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Abstract

Microbial interactions are of fundamental importance for the functioning and the maintenance
of microbial communities. Deciphering these interactions from (time-series) observational
data or controlled lab experiments remains a formidable challenge due to their context-
dependent nature, such as, e.g., (a)biotic factors, host characteristics, and overall community
composition. Complementary to the classical ecological view, recent research advocates an
empirical “community-function landscape” framework where an outcome of interest, e.g.,
a community function, is learned via statistical regression models that include pairwise or
higher-order statistical species interaction effects. Here, we adopt the latter viewpoint and
present penalized quadratic interaction models that can accommodate all common microbial
data types, including microbial presence-absence data, relative (or compositional) abundance
data from microbiome surveys, and quantitative (absolute abundance) microbiome data.
We propose novel interaction models for compositional data and bring modern statistical
techniques such as hierarchical interaction constraints and stability-based model selection to
the microbial realm. To illustrate our framework’s versatility, we consider prediction tasks
across a wide range of microbial datasets and ecosystems, including butyrate production in
model communities in designed experiments and environmental covariate prediction from
marine microbiome data. We show improved predictive performance of these interaction
models and assess their limits in the presence of extreme data sparsity. On a large-scale
gut microbiome cohort data, we identify interaction models that can accurately predict the
abundance of antimicrobial resistance genes, enabling novel biological hypotheses about
microbial community composition and antimicrobial resistance.
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Author Summary

Microbes live in complex communities where interactions between species shape their function
and stability. Understanding these interactions is crucial for predicting how microbial
communities respond to environmental changes, medical treatments, or shifts in their host
organisms. However, identifying these relationships is challenging because they depend on
many factors, including the surrounding environment and community composition. In this
study, we introduce a new statistical modeling approach to uncover microbial interactions
from different types of data, including presence-absence patterns, relative abundance from
microbiome surveys, and absolute abundance measurements. Our method builds on modern
statistical techniques to improve accuracy and reliability, even when data are sparse or
noisy. We demonstrate the power of our approach by applying it to diverse microbial
datasets, from marine ecosystems to gut microbiomes. In one case, we successfully predicted
antimicrobial resistance gene abundance based on microbial interactions, opening new avenues
for understanding how resistance spreads in microbial communities. By advancing statistical
tools for microbiome research, our work provides a new way to explore the hidden relationships
between microbes, with potential applications in medicine, environmental science, and
biotechnology.

Introduction

A fundamental objective in microbial ecology is to elucidate how species compositions and
species-species interactions are related to the maintenance and functioning of a microbial
community [1]. Interactions between microbial species come in many forms, including cross-
feeding interactions through metabolite exchange, bacteriocin-induced growth-inhibitory
interactions, and exchange of genetic material for genotype selection [2, 3]. Conceptually,
microbial interactions can be described in terms of their net positive, negative, or neutral effect
on their interaction partner, resulting in broad categories such as mutualistic, commensal, or
competitive interactions [4} 5, 6, [2]. Experimentally identifying and verifying such interactions
within natural communities has remained a difficult task, owing to the sheer complexity of
microbial ecosystems and limited technical capabilities to dissect such communities.

With the emergence of large-scale microbial survey data, computational approaches have
become popular that use statistical regression and correlation methods to estimate sparse
species-species association and co-occurrence networks from microbiome abundances [5, |7, 8,
9, |10, [11]. While these networks do not reflect true ecological relationships [12], they can
provide valuable insights into the global structure of microbial communities across ecosystems
[13, |14]. None of these methods, however, allow to relate species-species associations or
“statistical interactions” to a community functional outcome of interest or to concomitant
environmental or host-related covariates. Furthermore, most network approaches deliver
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context-independent (or averaged) pairwise associations, thus potentially missing species-
species relationships that are relevant for a specific community function.

To enable context-specific microbial community modeling, the concept of community-function
landscapes |15, |16] has been put forward as a promising empirical model for capturing how
changes in microbial community composition affect collective function. The community-
function landscape is essentially estimated from microbial data via statistical regression
models that include pairwise or higher-order interaction terms. Here, we follow and extend
this framework by using the generic quadratic interaction regression model as a starting point.
We adapt this model to accommodate all common microbial abundance data modalities
(see Fig. for an illustration), such as, e.g., data from designed in-vitro experimental
studies on model communities where microbes are given in presence-absence (binary) or
absolute (count or continuous) abundance form [17, |18]. Importantly, our framework also
extends to microbiome survey data where microbial compositions are measured by amplicon
sequencing. These techniques provide relative abundance (or compositional) data [19] in
form of Operational Taxonomic Units (OTUs) or Amplicon Sequencing Variants (ASVs) [20],
or, when combined with absolute cell count measurements, (biased) quantitative microbial
abundance information [21] 22, 23| |24].
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Fig 1. a. Illustration of the three most common data modalities in microbial data analysis
and their combinatorial behavior with respect to an outcome, e.g., a community function: (i)
quantitative microbiome data, representing absolute counts; (ii) presence-absence
information of microbial species; and (iii) relative abundance (or “compositional”) data.
Each row illustrates a simplified scenario. In the first scenario, blue microbes are present
while red are absent, resulting in a large outcome (e.g., increased butyrate production). In
the second scenario, red microbes are present while blue are absent, leading also to a large
outcome. In the third scenario, both blue and red groups of microbes are present, yet only
minimal amounts of the outcome are produced, indicating a potential interaction effect
between the two species (created with BioRender. com). b. Illustration of the workflow
modules (combinations of data and modeling options) presented in this study. Three
real-world datasets (marked by the dots) are used to exemplify the respective modules.
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Our framework unifies and generalizes several seemingly disjoint approaches in the micro-
bial ecology and microbiome data science literature. On the one hand, it includes the
community-function landscape view from microbial ecology where presence-absence and
absolute abundance data from designed experiments on small microbial communities are
used to predict community functions, such as, e.g., butyrate production, [18| |15, 16, 25]
or overall host fitness [26]. Our framework is readily available for such studies and gives
statistical guidelines how to choose model complexity, how to include additional constraints,
and how to analyze higher dimensional datasets. On the other hand, our framework extends
the linear regression model for compositional data, the so-called linear log-contrast model
[27], to include statistical species-species combinations. Specifically, starting with Aitchison’s
low-dimensional quadratic model [27], we introduce sparse quadratic interaction models that
are applicable to large-scale relative abundance data derived from amplicon sequencing. To
deal with the high dimensionality (where typically the number of taxa p and their pairwise
interactions is larger than number of samples n), we follow the idea of penalized and structured
log-contrast regression models [28, [29] 30, 31, 32, [33] and employ ¢; penalization on the
interaction terms.

To deliver stable and interpretable interaction models [34, 35|, we incorporate two key
advancements from the high-dimensional statistics literature: (i) hierarchical interaction
modeling [36,[37,138] and (ii) stability-based model selection [39, 40]. The hierarchy assumption
enforces constraints on interaction features, requiring them to be only included in the model
if both features (strong hierarchy) or at least one feature (weak hierarchy) are already present
as main effects. Stability-based model selection ensures that interactions are only included
if they can be consistently and reproducibly identified across different subsets of the data,
typically reducing the number of downstream testable hypotheses compared to standard
cross-validation approaches.

We demonstrate the versatility of our framework by analyzing datasets that encompass all
three data modalities across various ecosystems, including synthetic microbial communities,
human gut microbiomes, and marine microbial ecosystems. Figure [Lb presents an overview of
the datasets used for the different workflow modules, i.e., combinations of regression models,
model constraints, and model selection strategies. In the remainder of the paper, we introduce
the statistical modeling strategies first (see Methods), followed by describing and discussing
concrete microbial prediction tasks (see Results).

On quantitative human gut microbiome data from the Metacardis study [41] (Fig. [Lp, dark
blue dot), we show that the number of antimicrobial resistance genes (ARGs) can be well
predicted by sparse interaction models on family-aggregated microbiome data, a considerable
improvement over enterotype-based models [41].

On the Clark et al. [18] synthetic community dataset containing species presence-absence
information and butyrate as community function, we identify the inhibitory role of D. piger on
the butyrate producer A. caccae as the only stable interaction effect, considerably improving
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the interpretablity of prior community-function landscape models 18} 15].

For the sparse quadratic log-contrast model tailored for relative microbiome data, we (i)
provide semi-synthetic data simulations to demonstrate the benefits and limitations of
interaction effect inclusion and (ii) re-analyze Tara ocean data [42], achieving superior
predictive performance on environmental parameters [33].

We conclude the paper by providing a comparative analysis of the interaction models
across the three data modalities using the Metacardis ARG prediction task. We show that
prediction quality decreases when using relative abundance or presence-absence data only
and illustrate commonalities and differences between the learned models. The latter analysis
gives guidance for the practitioner regarding the interpretability of quadratic interaction
models. Our framework for microbial interaction modeling is available as reproducible R
code at https://github.com/marastadler/Microbial-Interactions.

Methods

Interaction modeling strategy

Given the abundance information of p microbial taxa X = (X1, ..., X},) across n samples, i.e.,
X; € R", the baseline model for uncovering (joint) additive effects of the microbial taxa on
an outcome y € R” (e.g., butyrate production), is the linear model

)4
y=Bo+ ) BiX;+e, (1)
j=1

where By € R is the intercept term, §; € R is the effect of taxon j on y, and € models the
technical and biological noise term. In many prediction tasks, relying on a linear (main effect)
model alone is insufficient to accurately capture the community function or outcome of interest
of the microbial community data. A common approach to introduce a more intricate yet
interpretable model is the inclusion of quadratic terms. Here, we extend the baseline model
by introducing a generic quadratic interaction model, incorporating all pairwise interactions
between microbial taxa, namely

)4
1
y:ﬁ0+;ﬁjxj+§j;®jkxjxk+e, (2)

where ® = ® € RP*P is a symmetric matrix of pairwise interactions. We assume the
diagonal elements ®;; = 0 in this model formulation, though the general principles still
apply if the constraint is removed. We next instantiate the interaction model in Eq. to
accommodate distinct data types and denote the microbial abundance information by A for
count information (absolute or relative) and B for presence-absence information (see Fig. [Ih).
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Interaction model for quantitative microbiome data

Whenever microbial abundance information is given as absolute counts, the model is equal
to the generic model [2] and does not require any transformation of the input data or any
constraints on the model coefficients. Throughout this work, we denote the absolute count
input data by A € R7?. Assuming that y depends on the quantitative taxon abundances,
the quadratic interaction model is given by

p

1

y:,80+ E ﬁjAj+§ E @jkAjAk+€, (3)
j=1 J#k

where the model parameters follow the description provided in Eq. .

Interaction model for presence-absence microbial data

If the microbial abundance information is represented as presence-absence data, we denote
the resulting binary matrix as B € {0, 1}"*?, where 1 indicates the presence of a microbial
taxon, and 0 indicates its absence. One common alternative encoding is B € {-1, 1},
where the absence is encoded as -1. The choice of encoding does not affect the ability of the
model to fit data but changes the interpretation of the coefficients. Assuming that y depends
on the presence-absence information of microbial taxa, the quadratic interaction model is
given by

P
y:ﬁo+;ﬁj3j+%;®jk3j3k+e, (4)
where the model parameters follow the description provided in Eq. (]2D For B € {0,1}'*7, By
is the baseline effect when all features, i.e., microbial taxa, are absent, and §; for j =1,...,p
represents the effect of the presence of B; when all other taxa are absent. The interaction
term ®;; accounts for the additional effect when both features B; and By are present. For
B € {-1,1}"™P By signifies the overall mean (assuming a completely balanced design). For
more details on the interpretation and the linear transformations of model coefficients between
these two encodings, see the Supplementary information. When describing y as a community-
function, fitness, or phenotypic landscape, the different encodings in the interaction model
are often associated with Fourier and Taylor expansions. The estimated parameters are then
used for the construction of landscape descriptors, such as, e.g., “ruggedness” (see [15] 43,
44] for further details on such landscape analysis).

Interaction modeling for microbiome relative abundance data

One of the most abundant microbial data sources is amplicon sequencing where the derived
taxa counts carry only relative abundance information. Typically, each sample, i.e., each row
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of A, is represented as a compositional vector whose entries sum up to a constant |7, |8, 19].
This implies that all features are necessarily statistically dependent, thus requiring adequate
data transformations for linear and quadratic interaction modeling, respectively. One popular
way, put forward in compositional data analysis [27], are so-called log-ratio transformations.
The additive log-ratio transformation (alr) requires a “reference feature”, e.g., the pth feature,
and builds log-ratios with respect to that reference (see [45] for a detailed discussion of the
alr transform). The transformed count vector is given by C; =log(A;/A,), j=1,...,p—1.
The alr transformation allows principled linear modeling of an outcome y using the (p — 1)-
dimensional log-ratios as features via:

p-1
y=Bo+ ) BiCj+e, (5)

J=1

where the coefficient 5; quantifies how the outcome y is related to the log-differences of the
jth feature with respect to the chosen reference. A natural extension for quadratic interaction
modeling is thus the so-called alr transformed quadratic model, given by

-1p
ZZ 0,iC;Cy +e. (6)
Jj=1

k=1

l\:)ln—

p-1
y =,30+Z,3j

For p := p —1 this formulation is equivalent to the generic model in Eq. (with ® not being
symmetric). While this model formulation allows for the interpretation of the effects with
respect to the pth reference feature, a more convenient reference-free symmetric expression
of the linear alr transformed model in Eq. can be derived by reformulating the equation
as a p-dimensional problem with a zero-sum constraint, given by

P P
y=ﬁ0+Z,3j10g(Aj)+€, s.t. Z,BJ'ZO, (7>

j=1 j=1

where the main (log) effect coefficients B;, j = 1, ..., p sum up to zero. As illustrated in [27],
this so-called linear log-contrast model can be extended to the quadratic log-contrast model
as follows:

y= ,80+Zﬂjlog(A )+ = Z(%Jklog(A /Ak) +€, s.t. Z,Bj:O, (8)

]ik j=1

where the main (log) effect coefficients 8;,j = 1,..., p sum up to zero, with 8 € R”, and the
interaction effect coefficients ®;; correspond to the quadratic (log-ratio) interaction effect
of Aj and Ay, with © = O7 € RP*P. We denote this model as the constrained quadratic
log-contrast model. In the Supplementary information we show how to formulate the alr
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transformed model as constrained quadratic log-contrast model. For completeness, we also
demonstrate in the Supplementary information how the interaction model for all pairs of
log-ratios [31] is defined for compositional data.

Penalized model estimation

Microbial datasets typically include a large number of features p and interactions between
features p(p — 1)/2 compared to the number of observations n. Even in scenarios where
n> p(p—1)/2, a parsimonious model is often more appropriate, enabling the selection of
only a few features and interactions that are most relevant for the outcome.

To facilitate penalized model estimation, we employ regularized maximum-likelihood estima-
tion incorporating £1-norm (lasso) penalization [46] for both linear and interaction coefficients.
We introduce a generic optimization problem, consisting of an objective function p, (1, 8o, 3, ®)
and a (potential) constraint set on the model parameters c(Bp, 8, ®) that facilitates parameter
estimation for all (linear and interaction) models introduced before. The objective function
takes the general form

A
Pﬂ(l,ﬁo,ﬁ,g) :l(ﬁo’ﬁ’®)+/lllﬁlll+§”@”1 . (9)

Here, A > 0 serves as a tuning parameter, regulating the sparsity levels of the coefficients g
and O, respectively. The loss function [(By, 8, ®) is specific to each model. Consequently, the
generic optimization problem is given by

minimize p(I, Bo, B, O) s.t. ¢(Bo, B, 0). (10)
Bo.B.0
This optimization problem is now instantiated by specific loss functions and constraints.

Sparse quadratic interaction model for quantitative and presence-absence micro-
biome data. The loss function [(By, 8, ®) for the sparse quadratic interaction model, also
known as all-pairs lasso, for the interaction models for absolute count data or presence-absence

data, introduced in Eq. and Eq. , is defined as
qi N 1 2
1980, 8.0) = |y - o - DIEASD) 0 X; X

with X := A € RY for absolute count data and X := B € {0,1}”? (or B € {~1,1}"™P)
for presence-absence data. This model does not require further constraints on the model
parameters, such that c¢(Bp, 8,®) = 0. Consequently, the optimization problem is given by

minimize p, (14, By, B, ©). 11
iy pa(I*, Bo, B, O) (11)
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In the linear model case the loss function in the optimization problem reduces to (8o, 8) =

2
I

Sparse quadratic log-contrast model. While the linear log-contrast model has been
extended to the high-dimensional setting via sparsity-inducing penalization |28 29, 32, [33],
the quadratic log-contrast model [27] has not yet been applied to any high-dimensional
data. We thus define the loss function for the sparse quadratic log-contrast model (glc) for
compositional data, introduced in Eq. as

P
1, 5.0) = [y~ = 3 (4 5 3 0o/ 40
Jj=1 j#k

Since this model includes a zero-sum constraint on the main effect coefficients, the constraint

set in Eq. is given by
P
c(Bo. . ©) = {Zﬁj = 0} -
=

Thus, the optimization problem for the sparse quadratic log-contrast model is given by
minimize p (1%, Bo. B, ©) s.t. ¢(Bo. B, ©). (12)
07 9

In the linear sparse log-contrast model (lc) defined in Eq. , the loss function reduces to
1'(By, B) = Hy - Bo — Zle ﬁjlog(Aj)Hz . The corresponding optimization problems can be
efficiently solved with the c-lasso solver [47] as integrated in the R package trac [33, 4§].
In the linear log-contrast model, the main effect covariates log(A;) for j =1, ..., p do not
require scaling since the model is equivariant under the zero-sum constraint (see [33] for an
outline of this property). For the quadratic log-contrast model, however, we require proper
scaling of the interaction features log(A;/ Ar)? to ensure a balanced effect of penalization with
respect to the main effects. While different scaling procedures are conceivable, we propose
the following centered log-ratio (clr) scaling. The clr divides each compositional part by the
geometric mean of all parts, namely

A; . BN
clr(A) = (logg(Ai))i:Lm’n with g(A;) = exp (; JZ:; 1Og(Aij)) .

To achieve a balanced penalization effect, we apply scaling to align the f>-norms of the
interaction features with the average {o-norm of the main effects after clr transformation.
This approach ensures consistent penalization across both main and interaction terms,
improving model interpretability and regularization.

10
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Mathematically, this can be expressed as follows. We denote each column of the interaction
feature matrix as A_Ijk = log(Aj/Ak)z, with AT € R™P(P=D/2 and its scaled version is given

by
I 1 -1 i clr
Al (Jal,) 5 2l
2/ pH 2
where A9 = clr(A) € R™? is the clr transformed main effects matrix A and ||Aih”||2 is the

£o-norm of the k-th column of A", For completeness, we detail the optimization problems
for the sparse additive log-ratio (alr) transformed quadratic model and the sparse quadratic
log-ratio model in the Supplementary information.

Modeling hierarchical interactions

While quadratic interaction models can generally enhance predictive performance compared
to the linear counterparts, interpretability of the resulting models becomes more challenging.
To strike a good balance between prediction quality and interpretability, we introduce the
statistical concept of hierarchy in the context of quadratic models for microbial data. The
concept of hierarchy permits the inclusion of an interaction ®;; in the model only if both
associated main effects are also present in the model (strong hierarchy), or if at least one
of the associated main effects is included (weak hierarchy) (see [36], and references therein,
for further discussion). For many microbial consortia, it is reasonable to assume that
bacterial species only show an empirical interaction effect if each of them has an independent
effect on community function. For example, two species may independently contribute
to butyrate production but compete for the same limited food source, thus resulting in
a potentially negative interaction effect. This hierarchy principle can be implemented by
imposing constraints on the interaction effects ®; € R? for j =1, ..., p as follows:

c(Bo,3,0) = {© =0T,

®j||1 < 1Bl } : (13)

By eliminating the symmetry constraint on ®, the resulting model relaxes to weak hierarchy
on the interaction features. Moreover, this approach allows a strong interaction to “pull” itself
into the model, ensuring that it cannot be missed, even if it violates the hierarchy assumption.
While the constraint in Eq. results in a non-convex optimization problem, we follow [36]
who proposed a convex relaxation of the problem and provided an efficient implementation in
the corresponding R package hierNet [49] (v1.9). The hierarchical constraint can be imposed
within the generic optimization problem described in Eq. and can be readily included
for (i) quantitative microbiome data (ii) or presence-absence microbial data in Eq. (11)), and
(iii) relative abundance data in the alr-transformed interaction model in Eq. (S.3).

11
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Model selection

An essential challenge in high-dimensional penalized regression is the selection of the reg-
ularization parameter 4 > 0. This parameter balances the sparsity of model coefficients
with out-of-sample predictive performance [50, |51]. Standard methods for main effects and
interaction models often involve Information Criteria like the Akaike (AIC) and the Bayesian
Information Criterion (BIC) [52]. Here, we revisit standard cross-validation techniques [36]
and introduce stability-based model selection for quadratic interaction models.

Cross-validation. The principle idea of cross-validation is to split the training data set of
size N (typically 50 —80% of the available sample size n) into multiple folds where each fold is
used both for learning the model parameters and as in-sample validation set. In leave-one-out
cross-validation (LOOCYV), the model is trained N times, with each training using all data
points except one, and the left out data point is used for model validation. Skwara et al. [15]
used this approach to learn community-function landscapes. K-fold cross-validation (CV)
divides the training dataset into K subsets (or folds), training the model on K — 1 of these
folds and using the remaining fold for validation. This process is repeated K times such that
each fold serves once as the validation set. This approach helps find the A that minimizes the
prediction (or classification) error, effectively balancing bias and variance. In regression, the
chosen Aysg minimizes the average mean-squared error

K
1 A
AMSE = —§§ — XTB_1(2))?,
MSE arg;mnK £, ie]k(yl ,,3 k( ))

where I} denotes the subset of observations without fold k. An alternative sparsifying heuristic
is to choose the largest A that is within the one standard error (1se) band of the average
mean-squared error at Aysg, denoted by A1se. To reduce the dependency of model selection
on specific data splits, the cross-validation procedure can be repeated multiple times, enabling
the construction of empirical coefficient distributions (as shown in Results).

Stability selection. Cross-validation is known to overselect coefficients in sparse regression
[52]. To guard against this false positive coefficient selection, stability selection [39] has been
introduced as popular alternative. Stability selection has shown effectiveness across various
scientific domains, ranging from network learning |53, 54| to data-driven partial differential
equation identification [55) [56]. In linear regression, stability selection involves iteratively
learning sparse regression models from subsamples of the data (e.g., ny = [n/2]), recording
the frequency of selected predictors across models, and selecting the most frequent predictors
for the final model. A variant of stability selection, complementary pairs stability selection
(CPSS) [40], is particularly advantageous for handling unbalanced experimental designs, as it
ensures that individual subsamples are independent of each other. CPSS draws b subsamples
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as complementary pairs {(ag;—1,a9;) : [ =1,...,b}, indexed by ag;_1 and ag;, where [ denotes
the pair number, with ag;—1 Nag = O from samples {1, ...n} of size [n/2]. For each subsample,
a sparse model is learned using a variable selection procedure S which influences stability and
complexity of the resulting model [39]. A popular selection procedure is to pick the k first
predictors that enter the model along the regularization path (also referred to as A-path).
Applying a variable selection procedure S to each subsample allows defining a feature-specific
selection probability 7; for i =1,...,p + p(p — 1)/2 that is given by

1 2b
T = %l_zlﬂ{[es(al)}. (14)

The final selection set, denoted as S CPSS  consists of predictor indices i for which the estimated
selection probability 7; exceeds a predefined threshold ., that represents the minimum
selection frequency required for a predictor to be included in the final set. We employ the
stabs R package [57] (v0.6-4), which offers an efficient implementation of the CPSS procedure.
This approach involves defining several hyperparameters, including the set of regularization
parameters A, the threshold my, € [0, 1], the number of initial predictors k entering the
sparse model, and the number of complementary splits b. The CPSS procedure in [57] can be
directly applied to linear models. Since CPSS does not make a distinction between main and
interaction effects, we apply CPSS also to quadratic models with and without hierarchical
constraints [35).

Results

Quantitative genus-level interaction models can predict antimicro-
bial resistance gene abundances

Large-scale metagenomics survey data enable not only the quantification of species composi-
tions but also the abundances of genes and pathways associated with a particular function or
metabolic potential [58]. Here, we investigate the question whether the number of antimicro-
bial resistance genes (ARGs) in a community, as identified from the respective community
metagenomes, can be predicted from high-level taxonomic compositions. A good taxonomic-
based statistical interaction model would allow to assess the antimicrobial potential of a
microbial community when only quantitative amplicon data are available ,[21]. Prior work
has shown that there are significant associations between human gut enterotypes, i.e., distinct
community types that are dominated by specific genera in the population [59], and the
number of ARGs across countries [60]. Recent studies not only report significant associations
between the number of ARGs and community diversity but also link specific species groups
to ARG abundance and horizontal gene transfer [61].
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Fig 2. Prediction of antimicrobial resistance gene (ARG) abundances from enterotype and
genus-level absolute abundance information from the MetaCardis cohort [41]: a.
Distribution of ARG abundance per enterotype (Bacteroides 1, Bacteroides 2, Prevotella,
and Ruminococcus). Significant coefficient estimates from the linear model are shown below
the boxes. b. Distribution of test set R? (10 splits) for ARG prediction based on enterotype
or genera abundances (sparse linear and quadratic models, respectively). c. Observed vs.
predicted number of ARGs on a representative test data set for the sparse quadratic
interaction model. d. Distribution of estimated coefficients with non-zero median over 10
train test splits in the sparse quadratic interaction model

We base our analysis on metagenomic Operational Taxonomic Units (mOTUs) abundances
(ps = 1938 species) from quantitative microbiome profiling for a subset of n = 690 individuals
from the MetaCardis cohort for which the number of identified ARGs y € R" are available
[41]. We consider three statistical regression models: (i) enterotype-based regression where
individuals are binary-encoded to one of the four enterotypes Bacteroides 1 (high percentages
of Bacteroides and Faecalibacterium), Bacteroides 2 (high percentages of Bacteroides and
low percentages of Faecalibacterium), Prevotella (high percentages of Prevotella), and Ru-
minococcus (low percentages of Bacteroides and Prevotella) (see also [62]), (ii) sparse linear
regression (Eq. [1)), and (iii) a (sparse) quadratic interaction model (Eq. [2). For the latter
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two models, we aggregate the py = 1938 species to genus level and collect the p = 30 most
prevalent genera (out of 720) as potential predictors in A € R%9%30, The enterotype-encoded
model is solved without regularization, using a standard linear model. The linear model
is solved using regularization and 5-fold CV with minimum MSE A selection. Since the
microbial counts in A are quantitative, we fit the sparse interaction model for absolute count
data defined in Eq. and Eq. , respectively, by using 5-fold CV with minimum MSE
A selection. All three models are trained and evaluated using the same 10 train-test splits,
with 2/3 of the data allocated for training and 1/3 for testing.

We observe that enterotype-based predictions show remarkable predictability for ARG
abundances given the simplicity of the model (median out of sample R? 0.36) (see Fig. lgh,b).
The model reveals that the number of ARGs are positively associated with the Bacteroides
enterotypes and that both the Prevotella and Ruminococcus enterotypes are negatively
associated, respectively (see also Fig. for a visual representation). The genus-based
linear model considerably improves predictability (median out of sample R? 0.48, see Fig. lglb)
Consistent with the enterotype-based model, we observe a strong positive effect on Bacteroides
and a strong negative effect on Prevotella, respectively (see Fig. . The linear model,
however, reveals a more fine-grained picture of the empirical dependencies with strong
positive effects of Escherichia, and Parabacteroides, and negative effects of Faecalibacteria
and Phascolarctobacteria on ARG abundance (see Fig. . Strikingly, the sparse quadratic
interaction model achieves significantly higher out of sample R? consistently above 0.5 (see
Fig. |2c for a typical out-of-sample prediction). Figure [2d shows the nine stable linear effects
and 14 stable empirical interactions among genera that have a non-zero median effect over 10
train test splits. The two strongest positive interactions are between Prevotella and Dorea,
and Prevotella and Faecalibacteria, respectively. The latter relationship indicates an empirical
“antagonistic” association between the two genera, given their individual negative effects.
These findings suggest that presence and co-presence of certain bacterial genera in the gut
microbiota can predict community-wide prevalence of ARGs.

Hierarchy and stability-based model selection improve model inter-
pretability for community-function landscapes

We next investigate the community-function landscape of an in-vitro bacterial community
comprising p = 25 members with respect to the production of butyrate, a short-chain fatty
acid beneficial to human health [18]. Butyrate-producers have the ability to ferment dietary
fibers into butyrate, contributing to gut health, immune function, and energy metabolism
[63]. Following [15], we use the published presence-absence data from the n = 1561 designed
experiments by Clark et al. [18], denoted by B € {0, 1}"™7 to fit sparse quadratic interaction
models defined in Eq. and Eq. for predicting butyrate production y € R".
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Butyrate production, Clark et al.
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Fig 3. a. Comparison of median estimated coefficients (over 10 train test splits) between the
sparse quadratic interaction model and the sparse hierarchical interaction model (Eq. (13))
with weak hierarchy. Only estimates that are non-zero in at least one model are shown. b.
Median non-zero estimated coefficients for both models. Only coefficients that are non-zero
in the hierarchical model are displayed. For direct comparison, the corresponding coefficients
from the model without hierarchy are included. c. Top 35 selection probabilities from

complementary pairs stability selection (CPSS) in the sparse hierarchical interaction model.

Prior analysis of these data has shown that sparse linear, quadratic, and third-order interaction
models with LOOCYV tuning can increasingly well approximate the community-function
landscape for butyrate production with in-sample and LOOCV R? around 0.7 — 0.9 (see [15],
Fig. 2a for reference). Here, we specifically investigate the effect of hierarchical constraints on
quadratic interaction inclusion and the choice of the model selection on predictive performance,
model complexity, and interpretability. As summarized in Fig. [Ib, we used the all-pairs lasso
formulation and hierarchical interaction modeling combined with 5-fold CV and CPSS for
model selection. We used ten random train-test splits where, for each split, 2/3 of the data
were used for training/model selection, and 1/3 for measuring out-of-sample test performance.
Our analysis revealed that, similar to [15], the sparse quadratic interaction model without
hierarchical constraints and 5-fold CV yield excellent predictive performance with a median
out-of-sample R? of 0.78. Including hierarchical constraints slightly reduced the performance
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in terms of median out-of-sample R? to 0.72. Figure [3|illustrates the benefit of hierarchical
modeling by greatly reducing model complexity. The sparse quadratic interaction models
comprise, on average, 152.7 main and interaction effects whereas hierarchical models require,
on average, 38.5 non-zero coefficients. Figure |[3a shows the sorted median coefficients for both
models, revealing a large number with small effect sizes for the all-pairs lasso solution (Fig. ,
gray bars). Figure [3b focuses on the sorted 38 non-zero model coefficients in the hierarchical
interaction model (green bars) and compares their effect sizes with those of the model without
hierarchy. The hierarchical model posits a non-zero main effect on all 25 species in the
community and includes 13 interaction effects. Both the hierarchical and standard quadratic
interaction model identify Anaerostipes caccae (AC), a known acetate and lactate-utilizing
bacterium [64], to have the strongest positive effect on butyrate production, followed by
Coprococcus comes (CC) and Eubacterium rectale (ER). These results are consistent with the
original analysis in Clark et al. [18]. However, only the hierarchical model correctly identifies
Desulfovibrio piger (DP) to have a strong negative effect on butyrate production (second to
last bar in Fig. 3b).

Among the thirteen interactions, jointly identified by both models, Anaerostipes caccae and
Desulfovibrio piger (AC:DP) show the strongest negative interaction. The inhibiting effect of
D. piger on A. caccae’s butyrate production, first observed in co-culture experiments [65], is
likely related to hydrogen sulfide production by D. piger from lactate that, in turn, impacts
A. caccae’s ability to produce butyrate [65]. Other interactions, including those between A.
caccae and Eggerthella lenta (AC:EL), and Collinsella aerofaciens (AC:CA), help improve
prediction, yet require further experiments regarding potential mechanism.

Moreover, when applying complementary pairs stability selection (CPSS) in place of cross-
validation for hierarchical interaction modeling, model complexity is further reduced to 24 main
and interaction effects, on average, without significant reduction in predictive performance.
Figure |3c summarizes the stability profile in terms of CPSS selection probabilities 7;, i =
1,....,p+p(p—1)/2. We observe that only 16 species main effects consistently appear in the
models with selection probabilities 7; > 0.9 and only one interaction effect, the one between
A. caccae and D. piger. Seven main effects have selection probabilities 71; > 0.5 before the
stability profile sharply drops off, with the remaining single species and interaction effects
having negligible selection probabilities. These results demonstrate that state-of-the-art
statistical modeling with hierarchy constraints and stability selection mechanisms allows a
tremendous reduction in community-function models complexity without sacrificing predictive
performance.
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Interaction modeling improves predictive performance for micro-
biome sequencing data

We next investigate the behavior and the performance of our novel quadratic interaction
models for (sparse) high-dimensional relative abundance data from amplicon sequencing.
Since the excess number of zero measurements as well as experimental noise in such data
can hamper proper interaction modeling, we first perform a semi-synthetic simulation study
that elucidates the conditions for which accurate estimation is feasible. This analysis is
followed by an application study using the Tara global ocean microbiome data [42]. Rather
than estimating a community-function landscape, we estimate a “community-environment”
landscape with ocean salinity concentration as target environmental characteristic [42, 133].

Semi-synthetic simulation setup. To create realistic and flexible benchmark scenarios,
we first resort to a semi-synthetic simulation framework where we leverage 16S rRNA amplicon
sequencing data from the American Gut Project [66]. We use the pre-processed American Gut
data from [33], comprising n = 6266 samples and p = 1387 OTUs with associated taxonomic

p € RO266X1387 comprises taxa with a high

information. The compositional count matrix Aag
variability in abundances and levels of sparsity. We use either subsets or taxonomically
aggregated versions of Apgp to assemble specific scenario count matrices A. We then
generate synthetic outcomes ys according to the constrained quadratic log-contrast (qlc)
model described in Eq. (see also Fig. . In the designed benchmark scenarios we select
(uncorrelated) taxa from Aagp with different sparsity levels, vary the number of overall
features (taxa) p, the number and placement of interaction effects (93‘. i» and the noise level €*.
Given a compositional count matrix A (where a pseudocount of 1 is added to all zero counts
[8]) and a synthetic outcome y,, we solve the optimization defined in Eq. to estimate
the coefficients B and © in the sparse quadratic log-contrast models using 5-fold C'V. Rather
than looking at predictive quality, we measure model quality in terms of estimation error
errg = ||®* — @HQ and errge = ||[5%, 0] - [8, O] |2, respectively. The error thus indicates how
well we can recover the “true” main and interaction effects.

Feature sparsity influences interaction estimation quality. To test the influence
of taxon sparsity on estimation quality, we select a subset of p = 50 OTUs from Aagp
representing a wide range of sparsity levels across a subset of n = 300 samples. Figure
shows the data matrix A and details the generative model for the synthetic outcome y, for
s =1,...,8 scenarios. In all § =5 scenarios we use a fixed intercept term g; = 10, three
non-zero main effects (81 = 10, B2 = 20, and B3 = —30), and a noise term €* ~ c¢; - N(0,1)
with Cl1 = 10.
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Semi-synthetic simulation setup according to the quadratic log-contrast model
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Fig 4. Simulation setup for generating a semi-synthetic outcome yg for s =1, ..., S based on
the quadratic log-contrast model formulation. Dark blue box: Heatmap of an observed
compositional microbiome dataset sorted by sparsity in descending order. Non-zero main
effects contributing to each of the § = 5 semi-synthetic scenarios (light blue) and features
contributing to the non-zero interaction effect in model scenario s for s = 1, ..., S (dark red)
are highlighted.

In each scenario, we consider a single interaction effect @; , = 3 between two features (OTUs)
fj and fk. In each scenario, this interaction effect is placed on a different pair of features. In
scenario 1, we select feature 7 and 8 (f7:f8) where the product of the features comprises 36%
zero entries. In scenario 2, we select feature 15 and 16 (f15:f16) comprising 52% zeros. In
scenario 3 we select features 29 and 30 (£29:f30) with 67% zeros, in scenario 4 features 39 and
40 (£39:f40) with 74% zeros, and in scenario 5 features 49 and 50 (f49:£50) with 88% zero
entries (see Fig. 4| and Fig. [S3pb). We also ensure that the selected interaction features are
uncorrelated with the main effects (Kendall’s pairwise correlation |7| < 0.2, see also Fig. [S3c).
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Table 1. Estimation error errg = ||®j. = 0) ikll2 for all five scenarios (10 replicates).
Sparsity of interaction features

scenario 1 scenario 2 scenario 3 scenario 4 scenario b

36% 52% 67% 74% 88%
Median errg 0.15 0.30 0.82 0.87 1.78
Variance errg 0.04 0.09 1.15 0.21 1.22

Table [1] summarizes the median and variance of the estimation error errg of the sparse
quadratic log- contrast model for the five different scenarios over ten simulation replicates.
We observe that feature sparsity has a considerable effect on estimation quality of the single
@’j“. . = 3 with a marked increase in median estimation error beyond 52% sparsity. Inspection
of the solutions across the entire A-path also shows that, while the main effects can be well
estimated in all scenarios, the interaction effect cannot be identified anymore for scenarios 4
and 5, respectively, with estimated effect sizes on the same order as the noise level (see Fig. .
Our simulation results thus give practical guidance when analyzing sparse compositional
count data, suggesting that combinations of very sparse features can be a priori excluded
from the interaction terms.

Interaction models require strong signals for accurate estimation. To understand
the noise dependency of estimating main and interaction effects in quadratic log-contrast
models, we next create a low-dimensional benchmark by aggregating OTUs in Axgp to
the phylum level using the available taxonomic information. We consider the p = 10 most
prevalent phyla across n = 6266 individuals, leading to a dense compositional count matrix
A € R6266x10 " Thig aggregation ensures that feature sparsity effects on model estimation are
not present in the following scenarios. We fix the intercept term at g = 10, assign six non-zero
main effects to the first six features (f1-f6) with * = [10, 20, 30, =10, —20, 30,0, ...,0]” € R1?,
and introduce three non-zero interaction effects (f1:f3, £8:f10, and 9:f10) with @jj = ('*)j.l. =10
for the respective ij pairs and ©; = 0 otherwise.

We generate L=8 different scenarios by multiplying the standard normal noise term €*
by a constant factor ¢;, [ = 1,...,8, with ¢; = {10, 20, 70,100, 200, 300, 400, 500}. Each
scenario thus only differs in their noise level € ~ ¢; - N(0,1). For the specified semi-
synthetic simulation models, these noise levels correspond to signal-to-noise ratios (SNRs),
defined as SNR; = Var(Zf:1 Bilog(A;) + Zf:_ll Zzzjﬂ H’J".k{log(Aj/Ak)}Q)/var(el*), of SNR; =
{178.01, 44.5, 3.63, 1.78,0.45, 0.15, 0.11, 0.07}.

Table [2| summarizes the median and the variance of the estimation error errgg of the sparse
qlc models over 10 replicates. We observe remarkable estimation performance when the SNR
is high (> 44.5). However, the quality deteriorates quickly when the SNR is smaller than
one. For the smallest SNRg = 0.07, the median errgg of 138.78 is close to an error of 150,
achieved by the empty model (i.e., all estimated main and interaction effects are set to 0).
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This suggests that, for low SNRs, neither main nor interaction effects can be disentangled
from the noise. This typical behavior of sparse models is also reflected in the error variances
which are low both for high SNR scenarios (implying consistent high estimation accuracy)
and low SNR scenarios (implying consistent near-empty model estimation).

Table 2. Median and Variance of the estimation error errge = ||[5*, 0] — [3,0]]l2 for the
eight semi-synthetic scenarios with different signal-to-noise ratios SNR;.

SNR; 178.01 445 3.63 1.78 045 0.15 0.11 0.07

Median errge 3.89  5.07 30.21 3844 66.96 13546 137.34 138.78
Variance errge  1.74  4.61 3841 5744 362.86 27238 67.87  30.35

Neglecting interaction effects can lead to model misinterpretation. We next
investigated the questions (i) to what extend the inclusion of interaction effects can improve
predictive performance compared to the baseline linear log-contrast model and (ii) how
model misspecification influences model interpretation. We used a subset of the previous
semi-synthetic simulated data SNR; = {178.01, 1.78,0.45,0.07} and estimated sparse linear
log-contrast models (i.e., main effects only) models.

Figure [5]illustrates the behavior and the performance of both linear and quadratic log-contrast
models. We first consider the high SNR regime (SNR; = 178.01). Figure [5a shows typical
solution paths of both models. As expected, we observe that the interaction model correctly
identifies the six main (f1-f6) and three interaction effects (£9:f10, f1:3, £8:f10) at the A values
selected by CV (dashed line 1se Ajge, solid line minimum MSE Api,). The (misspecified)
main effects model, lacking interaction terms, identifies not only the correct main effects but
also includes “wrong” main effects. In particular, the model selects f9 early in the solution
path with a strong positive effect, followed by a negative effect on {8 and positive effect on
f10. This behavior is consistent with the fact that the main effects model compensates for
the lack of interactions terms by putting a strong effect on the individual components of the
interaction terms f8-f10. Moreover, the misspecification also results in a biased estimation
of the f1 and f3 effects (see Fig. ), pushing the strong positive effect of f3 close to zero
and overestimating the strength of f1. In the absence of a ground truth, the main effects
model would thus lead the researcher to a partial misinterpretation of the role of the different
features. In the high SNR regime, this misinterpretation is exacerbated by the fact that the
main effects model shows excellent predictive performance in terms of R? (both train and
test R? > 0.8, see Fig. |§|c, panel 1). This effect also persists for lower SNR scenarios (see
Fig. , panels 2-4). Nevertheless, the quadratic interaction models, as expected, consistently
outperform main effects models in terms of predictive performance by a wide margin of
10-15% even for a medium SNR of 1.78. This performance advantage only vanishes at the
lowest SNR of 0.07 (see Fig. bk, panel 4). Overall, these simulation benchmarks indicate
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Fig 5. Influence of model misspecification and noise in semi-synthetic scenarios. a. Solution

path for the misspecified main effects model (sparse lc) and the interaction model (sparse
gle) for the synthetic scenario / = 1 with a signal-to-noise ratio (SNR) of 178.01 for one train
test split (solid line: Apin solution; dashed line: Ajge solution). b. Estimated coefficients
distributions over 10 train test splits corresponding to the solution paths in a. For the
interaction model only three non-zero interaction features are shown for visualization
purposes. ¢. Comparison of model performance via R squared (R?) for the main effects
model and the interaction effects model on train and test data for four different SNRs.

that, in practice, the inclusion of interaction effects compares favorably to the standard linear
models both in terms of model identifiability, interpretability, and predictive performance.

To test the generality of these results, we also extended the simulation scenarios and analyses
for higher-dimensional cases where we aggregated the AGP data to family level (p=50 most
prevalent) and included 15-30 main and 20-60 interaction effects. The results of these semi-
synthetic scenarios are consistent with the ones described here and are summarized in Fig. [S3.

Improved global marine salinity prediction from interaction modeling of Tara
ocean data

To illustrate the practical benefits of sparse quadratic log-contrast modeling we follow [33]
and estimate a marine “community-environment” landscape with ocean salinity concentration
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as target environmental characteristic from Tara Oceans data [42]. In the original Tara
study, temperature was as environmental variable and shown to be well predicted by global
microbial community composition. Although this type of modeling is “anti-causal” (i.e.,
temperature influences microbial abundance rather than the other way around), the good
predictability of temperature was taken as evidence for temperature being the “main driver”
of microbial diversity in the global ocean. Likewise, it is known that variations in salinity
also play a critical role in shaping microbial community diversity |67, 68]. Building the
community-salinity landscape thus quantifies how strong of a driver salinity is on shaping
microbial composition.
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Fig 6. Summary plots of the Tara ocean data on family level for salinity prediction. a.
Train and test set R? distribution over ten train-test splits for the main effects sparse log
contrast model (sparse lc) and the sparse quadratic log-contrast model (sparse qlc). b.
Scatter plot between the observed test set outcome y (salinity) and prediction y from the
sparse lc and the sparse glc models. c. Distribution of estimated main effect and interaction
effect coefficients of the sparse glc models over ten train-test splits. Only features (main or
interaction features) with non-zero mean coefficient are shown. Features with a non-zero
median are bold.

The Tara Oceans data includes relative microbial abundances in form of metagenomic OTUs
(mOTUs) [69] of ocean surface water and associated environmental covariates at n = 136
sampling sites. We aggregated the p = 8916 mOTUs present in the data [33] to family level
and selected the p = 30 most prevalent families to avoid overly sparse features. We learned
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both sparse linear and quadratic log-contrast model over ten train-test splits.

Figure |§I summarizes the key results in terms of median train-test R?, typical out-of-sample
predicted salinity concentrations, and median main and interaction effect sizes. We observe
that including interaction effects more than doubles predictive accuracy (see Fig. [6p) and
predicts salinity concentrations across a larger dynamic range (= [33, 38]ppt, see Fig. @b)
Despite considerable variation in the selected interaction models across the ten train-test splits
(see Fig. @c), we identify seven family main effects and eight interaction effects with consistent
(non-zero) effect sizes (highlighted in bold in Fig. [6k). The seven families with non-zero median
effects sizes include three families from the SARI11 clade (39, Surface4, Chesapeake-Delaware
Bay), two families from the Oceanospirillales order (ZD0405, JLETNPY6), one family from
Rickettsiales order (S25593), and the Halomonadacceae family. Consistent with known
functionality, Halomonadacceae as halophilic (“salt-loving”) bacteria are positively associated
with salinity concentration. Likewise, the family annotated as Chesapeake-Delaware Bay (from
the SAR11 clade) has been isolated from estuarine waters with oligohaline and mesohaline
conditions [70, 71], implying a negative relationship with salinity. Overall, eleven families
are involved in forming the eight consistent log-contrast interactions: unknown families {8,
13, 140, £55, {60, {96, and Chesapeake-Delaware Bay family from the SAR 11 clade, S25593
from Rickettsiales, Oceanospirillaceae, Sphingomonadaceae, Bacteriovoracaceae. The two
strongest negative interactions effects are formed by the f55:Sphingomonadaceae and 13:f96
pairs. The two strongest positive interaction effects are formed by the £8:f60 and f40:f96 pairs,
respectively. Additionally, we observe the Chesapeake-Delaware Bay:Bacteriovoracaceae pair
to be negatively associated with salinity, consistent with the observed main effect of the
Chesapeake-Delaware Bay family. Furthermore, the enrichment of SAR 11 clade families in
the estimated interaction models suggest a significant habitat diversity within the SAR11
clade with respect to salinity concentrations, reflecting the adaptation mechanisms to specific
high-, medium-, and low-saline environments within the lineage |72, |73} 74, [75].

Microbial data types impact the structure and predictive perfor-
mance of interaction models

We have thus far studied the behavior and the performance of interaction models individually
for the three most prevalent microbial data types: quantitative microbial abundances [21],
presence-absence data, and (sequencing-derived) relative abundances. Two natural remaining
questions are (i) to what extent the available microbial data type influence interaction model
predictive performance and (ii) how the structure of the estimated interaction models changes
with microbial data type, thus influencing model interpretation.
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To shed light on these questions, we revisit the ARG prediction task using the MetaCardis
cohort data [41]. We consider the p = 30 most abundant genera and transform the original
absolute abundance data into presence-absence and relative abundance data, respectively.
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This enables us to study the same prediction task of estimating the number of ARGs from
genus compositions while simultaneously analyzing the structure of the resulting genus main
and genus-genus interaction effects across the different data types.

We next estimated the respective data-type specific sparse quadratic interactions models
(without hierarchy constraints) from the three data sets, using identical train-test splits and
5-fold CV for model selection. We repeated the experiment on ten different train-test splits
and report predictive performance using median test-set R? and median effect sizes.

Figure |[7] summarizes the key results of the experiments. We observe a consistent drop in
predictive performance with decreasing information content of the data. We achieve the
best median R? = 0.53 for absolute abundance data, followed by an R? = 0.44 for relative
abundance data, and an R? = 0.28 for genus presence-absence data. Figure |7h illustrates
observed vs. predicted ARG numbers on a representative test set for each data type, observing
a consistent decrease in overall correlation.

To analyze the corresponding interaction model structures, we focus on the union of all main
and interaction effects whose medians were non-zero in at least one of the three interaction
models. Figure[7b summarizes the distribution of the effect sizes for both main (light blue) and
interaction effects (red) of the estimated interaction models. Overall, we observe pronounced
differences in the structure of the different interaction models. While we see agreement in
the three strongest main effects of the absolute and relative abundance models (positive
effects of Bacteroides and Escherichia and negative effects of Prevotella, respectively), other
absolute abundance-based main effects are barely present in the relative abundance-based
and the presence-absence models. Strikingly, the presence -absence models is the only model
that posits a high positive main effect on the Chlostridium genus. We observe considerable
variation in the remaining interactions. While the absolute abundance-based interaction
model estimates positive effects on the Prevotella:Faecalibacterium and Prevotella:Dorea
interaction pairs, the relative abundance-based model estimates a large positive effect for
the Bacteroides:Ruminococcus ratio and a large negative one on the Prevotella:Clostridium
ratio. The presence-absence interaction model comprises many negative interaction effects
involving the Prevotella genus while lacking a Prevotella main effect. This is consistent with
our previous observation that interaction models without hierarchy constraints can make
model interpretation challenging.

Discussion

Learning predictive and interpretable models that relate microbial abundance data to com-
munity function, host-associated phenotypes, or environmental covariates is a cornerstone
in microbiome data analysis and microbial ecology. To this end, we have introduced a
general statistical framework for sparse quadratic interaction modeling that can accommodate
all common microbial data types, including sequencing-derived relative abundance data.
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Our framework unifies several disjoint approaches in the microbial ecology and microbiome
data science literature, tying together the recent ecological concept of “community-function
landscape” [15, (16, |76, 25] with high-dimensional statistics and compositional data analysis
approaches [27] 28, 133].

Using a wide range of application scenarios, including synthetic microbial communities,
human gut, and marine microbiome surveys, we have illustrated the practical benefits of
applying modern statistical concepts such as hierarchical constraints [36, 37, 38| and stability-
based model selection [39, |40] for interpretable predictive modeling. For instance, we could
demonstrate that the number of antimicrobial resistance genes (ARGs) in the MetaCardis
cohort can be well predicted by genus-level interaction models, extending and improving on
prior work on enterotype-based adjustments [60]. Since our estimated genus-based models
are both applicable to metagenomics and amplicon sequencing data, future work may include
de novo application of the ARG prediction models to the large number of available amplicon
gut microbiome datasets. This could potentially reveal significant differences in predicted
ARG abundances across cohorts and, in turn, point toward hidden confounding.

On the Clark et al. [18] synthetic community dataset, our framweork was able to identify the
negative association between A. caccae and D. piger as the only stable empirical interaction
that is relevant for the community function of butyrate production. This clarifies not only
previous less clear-cut results |18] 76, [15] but also suggests that our framework may prove
useful in identifying and designing new synthetic communities with specific community
function |77, |15} |78].

For the arguably most important use case of modeling amplicon sequencing data, we have
introduced a series of semi-synthetic simulation scenarios that quantified the relationship
between prediction and model estimation quality, extreme sparsity of the underlying data,
noise corruption, and model misspecification. Together with our study of the community-
salinity relationship from the Tara ocean data, these scenarios have provided a first glimpse
into the benefits and limitations of using interaction models on high-dimensional relative
microbial abundance data. Future applications of this framework will be required to more
fully assess its effectiveness and generality both on standardized benchmarks [79] 33| and
relevant disease prediction tasks [80].

Finally, our comparative study of using absolute abundance, relative abundance, and presence-
absence data for ARG prediction revealed noticeable differences in prediction quality and
interaction model structure, highlighting the importance of the available microbial community
data type. This interplay between microbial data type and statistical model structure and
quality has been reported in related studies. For instance, Vandeputte et al. [21] observed that
empirical species-species correlations strongly differ when estimated from sequencing-based
quantitative vs. relative abundance data. While a large part of these differences can be
ameliorated by using proper statistical correlation methods [10, 81, 82|, recent work has also
shown that predictive models for disease-microbe associations are strongly confounded when
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neglecting quantitative information in form of fecal microbial load [83]. We posit that, with
the increasing availability of quantitative microbiome data, our framework enables principled
comparative main effect and interaction modeling across data types to identify context- and
data type-dependent (confounded) microbial predictors.

Despite the wide applicability and generality of the presented framework there exist a number
of possible improvements and extensions. Firstly, with the expected availability of larger
data sets, it is conceivable to extent our statistical framework to higher-order interactions
[76] or non-parametric, non-linear interactions [84]. How to effectively deliver higher-order
hierarchical and stable interactions in this context is, however, an open problem. Secondly,
throughout this manuscript we reported median test performance of the interaction models
across multiple train-test split, enabling a more realistic view on prediction performance and
its variability. This idea can be more rigorously assessed using the concept of (conformal)
prediction sets [85]. Including recent work on prediction sets for sparse interaction models
[86] in our statistical framework would potentially further increase the confidence of the
practitioner in the quality of the estimated models. Lastly, the focus of this manuscript
has been on interaction modeling using microbial abundance data alone. However, when
more than one data modality are available, e.g., microbial abundances and additional host or
environmental covariates, multimodal interaction modeling extensions are likely to improve
predictive performance. While conceptually straightforward, future research needs to assess
how to properly normalize and transform different multimodal data types separately or jointly
for effective interaction modeling.

In summary, we have introduced statistically principled and reproducible workflows for
predictive microbial interaction modeling, available as reproducible R code at https://
github.com/marastadler/Microbial-Interactions. We anticipate that these workflows
will serve as a baseline for more sophisticated modeling endeavors, delivering new hypotheses
and predictions of relevance in microbial community ecology and microbiome research.
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Supporting Information Legends

Mathematical Models and Equations

Quadratic log-ratio model: Description of the quadratic log-ratio model for compo-
sitional data, including equations (S.1) and (S.2), and its extension to the quadratic
log-ratio interaction model (qlr).

e Sparse alr transformed quadratic model: Explanation of the loss function and
optimization problem for the sparse alr transformed quadratic model, as defined in
equation (S.3).

e Sparse quadratic log-ratio model: Description of the loss function and optimization
problem for the sparse quadratic log-ratio model (glr), as defined in equation (S.4).

e Comparison of interaction models: Discussion of three mathematically equivalent
models for modeling quadratic interactions with relative microbiome data: (a) the
alr transformed quadratic model, (b) the quadratic log-contrast model, and (c) the
quadratic log-ratio model.

e Binary encoding of covariates: Explanation of the impact of binary encoding (e.g.,
{0,1} vs. {-1,1}) on the interpretation of model coefficients in regression models,
including transformations between encodings.

Figures

e Figure S1. Low-dimensional representation (UMAP) of the microbial abundance data
A™P with n = 690 individuals (corresponding to the number of points) and p = 30 most
prevalent genera. a. UMAP representation colored by the number of ARGs. b. UMAP
representation with enterotypes highlighted, indicating a positive correlation of ARGs
with Bacteroides 1, a particularly strong positive association of ARGs with Bacteroides
2, and a negative association of ARGs with Prevotella.

e Figure S2. Distribution of estimated coefficients with non-zero median over 10 train
test splits in the sparse linear model.

e Figure S3. Semi-synthetic simulation setup for varying feature sparsity levels. a.
Simulation setup for generating a synthetic outcome y; for s = 1,..., S based on the
quadratic log-contrast model formulation. b. Heat map of the OTU table carrying
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compositional information for a subset of p = 50 OTUs from the American Gut cohort
sorted by sparsity in descending order. Non-zero main effects contributing to each of
the S = 5 semi-synthetic scenarios (light blue) and features contributing to the non-zero
interaction effect in model scenario s for s = 1,...,§ (dark red) are highlighted. c.
Kendall’s pairwise correlations 7 between features that have non-zero effects in the
models s = 1, ...,S. They should be as uncorrelated as possible (|| < .2) to eliminate

effects of correlated features.

e Figure S4. Solution path of the interaction model (sparse glc) for the § = 5 semi-
synthetic simulation setups for varying feature sparsity levels.

e Figure S5. Semi-synthetic data simulations according to the sparse quadratic log-
contrast model based on the American Gut Project data at the family level from Aagp,
comprising n = 6266 samples and the p = 50 most prevalent families, leading to a
compositional count matrix Aagp € R§266X50. We fix the intercept term at B = 10
and vary the number of non-zero main and interaction effects. The non-zero entries
are sampled from a normal distribution * ~ N(0,0) and ®* ~ N(0,0). Panels (a, b,
and c) show the distributions of the estimated coefficients across 10 train-test splits,
highlighting the effect of varying the number of 15 to 30 non-zero main effects (a: 15,
b: 20, ¢: 30) and 20 to 60 interaction coefficients (a: 20, b: 30, c: 60).
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