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ABSTRACT 
The gut microbiome is a complex ecosystem with significant inter-individual variability 
determined by hundreds of low-abundant species as revealed by genomic methods. 
Functional redundancy demands direct quantification of microbial biological functions to 
understand their influence on host physiology. This functional landscape remains unexplored 
due to limited sensitivity in metaproteomics methods. We present uMetaP, an ultra-sensitive 
metaproteomic solution combining advanced LC-MS technologies with a novel FDR-
controlled de novo strategy. uMetaP improves the taxonomic detection limit of the gut "dark 
metaproteome" by 5,000-fold with exceptional quantification precision and accuracy. In a 
mouse model of colonic injury, uMetaP extended metagenomics findings and identified host 
functions and microbial metabolic networks linked to disease. We obtained orthogonal 
validation using transcriptomic data from biopsies of 204 Crohn's patients and presented the 
concept of a "druggable metaproteome". Among the drug-protein interactions discovered are 
treatments for intestinal inflammatory diseases, showcasing uMetaP's potential for disease 
diagnostics and data-driven drug repurposing strategies. 
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INTRODUCTION 
The gut microbiome, a complex ecosystem of hundreds of bacterial species, plays a crucial 1 

role in host physiology, affecting overall health1. While a core set of microbial species is 2 

shared among most individuals, significant variability exists due to medium- and low-3 

abundance taxa2, 3, 4. This variability contributes to personalized microbiomes and challenges 4 

the concept of a unique healthy microbiome5. Although genomic methods have greatly 5 

expanded our understanding of the taxonomic repertoire, functional redundancy among 6 

microbiome members requires methods that can directly quantify the biological functions of 7 

the microbiota and host. 8 

Metaproteomics, which analyzes microbial samples using liquid chromatography coupled 9 

with mass spectrometry (LC-MS)-based proteomics, has emerged as a powerful tool for 10 

investigating the functional signatures of host-microbiome interactions in health and 11 

disease6. However, over 80% of bacterial species detected by genomic methods remain 12 

undetected by metaproteomics, constituting the "dark metaproteome"4. Significant 13 

improvements in the sensitivity of metaproteomic approaches are needed to explore the 14 

highly complex and largely uncharted functional landscape of the gut microbiome. We 15 

present uMetaP, an integrative, ultra-sensitive metaproteomic solution that achieves 16 

exceptional depth and sensitivity in studying complex metaproteomes. 17 

uMetaP combines Ultra-High-Performance Liquid Chromatography (UHPLC), an optimized 18 

ionization source to maximize ion transfer7, and the sensitivity of the timsTOF Ultra mass 19 

spectrometer8, 9. Using mouse feces as a model, uMetaP fragmented over 1.6 million 20 

precursors via Data-Dependent Acquisition Parallel Accumulation–Serial Fragmentation 21 

(DDA-PASEF). However, less than 30% resulted in confident peptide spectrum matches 22 

(PSMs). We trained a de novo algorithm, Novor10, on 1.7 million PSMs, marking the first 23 

instance of a de novo algorithm trained in PASEF's four-dimensional data structure. We 24 

combined it with a multi-tier filtering procedure to enhance peptide confidence, enabling us 25 

to develop novoMP: a de novo-assisted metaproteomic database construction method. 26 

NovoMP expanded a mouse fecal metaproteomic database from 223 to 774 microbial 27 

species, including archaea, fungi, and viruses. The final database, with 208,254 microbial 28 

protein sequences (a 19-times increase from our previous PASEF-based database11), is 29 

available via PRIDE for community use. 30 

When powered by Data-Independent Acquisition (DIA-) PASEF, uMetaP identified and 31 

quantified 210,051 microbial peptides and 118,937 microbial protein groups, tripling the 32 

previous state-of-the-art11. An orthogonal FDR control strategy ensured de novo-derived 33 

peptides matched traditional database identification confidence. uMetaP identified 1,043 34 

proteins of unknown function12 (PUFs), 2,342 small proteins13, 14, and 581 antimicrobial 35 

peptides15 (AMPs). Using SILAC-labeled bacteria, we determined the accurate limit of 36 

detection and quantification for the gut "dark metaproteome", down to 0.0003% and 37 

0.0044%, respectively, improving previous standards4 by 5,000-fold and enabling 38 

identification of previously undetectable low-abundance taxa. 39 
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uMetaP extended taxonomic changes observed by metagenomics on a transgenic mouse 40 

model of colonic injury. Further, we identified 990 host-regulated proteins and 92 microbiota-41 

specific networks, revealing novel pathways in tissue damage. Orthogonal validation with 42 

Crohn's patient transcriptomic data confirmed the regulation of 490 proteins. Using 43 

additional mouse transcriptomic data, 33 proteins showed consistent alterations across 44 

datasets linked to inflammation, metabolic functions, and mitochondrial activity. Network 45 

analysis highlighted protein hubs influencing tissue injury. We introduced the concept of the 46 

"druggable metaproteome", identifying 204 drug-protein interactions, including current 47 

therapies for inflammatory diseases, and offering resources for drug repurposing. 48 

By integrating the latest LC-MS technology and a new de novo analysis strategy, as well as a 49 

transgenic mouse model of colonic injury, orthogonal validation using patient’s 50 

transcriptomic data, and a detailed drug-gene analysis, we show the potential of uMetaP in 51 

microbiome research. This includes uncovering functional signatures of health and disease 52 

and guiding new therapeutic interventions. 53 
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RESULTS 
uMetap enables novoMP: a novel de novo sequencing strategy improving metaproteomic 54 
database construction 55 
 56 
Our previous work introduced the benefits of Parallel Accumulation Serial Fragmentation 57 

(PASEF) in metaproteomics, including during the construction of a metaproteomic database11. 58 

Remarkably, analysis of the same eight peptide fractions using the new technological 59 

solutions integrated into uMetaP enabled the fragmentation of 4 times more precursor ions 60 

than when using our previous workflow based on a timsTOF Pro mass spectrometer (Figure 61 

1A), resulting in 4 times more identified peptides (129,425 vs. 30,460; Supp. Figure 1A) and a 62 

significant shift towards higher peptide intensities (Supp. Figure 1B). Despite this considerable 63 

improvement, the classical database search identified fewer than 30% of the precursors 64 

fragmented in the timsTOF Ultra mass spectrometer (Figure 1A), leaving most biological data 65 

uncharacterized. We hypothesised that a de novo search strategy, which does not rely on a 66 

target sequence database, could rescue part of this valuable information. However, to our 67 

knowledge, no published de novo algorithms are trained in the 4-dimensional data structure 68 

of PASEF. Moreover, previous studies applying de novo for metaproteomic database 69 

construction lacked methodologies to test the confidence of peptide assignments16. This is 70 

especially critical in metaproteomics due to the immense peptide landscape of these complex 71 

samples17. We constructed novoMP, a novel strategy integrating the first algorithm, to the 72 

best of our knowledge, trained in PASEF data structure, together with a multi-layered quality 73 

control filtering strategy to rigorously select high-confidence de novo peptide-spectrum 74 

matches (PSMs; see Methods for details).  75 

We trained Novor18 using over 1.750,000 PSMs from PASEF data acquired on various timsTOF 76 

platforms (see Methods for details). The evaluation in a human-E.coli-yeast dataset not used 77 

during model training shows how the post-trained model maintains higher precision as recall 78 

increases compared to the pre-training model (Figure 1B; Supp. Figure 1C). These 79 

improvements result in an average of 5-7% gains concerning correct amino acid and peptide 80 

assignments in human, E.coli, and yeast peptides (Supp. Figure 1D). Similar improvements 81 

were found when samples were prepared with various enzymes (Supp. Figure 1E). Next, we 82 

applied this new de novo model to analyse pH-fractionated mouse fecal peptides acquired in 83 

Data-Dependent Acquisition (DDA)-PASEF. As a result of the multi-layered filtering strategy, 84 

unique novoMP peptides and annotated species counts decreased as the filtering steps 85 

progressed (Figure 1C and Supp. Figure 1F-1K). In comparison to taxonomy annotation using 86 

only peptides from classic database searches (DB-search), the integration of de novo peptides 87 

(Combined) improved taxonomic coverage, particularly for archaea, fungi, and viruses (Figure 88 

1D). Of a total of 774 annotated species (Supp. Table 1) from all peptides (DB-search + 89 

uMetaP), only 223 species could have been identified by using solely DB-search peptides (aka. 90 

DB-search alone would have discovered a minimum of three species-specific peptides). 91 

Detailed analysis revealed the gains in taxonomic coverage reached by novoMP. For example, 92 

there is a marked increase in the number of peptides representing the above-mentioned 223 93 
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species when including de novo data (Figure 1F), compared to using DB-search peptides alone 94 

(Figure 1G). Moreover, the combination of peptides from DB-search + novoMP (Combined 95 

strategy) enabled the annotation of 551 additional species, increasing taxonomic coverage 96 

247% (Figure 1E). Applying novoMP to archived DDA-PASEF data from our previous study11, 97 

increased the taxonomic coverage by 139 % (from 89 to 213 species; Supp. Figure 1L). The 98 

bigger gains enabled by novoMP in our new dataset, together with the remarkable taxonomic 99 

overlap among these independent sets of samples (Supp. Figure 1M; uMetaP discovers 90% 100 

of species from our previous study using a timsTOF Pro), demonstrated the benefit of novoMP 101 

to access valuable but otherwise hidden precursor information produced by the latest mass 102 

spectrometry technology. 103 

Unlike DB-search, de novo sequencing does not inherently assign proteins to detected 104 

peptides. Thus, we conducted BLAST+ homology searches against the NCBI RefSeq database, 105 

applying the same pipeline to both novoMP-derived and DB-search-derived peptides. We set 106 

an 80% sequence identity threshold between query sequences and references to exclude low-107 

confidence matches (Figure 1H). This approach retrieved 73,168 and 98,189 protein 108 

sequences for DB-search and novoMP-derived peptides, respectively, with 13,153 shared 109 

between the two (Figure 1I), totaling 158,204 unique protein sequences. Finally, we add 110 

53,502 proteins identified through the classic DB-search against the mouse gut MGnify 111 

catalogue. As a result, we created a carefully curated mouse fecal metaproteomic database 112 

comprising 208,254 microbial protein sequences, which is available to the metaproteomic 113 

community via PRIDE. 114 

In summary, the uMetaP workflow presented here demonstrated the power of the latest 115 

mass spectrometry instrumentation paired with a purpose-built de novo strategy for 116 

database construction, a critical step in metaproteomics. 117 
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 118 
Figure 1: Development and impact of novoMP on metaproteomic database construction. (A) 119 
Comparison of the number of precursor ions fragmented and the resulting identified peptide-120 
spectrum matches between the uMetaP workflow and our previous workflow across eight 121 
high-pH fractions. (B) Precision-recall curves illustrating the performance of the Novor 122 
algorithm on E. coli, H. sapiens, and Yeast datasets before (pre-) and after (post-) training with 123 
PASEF datasets. (C) Reduction in the number of peptides and species identified as filtering 124 
steps progress in the novoMP workflow. (D) Taxonomic coverage comparison of peptides 125 
annotated via the combined peptides (DB-search + novoMP) and DB-search peptides alone 126 
across bacteria, archaea, fungi, and viruses. (E) Venn diagram showing the unique and shared 127 
species identified using the novoMP integrated strategy versus DB-search alone. (F-G) 128 
Distribution of species-specific peptide counts for 223 species shared between Combined 129 
strategies (F) and DB-search (G). (H) Density plot of sequence identity percentages for BLAST+ 130 
homology searches against the NCBI RefSeq database using DB-search peptides and novoMP-131 
derived peptides. A threshold of 80% (black-dotted line) sequence identity was used to filter 132 
high-confidence protein matches. (I) Venn diagram comparing protein sequences identified 133 
by DB-search and novoMP-derived peptides for the database construction.  134 
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 uMetaP powered by DIA-PASEF enhances taxonomic and functional coverage, sensitivity 135 

and quantitative precision. 136 

 137 

Our previous study introduced the benefits of combining Data-Independent Acquisition (DIA)-138 

PASEF with deep neural network-based data analysis for complex metaproteomic samples11. 139 

uMetaP powered by DIA-PASEF increased 3 to 4 times the identifications of microbial and 140 

host peptides and proteins compared to our previous workflow11 (Figure 2A) when comparing 141 

similar conditions. Peptide identifications raised linearly and gradually plateauing at a total of 142 

96,513 peptides (89,128 microbial and 7,385 mouse peptides; averaged across three 143 

replicates) when 25 ng of peptides were injected over a 30-minute gradient. Extending the LC 144 

gradient to 66 minutes further boosted the number of identified peptides and protein groups 145 

to 141,811 and 79,693, respectively (averaged across three replicates with 100ng peptide). 146 

Reflecting improved sensitivity, uMetaP detected an average of 200 microbial and 76 host 147 

protein groups at an ultra-low sample amount of 10 pg (Figure 2A and Supp. Table 2). uMetaP 148 

identified peptides spanning over four orders of magnitude using 25 ng of injected peptides 149 

with a 30-min gradient (Supp. Figure 2A) and showed a remarkable quantitative precision with 150 

more than 84% of peptides exhibiting a coefficient of variation (CV) lower than 0.2 (Supp. 151 

Figure 2A). In total, 210,051 microbial peptides were identified, with 32,400 of these added 152 

by novoMP to the mouse fecal metaproteomic database (novoMP-DB; Figure 2B). 153 

Our approach represents a novel orthogonal strategy for FDR control of novoMP-detected 154 

peptides, validating their confidence. The evaluation of CScore and Posterior Error Probability 155 

(PEP) showed that precursors from the two sources exhibited similar distributions (Figure 2C). 156 

Furthermore, novoMP-DB peptides demonstrated equal or slightly better quantitative 157 

precision compared to database-searched peptides across various sample loadings and 158 

gradient lengths (Supp. Figure 2B).  159 

At the taxonomic level, novoMP-DB peptides contributed up to 92.9% of annotated taxa at 160 

different ranks (Figure 2D). Across the dataset, 825 species were annotated (using 3 species-161 

specific peptides as cut-off), with novoMP-DB peptides enabling the detection of 631 (Figure 162 

2E). This represents a 6 times increase in taxonomic coverage compared to our previous state-163 

of-the-art DIA-PASEF11. Notably, 253 species would not have met the minimum cutoff of three 164 

species-specific peptides without the addition of novoMP-DB peptides, and 114 species were 165 

exclusively identified through unique novoMP-DB peptides (Figure 2E). From the 118,937 166 

identified protein groups (PGs), 47,739 groups include proteins originating from novoMP-DB, 167 

among which 26,149 include proteins uniquely discovered by novoMP-DB (Supp. Figure 2C). 168 

These PGs spanned all 24 functional Clusters of Orthologous Genes (COG) categories, with 169 

minor differences in KEGG pathway counts (Supp. Figure 2D). Detailed functional analysis 170 

showed that proteins unique to novoMP-DB were largely represented in COG categories like 171 

RNA processing (COG-A), chromatin dynamics (COG-B), extracellular structures (COG-W), 172 

nuclear structure (COG-Y), and cytoskeleton (COG-Z) (Figure 2F). Overall, uMetaP enabled the 173 

study of 199 KEEG additional pathways compared to our previous work11. Examining species-174 

to-function links, we demonstrated how de novoMP-DB proteins uniquely revealed 175 175 
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species-KEGG associations from 48 species (Figure 2G). Interestingly, uMetaP uncovered 176 

previously hidden functions by identifying 1,043 proteins (196 proteins originated from 177 

novoMP-DB) of unknown function12 (PUFs). Further, we identified 2,342 small proteins13, 14 178 

(sProt; 321 proteins originated from novoMP-DB), and 581 proteins (86 proteins originated 179 

from novoMP-DB) with predicted antimicrobial peptide sequences15 (AMPs; Supp. Figure 2E). 180 

Altogether, uMetaP powered by DIA-PASEF considerably improves taxonomic and functional 181 

coverage, as well as quantification quality in complex metaproteomics samples, significantly 182 

benefiting the study of previously hidden host-microbial interactions. 183 
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 184 
Figure 2: uMetaP powered by DIA-PASEF enhances metaproteome taxonomic and 185 

functional coverage, sensitivity, and quantitative precision. (A) Number of identified 186 

microbial and host peptides and protein groups using uMetaP powered by DIA-PASEF across 187 
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varying sample amounts and LC gradient lengths. (B) Venn diagram showing the total 188 

microbial peptides identified, including 32,400 additional peptides added by novoMP to the 189 

metaproteomic database (novoMP-DB). (C) Distribution of CScore and Posterior Error 190 

Probability (PEP) values for peptides originated from novoMP-DB (“TRUE") and from DB-191 

search (“FALSE”). (D) Taxonomic contributions of novoMP-DB peptides across ranks (phylum 192 

to species). (E) Venn diagram of species annotated using any type of peptide (Species_all), 193 

species with novoMP-DB peptides assigned (Species_novoMP), annotation meeting the 3-194 

species-specific peptide cut-off due to the addition of novoMP-DB (Species_novoMP-DB_cut-195 

off), and species uniquely annotated with novoMP-DB peptides (Species_novoMP-196 

DB_unique). (F) Functional representation of protein groups mapped to Clusters of 197 

Orthologous Genes (COGs). The percentages of proteins uniquely discovered by novoMP-DB 198 

were shown in green. The white bubble area represents the percentages of functional clusters 199 

discovered by all detected proteins. (G) Species-KEGG associations uniquely revealed by the 200 

addition of novoMP-DB, enabling the identification of 175 unique pathways for 48 species.  201 
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Redefining the detection limit of “dark metaproteome”   202 
 203 
The human gut microbiome harbors an average of 200 bacterial species19, 20 comprising a core 204 

of abundant species present in most individuals2, 3 and a second pool formed by low-abundant 205 

species (more than 50% of the total), underlining the increasingly important inter-individual 206 

variability of microbiome profiles in health and disease. Current metaproteomic approaches 207 

do not achieve sufficient sensitivity to study these low-abundant species4. We hypothesized 208 

the benefits of uMetaP to significantly improve the study of this uncharacterized “dark” 209 

metaproteome. 210 

We set to develop an approach to calculate the real lower limits of detection (LoD) and 211 

quantification (LoQ) by calculating the number of bacterial cells that can be accurately 212 

identified and quantified in a complex microbial sample. To minimize identification 213 

uncertainty, we used stable isotope labeling by amino acids in cell culture (SILAC) for 214 

Ligilactobacillus murinus (L. murinus), a bacterium native to the mouse gut microbiome. DDA-215 

PASEF analysis of the SILAC culture confirmed an average incorporation efficiency of 97.42% 216 

(Supp. Figure 3A; Supp. Table 3). Additionally, we employed Salinibacter ruber (S. ruber) as an 217 

exogenous spiked bacteria (Figure 3A). We observed that the number of detected peptides 218 

and protein groups declined as we decreased the number of SILAC-labeled L. murinus and 219 

unlabeled S. ruber cells spiked into 10 mg of mouse feces (Figure 3A-B; Supp. Figure 3B). After 220 

applying strict filtering criteria for taxonomic identifications (including a non-spiked control; 221 

see Methods), we identified 6 and 20 peptides for L. murinus and S. ruber, respectively, when 222 

spiked 10,000 cells (Figure 3B; Supp. Table 4). Visual inspection of selected spectra confirmed 223 

these identifications (examples in Supp. Figure 3C-D). By extracting precursor ions and 224 

fragments from DIA-PASEF spectra, we determined a reliable LoQ of 1 million L. murinus cells 225 

and 5 million S. ruber cells (examples in Figure 3C-D). The differences in LoQ for each bacteria 226 

possibly reflect differences in bacterial size (Supp. Figure 3E) and protein content. 227 

Species abundance within a microbial community is an important parameter for microbiome 228 

studies. By summing the intensities of species-specific peptides, we showed that uMetaP 229 

abundance assessments are driven by a limited number of species, with just eight species 230 

(excluding spiked L. murinus and S. ruber) accounting for 53.5% of the microbiota biomass 231 

(Figure 3E; Supp. Table 5). Among 115,127 peptides identified in this dataset, 21,457 can be 232 

traced back to the novoMP-DB (Supp. Figure 3F), which contributed to the detection of 233 

species down to 0.006% relative abundance (data not shown). Peptide intensity analysis 234 

indicated that the 10,000 spiked L. murinus and S. ruber cells detected by uMetaP constituted 235 

0.0003% and 0.0159% of the total biomass, respectively (Figure 3F; Supp. Table 5). 236 

Considering the spectral quality of precursor and fragment ions, we confidently quantified 237 

these spiked bacteria, representing 0.0044% for L. murinus and 0.0297% for S. ruber (Figure 238 

3F). Based on genomic estimates (which assume 1 x 1012 bacterial cells per gram of mouse 239 

feces21), we achieved a LoD of 0.0001% (1 cell detected among 1 million) for both species, and 240 

an LoQ of 0.01% and 0.05% for L. murinus and S. ruber, respectively. These results significantly 241 

improved the previously reported limits in metaproteomics4 by up to 5,000-fold and are 242 
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comparable to the deepest profiling efforts using full-length 16S rRNA20. Additionally, 243 

functional annotation of identified protein groups to KEGG pathways diminished below 100 244 

million bacteria and plateaued at 1 million bacteria (Figure 3G). Remarkably, we annotated 245 

85 and 18 functional pathways with as few as 10,000 L. murinus and S. ruber cells, 246 

encompassing a variety of metabolic and biosynthetic pathways. 247 

Our data establish new detection and quantification limits in complex metaproteomic 248 

samples, enabling a more precise definition of individual functional microbiomes. 249 

 250 
Figure 3: Redefining the detection limit of the “dark metaproteome” using uMetaP 251 

workflow. (A) Workflow combining SILAC labelling and spiking of Ligilactobacillus murinus (L. 252 

murinus) and spiking of unlabeled exogenous Salinibacter ruber (S. ruber) into mouse feces. 253 

Each spike-in includes three replicates. (B) Number of peptides (top) and protein groups 254 

(bottom) identified for L. murinus and S. ruber across bacterial cell inputs. Error bars show the 255 

standard deviations across triplicates. (C-D) Representative extracted MS/MS spectra from 256 

complex DIA-PASEF data of peptides from L. murinus (C) and S. ruber (D) to illustrate reliable 257 

limit of quantification (LoQ), in comparison with the 10^8 spike-in and the non-spiked control. 258 

(E) Microbial community biomass composition (10^8 spike-in samples) showing that eight 259 

species (excluding spiked L. murinus and S. ruber) account for 53.5% of the total microbiota 260 

biomass. (F) Biomass percentages for spiked L. murinus and S. ruber cells at 10^4 (LoD), 10^6 261 

(LoQ for L. murinus), and 5 x 10^6 (LoQ for S. ruber) input levels. (G) Number of KEGG 262 

pathways annotated from identified protein groups as bacterial inputs decreased.  263 
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Shedding light on microbial-metabolic circuits underlining tissue injury during intestinal 264 
inflammation in vivo. 265 
 266 
The mutual relationship between the microbiome and the host is essential for maintaining 267 

intestinal homeostasis, and its disruption plays a role in the onset and progression of 268 

diseases, including inflammatory bowel diseases (IBD)22, 23. It has been recently 269 

demonstrated how mitochondrial (MT) perturbation in intestinal epithelial cells (IECs) 270 

causes metabolic injury, a self-autonomous mechanism of tissue wounding associated with 271 

microbial dysbiosis24 and triggers the recurrence of chronic intestinal inflammation25. 272 

Beyond taxonomic associations using shallow shotgun metagenomics, how metabolic 273 

changes in the intestinal epithelium select the growth of certain bacteria and how specific 274 

bacteria interfere with epithelial regeneration are unknown, which precludes understanding 275 

of host-microbiome interactions and defining potential therapeutical targets. We set 276 

uMetaP to the test by investigating the dynamics of microbial-host circuits in recurrent 277 

intestine inflammation in vivo. 278 

To test the role of MT function in epithelial stem cell homeostasis, we took advantage of our 279 

published model of MT dysfunction in the intestinal epithelium, in which the MT chaperone 280 

heat shock protein 60 (Hsp60) is transiently deleted, specifically in mouse IECs (Figure 4A). 281 

This deletion triggered temporary mitochondrial dysfunction, leading to metabolic stress and 282 

transient structural changes in the colonic epithelium similar to the ones observed in patients 283 

suffering from intestinal inflammatory diseases24. We explored the microbiome shifts and the 284 

host functional changes during tissue injury by analyzing the colonic contents from control 285 

(Hsp60fl/fl) and metabolic injured (Hsp60Δ/ΔIEC) mice at two-time points after tamoxifen 286 

cessation: day 0 (D0) which corresponds to Hsp60 complete loss but there are no apparent 287 

histological aberrations, and D8 corresponding to the peak of metabolic injury24. 288 

Overall, peptide and protein identifications revealed distinct proteomic profiles between the 289 

two genotypes, with both host and microbiome IDs decreasing at D8 uniquely in the metabolic 290 

injured model (Supp. Figure 4A). uMetaP detected more than 300 species in all four 291 

experimental groups, significantly increasing the taxonomic coverage reached by 16S rRNA 292 

and shallow shotgun metagenomic sequencing on the same samples (Supp. Figure 4B). The 293 

metabolic injury phenotype was associated with significant changes in microbiota richness 294 

(Figure 4B) and community structure (β-diversity; Figure 4C). Differential abundance analysis 295 

identified 16 significantly altered genera across the four conditions, with 10 genera, including 296 

Bacteroides, Anaerotruncus, and Parabacteroides, showing increased abundance during 297 

injury, while Lactobacillus, for instance, decreased at D8 compared to the other groups 298 

(Figure 4D; Supp. Figure 4C), reflecting microbiome taxonomic adaptation to IEC dysfunction. 299 

At the species level, 25 and 18 differentially abundant species were observed at D0 and D8, 300 

respectively, in response to metabolic injury (fl/fl compared to Δ/ΔIEC; Supp. Figure 4D-4E). 301 

Four species were commonly regulated at both time points, with Bacteroides caecimuris 302 

uniquely showing increased abundance from D0 on already and more accentuated at D8 303 

(Figure 4E), suggesting their potential role in modulating colon metabolic injury. Remarkably, 304 
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the above-reported taxonomic changes discovered by uMetaP mirrored (e.g., β-diversity, an 305 

increase of Bacteroides caecimuris) and extended (previously unreported changes in several 306 

genera and species) the metagenomic findings on these same samples24. 307 

Functional analysis indicated 43 and 92 significantly regulated species-KEGG pathways at D0 308 

and D8, respectively, with only three pathways in common (Figure 4F and Supp. Table 6), 309 

underscoring unique functional shifts within the microbial community in response to injury. 310 

Notably, while Bacteroides caecimuris increased in abundance at both time points, it only 311 

showed significant KEGG pathway alterations at D8 (15 pathways; Figure 4G and Supp. Figure 312 

4F). Detailed analysis revealed that Bacteroides caecimuris was the only species showing a 313 

significant alteration of two pathways at D8 - Carbon fixation by Calvin cycle and Biosynthesis 314 

of Ansamycins (Figure 4G and Supp. Table 6), offering mechanistic hints on how this bacterium 315 

might modulate colonic microenvironments to dominate over other taxa during metabolic 316 

injury24. 317 

These data demonstrate the benefits of uMetaP, beyond genomic findings, to shed light on 318 

taxonomical and functional alterations underlying intestinal tissue injury in vivo.  319 
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 320 
Figure 4: uMetaP sheds light on microbial-metabolic circuits underlining tissue injury during 321 

intestinal inflammation in vivo. (A) Schematic of the experimental design showing the 322 

strategy for the transient deletion of mitochondrial heat shock protein 60 (Hsp60) in mouse 323 

intestinal epithelial cells (IECs) using tamoxifen induction. Colonic contents from control 324 

(Hsp60fl/fl) and injured (Hsp60Δ/ΔIEC) mice were analyzed at day 0 (D0) and day 8 (D8) after the 325 

tamoxifen diet. (B) Microbial richness (alpha-diversity) in the 4 experimental groups. (C) β-326 

diversity showing distinct microbial community structures between control and injured mice 327 

across D0 and D8. (D) Dendrogram shows the relative abundance of 16 genera significantly 328 

changed in response to metabolic injury discovered by uMetaP. The significance level was set 329 

with an adjusted p value ≤ 0.05 (Benjamini-Hochberg) after Kruskal-Wallis test. (E) Differential 330 

abundance of 4 commonly regulated species at D0 and D8. (F) Overlap of significantly 331 

regulated (T-test, adjusted p value ≤ 0.05) species-KEGG pathways at D0 and D8. (G) UpSet 332 

plot showing uniqueness and shareness of significantly regulated KEGG pathways among 23 333 

species at D8.  334 
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Defining the druggable gut metaproteome: Mining the host proteome offers potential 335 
therapeutic targets in human intestinal inflammatory diseases 336 
 337 
Similar to the druggable genome in cancer research26, where genes are prioritized for 338 

therapeutic targeting, mining the gut metaproteome could allow researchers to identify 339 

proteins that influence host-microbiota interactions during disease states as prime candidates 340 

for therapeutic intervention, particularly in inflammatory bowel diseases. However, the 341 

concept of the druggable gut metaproteome remains unexplored. We set out a strategy to 342 

test the translational potential of uMetaP characterizing the proteome changes of the host 343 

during intestinal tissue injury and setting up an orthogonal inter-species validation strategy 344 

with Chron’s disease patient data.  345 

Host analysis revealed a higher number of significantly regulated proteins in the metabolic 346 

injured model at D8 than at D0 (990 and 144, Figure 5A and Supp. Figure 5A, respectively). 347 

Consistent with the observed functional shifts in the microbial community (Figure 4F), there 348 

was minimal overlap in enriched host functions between D0 (Supp. Figure 5B) and D8 (Figure 349 

5B, Supp. Table 7). In line with the tissue injury phenotype, at D8, we found an enrichment in 350 

functional pathways related to tissue homeostasis and epithelial development. Moreover, 351 

functions associated with cytokine regulation and the ERK1/2 cascade highlighted the pro-352 

inflammatory environment occurring during tissue injury. We obtained orthogonal validation 353 

of the metaproteomic findings by comparison with transcriptome data obtained from 354 

mucosal biopsies of Crohn’s Disease patients27 (CD; 343 samples from 204 patients originating 355 

from inflamed ileum or M0I, and the non-inflamed ileal margin or M0M). We found 490 356 

significantly regulated proteins at D8 presented in the list of regulated human transcripts 357 

(Supp. Table 8), where several proteins (e.g. RELA28, NOS229, and ITGAM30) are reported to be 358 

linked to intestinal inflammatory diseases in humans. 359 

We set an integrative analysis workflow to prioritize interesting proteins, highlighting their 360 

biological importance, therapeutic potential, and available strategies for targeting intestinal 361 

inflammatory diseases. To further narrow the list of 490 regulated proteins, we detected 97 362 

proteins represented among the list of transcripts expressed at D8 with tissue injury in 363 

another set of mouse colonic samples24 (Supp. Table 8). Finally, by selecting candidates with 364 

a similar directionality of regulation (up- or down-regulated) in all three datasets (mouse 365 

proteomics, human transcriptomics, and mouse transcriptomics), we limited the list to 33 366 

proteins upon tissue injury (Figure 5C). Functional annotation analysis highlighted biological 367 

processes with roles in specific metabolic pathways, in molecular functions focused on 368 

oxidoreductase activity, and in cellular components related to the mitochondria (Supp. Figure 369 

5C and Supp. Table 9). Protein interaction network analyses showed differential connectivity 370 

for down- and up-regulated proteins, with specific nodes playing key roles as "hubs" in the 371 

network controlling the flow of information during tissue injury, as shown by their higher 372 

betweenness centrality (Figure 5D). Notably, several proteins with the bigger centrality scores 373 

recapitulate known biology underlying inflammatory intestinal diseases in humans (e.g., 374 

Rela28, Nos229, and Itgam30). We defined the druggable metaproteome by investigating drug-375 
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gene interactions, resulting in 204 interactions corresponding to 187 drugs (Supp. Table 10) 376 

for 20 out of the 33 genes/proteins. Interestingly, 77 of the drugs found are approved for 377 

several indications associated with human inflammatory diseases, including a current 378 

treatment for Crohn’s disease (e.g., Natalizumab®, targeting ITGB1; Figure 5E), an anti-379 

inflammatory drug for IBD treatment (e.g., prednisone, targeting ITGB2; Figure 5E), and other 380 

target genes/proteins with high centrality in the interaction network (e.g., Hydrocortisone 381 

targeting ITGAM; Figure 5E). Moreover, we revealed another set of 57 drugs approved for 382 

other indications (Figure 5E; e.g., rhil-11 and clarithromycin), as well as 110 not approved 383 

compounds (Supp. Table 10). 384 

Our data show the translational potential of uMetaP for hypothesis generation and 385 

prioritization of target proteins for review by clinical experts to aid in treatment decision-386 

making. 387 

 388 
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Figure 5: Mining host proteome changes during intestinal tissue injury defines the 389 

“druggable metaproteome” and reveals potential therapeutic targets for inflammatory 390 

diseases. (A) Volcano plot showing the log2 fold changes of significantly regulated proteins 391 

(Δ/ΔIEC_D8 vs. fl/fl_D8). (B) Functional enrichment analysis of significantly regulated proteins 392 

at D8 highlights pathways related to tissue homeostasis, epithelial development, cytokine 393 

regulation, and the pro-inflammatory ERK1/2 cascade. Gene counts and adjusted p-values are 394 

visualized by size and color, respectively. (C) Heatmap showing the directionality of log2 fold 395 

changes for 33 proteins consistently regulated in mouse metaproteomics (colonic contents), 396 

mouse targeted RNA analysis (colon tissue), and human transcriptomics datasets from 397 

Crohn’s patients (ileum biopsy). (D) Protein-protein interaction network analysis of 33 398 

proteins. Node shapes indicate whether the target protein has approved drugs based on drug-399 

gene interaction analysis. (E) Examples of drug-gene interaction network of ITGAM, ITGB2, 400 

RELA, IMPDH2, NOS2, and ITGB1. Node colors represent therapeutic categories (e.g., anti-401 

inflammatory, immunosuppressant), and the edge types indicate the drug effects (inhibitory 402 

or unknown).403 
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DISCUSSION 
Metaproteomics holds significant potential to advance microbiome research. However, 404 

current methods struggle to achieve high sensitivity, deep protein profiling, and quantitative 405 

accuracy and precision. As a result, many medium- and low-abundance taxa identified by 406 

widely used genomic methods, along with their functional repertoires, are often not 407 

characterized. In uMetaP, we combined the latest LC-MS technology with a new de novo 408 

strategy to address these limitations. We demonstrated the benefits of uMetaP in meaningful 409 

biological scenarios using an in vivo mouse model of metabolic injury and by benchmarking 410 

our findings against human transcriptomic data from Crohn’s patients. The translational 411 

potential of our data was demonstrated through a detailed drug-gene analysis, enabling 412 

hypothesis-driven drug repurposing efforts. 413 

In recent years, metaproteomics has advanced by integrating sophisticated mass 414 

spectrometry platforms11, 31, superior data acquisition methods (e.g., DIA-PASEF11), and 415 

machine-learning-based data analysis11, 32. Nonetheless, metaproteomic studies are still 416 

limited by database (DB) construction, with classic approaches relying on reference 417 

catalogues and database-search workflows, which capture only a small fraction of proteomic 418 

diversity within complex samples. Our data show that around 70% of the spectral information 419 

acquired by uMetaP was not utilized. Metaproteomics would greatly benefit from de novo 420 

sequencing solutions. However, the spectral complexity of these samples and the lack of 421 

methods for controlling de novo peptide confidence limit its application16. 422 

We addressed this challenge by developing novoMP, a de novo strategy tailored for 423 

metaproteomics DB construction. Compared to previous studies16, novoMP is unique in three 424 

key aspects. First, it is the first de novo algorithm trained on the PASEF data structure, 425 

obtained from various timsTOF platforms, different species, and using different cleavage 426 

enzymes. Second, it implements a multi-layered quality control pipeline to select high-427 

confidence de novo PSMs rigorously. Third, it offers a novel orthogonal FDR validation 428 

method using DIA-PASEF, demonstrating equivalent confidence in novoMP-DB peptides 429 

compared to peptides obtained through classical database search workflows. 430 

We significantly expanded the taxonomic and functional representation in metaproteomic 431 

databases by combining the depth, sensitivity, and spectral quality of uMetaP with novoMP. 432 

Interestingly, the DIA-PASEF analysis with solely novoMP-DB covers more than 99% of the 433 

COG and KKEG pathways (Supp. Figure 2D), strongly suggesting the possibility of reaching 434 

maximum functional coverage without the need for metaproteomic DB construction in future 435 

studies. Moreover, the benefits of novoMP in our previously published DDA-PASEF data could 436 

be extended to PASEF datasets acquired in previous metaproteomic studies32, 33, 34. We 437 

provide the metaproteomic community with a roadmap for increasing confidence in de novo 438 

solutions and offer the most extensive mouse metaproteomic DB composed of 208,254 439 

proteins, representing 774 microbial species and 447 KEGG pathways. 440 

Combined with DIA-PASEF, uMetaP surpasses current proteotyping standards4, the most 441 

optimistic performance forecast in the field35, and a preliminary evaluation of the Orbitrap 442 
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Astral mass spectrometer31. The fast analysis times and the low variability reached make 443 

uMetaP a promising tool for large-scale metaproteomic studies. Integrating novoMP into DB 444 

construction enabled the identification of an additional  28% of proteins, and 80% of taxa 445 

(Supp. Figure 2C; Figure 2E). Beyond identification, uMetaP demonstrates exceptional 446 

precision, reliability in quantification, and ultra-high sensitivity. These benefits were 447 

demonstrated by establishing the first reliable LLoD and LLoQ in a complex metaproteome. 448 

Unlike previous approaches4, we accounted for sample preparation losses by using a SILAC-449 

labeled bacterium (L. murinus) and an exogenous bacterium (S. ruber). As a result, uMetaP 450 

can detect a single bacterium in a theoretical background of 1 million, representing a 5,000-451 

fold improvement4. Importantly, MS2 spectra showed a shift in the reliable quantification 452 

limit for L. murinus and S. ruber, which is likely applicable across metaproteomes and 453 

highlights the importance of rigorous spectral quality control for accurate peptide 454 

quantification. Establishing LLoD and LLoQ for the gut "dark metaproteome" has important 455 

implications. By lowering the thresholds for reliably identifying and quantifying bacterial 456 

species and their protein products, researchers can better capture the functional 457 

contributions of often-overlooked low-abundance species. This is critical for fields that 458 

require ultra-sensitivity - from marine metaproteomics36 to clinical metaproteomics, where 459 

subtle but clinically important changes in pathogenic microorganisms demand early 460 

detection. Moreover, reliable quantification of medium- and low-abundance species will help 461 

answer key questions about individualized and healthy microbiome profiles2, 3. 462 

Our results on a transgenic mouse model of colonic tissue injury demonstrated the potential 463 

of uMetaP for discovering novel host-microbiome interactions in a relevant in vivo context. In 464 

addition to mirroring the taxonomic findings reported using genomic methods24, uMetaP 465 

offers greater sensitivity, allowing earlier detection of taxonomic and functional alterations 466 

underlying causal disease mechanisms. Urbauer et al demonstrated that Bacteroides 467 

caecimuris increases in abundance during metabolic injury at day 8 after the start of tissue 468 

injury and that mono-colonization of germ-free Hsp60 knock-out mice with B. caecimuris is 469 

sufficient to recapitulate the disease phenotype. Similarly, our data showed an increase in 470 

Bacteroides caecimuris at day 8. Notably, uMetaP also detected this increase during the first 471 

24 hours after tamoxifen cessation. This is a significant improvement in the temporal 472 

sensitivity for detecting taxonomic changes compared to genomic and 473 

immunohistochemistry methods. Moreover, we extended the previously known dysbiosis 474 

signature by detecting significant abundance changes in additional bacterial species. 475 

Bacteroides species are known to adapt well to inflammatory and stressed conditions37, 476 

potentially explaining the observed selective expansion in response to colonic injury. 477 

However, the mechanisms leading to this selective advantage remain unknown. Our 478 

functional data provide plausible mechanisms by detailing metabolic reprogramming during 479 

disease progression in vivo. We identified B. caecimuris as the bacterial species with the most 480 

KEGG pathways altered at day 8. Notably, two altered KEGG pathways were unique to this 481 

species: carbon fixation by the Calvin cycle and biosynthesis of ansamycins. The simultaneous 482 

upregulation of these pathways may provide a competitive advantage in the gut microbiome 483 
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for B. caecimuris, especially in the context of mitochondrial dysfunction in the intestinal 484 

epithelium. On the one hand, the impaired mitochondrial function caused by the Hsp60 485 

mutation38 could lead to reduced CO₂ production due to decreased TCA cycle activity. 486 

Upregulating carbon fixation via the Calvin cycle equips the bacteria with greater metabolic 487 

flexibility, allowing them to utilize even small amounts of CO₂, which could provide an 488 

advantage over competitors. On the other hand, ansamycins, such as rifamycins, are 489 

antibiotics produced by certain bacteria39. In the disrupted gut environment caused by Hsp60 490 

deletion, the selective elimination of sensitive competitors could allow the ansamycin-491 

producing bacteria to dominate. Interestingly, Bacteroides species are not primary producers 492 

of ansamycins40. Our data discovered specific metabolic adaptation by Bacteroides 493 

caecimuris, potentially contributing to its expansion during tissue injury as detected by 494 

metagenomics24 and uMetaP. 495 

Beyond classical functional analysis of host proteins, we explored the translational potential 496 

of our findings. We introduced and explored the concept of a “druggable metaproteome”: 497 

The collection of host and microbiota proteins within a given environment that possess the 498 

structural and functional properties necessary to be targeted by pharmaceutical agents. This 499 

concept supports drug discovery and repurposing efforts. The orthogonal inter-species 500 

validation with transcriptomic data from Crohn's patient biopsies27 validated changes in over 501 

400 mouse proteins. This underscores the unique strength of metaproteomics as an -omic 502 

technique for detecting functional changes in host physiology. To prioritize proteins for future 503 

studies and identify potential therapeutic strategies for intestinal inflammatory diseases, we 504 

combined functional, molecular network, and drug-gene interaction analyses. We identified 505 

more than 200 potential drug-protein interactions, including immune-suppressants used in 506 

Crohn's disease (e.g., natalizumab), anti-inflammatory drugs for IBD treatment (e.g., 507 

prednisone), and approved drugs for other uses. Follow-up studies using pre-clinical mouse 508 

models or human volunteers are needed to test data-driven hypotheses suggesting specific 509 

drug repurposing or combinatorial treatments. 510 

By integrating cutting-edge LC-MS technology, developing a novel de novo strategy, testing 511 

these advancements on an in vivo disease model, and introducing the concept of the 512 

“druggable metaproteome,” our study advances metaproteomics, highlighting its potential in 513 

microbiome research, particularly in unraveling host-microbiome interactions and their 514 

crucial roles in health and disease. 515 
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MATERIAL AND METHODS 
Reagents 516 

All reagents were purchased from Sigma-Aldrich (St. Louis, Missouri) if not mentioned 517 

otherwise. Acetonitrile (ACN) and formic acid (FA) were purchased from Fisher Scientific 518 

(Hampton, New Hampshire; both FA and ACN were liquid chromatography-mass 519 

spectrometry (LC-MS) grade). LC-MS grade water from Sigma-Aldrich was used for all 520 

solutions. Protease inhibitor (Complete Ultra Tablets Mini) was purchased from Roche, Basel, 521 

Switzerland. 522 

Animals and housing conditions 523 

In-house bred C57BL/6J mice were used for data presented in Figures 1-3. Housing and 524 

operation of mice were carried out with the approval of the University of Vienna animal care 525 

and use committee (license number 2021-0.138.925). All mice used in this study were group-526 

housed in individually-ventilated cages in a 12-hour light/dark cycle in the animal facility with 527 

water and food ad libitum.  528 

Mice used in the in vivo experiments (Figure 4 and Figure 5) were only male animals. Details 529 

of the animal models can be found in our previous study24. Briefly, Hsp60flox/flox mice and 530 

Hsp60flox/flox x VillinCreERT2-Tg mice were generated as described previously41 to create IEC-531 

specific Hsp60 knockout mice via tamoxifen induction (Hsp60Δ/ΔIEC). For conditional Hsp60 532 

deletion,  Hsp60flox/flox x VillinCreERT2-Tg mice and appropriate control mice were kept on 533 

phytoestrogen-reduced diet 1005 (V1154-300, Ssniff) for four weeks under SPF conditions. 534 

Afterwards, mice received 400mg tamoxifen citrate per kg chow feed (CreActive T400 (10mm, 535 

Rad), Genobios) ad libitum for 7 days. After the induction phase, tamoxifen diet was replaced 536 

with the phytoestrogen-reduced diet. During and after the induction phase, mice were 537 

monitored daily and aborted when a combined score considering weight loss, changes in stool 538 

consistency, general behavior, and general state of health was reached. Animals were 539 

sacrificed at the indicated time points. All mice and their respective genotypes were 540 

generated and maintained on an in-house crossing of C57Bl/6N and C57Bl/6J background. All 541 

mice were housed under specific pathogen-free (SPF) conditions according to the criteria of 542 

the Federation for Laboratory Animal Science Associations (FELASA) (12-hour light/dark cycles 543 

at 24–26°C) in the mouse facility at the Technical University of Munich (School of Life Sciences 544 

Weihenstephan). All mice received a standard diet (autoclaved V1124-300, Ssniff) ad libitum, 545 

autoclaved water and were sacrificed by CO2 or isoflurane.     546 

Protein extraction and SP3-assisted protein digestion for metaproteomics analysis 547 

The procedures from fecal collection to final peptide preparation were performed as 548 

previously described11.   549 

High pH reversed-phase fractionation of pooled peptides 550 

The peptide fractionation kit was purchased from Fisher Scientific (Cat. 84868). A total of 40 551 

µg pooled fecal peptides were processed according manufactures instruction. Eight peptide 552 

factions were dried using vacuum centrifugation and then re-suspended in 30 µL of MS-grade 553 

water. The peptide concentration was measured in duplicate using NanoPhotometer N60 554 
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(Implen, Munich, Germany) at 205 nm. Peptide samples were acidified with formic acid to a 555 

final concentration of 0.1% and were stored at -20°C until LC-MS/MS analysis.  556 

Liquid chromatography-mass spectrometry configurations 557 

Nanoflow reversed-phase liquid chromatography (Nano-RPLC) was performed on NanoElute1 558 

and NanoElute2 systems (Bruker Daltonik, Bremen, Germany) coupled with timsTOF Pro and 559 

timsTOF Ultra (Bruker Daltonik, Bremen, Germany) via CaptiveSpray ion source, respectively. 560 

Mobile solvent A consisted of 100% water containing 0.1% FA and mobile phase B of 100% 561 

acetonitrile containing 0.1% FA. 562 

Data dependent acquisition (DDA-PASEF) of fractionated peptides on timsTOF Ultra and 563 

timsTOF Pro 564 

Twenty-nanograms of each peptide fraction were loaded on an AuroraTM ULTIMATE column 565 

(25 cm x 75 µm) packed with 1.6 µm C18 particles (IonOpticks, Fitzroy, Australia) with a total 566 

gradient time of 66 minutes. The mobile phase B was linearly increased from 5 to 23% in 56 567 

minutes with a flowrate of 0.25 µL/min, followed by another linear increase to 35% within 4 568 

minutes and a steep increase to 90% in 1 minute. The mobile phase B was maintained at 90% 569 

for the last 5 minutes with a flowrate increase from 0.25 µL/min to 0.35 µL/min. On both 570 

timsTOF Ultra and timsTOF Pro, the TIMS analyzer was operated in a 100% duty cycle with 571 

equal accumulation and ramp times of 166 ms each. Specifically, 5 PASEF scans were set per 572 

acquisition cycle (cycle time of 1.03 s) with ion mobility range from 0.7 to 1.3 (1/k0). The 573 

target intensity and intensity threshold were set to 14000 and 500 respectively. Dynamic 574 

exclusion was applied for 0.4 minutes. Ions with m/z between 100 and 1700 were recorded 575 

in the mass spectrum. Collision energies were dependent on ion mobility values with a linear 576 

increase in collision energy from 1/K0 = 0.6 Vs/cm² at 20 eV to 1/K0 = 1.6 Vs/cm² at 59 eV. 577 

The TIMS analyzer was operated in 100% duty cycle with 100 ms defined for accumulation 578 

and ramp time. Ten PASEF scans were set per acquisition cycle (cycle time of 1.17 s) with ion 579 

mobility range from 0.65 to 1.45 (1/k0). The target intensity and intensity threshold were set 580 

to 10000 and 1750 respectively.  581 

Data independent acquisition (DIA-PASEF) on timsTOF Ultra 582 

Peptides were loaded onto an AuroraTM ULTIMATE column (25 cm x 75 µm) packed with 1.6 583 

µm C18 particles (IonOpticks, Fitzroy, Australia) with a total gradient time of either 30 minutes 584 

or 66 minutes on a NanoElute2 system in triplicates. In the 30-min separation, the mobile 585 

phase B was linearly increased from 5 to 23% in 18 minutes with a flowrate of 0.25 µL/min, 586 

followed by another linear increase to 35% within 4 minutes and a steep increase to 90% in 2 587 

minutes. The mobile phase B was maintained at 90% for the last 4 minutes with a flowrate 588 

increase from 0.25 µL/min to 0.35 µL/min. The composition of mobile phase B over the 66-589 

min separation was the same as described above for the fractionated peptide samples. For 590 

the results presented in Figure 2, precursors with m/z between 400 and 1000 were defined 591 

in 8 scans (3 quadrupole switches per scan) containing 24 ion mobility steps in an ion mobility 592 

range of 0.64 – 1.45 (1/k0) with fixed isolation window of 25 Th in each step. The acquisition 593 

time of each DIA-PASEF scan was set to 100 ms, which led to a total cycle time of around 0.95 594 

sec. For results presented in Figure 3, 25ng peptides were separated on the NanoElute 2 595 
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system with a 30-min gradient. Precursors with m/z between 350 and 800 were defined in 6 596 

scans (3 quadrupole switches per scan) containing 18 ion mobility steps in an ion mobility 597 

range of 0.64 – 1.2 (1/k0) with fixed isolation window of 25 Th in each step. The acquisition 598 

time of each DIA-PASEF scan was set to 100 ms, which led to a total cycle time of around 0.74 599 

sec. For data presented in Figure4-5, 50 ng peptides were separated on the NanoElute 2 600 

system with a 66-min gradient. Precursors with m/z between 350 and 1150 were defined in 601 

13 scans containing 32 ion mobility steps in an ion mobility range of 0.65 – 1.35 (1/k0) with 602 

fixed isolation window of 25 Th in each step. The acquisition time of each DIA-PASEF scan was 603 

set to 100 ms, which led to a total cycle time of around 1.48 sec.   604 

DDA-PASEF data processing 605 

Fractionated data generated using timsTOF Ultra and timsTOF Pro were separately submitted 606 

to MSfragger42 (Version 4.0) integrated in FragPipe computational platform (Version 21.1), 607 

searching against the MGnify mouse gut protein catalogue v1.0 608 

(https://www.ebi.ac.uk/metagenomics/genome-catalogues/mouse-gut-v1-0, referred as 609 

PD1). The decoy database was generated with reversed sequences. Trypsin was specified with 610 

a maximum of two missed cleavages allowed. The search included variable modifications of 611 

methionine oxidation and N-terminal acetylation and a fixed modification of 612 

carbamidomethyl on cysteine. The mass tolerances of 10ppm and 20 ppm were set for 613 

precursor and fragment, respectively. Peptide length was set to 7 to 50 amino acids with a 614 

mass range from 500 to 5000 Da. The remaining parameters were kept as default settings. 615 

During the validation, MSBooster (Version 1.1.28) was used for rescoring and Percolator43 616 

(version 3.6.4, default parameters) was used for PSM validation. FDR level was set to 1% for 617 

PSM, peptide and protein. The identified proteins from the search formed a sample-specific 618 

protein database (PD2) containing 53,502 protein sequences. For assessing the labelling 619 

efficiency of L. murinus, the data was searched against the standard proteome of L. murinus 620 

downloaded from Uniprot (PD3, https://www.uniprot.org/proteomes/UP000051612, 621 

accessed on 2023-07-19) containing 1,971 protein sequences. The rest parameters were kept 622 

the same in MSfragger as aforementioned.  623 

Bacterial culture of L. murinus and S. ruber 624 

Ligillacotobacillus murinus (DSM 20452, L. murinus) and Salinibacter ruber (DSM 13855, S. 625 

ruber) were purchased from DSMZ (Braunschweig, Germany).  All culture media were 626 

autoclaved right after the preparation. L. murinus was activated in 5 mL MRS medium 627 

(CARLROTH, Karlsruhe, Germany; prepared according to the manufacturer’s instructions) and 628 

incubated for 24 hours at 37 °C with 220 rpm agitation. At the end of this incubation period, 629 

1 mL of the L. murinus culture was taken and centrifuged at 3200 g for 5 minutes at 4 °C. The 630 

supernatant was carefully removed, and the bacterial pellet was gently resuspended in 5 mL 631 

SILAC-heavy medium (Glucose 10 g/L, KH2PO4 3 g/L, K2HPO4 3 g/L, sodium acetate 5 g/L, 632 

ammonium citrate dibasic 1 g/L, MgSO4·7H2O 0.2 g/L, MnSO4·4H2O 0.05 g/L, Tween-80 1 g/L, 633 

L-alanine 0.05 g/L, L-arginine-HCl (13C6, 15N4; Fischer Scientific) 0.05 g/L, L-asparagine 0.1 g/L, 634 

L-aspartic acid 0.1 g/L, L-cysteine 0.2 g/L, L-glutamine 0.1 g/L, L-glutamic acid 0.1 g/L, glycine 635 

0.05 g/L, L-histidine 0.05 g/L, L-isoleucine 0.05 g/L, L-leucine 0.05 g/L, L-lysine-2HCl (13C6, 636 
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15N2; Fischer Scientific) 0.05 g/L, L-methionine 0.05 g/L, L-phenylalanine 0.05 g/L, L-proline 637 

0.05 g/L, L-serine 0.05 g/L, L-threonine 0.05 g/L, L-tryptophan 0.05 g/L, L-tyrosine 0.05 g/L, L-638 

valine 0.05 g/L, uracil 0.01 g/L, guanine 0.01 g/L, adenine 0.01 g/L, xanthine 0.01 g/L, biotin 639 

0.01 g/, Vitamin Solution 2% (v/v)). The heavy-medium culture was incubated at 37 °C with 640 

220 rpm agitation for 24 hours. Bacterial growth was monitored with spectrophotometric 641 

measurements (Eppendorf, Hamburg, Germany) at an optical density of 600 nm (OD600). An 642 

OD600 above 0.8 was aimed to ensure suitable growth conditions. For daily passage, 500 643 

microliters of L. murinus culture were taken and transferred to another 5 mL SILAC-heavy 644 

medium. The labelling efficiency was evaluated on timsTOF Pro after 10 passages in heavy-645 

medium culture. S. ruber was cultured in 5 mL DMSZ-936 medium according to the 646 

recommendation (https://mediadive.dsmz.de/medium/936) at 37 °C with 220 rpm agitation. 647 

The duration between passages for S. ruber was around 7 days due to its slow growth. For 648 

enlarged culture, 1 mL/each of L. murinus and S. ruber cultures were transferred to 30 mL 649 

mediums, respectively. At the end of cultivation, 2 mL bacteria aliquots were made and 650 

pelleted at 3200 g for 5 minutes at 4 °C, and one of the aliquots was resuspended in 2 mL of 651 

either pre-chilled PBS (L. murinus) or DSMZ-936 medium (S. ruber). The resuspended bacteria 652 

were further serial diluted (2-50 times dilution) with either PBS (L. murinus) or DSMZ-936 653 

medium (S. ruber) for bacteria counting using QUANTOM Tx Microbial Cell Counter (BioCat, 654 

Heidelberg, Germany) according to the procedures supplied with the device. The rest of the 655 

aliquots were snap-frozen in liquid nitrogen and stored at -80°C until further use.   656 

L. murinus and S. ruber Spike-in experiment 657 

Counted L. murinus and S. ruber stocks were resuspended and diluted in pre-chilled PBS to 658 

reach various numbers (ranging from 1 x 104 to 1 x 109) in triplicates. The same number of L. 659 

murinus and S. ruber were mixed with 10 mg of mouse feces and subjected to protein 660 

extraction together (as previously described11). To ensure a consistent spike-in background, 661 

the fecal sample used here was collected and pooled from the same mouse in two consecutive 662 

days at the same hour. The resulting peptide samples were analyzed on the timsTOF Ultra in 663 

a 30-min gradient as described above with 25 ng of peptide per sample. The workflow is 664 

illustrated in Figure 3A.  665 

Labelling efficiency check for L. murinus 666 

The labeling efficiency was checked by analyzing the heavy-labeled culture of L. murinus in 667 

DDA-PASEF mode, and the data were searched against its reference proteome (PD3, 668 

https://www.uniprot.org/proteomes/UP000051612, accessed on 2023-07-19) in Fragpipe 669 

with arginine (+10) and lysine (+8) as additional variable modifications. As a result, a total of 670 

60,485 PSMs were identified (1% FDR), corresponding to 12,852 unique stripped peptide 671 

sequences were identified. In cases where multiple PSMs were assigned to the same peptide, 672 

only the most intense PSMs of one peptide was kept for both labeled and non-labeled forms 673 

if the latter was co-identified. If the peptide was identified only in either the heavy- or light-674 

labeled form, the missing intensities were assigned a value of 1 to apply the following formula 675 

(doi:/10.1016/j.jprot.2018.12.025) for each peptide to calculate the labelling efficiency: 676 
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Peptide labeling efficiency = (Intensity_Heavy / (Intensity_Heavy + Intensity_Light)) x 100. The 677 

average of calculated efficiency (97.42%) for all peptides was presented in the study.  678 

Training of Novor algorithm with PASEF datasets and performance evaluation 679 

In order to obtain a robust tool for de novo sequencing using 4-dimention PASEF data, a 680 

custom version of Novor18 (BPS-Novor) was generated by training Novor’s decision tree-based 681 

scoring functions on over 1, 750,000 PSMs acquired in PASEF mode from a variety of timsTOF 682 

instruments. This training dataset included experiments with fixed collision energy 683 

measurements of deeply fractionated (a total of 60 high-pH offline fractions) peptide samples 684 

digested with GluC, Pepsin, Elastase, Chymotrypsin, and Trypsin.  The ground truth data was 685 

taken from ProLuCID-GPU44 database search results filtered with 1% FDR with DTASelect45 at 686 

PSM level.  687 

To evaluate the performance of the newly trained BPS-Novor, a publicly available mixed 688 

species (H. sapiens, Yeast, E.coli) dataset46 (ProteomeXchange ID: PXD014777) excluded in 689 

the training phase was used to determine the accuracy of the model. In addition, the 690 

performance of BPS-Novor was validated against K562 cell lysates digested with non-tryptic 691 

enzymes, specifically Elastase, Pepsin, GluC, and Chymotrypsin to ensure accuracy with 692 

mimicked non proteotypic peptides. These samples were analyzed on a 35 minute gradient 693 

using an EASY-nLC (Thermo Fisher) and a timsTOF Pro instrument. The precision and recall 694 

values were calculated as previously described. 695 

de novo sequencing of DDA-PASEF data 696 

Fractionated data were submitted to BPS-Novor intergrated in ProteoScape (Bruker Daltonik, 697 

Bremen, Germany) for de novo sequencing. The mass tolerances for precursors and 698 

fragments were set to 20 ppm and 0.02 Da, respectively. Tryptic peptides with a maximum of 699 

two missed cleavages were allowed. Carbamidomethyl was set as a fixed modification on 700 

cysteine, and methionine oxidation and N-terminal acetylation were set as variable 701 

modifications. A maximum of two variable modifications per peptide was allowed. In addition, 702 

only the top candidate sequence per spectrum was exported in the output.     703 

Multi-tier filtering of de novo sequenced PSMs 704 

The de novo sequencing outputs were imported into R and subjected to the following six 705 

filters sequentially. 1) De novo score: The first filter was based on the Novor de novo 706 

sequencing software, applying a score threshold of 65. 2) Charge state: We excluded PSMs 707 

with a charge state of 1 due to their less reliable fragmentation patterns. 3) Peptide length: 708 

we removed peptides shorter than seven amino acids to reduce the risk of ambiguous 709 

matches. 4) Mass error: We evaluated the mass error of sequenced precursors and retained 710 

only 95% of the sequenced PSMs that fell within the upper and lower cut-offs calculated using 711 

qnorm function in R based on the mass error distribution. 5) Retention time shift: Retention 712 

time predictions were performed using DeepLC47 (v2.2.27). We retained 95% of the remaining 713 

PSMs, which showed a strong correlation between observed and predicted retention times, 714 

based on the upper and lower cutoffs calculated using the qnorm function in R. 6) Collisional 715 

cross-section (CCS) shift: CCS predictions were performed using IM2Deep48 (v0.1.7). We 716 
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retained 95% of the remaining PSMs that showed a strong correlation between measured and 717 

predicted CCS values, using cutoffs calculated as described above.  718 

Blast homology search of de novo sequenced peptides for the construction of microbial 719 

protein database 720 

Unique peptides remaining after multi-tier filtering were subjected to a BLAST+ homology 721 

search49 to retrieve potential protein sequences for microbial protein database construction. 722 

The blastp function embedded in Diamond50 (v2.1.9; command line) was used to search 723 

against the non-redundant protein sequence database “nr.gz” 724 

(ftp://ftp.ncbi.nlm.nih.gov/blast, updated 2024-02-27). The search of de novo sequenced 725 

peptides in ultra sensitive mode was restricted to the following taxa due to the nature of our 726 

samples: bacteria (taxaID: 2), fungi (taxaID: 4751), archaea (taxaID: 2157), and viruses (taxaID: 727 

10239). All BLAST searches used the PAM30 scoring matrix. The top 5 protein assignments 728 

per query sequence were listed in the output file (output format: 6). In addition, another 729 

search with same parameters but different output format (output format: 102) was 730 

performed to generate taxonomic classifications of sequenced peptides based on the lowest 731 

common ancestor (LCA) algorithm. To select the only one protein assignment per query 732 

sequence among the top 5 candidates, we used LCA-guided procedure. Specifically, if the 733 

taxonomic annotation of one protein candidate matches exactly the taxonomy assignment in 734 

the LCA output, then this candidate is kept. In the case that the taxonomic annotation of the 735 

protein candidates do not match exactly to the LCA output but belong to taxon rank in the 736 

LCA output, these candidates were kept. Finally, if the above two steps did not generate one 737 

protein per query sequence, the blast parameters (Bitscore, pident and e-value) will be 738 

applied to keep the most confident candidates. To further increase the quality of the blast 739 

search result, we applied a minimum of 80% cut-off for sequence identity, then further 740 

retrieved the protein sequences from NCBI using the protein sequence IDs in the blast output 741 

to form a microbial database based on novoMP (novoMP-DB; PD4). As a comparison, peptides 742 

identified using the aforementioned MSFragger search were subjected to the same blast 743 

homology search referred as DB-search (PD5) in the manuscript.  744 

DIA-PASEF data processing 745 

DIA-NN51 (version 1.9) was used to process DIA-PASEF data in library-free mode to generate 746 

the predicted spectrum library. A deep learning-based method was used to predict theoretical 747 

peptide spectra along with their retention time and ion mobility. Trypsin/P was used for in 748 

silico digestion with an allowance of a maximum of 2 missed cleavages. Variable modifications 749 

on peptides were set to N-term methionine excision, methionine oxidation and N-terminal 750 

acetylation, while carbamidomethylation on cysteine was a fixed modification. The maximum 751 

number of variable modifications on a peptide was set to 2. Peptide length for the search 752 

ranged from 7 to 30 amino acids.  The m/z ranges were specified accordingly depending on 753 

the experiment which aligned with the DIA-PASEF acquisition method, and fragment ions 754 

were set to a range from 100 to 1700. Mass accuracy for both MS1 and MS2 was set to 755 

automatic determination. Protein inference was set to “Protein names (from FASTA)” and the 756 

option of “Heuristic protein inference” was unchecked. Match-between-run (MBR) was 757 
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enabled for cross-run analysis. RT-dependent cross-run normalization and QuantUMS52 (high 758 

precision) options were selected for quantification.  759 

Generally, all searches in DIA-NN included a Mus musculus reference proteome 760 

(https://www.uniprot.org/proteomes/UP000000589, accessed on 2023.04.07) together with 761 

different microbial databases. Specifically, results presented in Figure2 and Figure4 eres 762 

searched against PD2, PD4 and PD5 (de-duplicated). Data shown in Figure3 was searched 763 

against PD2, PD4, PD5, as well as the standard proteome of L. murinus (PD3) and S. ruber (PD6; 764 

https://www.uniprot.org/proteomes/UP000008674, accessed on 2023-07-19). In addition to 765 

the searching parameters mentioned above, heavy isotopic labelling of arginine (+ 766 

10.0082699 Da) and lysine (+8.014199 Da) were set as variable modifications.  767 

The DIA-NN search outputs were further processed with the R package, DIA-NN 768 

(https://github.com/vdemichev/diann-rpackage), to calculate the MaxLFQ53 quantitative 769 

intensities for all identified peptides and protein groups with q-value ≤ 0.01 as criteria at 770 

precursor and protein group levels. 771 

DIA-PASEF spectrum visualization 772 

Skyline54 (version 23.1.0.380) was used to visualize the spectra of peptides identified by DIA-773 

NN. Briefly, the spectral library generated by DIA-NN after database searching was imported 774 

into Skyline to construct a library containing precursor information for the detected peptides. 775 

Precursors listed in the library and their associated fragment ions were then extracted from 776 

the raw DIA-PASEF data. During extraction, mass accuracy was set to 10 ppm for both 777 

precursors and fragments. To minimize false matches, only scans within 5 minutes of the 778 

retention times listed in the library were extracted.   779 

Taxonomic and functional annotation and quantification 780 

iMetaLab55 (Version 2.3.0) was used for taxonomic annotation. Peptide sequences and their 781 

corresponding intensity data were imported into iMetaLab, and the built-in taxonomy 782 

database was used for mapping, with blanks ignored below the rank of Superkingdom and a 783 

minimum unique peptide count of 3 required. For the quantification of specific taxonomic 784 

ranks11, the annotation output was processed in R to extract peptides commonly detected 785 

across samples for taxonomic rank of interest (e.g genus, species). The intensity of each taxon 786 

was calculated by summing up the intensities of common peptides in each sample. The 787 

resulting summed intensities were log2-tranformed for statistical analysis.   788 

The microbial protein databases used in this manuscript were annotated using EggNOG-789 

mapper56 (http://eggnog-mapper.embl.de/) with default settings to retrieve potential 790 

functions and pathways.  791 

Taxon-specific functions analysis 792 

Meta4P57 was used to analyze taxon-specific functions. The peptide quantification data from 793 

DIA-NN, taxonomic annotation output from iMetaLab, and functional annotation files from 794 

EggNOG-mapper were used as inputs for Meta4P. Quantification of taxon-specific functions 795 

was performed by summing the peptide intensities associated with specific functions. The 796 

resulting summed intensities were log2-transformed for statistical analysis. 797 

Identification filters of L. murinus and S. ruber for spike-in experiment 798 
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Peptide and protein identifications generated from DIA-NN search of the spike-in experiment 799 

were further filtered to ensure species-specific identifications: 1) Only heavy-labeled peptides 800 

were considered for L. murinus to exclude the interference from endogenous species. Heavy-801 

labeled peptides assigned to S. ruber were removed as they represent false-matches. 2) Co-802 

assigned peptides and protein groups shared between L. murinus and S. ruber were excluded. 803 

3)  Peptides assigned to L. murinus or S. ruber that were also identified in any of the non-spike 804 

controls (three replicates) were removed.  805 

  806 

Functional enrichment analysis of differentially expressed host proteins 807 

Quantified host proteins were statistically compared in R using the ProTIGY package 808 

(https://github.com/broadinstitute/protigy) with a two-sample moderated t-test. Functional 809 

enrichment of differentially expressed host proteins was performed using the clusterProfiler58 810 

R package, with all identified proteins in the study as background genes for enrichment 811 

analysis against the Gene-Ontology Biological Process database. The Benjamini-Hochberg 812 

method was used to adjust p values, with an adjusted p-value cutoff of 0.05 used to identify 813 

significantly enriched pathways.  814 

Protein-protein interaction networks were analyzed using STRING within Cytoscape (v 3.10.2) 815 

under default parameters. Drug-gene interactions were retrieved using DGIdb59 (v 5.0.7) with 816 

default settings.  817 

Statistical analysis 818 

The Kruskal-Wallis test was performed in R to identify significant differences in genera among 819 

conditions. Differentially expressed species and taxon-specific functions were analyzed using 820 

the limma package in R for the respective comparisons. The Benjamini-Hochberg method was 821 

applied for multiple comparisons in all statistical analyses.  822 
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 823 
Supplementary Figure 1: Comprehensive evaluation of novoMP performance in peptide 824 
identification and taxonomic annotation. (A) Overlap of peptides identified by current 825 
uMetaP (magenta) and previous timsTOF Pro workflows (gray) using same pre-fractionated 826 
samples. (B) Log2 intensity distribution of peptides identified by uMetaP and previous 827 
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timsTOF Pro workflows. (C) Precision-recall curves comparing pre-training and post-training 828 
performance of Novor algorithm across enzymes (Chemotrypsin, Elastase, GluC, and Pepsin). 829 
(D) Percentage of correct amino acid and peptide identifications for in a dataset generated 830 
from species-mix samples (E. coli, H. sapiens, and yeast) in pre- and post-training conditions 831 
of Novor. (E) Percentage of correct amino acid and peptide identifications across datasets 832 
prepared with various enzymes. (F-K) Filtering and validation metrics applied to novoMP-833 
derived PSMs: (F) Distribution of de novo scores, with the dotted line indicating the filtering 834 
threshold (score value = 65) for high-confidence matches. (G) Distribution of precursor charge 835 
states of de novo sequenced PSMs. Black-dots represent singly charged precursors that were 836 
excluded for further processing. (H) Stats of peptide length and corresponding counts. The 837 
black-dotted line indicates the cut-off of 7 amino acids. (I) Mass shift distribution of de novo 838 
PSMs. The black-dotted lines indicate the upper (+4.54 ppm) and lower (-7.28 ppm) cut-off to 839 
ensure 95% of the data under the distribution. (J) Distribution of retention time shifts 840 
between observed and predicted values. The black-dotted lines indicate the upper (+8.04 min) 841 
and lower (-8.99 min) cut-off to retain 95% of the data. (K) Distribution of cross-collision 842 
section (CCS) differences between observed CCS and predicted CCS. The black-dotted lines 843 
indicate the upper (+21.59 Å ) and lower (-17.25 Å ) cut-off to keep 95% of the data under the 844 
distribution. (L) Venn diagram showing species identified by applying novoMP (gray) and 845 
classic DB-search strategy (light blue) in a dataset acquired using our previous timsTOF Pro 846 
workflow. (M) Annotated species comparison by applying novoMP to current uMetaP 847 
workflow (magenta) and previous timsTOF Pro workflows (gray) using same pre-fractionated 848 
samples.  849 
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 850 
Supplementary Figure 2: Validation of quantitative precision and functional annotations 851 
enabled by uMetaP and novoMP in complex metaproteomic datasets. (A) Peptide intensity 852 
distribution and quantitative precision analysis for 25 ng of peptides analyzed with a 30-853 
minute LC gradient. Left: Log10 intensity distribution ranked by peptide abundance, 854 
categorized into high, medium, and low-intensity groups. Right: Density plots of the 855 
coefficient of variation (CV) for each intensity group, with the red dashed line indicating a CV 856 
threshold of 0.2. (B) Density plots of CV values (triplicates) across varying sample loadings (10 857 
ng to 50 ng) and LC gradient lengths (30 to 60 minutes). Peptides identified by novoMP-DB 858 
(green) demonstrate comparable or superior quantitative precision to database-searched 859 
peptides across all conditions. (C) Overlap of all identified protein groups (ProteinIDs_all), 860 
those identified with novoMP-DB (ProteinIDs_novoMP-DB), and those uniquely identified by 861 
novoMP-DB (ProteinIDs_novoMP-DB_unique). (D) Functional annotations (COG and KEGG) of 862 
all identified protein groups (All), those identified with novoMP-DB (ProteinIDs_novoMP-DB), 863 
and those uniquely identified by novoMP-DB (ProteinIDs_novoMP-DB_unique). (E) Amount 864 
of PUFs, sProt, and AMPs experimentally detected using 25 ng with a 30-min gradient and 865 
present in the constructed microbial protein database. 866 
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 867 
Supplementary Figure 3: Validation and characteristics of peptides and proteins identified 868 
in spiked-in bacterial experiments. (A) Distribution of SILAC incorporation efficiency for L. 869 
murinus, showing an average incorporation efficiency of 97.42%. (B) Linear relationship 870 
between dilution factors and counted bactria for S. ruber and L. murinus. (C-D) Representative 871 
of identified MS/MS spectra of peptides from L. murinus (C) and S. ruber (D) at the LoD of 104 872 
bacterial cells compared to same peptides at higher spike-in amounts. (E) Fluorescent object 873 
size distribution for L. murinus and S. ruber measured during bacterial counting. (F) Venn 874 
diagram comparing the total peptides identified (Peptides_all) and those identified by 875 
novoMP-DB (Peptides_novoMP-DB). 876 
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 877 
Supplementary Figure 4: Microbial taxonomic and functional changes during intestinal 878 
injury in response to mitochondrial dysfunction. (A) Number of peptides and protein 879 
identifications for host and microbiota across D0 and D8 in control (Hsp60fl/fl) and injured 880 
(Hsp60Δ/ΔIEC) mice. (B) Comparison of detected genera and species (bacteria superkingdom) 881 
using 16S rRNA, shallow shotgun metagenomic sequencing, and uMetaP on the same sample 882 
set. (C) Log2 abundance of 16 significantly altered genera in response to metabolic injury 883 
discovered by uMetaP. (D-E) Abundances of differentially altered species at D0 (D) and D8 (E). 884 
The genera assignments of those species are colored and shown on the left of the heatmaps. 885 
(F) UpSet plot showing uniqueness and shareness of significantly regulated KEGG pathways 886 
among 14 species at D0. 887 
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 888 
 889 
Supplementary Figure 5: Functional enrichment analysis of host proteome changes. (A) 890 

Volcano plot showing log2 fold changes of significantly regulated proteins at D0 (Δ/ΔIEC_D0 891 

vs. fl/fl_D0). Proteins with adjusted p-values ≤ 0.05 are highlighted. (B) Enriched biological 892 

processes from significantly regulated proteins at D0. (C) GO enrichment of 33 proteins 893 

consistently regulated in mouse metaproteomics (colonic content), mouse targeted RNA 894 

analysis (colon tissues), and human transcriptomics datasets (Crohn’s disease, ileum biopsy). 895 

The enriched terms are sized based on the number of genes mapped.  896 
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