance-covariance matrix (Gzw)—i.e., its multi-variate breeder’s equation
221  aspect. This matrix includes the genetic variance-covariance matrix (G) of shape parameters as
222 its first four rows/columns, and their genetic covariation with fitness (W) as the last row/column
223 (Lande 1976, 1979, 1982). The finite rate of increase R=exp(r) was used as our metric of fitness

224 but using plain r did not alter our results. From the Price equation, this last row/column also
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225  equals the vector of predicted trait change, Az, so G.w also yields Az. Then, from the multivariate
226  Breeder’s equation, Az = G, where B is the selection gradient (Lande 1979). Provided that G is
227  invertible, then p =G Az, to estimate selection.

228 Positive/negative Az; values indicate an increase/decrease in the i-th shape parameter,
229  while positive/negative [, indicates positive/negative selection operating on the i-th shape

230  parameter. Alignment between Az; and f; indicates direct responses to selection (Hansen &

231  Houle 2008), in our case, by temperature, while misalignment suggest indirect selection through
232 correlated responses with other shape parameters.

233 To estimate G.w for each temperature, we used subsets of  for each genotype for each
234  temperature. Shape parameters do not change across temperatures but » does, so the Gzw matrices
235  only differed in their last row/column across temperatures, i.e., the covariances between shape
236  parameters and fitness—or Az. To facilitate this estimation and ensure interpretability, all G,w
237  variables were rescaled, which was achieved through the expression G,w as =SLS*(1/2F) where
238 L is a between-genotype covariance matrix, S is a diagonal matrix containing the inverse of each
239  trait’s standard deviation, and F is the inbreeding coefficient, which equals 1 for clonal lineages
240  (Falconer 1996). We quantified uncertainty in Gzw entries using a Bayesian posterior distribution
241  of L matrices (and hence G.w) and used a multivariate normal likelihood function and non-

242 informative inverse regularized Wishart priors (nu=traits+1) (Murphy 2012), implemented in
243 evolqg v3.0 R package (Melo et al. 2015). Using MCMCglmm instead of evolqg did not affect
244 our results (Appendix 6). We took 1000 posterior samples for G.w to calculate Az, G, and 8, and
245 95% maximum density intervals for al estimates.

246

247  Consequences of G x E in r for rapid r-TPC evolution

10
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248 Because G x E variation in r is predicted to result in non-parallel »-TPCs (Fig 1), slight
249  differences in intrinsic growth rates across temperatures can drive temperature-mediated

250  differential selection among genotypes (Fig 4a, b). Treating r as proxy for absolute fitness

251  (Lande 1976), this selection should be strongest at temperatures where »-TPCs differ the most,
252 i.e., the temperatures with the largest differences in relative fitness.

253 We empirically tested for temperature-dependent selection among genotypes by setting
254 up an experimental evolution assay with two fluorescently marked strains (AXS and CU4106,
255  Fig4c) with different -TPCs and relative fitness (Fig 4d, Fig4d inset) across six temperatures
256 (19, 22,25, 30, 32, 38°C), each replicated seven times, and 2 additional single-strain controls per
257  temperature. The genotypes cannot mate because they belong to the same mating type (mating
258  type VII, Appendix 1), so only clonal reproduction was possible. We initialized our microcosms
259  at equal densities (5 ind/mL in mixture treatments, 10ind/mL for single-genotype controls). After
260 48 hours, we added Cadmium Chloride to induce fluorescence (Appendix 7), confirmed on a

261  Leica Thunder Cell Culture inverted microscope (Fig 4c and Appendix 8). Thirty minutes later,
262  we cytometrically censused each sample (Novocyte 2000R). While fluorescently tagged

263  genotypes can lose their ability to fluoresce over time, they carry a paromomycin resistance gene
264  (Appendix 7), allowing selection through paromomycin exposure (100pg/mL) prior to counting
265  and estimating relative frequencies based on fluorescence (Appendices 9-10). Antibiotics can
266  negatively affect protists and the bacterial communities they feed on, so we replicated this

267  experiment in paromomycin-free conditions, which did not qualitatively alter our results (see
268  Appendix Fig S11).

269 Last, observed changes in genetic frequencies were compared to predicted frequencies by

270  aclassic model of genetic evolution in discrete time parameterized with the »-TPC of both

11
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271  experimental genotypes (Fig 4f). The model tracks the frequency of each strain f;, and assumes
272 that their absolute fitness, W;, is a function of their average intrinsic growth rate » (Lande 1976,
273 1979). The frequency of each strain in the population is determined by the classic recursive

274  equation, f;(t + 1) = f;(t)(W;/W) [Eq 1.], where W is the average fitness of the population
275 M, fiW; = X1, fir), and W;/W is fitness the relative fitness of i-th genotype relative to the
276  entire population. We used each genotype’s -TPC (AXS, CU4106, Fig 4d) to estimate W; /W
277  across temperatures (i.e., replacing ;). We forward-solved the recursive equation (Eq 1) under
278  two scenarios: one in which temperature was constant, and one in which temperature fluctuated
279  randomly across generations, drawn from a normal distribution with known mean and variance.
280  This minimal model assumes that differential selection across environments is mostly driven by
281  differences in »-TPCs, and disregards density- and frequency-dependent selection, sexual

282  reproduction, mutation, and most all ecological processes.

283

284  RESULTS

285  Heritable variation in r leads to heritable variation in r-TPC shape parameters

286 Intrinsic growth rates showed strong temperature responses within genotypes (F =

287  3092.70, Dt = 6, Generalized Eta-Squared (GES) effect size = 0.964, p< 0.001), significant
288  variability across genotypes (F= 163.65, p < 0.001, Dr= 21, GES = 0.832), and significant G X
289  Einteractions (F=29.7, p < 0.001, Dr= 122, GES = 0.840), leading to classically unimodal

290  shapes that varied among genotypes (Fig 2a). Environmental variation (E) accounted for 71.7%
291  of all observed variation in 7, genetic variation (G) explained 6.1% of all variation, and Gene-by-
292 Environment interactions (G x E) explained 11.7%, with 10.5% residual variation (Fig 2b). This

293 is well within what is expected for life history traits (Hoffmann & Sgro 2011). Despite a

12
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294  relatively modest G compared to E, after accounting for experimental inter-treatment and

295  replicate variability, » was strongly heritable (H%standard=0.76, H?cunis=0.95, H?piepho=0.91,

296  Appendix 3).

297 Shape parameters varied widely across genotypes (e.g., genotype AXS was 3.2 times

298  more thermally sensitive than A1868 and could grow 3.6 times faster at Top, Fig 2, and

299  Appendices 12-13). As predicted, CTmin and rpeak showed strong genetic covariation with 7 (|

300  Geovermin | =0.65, | GCOVrpeqr | = 0.63, Appendix 14), but there was no evidence of genetic
301  covariation between r and Top: or Ea (credible intervals contained 0, Appendix 14). Last, shape
302  parameter heritabilities matched verbal model predictions (H2ctmin=0.945, H?rpeak=0.949,

303 H%rop=0.070, H%:,=0.002), confirming that heritable variation in 7 results in heritable variation in
304  CTmin and rpeak, but not Topt or Ea.

305

306  Consequences of G in r: selection and evolvability of r-TPC shape parameters

307 Without accounting for genetic covariances, selection operated differentially across shape
308  parameters and was temperature dependent: ryeax Was under negative directional selection at low
309  temperatures (<20°C, Fig 3a, Appendix 15), weakly positive or no directional selection at

310 intermediate temperatures (between 20 and 30°C, Fig 3a, Appendix 15), and strong positive

311  directional selection in high temperatures with E, following a similar pattern (Fig 3b, Appendix
312 16). CTmin was under negative selection at low/intermediate temperatures but no selection at high
313 temperatures (Fig 3c, Appendix 17). Last, Tope was under no selection at low temperatures but
314  under weak then strong stabilizing selection at intermediate and high temperatures, respectively

315  (Fig 3d, and Appendices 18-19).
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316 However, we also found clear positive genetic covariances between rpeak and Ea, CTmin
317  and E,, and CTuin and Top: (Fig 3€). Consequently, selection acting on highly heritable

318  parameters CTmin and rpeak could still result in correlated evolution in weakly heritable parameters
319  E., and Top. Accounting for these genetic covariances, we confirmed differences in selection
320  across shape parameters whose magnitude and direction also shifted with temperature (Fig 3f),
321  resulting in possible temperature-dependent shifts in parameters (Fig 3g). Specifically, our

322 multivariate analysis suggested that selection would favor higher rpeak (and maybe E.) at high
323 temperatures, and low E, and CTmin at low temperatures, but no selection on Top (Fig 3f),

324  generally matching univariate predictions (Fig 3g). Overall, the evolutionary responses followed
325  predicted trajectories from the estimates of selection closely (Fig 3f-g), with a few exceptions
326  that suggest correlated evolution: positive response of E, with temperature likely are correlated
327  responses with rpeak (Fig 3g), which in turn shows strong negative response at low temperatures
328  despite no selection, likely through correlated evolution with E, whose negative response is

329  driven by negative selection in CTmin (Fig 3g). Despite differences in heritability which impose
330  constraints in r-TPC evolution, genetic correlations among shape parameters allowed for

331  temperature-dependent evolutionary responses in all of them except Topt, which our results

332 suggest is under stabilizing selection (Fig 3d).

333

334 Consequences of G x E in r: sorting of standing genetic variation across temperatures

335 We observed significant temperature-dependent differential selection among genotypes
336  (Fig 4e), matching theoretical predictions from a simple model of genetic evolution (Fig 4f),

337  which confirms the hypothesis that G % E in » could set the stage for rapid r-TPC shape evolution

338  through selection on standing genetic variation (Fig 4a, b). Despite quantitative discrepancies
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339  between observed and predicted frequencies—notably at 19°C where the model predicted a

340  polymorphic population but the data indicated otherwise (Fig 4e, f)—it still correctly predicted
341  observed changes in genetic frequencies across most temperatures. These results are also robust
342 to different experimental conditions (Appendix 11) and fluctuating temperatures (Appendix 20),
343 the latter showing that temperature fluctuations could play a role in determining r-TPC evolution
344  if r-TPCs show multiple crossing points in a short temperature span.

345 The results of this experiment were also consistent with our estimated predicted

346  responses to selection (cf. Fig 3 and Fig 4): lower temperatures led to higher frequencies of the
347  CU4106 genotype, whose r-TPC has lower E, and CTmin compared to AXS (Fig 4d), so the

348  average r-TPC of the population should reflect that and also have lower E, and CTuin, as

349  predicted by our multivariate model. At higher temperatures, selection favored AXS, which has
350  higher E,, so the ensuing population also should have an average »-TPC with higher E, (Fig 4d).
351  Last, rising temperatures led to an increase in genetic variance (~p(1-p) where p is the frequency
352 ofeither genotype and 1-p that of the other) compared to lower temperatures (Fig 4e, f)—which
353  should facilitate adaptation—then a reduction in genetic variance (as genotype CU4106 becomes
354 less prevalent, Fig 4e, f), which in turn could impede adaptive evolution in the future.

355

356  DISCUSSION

357 Our study reveals heritable genetic variation in Tetrahymena thermophila’s population
358 intrinsic growth rates that results in heritable variation in some, but not all, »-TPC shape

359  parameters (Fig 2), allowing for thermal adaptation in new climates (Fig 3). Observed intra-

360  specific variation in »-TPC shape parameters rivals reported inter-specific variation across

361  multiple protist species (Wieczynski ef al. 2021). We also found that most »-TPC shape

15


https://doi.org/10.1101/2024.04.30.590804
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.04.30.590804; this version posted January 17, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

362  parameters are under different selection regimes across temperatures (Fig 3), with parameters
363  CTmin and rpeak being more likely to respond to selection than E, and Top, but even weakly-

364  heritable parameters can still evolve through correlated evolution (Fig 3). Consequently, colder
365  temperatures select for lower CTmin, Ipeak, and Ea, and warmer temperatures lead to high rpeax and
366  Ea(Fig 3). Last, we showed that G x E in r can lead to rapid, predictable shifts in population

367  genetic makeup across temperatures and »-TPC evolution (Fig 4), in a “plasticity drives

368  adaptation” scenario (Ghalambor et al. 2007).

369 While the evolution of microbial TPCs is likely the product of adaptation to local habitats
370  (Kontopoulos et al. 2020), how -TPCs will adapt to ongoing rising temperatures remains an

371  open question. Several canonical evolutionary paths have been proposed: 1)‘Colder-is-Better’
372 (CIB), where rising temperatures reduce population growth, leading to lower rpeak, Topt, and E,
373  (Kingsolver & Huey 2008). 2) Warmer-Is-Better (WIB), where higher growth rates evolve in
374  warmer temperatures, leading to TPCs with higher rpeax and Tope (Pawar et al. 2015). And, 3)

375  Generalist-Specialist-Tradeoff (GST), where species can either evolve towards rapid growth

376  within a narrow temperature range (i.e., temperature specialists), or slower growth over a broader
377  temperature range (i.e., temperature generalists), leading to higher rpeax, higher CTmin, and lower
378  CTmax (Seebacher et al. 2015). Tests of these possible evolutionary paths (Kontopoulos et al.

379  2020; Montagnes et al. 2022) mostly use inter-species comparisons that often overlook intra-
380  specific variation and genetic associations between shape parameters, and therefore cannot

381  readily make predictions about »-TPC evolutionary trajectories for any given species. Indeed,
382  without accounting for genetic associations, our results would suggest support for WIB with

383  clear directional selection for higher rpeak and Ea under warming climates (Fig 3a, b). Accounting

384  for genetic covariances, however, suggested more complex evolutionary »-TPC responses than
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385  currently predicted by theory. Specifically: we show support for WIB as warming should favor 7-
386  TPCs with high rpeak and high Ea (Fig 3f, g), but no support for GST, as CTmin and rpeax responded
387  mostly together (Fig 3f, g). Last, Top is assumed to evolve under WIB, CIB and GST, but we

388  found no selection (Fig 3f) —or maybe even weakly stabilizing selection (Fig 3d)— and no

389  evolutionary response (Fig 3g). This suggesting that neither WIB, CIB and GST can explain

390 predicted evolutionary responses in 7. thermophila, which emphasize the importance of

391 intraspecific variation and genetic associations to fully understand »-TPC evolution.

392 When G x E in r is prevalent, we showed that thermal adaptation can occur rapidly

393 through temperature-dependent selection on »-TPC genotypes (Fig 4), resulting in reduced

394  genetic variation. Loss of G which could slow down, or impede, future adaptation (Pauls et al.
395  2013). In other words, we show that phenotypic plasticity in » could lead to adaptive evolution in
396  r-TPCs in novel climates. That this form of r-TPC evolution could be anticipated from simple
397  models of genetic evolution, is striking, considering how little information beyond the r-TPC of
398  each genotype the model accounts for. Yet, »~-TPC adaptation in deep time has been suggested to
399  occur gradually across six different Tetrahymena species (Montagnes et al. 2022), directly

400  countering our claim that »~TPCs could evolve rapidly through temperature-dependent selection.
401  We argue that this form of rapid »-TPC evolution may only play out during fast-changing

402  environmental conditions, not always result in long-term »-TPC change, or be masked by

403  reversals in selection. In fact, selection often “erases its traces” (Haller & Hendry 2014), and is
404  strongest under novel conditions, weakening as populations adapt (Caruso et al. 2017)—i.e., “the
405  paradox of stasis” (Haller & Hendry 2014).

406 Resulting temperature-dependent loss of genetic diversity of adaptive r-TPC evolution

407  could impact the persistence of genetically depauperate species under warming. But whether this
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408 may be the case in nature hinges on quantifying processes that generate diversity (mutation, gene
409  flow, recombination) in 7 and »-TPC shape parameters in the wild, and assessing when these
410  processes could counter loss of genetic diversity after episodes of thermally-induced »-TPC

411  evolution. T. thermophila has the lowest reported base substitution mutation rate of all species
412 (Zufall et al. 2016), and limited gene flow (Zufall et al. 2013), but even weak dispersal or rare
413  mutation events could contribute to » and »-TPC variation and rescue genetic diversity in very
414  large, rapidly reproducing populations. The prevalence of sexual reproduction in nature is

415  debated —e.g. ~50% of wild individual 7. thermophila cannot reproduce sexually and some

416  Tetrahymena lineages have lost this ability entirety (Doerder 2014)— but likely important if

417  present. In fact, 7. thermophila possesses two separate genomes, a germinal line (in

418  micronucleus) and an expressed genome (in macronucleus). Our study focuses on macronuclear
419  variation, but asexual reproduction following sex results in random distribution of macronuclear
420  alleles to daughter cells—i.e. phenotypic assortment—potentially generating novel variation in r
421  and r-TPCs (Tarkington et al. 2023). Moreover, seemingly lost genetic variation could persist in
422 the population in other individual’s micronuclei and reemerge following sexual reproduction
423  (Dimond & Zufall 2016). Fully understanding thermal adaptation in nature thus requires

424  exploring these processes’ interplay, yet, for most organisms, they remain poorly understood.
425

426  Caveats

427  While bodies of water in 7. thermophila’s native range are warming significantly (US EPA

428  2021) and experiencing more frequent and extreme heatwaves (Tassone et al. 2023), water

429  temperature typically remains 2-5°C cooler than air temperature (Stefan & Preud’homme 1993).

430  Thus, some of the warmer temperatures in our study may be uncommon in 7. thermophila’s
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431  native range. However, strong temperature effects observed at low temperatures suggest these
432 patterns can still operate in many 7. thermophila populations. Also, previous research showed
433 that most variation in »-TPC shape across species could be collapsed into a single dimension of
434  variation (Rezende & Bozinovic 2019), suggesting that some of the covariation observed in this
435  study between shape parameters could be spurious. If these »-TPCs could actually be collapsed
436  into a single axis of variation, however, we would have expected strong and multiple covariation
437  between most if not all shape parameters—which was not the case (Fig 3e, f). Interestingly, most
438  of the genetic variation in shape parameters was observed, as predicted, in CTmin and rpeak, but
439  these two parameters were not correlated to one another. Perhaps our intraspecific »-TPC

440  variation results stand in contrast to those observed across species (Rezende and Bozinovic,

441  2019), but more research is needed to clarify this point.

442

443 Conclusion

444 Overall, TPCs control the fate of populations (Sinclair et al. 2016), ecological

445  interactions (Enquist et al. 2015), food web dynamics (Barbour & Gibert 2021; Gibert et al.

446  2022), and ecosystem processes (Gibert ef al. 2015). Yet, TPC evolution in a rapidly warming
447  world remains conspicuously unknown. Here, we show that » intraspecific variation can drive
448  temperature-dependent evolution in microbial »~TPCs and have consequences for rapid shifts in
449  population genetic makeup. Despite studying a single protist species, our findings provide a

450  foundation for studying thermal adaptation in this diverse and important microbial group and
451  beyond. Our study emphasizes the importance of temperature in mediating rapid microbial

452 evolutionary change as we grapple with understanding and predicting organismal responses to an

453  increasingly warmer world.
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729  FIGURE LEGENDS

730

731  Figure 1 (a) General shape of the r-TPC. (b) r-TPC shape parameters. Blue-colored shape

732 parameters, measured in this study, include rpeak, Ea, CTmin and Topt. (¢) Top: environmental

733 variation (E) in » comes from expressing different » across temperatures but not genotypes, and
734 leads to overlapping reaction norms. Middle: genetic variation (G) in 7 results from expressing
735  different r across genotypes, but not temperatures, and leads to additive shifts in reaction norm
736  intercepts, but not slopes. Bottom: gene-by-environment interactions (G x E) results from

737  patterns expression of expression of r changing across temperature, leading to shifts in slopes of
738  reaction norms. (d) Because-rTPCs are multi-temperature reaction norms of r, classic

739  quantitative genetics can explain how E, G, G x E in r influence r-TPC shape: E in r produces
740  fully overlapping r-TPCs (top), G in 7 result in non-overlapping r-TPCs with genotype-specific
741  intercepts but not slopes (middle), and G x E leads to r-TPCs that vary in intercepts and slopes
742 (bottom). (e) These r-TPC shape signatures create variation in r-TPC shape parameters:

743 overlapping r-TPCs show no variation in shape parameters (top), additive shifts in r-TPC

744 intercepts lead to additive (heritable) variation in rpeak, CTmin, and CTmax (middle), while slope
745  and intercept variation in r-TPCs creates variation in all shape parameters.

746

747  Figure 2 (a) Observed r-TPCs for all 22 genotypes. Dots represent observed r values, bold lines
748  represent Sharpe-Schoolfield model fits, and dash lines represent average TPCs across all

749  experimental genotypes. (b) All 22 TPCs are superimposed and dashed lines represent the

750  average r-TPC. Inset: amount of variation due to residual, G X E, G, and E variation in 7.

751

752 Figure 3 (a) Estimated adaptive landscape across temperatures (i.e., change in fitness with a

753 change in the underlying shape parameter) for rpeax. Color indicates temperature bins (blue: 10—
754 20°C, yellow: 20—30°C, red: 30—40°C) (b) As in a, but for E.. (c) As in a, but for CTmin. (d) As
755  in a, but for Top:. (€) Observed genetic associations between shape parameters. Each dot is a

756  genotype color-coded as in Fig. 2. In gray, 95% confidence ellipses. p represents correlation

757  coefficients. (f) Estimated multivariate selection coefficient (B, 95% maximum density intervals)
758  for all shape parameters across temperatures, or eco-evo landscapes(MacColl 2011). (g)

759  Predicted evolutionary change (Az, 95% maximum density intervals) for all shape parameters,
760  across temperatures.

761

762  Figure 4 (a) G x E variation in r-TPCs leads to differential growth of each genotype across

763  temperatures. (b) Differential growth across temperatures leads to differential selection across
764  environments and rapid shifts in genetic frequencies across temperatures. (c¢) First column:

765  Differential Interference Contrast (DIC) microscopy for two genotypes of the protist

766  Tetrahymena thermophila (CU4106 and AXS). Second column: fluorescence microscopy image
767  overlayed on DIC. Only AXS fluoresces (green) due to the expression of Yellow Fluorescent
768  Protein (YFP). Third column: as in the second column, but for autofluorescence (A. Flu, in pink),
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which both genotypes exhibit. Fourth column: Overlayed DIC, YFP and A.Flu images showing
how the different strains fluoresce once all sources of fluorescence are accounted for. (d) r-TPC
for genotypes CU4106 and AXS. Inset: Measures of relative fitness for both CU4106 and AXS.
This predicts an increase in AXS frequency relative to CU4106 at intermediate temperatures
relative to low or high temperatures. (¢) Observed genetic frequencies across temperatures. (f)
Predicted genetic frequencies across temperatures.
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