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Abstract

Microbial interactions are of fundamental importance for the functioning and the maintenance

of microbial communities. Deciphering these interactions from (time-series) observational

data or controlled lab experiments remains a formidable challenge due to their context-

dependent nature, such as, e.g., (a)biotic factors, host characteristics, and overall community

composition. Complementary to the classical ecological view, recent research advocates an

empirical “community-function landscape” framework where an outcome of interest, e.g.,

a community function, is learned via statistical regression models that include pairwise or

higher-order statistical species interaction effects. Here, we adopt the latter viewpoint and

present penalized quadratic interaction models that can accommodate all common microbial

data types, including microbial presence-absence data, relative (or compositional) abundance

data from microbiome surveys, and quantitative (absolute abundance) microbiome data.

We propose novel interaction models for compositional data and bring modern statistical

techniques such as hierarchical interaction constraints and stability-based model selection to

the microbial realm. To illustrate our framework’s versatility, we consider prediction tasks

across a wide range of microbial datasets and ecosystems, including butyrate production in

model communities in designed experiments and environmental covariate prediction from

marine microbiome data. We show improved predictive performance of these interaction

models and assess their limits in the presence of extreme data sparsity. On a large-scale

gut microbiome cohort data, we identify interaction models that can accurately predict the

abundance of antimicrobial resistance genes, enabling novel biological hypotheses about

microbial community composition and antimicrobial resistance.
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Author Summary

Microbes live in complex communities where interactions between species shape their function

and stability. Understanding these interactions is crucial for predicting how microbial

communities respond to environmental changes, medical treatments, or shifts in their host

organisms. However, identifying these relationships is challenging because they depend on

many factors, including the surrounding environment and community composition. In this

study, we introduce a new statistical modeling approach to uncover microbial interactions

from different types of data, including presence-absence patterns, relative abundance from

microbiome surveys, and absolute abundance measurements. Our method builds on modern

statistical techniques to improve accuracy and reliability, even when data are sparse or

noisy. We demonstrate the power of our approach by applying it to diverse microbial

datasets, from marine ecosystems to gut microbiomes. In one case, we successfully predicted

antimicrobial resistance gene abundance based on microbial interactions, opening new avenues

for understanding how resistance spreads in microbial communities. By advancing statistical

tools for microbiome research, our work provides a new way to explore the hidden relationships

between microbes, with potential applications in medicine, environmental science, and

biotechnology.

Introduction

A fundamental objective in microbial ecology is to elucidate how species compositions and

species-species interactions are related to the maintenance and functioning of a microbial

community [1]. Interactions between microbial species come in many forms, including cross-

feeding interactions through metabolite exchange, bacteriocin-induced growth-inhibitory

interactions, and exchange of genetic material for genotype selection [2, 3]. Conceptually,

microbial interactions can be described in terms of their net positive, negative, or neutral effect

on their interaction partner, resulting in broad categories such as mutualistic, commensal, or

competitive interactions [4, 5, 6, 2]. Experimentally identifying and verifying such interactions

within natural communities has remained a difficult task, owing to the sheer complexity of

microbial ecosystems and limited technical capabilities to dissect such communities.

With the emergence of large-scale microbial survey data, computational approaches have

become popular that use statistical regression and correlation methods to estimate sparse

species-species association and co-occurrence networks from microbiome abundances [5, 7, 8,

9, 10, 11]. While these networks do not reflect true ecological relationships [12], they can

provide valuable insights into the global structure of microbial communities across ecosystems

[13, 14]. None of these methods, however, allow to relate species-species associations or

“statistical interactions” to a community functional outcome of interest or to concomitant

environmental or host-related covariates. Furthermore, most network approaches deliver
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context-independent (or averaged) pairwise associations, thus potentially missing species-

species relationships that are relevant for a specific community function.

To enable context-specific microbial community modeling, the concept of community-function

landscapes [15, 16] has been put forward as a promising empirical model for capturing how

changes in microbial community composition affect collective function. The community-

function landscape is essentially estimated from microbial data via statistical regression

models that include pairwise or higher-order interaction terms. Here, we follow and extend

this framework by using the generic quadratic interaction regression model as a starting point.

We adapt this model to accommodate all common microbial abundance data modalities

(see Fig. 1 for an illustration), such as, e.g., data from designed in-vitro experimental

studies on model communities where microbes are given in presence-absence (binary) or

absolute (count or continuous) abundance form [17, 18]. Importantly, our framework also

extends to microbiome survey data where microbial compositions are measured by amplicon

sequencing. These techniques provide relative abundance (or compositional) data [19] in

form of Operational Taxonomic Units (OTUs) or Amplicon Sequencing Variants (ASVs) [20],

or, when combined with absolute cell count measurements, (biased) quantitative microbial

abundance information [21, 22, 23, 24].
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Fig 1. a. Illustration of the three most common data modalities in microbial data analysis
and their combinatorial behavior with respect to an outcome, e.g., a community function: (i)
quantitative microbiome data, representing absolute counts; (ii) presence-absence
information of microbial species; and (iii) relative abundance (or “compositional”) data.
Each row illustrates a simplified scenario. In the first scenario, blue microbes are present
while red are absent, resulting in a large outcome (e.g., increased butyrate production). In
the second scenario, red microbes are present while blue are absent, leading also to a large
outcome. In the third scenario, both blue and red groups of microbes are present, yet only
minimal amounts of the outcome are produced, indicating a potential interaction effect
between the two species (created with BioRender.com). b. Illustration of the workflow
modules (combinations of data and modeling options) presented in this study. Three
real-world datasets (marked by the dots) are used to exemplify the respective modules.
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Our framework unifies and generalizes several seemingly disjoint approaches in the micro-

bial ecology and microbiome data science literature. On the one hand, it includes the

community-function landscape view from microbial ecology where presence-absence and

absolute abundance data from designed experiments on small microbial communities are

used to predict community functions, such as, e.g., butyrate production, [18, 15, 16, 25]

or overall host fitness [26]. Our framework is readily available for such studies and gives

statistical guidelines how to choose model complexity, how to include additional constraints,

and how to analyze higher dimensional datasets. On the other hand, our framework extends

the linear regression model for compositional data, the so-called linear log-contrast model

[27], to include statistical species-species combinations. Specifically, starting with Aitchison’s

low-dimensional quadratic model [27], we introduce sparse quadratic interaction models that

are applicable to large-scale relative abundance data derived from amplicon sequencing. To

deal with the high dimensionality (where typically the number of taxa 𝐿 and their pairwise

interactions is larger than number of samples 𝑀), we follow the idea of penalized and structured

log-contrast regression models [28, 29, 30, 31, 32, 33] and employ 𝑁1 penalization on the

interaction terms.

To deliver stable and interpretable interaction models [34, 35], we incorporate two key

advancements from the high-dimensional statistics literature: (i) hierarchical interaction

modeling [36, 37, 38] and (ii) stability-based model selection [39, 40]. The hierarchy assumption

enforces constraints on interaction features, requiring them to be only included in the model

if both features (strong hierarchy) or at least one feature (weak hierarchy) are already present

as main effects. Stability-based model selection ensures that interactions are only included

if they can be consistently and reproducibly identified across different subsets of the data,

typically reducing the number of downstream testable hypotheses compared to standard

cross-validation approaches.

We demonstrate the versatility of our framework by analyzing datasets that encompass all

three data modalities across various ecosystems, including synthetic microbial communities,

human gut microbiomes, and marine microbial ecosystems. Figure 1b presents an overview of

the datasets used for the different workflow modules, i.e., combinations of regression models,

model constraints, and model selection strategies. In the remainder of the paper, we introduce

the statistical modeling strategies first (see Methods), followed by describing and discussing

concrete microbial prediction tasks (see Results).

On quantitative human gut microbiome data from the Metacardis study [41] (Fig. 1b, dark

blue dot), we show that the number of antimicrobial resistance genes (ARGs) can be well

predicted by sparse interaction models on family-aggregated microbiome data, a considerable

improvement over enterotype-based models [41].

On the Clark et al. [18] synthetic community dataset containing species presence-absence

information and butyrate as community function, we identify the inhibitory role of D. piger on

the butyrate producer A. caccae as the only stable interaction effect, considerably improving
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the interpretablity of prior community-function landscape models [18, 15].

For the sparse quadratic log-contrast model tailored for relative microbiome data, we (i)

provide semi-synthetic data simulations to demonstrate the benefits and limitations of

interaction effect inclusion and (ii) re-analyze Tara ocean data [42], achieving superior

predictive performance on environmental parameters [33].

We conclude the paper by providing a comparative analysis of the interaction models

across the three data modalities using the Metacardis ARG prediction task. We show that

prediction quality decreases when using relative abundance or presence-absence data only

and illustrate commonalities and differences between the learned models. The latter analysis

gives guidance for the practitioner regarding the interpretability of quadratic interaction

models. Our framework for microbial interaction modeling is available as reproducible R

code at https://github.com/marastadler/Microbial-Interactions.

Methods

Interaction modeling strategy

Given the abundance information of 𝐿 microbial taxa 𝑂 = (𝑂1, ..., 𝑂𝐿) across 𝑀 samples, i.e.,

𝑂𝑃 → R𝑀, the baseline model for uncovering (joint) additive effects of the microbial taxa on

an outcome 𝑄 → R𝑀 (e.g., butyrate production), is the linear model

𝑄 = 𝑅0 +
𝐿∑
𝑃=1

𝑅𝑃 𝑂𝑃 + 𝑆 , (1)

where 𝑅0 → R is the intercept term, 𝑅𝑃 → R is the effect of taxon 𝑃 on 𝑄, and 𝑆 models the

technical and biological noise term. In many prediction tasks, relying on a linear (main effect)

model alone is insufficient to accurately capture the community function or outcome of interest

of the microbial community data. A common approach to introduce a more intricate yet

interpretable model is the inclusion of quadratic terms. Here, we extend the baseline model

by introducing a generic quadratic interaction model, incorporating all pairwise interactions

between microbial taxa, namely

𝑄 = 𝑅0 +
𝐿∑
𝑃=1

𝑅𝑃 𝑂𝑃 +
1

2

∑
𝑃ω𝑇

ε 𝑃 𝑇 𝑂𝑃 𝑂𝑇 + 𝑆 , (2)

where ε = ε𝑈 → R𝐿↑𝐿 is a symmetric matrix of pairwise interactions. We assume the

diagonal elements ε 𝑃 𝑃 = 0 in this model formulation, though the general principles still

apply if the constraint is removed. We next instantiate the interaction model in Eq. (2) to

accommodate distinct data types and denote the microbial abundance information by 𝑉 for

count information (absolute or relative) and 𝑊 for presence-absence information (see Fig. 1a).
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Interaction model for quantitative microbiome data

Whenever microbial abundance information is given as absolute counts, the model is equal

to the generic model 2 and does not require any transformation of the input data or any

constraints on the model coefficients. Throughout this work, we denote the absolute count

input data by 𝑉 → R𝑀↑𝐿+ . Assuming that 𝑄 depends on the quantitative taxon abundances,

the quadratic interaction model is given by

𝑄 = 𝑅0 +
𝐿∑
𝑃=1

𝑅𝑃 𝑉𝑃 +
1

2

∑
𝑃ω𝑇

ε 𝑃 𝑇 𝑉 𝑃 𝑉𝑇 + 𝑆 , (3)

where the model parameters follow the description provided in Eq. (2).

Interaction model for presence-absence microbial data

If the microbial abundance information is represented as presence-absence data, we denote

the resulting binary matrix as 𝑊 → {0, 1}𝑀↑𝐿, where 1 indicates the presence of a microbial

taxon, and 0 indicates its absence. One common alternative encoding is 𝑊 → {↓1, 1}𝑀↑𝐿,
where the absence is encoded as -1. The choice of encoding does not affect the ability of the

model to fit data but changes the interpretation of the coefficients. Assuming that 𝑄 depends

on the presence-absence information of microbial taxa, the quadratic interaction model is

given by

𝑄 = 𝑅0 +
𝐿∑
𝑃=1

𝑅𝑃 𝑊 𝑃 +
1

2

∑
𝑃ω𝑇

ε 𝑃 𝑇 𝑊 𝑃 𝑊𝑇 + 𝑆 , (4)

where the model parameters follow the description provided in Eq. (2). For 𝑊 → {0, 1}𝑀↑𝐿, 𝑅0
is the baseline effect when all features, i.e., microbial taxa, are absent, and 𝑅𝑃 for 𝑃 = 1, ..., 𝐿

represents the effect of the presence of 𝑊𝑃 when all other taxa are absent. The interaction

term ε 𝑃 𝑇 accounts for the additional effect when both features 𝑊𝑃 and 𝑊𝑇 are present. For

𝑊 → {↓1, 1}𝑀↑𝐿, 𝑅0 signifies the overall mean (assuming a completely balanced design). For

more details on the interpretation and the linear transformations of model coefficients between

these two encodings, see the Supplementary information. When describing 𝑄 as a community-

function, fitness, or phenotypic landscape, the different encodings in the interaction model

are often associated with Fourier and Taylor expansions. The estimated parameters are then

used for the construction of landscape descriptors, such as, e.g., “ruggedness” (see [15, 43,

44] for further details on such landscape analysis).

Interaction modeling for microbiome relative abundance data

One of the most abundant microbial data sources is amplicon sequencing where the derived

taxa counts carry only relative abundance information. Typically, each sample, i.e., each row
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of 𝑉, is represented as a compositional vector whose entries sum up to a constant [7, 8, 19].

This implies that all features are necessarily statistically dependent, thus requiring adequate

data transformations for linear and quadratic interaction modeling, respectively. One popular

way, put forward in compositional data analysis [27], are so-called log-ratio transformations.

The additive log-ratio transformation (alr) requires a “reference feature”, e.g., the 𝐿th feature,

and builds log-ratios with respect to that reference (see [45] for a detailed discussion of the

alr transform). The transformed count vector is given by 𝑋𝑃 = log(𝑉𝑃/𝑉𝐿), 𝑃 = 1, ..., 𝐿 ↓ 1.

The alr transformation allows principled linear modeling of an outcome 𝑄 using the (𝐿 ↓ 1)-
dimensional log-ratios as features via:

𝑄 = 𝑅0 +
𝐿↓1∑
𝑃=1

𝑅𝑃𝑋𝑃 + 𝑆 , (5)

where the coefficient 𝑅𝑃 quantifies how the outcome 𝑄 is related to the log-differences of the

𝑃th feature with respect to the chosen reference. A natural extension for quadratic interaction

modeling is thus the so-called alr transformed quadratic model , given by

𝑄 = 𝑅0 +
𝐿↓1∑
𝑃=1

𝑅𝑃𝑋𝑃 +
1

2

𝐿↓1∑
𝑃=1

𝐿↓1∑
𝑇=1

ε 𝑃 𝑇𝑋𝑃𝑋𝑇 + 𝑆 . (6)

For 𝐿 := 𝐿 ↓ 1 this formulation is equivalent to the generic model in Eq. (2) (with ε not being

symmetric). While this model formulation allows for the interpretation of the effects with

respect to the 𝐿th reference feature, a more convenient reference-free symmetric expression

of the linear alr transformed model in Eq. (5) can be derived by reformulating the equation

as a 𝐿-dimensional problem with a zero-sum constraint, given by

𝑄 = 𝑅0 +
𝐿∑
𝑃=1

𝑅𝑃 log(𝑉𝑃 ) + 𝑆 , s.t.
𝐿∑
𝑃=1

𝑅𝑃 = 0, (7)

where the main (log) effect coefficients 𝑅𝑃 , 𝑃 = 1, ..., 𝐿 sum up to zero. As illustrated in [27],

this so-called linear log-contrast model can be extended to the quadratic log-contrast model

as follows:

𝑄 = 𝑅0 +
𝐿∑
𝑃=1

𝑅𝑃 log(𝑉𝑃 ) +
1

2

∑
𝑃ω𝑇

ε 𝑃 𝑇 log(𝑉𝑃/𝑉𝑇 )2 + 𝑆 , s.t.
𝐿∑
𝑃=1

𝑅𝑃 = 0 , (8)

where the main (log) effect coefficients 𝑅𝑃 , 𝑃 = 1, ..., 𝐿 sum up to zero, with 𝑅 → R𝐿, and the

interaction effect coefficients ε 𝑃 𝑇 correspond to the quadratic (log-ratio) interaction effect

of 𝑉𝑃 and 𝑉𝑇 , with ε = ε𝑈 → R𝐿↑𝐿. We denote this model as the constrained quadratic

log-contrast model . In the Supplementary information we show how to formulate the alr
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transformed model as constrained quadratic log-contrast model. For completeness, we also

demonstrate in the Supplementary information how the interaction model for all pairs of

log-ratios [31] is defined for compositional data.

Penalized model estimation

Microbial datasets typically include a large number of features 𝐿 and interactions between

features 𝐿(𝐿 ↓ 1)/2 compared to the number of observations 𝑀. Even in scenarios where

𝑀 > 𝐿(𝐿 ↓ 1)/2, a parsimonious model is often more appropriate, enabling the selection of

only a few features and interactions that are most relevant for the outcome.

To facilitate penalized model estimation, we employ regularized maximum-likelihood estima-

tion incorporating 𝑁1-norm (lasso) penalization [46] for both linear and interaction coefficients.

We introduce a generic optimization problem, consisting of an objective function 𝑌𝑍 (𝑎, 𝑅0, 𝑅,ε)
and a (potential) constraint set on the model parameters 𝑏(𝑅0, 𝑅,ε) that facilitates parameter

estimation for all (linear and interaction) models introduced before. The objective function

takes the general form

𝑌𝑍 (𝑎, 𝑅0, 𝑅,ε) = 𝑎 (𝑅0, 𝑅,ε) + 𝑍 ↔𝑅↔1 +
𝑍

2
↔ε↔1 . (9)

Here, 𝑍 > 0 serves as a tuning parameter, regulating the sparsity levels of the coefficients 𝑅

and ε, respectively. The loss function 𝑎 (𝑅0, 𝑅,ε) is specific to each model. Consequently, the

generic optimization problem is given by

minimize
𝑅0,𝑅,ε

𝑌(𝑎, 𝑅0, 𝑅,ε) s.t. 𝑏(𝑅0, 𝑅,ε). (10)

This optimization problem is now instantiated by specific loss functions and constraints.

Sparse quadratic interaction model for quantitative and presence-absence micro-

biome data. The loss function 𝑎 (𝑅0, 𝑅,ε) for the sparse quadratic interaction model, also

known as all-pairs lasso, for the interaction models for absolute count data or presence-absence

data, introduced in Eq. (3) and Eq. (4), is defined as

𝑎
qi(𝑅0, 𝑅,ε) =

"""𝑄 ↓ 𝑅0 ↓
𝐿∑
𝑃=1

𝑅𝑃 𝑂𝑃 +
1

2

∑
𝑃ω𝑇

ε 𝑃 𝑇 𝑂𝑃 𝑂𝑇

"""2
2
,

with 𝑂 := 𝑉 → R𝑀↑𝐿+ for absolute count data and 𝑂 := 𝑊 → {0, 1}𝑀↑𝐿 (or 𝑊 → {↓1, 1}𝑀↑𝐿)
for presence-absence data. This model does not require further constraints on the model

parameters, such that 𝑏(𝑅0, 𝑅,ε) = ↗. Consequently, the optimization problem is given by

minimize
𝑅0,𝑅,ε

𝑌𝑍 (𝑎qi, 𝑅0, 𝑅,ε). (11)
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In the linear model case the loss function in the optimization problem reduces to 𝑎 (𝑅0, 𝑅) ="""𝑄 ↓ 𝑅0 ↓
∑

𝐿

𝑃=1 𝑅𝑃 𝑂𝑃

"""2
2
.

Sparse quadratic log-contrast model. While the linear log-contrast model has been

extended to the high-dimensional setting via sparsity-inducing penalization [28, 29, 32, 33],

the quadratic log-contrast model [27] has not yet been applied to any high-dimensional

data. We thus define the loss function for the sparse quadratic log-contrast model (qlc) for

compositional data, introduced in Eq. (8) as

𝑎
qlc(𝑅0, 𝑅,ε) =

"""𝑄 ↓ 𝑅0 ↓
𝐿∑
𝑃=1

𝑅𝑃 log(𝑉𝑃 ) ↓
1

2

∑
𝑃ω𝑇

ε 𝑃 𝑇 log(𝑉𝑃/𝑉𝑇 )2
"""2
2
.

Since this model includes a zero-sum constraint on the main effect coefficients, the constraint

set in Eq. (10) is given by

𝑏(𝑅0, 𝑅,ε) =
{

𝐿∑
𝑃=1

𝑅𝑃 = 0

}
.

Thus, the optimization problem for the sparse quadratic log-contrast model is given by

minimize
𝑅0,𝑅,ε

𝑌𝑍 (𝑎qlc, 𝑅0, 𝑅,ε) s.t. 𝑏(𝑅0, 𝑅,ε). (12)

In the linear sparse log-contrast model (lc) defined in Eq. (7), the loss function reduces to

𝑎
lc(𝑅0, 𝑅) =

"""𝑄 ↓ 𝑅0 ↓
∑

𝐿

𝑃=1 𝑅𝑃 log(𝑉𝑃 )
"""2
2
. The corresponding optimization problems can be

efficiently solved with the c-lasso solver [47] as integrated in the R package trac [33, 48].

In the linear log-contrast model, the main effect covariates log(𝑉𝑃 ) for 𝑃 = 1, ..., 𝐿 do not

require scaling since the model is equivariant under the zero-sum constraint (see [33] for an

outline of this property). For the quadratic log-contrast model, however, we require proper

scaling of the interaction features log(𝑉𝑃/𝑉𝑇 )2 to ensure a balanced effect of penalization with

respect to the main effects. While different scaling procedures are conceivable, we propose

the following centered log-ratio (clr) scaling. The clr divides each compositional part by the

geometric mean of all parts, namely

clr(𝑉) =
(
log

𝑉𝑐

𝑑(𝑉𝑐)

)
𝑐=1,...,𝑀

with 𝑑(𝑉𝑐) = exp

(
1

𝐿

𝐿∑
𝑃=1

log(𝑉𝑐 𝑃 )
)
.

To achieve a balanced penalization effect, we apply scaling to align the 𝑁2-norms of the

interaction features with the average 𝑁2-norm of the main effects after clr transformation.

This approach ensures consistent penalization across both main and interaction terms,

improving model interpretability and regularization.
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Mathematically, this can be expressed as follows. We denote each column of the interaction

feature matrix as 𝑉
𝑒

· 𝑃 𝑇 = log(𝑉𝑃/𝑉𝑇 )2, with 𝑉
𝑒 → R𝑀↑𝐿(𝐿↓1)/2, and its scaled version is given

by

𝑉
𝑒

· 𝑃 𝑇

("""𝑉𝑒

· 𝑃 𝑇

"""
2

)↓1 1
𝐿

𝐿∑
𝑇=1

"""𝑉clr
𝑇

"""
2
,

where 𝑉
clr = clr(𝑉) → R𝑀↑𝐿 is the clr transformed main effects matrix 𝑉 and

""
𝑉
clr
𝑇

""
2
is the

𝑁2-norm of the 𝑇-th column of 𝑉clr. For completeness, we detail the optimization problems

for the sparse additive log-ratio (alr) transformed quadratic model and the sparse quadratic

log-ratio model in the Supplementary information.

Modeling hierarchical interactions

While quadratic interaction models can generally enhance predictive performance compared

to the linear counterparts, interpretability of the resulting models becomes more challenging.

To strike a good balance between prediction quality and interpretability, we introduce the

statistical concept of hierarchy in the context of quadratic models for microbial data. The

concept of hierarchy permits the inclusion of an interaction ε 𝑃 𝑇 in the model only if both

associated main effects are also present in the model (strong hierarchy), or if at least one

of the associated main effects is included (weak hierarchy) (see [36], and references therein,

for further discussion). For many microbial consortia, it is reasonable to assume that

bacterial species only show an empirical interaction effect if each of them has an independent

effect on community function. For example, two species may independently contribute

to butyrate production but compete for the same limited food source, thus resulting in

a potentially negative interaction effect. This hierarchy principle can be implemented by

imposing constraints on the interaction effects ε 𝑃 → R𝐿 for 𝑃 = 1, ..., 𝐿 as follows:

𝑏(𝑅0, 𝑅,ε) =
{
ε = ε𝑈

,

""ε 𝑃

""
1 ↘ |𝑅𝑃 |

}
. (13)

By eliminating the symmetry constraint on ε, the resulting model relaxes to weak hierarchy

on the interaction features. Moreover, this approach allows a strong interaction to “pull” itself

into the model, ensuring that it cannot be missed, even if it violates the hierarchy assumption.

While the constraint in Eq. (13) results in a non-convex optimization problem, we follow [36]

who proposed a convex relaxation of the problem and provided an efficient implementation in

the corresponding R package hierNet [49] (v1.9). The hierarchical constraint can be imposed

within the generic optimization problem described in Eq. (10) and can be readily included

for (i) quantitative microbiome data (ii) or presence-absence microbial data in Eq. (11), and

(iii) relative abundance data in the alr-transformed interaction model in Eq. (S.3).
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Model selection

An essential challenge in high-dimensional penalized regression is the selection of the reg-

ularization parameter 𝑍 > 0. This parameter balances the sparsity of model coefficients

with out-of-sample predictive performance [50, 51]. Standard methods for main effects and

interaction models often involve Information Criteria like the Akaike (AIC) and the Bayesian

Information Criterion (BIC) [52]. Here, we revisit standard cross-validation techniques [36]

and introduce stability-based model selection for quadratic interaction models.

Cross-validation. The principle idea of cross-validation is to split the training data set of

size 𝑓 (typically 50↓ 80% of the available sample size 𝑀) into multiple folds where each fold is

used both for learning the model parameters and as in-sample validation set. In leave-one-out

cross-validation (LOOCV), the model is trained 𝑓 times, with each training using all data

points except one, and the left out data point is used for model validation. Skwara et al. [15]

used this approach to learn community-function landscapes. 𝑔-fold cross-validation (CV)

divides the training dataset into 𝑔 subsets (or folds), training the model on 𝑔 ↓ 1 of these

folds and using the remaining fold for validation. This process is repeated 𝑔 times such that

each fold serves once as the validation set. This approach helps find the 𝑍 that minimizes the

prediction (or classification) error, effectively balancing bias and variance. In regression, the

chosen 𝑍MSE minimizes the average mean-squared error

𝑍MSE = argmin
𝑍

1

𝑔

𝑔∑
𝑇=1

∑
𝑐→𝑒𝐿

(𝑄𝑐 ↓ 𝑂
𝑈

𝑐
𝑅↓𝑇 (𝑍))2,

where 𝑒𝑇 denotes the subset of observations without fold 𝑇 . An alternative sparsifying heuristic

is to choose the largest 𝑍 that is within the one standard error (1se) band of the average

mean-squared error at 𝑍MSE, denoted by 𝑍1se. To reduce the dependency of model selection

on specific data splits, the cross-validation procedure can be repeated multiple times, enabling

the construction of empirical coefficient distributions (as shown in Results).

Stability selection. Cross-validation is known to overselect coefficients in sparse regression

[52]. To guard against this false positive coefficient selection, stability selection [39] has been

introduced as popular alternative. Stability selection has shown effectiveness across various

scientific domains, ranging from network learning [53, 54] to data-driven partial differential

equation identification [55, 56]. In linear regression, stability selection involves iteratively

learning sparse regression models from subsamples of the data (e.g., 𝑀𝑕 = ≃𝑀/2⇐), recording
the frequency of selected predictors across models, and selecting the most frequent predictors

for the final model. A variant of stability selection, complementary pairs stability selection

(CPSS) [40], is particularly advantageous for handling unbalanced experimental designs, as it

ensures that individual subsamples are independent of each other. CPSS draws 𝑖 subsamples
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as complementary pairs {(𝑗2𝑎↓1, 𝑗2𝑎) : 𝑎 = 1, ..., 𝑖}, indexed by 𝑗2𝑎↓1 and 𝑗2𝑎 , where 𝑎 denotes

the pair number, with 𝑗2𝑎↓1⇒ 𝑗2𝑎 = ↗ from samples {1, ...𝑀} of size ≃𝑀/2⇐. For each subsample,

a sparse model is learned using a variable selection procedure 𝑘 which influences stability and

complexity of the resulting model [39]. A popular selection procedure is to pick the 𝑇 first

predictors that enter the model along the regularization path (also referred to as 𝑍-path).

Applying a variable selection procedure 𝑘 to each subsample allows defining a feature-specific

selection probability 𝑙𝑐 for 𝑐 = 1, ..., 𝐿 + 𝐿(𝐿 ↓ 1)/2 that is given by

𝑙𝑐 =
1

2𝑖

2𝑖∑
𝑎=1

1{𝑐→𝑘(𝑗𝑀)} . (14)

The final selection set, denoted as 𝑘CPSS, consists of predictor indices 𝑐 for which the estimated

selection probability 𝑙𝑐 exceeds a predefined threshold 𝑙thr, that represents the minimum

selection frequency required for a predictor to be included in the final set. We employ the

stabs R package [57] (v0.6-4), which offers an efficient implementation of the CPSS procedure.

This approach involves defining several hyperparameters, including the set of regularization

parameters ϑ, the threshold 𝑙thr → [0, 1], the number of initial predictors 𝑇 entering the

sparse model, and the number of complementary splits 𝑖. The CPSS procedure in [57] can be

directly applied to linear models. Since CPSS does not make a distinction between main and

interaction effects, we apply CPSS also to quadratic models with and without hierarchical

constraints [35].

Results

Quantitative genus-level interaction models can predict antimicro-

bial resistance gene abundances

Large-scale metagenomics survey data enable not only the quantification of species composi-

tions but also the abundances of genes and pathways associated with a particular function or

metabolic potential [58]. Here, we investigate the question whether the number of antimicro-

bial resistance genes (ARGs) in a community, as identified from the respective community

metagenomes, can be predicted from high-level taxonomic compositions. A good taxonomic-

based statistical interaction model would allow to assess the antimicrobial potential of a

microbial community when only quantitative amplicon data are available ,[21]. Prior work

has shown that there are significant associations between human gut enterotypes, i.e., distinct

community types that are dominated by specific genera in the population [59], and the

number of ARGs across countries [60]. Recent studies not only report significant associations

between the number of ARGs and community diversity but also link specific species groups

to ARG abundance and horizontal gene transfer [61].
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Fig 2. Prediction of antimicrobial resistance gene (ARG) abundances from enterotype and
genus-level absolute abundance information from the MetaCardis cohort [41]: a.
Distribution of ARG abundance per enterotype (Bacteroides 1, Bacteroides 2, Prevotella,
and Ruminococcus). Significant coefficient estimates from the linear model are shown below
the boxes. b. Distribution of test set 𝑚

2 (10 splits) for ARG prediction based on enterotype
or genera abundances (sparse linear and quadratic models, respectively). c. Observed vs.
predicted number of ARGs on a representative test data set for the sparse quadratic
interaction model. d. Distribution of estimated coefficients with non-zero median over 10
train test splits in the sparse quadratic interaction model 11.

We base our analysis on metagenomic Operational Taxonomic Units (mOTUs) abundances

(𝐿s = 1938 species) from quantitative microbiome profiling for a subset of 𝑀 = 690 individuals

from the MetaCardis cohort for which the number of identified ARGs 𝑄 → R𝑀 are available

[41]. We consider three statistical regression models: (i) enterotype-based regression where

individuals are binary-encoded to one of the four enterotypes Bacteroides 1 (high percentages

of Bacteroides and Faecalibacterium), Bacteroides 2 (high percentages of Bacteroides and

low percentages of Faecalibacterium), Prevotella (high percentages of Prevotella), and Ru-

minococcus (low percentages of Bacteroides and Prevotella) (see also [62]), (ii) sparse linear

regression (Eq. 1), and (iii) a (sparse) quadratic interaction model (Eq. 2). For the latter
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two models, we aggregate the 𝐿s = 1938 species to genus level and collect the 𝐿 = 30 most

prevalent genera (out of 720) as potential predictors in 𝑉 → R690↑30. The enterotype-encoded

model is solved without regularization, using a standard linear model. The linear model

is solved using regularization and 5-fold CV with minimum MSE 𝑍 selection. Since the

microbial counts in 𝑉 are quantitative, we fit the sparse interaction model for absolute count

data defined in Eq. (3) and Eq. (11), respectively, by using 5-fold CV with minimum MSE

𝑍 selection. All three models are trained and evaluated using the same 10 train-test splits,

with 2/3 of the data allocated for training and 1/3 for testing.

We observe that enterotype-based predictions show remarkable predictability for ARG

abundances given the simplicity of the model (median out of sample 𝑚
2 0.36) (see Fig. 2a,b).

The model reveals that the number of ARGs are positively associated with the Bacteroides

enterotypes and that both the Prevotella and Ruminococcus enterotypes are negatively

associated, respectively (see also Fig. S1 for a visual representation). The genus-based

linear model considerably improves predictability (median out of sample 𝑚
2 0.48, see Fig. 2b).

Consistent with the enterotype-based model, we observe a strong positive effect on Bacteroides

and a strong negative effect on Prevotella, respectively (see Fig. S2). The linear model,

however, reveals a more fine-grained picture of the empirical dependencies with strong

positive effects of Escherichia, and Parabacteroides, and negative effects of Faecalibacteria

and Phascolarctobacteria on ARG abundance (see Fig. S2). Strikingly, the sparse quadratic

interaction model achieves significantly higher out of sample 𝑚
2 consistently above 0.5 (see

Fig. 2c for a typical out-of-sample prediction). Figure 2d shows the nine stable linear effects

and 14 stable empirical interactions among genera that have a non-zero median effect over 10

train test splits. The two strongest positive interactions are between Prevotella and Dorea,

and Prevotella and Faecalibacteria, respectively. The latter relationship indicates an empirical

“antagonistic” association between the two genera, given their individual negative effects.

These findings suggest that presence and co-presence of certain bacterial genera in the gut

microbiota can predict community-wide prevalence of ARGs.

Hierarchy and stability-based model selection improve model inter-

pretability for community-function landscapes

We next investigate the community-function landscape of an in-vitro bacterial community

comprising 𝐿 = 25 members with respect to the production of butyrate, a short-chain fatty

acid beneficial to human health [18]. Butyrate-producers have the ability to ferment dietary

fibers into butyrate, contributing to gut health, immune function, and energy metabolism

[63]. Following [15], we use the published presence-absence data from the 𝑀 = 1561 designed

experiments by Clark et al. [18], denoted by 𝑊 → {0, 1}𝑀↑𝐿, to fit sparse quadratic interaction

models defined in Eq. (4) and Eq. (11) for predicting butyrate production 𝑄 → R𝑀.
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Fig 3. a. Comparison of median estimated coefficients (over 10 train test splits) between the
sparse quadratic interaction model and the sparse hierarchical interaction model (Eq. (13))
with weak hierarchy. Only estimates that are non-zero in at least one model are shown. b.
Median non-zero estimated coefficients for both models. Only coefficients that are non-zero
in the hierarchical model are displayed. For direct comparison, the corresponding coefficients
from the model without hierarchy are included. c. Top 35 selection probabilities from
complementary pairs stability selection (CPSS) in the sparse hierarchical interaction model.

Prior analysis of these data has shown that sparse linear, quadratic, and third-order interaction

models with LOOCV tuning can increasingly well approximate the community-function

landscape for butyrate production with in-sample and LOOCV 𝑚
2 around 0.7 ↓ 0.9 (see [15],

Fig. 2a for reference). Here, we specifically investigate the effect of hierarchical constraints on

quadratic interaction inclusion and the choice of the model selection on predictive performance,

model complexity, and interpretability. As summarized in Fig. 1b, we used the all-pairs lasso

formulation and hierarchical interaction modeling combined with 5-fold CV and CPSS for

model selection. We used ten random train-test splits where, for each split, 2/3 of the data

were used for training/model selection, and 1/3 for measuring out-of-sample test performance.

Our analysis revealed that, similar to [15], the sparse quadratic interaction model without

hierarchical constraints and 5-fold CV yield excellent predictive performance with a median

out-of-sample 𝑚
2 of 0.78. Including hierarchical constraints slightly reduced the performance
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in terms of median out-of-sample 𝑚
2 to 0.72. Figure 3 illustrates the benefit of hierarchical

modeling by greatly reducing model complexity. The sparse quadratic interaction models

comprise, on average, 152.7 main and interaction effects whereas hierarchical models require,

on average, 38.5 non-zero coefficients. Figure 3a shows the sorted median coefficients for both

models, revealing a large number with small effect sizes for the all-pairs lasso solution (Fig. 3a,

gray bars). Figure 3b focuses on the sorted 38 non-zero model coefficients in the hierarchical

interaction model (green bars) and compares their effect sizes with those of the model without

hierarchy. The hierarchical model posits a non-zero main effect on all 25 species in the

community and includes 13 interaction effects. Both the hierarchical and standard quadratic

interaction model identify Anaerostipes caccae (AC), a known acetate and lactate-utilizing

bacterium [64], to have the strongest positive effect on butyrate production, followed by

Coprococcus comes (CC) and Eubacterium rectale (ER). These results are consistent with the

original analysis in Clark et al. [18]. However, only the hierarchical model correctly identifies

Desulfovibrio piger (DP) to have a strong negative effect on butyrate production (second to

last bar in Fig. 3b).

Among the thirteen interactions, jointly identified by both models, Anaerostipes caccae and

Desulfovibrio piger (AC:DP) show the strongest negative interaction. The inhibiting effect of

D. piger on A. caccae’s butyrate production, first observed in co-culture experiments [65], is

likely related to hydrogen sulfide production by D. piger from lactate that, in turn, impacts

A. caccae’s ability to produce butyrate [65]. Other interactions, including those between A.

caccae and Eggerthella lenta (AC:EL), and Collinsella aerofaciens (AC:CA), help improve

prediction, yet require further experiments regarding potential mechanism.

Moreover, when applying complementary pairs stability selection (CPSS) in place of cross-

validation for hierarchical interaction modeling, model complexity is further reduced to 24 main

and interaction effects, on average, without significant reduction in predictive performance.

Figure 3c summarizes the stability profile in terms of CPSS selection probabilities 𝑙𝑐, 𝑐 =
1, ..., 𝐿 + 𝐿(𝐿 ↓ 1)/2. We observe that only 16 species main effects consistently appear in the

models with selection probabilities 𝑙𝑐 > 0.9 and only one interaction effect, the one between

A. caccae and D. piger. Seven main effects have selection probabilities 𝑙𝑐 > 0.5 before the

stability profile sharply drops off, with the remaining single species and interaction effects

having negligible selection probabilities. These results demonstrate that state-of-the-art

statistical modeling with hierarchy constraints and stability selection mechanisms allows a

tremendous reduction in community-function models complexity without sacrificing predictive

performance.
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Interaction modeling improves predictive performance for micro-

biome sequencing data

We next investigate the behavior and the performance of our novel quadratic interaction

models for (sparse) high-dimensional relative abundance data from amplicon sequencing.

Since the excess number of zero measurements as well as experimental noise in such data

can hamper proper interaction modeling, we first perform a semi-synthetic simulation study

that elucidates the conditions for which accurate estimation is feasible. This analysis is

followed by an application study using the Tara global ocean microbiome data [42]. Rather

than estimating a community-function landscape, we estimate a “community-environment”

landscape with ocean salinity concentration as target environmental characteristic [42, 33].

Semi-synthetic simulation setup. To create realistic and flexible benchmark scenarios,

we first resort to a semi-synthetic simulation framework where we leverage 16S rRNA amplicon

sequencing data from the American Gut Project [66]. We use the pre-processed American Gut

data from [33], comprising 𝑀 = 6266 samples and 𝐿 = 1387 OTUs with associated taxonomic

information. The compositional count matrix 𝑉AGP → R6266↑1387+ comprises taxa with a high

variability in abundances and levels of sparsity. We use either subsets or taxonomically

aggregated versions of 𝑉AGP to assemble specific scenario count matrices 𝑉. We then

generate synthetic outcomes 𝑄𝑕 according to the constrained quadratic log-contrast (qlc)

model described in Eq. (8) (see also Fig. 4). In the designed benchmark scenarios we select

(uncorrelated) taxa from 𝑉AGP with different sparsity levels, vary the number of overall

features (taxa) 𝐿, the number and placement of interaction effects ε⇑
𝑃 𝑇
, and the noise level 𝑆⇑.

Given a compositional count matrix 𝑉 (where a pseudocount of 1 is added to all zero counts

[8]) and a synthetic outcome 𝑄𝑛, we solve the optimization defined in Eq. (12) to estimate

the coefficients 𝑅 and ε̂ in the sparse quadratic log-contrast models using 5-fold CV. Rather

than looking at predictive quality, we measure model quality in terms of estimation error

errε = ↔ε⇑ ↓ ε̂↔2 and err𝑅,ε = ↔ [𝑅⇑,ε⇑] ↓ [𝑅, ε̂]↔2, respectively. The error thus indicates how
well we can recover the “true” main and interaction effects.

Feature sparsity influences interaction estimation quality. To test the influence

of taxon sparsity on estimation quality, we select a subset of 𝐿 = 50 OTUs from 𝑉AGP

representing a wide range of sparsity levels across a subset of 𝑀 = 300 samples. Figure 4

shows the data matrix 𝑉 and details the generative model for the synthetic outcome 𝑄𝑕 for

𝑕 = 1, . . . , 𝑘 scenarios. In all 𝑘 = 5 scenarios we use a fixed intercept term 𝑅
⇑
0 = 10, three

non-zero main effects (𝑅1 = 10, 𝑅2 = 20, and 𝑅3 = ↓30), and a noise term 𝑆
⇑ ⇓ 𝑏1 · N (0, 1)

with 𝑏1 = 10.
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Fig 4. Simulation setup for generating a semi-synthetic outcome 𝑄𝑕 for 𝑕 = 1, ..., 𝑘 based on
the quadratic log-contrast model formulation. Dark blue box: Heatmap of an observed
compositional microbiome dataset sorted by sparsity in descending order. Non-zero main
effects contributing to each of the 𝑘 = 5 semi-synthetic scenarios (light blue) and features
contributing to the non-zero interaction effect in model scenario 𝑕 for 𝑕 = 1, ..., 𝑘 (dark red)
are highlighted.

In each scenario, we consider a single interaction effect ε⇑
𝑃 𝑇

= 3 between two features (OTUs)

fj and fk. In each scenario, this interaction effect is placed on a different pair of features. In

scenario 1, we select feature 7 and 8 (f7:f8) where the product of the features comprises 36%

zero entries. In scenario 2, we select feature 15 and 16 (f15:f16) comprising 52% zeros. In

scenario 3 we select features 29 and 30 (f29:f30) with 67% zeros, in scenario 4 features 39 and

40 (f39:f40) with 74% zeros, and in scenario 5 features 49 and 50 (f49:f50) with 88% zero

entries (see Fig. 4 and Fig. S3b). We also ensure that the selected interaction features are

uncorrelated with the main effects (Kendall’s pairwise correlation |𝑜 | < 0.2, see also Fig. S3c).
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Table 1. Estimation error errε = ↔ε⇑
𝑃 𝑇
↓ ε̂ 𝑃 𝑇 ↔2 for all five scenarios (10 replicates).

Sparsity of interaction features

scenario 1 scenario 2 scenario 3 scenario 4 scenario 5
36% 52% 67% 74% 88%

Median errε 0.15 0.30 0.82 0.87 1.78
Variance errε 0.04 0.09 1.15 0.21 1.22

Table 1 summarizes the median and variance of the estimation error errε of the sparse

quadratic log- contrast model for the five different scenarios over ten simulation replicates.

We observe that feature sparsity has a considerable effect on estimation quality of the single

ε⇑
𝑃 𝑇

= 3 with a marked increase in median estimation error beyond 52% sparsity. Inspection

of the solutions across the entire 𝑍-path also shows that, while the main effects can be well

estimated in all scenarios, the interaction effect cannot be identified anymore for scenarios 4

and 5, respectively, with estimated effect sizes on the same order as the noise level (see Fig. S4).

Our simulation results thus give practical guidance when analyzing sparse compositional

count data, suggesting that combinations of very sparse features can be a priori excluded

from the interaction terms.

Interaction models require strong signals for accurate estimation. To understand

the noise dependency of estimating main and interaction effects in quadratic log-contrast

models, we next create a low-dimensional benchmark by aggregating OTUs in 𝑉AGP to

the phylum level using the available taxonomic information. We consider the 𝐿 = 10 most

prevalent phyla across 𝑀 = 6266 individuals, leading to a dense compositional count matrix

𝑉 → R6266↑10+ . This aggregation ensures that feature sparsity effects on model estimation are

not present in the following scenarios. We fix the intercept term at 𝑅⇑0 = 10, assign six non-zero

main effects to the first six features (f1-f6) with 𝑅
⇑ = [10, 20, 30,↓10,↓20,↓30, 0, . . . , 0]𝑈 → R10,

and introduce three non-zero interaction effects (f1:f3, f8:f10, and f9:f10) with ε⇑
𝑐 𝑃
= ε⇑

𝑃𝑐
= 10

for the respective 𝑐 𝑃 pairs and ε⇑
𝑐 𝑃
= 0 otherwise.

We generate L=8 different scenarios by multiplying the standard normal noise term 𝑆
⇑

by a constant factor 𝑏𝑎 , 𝑎 = 1, . . . , 8, with 𝑏𝑎 = {10, 20, 70,100, 200, 300, 400, 500}. Each

scenario thus only differs in their noise level 𝑆⇑
𝑎
⇓ 𝑏𝑎 · N (0, 1). For the specified semi-

synthetic simulation models, these noise levels correspond to signal-to-noise ratios (SNRs),

defined as SNR𝑎 = var
(∑

𝐿

𝑃=1 𝑅
⇑
𝑃
log(𝑉𝑃 ) +

∑
𝐿↓1
𝑃=1

∑
𝐿

𝑇= 𝑃+1 𝑝
⇑
𝑃 𝑇
{log(𝑉𝑃/𝑉𝑇 )}2

)
/var

(
𝑆
⇑
𝑎

)
, of SNR𝑎 =

{178.01, 44.5, 3.63, 1.78, 0.45, 0.15, 0.11, 0.07}.
Table 2 summarizes the median and the variance of the estimation error err𝑅,ε of the sparse

qlc models over 10 replicates. We observe remarkable estimation performance when the SNR

is high (⇔ 44.5). However, the quality deteriorates quickly when the SNR is smaller than

one. For the smallest SNR8 = 0.07, the median err𝑅,ε of 138.78 is close to an error of 150,

achieved by the empty model (i.e., all estimated main and interaction effects are set to 0).
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This suggests that, for low SNRs, neither main nor interaction effects can be disentangled

from the noise. This typical behavior of sparse models is also reflected in the error variances

which are low both for high SNR scenarios (implying consistent high estimation accuracy)

and low SNR scenarios (implying consistent near-empty model estimation).

Table 2. Median and Variance of the estimation error err𝑅,ε = ↔ [𝑅⇑,ε⇑] ↓ [𝑅, ε̂]↔2 for the
eight semi-synthetic scenarios with different signal-to-noise ratios SNR𝑎 .

SNR𝑎 178.01 44.5 3.63 1.78 0.45 0.15 0.11 0.07

Median err𝑅,ε 3.89 5.07 30.21 38.44 66.96 135.46 137.34 138.78
Variance err𝑅,ε 1.74 4.61 38.41 57.44 362.86 272.38 67.87 30.35

Neglecting interaction effects can lead to model misinterpretation. We next

investigated the questions (i) to what extend the inclusion of interaction effects can improve

predictive performance compared to the baseline linear log-contrast model and (ii) how

model misspecification influences model interpretation. We used a subset of the previous

semi-synthetic simulated data SNR𝑎 = {178.01, 1.78, 0.45, 0.07} and estimated sparse linear

log-contrast models (i.e., main effects only) models.

Figure 5 illustrates the behavior and the performance of both linear and quadratic log-contrast

models. We first consider the high SNR regime (SNR1 = 178.01). Figure 5a shows typical

solution paths of both models. As expected, we observe that the interaction model correctly

identifies the six main (f1-f6) and three interaction effects (f9:f10, f1:3, f8:f10) at the 𝑍 values

selected by CV (dashed line 1se 𝑍1se, solid line minimum MSE 𝑍min). The (misspecified)

main effects model, lacking interaction terms, identifies not only the correct main effects but

also includes “wrong” main effects. In particular, the model selects f9 early in the solution

path with a strong positive effect, followed by a negative effect on f8 and positive effect on

f10. This behavior is consistent with the fact that the main effects model compensates for

the lack of interactions terms by putting a strong effect on the individual components of the

interaction terms f8-f10. Moreover, the misspecification also results in a biased estimation

of the f1 and f3 effects (see Fig. 5b), pushing the strong positive effect of f3 close to zero

and overestimating the strength of f1. In the absence of a ground truth, the main effects

model would thus lead the researcher to a partial misinterpretation of the role of the different

features. In the high SNR regime, this misinterpretation is exacerbated by the fact that the

main effects model shows excellent predictive performance in terms of 𝑚2 (both train and

test 𝑚
2
> 0.8, see Fig. 5c, panel 1). This effect also persists for lower SNR scenarios (see

Fig. 5c, panels 2-4). Nevertheless, the quadratic interaction models, as expected, consistently

outperform main effects models in terms of predictive performance by a wide margin of

10-15% even for a medium SNR of 1.78. This performance advantage only vanishes at the

lowest SNR of 0.07 (see Fig. 5c, panel 4). Overall, these simulation benchmarks indicate
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Fig 5. Influence of model misspecification and noise in semi-synthetic scenarios. a. Solution
path for the misspecified main effects model (sparse lc) and the interaction model (sparse
qlc) for the synthetic scenario 𝑎 = 1 with a signal-to-noise ratio (SNR) of 178.01 for one train
test split (solid line: 𝑍min solution; dashed line: 𝑍1se solution). b. Estimated coefficients
distributions over 10 train test splits corresponding to the solution paths in a. For the
interaction model only three non-zero interaction features are shown for visualization
purposes. c. Comparison of model performance via R squared (𝑚2) for the main effects
model and the interaction effects model on train and test data for four different SNRs.

that, in practice, the inclusion of interaction effects compares favorably to the standard linear

models both in terms of model identifiability, interpretability, and predictive performance.

To test the generality of these results, we also extended the simulation scenarios and analyses

for higher-dimensional cases where we aggregated the AGP data to family level (p=50 most

prevalent) and included 15-30 main and 20-60 interaction effects. The results of these semi-

synthetic scenarios are consistent with the ones described here and are summarized in Fig. S3.

Improved global marine salinity prediction from interaction modeling of Tara

ocean data

To illustrate the practical benefits of sparse quadratic log-contrast modeling we follow [33]

and estimate a marine “community-environment” landscape with ocean salinity concentration
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as target environmental characteristic from Tara Oceans data [42]. In the original Tara

study, temperature was as environmental variable and shown to be well predicted by global

microbial community composition. Although this type of modeling is “anti-causal” (i.e.,

temperature influences microbial abundance rather than the other way around), the good

predictability of temperature was taken as evidence for temperature being the “main driver”

of microbial diversity in the global ocean. Likewise, it is known that variations in salinity

also play a critical role in shaping microbial community diversity [67, 68]. Building the

community-salinity landscape thus quantifies how strong of a driver salinity is on shaping

microbial composition.
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contrast model (sparse lc) and the sparse quadratic log-contrast model (sparse qlc). b.
Scatter plot between the observed test set outcome 𝑄 (salinity) and prediction 𝑄 from the
sparse lc and the sparse qlc models. c. Distribution of estimated main effect and interaction
effect coefficients of the sparse qlc models over ten train-test splits. Only features (main or
interaction features) with non-zero mean coefficient are shown. Features with a non-zero
median are bold.

The Tara Oceans data includes relative microbial abundances in form of metagenomic OTUs

(mOTUs) [69] of ocean surface water and associated environmental covariates at 𝑀 = 136

sampling sites. We aggregated the 𝐿 = 8916 mOTUs present in the data [33] to family level

and selected the 𝐿 = 30 most prevalent families to avoid overly sparse features. We learned
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both sparse linear and quadratic log-contrast model over ten train-test splits.

Figure 6 summarizes the key results in terms of median train-test 𝑚2, typical out-of-sample

predicted salinity concentrations, and median main and interaction effect sizes. We observe

that including interaction effects more than doubles predictive accuracy (see Fig. 6a) and

predicts salinity concentrations across a larger dynamic range (↖ [33, 38]ppt, see Fig. 6b).

Despite considerable variation in the selected interaction models across the ten train-test splits

(see Fig. 6c), we identify seven family main effects and eight interaction effects with consistent

(non-zero) effect sizes (highlighted in bold in Fig. 6c). The seven families with non-zero median

effects sizes include three families from the SAR11 clade (f39, Surface4, Chesapeake-Delaware

Bay), two families from the Oceanospirillales order (ZD0405, JLETNPY6), one family from

Rickettsiales order (S25593), and the Halomonadacceae family. Consistent with known

functionality, Halomonadacceae as halophilic (“salt-loving”) bacteria are positively associated

with salinity concentration. Likewise, the family annotated as Chesapeake-Delaware Bay (from

the SAR11 clade) has been isolated from estuarine waters with oligohaline and mesohaline

conditions [70, 71], implying a negative relationship with salinity. Overall, eleven families

are involved in forming the eight consistent log-contrast interactions: unknown families f8,

f13, f40, f55, f60, f96, and Chesapeake-Delaware Bay family from the SAR 11 clade, S25593

from Rickettsiales, Oceanospirillaceae, Sphingomonadaceae, Bacteriovoracaceae. The two

strongest negative interactions effects are formed by the f55:Sphingomonadaceae and f13:f96

pairs. The two strongest positive interaction effects are formed by the f8:f60 and f40:f96 pairs,

respectively. Additionally, we observe the Chesapeake-Delaware Bay:Bacteriovoracaceae pair

to be negatively associated with salinity, consistent with the observed main effect of the

Chesapeake-Delaware Bay family. Furthermore, the enrichment of SAR 11 clade families in

the estimated interaction models suggest a significant habitat diversity within the SAR11

clade with respect to salinity concentrations, reflecting the adaptation mechanisms to specific

high-, medium-, and low-saline environments within the lineage [72, 73, 74, 75].

Microbial data types impact the structure and predictive perfor-

mance of interaction models

We have thus far studied the behavior and the performance of interaction models individually

for the three most prevalent microbial data types: quantitative microbial abundances [21],

presence-absence data, and (sequencing-derived) relative abundances. Two natural remaining

questions are (i) to what extent the available microbial data type influence interaction model

predictive performance and (ii) how the structure of the estimated interaction models changes

with microbial data type, thus influencing model interpretation.
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Fig 7. a. Scatter plots (one train test split) and test set R squared 𝑚
2 (average over 10

train test splits) for the comparison of the predicted number of anti microbial resistance
genes (ARGs) and the observed number of ARGs on a test dataset based on the absolute
count information of genera, the relative count information of genera and the
presence-absence information of genera of the MetaCardis cohort. b. Distribution of
coefficients over 10 train test splits for the superset of coefficients that are non-zero in at
least one of the three data modalities.

To shed light on these questions, we revisit the ARG prediction task using the MetaCardis

cohort data [41]. We consider the 𝐿 = 30 most abundant genera and transform the original

absolute abundance data into presence-absence and relative abundance data, respectively.
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This enables us to study the same prediction task of estimating the number of ARGs from

genus compositions while simultaneously analyzing the structure of the resulting genus main

and genus-genus interaction effects across the different data types.

We next estimated the respective data-type specific sparse quadratic interactions models

(without hierarchy constraints) from the three data sets, using identical train-test splits and

5-fold CV for model selection. We repeated the experiment on ten different train-test splits

and report predictive performance using median test-set 𝑚
2 and median effect sizes.

Figure 7 summarizes the key results of the experiments. We observe a consistent drop in

predictive performance with decreasing information content of the data. We achieve the

best median 𝑚
2 = 0.53 for absolute abundance data, followed by an 𝑚

2 = 0.44 for relative

abundance data, and an 𝑚
2 = 0.28 for genus presence-absence data. Figure 7a illustrates

observed vs. predicted ARG numbers on a representative test set for each data type, observing

a consistent decrease in overall correlation.

To analyze the corresponding interaction model structures, we focus on the union of all main

and interaction effects whose medians were non-zero in at least one of the three interaction

models. Figure 7b summarizes the distribution of the effect sizes for both main (light blue) and

interaction effects (red) of the estimated interaction models. Overall, we observe pronounced

differences in the structure of the different interaction models. While we see agreement in

the three strongest main effects of the absolute and relative abundance models (positive

effects of Bacteroides and Escherichia and negative effects of Prevotella, respectively), other

absolute abundance-based main effects are barely present in the relative abundance-based

and the presence-absence models. Strikingly, the presence -absence models is the only model

that posits a high positive main effect on the Chlostridium genus. We observe considerable

variation in the remaining interactions. While the absolute abundance-based interaction

model estimates positive effects on the Prevotella:Faecalibacterium and Prevotella:Dorea

interaction pairs, the relative abundance-based model estimates a large positive effect for

the Bacteroides:Ruminococcus ratio and a large negative one on the Prevotella:Clostridium

ratio. The presence-absence interaction model comprises many negative interaction effects

involving the Prevotella genus while lacking a Prevotella main effect. This is consistent with

our previous observation that interaction models without hierarchy constraints can make

model interpretation challenging.

Discussion

Learning predictive and interpretable models that relate microbial abundance data to com-

munity function, host-associated phenotypes, or environmental covariates is a cornerstone

in microbiome data analysis and microbial ecology. To this end, we have introduced a

general statistical framework for sparse quadratic interaction modeling that can accommodate

all common microbial data types, including sequencing-derived relative abundance data.
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Our framework unifies several disjoint approaches in the microbial ecology and microbiome

data science literature, tying together the recent ecological concept of “community-function

landscape” [15, 16, 76, 25] with high-dimensional statistics and compositional data analysis

approaches [27, 28, 33].

Using a wide range of application scenarios, including synthetic microbial communities,

human gut, and marine microbiome surveys, we have illustrated the practical benefits of

applying modern statistical concepts such as hierarchical constraints [36, 37, 38] and stability-

based model selection [39, 40] for interpretable predictive modeling. For instance, we could

demonstrate that the number of antimicrobial resistance genes (ARGs) in the MetaCardis

cohort can be well predicted by genus-level interaction models, extending and improving on

prior work on enterotype-based adjustments [60]. Since our estimated genus-based models

are both applicable to metagenomics and amplicon sequencing data, future work may include

de novo application of the ARG prediction models to the large number of available amplicon

gut microbiome datasets. This could potentially reveal significant differences in predicted

ARG abundances across cohorts and, in turn, point toward hidden confounding.

On the Clark et al. [18] synthetic community dataset, our framweork was able to identify the

negative association between A. caccae and D. piger as the only stable empirical interaction

that is relevant for the community function of butyrate production. This clarifies not only

previous less clear-cut results [18, 76, 15] but also suggests that our framework may prove

useful in identifying and designing new synthetic communities with specific community

function [77, 15, 78].

For the arguably most important use case of modeling amplicon sequencing data, we have

introduced a series of semi-synthetic simulation scenarios that quantified the relationship

between prediction and model estimation quality, extreme sparsity of the underlying data,

noise corruption, and model misspecification. Together with our study of the community-

salinity relationship from the Tara ocean data, these scenarios have provided a first glimpse

into the benefits and limitations of using interaction models on high-dimensional relative

microbial abundance data. Future applications of this framework will be required to more

fully assess its effectiveness and generality both on standardized benchmarks [79, 33] and

relevant disease prediction tasks [80].

Finally, our comparative study of using absolute abundance, relative abundance, and presence-

absence data for ARG prediction revealed noticeable differences in prediction quality and

interaction model structure, highlighting the importance of the available microbial community

data type. This interplay between microbial data type and statistical model structure and

quality has been reported in related studies. For instance, Vandeputte et al. [21] observed that

empirical species-species correlations strongly differ when estimated from sequencing-based

quantitative vs. relative abundance data. While a large part of these differences can be

ameliorated by using proper statistical correlation methods [10, 81, 82], recent work has also

shown that predictive models for disease-microbe associations are strongly confounded when
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neglecting quantitative information in form of fecal microbial load [83]. We posit that, with

the increasing availability of quantitative microbiome data, our framework enables principled

comparative main effect and interaction modeling across data types to identify context- and

data type-dependent (confounded) microbial predictors.

Despite the wide applicability and generality of the presented framework there exist a number

of possible improvements and extensions. Firstly, with the expected availability of larger

data sets, it is conceivable to extent our statistical framework to higher-order interactions

[76] or non-parametric, non-linear interactions [84]. How to effectively deliver higher-order

hierarchical and stable interactions in this context is, however, an open problem. Secondly,

throughout this manuscript we reported median test performance of the interaction models

across multiple train-test split, enabling a more realistic view on prediction performance and

its variability. This idea can be more rigorously assessed using the concept of (conformal)

prediction sets [85]. Including recent work on prediction sets for sparse interaction models

[86] in our statistical framework would potentially further increase the confidence of the

practitioner in the quality of the estimated models. Lastly, the focus of this manuscript

has been on interaction modeling using microbial abundance data alone. However, when

more than one data modality are available, e.g., microbial abundances and additional host or

environmental covariates, multimodal interaction modeling extensions are likely to improve

predictive performance. While conceptually straightforward, future research needs to assess

how to properly normalize and transform different multimodal data types separately or jointly

for effective interaction modeling.

In summary, we have introduced statistically principled and reproducible workflows for

predictive microbial interaction modeling, available as reproducible R code at https://

github.com/marastadler/Microbial-Interactions. We anticipate that these workflows

will serve as a baseline for more sophisticated modeling endeavors, delivering new hypotheses

and predictions of relevance in microbial community ecology and microbiome research.
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Supporting Information Legends

Mathematical Models and Equations

• Quadratic log-ratio model: Description of the quadratic log-ratio model for compo-

sitional data, including equations (S.1) and (S.2), and its extension to the quadratic

log-ratio interaction model (qlr).

• Sparse alr transformed quadratic model: Explanation of the loss function and

optimization problem for the sparse alr transformed quadratic model, as defined in

equation (S.3).

• Sparse quadratic log-ratio model: Description of the loss function and optimization

problem for the sparse quadratic log-ratio model (qlr), as defined in equation (S.4).

• Comparison of interaction models: Discussion of three mathematically equivalent

models for modeling quadratic interactions with relative microbiome data: (a) the

alr transformed quadratic model, (b) the quadratic log-contrast model, and (c) the

quadratic log-ratio model.

• Binary encoding of covariates: Explanation of the impact of binary encoding (e.g.,

{0, 1} vs. {↓1, 1}) on the interpretation of model coefficients in regression models,

including transformations between encodings.

Figures

• Figure S1. Low-dimensional representation (UMAP) of the microbial abundance data

𝑉
𝑀↑𝐿 with 𝑀 = 690 individuals (corresponding to the number of points) and 𝐿 = 30 most

prevalent genera. a. UMAP representation colored by the number of ARGs. b. UMAP

representation with enterotypes highlighted, indicating a positive correlation of ARGs

with Bacteroides 1, a particularly strong positive association of ARGs with Bacteroides

2, and a negative association of ARGs with Prevotella.

• Figure S2. Distribution of estimated coefficients with non-zero median over 10 train

test splits in the sparse linear model.

• Figure S3. Semi-synthetic simulation setup for varying feature sparsity levels. a.

Simulation setup for generating a synthetic outcome 𝑄𝑕 for 𝑕 = 1, ..., 𝑘 based on the

quadratic log-contrast model formulation. b. Heat map of the OTU table carrying
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compositional information for a subset of 𝐿 = 50 OTUs from the American Gut cohort

sorted by sparsity in descending order. Non-zero main effects contributing to each of

the 𝑘 = 5 semi-synthetic scenarios (light blue) and features contributing to the non-zero

interaction effect in model scenario 𝑕 for 𝑕 = 1, ..., 𝑘 (dark red) are highlighted. c.

Kendall’s pairwise correlations 𝑜 between features that have non-zero effects in the

models 𝑕 = 1, ..., 𝑘. They should be as uncorrelated as possible (|𝑜 | < .2) to eliminate

effects of correlated features.

• Figure S4. Solution path of the interaction model (sparse qlc) for the 𝑘 = 5 semi-

synthetic simulation setups for varying feature sparsity levels.

• Figure S5. Semi-synthetic data simulations according to the sparse quadratic log-

contrast model based on the American Gut Project data at the family level from 𝑉AGP,

comprising 𝑀 = 6266 samples and the 𝐿 = 50 most prevalent families, leading to a

compositional count matrix 𝑉AGP → R6266↑50+ . We fix the intercept term at 𝑅
⇑
0 = 10

and vary the number of non-zero main and interaction effects. The non-zero entries

are sampled from a normal distribution 𝑅
⇑ ⇓ N(0,𝑞) and ε⇑ ⇓ N(0,𝑞). Panels (a, b,

and c) show the distributions of the estimated coefficients across 10 train-test splits,

highlighting the effect of varying the number of 15 to 30 non-zero main effects (a: 15,

b: 20, c: 30) and 20 to 60 interaction coefficients (a: 20, b: 30, c: 60).
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