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ABSTRACT

The gut microbiome is a complex ecosystem with significant inter-individual variability
determined by hundreds of low-abundant species as revealed by genomic methods.
Functional redundancy demands direct quantification of microbial biological functions to
understand their influence on host physiology. This functional landscape remains unexplored
due to limited sensitivity in metaproteomics methods. We present uMetaP, an ultra-sensitive
metaproteomic solution combining advanced LC-MS technologies with a novel FDR-
controlled de novo strategy. uMetaP improves the taxonomic detection limit of the gut "dark
metaproteome" by 5,000-fold with exceptional quantification precision and accuracy. In a
mouse model of colonic injury, uMetaP extended metagenomics findings and identified host
functions and microbial metabolic networks linked to disease. We obtained orthogonal
validation using transcriptomic data from biopsies of 204 Crohn's patients and presented the
concept of a "druggable metaproteome". Among the drug-protein interactions discovered are
treatments for intestinal inflammatory diseases, showcasing uMetaP's potential for disease
diagnostics and data-driven drug repurposing strategies.
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INTRODUCTION

The gut microbiome, a complex ecosystem of hundreds of bacterial species, plays a crucial
role in host physiology, affecting overall health!. While a core set of microbial species is
shared among most individuals, significant variability exists due to medium- and low-
abundance taxa% 4. This variability contributes to personalized microbiomes and challenges
the concept of a unique healthy microbiome®. Although genomic methods have greatly
expanded our understanding of the taxonomic repertoire, functional redundancy among
microbiome members requires methods that can directly quantify the biological functions of
the microbiota and host.

Metaproteomics, which analyzes microbial samples using liquid chromatography coupled
with mass spectrometry (LC-MS)-based proteomics, has emerged as a powerful tool for
investigating the functional signatures of host-microbiome interactions in health and
disease®. However, over 80% of bacterial species detected by genomic methods remain
undetected by metaproteomics, constituting the "dark metaproteome"4. Significant
improvements in the sensitivity of metaproteomic approaches are needed to explore the
highly complex and largely uncharted functional landscape of the gut microbiome. We
present uMetaP, an integrative, ultra-sensitive metaproteomic solution that achieves
exceptional depth and sensitivity in studying complex metaproteomes.

uMetaP combines Ultra-High-Performance Liquid Chromatography (UHPLC), an optimized
ionization source to maximize ion transfer’, and the sensitivity of the timsTOF Ultra mass
spectrometer® °, Using mouse feces as a model, uMetaP fragmented over 1.6 million
precursors via Data-Dependent Acquisition Parallel Accumulation—Serial Fragmentation
(DDA-PASEF). However, less than 30% resulted in confident peptide spectrum matches
(PSMs). We trained a de novo algorithm, Novor'®, on 1.7 million PSMs, marking the first
instance of a de novo algorithm trained in PASEF's four-dimensional data structure. We
combined it with a multi-tier filtering procedure to enhance peptide confidence, enabling us
to develop novoMP: a de novo-assisted metaproteomic database construction method.
NovoMP expanded a mouse fecal metaproteomic database from 223 to 774 microbial
species, including archaea, fungi, and viruses. The final database, with 208,254 microbial
protein sequences (a 19-times increase from our previous PASEF-based database!?), is
available via PRIDE for community use.

When powered by Data-Independent Acquisition (DIA-) PASEF, uMetaP identified and
quantified 210,051 microbial peptides and 118,937 microbial protein groups, tripling the
previous state-of-the-art!l. An orthogonal FDR control strategy ensured de novo-derived
peptides matched traditional database identification confidence. uMetaP identified 1,043
proteins of unknown function!? (PUFs), 2,342 small proteins!® '* and 581 antimicrobial
peptides’ (AMPs). Using SILAC-labeled bacteria, we determined the accurate limit of
detection and quantification for the gut "dark metaproteome", down to 0.0003% and
0.0044%, respectively, improving previous standards* by 5,000-fold and enabling
identification of previously undetectable low-abundance taxa.
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uMetaP extended taxonomic changes observed by metagenomics on a transgenic mouse
model of colonicinjury. Further, we identified 990 host-regulated proteins and 92 microbiota-
specific networks, revealing novel pathways in tissue damage. Orthogonal validation with
Crohn's patient transcriptomic data confirmed the regulation of 490 proteins. Using
additional mouse transcriptomic data, 33 proteins showed consistent alterations across
datasets linked to inflammation, metabolic functions, and mitochondrial activity. Network
analysis highlighted protein hubs influencing tissue injury. We introduced the concept of the
"druggable metaproteome", identifying 204 drug-protein interactions, including current
therapies for inflammatory diseases, and offering resources for drug repurposing.

By integrating the latest LC-MS technology and a new de novo analysis strategy, as well as a
transgenic mouse model of colonic injury, orthogonal validation using patient’s
transcriptomic data, and a detailed drug-gene analysis, we show the potential of uMetaP in
microbiome research. This includes uncovering functional signatures of health and disease
and guiding new therapeutic interventions.
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RESULTS

uMetap enables novoMP: a novel de novo sequencing strategy improving metaproteomic
database construction

Our previous work introduced the benefits of Parallel Accumulation Serial Fragmentation
(PASEF) in metaproteomics, including during the construction of a metaproteomic database®.
Remarkably, analysis of the same eight peptide fractions using the new technological
solutions integrated into uMetaP enabled the fragmentation of 4 times more precursor ions
than when using our previous workflow based on a timsTOF Pro mass spectrometer (Figure
1A), resulting in 4 times more identified peptides (129,425 vs. 30,460; Supp. Figure 1A) and a
significant shift towards higher peptide intensities (Supp. Figure 1B). Despite this considerable
improvement, the classical database search identified fewer than 30% of the precursors
fragmented in the timsTOF Ultra mass spectrometer (Figure 1A), leaving most biological data
uncharacterized. We hypothesised that a de novo search strategy, which does not rely on a
target sequence database, could rescue part of this valuable information. However, to our
knowledge, no published de novo algorithms are trained in the 4-dimensional data structure
of PASEF. Moreover, previous studies applying de novo for metaproteomic database
construction lacked methodologies to test the confidence of peptide assignments!®. This is
especially critical in metaproteomics due to the immense peptide landscape of these complex
samples!’. We constructed novoMP, a novel strategy integrating the first algorithm, to the
best of our knowledge, trained in PASEF data structure, together with a multi-layered quality
control filtering strategy to rigorously select high-confidence de novo peptide-spectrum
matches (PSMs; see Methods for details).

We trained Novor'® using over 1.750,000 PSMs from PASEF data acquired on various timsTOF
platforms (see Methods for details). The evaluation in a human-E.coli-yeast dataset not used
during model training shows how the post-trained model maintains higher precision as recall
increases compared to the pre-training model (Figure 1B; Supp. Figure 1C). These
improvements result in an average of 5-7% gains concerning correct amino acid and peptide
assignments in human, E.coli, and yeast peptides (Supp. Figure 1D). Similar improvements
were found when samples were prepared with various enzymes (Supp. Figure 1E). Next, we
applied this new de novo model to analyse pH-fractionated mouse fecal peptides acquired in
Data-Dependent Acquisition (DDA)-PASEF. As a result of the multi-layered filtering strategy,
unique novoMP peptides and annotated species counts decreased as the filtering steps
progressed (Figure 1C and Supp. Figure 1F-1K). In comparison to taxonomy annotation using
only peptides from classic database searches (DB-search), the integration of de novo peptides
(Combined) improved taxonomic coverage, particularly for archaea, fungi, and viruses (Figure
1D). Of a total of 774 annotated species (Supp. Table 1) from all peptides (DB-search +
uMetaP), only 223 species could have been identified by using solely DB-search peptides (aka.
DB-search alone would have discovered a minimum of three species-specific peptides).
Detailed analysis revealed the gains in taxonomic coverage reached by novoMP. For example,
there is a marked increase in the number of peptides representing the above-mentioned 223
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94  species when including de novo data (Figure 1F), compared to using DB-search peptides alone
95  (Figure 1G). Moreover, the combination of peptides from DB-search + novoMP (Combined
96  strategy) enabled the annotation of 551 additional species, increasing taxonomic coverage
97  247% (Figure 1E). Applying novoMP to archived DDA-PASEF data from our previous study!?,
98 increased the taxonomic coverage by 139 % (from 89 to 213 species; Supp. Figure 1L). The
99  bigger gains enabled by novoMP in our new dataset, together with the remarkable taxonomic
100  overlap among these independent sets of samples (Supp. Figure 1M; uMetaP discovers 90%
101  of species from our previous study using a timsTOF Pro), demonstrated the benefit of novoMP
102 to access valuable but otherwise hidden precursor information produced by the latest mass
103  spectrometry technology.
104  Unlike DB-search, de novo sequencing does not inherently assign proteins to detected
105  peptides. Thus, we conducted BLAST+ homology searches against the NCBI RefSeq database,
106  applying the same pipeline to both novoMP-derived and DB-search-derived peptides. We set
107  an 80% sequence identity threshold between query sequences and references to exclude low-
108  confidence matches (Figure 1H). This approach retrieved 73,168 and 98,189 protein
109  sequences for DB-search and novoMP-derived peptides, respectively, with 13,153 shared
110  between the two (Figure 1l), totaling 158,204 unique protein sequences. Finally, we add
111 53,502 proteins identified through the classic DB-search against the mouse gut MGnify
112  catalogue. As a result, we created a carefully curated mouse fecal metaproteomic database
113 comprising 208,254 microbial protein sequences, which is available to the metaproteomic
114  community via PRIDE.
115  In summary, the uMetaP workflow presented here demonstrated the power of the latest
116  mass spectrometry instrumentation paired with a purpose-built de novo strategy for
117  database construction, a critical step in metaproteomics.
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Figure 1: Development and impact of novoMP on metaproteomic database construction. (A)
Comparison of the number of precursor ions fragmented and the resulting identified peptide-
spectrum matches between the uMetaP workflow and our previous workflow across eight
high-pH fractions. (B) Precision-recall curves illustrating the performance of the Novor
algorithm on E. coli, H. sapiens, and Yeast datasets before (pre-) and after (post-) training with
PASEF datasets. (C) Reduction in the number of peptides and species identified as filtering
steps progress in the novoMP workflow. (D) Taxonomic coverage comparison of peptides
annotated via the combined peptides (DB-search + novoMP) and DB-search peptides alone
across bacteria, archaea, fungi, and viruses. (E) Venn diagram showing the unique and shared
species identified using the novoMP integrated strategy versus DB-search alone. (F-G)
Distribution of species-specific peptide counts for 223 species shared between Combined
strategies (F) and DB-search (G). (H) Density plot of sequence identity percentages for BLAST+
homology searches against the NCBI RefSeq database using DB-search peptides and novoMP-
derived peptides. A threshold of 80% (black-dotted line) sequence identity was used to filter
high-confidence protein matches. (I) Venn diagram comparing protein sequences identified
by DB-search and novoMP-derived peptides for the database construction.
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135 uMetaP powered by DIA-PASEF enhances taxonomic and functional coverage, sensitivity
136  and quantitative precision.

137

138  Our previous study introduced the benefits of combining Data-Independent Acquisition (DIA)-
139  PASEF with deep neural network-based data analysis for complex metaproteomic samples®®.
140  uMetaP powered by DIA-PASEF increased 3 to 4 times the identifications of microbial and
141 host peptides and proteins compared to our previous workflow!? (Figure 2A) when comparing
142  similar conditions. Peptide identifications raised linearly and gradually plateauing at a total of
143 96,513 peptides (89,128 microbial and 7,385 mouse peptides; averaged across three
144  replicates) when 25 ng of peptides were injected over a 30-minute gradient. Extending the LC
145  gradient to 66 minutes further boosted the number of identified peptides and protein groups
146  to 141,811 and 79,693, respectively (averaged across three replicates with 100ng peptide).
147  Reflecting improved sensitivity, uMetaP detected an average of 200 microbial and 76 host
148  protein groups at an ultra-low sample amount of 10 pg (Figure 2A and Supp. Table 2). uMetaP
149 identified peptides spanning over four orders of magnitude using 25 ng of injected peptides
150  with a30-min gradient (Supp. Figure 2A) and showed a remarkable quantitative precision with
151  more than 84% of peptides exhibiting a coefficient of variation (CV) lower than 0.2 (Supp.
152  Figure 2A). In total, 210,051 microbial peptides were identified, with 32,400 of these added
153 by novoMP to the mouse fecal metaproteomic database (novoMP-DB; Figure 2B).

154  Our approach represents a novel orthogonal strategy for FDR control of novoMP-detected
155  peptides, validating their confidence. The evaluation of CScore and Posterior Error Probability
156  (PEP) showed that precursors from the two sources exhibited similar distributions (Figure 2C).
157  Furthermore, novoMP-DB peptides demonstrated equal or slightly better quantitative
158  precision compared to database-searched peptides across various sample loadings and
159  gradient lengths (Supp. Figure 2B).

160 At the taxonomic level, novoMP-DB peptides contributed up to 92.9% of annotated taxa at
161  different ranks (Figure 2D). Across the dataset, 825 species were annotated (using 3 species-
162  specific peptides as cut-off), with novoMP-DB peptides enabling the detection of 631 (Figure
163  2E). This represents a 6 times increase in taxonomic coverage compared to our previous state-
164  of-the-art DIA-PASEF!!. Notably, 253 species would not have met the minimum cutoff of three
165  species-specific peptides without the addition of novoMP-DB peptides, and 114 species were
166  exclusively identified through unique novoMP-DB peptides (Figure 2E). From the 118,937
167  identified protein groups (PGs), 47,739 groups include proteins originating from novoMP-DB,
168  among which 26,149 include proteins uniquely discovered by novoMP-DB (Supp. Figure 2C).
169  These PGs spanned all 24 functional Clusters of Orthologous Genes (COG) categories, with
170 minor differences in KEGG pathway counts (Supp. Figure 2D). Detailed functional analysis
171 showed that proteins unique to novoMP-DB were largely represented in COG categories like
172 RNA processing (COG-A), chromatin dynamics (COG-B), extracellular structures (COG-W),
173 nuclear structure (COG-Y), and cytoskeleton (COG-Z) (Figure 2F). Overall, uMetaP enabled the
174  study of 199 KEEG additional pathways compared to our previous work!!. Examining species-
175  to-function links, we demonstrated how de novoMP-DB proteins uniquely revealed 175
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species-KEGG associations from 48 species (Figure 2G). Interestingly, uMetaP uncovered
previously hidden functions by identifying 1,043 proteins (196 proteins originated from
novoMP-DB) of unknown function!? (PUFs). Further, we identified 2,342 small proteins!® 14
(sProt; 321 proteins originated from novoMP-DB), and 581 proteins (86 proteins originated
from novoMP-DB) with predicted antimicrobial peptide sequences®® (AMPs; Supp. Figure 2E).
Altogether, uMetaP powered by DIA-PASEF considerably improves taxonomic and functional
coverage, as well as quantification quality in complex metaproteomics samples, significantly
benefiting the study of previously hidden host-microbial interactions.


https://doi.org/10.1101/2024.04.22.590295
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.04.22.590295; this version posted January 10, 2025. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-ND 4.0 International license.

A B
3 Protein_microbiota [ Protein_host Peptide_microbiota ¢ Peptide_host O Peptides_all
LC gradient-30min LC gradient-66min O Peptides_novoMP-DB
150000 r 80000
6000
4500
120000 @
F 3000 - 60000 §
2 | 1500 5
g 90000 0 = £
2 s 9 - 40000 B
c s 2 S
3 60000 1 e 5
E 5
z 20000 -g
30000 S
z
L0

o+ .
0.01 0.025 0.05 0.1 025 05 1 25 5 10 25 50 10 25 50 100
Injected peptide amount (ng)

(o]
novoMP-DB [] FALSE [] TRUE D novoMP-DB [] FALSE TRUE
101 1 109 100%
051 |[] 0.51 11|]
75%
’- -I-’Trrrn'ﬂ‘rrrrn-\ -I-rh-rh‘ﬂ'h-n-r»n_- 8;
’5 0.0+ 0.0 g
&101 3 1.0 1 8 so%{ 87% 91.7% 92% 92.9% 88.3% 76.5%
&
0.5 { I 051 /] 25%
N1 | o — DDD:DD
100 098 096 094 092 000 002 004 006 0%
CScore PEP Phylum Class Order Family Genus Species
E QO Species_all F

QO Species_novoMP-DB
O Species_novoMP-DB_cut-off
© Species_novoMP-DB_unique

Cellular processes

& signaling
Information storage

825 & processing

631
253 114
Poorly characterized

157

2

c

(O]

® 101

w

X

%

o 51

[V

@

. O 0
= = T o = - ©
S8 E58 0522 BT8R IR Eg o eNET I8 7388855888323
33,35§Q4uggugg'ﬁugb’EQSUISEEQg%"’EEmQIog"g;‘gz385‘5_5‘;"“‘"8
SR g = S = N £ = < T . >SS S
S SR EST 035008955 wnls98 ERSG ST EELCEESECOD88H
002229 39 SEX X JNgaIS |32 -0 X8a S £
2558580 S S ST g st 5585055885 85029558 ¢
IR I E R S e E R N RIS L
LES=SS002a PV 58 S8 3 LSeEdCOBSES sa2afgp08 g s &
SESO/® L EO0O53352CRE S es03S°83 23088809088 ® - 3SG50632°°53
HE R I 59585858555 5382888453
X038 SSERSSOSZ8RS<38388e 5 —HSE&2Y9oXET 3¢, S<8cwcd
SE888 S gog”gUB8 502835 8 TS%E 3§ 8§ 5§ 58s¢
858 5§ 883 8 ©© § 8989 5 a3 "¢ § 33 58§
s Lo 3 S8 3 © 2 & © ~ i < s4 £33
L3y S 9<a S B 3 ¢ 800

(S ~ s 8 3 < Saa
58 o .

184
185  Figure 2: uMetaP powered by DIA-PASEF enhances metaproteome taxonomic and

186  functional coverage, sensitivity, and quantitative precision. (A) Number of identified
187  microbial and host peptides and protein groups using uMetaP powered by DIA-PASEF across
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188  varying sample amounts and LC gradient lengths. (B) Venn diagram showing the total
189  microbial peptides identified, including 32,400 additional peptides added by novoMP to the
190  metaproteomic database (novoMP-DB). (C) Distribution of CScore and Posterior Error
191  Probability (PEP) values for peptides originated from novoMP-DB (“TRUE") and from DB-
192  search (“FALSE”). (D) Taxonomic contributions of novoMP-DB peptides across ranks (phylum
193  to species). (E) Venn diagram of species annotated using any type of peptide (Species_all),
194  species with novoMP-DB peptides assigned (Species_novoMP), annotation meeting the 3-
195  species-specific peptide cut-off due to the addition of novoMP-DB (Species_novoMP-DB_cut-
196  off), and species uniquely annotated with novoMP-DB peptides (Species_novoMP-
197  DB_unique). (F) Functional representation of protein groups mapped to Clusters of
198  Orthologous Genes (COGs). The percentages of proteins uniquely discovered by novoMP-DB
199  were shown in green. The white bubble area represents the percentages of functional clusters
200 discovered by all detected proteins. (G) Species-KEGG associations uniquely revealed by the
201  addition of novoMP-DB, enabling the identification of 175 unique pathways for 48 species.
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202  Redefining the detection limit of “dark metaproteome”
203
204  The human gut microbiome harbors an average of 200 bacterial species'® 2° comprising a core

205 of abundant species present in most individuals® 3 and a second pool formed by low-abundant
206  species (more than 50% of the total), underlining the increasingly important inter-individual
207  variability of microbiome profiles in health and disease. Current metaproteomic approaches
208  do not achieve sufficient sensitivity to study these low-abundant species®. We hypothesized
209  the benefits of uMetaP to significantly improve the study of this uncharacterized “dark”
210  metaproteome.

211  We set to develop an approach to calculate the real lower limits of detection (LoD) and
212  quantification (LoQ) by calculating the number of bacterial cells that can be accurately
213 identified and quantified in a complex microbial sample. To minimize identification
214  uncertainty, we used stable isotope labeling by amino acids in cell culture (SILAC) for
215  Ligilactobacillus murinus (L. murinus), a bacterium native to the mouse gut microbiome. DDA-
216 PASEF analysis of the SILAC culture confirmed an average incorporation efficiency of 97.42%
217  (Supp. Figure 3A; Supp. Table 3). Additionally, we employed Salinibacter ruber (S. ruber) as an
218  exogenous spiked bacteria (Figure 3A). We observed that the number of detected peptides
219  and protein groups declined as we decreased the number of SILAC-labeled L. murinus and
220  unlabeled S. ruber cells spiked into 10 mg of mouse feces (Figure 3A-B; Supp. Figure 3B). After
221  applying strict filtering criteria for taxonomic identifications (including a non-spiked control;
222  see Methods), we identified 6 and 20 peptides for L. murinus and S. ruber, respectively, when
223  spiked 10,000 cells (Figure 3B; Supp. Table 4). Visual inspection of selected spectra confirmed
224  these identifications (examples in Supp. Figure 3C-D). By extracting precursor ions and
225  fragments from DIA-PASEF spectra, we determined a reliable LoQ of 1 million L. murinus cells
226 and 5 million S. ruber cells (examples in Figure 3C-D). The differences in LoQ for each bacteria
227  possibly reflect differences in bacterial size (Supp. Figure 3E) and protein content.

228  Species abundance within a microbial community is an important parameter for microbiome
229  studies. By summing the intensities of species-specific peptides, we showed that uMetaP
230 abundance assessments are driven by a limited number of species, with just eight species
231  (excluding spiked L. murinus and S. ruber) accounting for 53.5% of the microbiota biomass
232  (Figure 3E; Supp. Table 5). Among 115,127 peptides identified in this dataset, 21,457 can be
233 traced back to the novoMP-DB (Supp. Figure 3F), which contributed to the detection of
234  species down to 0.006% relative abundance (data not shown). Peptide intensity analysis
235 indicated that the 10,000 spiked L. murinus and S. ruber cells detected by uMetaP constituted
236  0.0003% and 0.0159% of the total biomass, respectively (Figure 3F; Supp. Table 5).
237  Considering the spectral quality of precursor and fragment ions, we confidently quantified
238  these spiked bacteria, representing 0.0044% for L. murinus and 0.0297% for S. ruber (Figure
239  3F). Based on genomic estimates (which assume 1 x 102 bacterial cells per gram of mouse
240  feces?!), we achieved a LoD of 0.0001% (1 cell detected among 1 million) for both species, and
241  anlLoQof 0.01% and 0.05% for L. murinus and S. ruber, respectively. These results significantly
242  improved the previously reported limits in metaproteomics* by up to 5,000-fold and are
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243  comparable to the deepest profiling efforts using full-length 16S rRNA?°. Additionally,
244  functional annotation of identified protein groups to KEGG pathways diminished below 100
245  million bacteria and plateaued at 1 million bacteria (Figure 3G). Remarkably, we annotated
246 85 and 18 functional pathways with as few as 10,000 L. murinus and S. ruber cells,
247  encompassing a variety of metabolic and biosynthetic pathways.

248  Our data establish new detection and quantification limits in complex metaproteomic
249  samples, enabling a more precise definition of individual functional microbiomes.
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250
251  Figure 3: Redefining the detection limit of the “dark metaproteome” using uMetaP

252  workflow. (A) Workflow combining SILAC labelling and spiking of Ligilactobacillus murinus (L.
253 murinus) and spiking of unlabeled exogenous Salinibacter ruber (S. ruber) into mouse feces.
254  Each spike-in includes three replicates. (B) Number of peptides (top) and protein groups
255  (bottom) identified for L. murinus and S. ruber across bacterial cell inputs. Error bars show the
256  standard deviations across triplicates. (C-D) Representative extracted MS/MS spectra from
257  complex DIA-PASEF data of peptides from L. murinus (C) and S. ruber (D) to illustrate reliable
258 limit of quantification (LoQ), in comparison with the 1078 spike-in and the non-spiked control.
259  (E) Microbial community biomass composition (10”% spike-in samples) showing that eight
260  species (excluding spiked L. murinus and S. ruber) account for 53.5% of the total microbiota
261  biomass. (F) Biomass percentages for spiked L. murinus and S. ruber cells at 1074 (LoD), 1076
262  (LoQ for L. murinus), and 5 x 1076 (LoQ for S. ruber) input levels. (G) Number of KEGG
263  pathways annotated from identified protein groups as bacterial inputs decreased.
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264  Shedding light on microbial-metabolic circuits underlining tissue injury during intestinal
265  inflammation in vivo.

266

267  The mutual relationship between the microbiome and the host is essential for maintaining

268 intestinal homeostasis, and its disruption plays a role in the onset and progression of

269 diseases, including inflammatory bowel diseases (IBD)?% 23, It has been recently

270  demonstrated how mitochondrial (MT) perturbation in intestinal epithelial cells (IECs)

271  causes metabolic injury, a self-autonomous mechanism of tissue wounding associated with
272 microbial dysbiosis?* and triggers the recurrence of chronic intestinal inflammation?>.

273  Beyond taxonomic associations using shallow shotgun metagenomics, how metabolic

274  changes in the intestinal epithelium select the growth of certain bacteria and how specific
275  bacteria interfere with epithelial regeneration are unknown, which precludes understanding
276  of host-microbiome interactions and defining potential therapeutical targets. We set

277  uMetaP to the test by investigating the dynamics of microbial-host circuits in recurrent

278  intestine inflammation in vivo.

279  To test the role of MT function in epithelial stem cell homeostasis, we took advantage of our
280  published model of MT dysfunction in the intestinal epithelium, in which the MT chaperone
281  heat shock protein 60 (Hsp60) is transiently deleted, specifically in mouse IECs (Figure 4A).
282  This deletion triggered temporary mitochondrial dysfunction, leading to metabolic stress and
283  transient structural changes in the colonic epithelium similar to the ones observed in patients
284  suffering from intestinal inflammatory diseases?*. We explored the microbiome shifts and the
285  host functional changes during tissue injury by analyzing the colonic contents from control
286  (Hsp60"™) and metabolic injured (Hsp60%/2'E¢) mice at two-time points after tamoxifen
287  cessation: day 0 (DO) which corresponds to Hsp60 complete loss but there are no apparent
288  histological aberrations, and D8 corresponding to the peak of metabolic injury?*.

289  Overall, peptide and protein identifications revealed distinct proteomic profiles between the
290  two genotypes, with both host and microbiome IDs decreasing at D8 uniquely in the metabolic
291  injured model (Supp. Figure 4A). uMetaP detected more than 300 species in all four
292  experimental groups, significantly increasing the taxonomic coverage reached by 16S rRNA
293  and shallow shotgun metagenomic sequencing on the same samples (Supp. Figure 4B). The
294  metabolic injury phenotype was associated with significant changes in microbiota richness
295  (Figure 4B) and community structure (B-diversity; Figure 4C). Differential abundance analysis
296 identified 16 significantly altered genera across the four conditions, with 10 genera, including
297  Bacteroides, Anaerotruncus, and Parabacteroides, showing increased abundance during
298 injury, while Lactobacillus, for instance, decreased at D8 compared to the other groups
299  (Figure 4D; Supp. Figure 4C), reflecting microbiome taxonomic adaptation to IEC dysfunction.
300 At the species level, 25 and 18 differentially abundant species were observed at DO and DS,
301  respectively, in response to metabolic injury (fl/fl compared to A/AIEC; Supp. Figure 4D-4E).
302  Four species were commonly regulated at both time points, with Bacteroides caecimuris
303 uniquely showing increased abundance from DO on already and more accentuated at D8
304  (Figure 4E), suggesting their potential role in modulating colon metabolic injury. Remarkably,
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305 the above-reported taxonomic changes discovered by uMetaP mirrored (e.g., B-diversity, an
306 increase of Bacteroides caecimuris) and extended (previously unreported changes in several
307  genera and species) the metagenomic findings on these same samples?4,

308  Functional analysis indicated 43 and 92 significantly regulated species-KEGG pathways at DO
309 and D8, respectively, with only three pathways in common (Figure 4F and Supp. Table 6),
310  underscoring unique functional shifts within the microbial community in response to injury.
311  Notably, while Bacteroides caecimuris increased in abundance at both time points, it only
312  showed significant KEGG pathway alterations at D8 (15 pathways; Figure 4G and Supp. Figure
313  4F). Detailed analysis revealed that Bacteroides caecimuris was the only species showing a
314  significant alteration of two pathways at D8 - Carbon fixation by Calvin cycle and Biosynthesis
315  of Ansamycins (Figure 4G and Supp. Table 6), offering mechanistic hints on how this bacterium
316  might modulate colonic microenvironments to dominate over other taxa during metabolic
317  injury®..

318 These data demonstrate the benefits of uMetaP, beyond genomic findings, to shed light on
319  taxonomical and functional alterations underlying intestinal tissue injury in vivo.
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320
321  Figure 4: uMetaP sheds light on microbial-metabolic circuits underlining tissue injury during

322 intestinal inflammation in vivo. (A) Schematic of the experimental design showing the
323  strategy for the transient deletion of mitochondrial heat shock protein 60 (Hsp60) in mouse
324 intestinal epithelial cells (IECs) using tamoxifen induction. Colonic contents from control
325  (Hsp60"f) and injured (Hsp60%/2'€) mice were analyzed at day 0 (DO) and day 8 (D8) after the
326  tamoxifen diet. (B) Microbial richness (alpha-diversity) in the 4 experimental groups. (C) B-
327  diversity showing distinct microbial community structures between control and injured mice
328 across DO and D8. (D) Dendrogram shows the relative abundance of 16 genera significantly
329  changed in response to metabolic injury discovered by uMetaP. The significance level was set
330 with an adjusted p value < 0.05 (Benjamini-Hochberg) after Kruskal-Wallis test. (E) Differential
331 abundance of 4 commonly regulated species at DO and D8. (F) Overlap of significantly
332  regulated (T-test, adjusted p value < 0.05) species-KEGG pathways at DO and D8. (G) UpSet
333  plot showing uniqueness and shareness of significantly regulated KEGG pathways among 23
334  species at D8.
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335  Defining the druggable gut metaproteome: Mining the host proteome offers potential
336  therapeutic targets in human intestinal inflammatory diseases

337

338  Similar to the druggable genome in cancer research?®, where genes are prioritized for

339 therapeutic targeting, mining the gut metaproteome could allow researchers to identify
340  proteinsthatinfluence host-microbiota interactions during disease states as prime candidates
341  for therapeutic intervention, particularly in inflammatory bowel diseases. However, the
342  concept of the druggable gut metaproteome remains unexplored. We set out a strategy to
343  test the translational potential of uMetaP characterizing the proteome changes of the host
344  during intestinal tissue injury and setting up an orthogonal inter-species validation strategy
345  with Chron’s disease patient data.

346  Host analysis revealed a higher number of significantly regulated proteins in the metabolic
347  injured model at D8 than at DO (990 and 144, Figure 5A and Supp. Figure 5A, respectively).
348  Consistent with the observed functional shifts in the microbial community (Figure 4F), there
349  was minimal overlap in enriched host functions between DO (Supp. Figure 5B) and D8 (Figure
350 5B, Supp. Table 7). In line with the tissue injury phenotype, at D8, we found an enrichment in
351  functional pathways related to tissue homeostasis and epithelial development. Moreover,
352  functions associated with cytokine regulation and the ERK1/2 cascade highlighted the pro-
353 inflammatory environment occurring during tissue injury. We obtained orthogonal validation
354  of the metaproteomic findings by comparison with transcriptome data obtained from
355  mucosal biopsies of Crohn’s Disease patients?’ (CD; 343 samples from 204 patients originating
356  from inflamed ileum or MOI, and the non-inflamed ileal margin or MOM). We found 490
357  significantly regulated proteins at D8 presented in the list of regulated human transcripts
358  (Supp. Table 8), where several proteins (e.g. RELA%8, NOS2%°, and ITGAM?3°) are reported to be
359 linked to intestinal inflammatory diseases in humans.

360 We set an integrative analysis workflow to prioritize interesting proteins, highlighting their
361  biological importance, therapeutic potential, and available strategies for targeting intestinal
362 inflammatory diseases. To further narrow the list of 490 regulated proteins, we detected 97
363  proteins represented among the list of transcripts expressed at D8 with tissue injury in
364  another set of mouse colonic samples2* (Supp. Table 8). Finally, by selecting candidates with
365 a similar directionality of regulation (up- or down-regulated) in all three datasets (mouse
366  proteomics, human transcriptomics, and mouse transcriptomics), we limited the list to 33
367  proteins upon tissue injury (Figure 5C). Functional annotation analysis highlighted biological
368  processes with roles in specific metabolic pathways, in molecular functions focused on
369  oxidoreductase activity, and in cellular components related to the mitochondria (Supp. Figure
370  5Cand Supp. Table 9). Protein interaction network analyses showed differential connectivity
371  for down- and up-regulated proteins, with specific nodes playing key roles as "hubs" in the
372  network controlling the flow of information during tissue injury, as shown by their higher
373  betweenness centrality (Figure 5D). Notably, several proteins with the bigger centrality scores
374  recapitulate known biology underlying inflammatory intestinal diseases in humans (e.g.,
375  Rela?®, Nos2%°, and Iltgam3°). We defined the druggable metaproteome by investigating drug-
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gene interactions, resulting in 204 interactions corresponding to 187 drugs (Supp. Table 10)
for 20 out of the 33 genes/proteins. Interestingly, 77 of the drugs found are approved for
several indications associated with human inflammatory diseases, including a current
treatment for Crohn’s disease (e.g., Natalizumab®, targeting ITGB1; Figure 5E), an anti-
inflammatory drug for IBD treatment (e.g., prednisone, targeting ITGB2; Figure 5E), and other
target genes/proteins with high centrality in the interaction network (e.g., Hydrocortisone
targeting ITGAM; Figure 5E). Moreover, we revealed another set of 57 drugs approved for
other indications (Figure 5E; e.g., rhil-11 and clarithromycin), as well as 110 not approved
compounds (Supp. Table 10).

Our data show the translational potential of uMetaP for hypothesis generation and

prioritization of target proteins for review by clinical experts to aid in treatment decision-

making.
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389  Figure 5: Mining host proteome changes during intestinal tissue injury defines the
390 “druggable metaproteome” and reveals potential therapeutic targets for inflammatory
391 diseases. (A) Volcano plot showing the log2 fold changes of significantly regulated proteins
392  (A/AIEC_DS8 vs. fl/fl_D8). (B) Functional enrichment analysis of significantly regulated proteins
393 at D8 highlights pathways related to tissue homeostasis, epithelial development, cytokine
394  regulation, and the pro-inflammatory ERK1/2 cascade. Gene counts and adjusted p-values are
395 visualized by size and color, respectively. (C) Heatmap showing the directionality of log2 fold
396 changes for 33 proteins consistently regulated in mouse metaproteomics (colonic contents),
397 mouse targeted RNA analysis (colon tissue), and human transcriptomics datasets from
398  Crohn’s patients (ileum biopsy). (D) Protein-protein interaction network analysis of 33
399  proteins. Node shapes indicate whether the target protein has approved drugs based on drug-
400  gene interaction analysis. (E) Examples of drug-gene interaction network of ITGAM, ITGB2,
401  RELA, IMPDH2, NOS2, and ITGB1. Node colors represent therapeutic categories (e.g., anti-
402  inflammatory, immunosuppressant), and the edge types indicate the drug effects (inhibitory
403  or unknown).
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DISCUSSION
404  Metaproteomics holds significant potential to advance microbiome research. However,
405  current methods struggle to achieve high sensitivity, deep protein profiling, and quantitative
406  accuracy and precision. As a result, many medium- and low-abundance taxa identified by
407  widely used genomic methods, along with their functional repertoires, are often not
408  characterized. In uMetaP, we combined the latest LC-MS technology with a new de novo
409  strategy to address these limitations. We demonstrated the benefits of uMetaP in meaningful
410  biological scenarios using an in vivo mouse model of metabolic injury and by benchmarking
411  our findings against human transcriptomic data from Crohn’s patients. The translational
412  potential of our data was demonstrated through a detailed drug-gene analysis, enabling
413 hypothesis-driven drug repurposing efforts.
414  In recent years, metaproteomics has advanced by integrating sophisticated mass
415  spectrometry platforms!y 3!, superior data acquisition methods (e.g., DIA-PASEF!!), and
416  machine-learning-based data analysis’ 32, Nonetheless, metaproteomic studies are still
417  limited by database (DB) construction, with classic approaches relying on reference
418  catalogues and database-search workflows, which capture only a small fraction of proteomic
419  diversity within complex samples. Our data show that around 70% of the spectral information
420  acquired by uMetaP was not utilized. Metaproteomics would greatly benefit from de novo
421  sequencing solutions. However, the spectral complexity of these samples and the lack of
422 methods for controlling de novo peptide confidence limit its application®,
423  We addressed this challenge by developing novoMP, a de novo strategy tailored for
424 metaproteomics DB construction. Compared to previous studies!®, novoMP is unique in three
425  key aspects. First, it is the first de novo algorithm trained on the PASEF data structure,
426  obtained from various timsTOF platforms, different species, and using different cleavage
427  enzymes. Second, it implements a multi-layered quality control pipeline to select high-
428  confidence de novo PSMs rigorously. Third, it offers a novel orthogonal FDR validation
429  method using DIA-PASEF, demonstrating equivalent confidence in novoMP-DB peptides
430 compared to peptides obtained through classical database search workflows.
431  We significantly expanded the taxonomic and functional representation in metaproteomic
432  databases by combining the depth, sensitivity, and spectral quality of uMetaP with novoMP.
433 Interestingly, the DIA-PASEF analysis with solely novoMP-DB covers more than 99% of the
434  COG and KKEG pathways (Supp. Figure 2D), strongly suggesting the possibility of reaching
435  maximum functional coverage without the need for metaproteomic DB construction in future
436  studies. Moreover, the benefits of novoMP in our previously published DDA-PASEF data could
437  be extended to PASEF datasets acquired in previous metaproteomic studies3? 3% 34 We
438  provide the metaproteomic community with a roadmap for increasing confidence in de novo
439  solutions and offer the most extensive mouse metaproteomic DB composed of 208,254
440  proteins, representing 774 microbial species and 447 KEGG pathways.
441  Combined with DIA-PASEF, uMetaP surpasses current proteotyping standards?, the most
442  optimistic performance forecast in the field3>, and a preliminary evaluation of the Orbitrap
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443 Astral mass spectrometer3l. The fast analysis times and the low variability reached make
444 uMetaP a promising tool for large-scale metaproteomic studies. Integrating novoMP into DB
445  construction enabled the identification of an additional 28% of proteins, and 80% of taxa
446 (Supp. Figure 2C; Figure 2E). Beyond identification, uMetaP demonstrates exceptional
447  precision, reliability in quantification, and ultra-high sensitivity. These benefits were
448  demonstrated by establishing the first reliable LLoD and LLoQ in a complex metaproteome.
449  Unlike previous approaches?, we accounted for sample preparation losses by using a SILAC-
450  labeled bacterium (L. murinus) and an exogenous bacterium (S. ruber). As a result, uMetaP
451  can detect a single bacterium in a theoretical background of 1 million, representing a 5,000-
452  fold improvement*. Importantly, MS2 spectra showed a shift in the reliable quantification
453  limit for L. murinus and S. ruber, which is likely applicable across metaproteomes and
454  highlights the importance of rigorous spectral quality control for accurate peptide
455  quantification. Establishing LLoD and LLoQ for the gut "dark metaproteome" has important
456  implications. By lowering the thresholds for reliably identifying and quantifying bacterial
457  species and their protein products, researchers can better capture the functional
458  contributions of often-overlooked low-abundance species. This is critical for fields that
459  require ultra-sensitivity - from marine metaproteomics®® to clinical metaproteomics, where
460  subtle but clinically important changes in pathogenic microorganisms demand early
461  detection. Moreover, reliable quantification of medium- and low-abundance species will help
462  answer key questions about individualized and healthy microbiome profiles? 3.

463  Our results on a transgenic mouse model of colonic tissue injury demonstrated the potential
464  of uMetaP for discovering novel host-microbiome interactions in a relevant in vivo context. In
465  addition to mirroring the taxonomic findings reported using genomic methods?*, uMetaP
466  offers greater sensitivity, allowing earlier detection of taxonomic and functional alterations
467 underlying causal disease mechanisms. Urbauer et al demonstrated that Bacteroides
468  caecimuris increases in abundance during metabolic injury at day 8 after the start of tissue
469  injury and that mono-colonization of germ-free Hsp60 knock-out mice with B. caecimuris is
470  sufficient to recapitulate the disease phenotype. Similarly, our data showed an increase in
471  Bacteroides caecimuris at day 8. Notably, uMetaP also detected this increase during the first
472 24 hours after tamoxifen cessation. This is a significant improvement in the temporal
473  sensitivity for detecting taxonomic changes compared to genomic and
474  immunohistochemistry methods. Moreover, we extended the previously known dysbiosis
475  signature by detecting significant abundance changes in additional bacterial species.

476  Bacteroides species are known to adapt well to inflammatory and stressed conditions®’,
477  potentially explaining the observed selective expansion in response to colonic injury.
478  However, the mechanisms leading to this selective advantage remain unknown. Our
479  functional data provide plausible mechanisms by detailing metabolic reprogramming during
480  disease progression in vivo. We identified B. caecimuris as the bacterial species with the most
481  KEGG pathways altered at day 8. Notably, two altered KEGG pathways were unique to this
482  species: carbon fixation by the Calvin cycle and biosynthesis of ansamycins. The simultaneous
483  upregulation of these pathways may provide a competitive advantage in the gut microbiome
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484  for B. caecimuris, especially in the context of mitochondrial dysfunction in the intestinal
485  epithelium. On the one hand, the impaired mitochondrial function caused by the Hsp60
486  mutation®® could lead to reduced CO, production due to decreased TCA cycle activity.
487  Upregulating carbon fixation via the Calvin cycle equips the bacteria with greater metabolic
488  flexibility, allowing them to utilize even small amounts of CO,, which could provide an
489  advantage over competitors. On the other hand, ansamycins, such as rifamycins, are
490  antibiotics produced by certain bacteria®®. In the disrupted gut environment caused by Hsp60
491  deletion, the selective elimination of sensitive competitors could allow the ansamycin-
492  producing bacteria to dominate. Interestingly, Bacteroides species are not primary producers
493  of ansamycins®®. Our data discovered specific metabolic adaptation by Bacteroides
494 caecimuris, potentially contributing to its expansion during tissue injury as detected by
495  metagenomics?* and uMetaP.

496  Beyond classical functional analysis of host proteins, we explored the translational potential
497  of our findings. We introduced and explored the concept of a “druggable metaproteome”:
498  The collection of host and microbiota proteins within a given environment that possess the
499  structural and functional properties necessary to be targeted by pharmaceutical agents. This
500 concept supports drug discovery and repurposing efforts. The orthogonal inter-species
501  validation with transcriptomic data from Crohn's patient biopsies?’ validated changes in over
502 400 mouse proteins. This underscores the unique strength of metaproteomics as an -omic
503 technique for detecting functional changes in host physiology. To prioritize proteins for future
504  studies and identify potential therapeutic strategies for intestinal inflammatory diseases, we
505  combined functional, molecular network, and drug-gene interaction analyses. We identified
506  more than 200 potential drug-protein interactions, including immune-suppressants used in
507 Crohn's disease (e.g., natalizumab), anti-inflammatory drugs for IBD treatment (e.g.,
508  prednisone), and approved drugs for other uses. Follow-up studies using pre-clinical mouse
509  models or human volunteers are needed to test data-driven hypotheses suggesting specific
510  drug repurposing or combinatorial treatments.

511 By integrating cutting-edge LC-MS technology, developing a novel de novo strategy, testing
512  these advancements on an in vivo disease model, and introducing the concept of the
513  “druggable metaproteome,” our study advances metaproteomics, highlighting its potential in
514  microbiome research, particularly in unraveling host-microbiome interactions and their
515  crucial roles in health and disease.
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MATERIAL AND METHODS
516 Reagents
517  All reagents were purchased from Sigma-Aldrich (St. Louis, Missouri) if not mentioned
518  otherwise. Acetonitrile (ACN) and formic acid (FA) were purchased from Fisher Scientific
519  (Hampton, New Hampshire; both FA and ACN were liquid chromatography-mass
520  spectrometry (LC-MS) grade). LC-MS grade water from Sigma-Aldrich was used for all
521  solutions. Protease inhibitor (Complete Ultra Tablets Mini) was purchased from Roche, Basel,
522  Switzerland.
523  Animals and housing conditions
524 In-house bred C57BL/6J mice were used for data presented in Figures 1-3. Housing and
525  operation of mice were carried out with the approval of the University of Vienna animal care
526  and use committee (license number 2021-0.138.925). All mice used in this study were group-
527  housed in individually-ventilated cages in a 12-hour light/dark cycle in the animal facility with
528  water and food ad libitum.
529  Mice used in the in vivo experiments (Figure 4 and Figure 5) were only male animals. Details
530  of the animal models can be found in our previous study?*. Briefly, Hsp60f°*/flox mice and
531  Hsp60f1ox/flox x VillinCreER™ ™ mice were generated as described previously*! to create IEC-
532  specific Hsp60 knockout mice via tamoxifen induction (Hsp602/2€¢). For conditional Hsp60
533  deletion, Hsp60flox/flox x VillinCreERT2-Tg mice and appropriate control mice were kept on
534  phytoestrogen-reduced diet 1005 (V1154-300, Ssniff) for four weeks under SPF conditions.
535  Afterwards, mice received 400mg tamoxifen citrate per kg chow feed (CreActive T400 (10mm,
536  Rad), Genobios) ad libitum for 7 days. After the induction phase, tamoxifen diet was replaced
537  with the phytoestrogen-reduced diet. During and after the induction phase, mice were
538  monitored daily and aborted when a combined score considering weight loss, changes in stool
539  consistency, general behavior, and general state of health was reached. Animals were
540  sacrificed at the indicated time points. All mice and their respective genotypes were
541  generated and maintained on an in-house crossing of C57BI/6N and C57BI/6J background. All
542  mice were housed under specific pathogen-free (SPF) conditions according to the criteria of
543  the Federation for Laboratory Animal Science Associations (FELASA) (12-hour light/dark cycles
544  at24-26°C) in the mouse facility at the Technical University of Munich (School of Life Sciences
545  Weihenstephan). All mice received a standard diet (autoclaved V1124-300, Ssniff) ad libitum,
546  autoclaved water and were sacrificed by CO; or isoflurane.
547  Protein extraction and SP3-assisted protein digestion for metaproteomics analysis
548  The procedures from fecal collection to final peptide preparation were performed as
549  previously described®!.
550  High pH reversed-phase fractionation of pooled peptides
551  The peptide fractionation kit was purchased from Fisher Scientific (Cat. 84868). A total of 40
552  ug pooled fecal peptides were processed according manufactures instruction. Eight peptide
553  factions were dried using vacuum centrifugation and then re-suspended in 30 pL of MS-grade
554  water. The peptide concentration was measured in duplicate using NanoPhotometer N60
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555  (Implen, Munich, Germany) at 205 nm. Peptide samples were acidified with formic acid to a
556  final concentration of 0.1% and were stored at -20°C until LC-MS/MS analysis.

557  Liquid chromatography-mass spectrometry configurations

558  Nanoflow reversed-phase liquid chromatography (Nano-RPLC) was performed on NanoElutel
559  and NanoElute2 systems (Bruker Daltonik, Bremen, Germany) coupled with timsTOF Pro and
560  timsTOF Ultra (Bruker Daltonik, Bremen, Germany) via CaptiveSpray ion source, respectively.
561  Mobile solvent A consisted of 100% water containing 0.1% FA and mobile phase B of 100%
562  acetonitrile containing 0.1% FA.

563  Data dependent acquisition (DDA-PASEF) of fractionated peptides on timsTOF Ultra and
564  timsTOF Pro

565  Twenty-nanograms of each peptide fraction were loaded on an Aurora™ ULTIMATE column
566 (25 cm x 75 um) packed with 1.6 um C18 particles (lonOpticks, Fitzroy, Australia) with a total
567  gradient time of 66 minutes. The mobile phase B was linearly increased from 5 to 23% in 56
568 minutes with a flowrate of 0.25 uL/min, followed by another linear increase to 35% within 4
569  minutes and a steep increase to 90% in 1 minute. The mobile phase B was maintained at 90%
570  for the last 5 minutes with a flowrate increase from 0.25 uL/min to 0.35 pL/min. On both
571  timsTOF Ultra and timsTOF Pro, the TIMS analyzer was operated in a 100% duty cycle with
572  equal accumulation and ramp times of 166 ms each. Specifically, 5 PASEF scans were set per
573  acquisition cycle (cycle time of 1.03 s) with ion mobility range from 0.7 to 1.3 (1/k0). The
574  target intensity and intensity threshold were set to 14000 and 500 respectively. Dynamic
575  exclusion was applied for 0.4 minutes. lons with m/z between 100 and 1700 were recorded
576  in the mass spectrum. Collision energies were dependent on ion mobility values with a linear
577  increase in collision energy from 1/KO = 0.6 Vs/cm? at 20 eV to 1/KO = 1.6 Vs/cm? at 59 eV.
578  The TIMS analyzer was operated in 100% duty cycle with 100 ms defined for accumulation
579  and ramp time. Ten PASEF scans were set per acquisition cycle (cycle time of 1.17 s) with ion
580  mobility range from 0.65 to 1.45 (1/k0). The target intensity and intensity threshold were set
581  to 10000 and 1750 respectively.

582  Data independent acquisition (DIA-PASEF) on timsTOF Ultra

583  Peptides were loaded onto an Aurora™ ULTIMATE column (25 cm x 75 um) packed with 1.6
584  um C18 particles (lonOpticks, Fitzroy, Australia) with a total gradient time of either 30 minutes
585  or 66 minutes on a NanoElute2 system in triplicates. In the 30-min separation, the mobile
586  phase B was linearly increased from 5 to 23% in 18 minutes with a flowrate of 0.25 pL/min,
587  followed by another linear increase to 35% within 4 minutes and a steep increase to 90% in 2
588  minutes. The mobile phase B was maintained at 90% for the last 4 minutes with a flowrate
589 increase from 0.25 pyL/min to 0.35 puL/min. The composition of mobile phase B over the 66-
590  min separation was the same as described above for the fractionated peptide samples. For
591  the results presented in Figure 2, precursors with m/z between 400 and 1000 were defined
592  in 8scans (3 quadrupole switches per scan) containing 24 ion mobility steps in an ion mobility
593  range of 0.64 — 1.45 (1/k0) with fixed isolation window of 25 Th in each step. The acquisition
594  time of each DIA-PASEF scan was set to 100 ms, which led to a total cycle time of around 0.95
595  sec. For results presented in Figure 3, 25ng peptides were separated on the NanoElute 2
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596  system with a 30-min gradient. Precursors with m/z between 350 and 800 were defined in 6
597  scans (3 quadrupole switches per scan) containing 18 ion mobility steps in an ion mobility
598  range of 0.64 — 1.2 (1/k0) with fixed isolation window of 25 Th in each step. The acquisition
599  time of each DIA-PASEF scan was set to 100 ms, which led to a total cycle time of around 0.74
600  sec. For data presented in Figured-5, 50 ng peptides were separated on the NanoElute 2
601  system with a 66-min gradient. Precursors with m/z between 350 and 1150 were defined in
602 13 scans containing 32 ion mobility steps in an ion mobility range of 0.65 — 1.35 (1/k0) with
603  fixed isolation window of 25 Th in each step. The acquisition time of each DIA-PASEF scan was
604  setto 100 ms, which led to a total cycle time of around 1.48 sec.

605 DDA-PASEF data processing

606  Fractionated data generated using timsTOF Ultra and timsTOF Pro were separately submitted
607  to MSfragger®? (Version 4.0) integrated in FragPipe computational platform (Version 21.1),
608  searching against the MGnify mouse gut protein catalogue v1.0
609  (https://www.ebi.ac.uk/metagenomics/genome-catalogues/mouse-gut-vl-0, referred as
610  PD1). The decoy database was generated with reversed sequences. Trypsin was specified with
611  a maximum of two missed cleavages allowed. The search included variable modifications of
612  methionine oxidation and N-terminal acetylation and a fixed modification of
613  carbamidomethyl on cysteine. The mass tolerances of 10ppm and 20 ppm were set for
614  precursor and fragment, respectively. Peptide length was set to 7 to 50 amino acids with a
615  mass range from 500 to 5000 Da. The remaining parameters were kept as default settings.
616  During the validation, MSBooster (Version 1.1.28) was used for rescoring and Percolator®?
617  (version 3.6.4, default parameters) was used for PSM validation. FDR level was set to 1% for
618  PSM, peptide and protein. The identified proteins from the search formed a sample-specific
619  protein database (PD2) containing 53,502 protein sequences. For assessing the labelling
620 efficiency of L. murinus, the data was searched against the standard proteome of L. murinus
621 downloaded from Uniprot (PD3, https://www.uniprot.org/proteomes/UP000051612,
622  accessed on 2023-07-19) containing 1,971 protein sequences. The rest parameters were kept

623  the same in MSfragger as aforementioned.

624  Bacterial culture of L. murinus and S. ruber

625 Ligillacotobacillus murinus (DSM 20452, L. murinus) and Salinibacter ruber (DSM 13855, S.
626  ruber) were purchased from DSMZ (Braunschweig, Germany). All culture media were
627  autoclaved right after the preparation. L. murinus was activated in 5 mL MRS medium
628  (CARLROTH, Karlsruhe, Germany; prepared according to the manufacturer’s instructions) and
629  incubated for 24 hours at 37 °C with 220 rpm agitation. At the end of this incubation period,
630 1 mL of the L. murinus culture was taken and centrifuged at 3200 g for 5 minutes at 4 °C. The
631  supernatant was carefully removed, and the bacterial pellet was gently resuspended in 5 mL
632  SILAC-heavy medium (Glucose 10 g/L, KH2PO4 3 g/L, Kz2HPO4 3 g/L, sodium acetate 5 g/L,
633  ammonium citrate dibasic 1 g/L, MgS04-7H20 0.2 g/L, MnS04-4H,0 0.05 g/L, Tween-80 1 g/L,
634  L-alanine 0.05 g/L, L-arginine-HCI (13Cs, 15N4; Fischer Scientific) 0.05 g/L, L-asparagine 0.1 g/L,
635  L-aspartic acid 0.1 g/L, L-cysteine 0.2 g/L, L-glutamine 0.1 g/L, L-glutamic acid 0.1 g/L, glycine
636  0.05 g/L, L-histidine 0.05 g/L, L-isoleucine 0.05 g/L, L-leucine 0.05 g/L, L-lysine-2HCI (13Cs,

24


https://doi.org/10.1101/2024.04.22.590295
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.04.22.590295; this version posted January 10, 2025. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-ND 4.0 International license.

637  15Njy; Fischer Scientific) 0.05 g/L, L-methionine 0.05 g/L, L-phenylalanine 0.05 g/L, L-proline
638  0.05 g/L, L-serine 0.05 g/L, L-threonine 0.05 g/L, L-tryptophan 0.05 g/L, L-tyrosine 0.05 g/L, L-
639  valine 0.05 g/L, uracil 0.01 g/L, guanine 0.01 g/L, adenine 0.01 g/L, xanthine 0.01 g/L, biotin
640  0.01 g/, Vitamin Solution 2% (v/v)). The heavy-medium culture was incubated at 37 °C with
641 220 rpm agitation for 24 hours. Bacterial growth was monitored with spectrophotometric
642  measurements (Eppendorf, Hamburg, Germany) at an optical density of 600 nm (OD600). An
643  OD600 above 0.8 was aimed to ensure suitable growth conditions. For daily passage, 500
644  microliters of L. murinus culture were taken and transferred to another 5 mL SILAC-heavy
645  medium. The labelling efficiency was evaluated on timsTOF Pro after 10 passages in heavy-
646  medium culture. S. ruber was cultured in 5 mL DMSZ-936 medium according to the
647  recommendation (https://mediadive.dsmz.de/medium/936) at 37 °C with 220 rpm agitation.

648  The duration between passages for S. ruber was around 7 days due to its slow growth. For
649  enlarged culture, 1 mL/each of L. murinus and S. ruber cultures were transferred to 30 mL
650 mediums, respectively. At the end of cultivation, 2 mL bacteria aliquots were made and
651  pelleted at 3200 g for 5 minutes at 4 °C, and one of the aliquots was resuspended in 2 mL of
652  either pre-chilled PBS (L. murinus) or DSMZ-936 medium (S. ruber). The resuspended bacteria
653  were further serial diluted (2-50 times dilution) with either PBS (L. murinus) or DSMZ-936
654  medium (S. ruber) for bacteria counting using QUANTOM Tx Microbial Cell Counter (BioCat,
655 Heidelberg, Germany) according to the procedures supplied with the device. The rest of the
656  aliquots were snap-frozen in liquid nitrogen and stored at -80°C until further use.

657 L. murinus and S. ruber Spike-in experiment

658  Counted L. murinus and S. ruber stocks were resuspended and diluted in pre-chilled PBS to
659  reach various numbers (ranging from 1 x 10* to 1 x 10°) in triplicates. The same number of L.
660  murinus and S. ruber were mixed with 10 mg of mouse feces and subjected to protein
661  extraction together (as previously described!?). To ensure a consistent spike-in background,
662  thefecal sample used here was collected and pooled from the same mouse in two consecutive
663  days at the same hour. The resulting peptide samples were analyzed on the timsTOF Ultra in
664  a 30-min gradient as described above with 25 ng of peptide per sample. The workflow is
665 illustrated in Figure 3A.

666  Labelling efficiency check for L. murinus

667  The labeling efficiency was checked by analyzing the heavy-labeled culture of L. murinus in
668 DDA-PASEF mode, and the data were searched against its reference proteome (PD3,
669  https://www.uniprot.org/proteomes/UP000051612, accessed on 2023-07-19) in Fragpipe
670  with arginine (+10) and lysine (+8) as additional variable modifications. As a result, a total of
671 60,485 PSMs were identified (1% FDR), corresponding to 12,852 unique stripped peptide
672  sequences were identified. In cases where multiple PSMs were assigned to the same peptide,

673  only the most intense PSMs of one peptide was kept for both labeled and non-labeled forms
674  if the latter was co-identified. If the peptide was identified only in either the heavy- or light-
675 labeled form, the missing intensities were assigned a value of 1 to apply the following formula
676  (doi:/10.1016/j.jprot.2018.12.025) for each peptide to calculate the labelling efficiency:
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677  Peptide labeling efficiency = (Intensity_Heavy / (Intensity_Heavy + Intensity_Light)) x 100. The
678  average of calculated efficiency (97.42%) for all peptides was presented in the study.

679  Training of Novor algorithm with PASEF datasets and performance evaluation

680 In order to obtain a robust tool for de novo sequencing using 4-dimention PASEF data, a
681  custom version of Novor'® (BPS-Novor) was generated by training Novor’s decision tree-based
682  scoring functions on over 1, 750,000 PSMs acquired in PASEF mode from a variety of timsTOF
683  instruments. This training dataset included experiments with fixed collision energy
684  measurements of deeply fractionated (a total of 60 high-pH offline fractions) peptide samples
685  digested with GluC, Pepsin, Elastase, Chymotrypsin, and Trypsin. The ground truth data was
686  taken from ProLuCID-GPU** database search results filtered with 1% FDR with DTASelect® at
687  PSM level.

688  To evaluate the performance of the newly trained BPS-Novor, a publicly available mixed
689  species (H. sapiens, Yeast, E.coli) dataset*® (ProteomeXchange ID: PXD014777) excluded in
690 the training phase was used to determine the accuracy of the model. In addition, the
691  performance of BPS-Novor was validated against K562 cell lysates digested with non-tryptic
692  enzymes, specifically Elastase, Pepsin, GluC, and Chymotrypsin to ensure accuracy with
693  mimicked non proteotypic peptides. These samples were analyzed on a 35 minute gradient
694  using an EASY-nLC (Thermo Fisher) and a timsTOF Pro instrument. The precision and recall
695  values were calculated as previously described.

696 de novo sequencing of DDA-PASEF data

697  Fractionated data were submitted to BPS-Novor intergrated in ProteoScape (Bruker Daltonik,
698 Bremen, Germany) for de novo sequencing. The mass tolerances for precursors and
699  fragments were set to 20 ppm and 0.02 Da, respectively. Tryptic peptides with a maximum of
700  two missed cleavages were allowed. Carbamidomethyl was set as a fixed modification on
701 cysteine, and methionine oxidation and N-terminal acetylation were set as variable
702  modifications. A maximum of two variable modifications per peptide was allowed. In addition,
703  only the top candidate sequence per spectrum was exported in the output.

704  Multi-tier filtering of de novo sequenced PSMs

705  The de novo sequencing outputs were imported into R and subjected to the following six
706  filters sequentially. 1) De novo score: The first filter was based on the Novor de novo
707  sequencing software, applying a score threshold of 65. 2) Charge state: We excluded PSMs
708  with a charge state of 1 due to their less reliable fragmentation patterns. 3) Peptide length:
709  we removed peptides shorter than seven amino acids to reduce the risk of ambiguous
710  matches. 4) Mass error: We evaluated the mass error of sequenced precursors and retained
711 only 95% of the sequenced PSMs that fell within the upper and lower cut-offs calculated using
712 qnorm function in R based on the mass error distribution. 5) Retention time shift: Retention
713 time predictions were performed using DeepLC* (v2.2.27). We retained 95% of the remaining
714  PSMs, which showed a strong correlation between observed and predicted retention times,
715  based on the upper and lower cutoffs calculated using the gnorm function in R. 6) Collisional
716  cross-section (CCS) shift: CCS predictions were performed using IM2Deep*® (v0.1.7). We
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717  retained 95% of the remaining PSMs that showed a strong correlation between measured and
718  predicted CCS values, using cutoffs calculated as described above.

719  Blast homology search of de novo sequenced peptides for the construction of microbial
720  protein database

721 Unique peptides remaining after multi-tier filtering were subjected to a BLAST+ homology
722 search® to retrieve potential protein sequences for microbial protein database construction.
723 The blastp function embedded in Diamond®® (v2.1.9; command line) was used to search
724 against the non-redundant protein sequence database “nr.gz”
725 (ftp://ftp.ncbi.nlm.nih.gov/blast, updated 2024-02-27). The search of de novo sequenced
726  peptides in ultra sensitive mode was restricted to the following taxa due to the nature of our
727  samples: bacteria (taxalD: 2), fungi (taxalD: 4751), archaea (taxalD: 2157), and viruses (taxalD:
728  10239). All BLAST searches used the PAM30 scoring matrix. The top 5 protein assignments
729  per query sequence were listed in the output file (output format: 6). In addition, another
730 search with same parameters but different output format (output format: 102) was
731 performed to generate taxonomic classifications of sequenced peptides based on the lowest
732  common ancestor (LCA) algorithm. To select the only one protein assignment per query
733 sequence among the top 5 candidates, we used LCA-guided procedure. Specifically, if the
734 taxonomic annotation of one protein candidate matches exactly the taxonomy assignment in
735  the LCA output, then this candidate is kept. In the case that the taxonomic annotation of the
736 protein candidates do not match exactly to the LCA output but belong to taxon rank in the
737  LCA output, these candidates were kept. Finally, if the above two steps did not generate one
738  protein per query sequence, the blast parameters (Bitscore, pident and e-value) will be
739  applied to keep the most confident candidates. To further increase the quality of the blast
740  search result, we applied a minimum of 80% cut-off for sequence identity, then further
741  retrieved the protein sequences from NCBI using the protein sequence IDs in the blast output
742  to form a microbial database based on novoMP (novoMP-DB; PD4). As a comparison, peptides
743 identified using the aforementioned MSFragger search were subjected to the same blast
744  homology search referred as DB-search (PD5) in the manuscript.

745  DIA-PASEF data processing

746 DIA-NN>! (version 1.9) was used to process DIA-PASEF data in library-free mode to generate
747  the predicted spectrum library. A deep learning-based method was used to predict theoretical
748  peptide spectra along with their retention time and ion mobility. Trypsin/P was used for in
749  silico digestion with an allowance of a maximum of 2 missed cleavages. Variable modifications
750  on peptides were set to N-term methionine excision, methionine oxidation and N-terminal
751  acetylation, while carbamidomethylation on cysteine was a fixed modification. The maximum
752  number of variable modifications on a peptide was set to 2. Peptide length for the search
753  ranged from 7 to 30 amino acids. The m/z ranges were specified accordingly depending on
754  the experiment which aligned with the DIA-PASEF acquisition method, and fragment ions
755  were set to a range from 100 to 1700. Mass accuracy for both MS1 and MS2 was set to
756  automatic determination. Protein inference was set to “Protein names (from FASTA)” and the
757  option of “Heuristic protein inference” was unchecked. Match-between-run (MBR) was
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758  enabled for cross-run analysis. RT-dependent cross-run normalization and QuantUMS>? (high
759  precision) options were selected for quantification.

760  Generally, all searches in DIA-NN included a Mus musculus reference proteome
761  (https://www.uniprot.org/proteomes/UP000000589, accessed on 2023.04.07) together with
762  different microbial databases. Specifically, results presented in Figure2 and Figured eres
763  searched against PD2, PD4 and PD5 (de-duplicated). Data shown in Figure3 was searched
764  against PD2, PD4, PD5, as well as the standard proteome of L. murinus (PD3) and S. ruber (PD6;
765  https://www.uniprot.org/proteomes/UP000008674, accessed on 2023-07-19). In addition to
766  the searching parameters mentioned above, heavy isotopic labelling of arginine (+
767  10.0082699 Da) and lysine (+8.014199 Da) were set as variable modifications.

768  The DIA-NN search outputs were further processed with the R package, DIA-NN

769  (https://github.com/vdemichev/diann-rpackage), to calculate the MaxLFQ>® quantitative

770  intensities for all identified peptides and protein groups with g-value < 0.01 as criteria at
771  precursor and protein group levels.

772  DIA-PASEF spectrum visualization

773 Skyline®* (version 23.1.0.380) was used to visualize the spectra of peptides identified by DIA-
774 NN. Briefly, the spectral library generated by DIA-NN after database searching was imported
775  into Skyline to construct a library containing precursor information for the detected peptides.
776  Precursors listed in the library and their associated fragment ions were then extracted from
777  the raw DIA-PASEF data. During extraction, mass accuracy was set to 10 ppm for both
778  precursors and fragments. To minimize false matches, only scans within 5 minutes of the
779  retention times listed in the library were extracted.

780  Taxonomic and functional annotation and quantification

781  iMetalab® (Version 2.3.0) was used for taxonomic annotation. Peptide sequences and their
782  corresponding intensity data were imported into iMetalab, and the built-in taxonomy
783  database was used for mapping, with blanks ignored below the rank of Superkingdom and a
784  minimum unique peptide count of 3 required. For the quantification of specific taxonomic
785  ranks!!, the annotation output was processed in R to extract peptides commonly detected
786  across samples for taxonomic rank of interest (e.g genus, species). The intensity of each taxon
787  was calculated by summing up the intensities of common peptides in each sample. The
788  resulting summed intensities were log2-tranformed for statistical analysis.

789  The microbial protein databases used in this manuscript were annotated using EggNOG-
790 mapper>® (http://eggnog-mapper.embl.de/) with default settings to retrieve potential

791 functions and pathways.

792  Taxon-specific functions analysis

793 Meta4P>’ was used to analyze taxon-specific functions. The peptide quantification data from
794  DIA-NN, taxonomic annotation output from iMetalab, and functional annotation files from
795  EggNOG-mapper were used as inputs for Meta4P. Quantification of taxon-specific functions
796  was performed by summing the peptide intensities associated with specific functions. The
797  resulting summed intensities were log2-transformed for statistical analysis.

798 Identification filters of L. murinus and S. ruber for spike-in experiment
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799  Peptide and protein identifications generated from DIA-NN search of the spike-in experiment
800  were further filtered to ensure species-specific identifications: 1) Only heavy-labeled peptides
801  were considered for L. murinus to exclude the interference from endogenous species. Heavy-
802 labeled peptides assigned to S. ruber were removed as they represent false-matches. 2) Co-
803  assigned peptides and protein groups shared between L. murinus and S. ruber were excluded.
804  3) Peptides assigned to L. murinus or S. ruber that were also identified in any of the non-spike
805  controls (three replicates) were removed.

806

807  Functional enrichment analysis of differentially expressed host proteins

808  Quantified host proteins were statistically compared in R using the ProTIGY package
809  (https://github.com/broadinstitute/protigy) with a two-sample moderated t-test. Functional
810 enrichment of differentially expressed host proteins was performed using the clusterProfiler>®
811 R package, with all identified proteins in the study as background genes for enrichment
812  analysis against the Gene-Ontology Biological Process database. The Benjamini-Hochberg
813  method was used to adjust p values, with an adjusted p-value cutoff of 0.05 used to identify
814  significantly enriched pathways.

815  Protein-protein interaction networks were analyzed using STRING within Cytoscape (v 3.10.2)
816  under default parameters. Drug-gene interactions were retrieved using DGIdb>° (v 5.0.7) with
817  default settings.

818  Statistical analysis

819  The Kruskal-Wallis test was performed in R to identify significant differences in genera among
820  conditions. Differentially expressed species and taxon-specific functions were analyzed using
821  thelimma package in R for the respective comparisons. The Benjamini-Hochberg method was
822  applied for multiple comparisons in all statistical analyses.
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Supplementary Figure 1: Comprehensive evaluation of novoMP performance in peptide
identification and taxonomic annotation. (A) Overlap of peptides identified by current
uMetaP (magenta) and previous timsTOF Pro workflows (gray) using same pre-fractionated
samples. (B) Log2 intensity distribution of peptides identified by uMetaP and previous
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828  timsTOF Pro workflows. (C) Precision-recall curves comparing pre-training and post-training
829  performance of Novor algorithm across enzymes (Chemotrypsin, Elastase, GluC, and Pepsin).
830 (D) Percentage of correct amino acid and peptide identifications for in a dataset generated
831  from species-mix samples (E. coli, H. sapiens, and yeast) in pre- and post-training conditions
832  of Novor. (E) Percentage of correct amino acid and peptide identifications across datasets
833  prepared with various enzymes. (F-K) Filtering and validation metrics applied to novoMP-
834  derived PSMs: (F) Distribution of de novo scores, with the dotted line indicating the filtering
835  threshold (score value = 65) for high-confidence matches. (G) Distribution of precursor charge
836  states of de novo sequenced PSMs. Black-dots represent singly charged precursors that were
837  excluded for further processing. (H) Stats of peptide length and corresponding counts. The
838  black-dotted line indicates the cut-off of 7 amino acids. (I) Mass shift distribution of de novo
839  PSMs. The black-dotted lines indicate the upper (+4.54 ppm) and lower (-7.28 ppm) cut-off to
840  ensure 95% of the data under the distribution. (J) Distribution of retention time shifts
841  between observed and predicted values. The black-dotted lines indicate the upper (+8.04 min)
842  and lower (-8.99 min) cut-off to retain 95% of the data. (K) Distribution of cross-collision
843  section (CCS) differences between observed CCS and predicted CCS. The black-dotted lines
844  indicate the upper (+21.59 A ) and lower (-17.25 A ) cut-off to keep 95% of the data under the
845  distribution. (L) Venn diagram showing species identified by applying novoMP (gray) and
846  classic DB-search strategy (light blue) in a dataset acquired using our previous timsTOF Pro
847  workflow. (M) Annotated species comparison by applying novoMP to current uMetaP
848  workflow (magenta) and previous timsTOF Pro workflows (gray) using same pre-fractionated
849  samples.
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850
851  Supplementary Figure 2: Validation of quantitative precision and functional annotations

852  enabled by uMetaP and novoMP in complex metaproteomic datasets. (A) Peptide intensity
853  distribution and quantitative precision analysis for 25 ng of peptides analyzed with a 30-
854  minute LC gradient. Left: LoglO intensity distribution ranked by peptide abundance,
855  categorized into high, medium, and low-intensity groups. Right: Density plots of the
856  coefficient of variation (CV) for each intensity group, with the red dashed line indicating a CV
857  threshold of 0.2. (B) Density plots of CV values (triplicates) across varying sample loadings (10
858 ngto 50 ng) and LC gradient lengths (30 to 60 minutes). Peptides identified by novoMP-DB
859  (green) demonstrate comparable or superior quantitative precision to database-searched
860  peptides across all conditions. (C) Overlap of all identified protein groups (ProteinlDs_all),
861  those identified with novoMP-DB (ProteinIDs_novoMP-DB), and those uniquely identified by
862 novoMP-DB (ProteinIlDs_novoMP-DB_unique). (D) Functional annotations (COG and KEGG) of
863  allidentified protein groups (All), those identified with novoMP-DB (ProteinIDs_novoMP-DB),
864  and those uniquely identified by novoMP-DB (ProteinlDs_novoMP-DB_unique). (E) Amount
865  of PUFs, sProt, and AMPs experimentally detected using 25 ng with a 30-min gradient and
866  present in the constructed microbial protein database.
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Supplementary Figure 3: Validation and characteristics of peptides and proteins identified
in spiked-in bacterial experiments. (A) Distribution of SILAC incorporation efficiency for L.
murinus, showing an average incorporation efficiency of 97.42%. (B) Linear relationship
between dilution factors and counted bactria for S. ruber and L. murinus. (C-D) Representative
of identified MS/MS spectra of peptides from L. murinus (C) and S. ruber (D) at the LoD of 10*
bacterial cells compared to same peptides at higher spike-in amounts. (E) Fluorescent object
size distribution for L. murinus and S. ruber measured during bacterial counting. (F) Venn
diagram comparing the total peptides identified (Peptides_all) and those identified by
novoMP-DB (Peptides_novoMP-DB).
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878  Supplementary Figure 4: Microbial taxonomic and functional changes during intestinal
879  injury in response to mitochondrial dysfunction. (A) Number of peptides and protein
880 identifications for host and microbiota across DO and D8 in control (Hsp60™"/f) and injured
881  (Hsp60%2'E) mice. (B) Comparison of detected genera and species (bacteria superkingdom)
882  using 16S rRNA, shallow shotgun metagenomic sequencing, and uMetaP on the same sample
883  set. (C) Log2 abundance of 16 significantly altered genera in response to metabolic injury
884  discovered by uMetaP. (D-E) Abundances of differentially altered species at DO (D) and D8 (E).
885  The genera assignments of those species are colored and shown on the left of the heatmaps.
886  (F) UpSet plot showing uniqueness and shareness of significantly regulated KEGG pathways
887  among 14 species at DO.
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890  Supplementary Figure 5: Functional enrichment analysis of host proteome changes. (A)
891  Volcano plot showing log2 fold changes of significantly regulated proteins at DO (A/AIEC_DO
892 vs. fl/fl_DO). Proteins with adjusted p-values < 0.05 are highlighted. (B) Enriched biological
893  processes from significantly regulated proteins at DO. (C) GO enrichment of 33 proteins
894  consistently regulated in mouse metaproteomics (colonic content), mouse targeted RNA
895  analysis (colon tissues), and human transcriptomics datasets (Crohn’s disease, ileum biopsy).
896  The enriched terms are sized based on the number of genes mapped.
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